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Abstract

Spacecraft navigation and control is difficult in deep space operations. Especially around
asteroids, the irregular gravity field increases the difficulty of estimating the spacecraft tra-
jectory. Autonomous navigation can increase the safety and accuracy for orbit proximity
operations. Furthermore, it eliminates the need for continuous communication with the space-
craft. For the implementation of autonomous navigation in deep space, the onboard guidance
navigation & control (GNC) should be able to accurately estimate the attitude and relative
position of the spacecraft. By using sensor fusion, information from individual sensors can be
combined to increase certainty and accuracy of the state estimation. A sensor fusion model
is proposed, comprising an inertial measurement unit (IMU), star tracker and light detection
and ranging (LiDAR) as navigation sensors. The aim of this research is to investigate the
feasibility and performance applying sensor fusion for the spacecraft state estimation.

A navigation filter is applied to a benchmark scenario that orbits an asteroid at 50 km. In this
scenario, asteroid 433 Eros has been selected for its unique shape, which has been mapped
during the Near Earth Asteroid Rendezvous (NEAR) mission. A simulation is performed to
approximate the dynamics and kinematics of the mission environment. The simulation takes
a polyhedron model of the asteroid, a third-body disturbance by the sun, and an additional
acceleration due to solar radiation pressure into account. The simulation forms a base for the
sensor measurement simulation. As the IMU consists of an accelerometer and a gyroscope, the
measurements total to two sets of available data for position as well as attitude estimation.
The navigation filter estimates the position, velocity, attitude and gravitational constant
of the asteroid, by use of an extended Kalman filter (EKF). The EKF is augmented for
the quaternion states to a multiplicative extended Kalman filter. The navigation filter is
simulated for a benchmark scenario, as well as for different orbital heights and temporary loss
of the star tracker as well as the LiDAR sensor.

As a result, it is concluded that it is feasible with the given sensor set to approximate the
position and attitude of a spacecraft in proximity of 433 Eros. For the position, a root-mean-
square error (RMSE) of 0.5 m is found at an orbital height of 50 km. Using a time step of 0.1
s for the EKF is recommended after a trade-off between accuracy and computational time. It
is concluded that the proposed model for state estimation is sufficiently accurate for position
and attitude estimation for the given benchmark scenario. With this navigation filter, we
come one step closer to the development of autonomous navigation for asteroid observing
spacecraft.
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Chapter 1

Introduction

The research performed for this master thesis is centred around the application of sensor
fusion within autonomous navigation of asteroid missions. This chapter will start with the
discussion of the scientific relevance in Section 1-1. Next, the research question and sub-
questions are introduced in Section 1-2. The novelty of the thesis research is briefly discussed
in Section 1-3 Then, the overall framework of the thesis report will be explained last, in
Section 1-4.

1-1 Scientific Relevance

A great deal of examples of sensor fusion are available in engineering applications: from human
motion capture to underwater positioning using topographic maps, or indoor localisation using
simultaneous localization and mapping (SLAM) algorithms (Miller et al. (2010),Gustafsson
(2012), Bavel (2022)). Especially for positioning and orientation estimation, sensor fusion has
been proven successful in obtaining accurate results. Sensor fusion is defined as combining
data from sensor sources such that the resulting data can provide more information than the
individual data sources (Gustafsson, 2012). By being able to combine sensor data, one should
thus be able to handle data more efficiently, or gain more insight on a process. Within space
exploration, sensor fusion is crucial for spacecraft autonomy, making human interpretation of
trajectory information redundant.

As we are extending the possibilities for space exploration step by step, we encounter the limits
of controlling the actions of a spacecraft that is at a distance of a couple of billion kilometres.
Often, the deep space environment cannot be fully anticipated during mission design. The less
is known about a mission target, the riskier the mission will be. An autonomous spacecraft
can account for unforeseen circumstances, and enhances the probability of mission success.
According to Jet Propulsion Laboratory (2019), "rather than rely on programmed commands,
an [autonomous] spacecraft is aware of its surroundings at all times and capable of determining
and executing safe and effective actions". Therefore, using sensor fusion for autonomous
navigation in deep space can increase the amount of possible actions performed in deep space.
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This is because this method can increase the reliability level of actions considered too risky
before. It is therefore desired to incorporating sensor fusion into the navigation system. This
should enhance the accuracy and safety of the navigation and control.

One could argue whether autonomous navigation of spacecraft is needed as there are cur-
rent methods to navigate, track, and command spacecraft. Currently, communication and
positioning of deep space spacecraft is performed through the deep space network (DSN).
Communication is carried out through electromagnetic radiation signals. All spacecraft are
equipped with a transponder to send out to and receive these signals from the Earth-based
ground stations (Mudgway, 2013). Bodies naturally emitting electromagnetic radiation such
as the Sun, Jupiter, or other celestial bodies can also be detected by the DSN. Where infor-
mation sent through the signal is used for communication, the signal itself has the purpose
of tracking.

An advantage of communication through the DSN is the access to more computational ca-
pability provided by the ground stations. On-board computers have a physical limit to their
computational capacity and power supply. The ground stations on the other hand, have ac-
cess to computers with a much larger computational power that can process and estimate
data with large precision.

As a spacecraft orbits closer and closer to a small body, having reliable navigation plays a
more crucial role. Avoiding collision is a matter of both time, by reacting in a timely manner,
and of accuracy, by providing the accurate commands to change the trajectory. The objective
for deep space navigation is to ensure reliable navigation, making a trade-off between accuracy
and time. The latter is undeniably one of the largest disadvantages of DSN communication:
a round-trip to send to and receive a signal from the ground station is at least forty minutes
(Santo et al., 1995).

It is challenging to provide a command that should be performed twenty minutes from now
with data that is 20 minutes old. Real-time decisions can be provided by the on-board com-
puter, hence the motive for autonomous navigation. In addition, keeping a ground station
running for command handling and tracking is expensive (Jet Propulsion Laboratory, 2014),
and there is a limited communication window between the ground station and the spacecraft.
It is expected that autonomous navigation comprising on-board guidance navigation & con-
trol (GNC) and availability to in-situ sensor measurements should be able to give the best
performance in terms of orbit control and determination accuracy (Jet Propulsion Laboratory,
2011).

Autonomy of a spacecraft can be implemented in different mission phases and for different
mission types. Autonomy in space exploration during landing has been covered in previous
theses such as Woicke (2018), demonstrating the SLAM algorithms can be used to success-
fully avoid hazards on a landing site when performing autonomous moon landing. Indeed,
autonomous landing procedures have been an important trend in autonomous spacecraft nav-
igation. Especially missions targeting non-cooperative bodies with irregular gravity fields,
such as asteroids and comets, will gain from this technology (Jonsson et al. (2007), Takahashi
and Scheeres (2022)).

However, for missions targeting comets, navigation sensors such as star trackers can be
lacking, as was experienced during the Rosetta mission. Due to the dust trail of comet
67P/Churyumov-Gerasimenko, the star tracker cameras were unable to estimate the orienta-
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tion of the spacecraft (Pineau et al., 2019). Not only the sensor set, but also the control mech-
anisms are crucial for succesful autonomous operations. Sample retrieval on asteroid Itokawa
was attempted during the Hayabusa mission, but could not be performed autonomously due
to reaction wheel failure (Hashimoto et al., 2010). A recent attempt for autonomous landing
by OSIRIS-REx was successful with a landing on 101955 Bennu in July 2020.1

For the implementation of autonomous navigation, proximity operations are often mentioned
as mission phases that can benefit the most from it, other than surface exploration. (Nesnas
et al. (2021), Chan and Agha-mohammadi (2019), Jet Propulsion Laboratory (2019), Machuca
and Sánchez (2021)). In this mission phase, it is important to estimate both the orientation
and the position of the vehicle. The spacecraft is approaching the target with little to no prior
information about the motion or shape of the body, or with limited and changing information
of its appearance (Nesnas et al., 2021). With non-cooperative objects such as asteroids with
distinctive surface and shape features, it can be difficult to anticipate the dynamics around
the asteroid. What’s more, is that for closer orbits, more estimation accuracy and faster
response is needed to avoid collisions, with respect to orbits further away. It is therefore
necessary to estimate the position and estimation on-board.

Razgus (2016) demonstrated feasibility of estimating the spacecraft position and orientation
orbiting Kleopatra using dual quaternions, but concluded that dual quaternions are com-
putationally much more expensive. Irrespective of the asteroid shape, orbital height, and
inclination, the conclusion was drawn that dual quaternions and quaternions have almost the
same performance, even though the dual quaternion model is ’40 to 50 percent more exhaus-
tive in computational time’. Both methods were applied to an extended Kalman filter (EKF),
but more filters can be used to tackle state estimation problems.

For navigation or other state estimation problems, Kalman filter (KF) algorithms have proven
to reduce computation errors by combining the mathematical model with a set of measure-
ments (Urrea and Agramonte, 2021). However, when the system dynamics are of nonlinear
nature, the KF algorithm needs to be augmented. Either an EKF or an unscented Kalman
filter (UKF) are commonly implemented. Whereas the EKF performs an analytic linearisa-
tion of the system at each point in time, the UKF performs a statistical linearisation at each
time point. In theory, an UKF will outperform an EKF for tracking problems (Yang and
Li, 2016). Especially for (highly) nonlinear state space systems, the improved performance
of the UKF should become apparent. When applying the theory, this is not always evident.
Bourgeaux (2020) provided insight that the UKF was more robust in combination with a
spherical harmonics model for estimating the gravitational coefficient of an asteroid or small
body. However, the difference in efficiency was not concluded as significant between the EKF
and the UKF. Furthermore, St-Pierre and Gingras (2004) demonstrated that the computa-
tional time of an UKF is about 20 times larger than as for an EKF for position estimation.

The difficulty in navigating around asteroids is mainly due to the aforementioned irregular
gravity field. There are several methods that can be used to estimate the gravitational
behaviour of a spacecraft in orbit around an asteroid. However, methods such as spherical
harmonics are no longer valid once you enter the sphere encompassing the masses of the
asteroid (Hesar et al., 2016). As demonstrated by Spee (2022), estimating the position within

1https://www.nasa.gov/feature/goddard/2020/osiris-rex-tags-surface-of-asteroid-bennu,
accessed May 5, 2022.

Master of Science Thesis M. N. van Oorschot

https://www.nasa.gov/feature/goddard/2020/osiris-rex-tags-surface-of-asteroid-bennu


4 Introduction

the Brillouin sphere can be feasible by implementing a mass concentration gravity model
in the EKF. Although Bourgeaux (2020) and Spee (2022) have established a method to
accurately estimate spacecraft position and gravitational coefficients in the proximity of an
asteroid, it is yet to be determined how to extend this to also approximate the spacecraft
orientation.

In addition, a gap between the necessary observations, and which sensors can provide for it,
remains. A lot of research can be found, however either on position or on attitude estimation.
Therefore, in this thesis the findings on both are combined, as the estimation of the two do
rely on each other. Although it is ascertained that the position and orientation relative to the
asteroid should be determined, inertial sensors or star trackers could aid in the estimation.
Which sensors are necessary and how they will propagate, and under which conditions they
can provide reliable and fast enough estimates, has yet to be established. As previously
mentioned, it is expected that sensor fusion should help further gain insight in the research
gap.

Operating near irregular-shaped celestial bodies is a challenge. Having onboard situational
awareness, enables the ability to maneuver in proximity of near Earth asteroid (NEA)’s,
maintain unstable orbits and enable closer flyby’s (Nesnas et al., 2021). The use of a sensor
fusion algorithm in asteroid observation missions should enhance the available information
for spacecraft navigation. In doing so, the spacecraft becomes one step closer to operating
autonomously during proximity operations.

1-2 Research Question and Objective

Based on the disquisition of the scientific relevance, it is concluded that the desire to in-
vestigate the thesis subject can be justified. Subsequently, the research question, reserach
objective, and research sub-questions can be presented. Based on the previous section, it is
assumed that sensor fusion is used to estimate the position and attitude of the spacecraft. The
deep space spacecraft is a probe sent to an asteroid for observation. The research question
reads

"How can sensor fusion applied in autonomous navigation for deep space space-
craft contribute to improving safety and accuracy during proximity operations?"

where improving safety and accuracy implies that a stable orbit can be maintained due to
proper estimation of the position and attitude. In that case, the on-board software and
sensors can account for time-appropriate control manoeuvres to avoid crashing. As the current
position error obtained using DSN position estimation is 150 m at 1 AU distance from Earth,
the onboard navigation should be able to have a smaller error to improve accuracy.2

To provide an answer to the research question, a navigation filter will be designed, simulated,
and analysed. For the navigation filter, a baseline mission scenario is determined first. This
hypothetical mission is then simulated in a digital environment, which will be referred to as
the true state simulation. The sensor measurements are simulated based on the true state
simulation, which are used as measurements for the navigation filter. The research objective
is therefore to implement the described navigation filter for state estimation, and demonstrate

2https://descanso.jpl.nasa.gov/performmetrics/DSN_NavSysAccuracy.html, accessed June 15, 2022
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the feasibility of estimating all states with a selected sensor set. Breaking down the research
question and research objective leads to the following sub-questions:

1. What sensor set is necessary to estimate position and orientation of the spacecraft?

2. How can the selected sensors be configured and simulated in the navigation system?

3. To what extent can the navigation filter improve the accuracy of the state estimation?

4. What is the role of the estimation frequency in the accuracy performance of the navi-
gation filter?

5. To what extent can the autonomous navigation system improve the response time when
orbital correction manoeuvres are required?

1-3 A Novel Navigation Filter Design

In this section, it is presented what is new to this research, especially in comparison to the
preceding thesis research by Razgus (2016), Bourgeaux (2020), and Spee (2022) at the space
flight department at aerospace engineering.

To begin with, a true state simulation is set up. The true state simulation is completely
verified and benchmarked, such that the method is reproducible and can be applied to other
mission scenarios, also for different asteroids. From the true state simulation, a lot of infor-
mation is available about the dynamics and kinematics of the spacecraft and its environment.
Previously, it was often assumed that a lot of that information was available for the naviga-
tion filter. For instance, the disturbing forces such as the solar radiation pressure (SRP) or
third-body influence of the Sun, was readily supplied to the navigation filter. For my thesis,
the approach was to limit the available information of the navigation as much as possible
and only rely on a few assumptions. For instance, only the gravitational parameter and an
expected rotation rate is assumed about the asteroid.

Furthermore, the state space derivation is new. Whereas Spee (2022) and Bourgeaux (2020)
only simulate position estimation of the spacecraft orbiting an asteroid, my thesis focuses
on estimating both the position and attitude of the spacecraft. Since the attitude of the
spacecraft influences how the forces are exerted on the body, both are equally important
to estimate. Although the research by Razgus (2016) does estimate the attitude of the
spacecraft, the state space estimation is now derived in the inertial reference frame and the
dual quaternions are omitted.

The navigation filter architecture as well as the implementation of the sensor simulation,
are also different. The measurements of the inertial measurement unit (IMU) sensor will be
considered as inputs in the state space update. In addition, the measurements of a star tracker
and a light detection and ranging (LiDAR) are simulated and implemented as two separate
measurement updates. In comparison to Spee (2022), the measurements of the position are
not readily given in the necessary x-, y-, and z-coodinates with added white noise, but the
position information as measured by the LiDAR are simulated. What’s more, is that the
output rate of each sensor is taken into account, such that a more realistic scenario is given
on the availability of measurements needed for state estimation.
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As we assume as little information to be known beforehand, it is also not assumed that the
spacecraft navigation is in possession of a full surface map of 433 Eros. Also, no mascon
models (Spee, 2022), or spherical harmonic coefficients (Bourgeaux, 2020), for estimating the
asteroid gravity, are implemented into the navigation filter.

In short, we try to estimate as much as possible with as little information as possible given
prior to the system. Hence, the influence of the simulated measurement should become more
apparent and give more insight into which sensor set is necessary to achieve position and
attitude estimation. The most novel features are navigation filter architecture and the sensor
measurement simulation models. Before debating whether complete error state KF algorithms
or gravitational field estimation algorithms are necessary, it is necessary to demonstrate the
feasibility of this system first. By doing so, the navigation filter can be extended on in future
research.

1-4 Report Framework

The deep space spacecraft characteristics and the mission environment can of course change
from case to case. Therefore, the current mission heritage of deep space missions targeting
small bodies will be consulted. To start with, the mission heritage preceding the research
is discussed in Chapter 2. Here, we dive deeper into the scientific relevance of asteroid
research and discuss a previous small-body observation mission. Based on the findings, a set
of requirements and characteristics of our hypothetical spacecraft can be determined. Having
the general mission design established, a decision is made what interaction will take place
between the spacecraft and its environment. The assumed kinematic and dynamic behaviour
of the spacecraft and its environment is discussed in Chapter 3. Thus, the context of the sensor
fusion application is defined in these chapters. The context of the sensor fusion application
is thus defined in Chapter 2 and Chapter 3.

Next, a switch to the digital world takes place. All the previously assumed dynamics, kine-
matics and body characteristics are to be converted to a simulation environment. The envi-
ronment can then be used for the propagation of various test cases. Chapter 4 will discuss
how the environment is simulated, and how the propagation of the state of the spacecraft
will be computed. In Chapter 5, the simulation environment is extended to the simulation of
the observed state of the spacecraft. The available sensors and their outputs are presented,
followed by the simulation of said outputs. How the sensor output simulation is then used
for the spacecraft state estimation in a navigation filter is discussed in Chapter 6.

Having all components of the simulation model ready, the mission scenarios can be simulated
of which the results are presented in Chapter 7. The interpretations of the results are given in
Chapter 8. Next, what conclusions can be drawn from the results, and what can be advised
to be included to future research are both discussed in the last part, Chapter 9.
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Chapter 2

Mission Heritage

In this chapter, the scientific relevance to the thesis research is further elaborated upon, by
looking into the mission heritage. To begin with, the motivation to investigate asteroids and
what importance asteroid observation data can have is discussed. A target asteroid is selected,
followed by a report of the observation mission that was dispatched to investigate it. Based
on the example mission and the previously established research questions, an initial mission
design is presented that forms the base for the spacecraft simulation during the research.

2-1 Asteroids

Asteroids are, according to Britt et al. (2014), defined as "small, naturally formed solid bodies
that orbit the Sun, are airless, and show no detectable outflow of gas or dust." This last feature
is what immediately distinguishes them from comets, which usually have a tail or coma of
gas and dust trailing after them (Lissauer and de Pater, 2013). Often, asteroids are referred
to as minor planets, as they orbit the Sun. However, they do not posses enough mass to
overcome rigid-body forces with their own gravity in order to become spheroid. This results
in asteroids with irregular shapes, which is one of their remarkable features.

2-1-1 Scientific Importance

There are multiple arguments for the importance of researching asteroids. To begin with,
several asteroids have been classified as a potentially hazardous object (PHO). Asteroids
orbiting the Sun with a perihelion less than 1.3 AU are categorised as near-Earth objects
(NEO). Of these asteroids, any asteroid that is within a 0.05 AU distance from earth with a
diameter of at least 120 metre is then classified as a PHO, as they are likely to survive travel
through Earth’s atmosphere and induce large damages upon impact (Harris et al., 2014).
Multiple asteroid deflecting solutions have been proposed1 while continuing to detect any

1https://news.mit.edu/2020/how-deflect-asteroid-mission-0219, accessed May 5, 2022.
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hazardous objects coming Earth’s way (Lyzhoft and Wie (2019),Vermeulen (2022)). Asteroid
deflection research is beyond the scope of this thesis, as it is focused on asteroid observation.

The first discovery of an asteroid dates back all the way to 1801, when 1 Ceres was discovered
by Giuseppe Piazzi (Serio et al., 2002). Since then, more than 400,000 asteroids have been
discovered in the main asteroid belt. 2 Asteroids were gradually formed over time, and can
range from a few metres to a few kilometres in size. To form an asteroid, small agglomerates
gently collided, creating fluffy aggregates (Dymock, 2010). These aggregates in turn then
grew to bodies of centimetre width, then to a metre, and so on. Their interiors are very old
and could not only aid confirming hypotheses on the formation of the asteroid itself, but also
on the age and formation of the solar system. It is believed that due to intense collisional
evolution, only a few asteroids possess their primordial surface and mass, where others have
reaccredited pieces of mass or have fragmented into smaller bodies (Britt et al., 2014). Due
to their gradual formation, asteroids can appear to be loosely bound bodies with fractures
and internal voids. Hence, it is not uncommon that asteroids have a porous interior.

The key information that asteroids provide, about the formation environment of the currently
known planets, can be extracted from observation results. The material of asteroids is diverse,
consisting of, but not limited to, stone, iron, carbon and ice. Most knowledge about asteroids
is derived from ground-based telescopic data, where composition information can be derived
from spectroscopy. Based on the albedo, asteroids can be classified as carbonaceous (0.04-0.06
albedo), siliceous (0.14-0.17 albedo) or other types.

Carbonaceous and siliceous asteroids are most common, as they currently make up 40% and
17% of the total discovered asteroid population respectively. Carbonaceous asteroids appear
to have undergone no heating, as they are further out in the solar system (>2.7 AU), and are
considered the primitive, low-temperature condensate objects (Lissauer and de Pater, 2013).
Siliceous asteroids are considered a more complex class of asteroids due to their wide range
of mineralogy, from which different formation scenarios can be considered (Britt et al., 2014).

Performing deep-space observation has many important advantages as compared to obser-
vations from Earth. While it is possible to obtain a great deal of information on asteroids
using telescopic data, critical science questions can only be answered with observations from
up close. Observing asteroids by means of fly-by’s or in-proximity orbits allows for determi-
nation of many more characteristics and observing for a longer period of time. Having the
adequate payload on-board, one can determine the gravity field, magnetic field, composition,
surface characterisation, volume and mass, with more accuracy than from a position on or
near Earth.

An orbit closer by a target object will usually result in more accurate observations from the
scientific payload, better imaging, and more insight into the gravity field of the asteroid. This
is, however, more difficult than orbits further away outside the Brillouin sphere (Hesar et al.,
2016). What’s more, is that the porous interior can complicate computation of the spacecraft
dynamics due to gravitational force. Consequently, asteroids pose as a good target object to
research autonomous navigation of the spacecraft: stable orbiting for close-by observation is
more complex compared to spheroid-shaped celestial bodies with known density distribution.

2https://airandspace.si.edu/exhibitions/exploring-the-planets/online/solar-system/
asteroids/, accessed May 5 2022
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2-1 Asteroids 9

2-1-2 Target Asteroid: 433 Eros

For the research context, asteroid 433 Eros has been selected as the target. Proximity op-
erations around 433 Eros pose as a great test case. Enough data is available about the
gravitational field from the Near Earth Asteroid Rendezvous (NEAR)-Shoemaker mission to
simulate a spacecraft orbiting the asteroid (Chanut et al. (2014), McAdams et al. (2000)).
The history of the NEAR-Shoemaker mission will be discussed in Section 2-2.

433 Eros has been classified as a primitive undifferentiated silicate asteroid of the Amor type
within the NEO group, as it is orbit crossing with Mars. However, due to its larger perihelion
and semi-major axis than other NEO, it can come as close to Earth as 0.15 AU.3 It is even
believed that it would be possible 433 Eros can hit the Earth in the coming 106 to 108 years,
as its orbit can gradually change from Mars-crossing to Earth-crossing (Michel et al., 1996).

As previously stated, (siliceous) asteroids can contain a wide range of materials and can be
of different densities throughout their interior. Based on the data resulting from the NEAR-
Shoemaker mission, it was concluded that there is an offset of 52 meters between the geometric
centre and the centre of mass of 433 Eros (Thomas et al., 2002). This offset is thus likely
occurring because of porosity or irregularities in material density present in the asteroid.
Considering a diameter of about 17 km, it is still very close to each other, and 433 Eros is
likely to have a homogeneous density distribution (Miller et al., 2002). Furthermore, it was
concluded that the asteroid is lacking a magnetic field (Siddiqi, 2018) which would impose
absence of any metallic iron or other magnetic minerals.

(a) Mosaic of two images of 433 Eros taken by
NEAR-Shoemaker on February 14.4

(b) Image of Psyche crater on 433 Eros taken by NEAR-
Shoemaker on February 14.5

As can be seen from Figure 2-1a, the surface features of 433 Eros are highly diverse, consisting
of sinuous or linear depressions, scarps and riches. The largest depression found on 433 Eros’

3 https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2000433#content, accessed March 10,2021.
4https://nssdc.gsfc.nasa.gov/imgcat/html/object_page/nea_0126712790_mos.html, accessed May 5,

2022.
5https://nssdc.gsfc.nasa.gov/imgcat/html/object_page/nea_0127531846_mos.html, accessed May 5,

2022.
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surface is the 5.3 km wide crater Psyche, visible in Figure 2-1b. The unique shaping of the
asteroid induces irregular gravitational forces to be experienced by an orbiting spacecraft.
This poses as a good example of future asteroid observation missions, where irregularity of
the usually assumed constant µ, the gravitational parameter, has to be accounted for during
navigation. The exact characteristics of 433 Eros can be found below in Table 2-1. These
parameters can be used for the dynamics of the spacecraft environment in Chapter 3 and the
simulation of the asteroid in the algorithm described in Chapter 4.

Table 2-1: Characteristics of Mission Objective 433 Eros (Miller et al. (2002)).6,7

Parameter Value [Unit]
Volume 2503±25 [km3]
Bulk density 2.670.03± [g/cm3]
Mass 6.6904±0.03 ·1015 [kg]
Diameter 16.84±0.06 [km]
Rotation period 5.27025547 [h]
Geometric albedo 0.25±0.06 [-]
Point mass µ 4.3838006364736 ·105 [m3 s−2]
Moments of Inertia Value [Unit]
Ixx 17.09 [km2]
Iyy 71.79 [km2]
Izz 74.49 [km2]

2-2 NEAR-Shoemaker Mission

Since 433 Eros has been selected as the target asteroid, the most relevant mission to base
the research context on is the NEAR-shoemaker mission. The mission was novel for its time:
a spacecraft had never performed a fly-by, orbit insertion and a landing on a small body
before. The main objective was to characterise 433 Eros’ general physical properties such as
inertial mass distribution and morphology, as well as determining any presence of mineral
components or a magnetic field. The secondary objective was the observation and mapping
of C-type asteroid 253 Mathilde.

The spacecraft was launched on February 17, 1996, with a launch mass of 805 kg and a ∆V
budget of 1420 m/s. On its trajectory towards 433 Eros, the fly-by of 253 Mathilde was
performed on June 27, 1997 (McAdams et al., 2000). Although the spacecraft was scheduled
for a rendez-vous on 20 December 1998, a spacecraft anomaly caused a delay in the operation.
Control of the spacecraft was recovered just in time to perform a high-speed fly-by at 3,900
km from the asteroid (Williams, 2002). The rescheduled rendez-vous took place on February
14, 2000, and one year later the spacecraft performed a successful landing on February 12,
2001 (Cheng, 2002).

The largest challenge of the proximity operations around, and landing on 433 Eros, was the
highly irregular gravity field. The gravity field was difficult to approximate beforehand. The

6https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=eros, accessed May 9,2022.
7https://newton.spacedys.com/neodys/index.php?pc=1.1.1&n=433, accessed May 9 2022.
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Figure 2-2: Artists rendition of the NEAR-Shoemaker spacecraft and 433 Eros.8

predictions of the spacecraft dynamics were performed using the radiometric data sent to the
ground stations, causing slow convergence of the gravity field determination. To overcome
the issue, optical landmark tracking was used, which was also a novel approach for deep space
missions (Williams, 2002). In the beginning of the proximity operations around 433 Eros,
the spacecraft was in a 50 km radius orbit. On July 13, 2000, the spacecraft moved into a
lower orbit at a 35 km radius for ten days, coming as close as 19 km to the asteroids surface.
Next, a close fly-by of 5.3 km from the surface was performed on October 26 (Cheng, 2002).
At the end of 2000, the spacecraft descended again to a 35 km orbit to initiate another set
of close flyby’s of 5 or 6 km to the surface (Siddiqi, 2018). Through these operations, the
rotation, pole, and gravity of 433 Eros could be determined with more accuracy. Not only
the asteroids features were determined, but also the effect of perturbing forces such as the
solar gravity gradient. Techniques such as optical navigation, landmark tracking, and laser
radar data analysis contributed to these findings (McAdams et al., 2000).

Table 2-2: Power and Mass budget instruments NEAR mission (Santo et al., 1995).

Instrument Mass [kg] Power [W]
Multi-Spectral Imager 7.8 13.9
NEAR Imaging Spectrograph 14.2 20.0
X-Ray/Gamma-Ray Spectrograph 27.3 31.3
Magnetometer 1.6 1.5
Laser Rangefinder 5.1 26.8
Star Tracker 2.7 9.9
Inertial Measurement Unit 5.3 21.4
Digital Sun Sensors (5) 1.9 0.3

8https://civspace.jhuapl.edu/destinations/missions/near, accessed March 12, 2021.
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New insights were found during the operation of NEAR, using the instruments found in Ta-
ble 2-2. Based on the findings of the gamma Ray Spectrometer (GRS), the composition of
433 Eros appears similar to chondrites that can be found on Earth (Cheng, 2002). Further-
more, it could be concluded that there is no magnetic field around the asteroid, based on
the findings by the magnetometer. With the help of the multi-spectral imager (MSI) and
the NEAR Imaging Spectrograph, over 70% of the surface of the asteroid could be mapped
(Siddiqi (2018)). The images showed a surface with some interesting features: ridges and
grooves can extend a couple of kilometres across the surface, of which the longest is 18 km
(Cheng, 2002). This could conclude that the asteroid is not a rubble pile bound over time by
gravity, but is a more consolidated body (Thomas et al., 2002). The findings by NEAR will
be used in Subsection 3-4-1 to model the asteroid’s gravity field.

2-3 Mission & Spacecraft Design

Before diving into the research, some constraints on the research direction have to be estab-
lished. Based on the NEAR mission, there is not only a lot of information about the target
asteroid available, but also on the design of a successful asteroid observation mission. There-
fore, the needs and constraints that can be derived from the example mission are explained
here, of which the mission design requirements can be found in Appendix A.

The research will focus on simulations of the asteroid observation phase. As discussed in
Section 1-1, both the orientation and the position of the spacecraft need to be identified during
the (autonomous) proximity operations around an asteroid. The orientation and position are
considered to be relative to the asteroid. It is assumed that, similar to the example mission,
the initial orbit around the asteroid will have a radius of 50 km.

Although the main body of NEAR is defined as an octagonal prism with panel lengths of
1.7 m, a simplified cuboid design for the spacecraft simulation will be used.9 For the solar
panels, four 1.2 by 1.8 m panels are positioned at the top panel of the spacecraft in windmill
configuration.10 To keep the mission design simple, it is assumed that power is available to
all systems necessary in the observation phase. The mission context will not focus on power
generation and Sun pointing in order to do so.

On the contrary, the navigation architecture does lie within the scope of the research. The
guidance navigation & control (GNC) system was designed to have 3-axis attitude control,
with a pointing stability of 1.7 millirad and a pointing accuracy of 50 microradians (Santo
et al., 1995). A redundant set of four reaction wheels was incorporated. These were com-
plemented with eleven smaller monopropellant thrusters and one larger bipropellant thruster
Lee and Santo (1996). The common control procedures were handled by just the reaction
wheels. In order to maintain control over the vehicle, momentum dump was carried out by the
thrusters from time to time. This was detected automatically by the GNC system. Although
the control operations are the next step for autonomous navigation of the spacecraft, they are
not defined for the mission context. As the research focuses on the estimation of the position
and orientation relative to the asteroid, the control of the spacecraft is beyond the scope.

9https://nssdc.gsfc.nasa.gov/planetary/near.html accessed May 9 2022
10https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1996-008A, accessed May 9 2022
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For the inertial sensors, redundancy was incorporated by integrating a 4-axis pyramid shape
configuration of 4 inertial measurement unit (IMU)’s, each consisting of an accelerometer and
a gyroscope (Strikwerda et al., 1998). The sensor redundancy is not yet taken into account. It
is assumed that all sensors can provide measurements throughout the orbit that is simulated.
Therefore, it is also assumed that the navigation system will arrive at the destination without
any failure. Of course, a lot of information is known about the available sensor types that
were onboard of the NEAR spacecraft. The final sensor selection is presented in Chapter 5.

To summarise, the following assumptions are made about the mission design:

1. The interplanetary travel to 433 Eros will be successful without damaging any of the
navigation sensors.

2. Power is available to all necessary subsystems during the simulated orbit trajectory.

3. The spacecraft will orbit 433 Eros at 50 km radius.

4. The navigation sensors will provide measurements for the full duration of the simulated
orbit trajectory.

5. The spacecraft shall have the same mass as the NEAR spacecraft.

6. The spacecraft shall have a simplified version of the dimensions of the NEAR spacecraft
in the form of a panel model.

7. The navigation system will at least estimate the position and orientation of the space-
craft relative to the asteroid.

Now that a set of assumptions for the mission context has been set up, the base for the mission
has been laid out. This brings us to the next chapter: defining the mission environment and
presenting the dynamic and kinematic equations that come into play.
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Chapter 3

Dynamics and Kinematics of the
Spacecraft and its Environment

Within this chapter, a dynamic model for the spacecraft, including its kinematics, and the
environment is proposed. The model and the assumptions made serve as a base for the
algorithm that simulates the propagation of the spacecraft and the asteroid. A list of the
main assumptions and constraints summarising the model can be found below.

1. There are three reference frames considered: the inertial, asteroid and spacecraft refer-
ence frame, denoted by subscript I, A, and B respectively.

2. Propagation of the dynamics is computed using the Cartesian coordinates in the inertial
frame.

3. The asteroid’s orbit around the Sun is not considered in the simulation.

4. The asteroid has a constant rotation about the z-axis of the inertial frame.

5. The gravitational force of the asteroid exerted on the spacecraft is computed using a
polyhedron model of the asteroid.

6. The gravitational acceleration of the spacecraft due to the asteroid is computed in the
asteroid reference frame, and converted to the inertial reference frame each time step.
Hence, the total acceleration of the spacecraft is computed in the inertial reference
frame.

7. Disturbance forces due to the gravity of the Sun and the solar radiation pressure (SRP)
are simulated.

8. Forces due to gravity gradient torque are omitted.

9. Propagation of attitude of the spacecraft and the asteroid are computed using unit
quaternions.
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Based on the assumptions and constraints listed, the next chapter will present the design of
the algorithm and the simulation of the asteroid and the spacecraft. The assumptions made
above are explained in more detail in this chapter. To start with, the used coordinate systems
are presented in Section 3-1, then frames of reference are discussed in Section 3-2, followed
by the rotations and reference frame transformations in Section 3-3. Next, the dynamics and
kinematics are presented Section 3-4 and Section 3-5 respectively.

3-1 Coordinate Systems in Mission Environment

For the reproducibility of the research, the coordinate systems used in the research are pre-
sented. There are three coordinate systems considered throughout the research, of which the
most common is the Cartesian coordinate system, which will not be explained. As the Kepler
and spherical coordinate system are not necessarily common in the control engineering field,
these will be discussed in Subsection 3-1-1 and Subsection 3-1-2, respectively.

3-1-1 Kepler Coordinate System

Within a Kepler coordinate system, orbital elements are used to identify a specific orbit.
Kepler coordinates can be very useful in mission design as they characterise the propagation
throughout one orbital period and the current position of the satellite in the orbit.
Below in Figure 3-1, the coordinate system can be seen from a two-dimensional view in the
xy-plane. Here, F is the focal point around which the orbit propagates, where F ′ is the point
mirrored around the centre point C. Point A is defined as the pericentre, and A′ as the
apocentre.

Figure 3-1: Kepler orbit and parameters in 2D view, taken from Wakker (2015).

The first orbital elements to discuss are the semi-major axis, a, and the eccentricity, e, of the
orbit. The semi-major axis is defined as the half of the distance between the pericentre and
the apocentre, indicated with point C. The eccentricity denotes the circularity of the orbit,
which for stable orbits has a range of [0,1〉. For example, an eccentricity of 0 defines a perfect
circular orbit. In that case, the points F and C coincide and the trajectory is followed as
seen in point P ′.
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3-1 Coordinate Systems in Mission Environment 17

For any eccentricity between 0 and 1, the orbit is elliptical, and follows the trajectory of
point P . The radius of the orbit, r, is not equal to the semi-major axis anymore, and can be
computed using

ri = a(1− e2)
1 + e cos(θi)

, (3-1)

where θi, the true anomaly, is the angle between the horizontal of the focal point and peri-
centre, and the line connecting the focal point to position P . For a given point in the orbit,
the velocity in direction of the orbital path can be computed using

V 2
i = µ

( 2
ri
− 1
a

)
, (3-2)

where µ is the gravitational parameter of the body in point F .

In order to define orbital elements in a three dimensions, three angles are added to define the
position, as can be seen in Figure 3-2. The inclination, i, defines the tilt between a reference
plane and the plane of the orbit. The angle of the X-axis of the reference frame and the point
where the ascending node crosses the reference plane is defined as Ω. ω then defines the angle
between the right ascending node and the pericentre on the orbital plane.

Figure 3-2: Definition of the orbital elements i, Ω, ω , and the position of a satellite from Wakker
(2015).

To convert the Kepler coordinates to Cartesian coordinates, the position is computed using

 xi
yi
zi

 =

 l1 l2
m1 m2
n1 n2

( ξi
ηi

)
, (3-3)
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where
l1 = cos(Ω) cos(ω)− sin(Ω) sin(ω) cos(i),

l2 = − cos(Ω) sin(ω)− sin(Ω) cos(ω) cos(i),
m1 = sin(Ω) cos(ω) + cos(Ω) sin(ω) cos(i),

m2 = − sin(Ω) sin(ω) + cos(Ω) cos(ω) cos(i),
n1 = sin(ω) sin(i),
n2 = cos(ω) sin(i),

(3-4)

and (
ξi
ηi

)
=
(
ri cos(θi)
ri sin(θi)

)
. (3-5)

A more detailed description of the relations between the Kepler and Cartesian coordinate
system can be found in Appendix B.

3-1-2 Spherical Coordinate System

This coordinate system defines a point on a sphere. Using three parameters, the coordinate
on the sphere is determined. To begin with, ρ defines the radius of the sphere, also known
as the range from the origin to the coordinate. The elevation, ε, is the angle between the
xy-plane and the coordinate on the sphere. The azimuth, φ is then the angle between the
x-axis and the orthogonal projection on the xy-plane, as can be seen in Figure 3-3.

Figure 3-3: Spherical coordinate representation.

To convert from the spherical coordinate system to the Cartesian coordinate system, the
relations are defined as
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x = ρ cos(ε) cos(φ),
y = ρ sin(ε) cos(φ),
z = ρ sin(φ).

(3-6)

From Cartesian to spherical coordinates, the range can be calculated as

ρ =
√
x2 + y2 + z2, (3-7)

and the angles can be computed using

ε = arctan
(
y

x

)
,

φ = arctan
(

z√
x2 + y2

)
.

(3-8)

3-2 Reference Frames

In this section the reference frames used throughout dynamic equations are presented. The
three main frames are presented, which are all used either during the simulation of the space-
craft or the navigation filter.

3-2-1 Inertial Reference Frame

In this research, the inertial reference frame is considered to coincide with the centre of volume
of the asteroid. The inertial frame is considered to be a non-rotating frame, and is depicted
below in Figure 3-4.

Figure 3-4: Inertial reference frame representation.

From here onward, the inertial reference frame is denoted with the subscript I.
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3-2-2 Asteroid Reference Frame

Initially, the origin of the asteroid reference frame is the same as the inertial frame. However,
as a constant rotation about its z-axis is present, the asteroid is rotating about the inertial
frame. Therefore, the x- and y-axis of the asteroid frame do not coincide with the inertial
frame. As can be seen in Figure 3-5, the rotation of the asteroid reference frame about the
z-axis is denoted with rotation rate ωAA/I . As can bee sin The asteroid reference frame is

Figure 3-5: Asteroid reference frame representation; asteroid reference frame represented in
dashed red lines, the inertial frame in solid black lines.

denoted with the subscript A.

3-2-3 Spacecraft Body Reference Frame

The last reference frame is the spacecraft body frame, which is placed in the geometric centre
of the main body of the spacecraft, coinciding with the axes of the principal moments of
inertia. In Figure 3-6, a visualisation of the spacecraft and the spacecraft body reference
frame can be seen. The z-axis extends through the bottom of the spacecraft, and is defined
right handed. It can be seen that the spacecraft is symmetric about both the x- and y-axis.
The spacecraft body reference frame is denoted with the subscript B. Throughout the simu-
lation model of the position and velocity of the spacecraft, a point mass in the origin of the
spacecraft reference frame is considered. Where relevant, the geometry of the spacecraft is of
course taken into account, such as for the derivation of the SRP in Subsection 3-4-2.

3-3 Orientation Representation

In this section, the concepts of reference frame transformation, Euler angles, and quaternions
are presented. These concepts are all used throughout the research to describe the orienta-
tion of the reference frames with respect to each other. Bold faced symbols refer to vector
quantities.
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Figure 3-6: Spacecraft reference frame representation.

3-3-1 Reference Frame Transformations

Now that all reference frames have been defined, we need to be able to switch between them.
This can be done by using direction cosine matrix (DCM) multiplication. Consider the two
reference frames A and I which were previously presented. The transformation from A to I
is then denoted as

RI = CI/ARA, (3-9)

where R represents a position vector, and CI/A is a DCM from frame A to frame I. The DCM
is orthonormal (Markley and Crassidis, 2014) and thus has the properties

C = −C,
CB/I = CTI/B,

CI/BC
T
I/B = CTI/BCI/B = I,

(3-10)

where I is the identity matrix. It is possible to multiply multiple rotation matrices such that

CB/I = CB/ACA/I . (3-11)

3-3-2 Orientation Using Euler Angles

A common method to express orientation is using Euler angles to represent the spacecraft
attitude. Rotating a reference frame using Euler angles is performed in three steps: one
transformation for each rotation about another axis. For two given reference frames with a
coinciding origin, the rotation of angle θz about the z-axis is described as

 x2
y2
z2

 =

 cos(θz) sin(θz) 0
− sin(θz) cos(θz) 0

0 0 1


 x1
y1
z1

 , (3-12)
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where x1,y1,z1 are the coordinates of point P in reference frame 1, and x2,y2,z2 are its coor-
dinates in frame 2. Similarly, if the rotation of angle θy is about the y-axis, the coordinates
are computed using  x2

y2
z2

 =

 cos(θy) 0 − sin(θy)
0 1 0

sin(θy) 0 cos(θy)


 x1
y1
z1

 , (3-13)

and for a rotation of angle θx about the x-axis as x2
y2
z2

 =

 1 0 0
0 cos(θx) sin(θx)
0 − sin(θx) cos(θx)


 x1
y1
z1

 . (3-14)

If X, Y, and Z denote the rotation matrices about the respective axes, the multiplication of
all three results in a DCM. Here, the order is significant, as another order can result in a
different orientation. By default, the rotation sequence XYZ is taken, such that the order of
multiplications is

P2 = [ZYX]P1, (3-15)

where the rotation about the x-axis is carried out first. The total rotation angle from one
frame to another about the Euler axis is depicted in Figure 3-7

Figure 3-7: Euler angle and Axis in an inertial reference frame.

An advantage to the Euler angle representation is the intuitive visualisation of rotations and
the simplicity of using only three angles to express the orientation. Unfortunately, the expres-
sion comes with disadvantages when applied to spacecraft control. Within navigation filter
problems, the dynamic models now rely on three separate multiplications for the rotational
sequences, which are computationally expensive when they have to be computed each time
step. Moreover, any orientation can be expressed with different combinations of rotation
sequences, meaning they are never unique. In addition, wrapping can occur for rotations
larger than π rad, which can become a problem when using Euler states in a navigation filter.
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Furthermore, the rotational sequences contain a singularity where the model is not applica-
ble anymore (Guha, 2015). These usually occur when the middle rotation takes a particular
value, which is often equal to π

2 . Where the singularity only causes a mathematical apparent
loss, of a degree of freedom, for gimbal lock there is a physical loss of a degree of freedom
(Yang, 2012). When using an inertial measurement unit (IMU) for spacecraft navigation, the
rotations of the gimbals of the gyroscope can cause two gimbals to become coplanar. It is not
possible to stabilise the platform with control torques, and proper orientation estimation is
not possible with the two remaining degrees of freedom (Hemingway and O’Reilly, 2018).

3-3-3 Orientation Using Quaternions

Due to the disadvantages of using Euler angles for attitude representation, another method
to express orientation is needed. Here, it is chosen to use quaternions instead. Following
the Euler’s rotational theorem, a quaternion can also be defined by a rotation angle and a
rotational axis (Groÿekatthöfer and Yoon, 2012), as could be seen in Figure 3-7. As there
are different ways to notate quaternion representation, this section discusses the notation we
used in the algorithm, with the accompanying equations. The quaternion here is defined as

q =

 ‖e‖ sin
(
θ
2

)
cos
(
θ
2

)  , (3-16)

where ‖e‖ is the vector of the Euler axis, and θ is the Euler angle. The quaternion can also
be notated as the sum of the vector and the scalar part where

q = iq1 + jq2 + kq3 + q4, (3-17)

and
i2 = j2 = k2 = ijk = −1. (3-18)

The quaternion can thus be expressed as a vector where the directional part is equal to

q1:3 =

 q1
q2
q3

 , (3-19)

and is combined with a scalar part such that the complete quaternion is equal to

q =
[

q1:3
q4

]
. (3-20)

Taken from the notation by Yang (2012), the conjugate, norm, and inverse form of a quater-
nion are

q∗ =
[
−q1:3
q4

]
, (3-21)

‖q‖ =
√
q2

1 + q2
2 + q2

3 + q2
4, (3-22)

q−1 = q∗

‖q‖ . (3-23)
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There are two possible products of two quaternions. As they only differ in the convention
of the sign of the cross product of the vector part of the quaternion, they are equal to each
other such that

qi ⊗ qj = qj � qi. (3-24)
where the products are defined as

[q⊗] =
[
q4I3 − [q1:3×] q1:3
−qT1:3 q4

]
, [q�] =

[
q4I3 + [q1:3×] q1:3
−qT1:3 q4

]
, (3-25)

where I3 is a 3 by 3 identity matrix. The general cross product is defined as

[a×] =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (3-26)

For a unit quaternion, the norm is always equal to 1. Unit quaternions can be used to define
the attitude of a rigid body. When using unit quaternions to express orientation or rotations,
the singularity, wrapping, and gimbal lock issues of the Euler angles are avoided. For unit
quaternions, it holds that

‖q‖ = 1, (3-27)
which gives

q−1 = q∗. (3-28)

Expressing a quaternion as a rotation matrix gives

C(q) =
(
q2

4 − ‖q1:3‖
2
)
I3 + 2q1:3q

T
1:3 − 2q4 [q1:3×]

=

 q2
1 − q2

2 − q2
3 + q2

4 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)
2 (q1q2 − q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2 (q2q3 + q1q4)

2 (q1q3 + q2q4) 2 (q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 . (3-29)

The reverse operation from a transformation matrix to a unit quaternion is defined as

q(C) = 1
2


sign (C32 − C23)

√
1 + C11 − C22 − C22

sign (C13 − C31)
√

1− C11 + C22 − C22
)

sign (C21 − C12)
√

1− C11 − C22 + C22
)

√
1 + C11 + C22 + C33

 . (3-30)

Whereas quaternions are computationally inexpensive (Yang, 2012), and is not dependent
on rotational sequences like Euler angles, problems occur when linearising quaternions in a
state space model. As demonstrated by Zhou and Colgren (2005), a linearised quaternion
state space model can be obtained, but unfortunately is uncontrollable. This would mean
that for attitude estimation using Kalman filtering, it is not possible to obtain convergence
for the state estimation. Fortunately, Yang (2012) demonstrated that using only the vector
elements of the quaternion, full controllability of the attitude and convergence of the attitude
estimation can be obtained. As shown by Ding and Gao (2020), using an multiplicative
extended Kalman filter (MEKF), full estimation of the attitude is possible. The methodology
of the general Kalman filter (KF), the quaternion error state, and the MEKF will be presented
in Section 6-2.
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3-4 Position Dynamics

This section covers the equations used for the propagation of the position of the spacecraft
relative to the asteroid body. As the inertial reference frame is coinciding with the asteroid
frame and is only deviating due to a rotation about the z-axis, the propagation of the asteroid
in its orbit around the Sun is not considered.

The general equations of a body having an acceleration due to a force exterted on the body
are described by

dr
dt

= v, (3-31)

dv
dt

= F
m

= a, (3-32)

where r,v and a are the vectors for position, velocity and acceleration respectively. Parameter
m is the body mass, t is the time and F are the forces exerted on the body.

According to Wakker (2015), one can formulate a two-body problem as

d2r21
dt2

= −Gm2 +m1
r3

21
r21 = a, (3-33)

where r21 is the position vector of P1 to P2, G is the gravitational constant, and m1 and
m2 are the masses of the bodies in P1 and P2 respectively. Taking into account that P2 is
positioned in the origin of a non-rotating reference frame and that

r21 = r1 − r2, (3-34)

and
r1 = −m2

m1
r2, (3-35)

the force acting on a body situated at P1 is then

F1 = −Gm1m2
r3

21
r21. (3-36)

3-4-1 Asteroid Modelling and Dynamics

It is assumed that the asteroid, and thus the asteroid reference frame, is rotating about its
z-axis at a constant rotation rate. Therefore,

ω̇AA/I = 0. (3-37)

Given that the rotation of 433 Eros is 1639.38922 ± 0.0002 degrees per day (Miller et al.,
2002), the rotation rate of the asteroid frame about the inertial frame expressed in the asteroid
frame is equal to,

ωAA/I =

 0
0

3.311659701405230 · 10−4

 rad/s. (3-38)
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The gravitational force of the asteroid on the spacecraft can be defined as a force exerted by
a point mass, using

ag = − µ
r3 r. (3-39)

where ag is the acceleration due to gravitational force of the asteroid, µ is the gravitational
parameter of the asteroid, r is the distance between the two point masses.

Although Bourgeaux (2020) demonstrated stable orbit approximation using spherical har-
monics, this method is not applicable for gravity field estimation within the Brillouin sphere.
The Brillouin sphere can be defined as the smallest possible sphere circumscribing a body in
the three dimensional space. Using a constant density polyhedron model of 433 Eros, Chanut
et al. (2014) was able to demonstrate propagation of stable orbits below the 36 km sphere
circumscribing the asteroid. This is the most straightforward approximation for an asteroid
with a highly irregular shape, especially when orbiting close to or within the Brillouin sphere
(Hesar et al., 2016). Spee (2022) verified that the polyhedron gravity model is a high-precision
and non-diverging gravity field model, also when assuming constant density.

Figure 3-8: Visualisation of Polyhedron.

The polyhedron model approximates the surface of an object by multiple triangles, which
are all connected by edges, as seen in Figure 3-8. Here, an arbitrary triangle of the surface
model of the asteroid is taken and enlarged. The distances are considered with respect to an
arbitrary point in the asteroid reference frame. Based on the total volume that is encompassed
by the polyhedron shape, the gravitational force of the body can be computed. The gravity
potential as derived by Werner and Scheeres (1996) is defined as

U = 1
2Gσ

∑
e∈ edges

rTe EereLe −
1
2Gσ

∑
f∈ faces

rTf Efrfωf (3-40)
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where G is the gravitational constant, σ is the mean density, re and rf are the distances from
a field point to an edge and to a face respectively.

Le is dimensionless and equal to

Le ≡
∫
e

1
r

ds =
∫ Pj

Pi

1
r

ds = ln
(
ri + rj + eij
ri + rj − eij

)
. (3-41)

where ri and rj are the absolute values of the vectors from the origin to the corners of the
polyhedron, ri and rj respectively. This can be seen in Figure 3-9, where Pi and Pj are
vertices with distance eij .

Figure 3-9: Visualisation of Polyhedron triangles.

Next, ωf is also dimensionless, and defined as

ωf =
∫∫

triangle

∆z
r3 dS = 2 arctan

 rTi rj × rk
rirjrk + ri

(
rTj rk

)
+ rj

(
rTk ri

)
+ rk

(
rTi rj

)
, (3-42)

where rk is the absolute value of vector rk, which is the third vector from the origin to a
corner of the polyhedron. Next, Ee is defined as

Ee = nA(nAkj)T + nB(nBkj)T , (3-43)

where the superscripts A and B refer to faces A and B respectively, where surface A and B
are connected to each other by one edge. Then, nA is the normal vector, ne is the edge vector
and face dyad Ef for face A is equal to nA(nA)T . By computing the potential for each surface
triangle and summing them, a detailed gravity potential and acceleration can be generated,
taking into account all surface features of the asteroid.
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3-4-2 Disturbance Force Modelling

The resulting orbit due to the gravitational force of 433 Eros is considered the initial orbit.
Any other forces taken into account that are exerted on the spacecraft are then considered
disturbance forces, as they can cause the orbit to become (more) unstable. To begin with,
a perturbation due to the mass of the Sun is considered, as well as one due to the effects
of SRP. Any atmospheric drag is not considered as there is no atmosphere present around
any asteroid (Lissauer and de Pater, 2013), including 433 Eros. Razgus (2016) incorporated
a model for the gravity gradient torque as a disturbing force in addition to the SRP and the
gravitational force exerted by the Sun. However, the model had a large computational error
when verifying the model for the gravity gradient torque, which could only be improved using
computationally exhaustive operations. Furthermore, the torque values ranged in the order
of 10−4 to 10−3 Nm.

Whereas the spacecraft considered by Razgus (2016) had two large solar panels extending from
the sides of the main body, the current considered spacecraft is symmetric about the x- and
y-axis and has much shorter solar panels. It is expected that the other simulated disturbance
forces have more effect on the propagation of the spacecraft, such that the gravity gradient
torque is omitted. For the same reason, any disturbances due to gravitational forces by
other celestial bodies have been neglected. By doing so, the performance of the navigation
filter will appear better than it actually is. It is possible to consider the gravitational forces
exerted by the planets in the solar system. However, we don’t assume to have a visual on
celestial bodies in the solar system other than 433 Eros and the Sun, and sensors such as
accelerometers can only measure non-gravitational forces. Therefore, it is not possible to
provide measurements that supply information on the additional gravitational forces exerted
on the spacecraft. In a scenario where the planets would be simulated for the spacecraft
environment, it is thus only possible for the navigation filter to use an approximation in the
time update to estimate the additional gravitational forces. These approximations cannot be
corrected with a measurement update. By omitting the simulation of other celestial bodies
and their gravitational force exerted on the spacecraft, the true state model is simplified
and we don’t have to account for other disturbance forces. However, this means we have to
take the performance of the navigation filter with a grain of salt, as we can expect that the
accuracy of the state estimation will decrease when more disturbance forces are simulated.

Third Body Perturbation

The Sun is considered as the third body, P3, in addition to the previously mentioned two-body
problem. For a three-body problem, the equation of motion becomes

d2r1
dt2

= G
m2
r3

12
r12 +G

m3
r3

13
r13, (3-44)

which, if expressed with the gravitational parameters, becomes

d2r1
dt2

= µ2
r3

12
r12 + µ3

r3
13

r13. (3-45)
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Solar Radiation Pressure

There are multiple methods for approximating SRP effects on the dynamics and kinematics
of a spacecraft, such as the cannonball, the (multi-body) flat-plate, or the N-plate model. As
demonstrated by Jean et al. (2019), the cannonball model ’does not take into consideration
the attitude of the spacecraft in its calculation’ and is therefore not suitable for approximating
the effects on both the position and attitude by the SRP. Although a multi-body flat plate
model can take into account different reflectivity properties by considering multiple panels
to make up the exterior of the spacecraft, it does not take different masses of the panels
into account. The N-plate model does take different panel masses into account, resulting in
different results from the multi-body flat plate model. According to Jean et al. (2019), these
differences become more apparent with more complex attitude kinematics, without noticeable
increase in computational effort. Therefore, the N-plate model is chosen to approximate the
SRP effect on the spacecraft. Using this model, the effect of the chosen spacecraft design and
its mass distribution on the resulting SRP force and acceleration are taken into account.
According to Montenbruck and Gill (2000), the perturbing force exerted on a spacecraft due
to SRP can be expressed as

F SRP = −P� cos(θ)A ((1− ε)e� + 2ε cos(θ)n) (3-46)

where cos(θ)A is the cross-section of the bundle of light that illuminates a surface of size
A. (1 − ε)e� represents the term due to absorption of the light where ε is the emissivity of
the illuminated surface and e� is a unit vector pointing directly to the Sun. The remaining
term, 2ε cos(θ)n, is due to reflected Sunlight, where the momentum of the light is doubled
compared to absorbed light. n is the unit vector indicating the orientation of the illuminated
surface. The solar pressure constant, P�, is equal to

P� = Φ
c
≈ 4.56 · 10−6N/m2 (3-47)

where Φ is the solar flux at a distance 1 AU from the Sun and c is the speed of light. Taking
into account that the solar flux changes proportional to the square of the distance to the Sun
and that the spacecraft consists of multiple illuminated surface with their own mass, area,
orientation and reflectivity, the equation for the resulting acceleration due to SRP is equal to

aSRP = −P�
1AU2

r2
�

N∑
i=1

cos(θi)
Ai
mi

((1− ε)e�,i + 2ε cos(θi)ni) (3-48)

where r� is the absolute distance from the spacecraft to the Sun, and i denotes the ith of N
panels of the spacecraft. Any effects on the acceleration due to eclipse or shadow effects have
been neglected.
The torque due to the SRP can be computed using

τSRP =
N∑
i=1

ri × Fi,SRP (3-49)

where ri is the distance from the middle of a panel to the origin of the spacecraft reference
frame and Fi,SRP is the force exerted on each panel.
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3-5 Spacecraft Kinematics

The propagation of the kinematics of the spacecraft will be expressed using quaternions. For
a given attitude, the propagation is defined as

q̇B/I(t) = 1
2ω

B
B/I(t)⊗ qB/I(t) = 1

2Ω(ω(t)BB/I)q(t), (3-50)

where function Ω(ω) is defined as

Ω(ω) =
[
−[ω×] ω
−ωT 0

]
=


0 ω3 −ω2 ω1
−ω3 0 ω1 ω2
ω2 −ω1 0 ω3
−ω1 −ω2 −ω3 0

 . (3-51)

Based on the relations described by Wie (2008), the relation between the angular momentum,
torque and rotation of the spacecraft is

ḢB + ωBB/I ×HB = TB. (3-52)

The relation between the rotation, rotation rate, and torque is then defined as

ω̇BB/I = I−1(−ωBB/I × (IωBB/I) + TB. (3-53)
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Chapter 4

Design and Simulation of True State
Propagation

In this chapter, the previously described dynamics and kinematics will be translated to a
simulation model of the spacecraft and its environment. The general architecture of the
software model will be presented in Section 4-1. The methods to obtain the true state for the
navigation problem will be described, simulated and verified. To begin with, the spacecraft
model is presented in Section 4-2, and the environment model in Section 4-3. After, the
benchmark scenario of the simulation is presented in Section 4-4, which allows for verification
of the simulation model in Section 4-5.

4-1 Algorithm Architecture

The algorithm to model and compute polyhedron gravitational acceleration was derived by
Werner and Scheeres (1997), and duplicated by Razgus (2016) in a Simulink environment. An
overview of the architecture can be found in Figure 4-1. The initialisation blocks are rounded
rectangles, the essential outputs needed for the state estimation are denoted as ellipses, and
the function blocks are presented as ordinary rectangles. The position and velocity can be
directly derived from the computed by integrating the resulting acceleration for each time
step.

It can be seen that SRP and gravitational forces exerted by the Sun (point mass) and 433
Eros (polyhedron model) will be included to propagate the dynamics and kinematics of the
spacecraft. Furthermore, the relation of the kinematic to the dynamic equations has been
clarified.
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32 Design and Simulation of True State Propagation

Figure 4-1: Architecture of true state simulation.

4-2 Spacecraft Model Initialisation

Before computing the dynamics and kinematics of the spacecraft and the asteroid, the char-
acteristics of the spacecraft need to be initialised. A visualisation of the body is displayed
in Figure 4-2. The solar panels have been mounted on the top of the spacecraft body in a
windmill configuration, with their short sides attached to the main body.

The initialisation of the spacecraft body has been done using the properties of the Near Earth
Asteroid Rendezvous (NEAR) spacecraft described by Santo et al. (1995). An overview of the
dimensional and mass properties of the spacecraft can be found in Table 4-1 and Table 4-2
respectively. Here, the subscript b denotes the spacecraft body, and the subscript sp denotes
the characteristic of one solar panel.
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Figure 4-2: Spacecraft Model.

Table 4-1: Sizing properties based on
the NEAR-shoemaker design (Santo
et al., 1995).

Dimension Value [m]
lb 1.7
wb 1.7
hb 1.7
lsp 1.8
wsp 1.2

Table 4-2: Mass properties based on
the NEAR-shoemaker design (Santo
et al., 1995).

Mass Value [kg]
mtotal 487
mb 302.6
msp 46.1

4-2-1 Mass Moment of Inertia

Next to the mass and dimensional properties of the spacecraft, the mass moment of inertia
(MMOI) needs to be determined. The MMOI is needed in order to compute torques induced
on the spacecraft, as can be seen in Subsection 4-3-2. As the spacecraft body centre is
coinciding with the origin of the spacecraft reference frame B, the MMOI computation is
straightforward using

Ib =

 1
12mb

(
w2
b + h2

b

)
0 0

0 1
12mb

(
l2b + h2

b

)
0

0 0 1
12mb

(
w2
b + l2b

)
 , (4-1)

where mb is the mass of the spacecraft body, xb, yb, and zb are the dimensions of the body in
the x-, y-, and z-direction respectively.

The computation for the solar panels is performed slightly different. Using cut-out theory,
consider one long solar panel extending from two panels placed opposite from each other on
the spacecraft. By first computing the MMOI for the long panel and then subtracting the
MMOI of the ’inner’ part between the actual panels, the MMOI can be computed without
the need for parallel axes additions. Assuming homogeneous weight distribution, the masses
of the extended solar panel and the middle part can be computed as
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mcutout = msp

lspwsp
lsplb = 43.5389kg, (4-2)

mlongpanel = mcutout + 2 ∗msp = 135.7389kg, (4-3)

where mcutout is the middle part that extends over the top of the spacecraft body and
mlongpanel, with dimensions 1.2m×1.7m and 1.2m×5.3m respectively. The distance from
the actual x- and y-axis from the plane of the solar panels, denoted as dx and dy, are then
equal to

dx = lb
2 = 0.85m, (4-4)

dy = wb
2 = 0.85m. (4-5)

The long panel mass moments of inertia are then computed as

Ilongpanel,x = msp

6 (l2sp) + 2mspd
2
y + msp

12 (2wsp + wb)2 +mlongpaneld
2
y, (4-6)

Ilongpanel,y = msp

6 (l2sp) + 2mspd
2
x + mlongpanel

12 (2wsp + lb)2 +mlongpaneld
2
x, (4-7)

Ilongpanel,z = mlongpanel

6 ((2wsp + wb)2 + l2sp), (4-8)

and for the cutout of the panel as

Icutout,x = mcutout

12 (wb)2 +mcutoutd
2
y, (4-9)

Icutout,y = mcutout

12 (lb)2 +mcutoutd
2
x, (4-10)

Icutout,z = mcutout

6 (w2
b + l2sp). (4-11)

In total, the MMOI of the solar panels can be computed by subtracting the cutout MMOI
from the MMOI of the long panel by

Isp = Ilongpanel − Icutout =

451.5495 0 0
0 451.5495 0
0 0 636.6410

 , (4-12)

after which it can be added to the MMOI of the main body, which gives

I = Ib + Is =

597.3018 0 0
0 597.3018 0
0 0 782.3933

 . (4-13)

An overview of all MMOI values is found in Table 4-3.
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Table 4-3: Mass Moment of Inertia Spacecraft.

Main body
Ib,x 145.7523 kg m2

Ib,y 145.7523 kg m2

Ib,z 145.7523 kg m2

Solar panels
Isp,x 451.5495 kg m2

Isp,y 451.5495 kg m2

Isp,z 636.6410 kg m2

Total
Ix,total 597.3018 kg m2

Iy,total 597.3018 kg m2

Iz,total 782.3933 kg m2

4-2-2 Reflectivity Model

Since the exterior of the spacecraft consists of different parts, the reflectivity is different per
panel. What’s more, is that not every panel is illuminated by the Sun at the same instant. In
order to configure which parts of the spacecraft are in direct Sunlight, a reflectivity model is
set up. Recall Equation 3-48 where the SRP acceleration is dependent on the incoming angle
of the Sunlight onto on of the spacecraft panels. Therefore, the normal vector ni is computed
beforehand for each panel with respect to the spacecraft reference frame. The normal vector
and the reflectivity per panel are presented in Table 4-4. Note that for the solar panels, a
front and a back panel are considered as they have a different reflectivity characteristic.

Table 4-4: Spacecraft reflectivity properties (Montenbruck and Gill, 2000).

Panel Normal vector ni reflectivity Panel Value reflectivity
1 [0 0 1]T 0.5 8 [0 0 1]T 0.21
2 [0 0 -1]T 0.5 9 [0 0 -1]T 0.5
3 [-1 0 0]T 0.5 10 [0 0 1]T 0.21
4 [0 -1 0]T 0.5 11 [0 0 -1]T 0.5
5 [1 0 0]T 0.5 12 [0 0 1]T 0.21
6 [0 1 0]T 0.5 13 [0 0 -1]T 0.5
7 [0 0 -1]T 0.5 14 [0 0 1]T 0.21

4-3 Environment Model Initialisation

The benchmark scenario describes the half of an orbital revolution of the spacecraft around
the asteroid, if seen from the inertial reference frame. As orbit of the spacecraft has an orbital
height of 50 km, the orbital period is roughly 106098.6 seconds, which for simplicity will be
rounded to 106100 seconds, or 29.5 hours. For the benchmark scenario, this translates to
53050 seconds. Half an orbit has been selected to save simulation time, as it is expected that
half an orbit can provide the same insights as gained during a full orbit. Thus, the research
questions can still be answered to the same extent but with less simulation time.
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4-3-1 Asteroid Model Set-up

The primary object in the simulation environment of the spacecraft is the asteroid 433 Eros.
The asteroid is initialised using the properties visible in Table 4-5.

Table 4-5: Physical characteristics for 433 Eros, taken from Santo et al. (1995), Miller et al.
(2002).

Parameter Value Unit
Mass 6.5684 · 1015 kg
ρ 2621.2 kg/m3

Volume 2.5059 · 1012 m3

Area 1.1273 · 109 m2

µ 4.3838 · 105 m3/s2

Next, the model for the polyhedron gravity computation is presented and verified. After, the
asteroid kinematics with respect to the inertial frame are described.

Polyhedron Model

As previously described in Subsection 3-4-1, the gravity of the asteroid will be estimated
using a polyhedron model. The polyhedron model from 433 Eros is based on the data model
by Gaskell (2008). Whereas the model from Gaskell (2008) has a total of 49152 faces to
characterise the surface, a simplified model of 5144 is used in order to reduce computational
effort. In Figure 4-3, a 3D view as well as all the views in the three different planes of the
simplified 433 Eros model can be seen.
The volume of the simplified model is 0.02% less than the volume of the original model,
however the computational efforts are reduced as ten times less faces are generated. As the
position of the spacecraft with respect to each face and vertex is computed each time step,
the current simulation time for the simulation of half an orbit already extends to a couple
of hours. Hence, a full model simulation cannot be realised within the time scope of the
research.

Asteroid Kinematics

The orbit of the asteroid around the Sun is not taken into account, as the benchmark sce-
nario described in Section 4-4 has duration of less than 15 hours, and is therefore considered
negligible. Any other influence of the Sun on the asteroid is therefore also omitted from the
model.
Although a slight wobble was determined in the rotation rate of the asteroid per day (Miller
et al., 2002), these offsets were never greater than 0.00015 deg over the course of a day.
Therefore, the asteroid is assumed to have a constant rotation about its z-axis. Hence, within
the attitude of the asteroid, as well as the asteroid reference frame, is initialised as

qA/I =


0
0
0
1

 , (4-14)
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(a) 3D view of 433 Eros model. (b) xy-plane view of 433 Eros model.

(c) xz-plane view of 433 Eros model. (d) yz-plane view of 433 Eros model.

Figure 4-3: Different views of a simplified Polyhedron model approximation of the exterior of
433 Eros in inertial reference frame, based on the model provided by Gaskell (2008).

and the rotation of frame A with respect to frame I is equal to the rotation rate as defined in
Equation 3-38. The attitude is then propagated using

q̇A/I = 1
2Ω(ωAAI). (4-15)

4-3-2 Disturbance Force Computation

As the simulated disturbance forces on the spacecraft orbit are caused by the Sun, its proper-
ties are first presented, after which the models for the third body perturbation and the SRP
force are presented.

In Table 4-6, the parameters of the Sun have been listed, and a distance from the Sun to the
inertial frame is determined.
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Table 4-6: Parameters Sun Simulation.

Parameter Value Unit
G 6.67408 · 10−11 m2/kg2

Flux at 1 AU 1361 W/m2

Position (inertial frame)

 1.40592984439860
1.364241144552538
1.028981919188861

 ·1011 m

Absolute distance to inertial frame 2.2128 · 1011 m
Flux (at origin inertial frame) 622.0347 W/m2

Mass 1.988 · 1030 kg
µSun 1.3268 · 1020 m3/s2

Third Body Perturbation Model

Implementation of the third body disturbance by the Sun is relatively straightforward, using
Equation 3-45, expressed in the algorithm as

aSun = µSun
rSun,I − rI
|rSun,I − rI |3

− rSun,I
|rSun,I3 |

, (4-16)

where |rSun,I − rI | is the absolute value of the distance between the position of the Sun and
the position of the spacecraft in the inertial reference frame.

Solar Radiation Pressure Model

To start with, the position of the Sun with respect to the spacecraft reference frame is com-
puted using

rSB = C(qB/I)rSI , (4-17)

such that the unit vector per spacecraft panel pointing to the Sun, e�,i, can be computed as
well. Combined with the unit vector normal to each spacecraft panel,ni, the relation

cos(θi) = nTi e�,i, (4-18)

is obtained. As the mass and area of each panel is also known, Equation 3-48 can be readily
used to complete the computation. As the force is computed with respect to the asteroid
reference frame and the propagation of the states is performed in the inertial frame, the
acceleration is expressed in the inertial frame

asrp,I = C((qB/I)−1)asrp,B. (4-19)

4-3-3 Orbit Initialisation

As the spacecraft is assumed to be in orbit at 50 km from the asteroid in the benchmark
scenario, the spacecraft reference frame initial position is set at 50 km in the x-direction. By
assuming that the sensor(s) for asteroid observation are positioned at the bottom side of the
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spacecraft, the spacecraft reference frame is initialised with the z-axis pointed at the inertial
reference frame origin. The configuration can be seen in Figure 4-4, where the main body,
solar panels, and the three axes are all visible. The z-axis is pointing nadir, the x- and y-axis
are in line with the solar panels, which is the result of a 90 degree rotation about the y-axis.
The y-axis is tangent to the orbital path of the satellite. The configuration with respect to
the asteroid is shown in Section 4-4.

Figure 4-4: Spacecraft configuration in the inertial frame.

Based on the Keplerian orbital elements in the top part of Table 4-7, the orbital dynamics can
be derived. Below, the properties of the orbit initialisation are listed, defined in the inertial
reference frame. As the spacecraft body frame is tilted such that the x-axis is pointing
upwards, a constant angular rate of the spacecraft about the x-axis is introduced, to maintain
a visual on the asteroid during the orbit.

Thus, the orbit is starting in the hypothetical pericentre, when looking at the angles of the
Kepler coordinates. However, as the eccentricity is 0, the orbit is circular and thus the starting
point is arbitrary to the Kepler annotation.

4-4 Simulation Benchmark Scenario

In this section, the results of the benchmark simulation are presented and pose as a starting
point for the simulation of the sensor set of the spacecraft in the next chapter. Thus, the
benchmark can be viewed as the true simulation which the sensor fusion algorithm should be
able to measure during the mission scenario. The trajectory of the spacecraft is propagated
for half an orbit, with a duration of 53050 s and a time step of 0.01 s. For the benchmark
simulation,

• the SRP effect from the Sun is included;
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Table 4-7: Initialisation parameters for simulation of half orbital period at 50 km orbit around
433 Eros.

Parameter Value Unit
a 50 [km]
e 0 [-]
i 0 [deg]
Right ascension of the ascending node 0 [deg]
Argument of perigee 0 [deg]
Position x-axis 50.000 [km]
Position y-axis 0 [km]
Position z-axis 0 [km]
Velocity x-axis 0 [m/s]
Velocity y-axis 2.9610136 [m/s]
Velocity z-axis 0 [m/s]
Angular rate ωBBI x-axis 5.9220× 10−5 [rad/s]
Angular rate ωBBI y-axis 0 [rad/s]
Angular rate ωBBI z-axis 0 [rad/s]
Quaternion attitude qBI

[
0 −0.7071 0 0.7071

]T
[-]

Euler angles BI
[
0 −1.5707963 0

]T
[rad]

• the third body perturbation of the Sun is included;

• the asteroid was implemented as a polyhedron.

A visualisation of the mission scenario can be seen in Figure 4-5. Added to the position
plot are plots of the spacecraft and its reference frame, enlarged by 200 times, at five time
stamps during the simulation: at the start, at 25%, 50%, 75%, and 100%. It can be seen
that the spacecraft follows the trajectory of half an orbit. Initially, the spacecraft was set to
have a constant rotation about the x-axis in order to align the z-axis and the y-axis of the
spacecraft reference frame with the radial and tangential of the orbit respectively. However,
it can be seen that the spacecraft rotation is not constant about the z-axis. This is due to
a combination of the disturbance forces and the different influence of the polyhedron model
gravity compared to an orbit trajectory around a point mass. Additional figures on the
propagation of the benchmark scenario can be found in Appendix C.
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Figure 4-5: Position for half orbit at 50 km counterclockwise around 433 Eros, and attitude of
spacecraft (enlarged to 200x actual size) at 0%, 25%, 50%, 75%, and 100% of simulation time,
in the inertial reference frame.

4-5 Benchmark Verification

This section is introduced to verify the true state simulation of the propagation of the position,
velocity, and attitude of the spacecraft. The verification is done in multiple steps. To start
with, the model without any disturbance forces or the asteroid polyhedron model is verified.
By running the true state simulation with an Euler integration method (ode1) in Simulink,
the same results should be obtained as for running the same equations in a discrete time state
space model in the inertial reference frame. After, the asteroid polyhedron model and the
different disturbance forces are verified.

4-5-1 Asteroid Point-Mass Model

For the verification of the dynamics of the true state simulation, assuming a point-mass model
for 433 Eros, a state space model is considered for comparison. In this state space model,
the position, velocity, acceleration and attitude of the spacecraft in the inertial frame are the
propagated states using only a state space update. Where the acceleration in the true state
simulation is computed in the asteroid reference frame and then transformed to the inertial
reference frame, the acceleration computed for the verification model is directly computed in
the inertial reference frame. All other equations used in both models should be identical and
therefore their outcomes should be the same. In order to verify that this is indeed the case,
the models are both run on different time step sizes, ranging from 100 s to 0.01 s. Especially
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for the small step sizes, it should be expected that only errors caused by machine precision
residuals should be observed.

During this simulation,

• the SRP effect from the Sun was not included;

• the third body perturbation of the Sun was not included;

• the asteroid model is approximated as a point mass.

Although the true state simulation model was largely based on an environment model de-
scribed by Razgus (2016), some alterations were made. For a point mass gravity assumption,
computing the acceleration in the asteroid reference frame and converting the results to the
inertial reference frame should give the same results as directly computing the acceleration
in the inertial reference frame. However, during verification it was found that the true state
simulation and the verification model gave a different result for the position estimation in
the inertial frame. This meant that the reference frame transformation was not correctly
implemented. Therefore, the rotation matrices between the asteroid reference frame and the
spacecraft reference frame as presented by Razgus (2016) were revised, such that both models
gave the same outcome for a point mass assumption for the asteroid.

The resulting model was then again verified with respect to the state space propagation. It
was observed that the error difference for the position, velocity and orientation estimates were
in the order of 10−11, 10−15, and 10−16 respectively. Thus, any errors between the outputs of
the two models are likely due to the limitations of the finite precision arithmetic. Although
these errors are usually of a higher order, the position is based on the integration of the
acceleration for the true state simulation, for which the errors were in the order of 10−19.
Nonetheless, errors of these orders as displayed in Figure C-2 and Figure C-3 are negligible
for the true state simulation.
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4-5-2 Asteroid Polyhedron Model

For the implementation of the polyhedron model, the generation of the asteroid model shape
was first verified. The model, as seen in Figure 4-3, could be verified with respect to same
homogeneous density model that was computed and verified by Spee (2022). In Figure 4-6,
the gravity field has been plotted for the xy-plane.

Figure 4-6: Polyhedron gravity field of 433 Eros in the xy-plane.

From this figure, the same properties of the gravity field could be found as for the gravity
field for the homogeneous mass density model of Spee (2022). This concludes that the gravity
field model is verified.

4-5-3 Third Body Disturbance

By adjusting the model settings from Subsection 4-5-1 to now include the third body distur-
bance, and adding the equivalent formula to the state space update, the disturbance can be
verified. In Figure 4-7a, the initial offset between the two models can be seen. As there is
no influence on the attitude by introducing the third body disturbance, it is not shown. For
the implementation of the third body disturbance in the state space propagation model, the
offsets for the position can be seen in Figure 4-7b.

Master of Science Thesis M. N. van Oorschot



44 Design and Simulation of True State Propagation

(a) Position error between true state simulation with
third body disturbance and state space update, for
time steps 1s, 0.1s, 0.01 in the inertial frame.

(b) Position error between true state simulation and
state space update, both with third body disturbance,
for time steps 1s, 0.1s, 0.01 in the inertial frame.

Figure 4-7: Errors between true state simulation and state space update, with and without third
body modelling.

In Figure 4-7a it is seen that the third body perturbation causes an offset from the true state
simulation with only an asteroid point-mass approximation. The deviation is in the order of
a meter over half an orbit. A new state space model is set up for verification, which includes
a point mass approximation of 433 Eros as well as the Sun. As seen in Figure 4-7b it can be
seen in that the errors between the two models are again negligibly small.

4-5-4 Solar Radiation Pressure

The acceleration due to the SRP cannot be directly implemented in a state space system.
However, it is possible to verify the propagation of the acceleration. The variation equations
due to SRP given by Wakker (2015) are equal to

|∆i|max = asrp
n2

0r0
sin(α0),

|∆Ω|max = 2 asrp
n2

0r0
sin(α0),

(4-20)

where asrp is the acceleration due to the SRP, n0 is the mean notion in orbit, r0 is the orbit
radius, and α0 is the angle between the orbital direction vector of the Sun.

It could be deduced from the verification by Razgus (2016), that the deviations of the incli-
nation angle, i and the right ascension of the ascending node, Ω, display constant sinusoidal
behaviour, for a constant distance to the Sun. For the verification, a point mass with the same

M. N. van Oorschot Master of Science Thesis



4-5 Benchmark Verification 45

gravitational constant as 433 Eros is taken. The Sun is initialised with the same absolute
distance to the point mass as described in Table 4-6, but positioned along the z-axis of the
inertial frame. The spacecraft orbit is initialised with a radius of 35 km and the inclination
at zero, such that the angle between the orbital plane and the Sun vector is equal to 90 deg.
The spacecraft is initialised with its solar panels pointing in the direction of the z-axis of the
inertial frame.

It should be observed that for the equatorial orbit, a constant sinusoidal offset for the variation
equations is visible. For an equatorial orbit, where the α = 90 deg, the variations of i and
Ω have been plotted in the top figure of Figure 4-8. It can be seen that the period of the
sinusoidals coincide with the periods of the rotation terms of the quaternion. These have
been plotted in the lower figure of Figure 4-8. As the other terms of the quaternion do not
change over the course of the trajectory, they have been omitted from the plot.

Figure 4-8: Variation equations and propagation of the quaternion terms q1 and q3 of the
spacecraft orientation, for simulation of the solar radiation pressure.

When the orientation of the spacecraft shifts, the angle of the incoming solar rays change
accordingly. Hence, the SRP acceleration changes. It can be concluded that for the simulated
scenario, with the Sun position in the middle of the orbit, the SRP causes a constant rotation
of the attitude. This is in line with the expected outcome and thus the solar radiation pressure
model is verified.
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Chapter 5

Dynamic Model Spacecraft Navigation

In this chapter, the state space model derivation is given, which is needed for the navigation
filter in Chapter 6. In addition, the simulation of the sensor measurements are discussed as
well.

For the proximity operations around 433 Eros it is required to use a navigation system that es-
timates both attitude and position. Therefore, a sensor selection is required that can provide
measurements from which information can be derived about both position and orientation.
It is desired that only essential sensors are included, making the system reliable and accu-
rate enough, but not overflowing with redundant or unnecessary information. By selecting at
least two measurements that can provide either information about the position or attitude,
the output of the sensor fusion model is never based on one source of information. In doing
so, it should be possible to account for errors within the sensor models. Therefore, a star
tracker, inertial measurement unit (IMU) and a light detection and ranging (LiDAR) sensor
are selected for the sensor fusion model. All of these sensors have been successfully imple-
mented in previous spacecraft design for navigation in proximity of an asteroid (Heyler and
Harch (2002),Daly et al. (2017)).

A magnetometer cannot be used for attitude estimation as no magnetic field is present.
Gyroscopes can provide three-axis attitude estimation, although ’gyroscope values are not
reliable for long-duration experiments’ (Poulose et al., 2019). Inertial measurements need
calibration provided by other sensors, which a star tracker can account for. Star trackers can
provide three-axis attitude estimation as well, making them a good candidate as the second
sensor to provide orientation measurements.

For guidance navigation & control (GNC), gyroscopes are usually integrated into an IMU. An
IMU can also be used for the estimation of non-conservative accelerations of the spacecraft,
such as the SRP. Using LiDAR, the accelerometer of the IMU can be calibrated as well. The
accelerometer can only provide measurements relative to the assumed initial position and
acceleration of the spacecraft. Using the measurements of the LiDAR, any offset to the initial
position can be accounted for. A disadvantage of LiDAR is the high power consumption and
relative high mass for a navigation sensor. Although a power budget of 60 to 70 Watt is
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relatively high compared to other sensors, it should be able to fit within the power budgets
of recent spacecraft designs that visited asteroids, such as OSIRIS-REx (Daly et al., 2017).

In general, navigation cameras are attractive sensors as they are passive with low power
and mass requirements and have few complex parts, as compared to LiDAR. However, for
LiDAR, the illumination of the asteroid does not have to be taken into account, which the
measurements of a navigation camera is highly dependent on. For continuous estimation of
the position, using LiDAR is therefore preferred.

The main features of the state space model presented in this chapter are listed below.

1. The state space model propagates the position, velocity, attitude error of the spacecraft
with respect to the inertial reference frame.

2. Additionally, the asteroid gravitational parameter is propagated as well.

3. The non-gravitational acceleration and rotation rate measurements of the IMU are
considered as input for the state space update.

4. The IMU measurements are simulated using Equation 5-17

5. The star tracker measurements are simulated using Equation 5-21

6. The LiDAR measurements are simulated using Equation 5-22

The derivation of this state space model is presented in Section 5-1. In the previous chapter,
the true state simulation for the navigation problem has been presented. Given the true state
simulation, the sensor measurements for the navigation filter can be simulated as well. In
Section 5-2 until Section 5-4, all sensors are described, and their measurement simulation is
presented.

5-1 State Space Model Derivation

In this section, the derivation of the state space model, which is used in the navigation filter, is
given. The navigation filter will be presented in Chapter 6. We start with the selecting which
states are propagated in the state space model. First and foremost, the attitude, velocity,
and position need to be estimated. The states that are considered for the initial state space
model are

x =


rI
vI

ΘB/I

µ

 , (5-1)

where rI is the position vector in inertial frame, vI is the velocity vector in inertial frame,
ΘB/I is the quaternion error vector between the spacecraft and inertial frame and µ is the
asteroid gravitational parameter. It is optional to be merged with the navigation filter of Spee
(2022), which is why µ has been included as well. By expressing the state space equations
in the inertial reference frame, the equations are kept as simple as possible. Hence, we don’t
have to take centrifugal or Coriolis forces into account.
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For the position estimation, both the position and velocity vector are parameters in the state
space model. As the derivative of velocity is partially dependent on position, the model is
more straightforward to implement. Furthermore, the propagation of the velocity provides a
direct coupling with the kinematics of the spacecraft, which will be presented shortly.

As discussed in Subsection 3-3-3, it is advantageous to use quaternions for attitude represen-
tation rather than Euler angles. Theses such as Razgus (2016) and Ballester (2018) investi-
gated the advantage of implementing dual quaternions. Implementation of dual quaternions
was expected to provide coupling between rotational and translational motion in the state
space model. However, Razgus (2016) concluded that ’the dual quaternion filter and the
quaternion-vector filter have identical performances in the steady-state’. Similarly, as shown
by the implementation by Ballester (2018), a controller for circular orbit proximity operations
achieves the same accuracy as for a normal quaternion in the state space model, but with
15% more computational time.

Hence, a quaternion-vector is considered. Using quaternions, the lowest-dimensional represen-
tation is used that is free from singularities (Wie, 2008). However, the quaternion is limited
by its normalisation constraint, which cannot be assured when propagated in the state space
model. In order to omit the issues arising when applying quaternions in a state space model
as described by Zhou and Colgren (2005), the quaternion errors are propagated instead. With
the quaternion error vector, the error quaternion δqB/I can be computed as

δqB/I = exp
(ΘB/I

2

)
≈
(ΘB/I

2
1

)
. (5-2)

The error quaternion can be added to the attitude quaternion for each time step using

qB/I,k+1 = qB/I,k ⊗ δq∗B/I,k. (5-3)

5-1-1 Nonlinear time continuous state space

The state transition matrix in continuous time can generally be described by

ẋ = f(x,u) + w w ∼ N (0,Q) (5-4)

where w is the process noise vector with covariance Q. In this case, f(x,u) is equal to

f(x,u) =


vI

− µ
r3
I
rI + CI/BãB

−[ω̃BB/I ]×ΘB/I

0

 , (5-5)

where

u =
(

ãB
ω̃BB/I

)
. (5-6)

Master of Science Thesis M. N. van Oorschot



50 Dynamic Model Spacecraft Navigation

Outside of the state space propagation, the complete quaternion is propagated using

q̇B/I = 1
2Ω(ω̃B

B/I). (5-7)

after which the propagated error quaternion is added using Equation 5-2 and Equation 5-3.
In Equation 5-7, Ω(ω) is defined as

Ω(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 . (5-8)

Different from Bourgeaux (2020), which ’assumed that the solar radiation pressure (SRP)
was estimated earlier in the mission and therefore a small error, the value with the SRP was
given to the estimation filter’, there is no SRP term given to the navigation filter. As the
true state simulated SRP is not constant throughout the trajectory, it cannot be considered
a constant that can be added. Instead, it is assumed that the acceleration due to SRP is
taken into account from the accelerometer measurements. Both ω̃BB/I and ãB are considered
direct sensor outputs of the IMU sensor. Although the outputs of the IMU are considered
measurements, they are considered as noisy inputs within the state space equations. For the
navigation filter presented in Chapter 6, the noisy input can be accounted for by adding a
term for their measurement noise in the process noise matrix (Ma et al., 2019).

5-1-2 Discrete-time Nonlinear Model

In order to use the state space system in a simulation, the time-discrete version of the model
is needed. This is generally defined as

xk+1 = xk + f(xk,uk)∆t+ wk wk ∼ N (0,Q) (5-9)

where ∆t is the time step between moment k and k + 1, and where wk is the process noise
vector with covariance Q at time step k. Using Equation 5-5, the dynamic model becomes

xk+1 = xk +


vI,k

− µ
r3
I,k

rI,k + CI/B,kãB,k
−[ω̃BB/I,k]×ΘB/I,k

0

∆t+ wk. (5-10)

The quaternion is now computed using

qB/I,k+1 = qB/I,k + ∆t
2 Ω(ω̃BB/I,k), (5-11)

after which the quaternion is normalised to preserve the unit quaternion properties.
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5-1-3 Discrete-time Linear Model

In order to describe a linear time-discrete version of the state space system, the time update
can be defined as

xk+1 = (I + Fk∆t)xk + wk wk ∼ N (0,Q) (5-12)

where Fk is the derivative matrix of f(xk,uk) around xk at point k. First, F is computed by
first deriving all partial derivatives of f(x,u) with respect to x such that

F =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn...

... · · ·
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 , (5-13)

where m is the amount of rows in f(x,u) and n is the amount of parameters in the state
space vector.

The matrix for Fk derived from Equation 5-10 is then equal to

Fk =


03×3 I3×3 03×3 03×1
∂v̇I,k
∂rI,k

03×3 [ω̃BB/I,k]×ãk
∂v̇I,k
∂µk

03×3 03×3 [ω̃BB/I,k]× 03×1
01×3 01×3 01×3 01×1

 . (5-14)

Here, ∂v̇I,k
∂rI,k

is defined as

∂v̇I,k
∂rI,k

= µ

r5
I,k

 3r2
I,x − r2

I,k 3rI,x,krI,y,k 3rI,x,krI,z,k
3rI,y,krI,x,k 3r2

I,y,k − r2
I,k 3rI,y,krI,z,k

3rI,z,krI,x,k 3rI,z,krI,y,k 3r2
I,z,k − r2

I,k

 . (5-15)

Next, ∂v̇I,k
∂µk

is equal to

∂v̇I,k
∂µk

= − 1
r3
I,k

rI,x,krI,y,k
rI,z,k

 . (5-16)

5-2 Inertial Measurement Unit Model

Whereas previous theses only assumed either a gyroscope measurement (Razgus, 2016) or the
non-gravitational forces readily available (Bourgeaux, 2020), an IMU has been chosen to be
incorporated into the sensor set. The IMU consists of both a gyroscopes and an accelerometer,
meaning that two outputs will be modelled.

It is demonstrated by Rawashdeh and James E. Lumpp (2012), Lam and Crassidis (2007),
and Clerc et al. (2009) that an IMU can be integrated in sensor fusion models for spacecraft
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attitude estimation. However, I was not able to find (published) literature where the inte-
gration of an IMU into a system that estimates both position and attitude for in spacecraft
navigation is demonstrated. The main advantage of the additional access to the accelerom-
eter data is the fact that only the non-gravitational forces can be measured. Rather than
measurements that provide (relative) position information, there is a distinction between the
orbital mechanics in the state space system, and the disturbance forces acting on the space-
craft. This can be insightful not only for estimating the SRP as will be done for this research,
but also the impact of thruster firing.
Furthermore, any non-gravitational force exerted on the spacecraft body is measured in the
spacecraft reference frame. In our case, the state estimation of the state space system is
expressed in the inertial frame. Therefore, the gyroscope data is necessary to express the
accelerations in the inertial reference frame as could be seen in Section 5-1. Since Razgus
(2016) did not incorporate a measurement or constant for the SRP in his state space model,
the aforementioned link from the attitude and position equations is missing. They had to
resort to express the state space system in the asteroid reference frame to ensure coupling of
the attitude and position states. For the asteroid reference frame, the state space equations
and their linearisations become more complicated as the Coriolis and centrifugal accelerations
now also need to be taken into account.

Figure 5-1: Pyramid configuration of four IMU sensors (Leeghim et al. (2009)).

Next to the proven use of IMUs in sensor fusion, it is also known that the IMU was already
part of the sensor set in the design of Near Earth Asteroid Rendezvous (NEAR). As seen in
Figure 5-1, redundancy for the sensor was incorporated by placing four IMU’s in a pyramid
configuration (McAdams et al., 2000). Should one of them fail, there is still coverage for all
axes of the main spacecraft reference frame.
Two main outputs will be modelled. The model is simplified to provide one accelerometer
output and one gyroscope output. Derived from the model of Li and Mourikis (2012), the
measurement modelling for the gyroscope and accelerometer of the IMU can be computed
using

ω̃BB/I = ωBB/I + bg + ng, ng ∼ N
(
0, σ2

ngI3
)
,

ãB = aB + ba + na, na ∼ N
(
0, σ2

naI3
)
,

(5-17)

where ωBB/I is the rotation rate of the true state, aB is the non-gravitational acceleration of
the true state, bg is the gyroscope bias error, ba is the accelerometer bias error, ng is the
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gyroscope white noise, na is the accelerometer white noise, and I3 is a 3-by-3 identity matrix.
Hence, the measurement vector for the IMU is defined as

ỹIMU =
[
ω̃BB/I
ãB

]
. (5-18)

A bias error is chosen for the sensor modelling as this type of error is most commonly found
for inertial sensors (Haberberger, 2016). For the benchmark scenario, no bias is implemented
yet. An overview of common values for the output and the errors of the sensors can be found
in Table 5-1. Here, the settings for the measurement modelling of the benchmark scenario
are also given.

Table 5-1: Properties of IMU sensor model, based on Li and Mourikis (2012), Thienel and Sanner
(2003).

Accelerometer Gyroscope
Property Range Benchmark Property Range Benchmark
Output rate 100-1024 [Hz] 100 [Hz] Output rate 100-1024 [Hz] 100 [Hz]
White noise n/a 0.9 · 10−3 [m/s2] White noise n/a 0.2 · 10−4 [rad/s]
Bias 0.002-0.2[mg] 0 [m/s2] Bias 0.1-3 [deg/s] 0 [deg/s]

For the white noise settings, there are no common values that can be found in literature, as
the white noise that is being modelled is usually a combination of scaling, misalignment and
temperature errors.

5-3 Star Tracker Model

The working principle behind a star tracker is that attitude can be determined by recognising
patterns in images of the stars. Each star tracker has a predefined map of all the stars avail-
able in their software, such as the Hipparcos catalogue (van Leeuwen, 2007). Irrespective of
the position within the solar system, the stars in the catalogue are always positioned in the
same direction. Based on the given map and using a model of the spacecraft motion, the soft-
ware integrated into the micro-computer of the start tracker extrapolates the corresponding
attitude (Buemi et al., 1999). For the images, the sensor comprises a camera with a wide field
of view lens, as five stars need to be detected for attitude determination (Marin and Bang,
2020).

Although Sun sensors are also a common option for attitude determination, they can provide
information for less degrees of freedom, and have a lower accuracy (Liebe, 1995). Furthermore,
Rawashdeh and James E. Lumpp (2012) explains that ’maintaining attitude knowledge in
eclipse, in the absence of the Sun vector measurement, is challenging and is often addressed
by propagating rate information from the rate gyroscopes at the cost of drift’.

As previously mentioned, a star tracker consists of a pre-processing algorithm that translates
an image to a star pattern, and then to a spacecraft attitude. It is assumed that this output is
the measurement that will be integrated into the navigation filter. This was also the method
for attitude determination within the navigation and control system of NEAR (Strikwerda
et al., 1998).
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For the measurement modelling, we start with defining the error angle as

Θ̃ = nq, nq ∼ N
(
0, σ2

nqI3
)
, (5-19)

for which the error quaternion becomes

δq̃k =
[

Θ̃
2
1

]
. (5-20)

With the error quaternion, a measured quaternion is computed by combining it with the
quaternion of the true state simulation such that

ỹST = q̃k = qk ⊗ δq̃∗k, (5-21)

where ỹST is the star tracker measurement vector.

Although it is possible to introduce more detailed models of the measurements of a star
tracker, there are complete research papers dedicated to the simulation of star trackers. For
instance, Marin and Bang (2020) introduces a model to simulate the star features as accord-
ing to the database, coverage and optical performance of the camera, and a star detection
algorithm. This is, however, beyond the time scope of the research. In Table 5-2, the settings
for the star tracker model are presented. Contrary to the inertial sensor modelling, there is
no bias incorporated into the model. Inertial sensors are most likely to suffer from drift due
to bias instability, as argued by Sadeghzadeh-Nokhodberiz and Poshtan (2016). It is assumed
that it is more likely that this sensor will suffer from temporary signal loss. This will be
simulated for one of the result sets in Chapter 7.

Table 5-2: Properties of star tracker sensor model, based on Li and Mourikis (2012).

Output Parameter [q1 q2 q3 q4]T
Property Range Benchmark
Output rate 1-10[Hz] 10[Hz]
White noise 0.1-3 [arcsec]

[
5 5 5

]
[arcsec]

5-4 LiDAR Model

The last presented sensor is the LiDAR, which provides information about the position of the
spacecraft relative to the target asteroid. The working principle behind LiDAR technology
is that a time-of-flight (ToF) is measured for a laser beam to travel from the spacecraft to a
target and back. In order determine the ToF more accurately, a pseudo-random noise code
is encoded on the emitted laser signal, which is then autocorrelated with the returning signal
(Christian and Cryan, 2013). A main advantage to LiDAR according to Christian and Cryan
(2013) is that it can provide accurate estimation of the ToF. Furthermore, as mentioned
previously, the sensor is not dependent on the spacecraft and asteroid position with respect
to the Sun.
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In the previous research by Razgus (2016) and Bourgeaux (2020), it was assumed that both
a navigation camera and a LiDAR are available in the sensor set. By introducing a landmark
tracking algorithm, control angles are determined by the navigation camera pre-processing
algorithm and send to the LiDAR to be added to the measured range as measurement outputs.
For the measured range of the model by Bourgeaux (2020), it is assumed ’that the surface
mapping of the asteroid was done earlier in the mission’. As this is not part of the current set
of assumptions for the benchmark scenario, it is not possible to take into account a landmark
tracking algorithm. The state space model assumes that only a gravitational constant estimate
is known for the point-mass approximation of the asteroid.

Furthermore, this would mean that their navigation camera models would have to be incor-
porated and verified in the sensor simulation, or a new model has to be developed. This was
beyond the time scope of the thesis. As it has already been demonstrated that a navigation
filter can work in certain proximity operations around an asteroid, the research gap is larger
for only considering a LiDAR sensor to be available.

We assume that, for an available range measurement, the control angles of the pointing of
the LiDAR are known exactly beforehand. Therefore, the elevation, ε, and azimuth, φ, with
respect to the asteroid are known as well. This is a simplification by combining the LiDAR
pointing and the orientation of the spacecraft reference frame. This is similar to the method
of Jung et al. (2012) where they assumed ’the azimuth and elevation angle corresponding to
angles in a laser-based observation were obtained through the attitude of chief satellite’. Fur-
thermore, for simplicity the shape of the asteroid is not taken into account. The measurement
vector for the LiDAR sensor is thus defined as

ỹLi =

ρ̃ε̃
φ̃

 , (5-22)

where

ρ̃ =
√
r2
x + r2

y + r2
z + nρ, nρ ∼ N

(
0, σ2

nρ

)
, (5-23)

ε̃ = arctan
(
ry
rx

)
+ nε, nε ∼ N

(
0, σ2

nε

)
, (5-24)

φ̃ = arctan

 rz√
r2
x + r2

y

+ nφ, nφ ∼ N
(
0, σ2

nφ

)
, (5-25)

where rx, ry, and rz are the components of the position of the true state simulation. Hence,
the distance measured is from the spacecraft to the centre of volume.

Again, there is no bias implemented into the sensor modelling, but a temporary signal loss will
be one of the test cases for the simulation results in Chapter 7. An overview of the settings
for the benchmark and the commonly found values in literature are presented in Table 5-3.
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Table 5-3: Properties of LiDAR sensor modelling, based on Markley and Crassidis (2014), Ilci
and Toth (2020), Tsuno et al. (2006).

Output Parameters
[
ρ α δ

]
Property Range Benchmark
Output Rate 0.1-20 [Hz] 1 [Hz]
White noise 0.02-10[m], 0.0035-0.01 [rad]

[
0.1[m] 2e− 5[rad] 2e− 5[rad]

]
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Chapter 6

State Estimation

In this chapter the navigation filter is presented. Beforehand, the general architecture of the
complete navigation software model is presented to have an overview of the data flow. This
can be found in Section 6-1. The previously discussed measurement modelling and dynamic
model derivation then form the base to the navigation filter presented in Section 6-2. In
this section, the implementation of a Kalman filter is discussed, including the measurement
equations, tuning parameters and covariance settings.

6-1 Navigation Architecture

In Figure 6-1, the complete architecture of the software is visible. Both the simulation of the
true states, the measurements of the sensor models, and the navigation filter parts are visible
here. Based on the true state, the outputs of the different sensors can be modelled. Then,
depending on their output rate, the measurements are sent to various blocks of the navigation
filter.

As seen in Figure 6-1, the measurement update for the extended Kalman filter (EKF) is
separated in two different blocks. For both the star tracker and the LiDAR, a separate
measurement update is performed. Since the measurements by the IMU are considered as
inputs, they are directly implemented in the time update. As McAdams et al. (2000) states,
’estimated attitude is propagated between star [tracker measurement] updates using IMU
data’. Therefore, using the IMU measurements in the time update is in line to previous
mission design of the NEAR mission.

The system is considered to be an overall loose integration, mainly due to the separate mea-
surement updates for the star tracker and the LiDAR, and the presence of a pre-processing
algorithm for the star tracker. It should be noted however that more loosely coupled systems
are possible for the navigation architecture, such as for decentralised filters demonstrated by
Sadeghzadeh-Nokhodberiz and Poshtan (2016). Although error estimation and compensation
can be carried out beforehand, Cioffi and Scaramuzza (2020) argues that ’the use of a tightly-
coupled approach allows exploiting the correlations amongst all the measurement’. Before

Master of Science Thesis M. N. van Oorschot



58 State Estimation

Figure 6-1: Navigation Simulation Architecture.

developing a model that is more tightly-coupled, it should first be demonstrated that for the
given mission context and information from the sensor set, position and attitude determina-
tion is feasible. Hence, developing a more tightly coupled system would be a recommendation
for future research depending on the results of this thesis.

The output rates of the sensors presented in Chapter 5 have been implemented in the through-
put to the measurement updates. As the navigation filter can be simulated for different time
step sizes, the output rates are adjusted accordingly: if the simulation time step is larger than
the sensor output time step, the frequency is adjusted to match the smaller frequency. As the
output frequency of the IMU corresponds to the smallest time step used in the simulations,
it is assumed an IMU measurement is always provided during the time update.

6-2 Kalman filter

For navigation filtering, an EKF has been selected. Opromolla and Nocerino (2019) have
demonstrated implementation of an unscented Kalman filter (UKF) for a loosely-coupled
relative navigation system that estimates the relative position, velocity and attitude with
respect to an uncooperative space target. In addition, Yang and Li (2016) concludes that ’the
differences between the EKF and UKF [performance] become more significant when the non-
linearity increases. This was demonstrated with a model with fourth- and fifth-order functions
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in the dynamic model. Bourgeaux (2020) demonstrated that UKF navigation slightly out-
performs an EKF equivalent as well, however the motivation for using an UKF was largely
due to easier implementation. When using spherical harmonics to estimate the gravitational
acceleration, the Jacobian matrix becomes very large as all the spherical harmonic coefficients
of the expansion order need to be in the state vector (Bourgeaux, 2020).

On the other hand, the mean computational time per time step, according to St-Pierre and
Gingras (2004), is 0.0658 s for the UKF opposed to only 0.0028 s for the EKF for target
tracking problems. They suggests that actual improvement of the UKF computational time
with respect to the EKF would be more apparent when decentralising the navigation archi-
tecture and using the filters on each separate sensor. If not, ’potential linearisation errors of
the extended Kalman filter are negligible’.

The basis of our navigation filter is thus an EKF. In order to cope with the quaternion error
vector, Θ, the EKF is considered to be a multiplicative extended Kalman filter (MEKF) for
those three states. There are multiple advantages for applying this method. As Madyastha
et al. (2011) states, ’the orientation error-state is minimal, avoiding issues related to over-
parameterisation (or redundancy) and the consequent risk of singularity of the involved covari-
ances matrices’. The error-state values are thus smaller, avoiding the points where parameter
singularity or gimbal lock, for Euler angle states, would normally occur.

Using the state space system that has previously been defined and the Kalman filter algorithm
as defined by Kok et al. (2017), the set-up of the implemented Kalman filter time update is
equal to

xk+1|k = xk|k + f(xk|k,uk)∆t, (6-1a)

Pk+1|k = Fk|kPk|kFT
k|k + GkQGT

k , (6-1b)

where f(xk|k,uk) is as defined in Equation 5-5, Fk|k as defined in Equation 5-13, and Gk is
equal to

Gk =


03×3 03×3
I3×3 03×3
03×3 I3×3
01×3 01×3

 , (6-2)

and
Q =

(
σ2
acc + σ2

na 03×3
03×3 σ2

ng + σ2
Θ

)
. (6-3)

Here, σ2
acc and σ2

Θ are the covariances of the process noise of the acceleration and quaternion
process noise, nacc and nΘ respectively. In addition to the process noise covariances, we have
the covariance of the measurement white noise of the accelerometer and gyroscope, as defined
in Equation 5-17. Since they are considered to be control inputs, their measurement noise
covariance are added to the process noise covariance matrix Q.

The measurement update is equal to

Kk+1 = Pk+1|kHT
k+1(Hk+1Pk+1|kHT

k+1 + Φ)−1, (6-4a)

εk+1 = ỹk+1 − h(xk+1|k), (6-4b)
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xk+1|k+1 = xk+1|k + Kk+1εk+1, (6-4c)

Pk+1|k+1 = (I−Kk+1Hk+1)Pk+1|k, (6-4d)

where εk+1 is the measurement residual or innovation sequence, and Φ is the measurement
noise matrix, defined in either Equation 6-10 or Equation 6-17. After each measurement
update, the quaternion is updated again using Equation 5-2 and Equation 5-3.

The relation between xk and a measurement state can be defined as

zk = h(xk) + vk vk ∼ N (0,Φ) , (6-5)

where vk is the measurement noise, and h(xk) is a (nonlinear) measurement equation. The
measurement equations can be linearised using

Hk =


∂h1
∂xk,1

∂h1
∂xk,2 · · · ∂h1

∂xk,n
∂h2
∂xk,1

∂h2
∂xk,2 · · · ∂h2

∂xk,n
...

... · · ·
...

∂hm
∂xk,1

∂hm
∂xk,2 · · · ∂hm

∂xk,n

 , (6-6)

which we can use for the matrix multiplications in Equation 6-4.

The complete algorithm is summarised in Algorithm 1, where T is the total simulation time.
Every time step, the time update is performed using the previously described Kalman equa-
tions. The measurement update is either performed once, twice or not at all: for each
available star tracker or LiDAR measurement, a measurement update is performed. If both
measurements are available, the star tracker measurement update is performed first.

If both measurements are available at an arbitrary time step, the outputs of the star tracker
measurement update are considered as Xk+1|k and Pk+1|k for the next measurement update.
As a baseline, the initialisation of the navigation filter is as summarised in Table 6-1.

6-2-1 Star Tracker Measurement Update

For the star tracker measurement update, we have the noisy quaternion as measurement
output from the star tracker simulation. Since the state vector only contains the error state
of the quaternion, the measured error quaternion is computed using

δq̃ = q̃k+1 ⊗ q̂−1
k+1|k, (6-7)

where q̃k+1 is the measured quaternion vector and q̂−1
k+1|k is the estimated quaternion after

the time update. The measurement vector is then

ỹΘ,k+1 = Θ̃k = 2[δq̃k|1:3]. (6-8)

As the measurements are now the same as the parameters in the state vector, there is no
linearisation of the measurement equation necessary since we already obtain

hST (x) = HST =
[
03×3 03×3 I3×3 03×1

]
, (6-9)
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Algorithm 1: EKF algorithm with IMU input and Star tracker & Lidar Measurements.
Data: x0 & P0 (Table 6-1), Q (Equation 6-3), ΦST (Equation 6-10),

ΦLi(Equation 6-17), ỹIMU (Equation 5-18), ỹΘ̃ (Equation 6-8), ỹLi
(Equation 5-22)

Result: x, P
for ∆t = 0 to T do

Compute xk+1|k (Equation 6-1a)
Compute Pk+1|k (Equation 6-1b)

if zST is available then
Compute Kk+1 (Equation 6-4a) for Hk+1,ST (Equation 6-9)
Compute εk+1 (Equation 6-4b) for hST (xk+1|k) (Equation 6-9)
Compute xk+1|k+1 (Equation 6-4c)
Compute Pk+1|k+1 (Equation 6-4d) for Hk+1,ST (Equation 6-9)

else
forward xk+1|k and Pk+1|k to next measurement update

end
if zLi is available then

(Re)Compute Kk+1 (Equation 6-4a) for Hk+1,Li (Equation 6-13)
(Re)Compute εk+1 (Equation 6-4b) for hk+1,Li (Equation 6-12)
(Re)Compute xk+1|k+1 (Equation 6-4c)
(Re)Compute Pk+1|k+1 (Equation 6-4d) for Hk+1,Li (Equation 6-13)

else
xk+1|k+1=xk+1|k and Pk+1|k+1=Pk+1|k, go to next time update

end
end
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Table 6-1: Initial conditions of estimating benchmark scenario.

x0 in EKF value
rI,0 [km]

[
51 1 1

]T
vI,0 [m/s]

[
1 3.961013552945929 1

]T
qB/I,0 [-]

[
0 −0.7071 0 0.7071

]T
ΘB/I [km]

[
1 · 10−7 1 · 10−7 1 · 10−7

]T

P0



1000 0 0 0 0 0 0 0
0 1000 0 0 0 0 0 0 0 0
0 0 100 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0.1 0 0 0
0 0 0 0 0 0 0 0.1 0 0
0 0 0 0 0 0 0 0 0.1 0
0 0 0 0 0 0 0 0 0 1 · 10−10


σacc

[
5 · 10−3 5 · 10−3 1 · 10−3

]T
σa

[
1 · 10−8 1 · 10−8 1 · 10−8

]T
σΘ

[
1 · 10−4 1 · 10−4 1 · 10−4

]T
σgyro

[
1 · 10−4 1 · 10−4 1 · 10−4

]T
for the measurement matrix, where the subscript ST denotes that this is the matrix for the
star tracker. For the measurement noise of the star tracker update, ΦST is initialised as

ΦST =

(1 · 10−4)2 0 0
0 (1 · 10−4)2 0
0 0 (1 · 10−4)2

 . (6-10)

For computing the observability of the linear measurement matrix,[
H HF HF 2 HF 3 ...

]T
, (6-11)

is used. When taking Fk as from Equation 5-14, and it was found that the observability
matrix only has a rank of 3. For a fully observable matrix, the rank should be equal to the
length of the state vector. This could mean that for 3 states the measurement matrix would
provide sufficient control for convergence, which will have to be verified in the next chapter
by testing the influence of only the star tracker measurement update in Subsection 7-1-1.

6-2-2 LiDAR Measurement Update

The three parameter outputs by the light detection and ranging (LiDAR) in the measurement
vector defined in Equation 5-22 are the range, ρ̃ , elevation, ε̃, and azimuth, φ̃, respectively.
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The measurement equation equals

hLi(x) =


√
r2
I,x + r2

I,y + r2
I,z

arctan
(
rI,y
rI,x

)
arctan

(
rI,z√

rI,x2+rI,y2

)
 . (6-12)

Linearising the measurement equation at point k gives the measurement matrix

Hk,Li =

Bk,1×3 01×3 01×3 01×1
Ek,1×3 01×3 01×3 01×1
Dk,1×3 01×3 01×3 01×1

 , (6-13)

where the subscript Li denotes that this is the matrix for the LiDAR measurement and

Bk,1×3 =
[ rI,x√

r2
I,x+r2

I,y+r2
I,z

rI,y√
r2
I,x+r2

I,y+r2
I,z

rI,z√
r2
I,x+r2

I,y+r2
I,z

]
, (6-14)

Ek,1×3 =
[
− rI,y
r2
I,x+r2

I,y

rI,x
r2
I,y+r2

I,x
0
]
, (6-15)

Dk,1×3 =
[
− rI,zrI,x√

r2
I,x+r2

I,y

(
r2
I,x+r2

I,z+r2
I,y

) − rI,zrI,y√
r2
I,y+r2

I,x

(
r2
I,y+r2

I,z+r2
I,x

) √
r2
I,y+r2

I,x

r2
I,z+r2

I,y+r2
I,x

]
, (6-16)

which are all considerd for rI at time step k. For the LiDAR noise, ΦLi is set to

ΦLi =

(1 · 10−2)2 0 0
0 (1 · 10−3)2 0
0 0 (1 · 10−3)2

 . (6-17)

Again computing the observability of the measurement matrix gives a rank of 10, meaning
that the system should be fully observable for this measurement update. However, as the
state space system as well as the measurement matrix are linearised, this condition does
not necessarily apply. Complete analysis of a nonlinear state space system requires a more
in-depth analysis and is beyond the scope of this thesis. Results for only implementing the
LiDAR sensor will be presented in Subsection 7-1-2.
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Chapter 7

Experimental Results

In this chapter, all simulation results from the research are presented. The chapter starts with
an analysis of the performance of the navigation filter for the benchmark scenario, as defined
in Section 4-4, in Section 7-1. In the next section, Section 7-2, temporary losses of inputs
by the star tracker and the LiDAR are considered, and the results are presented. Next, the
influence of the time step on the state estimation accuracy of the navigation filter is analysed
in Section 7-3. Then, the effect of orbital height is investigated. The navigation filter results
for different orbital heights can be found in Section 7-4. In Chapter 8, my interpretation of
the results is discussed.

7-1 Benchmark Scenario

In this section, the performance of the navigation filter for the benchmark scenario is pre-
sented. An overview of the parameter settings for the benchmark scenario is given in Table 7-1.

Table 7-1: Parameter settings for benchmark scenario.

True State Estimated State
rI [km]

[
50 0 0

]T [
51 1 1

]T
vI [km]

[
0 2.961 0

]T [
1 3.961 1

]T
qB/I [km]

[
0 −0.707 0 0.707

]T [
0 −0.7071 0 0.7071

]T
ΘB/I [km]

[
0 0 0

]T [
1 · 10−7 1 · 10−7 1 · 10−7

]T
To start, both the star tracker and LiDAR are separately implemented into the navigation fil-
ter to analyse their influence on the filter performance. After the star tracker implementation
in Subsection 7-1-1 and the LiDAR implementation in Subsection 7-1-2, the covariance and
convergence results of the navigation filter are presented in Subsection 7-1-3 Subsection 7-1-4
and respectively.
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7-1-1 Star Tracker Implementation

For this section, the star tracker sensor has been implemented into the navigation filter,
using the measurement simulation from Section 5-3 and the measurement update equations
as described in Subsection 6-2-1. In Figure 7-1, the effect of the star tracker measurement
update on the position estimation is presented. In the left column, the propagation of the true
state simulation, the navigation filter estimation with star tracker measurement update, and
the navigation filter estimation without any measurement update are plotted. The navigation
filter without any measurement update only consists of the state space update as described
in Section 5-1, and is therefore referred to as the time update. As can be seen in the middle
and right column, the error of the Kalman filter with star tracker measurement update is as
large as the error of the time update. Hence, the Kalman and time update results in the
left column overlap. It can be seen that the implementation of the star tracker measurement
update does not improve the estimation of the spacecraft position, and the navigation filter
is not able to estimate the spacecraft position.

Figure 7-1: True state position propagation for time step of 0.1s [left column], error between true
state simulation and Kalman results for star tracker measurement update only, [middle column],
and error between true state simulation and time update results [right column].

Contrarily, improvement of the attitude estimation is visible for the star tracker measurement
update, as seen in Figure 7-2. It can be seen that the error in the time update accumulates
over time, whereas the errors for the star tracker measurement update are noisy, but have a
constant error. Implementing the star tracker measurement is therefore necessary to estimate
the spacecraft attitude.
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Figure 7-2: True state quaternion propagation for time step of 0.1s [left column], error between
true state simulation and Kalman results for star tracker measurement update only, [middle
column], and error between true state simulation and time update results [right column].

7-1-2 LiDAR Implementation

Similar to the previous section, the performance of implementing one sensor is presented. For
the implementation of the LiDAR sensor, the measurement simulation from Section 5-4 and
the measurement update equations as described in Subsection 6-2-2 have been used.

Again, the error of the navigation filter with the measurement update has been plotted in
comparison to the error of the time update. The propagation of the position has a smaller
error than for the time update, as presented in Figure 7-3. It can be seen that for the time
update, the error grows larger over time. The errors for the navigation filter with the LiDAR
measurement update included do not go over 15 m for each axis. Hence, the true state
simulation and the navigation filter results overlap in the left column.

However, as can be seen in Figure 7-4, the quaternion estimation for the LiDAR measurement
update shows the same performance as for the propagation of only the time update. Therefore,
no influence of the LiDAR measurement update is detected on the performance of the attitude
estimation of the navigation filter.

Based on the results on the position in Figure 7-3, it is visible that the implementation of
the LiDAR is necessary for estimating the position of the spacecraft. The same result can be
found for the velocity estimation, which can be found in Appendix D.
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Figure 7-3: True state position propagation for time step of 0.1s [left column], error between
true state simulation and Kalman results for LiDAR measurement update only, [middle column],
and error between true state simulation and time update results [right column].

Figure 7-4: True state quaternion propagation for time step of 0.1s [left column], error between
true state simulation and Kalman results for LiDAR measurement update only, [middle column],
and error between true state simulation and time update results [right column].
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7-1-3 Position Estimation Covariance

The results presented in this section are based on the estimation of the complete navigation
filter described in Section 6-1, where both measurement updates have been implemented.

In Figure 7-5, the estimated and true state position have been plotted in the inertial reference
frame in the left column. In the right column, the error between the true state and the
estimated states are plotted. The variance of the position estimation, for 1σ and -1σ has
been plotted in the right column as well. It can be seen that for all three axes, noise is
present in the error between the true state and the navigation filter estimation.

Figure 7-5: True and estimated position propagation, for time step = 0.01s, inertial frame.

The errors and the covariance for the position in the x- and y-axis display sinusoidal behaviour.
A similar result is seen for the velocity estimation plot, shown in Figure 7-6. Contrary to
the other axes, the covariance and the error of the position in the z-axis have an apparent
constant level.

The covariance, and the size of the errors, is changing along with the direction of the orbital
velocity. At the starting point of the orbit, the position in x-direction is aligning with the
radial component of the spacecraft velocity. The tangential component of the velocity is in
the y-direction of the inertial frame. Therefore, the navigation filter has a higher accuracy
and confidence of the position estimate in the x-axis than for in the y-axis. This interchanges
when the position has been propagated for a quarter orbit, int the middle of the position plot
in Figure 7-5. Now, the velocity is tangent to the x-axis, and the accuracy and confidence of
the position estimate is lower in the x-axis than in the y-axis.

Master of Science Thesis M. N. van Oorschot



70 Experimental Results

Figure 7-6: True and estimated velocity propagation, for time step = 0.01s, inertial frame.

7-1-4 Navigation Filter Convergence

In order to analyse the convergence time, the position propagation plots have been cut off
near the point of convergence for each axis. This is plotted in the left column figures of
Figure 7-7, where the right column shows the error between the true and estimated state. It
can be seen that for all axes, there is an initial error of 1 km, corresponding to the initial
estimated state.

In Figure 7-8, the convergence of the velocity states is shown. The convergence for the velocity
states is the same as compared to the position convergence, except for the velocity in the x-
direction. Here, the convergence of the velocity estimate takes 100 s to become stable, instead
of 0.01 s before the position estimate in the x-direction becomes stable.

In addition, the convergence of the innovation sequences of the LiDAR are shown in Figure 7-9.
In the top figure, the innovation sequence for the range is shown, the azimuth and elevation in
the middle figure, and the quaternion errors in the bottom figure. The x-coordinate converges
at the same time as the range (top figure), whereas the y- and z-coordinates converge with
a similar time to the control angles (bottom two figures). The range innovation sequence is
already converging for one time step which is very fast, especially compared to the innovation
sequence convergence of the control angles which is in the order of 300 s.

M. N. van Oorschot Master of Science Thesis



7-1 Benchmark Scenario 71

Figure 7-7: Convergence for position estimation, 0.01s time step.

Figure 7-8: Convergence for velocity estimation, 0.01s time step.
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Figure 7-9: Innovation sequence convergence, 0.01s time step.

7-2 Sensor Loss

The last set of results is based on a scenario where there is a temporary loss for two of
the sensors. At 30% of the simulation time, the star tracker sensor experiences a ’loss’ for
2000 seconds, and no measurement is send to the navigation filter. Similarly, at 60%, the
same happens to the LiDAR sensor, for the same amount of time. Beyond a loss of 2000
s, the navigation filter was not able to overcome the accumulated covariance values to have
convergence of the position or attitude estimation. Hence, 2000 s was set as the maximum
possible loss duration. The results for the position estimation is plotted in Figure 7-10. It can
be seen that during the loss of the LiDAR measurement, the error as well as the covariance
(dotted) of the position grows exponentially. When regaining the position measurement, the
errors decrease to their nominal state.

It can be seen that for the computation of the innovation sequence values in Figure 7-11,
the value drops for the range estimation at the same time that the measurement update
is performed after the LiDAR loss. This corresponds to the position offset that is seen in
Figure 7-10. Because of the time update steps performed during the loss of the LiDAR, the
position estimate has drifted from the true state simulation. Upon regaining signal from the
LiDAR, an error of 14 m for the range is found, which is visible in the upper plot of the
innovation sequence in Figure 7-11.

It can also be derived from the innovation sequence plot for the star tracker measurement
update that there is temporarily no computation of the innovation sequence for the star tracker
loss. However, there appears to be no error accumulating for the quaternion estimation, based
on the results shown in Figure 7-12.
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Figure 7-10: True and estimated position propagation with sensor loss, for time step = 0.01s,
inertial frame.

Figure 7-11: Innovation sequences for propagation with sensor loss for time step = 0.01s, inertial
frame.

The results for the root-mean-square error (RMSE) computation for the position estimation
has been summarised in Table 7-2. It can be seen that a significant increase in accuracy is
obtained when reducing the time step of the navigation filter computation from 1 s to 0.1
s. The results for decreasing the time step from 0.1 s to 0.01 s are not improving for the
accuracy. This is due to the increased error for the x-coordinate of the position.
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Figure 7-12: True and estimated quaternion propagation with sensor loss, for time step = 0.01s,
inertial frame.

Table 7-2: RMSE values for position in sensor loss scenario.

Time step RMSE rx RMSE ry RMSE rz RMSE r
1s 222.9260 147.7388 2.4260 267.4484
0.1 s 0.9921 0.2437 0.8989 1.3607
0.01 s 1.2693 0.8873 0.1613 1.5571

7-3 State Estimation Accuracy for Multiple Step Sizes

For this section, the benchmark scenario has been propagated with different step sizes for the
navigation filter. As a measure of accuracy, the RMSE has been computed using

RMSE =
[
N∑
i=1

(di − d̂i)
N

] 1
2

(7-1)

where N is the amount of data points, di is a true state value and d̂i is the corresponding
estimated value by the KF. The resulting values are visible in Figure 7-13. For the benchmark
scenario, a time step of 0.01 s was taken. It is taken into account that the simulation of the
true state has been performed with the same time step of the benchmark. The same true
state data of the benchmark scenario is thus given to all navigation filters. The RMSE values
appear to be the lowest for the position estimation in the z-direction. However, as shown in
Figure 7-5, the values of the z-component are much smaller than as for the components in the
other two axes, as we are dealing with an equatorial orbit. Given that the maximum value
of the z-coordinate is no larger than 20 m, an RMSE value of 12 m for a time step of 1000 s
is an offset of more than 50%. Compared to the position estimates in x- and y-direction, the
offset is never more than 2.25%, irrespective of the selected time step.
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(a) RMSE for rx. (b) RMSE for ry.

(c) RMSE for rz. (d) RMSE for r.

Figure 7-13: RMSE values for propagation of the benchmark scenario, for time steps 1000, 100,
10, 1, 0.1, and 0.01 s.

Next to the RMSE values of the position, the RMSE has also been computed for the velocity
and the quaternion attitude of the benchmark scenario. The plots are shown in Figure 7-14.
Again, a drop in RMSE values can be seen from the 1s to 0.1 s time step for both the velocity
as well as the attitude estimation.

In addition to the RMSE figures, the RMSE values have been summarised in Table 7-3,
together with the measured computational time of one arbitrary simulation of the benchmark
for each time step. Based on the position error plots with respect to the time step of the
navigation, it could be seen that the best improvement of accuracy performance is when
decreasing the time step from 1s to 0.1 s. The difference in error between the 0.1 and 0.01
s time step is the smallest, 0.07 m, while the computational effort of the navigation filter
increases the most. The computation time becomes 24 times larger for decreasing the time
step from 0.1 s to the 0.01 s.
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(a) RMSE for velocity. (b) RMSE for quaternion.

Figure 7-14: RMSE values for the velocity and quaternion propagation of the benchmark scenario,
for time steps 1000, 100, 10, 1, 0.1, and 0.01 s.

Table 7-3: Simulation results for different time steps

Time step RMSE position [m] RMSE attitude [-] Computation time [s]
1000 282.3709 1.2004 2.6521
100 282.7010 1.2029 2.3000
10 281.6756 1.1997 8.65125
1 267.4513 1.1470 71.1188
0.1 0.5289 0.003531 692.8675
0.01 0.5889 0.003490 16933.3309

7-4 Orbit Proximity

Next to the benchmark scenario, two other scenarios have been simulated, where the orbital
height has been adjusted. Different orbital heights of 35 km and 100 km have been simulated,
for which the initialisation settings are summarised in Table 7-4. For both the 35 km and 100
km altitude orbit, the offsets of the Kalman filter have been kept the same. Furthermore, the
values of the covariance, process noise, and measurement noise matrices have been kept the
same as for the benchmark scenario.

The orbit trajectories have been visualised in Figure 7-15. In the left figure, the propagation
of the orbit of 35 km is plotted for a simulation time of 53050 s, with the spacecraft enlarged
by 200 times. The same settings are used for the trajectory of the 100 km orbit, which is
shown in the right figure.

In Figure 7-16, the RMSE values have been plotted with respect to different simulation time
steps, for the three different orbital heights. For clarification, only the three smallest time
steps have been plotted in Figure 7-16b. It can be seen that for the smallest time steps, the
orbital height of 50 km has the lowest RMSE values. It is noticeable that from the 1s to 0.1
second time step, the plots of the 35 and 50 km orbit cross each other. For the larger time
steps, the 35 km orbit has lower RMSE values than for the 50 km orbit.

For comparison, the position RMSE values for the three different orbital heights have been
summarised in Table 7-5. Irrespective of the orbital height, only the simulations with a time
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Table 7-4: Initial conditions of estimating benchmark scenario

True State Estimated State
35 km orbit

rI [km]
[
35 0 0

]T [
36 1 1

]T
vI [km]

[
0 3.539 0

]T [
1 4.539 1

]T
qB/I [km]

[
0 −0.707 0 0.707

]T [
0 −0.7071 0 0.7071

]T
ΘB/I [km]

[
0 0 0

]T [
1 · 10−7 1 · 10−7 1 · 10−7

]T
100 km orbit

rI [km]
[
100 0 0

]T [
101 1 1

]T
vI [km]

[
0 2.094 0

]T [
1 3.094 1

]T
qB/I [km]

[
0 −0.707 0 0.707

]T [
0 −0.7071 0 0.7071

]T
ΘB/I [km]

[
0 0 0

]T [
1 · 10−7 1 · 10−7 1 · 10−7

]T

(a) 35km km orbit. (b) 100 km orbit.

Figure 7-15: Proximity operation orbits for 53050 s, time step - 0.01 s.

step of 0.1 or 0.01 s are able to achieve a position error below 1 m. The difference in error
between 0.1 s and 0.01 time step simulation increases slightly with larger orbital height, as
the difference comes down to 0.02 m, 0.06 m, and 0.16 m for 35 km, 50 km and the 100 km
orbit respectively. Based on this data set, the increase in error is however not proportionate
to the increase in orbital height .
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(a) Time steps 0.01, 0.1, 1, 10, 100, and 1000 s. (b) Time steps 0.01, 0.1, and 1 s.

Figure 7-16: Position RMSE over propagation for different computation time steps, for an orbit
of 35, 50 and 100 km.

Table 7-5: Simulation results RMSE position [m] for different time steps for an orbit of 35 km,
50 km, and 100 km.

Time step 35 km orbit 50 km 100 km orbit
1000 259.5937 282.3709 265.3527
100 257.9264 282.7010 262.4526
10 256.2722 281.6756 261.4934
1 235.8991 267.4513 251.4264
0.1 0.4025 0.5289 0.5165
0.01 0.4253 0.5889 0.6715
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Chapter 8

Discussion

This chapter presents the discussion that is based on the results presented in the previous
chapter. To begin with, Section 8-1 presents a discussion on the limitations of the implemented
sensor set. In Section 8-2, the interpretations on the performance of the navigation filter for
the benchmark scenario are discussed. Next, the effect of the simplifications of the true state
simulation are discussed in Section 8-3. After, the findings of the proximity operations for
different orbital heights are discussed in Section 8-4. The last section, Section 8-5, discusses
what the results of the simulations for different time steps impose on the performance of the
state estimation.

8-1 Sensor Implementation

In this section, various aspects of the chosen sensor set and the error modelling are discussed.
To start, the limitations of the sensor set is discussed in Subsection 8-1-1. Next, the results
for the sensor loss are discussed in Subsection 8-1-2. Similar to the assumptions for the true
state model, assumptions have been made for each sensor model. Especially simplifications of
the error characteristics per sensor can make the outcomes of the navigation filter unrealistic.
The explicit limitations for each sensor type are discussed in Subsection 8-1-3.

8-1-1 Sensor Set Selection

In total, three sensors and their respective measurement outputs are simulated for the nav-
igation filter. With 433 Eros as the target asteroid, it was known beforehand that there
was no magnetic field found in the proximity of the asteroid, which posed limitations on the
available sensors. Compared to the sensor set of Razgus (2016) and Bourgeaux (2020), the
IMU sensor model is now more complete as both the accelerometer and the gyroscope have
now been implemented. Additionally, the implementation of different output rates was not
encountered in the sensor models described by Bourgeaux (2020), Spee (2022) and Razgus
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(2016). Implementing the lower output rates for the measurement updates does imply a more
realistic sensor output.
As could be derived from the comparison of the Kalman filter (KF) with and without mea-
surement updates, the star tracker and the light detection and ranging (LiDAR), and their
respective the measurement updates, are necessary to compensate for initial offsets in the
state estimation. The rank for the LiDAR measurement update was checked for the imple-
mentation of the measurement matrices, which resulted in a rank of 10. This result caused
the expectation that coupling occurs between the attitude estimates and the position and ve-
locity estimates. However, as was seen Figure 7-4, the influence of the LiDAR measurement
update on the attitude estimation is negligible. Since the LiDAR measurement update con-
tains a measurement matrix that is based on the position, it is no surprise that the position
is converging first in Figure 7-7, after which the velocity follows. It could be seen that the
convergence of the position in all axes is corresponding with the innovation sequence of the
LiDAR in Figure 7-9.

8-1-2 Sensor Loss

For the simulated sensor loss, a constant loss of either the star tracker or the LiDAR for the
same amount of time but at different points in the trajectory, was simulated and presented
in Figure 7-10 and Figure 7-11. It could be deduced from the results that the dynamic model
is able to propagate the dynamics and kinematics when either the LiDAR or star tracker is
unable to provide measurements for about half an hour. For longer interruptions, the system
is not able to overcome the large error and large uncertainty of the time step propagation.
This conclusion is of course only applicable to the benchmark scenario, and could be subjected
to different orbital scenarios. Especially for unstable orbits, it would be interesting to know
whether the previously made conclusion is still true.
Furthermore, it was seen that the error for sensor loss was larger for the time step of 0.01 s
than for a time step of 0.1 sec. One possible explanation for the lower performance is that
for the time step of 0.1, the output rate of the IMU is now equal to 10 Hz instead of 100 Hz.
Although the accuracy for those time steps is similar, the 0.01 s updates the time step more
often in between star tracker or LiDAR measurements. Per time update, more uncertainty
can accumulate in the covariance matrix. Although the values in the covariance matrix are
influenced by the time step size, it is not certain whether this is a linear relation. To know
for sure, more analysis of the size of the covariance matrix for different time steps is needed,
as well as the influence of the output rates for a navigation filter with a time step of 0.1s.
Another critical point for the sensor error scenario is whether the scenario is realistic to happen
for actual sensors. Now, a loss of the sensor has been simulated, which is not necessarily equal
to what can happen during a mission. It is more likely that the sensor measurements are faulty,
such as what happened for the Rosetta star tracker when flying close to the debris of the tail
of a comet (Siddiqi, 2018).

8-1-3 Inertial Measurement Unit Simulation Limitations

It is expected that for real sensors, the measurements contain more distinctive errors, or at
least deviating more from classical white noise errors. Only incorporating two error types
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for the IMU has been shown to be realistic to a certain extent, but can be improved when
comparing to the error characterisation on IMU fact sheets (Systems, 2014), (Sensors and
Power AG, 2021), (Corporation, 2012). There are various studies that have implemented
more detailed IMU models. The integration and verification of these type of models were,
however, beyond the time scope of this thesis research. By incorporating more errors in
the measurement simulation, the performance of the navigation filter can decrease. This
is because Kalman filters work optimally for white noise errors. However, this allows for
introducing additional states in the state space vector that estimate the error for the IMU
measurements. This can then increase the performance of the navigation filter again.

8-1-4 Star Tracker Simulation Limitations

As expected, the star tracker measurement update in combination with the gyroscope output
ensures that the quaternion states are propagated with minimal errors, and that for initial
offsets, the star tracker measurement update is able to account for those. Thus, the real-life
necessity of IMU calibration can be solved with the use of a star tracker.

However, it has been concluded from other literature that tightly-coupled systems perform
better than loosely coupled ones. Star trackers automatically come with a pre-processing
algorithm that detects the star based on an onboard map. One of the example star tracker
model extensions discussed was from Marin and Bang (2020). As was mentioned in Chapter 5,
further development of the star tracker measurement model was beyond the scope of the
research.

These findings suggest that the filter could have been more tightly coupled and thus pro-
viding more accurate estimates, but on the other hand the filter would also be handling
more erroneous measurements for the star tracker. Similar to the IMU model, more detailed
measurement simulation is expected to cause more errors for the state estimation.

8-1-5 LiDAR Simulation Limitations

There is a limitation to the LiDAR model in the sense that the control angles of the LiDAR are
assumed known, such that the range is accompanied by the azimuth and elevation angle. This
is of course a simplified model, which also does not into account that the distance between
the geometric centre of the asteroid and the point where the laser hits should be subtracted
from the range. Although Bourgeaux (2020) also included control angles as measurements
in their measurement update, they are not used in the measurement equations, but only for
pre-processing of the LiDAR measurement. Implementing this method however makes the
navigation filter less tightly coupled, which is not desired. Using only the range measurement,
ρ̃ from the LiDAR does not give enough information about the position, as the rank for
the observability of the measurement update decreases to 8. Therefore, the control angle
measurements cannot be omitted. It could be researched whether the control angles can be
expressed differently or if different information from the LiDAR can be used in measurement
matrices, and what the effect of the new implementations are.

Furthermore, it can very well happen that there is not always a clear view on the asteroid
such that there is no information about the range at that point, as well as the control angles.
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It is therefore of importance to know how long the model can operate without input from
the LiDAR. It could be seen that for a sensor loss of 2000 s, the navigation filter was able to
overcome the accumulated error of the position.

In the research of Razgus (2016) or Bourgeaux (2020), landmark tracking by use of a navi-
gation camera combined with LiDAR sensing is used to map the surface of a target asteroid.
Although the model of the LiDAR in my case is more simple, it has been proven that only
one sensor for position estimation is necessary for the navigation filter to function. Still, the
measurement simulation has to deal with the offset between the centre of the asteroid and
where the LiDAR beam hits the surface of the asteroid. For this, an approximation of the
asteroid surface height is needed for the measurement update in the navigation filter.

8-2 Navigation for the Benchmark Scenario

In this section, the performance of the navigation filter used to estimate the states in a
benchmark scenario is discussed. The findings based on the results in Section 7-1 will be
discussed through three main topics. First, the coupling of the states for the state space model
are discussed in Subsection 8-2-1. Second, the covariance characteristics of the navigation
filter are interpreted and explained in Subsection 8-2-2. Third, the accuracy of the navigation
estimates are discussed in Subsection 8-2-3.

8-2-1 Coupling of the State Space Equations

Since the state space matrix derived in Section 5-1 was equal to

Fk =


03×3 I3×3 03×3 03×1
∂v̇I,k
∂rI,k

03×3 [ω̃BB/I,k]×ãk
∂v̇I,k
∂µk

03×3 03×3 [ω̃BB/I,k]× 03×1
01×3 01×3 01×3 01×1


xk

, (8-1)

it can be deduced that coupling takes place for the derivation of the velocity, which is de-
pendent on the measured accelerations by the IMU. These accelerations are converted to the
inertial frame using the quaternion attitude, and thus also dependent on the error states.

For measurements simulation without white noise, the measured accelerations would even
decrease to the order of 10−8, as the SRP acceleration is of this magnitude. Although the
method of defining the state space matrix equations in the inertial reference frame such that
the accelerations are converted using the spacecraft orientation, the effect of the coupling is
not as influential as was previously expected. Although defining the state space equations in
the asteroid reference frame did make the equations and their derivatives more complicated,
the coupling was more evident for the navigation filter by Razgus (2016). If it is desired to
keep the more simple state space equation in the inertial reference frame, the coupling could
become more apparent if larger non-gravitational forces would be present in the simulation
environment. This can for instance be obtained by introducing accelerations due to thruster
force of the spacecraft control system.
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It is also noticed that the general performance of the navigation filter provides converging
results for all states as seen in Figure 7-7 and Figure 7-8, despite of the scaling of the filter.
Only for the quaternion state, a MEKF was implemented, as this was necessary to avoid
issues with the unit property of the quaternions. However, it is likely that there is bad scaling
in the state transition matrix. At the moment, the values for the position state are very large,
especially compared to the error states of the quaternion.

8-2-2 Covariance Behaviour

One of the peculiar observations of the performance of the benchmark scenario is the sinusoidal
behaviour of the errors and covariance of the position in the x- and y-axis. Where for the
x-axis, the error increases and decreases when passing half of the trajectory (thus, a quarter
of the orbit), the error in the y-axis starts with a larger value, decreases, and increase at the
same pivotal point. This was due to the high confidence in the radial aspect of the position
and velocity, and the low confidence in the tangential aspect of the position and velocity of
the spacecraft. When changing the benchmark orbit by setting the inclination to 90 degrees,
such that the trajectory follows an orbit along the zx-plane, the error and covariance of the
z-coordinate also appears to be sinusoidal. Thus, the error and covariance again grow due to
the larger uncertainty in the tangential direction of the orbit trajectory. The figure to analyse
the behaviour of the position error and covariance can be found in Appendix E.

8-2-3 Accuracy of the Navigation Filter

The resulting errors for the position and attitude estimation for the benchmark scenario can
be compared to the results obtained in previous thesis researches. As for previous theses the
simulation time step was set at 1s, the error values for these simulations are considered first.

Spee (2022) was able to obtain errors in position in the order of 1 to 15 m, which is well
below the results as seen in Table 7-3. However, they introduced measurement states by
adding white noise to the position coordinates of the true state simulation. Furthermore, the
orientation states were not estimated, and a transformation matrix was assumed available
from the inertial to the asteroid reference frame. It is therefore not surprising that it is
possible for Spee (2022) to have a higher accuracy for similar settings of orbital height. In
addition, by estimating the gravitational field of the asteroid in more detail for the navigation
filter, it should be possible to have more accurate estimates of the position and velocity
as well. This is also seen in comparison to Bourgeaux (2020) with the implementation of
a spherical harmonics estimation in the navigation filter. They were able to estimate the
spacecraft position with a precision below 0.5 m for every axis at an orbital distance of 30
km for an EKF.

Furthermore, there are less uncertainties in the navigation filter of Bourgeaux (2020). The
SRP is already given as a term to be added in the state space equations, and the third body
acceleration computation is also added to the state space equations as well. On the other hand,
although it is assumed for this research that the disturbance forces are not known, and thus
not in the state space equations of the navigation filter, these disturbances are still relatively
small. The offset due to the third body perturbation as demonstrated in Subsection 4-5-3 is
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only in the order of 2 to 3 m. For the SRP, the disturbing acceleration is even smaller than
for the third body disturbance.

Nonetheless, the current unpredictable forces are predominantly caused by the asteroid gravity
field. The true state and measurement states are both simulated, and we can exactly know
the difference between the true state and the computed states of the navigation filter. This is
different from reality as there is not such as distinctive difference between true and estimated
state. As we know every force that is simulated in the true state, the errors can be accounted
for and the tuning of the filter corresponds to the dimension of the errors that we chose to
simulate.

8-3 True State Simulation

The true state simulation model has several constraints, of which the most important are

• a simplified polyhedron model is taken for the gravity acceleration computation;

• only the SRP and Sun third body are introduced as disturbance forces;

• a constant rotation of the asteroid about its z-axis is assumed;

• the density distribution of the asteroid is assumed to be homogeneous.

Although the volume of the polyhedral only deviated by 0.02% for the simplified model, even
minor changes in the shape of the asteroid can cause different accelerations exerted on the
spacecraft. Moreover, by having multiple simplifications of the asteroid and its gravity field,
the accumulation of deviations from the actual values can cause a significant deviation for the
true asteroid environment. It is not exactly known what the error in true state simulation
is between this simplified model and a model where the aforementioned simplifications have
not been applied. Of course, a real true asteroid model can never be obtained as everything
we know about the asteroid is also based on measurements with a certain accuracy. However,
the currently implemented true state model could certainly become more detailed.

Next to the simplified asteroid model, there are two disturbing forces that are considered in the
true state model: the third-body disturbance and the SRP. Beforehand, it was assumed that
gravity gradient torque has a negligible influence on the propagation of the spacecraft orbit.
However, it could be concluded from the magnitude of the aforementioned disturbance force
accelerations that the magnitude for the gravity gradient torque is in the same range as was
simulated by Razgus (2016). Trying to simulate an environment with with the magnitude of
the SRP for disturbance models is therefore now incomplete. Therefore, for future simulation
of true state results, gravity gradient torque should be included as well.

The influence of the SRP could not be measured by the IMU with the current noise level.
Additionally, it was found that the values are smaller compared to the gravitational forces by
the asteroid body and the Sun. This means that the effect of smaller asteroid bodies, such
as for an orbit in the proximity of 101955 Bennu, poses a different influence by the smaller
forces that are exerted on the spacecraft. Likewise, other forces such as those caused by firing
thrusters have not been simulated yet. Hence, proximity operations for smaller asteroids or
firing of the spacecraft thrusters are expected to notably change the true state.
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8-4 Proximity Operations

The fact that the accuracy of the different orbits increases with decreasing the time step can
be deduced from different RMSE results. However, the fact that the performance of the 35
and 50 km orbit with respect to each other is dependent on the time step, is something new.
Since all the optional tuning parameters of the KF were not adjusted for running the other
orbits, it can be argued that the initial tuning had a certain influence on the performance per
orbital height. It could very well be that the chosen tuning parameters described in Table 7-1
perform better for the 35 km orbit for higher time step intervals.

Furthermore, for different orbits, the worst accuracy is obtained for the orbit farthest from
the target asteroid. This opposes the findings of Spee (2022), where the orbit farthest from
the asteroid had the highest accuracy in position estimation. Although it is argued that the
offset of the state estimates has been adjusted accordingly with the orbital height, it is not
clear whether the other tuning parameters of the KF were adjusted for the different scenarios.
The different findings by Spee (2022), as well as the different performance of the 50 and 35
km orbit with respect to the other, are thought to be caused by the tuning of the filter. In
case that Spee (2022) tuned additional parameters of the KF for different orbital heights,
the resulting filters could be too different from those used in this research to make a proper
comparison.

The type of filter (autonomous or not) also plays a role in the autonomy of the navigation
filter. In order to obtain a navigation filter that works well for different orbital heights, a
trade-off between the tuning parameters can be made.

8-5 Navigation Time step

It was previously recommended by Spee (2022) to investigate the effect of simulation time
step on the performance of the filter. When comparing the results of Bourgeaux (2020) and
Spee (2022), the accuracy is considered similar or better respectively when my own navigation
filter is simulated using a smaller time step. We can assume that the filter can perform with a
similar accuracy as with detailed gravity field approximations when a time step of either 0.1
or 0.01 seconds is used. Being able to provide estimates with the same accuracy but for more
uncertainties is beneficial for space navigation. Demonstrating that it is possible to handle
unpredictable accelerations can increase the mission safety. However, the question remains
how the navigation filter would perform if both a smaller time step, as well as a more detailed
approximation of the gravity field would be implemented in the navigation filter.

According to Sheikh et al. (2009), using the DSN it was possible to accurately estimate
position of a spacecraft with an error of 0.3 km at a distance of 1 AU from Earth. It can
be safely said that for the benchmark scenario, this accuracy is obtained for all time steps
of the navigation filter. Still, it was clear from the results Section 7-3 that the time step of
0.1 s and 0.01 s have the best performance in terms of accuracy. If that is compared to the
computational effort as presented in Table 7-3, a mere 0.06 m improvement on the accuracy
requires 24 times more computational time. It is therefore concluded that a time step of 0.1s
is the best trade-off between accuracy and computational time.
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The best performing simulation time step imposes some conclusions for the hardware design
of the spacecraft as well. First, an example can be taken from the flight computer that was on
the NEAR-Shoemaker spacecraft. As described by Lee and Santo (1996), ’the flight computer
is used to perform the computationally intensive processing. Once each second, the outputs of
the attitude sensor suite are processed to provide a filtered estimate of the S/C state (attitude
and body rates)’. The processing for the spacecraft attitude was thus performed once every
second. Considering the technology for computer hardware has considerably improved since
the launch of the NEAR-shoemaker, it can be assumed that an time step of 0.1 s should be
no problem for a modern flight computer.
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Chapter 9

Conclusions and Recommendations

In Chapter 8, a discussion was presented based on the results in Chapter 7. From the
discussion and the results, conclusions are drawn, which are presented in Section 9-1. The
main research question as well as the sub-questions as introduced in Section 1-2, will be
answered. Furthermore, recommendations can be derived from the discussion as well, which
are given in Section 9-2.

9-1 Conclusions

Before addressing the conclusions of the main research question, the final answers to sub-
questions are given. To start with, the first sub-questions were

• What sensor set is necessary to estimate position and orientation of the spacecraft?

• How can the selected sensors be configured and simulated in the navigation system?

In order to estimate both the position and orientation of the spacecraft, the chosen sensor set of
a star tracker, IMU and LiDAR sensor suffices. The accelerometer of the IMU is necessary for
measuring any non-gravitational accelerations, and the gyroscope measurements are needed
to approximate the orientation changes of the spacecraft. To be able account for initial offsets
of the position, velocity or attitude, a measurement update is needed.

The sensors were fused within an EKF. Each sensor measurement was simulated with their
respective output rate that was found in literature. The measurements of the IMU were
introduced as noisy control inputs in the time update of the navigation filter. For the star
tracker and the LiDAR, they each had their own measurement update. The star tracker
measurement update is necessary to account for offsets of the orientation estimation, as well as
process errors for the orientation computation in the time update. The LiDAR measurement
update is necessary to account for the offset in either position or velocity estimation, as well as
for errors in their computation. Although it was proven that the system was coupled between
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the position and orientation states of the filter, the covariance was negligible, and the system
behaved in general as an uncoupled system.

Each sensor was simulated with its own error characteristic. Although the error values were
corresponding to values found in literature, the models could be more accurate. The effect
of a temporary sensor loss for the star tracker as well as the LiDAR was also analysed. This
concluded that for convergence of the navigation filter, the star tracker and the LiDAR are
necessary to have convergence for the attitude and position estimation respectively. If either
one of the two sensor measurements temporarily suffered from loss, the time update was able
to propagate the states accurate enough for up to 2000 s for the navigation filter to regain
the nominal errors after the sensor were recovered.

Next, we had

• To what extent can the navigation filter improve the accuracy of the state estimation?

The position can be estimated with an RMSE of 0.5 m for a time step of either 0.1 or 0.01 s for
navigation of the benchmark scenario. This outperforms the current accuracy of estimation
through the DSN. The navigation filter can obtain similar results for the simulation of
scenarios with a different orbital height. Overall, an RMSE no higher than 1.5 m can be
found for orbital heights between 35 km and 100 km.

Furthermore, one of the sub-questions was

• What is the role of the estimation frequency in the accuracy performance of the navi-
gation filter?

From the results it was derived that using either a time step of 0.1 or 0.01 s for the update
rate of the navigation filter gives the most accurate results, with an error of 1.5 m for the
given orbital height range. It was also concluded that updating the navigation filter with
0.01 s time step instead of the 0.1 s time step requires 24 times more computational time.
As the little improvement of the state estimation does not weigh against the much larger
computational time, a time step of 0.1 s is recommended for implementing the navigation
filter in a GNC.

Finally, the last sub-question was

• To what extent can the autonomous navigation system improve the response time when
orbital correction manoeuvres are required?

It is concluded that the response time is improved as well, as the navigation filter converges
for the position within five minutes. This would mean that after five minutes, a control
input can be given to the GNC to adjust the orbit or attitude of the spacecraft. This is four
times faster than sending a command through the DSN which can only be executed by the
spacecraft 20 minutes later.

Having summarised an answer for all sub-questions, the conclusion on the main research
question can be given.
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"How can sensor fusion applied in autonomous navigation for deep space space-
craft contribute to improving safety and accuracy during proximity operations?"

It has been demonstrated that a sensor fusion model of a star tracker, IMU and a LiDAR
sensor can estimate the position and attitude of a spacecraft in proximity operations around
433 Eros with an accuracy of 0.5 m RMSE for the estimated position and 3·10−3 RMSE for
the attitude of the spacecraft relative to the asteroid.

For a trade-off between accuracy and computational effort, it is concluded that a time step of
0.1 seconds for the navigation filter is the best option. Increasing the time step decreases the
accuracy significantly for different scenarios. Decreasing the time step significantly increases
the computational effort and does not improve the accuracy.

With a time step of 0.1 s, an accuracy of 1.5 m can be obtained for the position for orbital
heights ranging from 35 to 100 km for the proximity operation. Regarding safety, it is con-
cluded that the navigation system can converge within five minutes for the position estimation
and should be able to exert control commands faster than through DSN communication. Fur-
thermore, the navigation system handle sensor loss of at least half an hour for either the star
tracker or the LiDAR sensor.

The implemented model is a step in the right direction, but we are not there yet. More
measurement errors, disturbance forces, and the implementation of the control demands can
provide more insight into the future of autonomous GNC for deep space asteroid missions.
Still, having a navigation filter with the described characteristics, it is possible to estimate the
position and orientation in a timely frame with enough accuracy that it should be possible
to design autonomous navigation system for a spacecraft in proximity operation around an
asteroid.

9-2 Recommendations

In this section, recommendations on future research are given. The recommendations are
based on the constraints and assumptions that have been made throughout the research.
They have been categorised into three main parts: the true state simulation, the sensor
measurement simulation and the GNC system.

9-2-1 True State Simulation

In addition to the true state simulation as described in Section 3-4, it is recommended to

• simulate the true state simulation for different time steps to investigate the effect of the
time step on the simulation accuracy;

• introduce the gravity gradient torque in the true state simulation model to have a more
complete model of the disturbance forces;

• simulate the proximity operations around 433 Eros for a heterogeneous density model for
the detailed polyhedron surface model to have a more realistic model of the gravitational
force exerted by the asteroid;
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• simulate the proximity operations for different target asteroids to investigate the ro-
bustness of the navigation filter;

• simulate star orientation around the spacecraft for star tracker measurements in order
to be able to design a more detailed model of the star tracker measurement simulation.

9-2-2 Sensor Measurement Simulation

For the sensors, the measurement simulation was presented in Section 5-2, Section 5-3, and
Section 5-4. For the sensor measurement simulations, additional research options are listed
below.

• Introduce a star tracker measurement model that can simulate the pre-processing al-
gorithm of a star tracker. This allows to investigate whether a navigation filter can be
designed that is more tightly coupled.

• Introduce an IMU measurement model with more detailed error characteristics, and
consider the mounting of the sensors on the spacecraft and simulate the misalignment
errors. This makes the measurement simulation more realistic.

• As mentioned in Section 5-2, there are usually multiple IMUs integrated into the navi-
gation architecture of spacecraft. By extending the model to have more sensors of the
same type, the fusion could have been more realistically demonstrated. In this case,
the configuration of the sensors onto the spacecraft body need to be determined first,
as these indicate how the reference frames of the sensors are placed with respect to the
main spacecraft body. If multiple IMU sensors and their placement are assumed, it
would have made more sense to also incorporate scaling and misalignment errors in the
measurement simulations.

• It is now demonstrated that measurements from a magnetic field are not necessary
to obtain estimations of the position and attitude of the spacecraft. On the other
hand, it could be tested whether the navigation filter would benefit from magnetometer
measurements for a target asteroid with a magnetic field. In addition, this poses the
question whether the absence or presence of a magnetic field can be autonomously
detected and determined by a navigation filter;

• By incorporating landmark tracking algorithms, a SLAM algorithm can be developed
to generate a landmark field in-orbit. This gives the opportunity to simulate the LiDAR
measurements with more detail.

9-2-3 Guidance Navigation & Control

In Chapter 5 and Chapter 6, the state space design and the navigation filter design are
presented, respectively. For the further design of the GNC of the spacecraft, it is recommended
to

• run the navigation filter with a time step of 0.1 s. This time step is the best trade-off
between computational effort and estimation accuracy;
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• extend the GNC with a SLAM algorithm to map the surface and gravity field of a target
asteroid;

• add error states to the state space system of the navigation filter. By estimating the
error for measurements, the navigation filter can improve;

• introduce control forces exerted on the spacecraft. The coupling of the attitude to
the position and velocity states is considered negligible. For the coupling to be more
significant, larger non-gravitational accelerations should be present in the true state
simulation;

• investigate orbit stability using control forces and a target trajectory. Here, the con-
trollability of the GNC can be tested.
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Appendix A

Spacecraft Design Requirements
Overview

Here, an overview is given of all the requirements set throughout the literature study. They
appear in the same order as in the chapters.

A-1 Mission Requirements

• R-MIS-010 The mission shall demonstrate feasibility of sensor fusion for autonomous
navigation of the vehicle during asteroid observation.

• R-MIS-020 The navigation system shall be able to perform orbital corrections without
the aid of ground stations or other network communication.

• R-MIS-030 The mission environment for autonomous navigation has an orbital radius
of 50 km, around planetoid 433 Eros.

A-2 Navigation System Requirements

• R-NAV-SYS-01 The navigation system and payload bus are connected such that the
data output of the payload is directly transmitted to the navigation system.

• R-NAV-SYS-02 The navigation system shall be able to estimate both the attitude and
relative positioning of the spacecraft during the proximity operations.

• R-NAV-SYS-03 The navigation system shall be able to autonomously stabilise an orbit
during proximity operations.

• R-NAV-SYS-04 The navigation system shall be able to perform stability corrections at
least once per orbit around 433 Eros.
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• R-NAV-SYS-05 The navigation system shall have a system response shorter than 20
minutes.

• R-NAV-SYS-06 The navigation system computer shall perform sensor fusion algorithms
between the navigation sensor outputs.

• R-NAV-SYS-07 During orbital observation around 433 Eros, continuous observations
shall be carried out by the navigation sensors.

• R-NAV-SYS-08 The navigation sensors shall include redundancy at least per sensor
type.

A-3 Dynamics Estimation Requirements

• R-DYN-010 The forces exerted on 433 Eros by the Sun are neglected.

• R-DYN-020 The gravity model of 433 Eros will be approximated using spherical har-
monic expansions.

• R-DYN-030 A constant rotational rate of for 433 Eros is assumed at 1639.38922 degrees
per (Earth) day.

• R-DYN-040 The forces considered in the dynamic model of the spacecraft are either
gravitational or caused by solar radiation pressure.

• R-DYN-050 The forces exerted by the Sun on the spacecraft body are assumed to be
only due to the solar radiation pressure.

• R-DYN-060 The main reference frame considered is a rotating asteroid-fixed reference
frame.

• R-DYN-070 The secondary reference frame considered is the spacecraft reference frame.

• R-DYN-071 The z-axis of the spacecraft reference frame is in line with the navigation
camera.

• R-DYN-072 The navigation camera should be continuously pointed towards the asteroid
during observation.

A-4 Sensor Selection Requirements

• R-NAV-SENS-01 The navigation system shall be equipped with a three-axis star tracker.

• R-NAV-SENS-02 The navigation system shall be equipped with a light detection and
ranging (LiDAR) sensor.

• R-NAV-SENS-03 The system shall be equipped with a four-axis inertial measurement
unit (IMU).

• R-NAV-SENS-04 The IMU consists of a gyroscope and an accelerometer.

M. N. van Oorschot Master of Science Thesis



A-4 Sensor Selection Requirements 95

• R-NAV-SYS-05 The navigation system shall be able to point the ranging sensor towards
the asteroid during orbit.
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Appendix B

Kepler Coordinate Equations

In this chapter, the equations describing various relations between the orbital elements of
a Kepler orbit are given, as well as the conversion between the Keplerian and Cartesian
coordinate systems.

B-1 Orbit parameter relations

r = a(1− e2)
1 + e cos θ = p

1 + e cos θ (B-1)

rp = a(1− e) (B-2)

ra = a(1 + e) (B-3)

Etot = Ekin + Epot = V 2

2 −
µ

r
= − µ

2a (B-4)

V 2 = µ(2
r
− 1
a

) (B-5)

Vcirc =
√
µ

r
=
√
µ

a
(B-6)

Vesc =
√

2µ
r

(B-7)

T = 2π
√
a3

µ
(B-8)

tan θ2 =
√

1 + e

1− e tan E2 (B-9)

M = E − e sinE (B-10)

M = M0 + n(t− t0) (B-11)
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n =
√
µ

a3 (B-12)

Ei+1 = Ei +m
M − Ei + e sinEi

1− e cosEi
(B-13)

r = a(1− e cosE) (B-14)

tan θ2 =
√
e+ 1
e− 1 tanh F2

M = e sinhF − F
M = n (t− t0)

n =
√

µ

(−a)3

r = a(1− e coshF )

(B-15)

B-2 Kepler to Cartesian Conversion

(
ξ
η

)
=
(
r cos θ
r sin θ

)
;

 x
y
z

 =

 l1 l2
m1 m2
m1 n2

( ξ
η

)
(B-16)

where
l1 = cos Ω cosω − sin Ω sinω cos i
l2 = − cos Ω sinω − sin Ω cosω cos i
m1 = sin Ω cosω + cos Ω sinω cos i
m2 = − sin Ω sinω + cos Ω cosω cos i
n1 = sinω sin i
n2 = cosω sin i

(B-17)

H =
√
µa (1− e2)

ẋ = µ

H
[−l1 sin θ + l2(e+ cos θ)]

ẏ = µ

H
[−m1 sin θ +m2(e+ cos θ)]

ż = µ

H
[−n1 sin θ + n2(e+ cos θ)]

(B-18)
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B-3 Cartesian to Kepler conversion

r = ‖r‖; V = ‖V‖; h = r×V; N =

 0
0
1

× h

a = 1/
(

2
r −

V 2

µ

)
e = V×h

µ − r
r ; e = ‖e‖

i = acos
(
hZ
‖h‖

)
Nxy =

√
N2
x +N2

y ; Ω = atan 2
(
Ny
Nxy

, NxNxy

)
ω = sign ∗ acos(ê · N̂) (sign = +1 if (N̂× e) · h > 0; −1 otherwise )
θ = sign ∗ acos(r̂ · ê) (sign = +1 if (e× r) · h > 0; −1 otherwise )

(B-19)
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Appendix C

Benchmark Simulation Verification

Complementary to the visualisation of the benchmark scenario, the position and velocity
propagation of the trajectory have been plotted in Figure C-1.

Figure C-1: Position and velocity propagation of the benchmark scenario in the inertial frame.

The results are visible in Figure C-2 and Figure C-3. Here, the propagation as well as the
error between the two models are plotted for the three smallest time steps.
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Figure C-2: Propagation of position and error between true state simulation and state space
update with point mass asteroid models for time steps 1s, 0.1s, 0.01 in the inertial frame.
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Figure C-3: Propagation of quaternion and error between true state simulation and state space
update with point mass asteroid models for time steps 1s, 0.1s, 0.01 in the inertial frame.
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The position with respect to the asteroid reference frame in all axis directions has been
plotted in Figure C-4, and the angular rate of the spacecraft reference frame with respect to
the inertial reference frame has been plotted in Figure C-5.

Figure C-4: Position for half orbit at 50 km around Erosfor the asteroid reference frame.

For the polyhedron verification , the additional figures for the propagation of the true state
simulation position and attitude are presented in Figure C-6 and Figure C-7.
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Figure C-5: Angular rates of spacecraft reference frame around inertial reference frame for
simulation of half orbit around Eros at 50km.
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Figure C-6: Propagation of position and error between true state simulation with polyhedron
model and state space update for time steps 1s, 0.1s, 0.01 in the inertial frame.

Figure C-7: Propagation of quaternion and error between true state simulation with polyhedron
model and state space update for time steps 1s, 0.1s, 0.01 in the inertial frame.
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Sensor Set Implementation

In addition to the position and quaternion results, the propagation of the velocity for star
tracker implementation has been plotted in Figure D-1. Similar to the position estimation,
the star tracker measurement is not able to ensure convergence for the velocity estimation.

Figure D-1: Velocity propagation for star tracker measurement only, time step of 1s.

In Figure D-2, the velocity has been plotted for the implementation of the LiDAR sensor
into the navigation filter. Similar to the result of the position estimation, it is seen that the
sensor implementation improves the estimation of the velocity estimation compared to the
time update.
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Figure D-2: Velocity propagation for LiDAR measurement only, time step of 1s.

The sensor implementation results have also been presented for the implementation of both
sensors to the system. These the results of the filter with and without both measurement
updates are presented here. Where the implementation of the separate measurement updates
was done for a time step of 0.1 s, the complete navigation filter has also been verified for the
benchmark setting of 0.01s time step. Visible in Figure D-3, Figure D-4, and Figure D-5, the
propagation results of the position, velocity, and quaternion respectively are plotted.
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Figure D-3: Spacecraft position propagation and errors of the EKF and the time update of the
EKF for 0.01 s timestep

Figure D-4: Spacecraft velocity propagation and errors of the EKF and the time update of the
EKF for 0.01 s timestep

Master of Science Thesis M. N. van Oorschot



110 Sensor Set Implementation

Figure D-5: Spacecraft attitude propagation and errors of the EKF and the time update of the
EKF for 0.01 s timestep
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Appendix E

Covariance Results

In Figure E-1, the average covariance of the navigation filter over the simulation time is
presented.

Figure E-1: Average of log function of covariance matrix P for 0.01s timestep.

In the figure, the numbers correspond to the rows and columns of the covariance matrix.
Therefore, the order of the states is considered as: position (1-3) , velocity (4-6), quaternion
error (7-9) and gravitational constant (10). Based on Figure E-1, it can be seen that the
diagonal values are largest for the position, velocity and quaternion errors. Furthermore, the
covariance between the position and velocity, have relatively higher values as well.

For checking the behaviour of the covariance for the position estimation, the orbit of the
benchmark scenario has been adjusted. First, the orbit is now starting at ry = 50 km, and
simulated for the same time at a time step of 1 s. The results for the position is shown in
Figure E-2.

Secondly, the orbit has been adjusted to have an inclination of 90 deg. The starting point is
still the same as for the benchmark scenario. These results are shown in Figure E-3.
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Figure E-2: Position propagation and position error, starting at ry= 50 km, time step is 1s.

Figure E-3: Position propagation and position error, starting at i= 90 deg, time step is 1s. time
step is 1s.
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Appendix F

Velocity Estimation Results

For the propagation of the orbit for different orbital heights, the RMSE values of the velocity
and quaternion results are shown in Figure F-1

(a) RMSE for velocity propagation. (b) Time steps 0.01, 0.1, and 1 s.

Figure F-1: RMSE over propagation for different computation time steps, for an orbit of 35, 50
and 100 km.

For the sensor loss scenario described in Section 7-2, the propagation of the velocity and the
error between the true and estimated state is shown in Figure F-2.
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Figure F-2: True and estimated velocity propagation with sensor loss, for time step = 0.01s,
inertial frame.
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