
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://sps.ewi.tudelft.nl/

SPS-2023-00

M.Sc. Thesis

Small end-to-end OCR model

Jingwen Dun B.Sc.

Abstract

Optical Character Recognition (OCR) extracts text from im-
ages and is widely used in document digitization and medical
records. Traditional OCR systems have two stages, but end-to-end
models offer superior data efficiency. Offline models are crucial in
areas with limited internet access or strict data privacy.

Our project refines end-to-end OCR models, reducing the size
to 19MB, allowing the model to run on mobile devices. Through
database utilization and fine-tuning, the model achieves a 47.3%
precision rate and 45.3% f-score. An Android demo showcases the
model’s mobile prowess, processing images in 433ms on average.

Keywords: OCR, end-to-end, mobile device

Small end-to-end OCR model

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Jingwen Dun B.Sc.
born in Shenyang, China

This work was performed in:

Circuits and Systems Group
Department of Signals & Systems
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2023 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Signals & Systems

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a
thesis entitled “Small end-to-end OCR model” by Jingwen Dun B.Sc. in
partial fulfillment of the requirements for the degree of Master of Science.

Dated: 2023-09-27

Chairman:
dr.ir. Justin Dauwels

Committee Members:
dr. David M.J. Tax

dr. Dragos Datcu

iv

Abstract

Optical Character Recognition (OCR) is a pivotal technology used to extract text
information from images, finding wide-ranging applications in document digitiza-
tion and medical records management. The integration of machine learning has
ushered in an era of swift and precise OCR models. Broadly, OCR comprises two
key components: detecting the bounding boxes around text instances and recogniz-
ing the characters within them. Presently, prevailing OCR models are primarily
intricate two-stage systems necessitating real-time operation on remote servers.
Nevertheless, end-to-end models exhibit superior performance from a data utiliza-
tion perspective. There exist scenarios where offline models prove indispensable,
such as in environments with restricted internet access or locales with stringent
data privacy and security requirements.

This project delves into various end-to-end models, leveraging the PaddleOCR
end-to-end model as a foundational reference to devise a compact OCR model
tailored for edge devices. Through meticulous optimization of the backbone ar-
chitecture and the introduction of diverse Feature Pyramid Network (FPN) struc-
tures within the stem network, we achieved a remarkable reduction in model size,
down to 19MB. This represents a substantial advancement, constituting merely
one-tenth of the original PaddleOCR end-to-end model’s footprint.

By leveraging an extensive database and conducting a series of fine-tuning
experiments specifically tailored for end-to-end OCR tasks involving curved text
images, the model exhibits an impressive precision rate of 47.3% and an f-score
of 45.3%. This achievement highlights the effectiveness of the customized loss
function relative to the original model, despite its reduced size. Notably, this
performance is comparable to certain end-to-end models with larger backbones.
Furthermore, an Android demo has been carefully developed to demonstrate the
model’s capabilities on mobile devices, achieving an average processing time of 433
milliseconds per image.

Keywords: OCR, end-to-end, mobile device

v

vi

Acknowledgments

First and foremost, I am grateful to the company for affording me the opportunity
to engage in this work and gain insights into the fields of Computer Vision and
machine learning. My colleagues were not only friendly but also generously offered
their assistance, which greatly facilitated my work. The knowledge I acquired from
the company has served as invaluable guidance for my future endeavors.

I extend my deepest gratitude to my supervisor, Dr. Dragos Datcu, for his in-
valuable guidance and unwavering support throughout this project. His insightful
meetings and readiness to provide creative solutions in the face of challenges were
pivotal to the success of this research. Additionally, I would like to express my
appreciation to Dr. Ir. Justin Dauwels for granting me the opportunity to be a
part of this project. I am thankful for his valuable contributions during our meet-
ings and for offering insightful revision suggestions. I would also like to extend my
thanks to Dr. David Tax for graciously accepting the invitation to join the thesis
committee.

I want to express my heartfelt gratitude to my family(including our family cat)
as well as my friends both at TU Delft and my bachelor university, SUSTech.
Their unwavering support has been instrumental throughout my journey at TU
Delft. They have consistently provided assistance with my studies and offered
fresh perspectives on life. Having them by my side has truly been a source of great
comfort and strength.

My two years at TU Delft have constituted a profoundly enriching journey.
Transitioning from a major in Physics during my Bachelor’s to Electrical Engi-
neering was not without its initial challenges and uncertainties. However, the
experience has proven to be immensely rewarding. In contrast to my studies in
Physics, which emphasized ’logical reasoning’, my time at TU Delft, particularly
during my thesis, has provided me with a deeper understanding of ’utilizing the
tools’ and the significance of effective collaboration with others.

Jingwen Dun B.Sc.
Delft, The Netherlands
2023-09-27

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 OCR . 1
1.2 The main problem . 2
1.3 thesis pipeline . 2

2 Current State of art 3
2.1 End-to-end model . 3
2.2 OCR technology . 3
2.3 OCR models . 4

2.3.1 2-stage models . 4
2.3.2 Text recognition part . 6
2.3.3 End-to-end models and paddle end-to-end model 7
2.3.4 Paddle end-to-end model . 9

3 Model threshold 13
3.1 Overall approach . 13
3.2 Backbone . 13

3.2.1 MobileNet . 13
3.2.2 MobileNetV3 . 14
3.2.3 MobileNetV3 rebuild . 14

3.3 Neck . 15
3.3.1 FPN structure . 15
3.3.2 FPN structure rebuild . 16

4 E2E algorithm 19
4.1 General . 19
4.2 Preprocess . 19
4.3 Features . 20

4.3.1 TCL . 20
4.3.2 TBO . 20
4.3.3 TDO . 21
4.3.4 TCC . 21

4.4 Postprocess . 22
4.4.1 Pivot . 22
4.4.2 CTC decoder . 23

ix

4.4.3 Restore poly . 24
4.5 Drawing . 25

5 Experimental setting 27
5.1 Deep learning platform . 27

5.1.1 Model types . 27
5.2 Hardware and version . 27
5.3 Datasets and label format . 28

5.3.1 Datasets . 28
5.3.2 PaddleOCR label format . 29

5.4 Dataset processing . 29
5.4.1 SynthText . 29
5.4.2 ICDAR2019-ArT . 29
5.4.3 ICDAR2017 . 30
5.4.4 ICDAR2015 & Total-Text 30

5.5 Image augmentation . 31
5.6 Base model and fine tuning . 31

5.6.1 Base model . 31
5.6.2 Freezing layers . 31
5.6.3 Warm up steps . 32
5.6.4 Cosine . 32
5.6.5 Fine tuning . 32
5.6.6 Ratio of datasets . 33

5.7 Loss function . 33
5.7.1 TCL loss . 33
5.7.2 TBO and TDO loss . 33
5.7.3 TCC loss . 34

6 Results 35
6.1 Evaluating parameters . 35

6.1.1 Precision . 35
6.1.2 Recall . 36
6.1.3 F-score . 37
6.1.4 Frame per second(FPS) . 37

6.2 Ablation study . 37
6.2.1 TDO map . 37
6.2.2 FPN structure . 38

6.3 Detection results . 39
6.3.1 Rectangular texts . 39
6.3.2 Curved texts . 40

6.4 End-to-end results . 40
6.4.1 Rectangular texts . 41

x

6.4.2 Curved texts . 42
6.5 Freezing layer training . 43
6.6 Comparison with the original PaddleOCR end-to-end model 43

6.6.1 FPS and size comparison . 44
6.6.2 Detection result comparison 44
6.6.3 End-to-end result comparison 44

7 Android application 47
7.1 General . 47
7.2 Model conversion . 47
7.3 original demo . 47
7.4 Code debugging method . 47
7.5 Visual Studio implementation details 48

7.5.1 Function in getting instance center line 48
7.5.2 Function in determining corresponding characters 49

7.6 C++ implementation . 49
7.6.1 Pre-process . 49
7.6.2 Inference . 50
7.6.3 Post-process . 50

7.7 Java implementation . 51
7.7.1 Transmission of data . 51
7.7.2 Interface building . 51
7.7.3 Displaying the output . 52

7.8 Performance test . 52
7.8.1 Hardware . 52
7.8.2 End-to-end performance . 52
7.8.3 Comparison to the original model 53
7.8.4 Inference time and size . 53

8 Conclusion 57
8.1 Conclusion . 57
8.2 Further insight . 57

xi

xii

List of Figures

1.1 OCR demonstration . 1

2.1 Challenging cases in OCR . 4
2.2 DB model pipeline . 7
2.3 Different feature maps of the SAST model 7
2.4 Pipeline of ABCNet . 8
2.5 Pipeline of TextDragon . 8
2.6 Pipeline of CharNet . 9
2.7 Overview of current end-to-end models 9
2.8 Paddle end-to-end model . 10
2.9 Paddle end-to-end maps: this figure shows the different feature

maps output by the head part of PaddleOCR network 11

3.1 Rebuilt MobileNetV3 structure . 15
3.2 Original FPN structure . 16
3.3 Top-down FPN structure . 17
3.4 Bottom-up and top-down FPN structure 18

4.1 maps . 20
4.2 TBO . 21
4.3 sequence . 23
4.4 append sequence . 24
4.5 CTC decoder . 24
4.6 The rearranging of the border points 25

5.1 Model Transition in the PaddlePaddle System: Models can progress
forward in the pipeline but cannot revert backward. 28

5.2 PaddleOCR annotation file format 29
5.3 ICDAR2019: inserting points for labels with different numbers of

points . 30
5.4 Warm up and Cosine decay . 32

6.1 Sample images for TDO ablation. The evaluation parameter is the
f-score. 38

6.2 Sample images for detection results. The images show different
circumstances for curved text detection 39

6.3 Sample images for detection result 41
6.4 Sample end-to-end OCR result on the ICDAR2015 dataset. 42
6.5 Sample end-to-end OCR result on the Total-text dataset. 43

xiii

7.1 The skeletonize process . 48
7.2 JNI . 52
7.3 Example results of the android demo of the end-to-end OCR model. 54
7.4 Comparison between the demo performance and the original one. . 55

xiv

List of Tables

3.1 Model comparison between MobileNet and VGG 16 [1]. 13

6.1 Ablation study for TDO. The evaluating parameter is the F-score. . 38
6.2 Ablation study for FPN structure. The evaluating parameter is

the F-score. This table compares the model performance in using
FPN structure with only top-down pat and with both top-down and
bottom-up parts, depicted as ’Full FPN’. 38

6.3 Detection result for rectangular texts. The table shows the per-
formance for experiments using different data from the SynthText,
using the ICDAR2015 dataset and using both the ICDAR2015 and
the ICDAR2017 dataset. 40

6.4 Detection result for the curved-texts. The table shows the per-
formance for experiments using different data from the Total-text
dataset and using both the Total-text and ICDAR2019 datasets. . . 40

6.5 End-to-end result for rectangular texts. The table shows the per-
formance for experiments using different data from the SynthText,
using the ICDAR2015 dataset, and using both the ICDAR2015 and
the ICDAR2017 dataset. 41

6.6 End-to-end result for curved texts. The table shows performance
for using the Total-text dataset and both the Total-text dataset and
the ICDAR2019 dataset with different ratios. 42

6.7 FPS and size comparison of our model and the original PaddleOCR
end-to-end model. 44

6.8 Comparison with the original PaddleOCR model in detection results. 44
6.9 Comparison with the original PaddleOCR model in end-to-end re-

sults. The W and G represent using weak and generic lexicons. . . . 45

xv

xvi

Introduction 1
1.1 OCR

The technology of recognizing text from images, known as OCR(Optical Charac-
ter recognition), has been a hot research topic with a long research history and
wide applications, for example automatically labeling the license plate of passing
vehicles and recognizing the texts from scanned texts. An example of OCR is
shown in figure OCR is widely utilized in the field of education, transportation
and banking. A example of applying OCR technology is the Google translator
application, which can recognize text from images in almost real-time [2].

Figure 1.1: OCR demonstration

Due to the complex nature of OCR recognition which will be introduced in
Chapter 2, most current OCR models have a size of several hundred megabytes, us-
ing relatively large backbones such as ResNet (around several hundred megabytes)
and transformers (around several hundred gigabytes). In these cases, OCR mod-
els require high-performance hardware and are executed on the server or computer
CPU. However, since OCR needs to be embedded in various devices, limiting the
size of OCR models has become a worthwhile topic of study. Speaking more ab-
stractly, trying to reduce the size of a model while minimizing the decrease in its
performance has always been a subject worth researching.

The advent of neural networks optimized for mobile CPU such as ShuffleNet,
SqueezeNet and MobileNet have shown that, even though simplifying the neu-
ral network structure may result in a slight performance loss, this loss is relatively
small and acceptable compared to the reduction in model size [3, 4, 1]. The work of
PaddleOCR works on thresholding OCR models [5], and have succeeded in thresh-
olding an OCR model from 200MB to 10MB with an acceptable performance loss
by using methods including changing backbones and other techniques including
PACT normalization and changing input resolution.

1

1.2 The main problem

Current OCR models are mostly 2-stage models, which does the OCR jobs in
several models separately. Apart from 2-stage models, end-to-end models OCR
models can also accomplish the task as the 2-stage models, where it does all the
tasks within one model. Compared to 2-stages OCR models, end-to-end OCR
models have the advantage in the better utilization of shared information, but due
to the complexity of the model, its level of research is not as extensive as 2-stage
models. In this work, we consider and test the feasibility for building small end-
to-end OCR models that can eventually run on the CPU of portable devices for
example mobile phone.

1.3 thesis pipeline

In this paper we give a thorough investigation of current OCR model algorithms
for the 2-stage and end-to-end OCR models, and will show the performance of
thresholding the end-to-end OCR model from PaddleOCR. The rest of the paper
is organized as follows. In Chapter 2, the current state of art of OCR technology is
introduced. In Chapter 3, we give insight to thresholding the model, introducing
light backbones to replace the original one and building the FPN structure aimed
for connection and feature extraction. In chapter 4, we give a thorough look to
the OCR algorithm we use in this model, both the preprocessing and postprocess-
ing steps. After that in chapter 5, we introduce the experimental settings for the
training, including the platform and hardware for training, selection of datasets
and also techniques used in training the model. After introducing the basic set-
tings, we show the result and give comprehensive analysis and comparison with
the original PaddleOCR end-to-end model in chapter 6. For the demonstration of
the model, we further implement an android demo to show its performance, and
related information is written in chapter 7. Finally, we conclude all the results in
chapter 8.

2

Current State of art 2
This chapter provides an overview of the current state of the art in OCR technol-
ogy, as well as an introduction to end-to-end models.

2.1 End-to-end model

End-to-end learning, within the realm of Artificial Intelligence (AI) and Machine
Learning (ML), is a technique wherein the model comprehensively learns all the
steps from the initial input phase to the ultimate output result. This process is
rooted in deep learning, where every distinct component is trained concurrently,
as opposed to a sequential training approach.

2.2 OCR technology

OCR(Optical character recognition) is the technology that extracts texts from
non-text media such as paper documents, scanned images, or photographs. It is
widely used in document digitization, handwritten text conversion, etc.

Although OCR has undergone extensive research for an extended period, it still
has research opportunities mainly due to the challenges of image and text variety
and computational efficiency.

Shown in Figure 2.1, in different scenes, the challenging cases in image and text
variety include:

• Image blur: blurred images cause the edges of characters to be fuzzy or
unclear, making it difficult for OCR algorithms to identify character shapes
and boundaries accurately. The blurring may also cause loss of detail or
confusion, making it difficult for OCR algorithms to segment and recognize
characters correctly.

• Illumination and chromatic aberration: the uneven illumination and chro-
matic aberration of the image may lead to shadow or variation of brightness
across the image, making OCR algorithm difficult to recognize characters.

• Irregular boundaries: if the characters are not in a line but are curved or
the bounding boxes have irregular boundaries, OCR algorithms will have
difficulty detecting bounding boxes and segmenting the characters. Moreover,
irregular borders can cause OCR algorithms to misinterpret character shapes.

3

• Various font styles: the variety in font style brings difficulties for OCR algo-
rithms to map different styles to one character in the dictionary.

• Long text: in long texts, the spacing between characters may be smaller,
and there may be no obvious separator between characters. This can cause
character segmentation errors. Although long text seems to be an easy prob-
lem to solve compared to other problems, it remains in nearly all the current
OCR algorithms.

Figure 2.1: Challenging cases in OCR

There is also a difficulty in computational efficiency. Due to algorithm charac-
teristics, the algorithm runs on the CPU instead of the GPU. This restricts the
algorithm’s efficiency in utilizing computation resources.

2.3 OCR models

Current OCR models can be divided into two types according to the number of
sub-models used for the text extraction task.

2.3.1 2-stage models

As its name shows, the two-stage model does the text extraction job separately
in two steps: text detection and text recognition. In the text detection step,
the model detects the boundary box of text, and the result is sent into the text
recognition step. The output of the text recognition step is the text on the image.

4

the The 2-stage model is the mainstream model of current OCR applications such
as Google Translator and Baidu Translator. This separate design allows each task
to focus on its optimization, and specific models best suited for each task can be
chosen separately. In addition, the text detection stage can help filter out non-
text regions in the image, thus reducing the amount of subsequent text recognition
calculations and increasing overall processing speed and efficiency.

2.3.1.1 Text detection part

Commonly used models include:

• DB(Differentiable Binarization): The DB method, short for image binariza-
tion, is tailored to convert grayscale images into binary ones. It accom-
plishes this by assessing the contrast between pixels, determining whether
they should be rendered as black or white [6]. This approach hinges on the
fundamental concept of comparing a pixel’s intensity to that of its neighbor-
ing pixels.

Moreover, the advanced iteration of the DB algorithm employs a more refined
and intelligent strategy for discerning pixel values. When integrated into the
segmentation network for text detection, the DB module proves invaluable.
Through joint optimization with this module, the segmentation network gains
the capacity to dynamically establish the binarization threshold. This not
only streamlines post-processing but also elevates the overall performance of
text detection.

• EAST(Efficient and Accurate Scene Text Detector): EAST presents a
streamlined and robust approach for swiftly and accurately detecting text in
real-world scenes. This method operates directly on full images, enabling the
direct prediction of words or text lines with diverse orientations and quadri-
lateral shapes. It achieves this without the need for superfluous intermediary
processes like candidate aggregation and word partitioning. Remarkably, this
entire task is accomplished using a singular neural network [7].

• SAST(Single-shot Arbitrarily-Shaped Text detector): SAST stands out as
a text detection method that excels in identifying text of various shapes,
including both arbitrary and rectangular forms. When compared to alterna-
tive text detection approaches, SAST demonstrates superior performance in
discerning adjacent and lengthy texts [8].

In this model, after extracting image features through stem networks, four
crucial maps are learned as part of a multi-task framework. These encom-
pass the text center line (TCL), text border offset (TBO), text center offset
(TCO), and text vertex offset (TVO). The TCL map represents a condensed

5

version of the text region, serving as a one-channel segmentation map to dis-
tinguish text from non-text areas. The remaining label maps, namely TCO,
TVO, and TBO, encode per-pixel offsets related to the pixels in the TCL
map. Specifically, the TCO map captures the offset between pixels in the
TCL map and the center of the bounding box, while TVO represents the
offset between the four vertices of the bounding box and the pixels in the
TCL map.

To illustrate this process, Figure 2.3 depicts the Label Generation stage: (a)
The annotation of the text center region for a curved text, highlighted in red;
(b) The generation of the TBO map; (c) The four vertices of the bounding
box denoted as red stars; and (d) The center point of the bounding box also
indicated as a red star, which the TVO and TCO maps reference.

2.3.2 Text recognition part

According to Jeonghun et al., the algorithms CRNN and Rosetta have the best
overall performance considering the accuracy and operating time among all the
word recognition algorithms [9].

• CRNN: the CRNN (Convolutional Recurrent Neural Network) architecture
comprises three essential components. Firstly, the convolutional layers ex-
tract a feature sequence from the input image using a standard CNN model.
Secondly, the recurrent layers employ the Long Short-Term Memory (LSTM)
structure to predict a label distribution for each frame, which is particularly
effective for processing sequential data. Finally, the transcription layer, in-
tegrated with the Connectionist Temporal Classification (CTC) layer, trans-
lates the per-frame predictions into the final label sequence. The CTC layer
plays a crucial role in accurately transcribing sequences of varying lengths.
By seamlessly integrating these three components, CRNN is capable of ef-
ficiently processing sequential data like text, making it a powerful tool for
OCR [10].

• Rosetta: Rosetta is a comprehensive system designed for large-scale image
text detection and recognition. In its recognition module, two distinct mod-
els are employed. The first, known as the CHAR Model (Character Sequence
Encoding Model), comprises a sequence of convolutional layers followed by k
independent multiclass classification heads. Each classification head predicts
a character, including a NULL character, at a specific position, assuming uni-
form image dimensions (32×100). This model employs k parallel losses dur-
ing training. The second model is the CTC Model (Connectionist Temporal
Classification Model), which is fully convolutional and adopts a ResNet-18
architecture as its convolutional backbone. This model directly outputs a

6

character sequence and utilizes a sequence-to-sequence CTC loss for train-
ing. Notably, during inference, the CTC model exhibits a 6% improvement
in speed compared to the CHAR model [11].

Figure 2.2: DB model pipeline

Figure 2.3: Different feature maps of the SAST model

2.3.3 End-to-end models and paddle end-to-end model

2.3.3.1 End-to-end models

End-to-end models do the text extraction task in one model. Figure 2.7 shows the
current end-to-end models with a related structure to the PaddleOCR end-to-end
model. Within the GT (ground-truth) enclosure, annotations are denoted by ’W’
and ’C,’ signifying word-level and character-level distinctions. The symbols ’H’,
’Q,’ and ’A’ indicate the method’s capabilities in identifying horizontally aligned,
quadrilateral, and freely contoured text, respectively.

In Michal et al.’s model [12], text region proposals are initiated through a
Region Proposal Network. Regions exhibiting substantial textual confidence are
subsequently transformed into variable-width feature tensors using bilinear sam-
pling. Ultimately, each part is linked to a character sequence or dismissed as
non-textual. The ABCNet proposed by Liu et al. [13] has a similar structure. The

7

model can recognize curved-shape text instances using cubic Bezier curves and the
Bezier Align technique, as shown in figure 2.4.

Figure 2.4: Pipeline of ABCNet

Besides being an end-to-end model, the TextDragon model from Feng et al.
[14, 15]. The CharNet model from Xing et al. is more similar to the PaddleOCR
model, where they output several features from one network, using the advantage
of the end-to-end model of sharing information between different parts. In the
TextDragon model, the output feature from the convolutional neural network con-
tains information for the bounding box regression value for predicting the location
of bounding boxes and center line segmentation for predicting the center line of
text instances. The bounding boxes are grouped to depict the ROI region and
finally put into the CTC decoder for recognition; the pipeline is shown in figure
2.5.

Figure 2.5: Pipeline of TextDragon

In the model from Xing et al., the output from the convolutional neural network
contains two branches working in parallel: the character branch and the detection
branch. The character branch follows the same schedule as the EAST method,
and the detection branch first detects the bounding boxes for the characters, then
groups them to be the is. This model is not limited by RoI cropping and pooling,
and by using character as the detection unit, the model is naturally suitable for
recognizing curved texts.

8

Figure 2.6: Pipeline of CharNet

Figure 2.7: Overview of current end-to-end models

2.3.4 Paddle end-to-end model

The paddle end-to-end model is currently the only end-to-end model that is com-
mercially available and is used in license plate recognition. Compared to other
end-to-end models, the paddle end-to-end models consider the size and computa-
tion time and make more optimization to the computation process. Moreover, the
algorithm of the paddle end-to-end model has the following advantages:

• Free of POI(point of interest): The end-to-end model is free of POI operation.
Some end-to-end models first detect the text region and then recognize it
based on the region; this operation for narrowing down the region will cause
complex calculations that will cost computing resources and time. However,
the PaddleOCR end-to-end model is free of POI operations, meaning less
time to run the model.

• Free of character-level annotation: Some of the end-to-end models, for ex-
ample, the TextDragon model, require both word and character-level an-
notations for training, which makes training difficult because there aren’t
enough OCR datasets with character-level annotations, and those character-
level annotations are usually not so accurate. Since the PaddleOCR end-
to-end model only needs word-level annotation for training, it avoids such

9

problems in finding suitable datasets.

The structure of the paddle end-to-end model is shown in Figure 2.8. For a given
image, the image matrix with the size of height× weight× 3, where the 3 repre-
sent the 3 RGB channel , first go into the stem network, consisting of backbone,
neck, and head part. In the original end-to-end model, the backbone is a standard
ResNet50 model, the neck part is FPN structure, and the output of the head part
is the visual features, consisting of four parts: the TCL(text center line) showing
the center line of instances, text border offset (TBO) that gives information about
the bounding boxes, text direction offset (TDO) indicating knowledge of the di-
rection of text instances and text character classification map (TCC) which is the
information for the text strings. Since the features are only raw information of
OCR, the features go into the detection branch and PG-CTC decoder to give the
final result for detecting bounding boxes and recognizing characters.

The detection branch and the related maps are inherited from the SAST algo-
rithm from the two-stage model, and the PG-CTC decoder and associated maps
are mainly inherited from the CRNN algorithm from the two-stage model, which
will be further explained in Chapter 4.

In this project, to threshold the PaddleOCR model and make it able to run
on a portable device, eventually, we will change its backbone and neck part in the
stem network, which will be further explained in Chapter 3.

Figure 2.8: Paddle end-to-end model

10

Figure 2.9: Paddle end-to-end maps: this figure shows the different feature maps output
by the head part of PaddleOCR network

11

12

Model threshold 3
3.1 Overall approach

The stem network of the model is illustrated in Figure 2.8. The emphasis of
the model is on minimizing the size of the backbone and neck components while
keeping the head part of the network unchanged. This chapter explains the original
structure and the rationale behind reconstructing the backbone and neck segments.

3.2 Backbone

The original backbone is ResNet-50, which has a size of approximately 100 MB [16].
The backbone is slated to be substituted to optimize the model with a customized
MobileNetV3 variant, which is considerably more compact at around 5 MB.

3.2.1 MobileNet

MobileNet network was proposed by the Google team in 2017, focusing on
lightweight CNN networks for mobile or embedded devices. Compared to tra-
ditional convolutional neural networks, MobileNet significantly reduces model pa-
rameters and computational requirements while achieving a slight decrease in ac-
curacy [1]. Compared to the VGG network, the ImageNet accuracy of MobileNet
only decreased by 0.9% but is 32 times smaller and 27 times less compute intensive.
Table 3.1 compares MobileNet and VGG 16.

Model ImageNet Accuracy Million Mult-Adds Million Parameters

1.0 MobileNet-224 70.6% 569 4.2
GoogleNet 69.8% 1550 6.8
VGG 16 71.5% 15300 138

Table 3.1: Model comparison between MobileNet and VGG 16 [1].

Compared to traditional convolutional neural networks, MobileNet mainly uti-
lized depthwise separable convolution to threshold the size. Compared to tra-
ditional convolutional neural networks, depthwise separable convolution has the
following advantages [17]:

13

• Reducing parameters: compared to traditional convolution process, depth-
wise separable convolution separates the convolution into two parts: The
depthwise convolution and the pointwise convolution, and this reduces the
number of parameters.

• Reducing calculation: since the convolution is separated into two parts in
depthwise separable convolution, and each part is much smaller than the
traditional convolution, the overall calculation is thus reduced.

• Light weight feature extraction: since MobileNet is designed for circum-
stances with limited computation resources, the depthwise separable convo-
lution enables the MobileNet models to reduce model size while maintaining
high recognition accuracy significantly

3.2.2 MobileNetV3

MobileNetV3 is a convolutional neural network designed to suit mobile phone
CPUs and is the latest MobileNet model [18]. Compared with previous MobileNet
models. MobileNetV3 is optimized in several aspects:

• Adding SE(Squeeze and excitation) module: The SE module enhances the
feature representation capabilities of deep convolutional neural networks
(CNN)

• Redesign the activation function: in MobileNetV3 the activation function
”Hard Swish” is introduced:

HardSwish(x) = x ∗ReLU6(x+ 3)/6 (3.1)

• Introducing NAS(Neural Architecture Search) algorithm: when applied to
MobileNetV3, it contributes to its success by creating lightweight, efficient,
and high-performing models that are well-suited for deployment on mobile
devices and other edge computing scenarios.

3.2.3 MobileNetV3 rebuild

To align with the specifications of the original end-to-end model, the input image
dimensions are set to 512 × 512 × 3 (width × height × channel). Consequently,
adjustments are made to the input size of the MobileNetV3 network to match
the new image input size. This alteration leads to changes in both the input and
output matrix sizes for each stage.

Furthermore, to seamlessly integrate with the FPN (neck) component, we now
output the results from every stage of the MobileNetV3 network instead of solely
passing along the final stage. For this implementation, we have opted for the

14

MobileNetV3 large model with a size factor of 0.5, resulting in differences in the
stages compared to the original model.

The reconstructed structure is illustrated in Figure 3.1. The restructured Mo-
bileNetV3 model consists of six stages: the input stage, the stage following con-
volution, and subsequent sequential blocks. Each sequential block comprises a
convolution layer, a batch normalization layer, and an activation function. These
six stages are then fed into the next segment of the stem network: the neck part.

Figure 3.1: Rebuilt MobileNetV3 structure

3.3 Neck

3.3.1 FPN structure

The FPN structure, also known as Feature Pyramid Network structure, is an
architecture aiming for better image feature extraction and classification, proposed
by Tsung-Yi Lin et al [19]. The difference between FPN structure and other
feature extraction is its ability to combine the features of all the extraction steps
with accuracy and speed in mind.

The original FPN (Feature Pyramid Network) structure proposed by Tsung-Yi
Lin et al. is depicted in the image labeled 3.2. This architecture comprises two
key components: the bottom-up and top-down pathways.

The bottom-up pathway builds the foundation of the ResNet network structure.
Features are successively extracted from stages C2 through C5, and the output size
is halved at each stage. Each stage yields an output feature matrix.

Moving to the top-down pathway, it initiates from the output matrix of stage
C5. This matrix undergoes upsampling using the nearest neighbor method, in-

15

creasing its dimensions to match the size of the output matrix of stage C4. These
matrices are then merged together. This process is repeated for all adjacent out-
puts in the bottom-up pathway: upsample the smaller one to match the size and
merge them together. Subsequently, the outputs of the top-down pathway are
directed into the same head part for further processing.

The advantage of FPN is that it simultaneously preserves the feature of stages
with different semantic values instead of keeping only the semantic value of the
final stage for classification.

Figure 3.2: Original FPN structure

3.3.2 FPN structure rebuild

The neck component in the end-to-end model adopts the FPN structure, serving
as both a feature extractor and a connector between the backbone and the stem
network’s neck part. The dimensions of the FPN neck are comparable to those of
the MobileNetV3 portion in the backbone. Therefore, reducing the size of the FPN

16

section would lead to an overall reduction in the model’s size. With this in mind,
we propose two types of FPN structures: one with only the top-down portion and
another with both bottom-up and top-down components. As the required input
size for the head part is (128×128×128), the output of the FPN part must adhere
to this size specification.

3.3.2.1 Only top-down

Learning from the FPN part of the DB algorithm model, this design leverages
the output of the preceding backbone network as the output for the bottom-up
component of the FPN structure while constructing only the top-down segment.
This structure is visually represented in Figure 3.3. Consequently, the overall
model size with this FPN configuration is approximately 9MB.

As depicted in the figure, this structure adopts the ’C5 to C2’ stages from the
MobileNetV3 output. Starting from the C5 stage, it undergoes an up-sampling
process followed by a convolution operation combined with the previous stage, C4.
This operation pipeline of up-sampling, convolution, and addition is repeated for
the upper layers, culminating in the final layer, C2. The resulting output size for
the head part is 128× 128× 128, following the height, width, and depth sequence.

Figure 3.3: Top-down FPN structure

17

3.3.2.2 Bottom-up and top-down

Although focusing on reducing the structure of the FPN can significantly reduce
the model’s size, the impact on the final accuracy is not negligible. Therefore, we
designed another FPN structure using the output of the backbone for both the
bottom-up and top-down parts, shown in figure 3.4.

In Figure 3.4, we can see that the bottom-up component makes use of the C2 to
C0 stages from the MobileNetV3 output. Starting with the C2 stage, it undergoes
down-sampling, followed by batch normalization, and is then integrated with the
C1 layer. This process is repeated for the upper layers. The top-down part remains
unchanged from the previous section.

Figure 3.4: Bottom-up and top-down FPN structure

18

E2E algorithm 4
4.1 General

To attain a more profound comprehension of the algorithm, I meticulously scruti-
nized the codebase, and a comprehensive elucidation of the processing intricacies
will be expounded upon in the ensuing chapter.

4.2 Preprocess

In the preprocessing, the image is processed with the following procedures:

• Image Resize: to enhance computational efficiency and ensure that the input
image is of manageable size, the maximum side length of the input image is
capped at 512. This value corresponds to the preferred input side length for
the MobileNetV3 network. The image is resized accordingly while preserving
the aspect ratio of its height and width. Additionally, the maximum stride
is designated as 128. Consequently, both the height and width are rounded
up to the nearest multiple of this maximum stride value. This adjustment
facilitates seamless processing within the network, preventing potential issues
associated with non-divisibility during upsampling convolutions.

• Image Normalization: this process involves four essential steps:

1.Mean Subtraction: The pixel values of each channel are subtracted by the
mean value of their respective channels. This operation centers the distribu-
tion of pixel values around zero mean;

2.Standard Deviation Normalization: Subsequently, the pixel values of each
channel are divided by the standard deviation of that channel. This step
ensures unit variance normalization.

3.Scaling: This step is employed to transform pixel values from the [0, 255]
range to the [0, 1] range. Scaling the pixel values to [0, 1] aligns them with
the range commonly utilized in neural networks.

4.Dimension Order: This parameter indicates the arrangement of dimensions
within the image.

19

4.3 Features

There are four features output by : TCL(text center line),TBO(text boundary
offset), TDO(text direction offset), TCC(text character classification). The map
illustration with the original image is shown in figure 4.1.

Figure 4.1: maps

4.3.1 TCL

The TCL(text center line) gives a rough sketch of the center line of text instances.
To be specific the map is with values ranging from 0 to 1 which indicate the
probability that there is a center line. To be specific the lines given in TCL have
width more than 1 pixel and need further treatment.

4.3.2 TBO

The TBO is the offset of the center point and the upper and lower lines of bound-
ing boxes, as seen in figure 4.2, the offset is the vector offset between P0 and
Pupper, Plower. For the points with value 0 in TCL, the value of corresponding
point is set to 0, 0, 0, 0 in TBO.

Next we explain how is the offsets defined. For a point P0 in the center line
with a partial bounding box with vertices V1, V2, V3, V4(the points are arranged in

20

clockwise starting from the top left corner), we first determine the intersection
points P1, P2 of the line through P0: slope of the line is the average slope of line
V1V2 and line V4V3:

slopeP0 =
slopeV1V2 + slopeV4V3

2
(4.1)

and combining the slope and the coordinate of P0 the line can be determined.
After that, we calculate the intersection point of the line with line V1V4 and line
V2V3, and name the intersection points as P1 and P2 respectively.

Since P0 in line P1P2 is at the same relative position as Pupper in line V1V2 and
Plower in line line V4V3, we can write the equation:

P0 − P1

P2 − P1

=
Pupper − V1

V2 − V1

=
Plower − V4

V3 − V4

(4.2)

In this way Pupper and Plower can be determined, and the offset value is the location
difference between them and the point P0.

Figure 4.2: TBO

4.3.3 TDO

The TDO(text direction offset) suggests the direction of the text. Each point
is given a vector x, y as the direction vector’s x and y weight. The It is worth
notifying that, the vector is not normalized, because in the actual calculation we
only need the ratio of y and x.

4.3.4 TCC

The TCC give the probability of the character for pixels in the feature map. For
each pixel, a probability vector of 1 × 37 is given, where 37 is the length of the
dictionary of English OCR, including 26 letters, 10 Arabic numerals, and one
background class.

21

4.4 Postprocess

The postprocess consists of two parts. In the first part, it generate the center line
and the corresponding text strings, namely pivot; in the second part, it generate
the bounding boxes based on the center lines generated in the first step, namely
restore poly.

4.4.1 Pivot

4.4.1.1 Processing TCL

Since the TCL is just a rough result feature map with number in the range of [0,1],
it first binarized with a threshold value of 0.5. After that, the map is skeletonized,
meaning that the width of the lines are eroded to be 1 pixel. Here I optimized
the algorithm using the gau algorithm instead of the zhang algorithm, to get a
clearer skeleton of the line map. Then the number of lines(also known as the
number of text instances) is calculated using the function ConnectedComponets:
this function returns the number of instances and the label map of instances. For
example if there are 2 instances, in the label map the background points will be
0, and the points in the first instance will be 1, the points in the second instance
will be 2, the returned number will be 3.

4.4.1.2 Generate instance coordinates and its direction

The TDO maps are initially transposed from dimensions 2×h×w to h×w× 2 to
facilitate subsequent calculations. Pixel coordinates corresponding to the instance
centerlines are then generated. For each instance centerline, the corresponding
vectors from the TBO map are computed.

Subsequently, to establish the sequence of pixels along each instance centerline,
we employ the following method:

As depicted in (a) in Figure 4.3, we compute the average direction of the TBO
vectors and determine the sequence of points along the instance centerline by
comparing the projections of the point vectors onto the TBO vectors. However, as
illustrated in (b), if the centerline is lengthy and contains turning points with large
angles, the sequencing algorithm may result in points appearing disorderly, even
though the sequence of most points would be correct. Therefore, for centerlines
with more than 16 points, the sequence is recalculated by dividing the line into two
parts—referred to as the ’left’ and ’right’ segments in the image. The sequence is
then determined separately for each part and subsequently combined.

In the next step, the center line is averagely cut into 3 parts, as seen in figure
4.4 (a), and the following parameters are calculated for the left and right parts:

• Average direction: the average TDO vector of the part.

22

Figure 4.3: sequence

• Average length: the average length of TDO vector of the part.

• Start point: the point on the two sides of the center line.

• Step: average direction/average length.

As there might be points excluded during the ’skeletonize’ phase that actually
pertain to the centerline, this step is intended to supplement those omitted
points on either side. As illustrated in Figure 4.4, once the average direction
of the left and right segments is established, points are appended in both the
negative left average and right average directions. The step size has already
been defined, commencing from the endpoints of the centerline.

With these procedures followed, precise centerlines of the text instances are
now ascertained with accurate sequencing. The subsequent step involves
identifying the character instances based on this centerline, employing the
CTC decoder.

4.4.2 CTC decoder

The characters are predicted based on the pixels along the centerline by comparing
the probability values in the corresponding pixels of the TCC map. Background
pixels are assigned a value of 0, while the remaining values represent characters.
Connected characters that repeat are consolidated into a single character and
separated by the background class. Ultimately, the numbers are clustered together
to align with the characters in the dictionary, forming the output string.

23

Figure 4.4: append sequence

Figure 4.5: CTC decoder

4.4.3 Restore poly

In this step, the bounding boxes are determined based on the text centerline
established in the preceding stage.

Although the centerline points persist as an extensive list from the prior step,
only a select few key points are essential. Therefore, for the centerline, only seven
points are retained: the points flanking either side, along with five equidistantly
spaced points in between. In the case of rectangular-shaped texts, solely the points
on the two sides are preserved.

For every point within the chosen list, the corresponding border point offset is

24

extracted from the TBO map. By adding this offset to the point, the corresponding
upper and lower border points can be ascertained. Since we require the bounding
boxes to be drawn in a specific sequence (clockwise), the points are reorganized
accordingly. This resequencing is illustrated in Figure 4.6, where (a) depicts the
initial point sequence, while (b) displays the resequenced points in a clockwise
manner.

Figure 4.6: The rearranging of the border points

4.5 Drawing

The output comprises both the coordinates for the bounding boxes and the corre-
sponding instance text string. These bounding boxes, along with their associated
texts, are visualized on the image using the draw function provided by OpenCV.
In each instance, the text is positioned at the upper-left corner of its respective
bounding box.

25

26

Experimental setting 5
5.1 Deep learning platform

This project is developed on the PaddlePaddle deep learning platform. Compared
to other prominent platforms like PyTorch, PaddlePaddle offers similar functionali-
ties, including robust support for industrial-grade applications and the capacity for
large-scale data processing. Additionally, PaddlePaddle excels in providing strong
support for dynamic graph construction during training, enhancing its flexibility
and adaptability in various scenarios.

5.1.1 Model types

Three different types of models serve various purposes:

• Inference model: this model is utilized for inference through the Paddle in-
ference engine, enabling the generation of output results.

• Trained model, pre-trained model: these models serve as checkpoint models
during training. Each model comprises three files, denoted by *.pdparams,
*.pdopt, and *.states. These files store the model’s parameters, primarily
used for model evaluation and continuous training.

• Nb model: this model is optimized using the Paddle-Lite framework, making
it suitable for deployment in mobile-side scenarios (Paddle-Lite is required
for nb model deployment).

The three types of models are in distinct formats, each requiring a specific
engine provided by PaddlePaddle to function. Once trained with datasets, the
Trained model can be converted to an Inference model, and the Inference model
can further be transformed into an Nb model. However, it’s important to note
that these conversions are unidirectional and cannot be reversed, as illustrated in
Figure 5.1.

5.2 Hardware and version

The hardware used for training the model includes Quadro RTX 6000 *3 and
Quadro RTX 8000*3. The CPU utilized is the Intel(R) Xeon(R) Gold 6226 CPU
@ 2.70GHz.

27

Figure 5.1: Model Transition in the PaddlePaddle System: Models can progress forward
in the pipeline but cannot revert backward.

The project is based on Paddlepaddle-gpu 2.5.1, CUDA10.2, and python3.8 for
the platform and software version.

5.3 Datasets and label format

5.3.1 Datasets

While OCR is well-researched, real-world scene images suitable for training OCR
models are relatively limited. Therefore, a combination of synthetic datasets and
real scene datasets are employed for training. Generally, two types of databases are
used, each aiming to train the model for rectangular and curved text respectively:
those with rectangular bounding boxes and those with curved/irregular bounding
boxes. According to the official documentation of PaddleOCR, recognizing images
with English text instances enclosed in rectangular bounding boxes requires tens of
thousands of images for accurate recognition and thousands of images for effective
detection.

For rectangular bounding boxes, the utilized database is as follows:

• SynthText: This dataset encompasses 800 thousand images, comprising
approximately 8 million synthetic word instances. Each text instance is
meticulously annotated with its corresponding text-string and word-level and
character-level bounding boxes [20]. While many images share the same back-
ground, the word instances vary in content and style.

• ICDAR2015: This dataset comprises 1500 images featuring real scene texts
captured using wearable devices. The provided text instances are outlined
by rectangular bounding boxes accompanied by coordinate and character
information. Lexicons of words, namely ’strong’, ’weak’, and ’general’, are
also provided. It’s worth noting that the images in this dataset tend to
be more challenging, often characterized by blurriness and smaller text size,
which typically leads to lower OCR performance [21].

• ICDAR2017: This dataset encompasses 7200 images in the training set
and 1800 images in the test set [22]. The images predominantly feature real
scenes, with word instances of medium size and in multiple languages.

For curved or irregular bounding boxes, the utilized database is as follows:

28

• Total-text: This dataset comprises 1500 images featuring texts in real-world
scenes. The texts exhibit arbitrary shapes, and coordinate information along
with character details are provided [23]. Labels are assigned at the word
level, with word instances typically larger than the norm.

• ICDAR2019-ArT: This dataset encompasses approximately 5500 images
in the training set and around 1000 images in the test set, showcasing text
instances in multiple languages. Labels are provided at the word level, along
with information about the language of each word.

5.3.2 PaddleOCR label format

To prepare the datasets for training, all label files from the datasets above are
converted to the required data format for PaddleOCR, which is in text form:

Figure 5.2: PaddleOCR annotation file format

5.4 Dataset processing

This section shows the processing methods for the images and the dataset’s label
file.

5.4.1 SynthText

Actual training has shown that low-resolution images adversely affect OCR perfor-
mance. Thus, images in the SynthText dataset with a resolution below 300× 300
are omitted. The label file is available in Matlab’s .mat format. Furthermore, it’s
worth noting that many images in the dataset share repeated backgrounds, which
are selectively avoided during training.

5.4.2 ICDAR2019-ArT

The label file of the ICDAR2019-ArT dataset is provided in JSON format. The
label file contains information about each image’s instance, language type, co-
ordinates, and illegibility. To prepare the data for PaddleOCR, words with the
language type ’Latin’ are selected and transformed into the PaddleOCR training
format.

An additional step is required to enable PaddleOCR to recognize the label file.
A specific set of 14 points is needed for curved texts, arranged in clockwise order
starting from the left upper point. However, in the ICDAR2019 dataset, words

29

are given with either 5, 6, 8, 10, or 12-point bounding boxes. For bounding boxes
with only 5 points, determining where to insert points is challenging, and since
they represent a small portion of the dataset, these instances are discarded.

For other types of bounding boxes, the process of inserting points is illustrated
in Figure 5.3. In this figure, the methods for inserting points in bounding boxes
with 6, 8, 10, and 12 points are depicted in (a), (b), (c), and (d), respectively. The
green points represent the original points, and the blue points are the inserted ones
evenly distributed between the nearby original points.

Figure 5.3: ICDAR2019: inserting points for labels with different numbers of points

5.4.3 ICDAR2017

The label files for the ICDAR2017 dataset are organized within a folder, with each
TXT file corresponding to an image. These TXT files contain information such
as bounding box coordinates, word transcriptions, and language labels. Specifi-
cally, only words labeled with the ’Latin’ language are processed and adapted for
training.

5.4.4 ICDAR2015 & Total-Text

The PaddleOCR format label files are already provided by PaddleOCR officially,
so they are directly used in training without further processing.

30

5.5 Image augmentation

Due to the lack of data and to make the model more robust, the images are
augmented in the following ways:

• Blur

• Jitter

• Gaussian noise

• random crop

• Disturbance method

Each disturbance method is selected with 40% of the total batch size during the
training process.

5.6 Base model and fine tuning

While real scene data tends to yield superior results compared to synthetic data,
it’s worth noting that, based on previous OCR studies, achieving a satisfactory
model performance for recognition requires hundreds of thousands of images. Un-
fortunately, the availability of real-scene data is limited.

Additionally, if all the data were combined into a single training set, the syn-
thetic data would disproportionately influence the results, given its significantly
larger proportion than real-scene data. To address this, our training approach
involves initially training a base model using the synthetic dataset, followed by
fine-tuning this base model using the real-scene data.

5.6.1 Base model

In the base model training, 10,000 images and 20,000 images in the SynthText
dataset are used respectively, and parameters are set to be:

• Batch Size: Given the substantial volume of data, the batch size is set at 32,
representing the maximum size compatible with GPU processing capabilities.

• Warm-up Epoch: The warm-up epoch is set to 10 for pretraining.

• Learning rate: the learning rate is 0.001.

5.6.2 Freezing layers

Layer freezing involves keeping the weights of trained model layers unchanged
during reuse in subsequent downstream tasks. These frozen layers remain static.
In the training process, the head layers are frozen after a few training epochs to
enhance performance [24].

31

5.6.3 Warm up steps

A ”warm-up step” in machine learning involves initially using a lower learning
rate that gradually increases over training iterations or epochs, as shown in the
left part of figure 5.4. This helps the model adapt to the data more steadily before
higher learning rates are applied, leading to more stable and efficient training.

5.6.4 Cosine

In the training phase, the learning rate is configured to follow a Cosine decay
pattern, as illustrated in Figure 5.4. This decay scheme adheres to the following
functional behavior:

• Initially, it slows down the rate of decrease.

• Gradually, it accelerates the rate of decrease.

• Ultimately, it approaches the final value.

Compared to other decay methods like linear decay, which reduces the learning
rate at a constant rate, and exponential decay, where the learning rate decreases
exponentially with the number of iterations, Cosine decay provides a unique ad-
vantage. It ensures a smooth transition from the initial to the final learning rate
values. This gradual shift helps prevent sudden spikes or drops in the learning
rate, ultimately contributing to a more stable and robust training process.

Figure 5.4: Warm up and Cosine decay

5.6.5 Fine tuning

During the fine-tuning phase, the model undergoes training with a reduced learning
rate and increased epochs. This phase involves the utilization of actual datasets
capturing real-world scenes.

• Batch size: given the substantial volume of data, a batch size of 14 is em-
ployed, as it has demonstrated optimal performance in training the Pad-
dleOCR model.

32

• Warm-up epoch: the warm-up epoch is set to 50, facilitating a gradual in-
crease in the learning rate.

• Learning rate: the learning rate is 0.0005.

5.6.6 Ratio of datasets

PaddlePaddle enables the utilization of two distinct datasets in the training pro-
cess, along with the flexibility to set the proportion of images used in each dataset.
During the fine-tuning step, various dataset ratios are assessed to identify the con-
figuration that yields the highest performance.

5.7 Loss function

The loss function is set as:

L = λ1Ltcl + λ2Ltbo + λ3Ltdo + λ4Ltcc (5.1)

In this function, Ltcl,Ltbo,Ltdo,Ltcc, represent the loss of TCL, TBO, TDO and
TCC maps. The loss weights are set as 1.0, 1.0, 1.0, 5.0 respectively, according to
the original PaddleOCR end-to-end model.

5.7.1 TCL loss

For the TCL, the Dice loss is applied [25]. The full name of Dice Loss is the
Sørensen-Dice coefficient, also known as the F1 score. It is defined as follows:

DiceLoss = 1− 2× Intersection(A,B)

Cardinality (A) + Cardinality(B)
(5.2)

In this equation, A is the binarized version of the model’s prediction result,
and B is the binarized version of the real label. Intersection(A,B) is the size of
the intersection of A and B, and Cardinality (A) and Cardinality (B) is the size
of A and B respectively.

The value of Dice Loss ranges from 0 to 1. The closer the value is to 1, the
more similar the model’s prediction results are to the real labels

5.7.2 TBO and TDO loss

For the TBO and TDO map, the smooth L1 loss is adapted. For a batch size of
N , the loss is defined as:

ℓ(x, y) = L = {l1, . . . , lN}T (5.3)

33

where

ln =

{
0.5 (xn − yn)

2 / beta , if |xn − yn| < beta

|xn − yn| − 0.5 ∗ beta , otherwise
(5.4)

In this equation, β determines the threshold at which the transition between L1 and
L2 loss occurs. It exhibits a gradual increase for minor errors while demonstrating
a linear growth rate for more significant errors.

5.7.3 TCC loss

As stated in chapter 4, the TCC maps are maps of 37 characters. The point
gathering operation aims to format the TCC map as follows:

Pπ = gather (TCC, π) (5.5)

In this equation, π = {p1, p2, . . . , pN} is the center point sequence, with a length
N , and pi = (xi, yi) is the point coordinate. On the left of the equation, Pπ is the
gathered sequence with the size of N × 37.

For an image with M text instances, the TCC loss is defined as:

LTCC =
M∑
i=1

CTC loss (Pπi
, Li) (5.6)

Where CTC loss is the classic CTC loss, and {π1, π2, . . . , πM} are the center
point coordinate sequences of the M text instances, and {L1, L2, . . . , LM} are the
corresponding transcript labels.

34

Results 6
6.1 Evaluating parameters

Our evaluation considers the following key parameters: precision, recall, F-score,
and FPS (frames per second). We will comprehensively compare the performance
between the threshold end-to-end and original models with a ResNet50 backbone.

6.1.1 Precision

In general definition, precision in machine learning is defined as:

Precision =
TP

TP + FP
(6.1)

where:

• TP (True Positives): The count of samples correctly identified as positive
categories among the positive category samples.

• FP (False Positives): The count of negative category samples incorrectly
identified as positive categories.

n the precision evaluation of the end-to-end OCR model, two precision values will
be assessed: detection precision and end-to-end precision. These will be discussed
below.

6.1.1.1 Detection precision

In OCR, detection refers to identifying the bounding boxes of text in images. For
both arbitrary-shaped and rectangular texts, true positives in detection refer to
the successful identification of coordinates, be they 4 points or 14 points, that
correspond closely to the actual bounding boxes. The ’(TP + FP)’ represents the
total number of all detected bounding boxes.

In the evaluation code file Deteval.py, the detected number of bounding
boxes is referred to as total num text, while true positives are denoted by
global accumulative precision. Detection precision is defined as:

detection precision =
global accumulative precision

total num det
(6.2)

35

6.1.1.2 end-to-end precision

OCR includes both detection and recognition processes. Recognition involves iden-
tifying the characters within the detected bounding boxes. In end-to-end precision,
true positives pertain to instances with correct words and bounding boxes and are
denoted as hit str count.

As end-to-end precision is a global measure, the variable ’(TP + FP)’ still
represents the number of detected bounding boxes, labeled as total num det.
Consequently, end-to-end precision is defined as:

end-to-end precision =
hit str count

total num det
(6.3)

6.1.2 Recall

In general definition, recall in machine learning is defined as:

Recall =
TP

TP + FN
(6.4)

, where:

• TP (True Positives): The number of samples that are actually positive cate-
gories are correctly identified as positive categories.

• FN (False Negatives): The number of samples that are positive categories
that are incorrectly identified as negative categories.

6.1.2.1 Detection recall

For OCR detection, the (TP+FN) variable is defined as the number of all the
bounding boxes, named total num gt, where ’gt’ refers to the ground truth,
and true positives are still the number of correctly detected bounding boxes
global accumulative precision. The detection recall is defined as:

detection recall =
global accumulative precision

total num gt
(6.5)

6.1.2.2 End-to-end recall

Similarly, the TP value in end-to-end recall is same as the number of correctly
recognized instances hit str count as defined in 6.1.1.2, and the end-to-end recall
is defined as:

end-to-end recall =
hit str count

total num gt
(6.6)

36

6.1.3 F-score

F-score is defined as:

F − score = 2 ∗ precision ∗ recall
precision+ recall

(6.7)

F-score is used to show a balanced result between precision and recall. There
is a trade-off between precision and recall because they correspond to different
prediction targets, and optimizing one metric may affect the performance of the
other. It is necessary to decide whether to pay more attention to precision or
recall according to specific application scenarios and needs. For example, the
recall rate may be more critical in an OCR job for identifying disease names in
medical reports since you do not want to miss important conditions. As a result,
the precision will decrease because the system may identify text that isn’t a disease
name as a disease.

6.1.4 Frame per second(FPS)

In the evaluation process, the FPS is defined as the number of images the OCR
model can process in one second. Higher FPS means the system can process images
faster, thus improving overall recognition efficiency.

6.2 Ablation study

6.2.1 TDO map

In this ablation study, we aim to assess the effectiveness of the TDO feature map,
which is employed for discerning the text direction, particularly in non-traditional
reading sequences, and for enhancing the center line. The experiment is conducted
on the test sets of Total-Text and ICDAR2015, and the results are presented in
Table 6.1. The evaluation metric used is the end-to-end F-score. For the ICDAR
2015 test set, a generic lexicon is utilized.

An example illustrating the impact of using TDO is shown in Figure 6.1. In this
image, (a) displays the result utilizing the TDO map, while (b) presents the result
without it. Evidently, without the TDO map, the model struggles to provide
the correct word sequence and bounding box coordinates. The table illustrates
that the TDO map distinctly influences the OCR outcome, particularly for images
containing curved texts. As depicted in the figure, negligible alteration is observed
in the left half of the word. However, an accurate result cannot be obtained for
the right half without the correct orientation of the word instance’s direction.

37

Figure 6.1: Sample images for TDO ablation. The evaluation parameter is the f-score.

Data Set Rectangular texts Curved texts

Task Detection End-to-end Detection End-to-end

w/o TDO 50.1 32.4 52.0 21.9
with TDO 60.5 43.6 72.7 45.3

Gain +10.4 +11.2 +20.7 +23.8

Table 6.1: Ablation study for TDO. The evaluating parameter is the F-score.

6.2.2 FPN structure

The training results on the FPN structure with only the top-down part and both
bottom-up and top-down parts are compared, as shown in table 3.2. As seen in the
table, although the FPN structure with only the top-down part saves nearly half
of the size, but the results are not worth it, as for detection and end-t-end result it
showed an unsatisfying performance compared to the FPN with both bottom-up
and top-down parts.

Data Set Rectangular texts Curved texts

Task Detection End-to-end Detection End-to-end

Full FPN 60.5 43.6 72.7 45.3
Top-down 42.9 21.6 54.3 22.1

Gain +17.6 +22.0 +18.4 +23.2

Table 6.2: Ablation study for FPN structure. The evaluating parameter is the F-score.
This table compares the model performance in using FPN structure with only top-down
pat and with both top-down and bottom-up parts, depicted as ’Full FPN’.

38

6.3 Detection results

The detection performance was assessed using the test sets from ICDAR2015 and
Total-text. Initially, a base model was trained on 10,000 images from SynthText,
achieving an f-score of 52.2% on the ICDAR2015 test set. Subsequently, by ex-
panding the training data to 20,000 images from SynthText, the detection result
saw significant improvement, yielding an f-score of 57.8% on the same test set.
The detailed results are presented in the table 6.3.

6.3.1 Rectangular texts

The example image displaying the detection results can be observed in Figure
6.2. As depicted, most images in the ICDAR2015 dataset originate from real-
world scenes, often characterized by low light conditions and smaller text in-
stances. The model undergoes initial fine-tuning using the training set of the
ICDAR2015 dataset. Subsequently, a combined dataset comprising ICDAR2017
and ICDAR2015 is utilized for further fine-tuning, with a ratio of 7:3. Other ra-
tio of the datasets were also tested, but there was no significant change. While
the f-score for detection sees minimal change, there is a notable improvement
in the recognition performance. Detailed results are presented in the table 6.3.
Compared to the PPOCR-V2 model of PaddleOCR, the f-score of the DB OCR
detection model using the same MobileNetV3 backbone is 61.3%, our end-to-end
model is very close to this result, showing a satisfying performance [5].

Figure 6.2: Sample images for detection results. The images show different circumstances
for curved text detection

39

F-score Precision Recall

SynthText1 51.8 51.5 52.2
SynthText2 58.8 59.9 52.2

ICDAR2015 60.6 61.5 59.7

7:3 60.5 65.3 56.4

Table 6.3: Detection result for rectangular texts. The table shows the performance for
experiments using different data from the SynthText, using the ICDAR2015 dataset and
using both the ICDAR2015 and the ICDAR2017 dataset.

Data Set F-score Precision Recall

Total-text 71.3 74.5 68.3

6:4 71.7 75.6 67.1
7:3 72.7 75.6 70.0
8:2 71.9 74.3 70.0

Table 6.4: Detection result for the curved-texts. The table shows the performance for
experiments using different data from the Total-text dataset and using both the Total-
text and ICDAR2019 datasets.

6.3.2 Curved texts

The model designed for handling curved texts undergoes an initial fine-tuning
process on the training set of the Total-text dataset. Subsequently, the model is
trained on the ICDAR2019-ArT dataset for further refinement. Different ratios
of images from these two datasets are experimented with to achieve an optimized
result, as illustrated in Table 6.4. Ultimately, the best ratio is determined to be
3:7 between the ICDAR2019 and Total-text datasets.

The example images showcasing the detection results are presented in Figure
6.3. The images demonstrate the model’s capability to accurately provide text
bounding box information across varying light conditions and font styles.

6.4 End-to-end results

As described in previous sections, the model is firstly trained on Synthetic dataset
to get a base model and then fine tuned on real scene datasets. The end-to-end
result of the based model is shown in table 6.5.

40

Figure 6.3: Sample images for detection result

End-to-end result

F-score Precision Recall Weak lexicon Generic lexicon

SynthText1 22.9 23.9 22 31.4 29.5
SynthText2 24.3 25.9 22.9 36.1 32.2

ICDAR2015 23.2 25.1 21.6 33.3 31.0

7:3 34.5 38.1 31.4 48.5 43.6

Table 6.5: End-to-end result for rectangular texts. The table shows the performance
for experiments using different data from the SynthText, using the ICDAR2015 dataset,
and using both the ICDAR2015 and the ICDAR2017 dataset.

6.4.1 Rectangular texts

The end-to-end result of training for rectangular texts is shown in table 6.5. Sample
result images are shown in 6.4. As seen in the images, the model is robust to scenes
with poor light conditions, high color contrasts and blurred images.

41

Figure 6.4: Sample end-to-end OCR result on the ICDAR2015 dataset.

6.4.2 Curved texts

For images with curved texts, the end-to-end result of out model is shown in
table 6.6. Shown in the table, when the ratio of the Total-text dataset and the
ICDAR2019 dataset is 7:3 the highest f-score of end-to-end is achieved. Figure 6.5
shown some sample images of end-to-end result of the images with curved texts.

F-score Precision Recall

Total-text 40.0 42.5 41.2

6:4 42.4 45.3 40.0
7:3 45.3 47.3 43.6
8:2 44.2 45.9 42.6

Table 6.6: End-to-end result for curved texts. The table shows performance for using
the Total-text dataset and both the Total-text dataset and the ICDAR2019 dataset with
different ratios.

42

Figure 6.5: Sample end-to-end OCR result on the Total-text dataset.

6.5 Freezing layer training

To test the effect of freezing layers, the layers for the backbone part of the model
are set as ’stop gradient’, and the model is further trained. Since there are seven
outputs of the backbone part, their gradients are frozen, respectively. However,
there is no significant improvement based on the original performance.

6.6 Comparison with the original PaddleOCR end-to-end
model

In this section, we compare the performance of our model and the original model on
the test set of the Total-text and ICDAR2015 dataset for rectangular and curved
texts respectively.

43

Rectangular Curved Size

Our 41.6 37.1 19MB

Original 30.8 20.52 198MB

Table 6.7: FPS and size comparison of our model and the original PaddleOCR end-to-
end model.

Rectangular texts Curved texts

F-score Precision Recall F-score Precision Recall

Our 60.5 65.3 56.4 72.7 75.6 70.0

Original 79.6 82.3 77.1 85.4 87.6 82.6

Table 6.8: Comparison with the original PaddleOCR model in detection results.

6.6.1 FPS and size comparison

The FPS comparison is shown in table 6.7. The images from the total-text dataset
are averagely larger, so the processing time is longer. It can be seen in the table
that, due to the decrease in the model size, the FPS of our model is higher, meaning
a faster model processing speed.

6.6.2 Detection result comparison

The comparison of the detection result is shown in table 6.8. For images with
rectangular texts, the F-score of our model is 60.5%, showing a 19.1% f-score loss
compared to the original model. For images with curve texts, the f-score is 72.7
% and the

6.6.3 End-to-end result comparison

The comparison of the end-to-end result is shown in table 6.9. For rectangular
texts, when no lexicon is used, the f-score is 34.5%, showing a 12.2% loss to the
original model’s f-score. Using lexicons, the f-score showed 16.1% and 16.5% loss
respectively. For curved texts, the f-score is 45.3%, showing a 13.9% loss to the
original value.

44

Rectangular texts Curved texts

F-score Precision Recall W G F-score Precision Recall

Our 34.5 38.1 31.4 48.5 43.6 45.3 47.3 43.6

Original 46.7 47.6 45.9 64.6 60.1 59.2 61.2 57.4

Table 6.9: Comparison with the original PaddleOCR model in end-to-end results. The
W and G represent using weak and generic lexicons.

45

46

Android application 7
7.1 General

This project also prepares an Android demo for the model to show its performance
on portable devices. While the original code for training and pre/post-processing
is in Python, the android demo utilizes the nb model(introduced in chapter 5),
and the code is written in C++ and Java.

7.2 Model conversion

The nb model is converted from the inference model using PaddleLite. Different
PaddleLite versions are tried for the project. Based on the precision of the TCL
map by comparing to the TCL map produced by the TCL, the PaddleLite 2.9.1c
is selected for the conversion.

7.3 original demo

PaddleOCR has officially released an Android demo for its PPOCR-v2 model,
known for its lightweight two-stage architecture. The demo features an interface
and scripts for function calls implemented in Java files, while the code for prepro-
cessing, model inference, and postprocessing is written in C++ files.

7.4 Code debugging method

The debugging process for the Android demo necessitates either a physical mobile
device or an emulator (virtual machine) within Android Studio. This means that
reinstalling the app on the phone is required for each debugging or running session.
It’s important to note that while Android Studio claims to support emulators with
both x86 and arm-64 frameworks, in practice, only the x86 framework is compat-
ible. As PaddlePaddle exclusively supports the arm-64 framework, debugging is
limited to physical devices, adding complexity to the process.

While Android Studio’s logcat function can be employed to output information
during the running process, it is limited to printing short text files and is not
conducive for retrieving results like vectors or matrices from the C++ code.

47

Given that the core functionality of the demo resides in the C++ functions, the
codes are rigorously tested in Visual Studio. Additionally, as some of the functions
wrapped up in Python lack corresponding counterparts in C++, they are written
and tested separately to ensure seamless integration.

7.5 Visual Studio implementation details

7.5.1 Function in getting instance center line

To test the performance of the nb model, the model is run in Android Studio, and
the TCL map is ”outputted”, as seen in (a) in Figure 7.1. As stated in the previous
section, Android Studio can only output text files for debugging, so the locations
of the pixels with TCL value higher than 0.5 are outputted and reformatted to be
(a) in figure 7.1. Because of the output problem of Android Studio itself, the below
pixels are mixed in (a), but in actual inference, they exist, and (a) is only used
for testing in Visual Studio. Since the thinning functions used in Python do not
have a corresponding one in C++, the thinningIteration function from OpenCV
is used. Since the Paddlepaddle framework does not provide support for extra
part in the OpenCV library where the thinningIteration function belongs, the
source codes are directly added to the Android demo, and some changes to the
data type are made to make the input and output both in the format of CV 8UC1,
this aims at saving spaces for memory and prevent formatting problems.

The thinningIteration supports two thinning types: the Zhang-Suen Thinning
algorithm and the Guohall thinning algorithm [26]. For this project, the skeletonize
step aims to preserve the frame of the original TCC map with a width of one pixel.
After testing the two algorithms, the Guohall thinning algorithm behaves better
performance, and after 4 iterations of applying the algorithm, the frame with
one-pixel width is achieved. The iterations are shown in figure7.1 (b) to (e).

Figure 7.1: The skeletonize process

48

7.5.2 Function in determining corresponding characters

For character determination, the Python code utilizes the np where and
np argsort functions. The former is employed to identify the locations of in-
stances within the output map generated by the connected components function,
while the latter is used to arrange the sequence of pixels in instances based on
information from the TDO map. Since there are no direct equivalents in C++,
these functions are implemented with the same names in Visual Studio.

In cases where an instance has an extended length and needs to be divided into
halves and sorted according to the algorithm outlined in Chapter 4, the operations
required in C++ are more intricate than in Python. Therefore, a function named
np argsort again is introduced in C++. This function handles the division of
the instance, recursively calls np argsort to sort the two halves, and ultimately
combines them.

Furthermore, the output of the np where function is a 2-dimensional vector
with a shape of 2× n, where n represents the number of pixels. To facilitate sub-
sequent operations, such as obtaining the coordinates of a point, another function
named transpose is developed to transpose the vector. This function is called
within the np where function, resulting in a final output shape of n× 2.

The Python function join, responsible for merging identical character instances
and eliminating background instances, lacks a direct counterpart in C++. To ad-
dress this, it has been integrated into the processLabels function. This function
takes the rough character instance vector as input and produces the combined
character instance vector as output.

7.6 C++ implementation

The C++ implementation mainly follows the algorithm described in Chapter 4.
Some functions are tested in Visual Studio, and the details are described in the
previous section. In the Android demo, the C++ part is mostly implemented in
the file ocr ppredictor.cpp and native.cpp.

The function for running is in the file ocr ppredictor.cpp, namely
infer ocr(). It first calls the preprocess, then the inference part, then calls
the post-process part to get the result in the form of a 1-dimensional vector of
OCRPredictResult. The variable is further converted into the form that Java can
process.

7.6.1 Pre-process

The Pre-process follows the same schedule as described in the algorithm chapter,
doing resize and normalization to the image.

49

7.6.2 Inference

After the preprocess, the nb model is run with the function infer() from Pad-
dlepaddle, and the result is a list of the references to the 4 feature maps. The
pointer to the float data in the maps are got from the function get float data()

applying on the references. To copy the data from the original map to cv::Mat

form variable in OpenCV, the function memcpy is applied instead of assigning ele-
ment by element.

7.6.3 Post-process

As introduced in Chapter 4, the postprocess step can be roughly divided into the
generate text step and the generate bounding box step.

7.6.3.1 Generating text

After generating the TCL map in cv::Mat form, the matrix is binarized with
a threshold of 0.5 using the function cv::threshold. The TCL map is skele-
tonized using the thinningIteration function. After the skeleton is calcu-
lated, the number and map of the center lines are determined using the function
connectedcomponents from OpenCV, where the data type of input and output
data type are both CV 8UC1. The text locations are determined using function
np where.

For each text instance with a length of more than 2, it is considered as a
true instance. Otherwise, it will be skipped. For a true instance, the pix-
els’ corresponding values in the TDO map will be generated in the form of
std::vector<std::vector<float>>. Using the information from TCL and TDO,
the sequence of the points is sorted utilizing the function np argsort. For the in-
stances with a length higher than 16, the function np argsort again is applied
for better sequence.

Since the sequence of floats in the TCC map is in the sequence of h×w×37, and
switching dimensions for such a large map is very costly, the largest probability
value of the pixel is calculated by comparing the values directly from the corre-
sponding locations from the pointer of the TCC float value. After the character
vector is determined, the combined character vector can be calculated using func-
tion processLabels. For the Paddlepaddle framework for Android, the contents
in the vector are added 1 to match the dictionary sequence of Paddlepaddle.

7.6.3.2 Generating bounding box

As stated in chapter 4, the bounding box is generated from the center line and
the TBO map. For the center line gained in the previous step, it is first processed
with the function keepLeftRightAndMiddle, which is implemented to keep the

50

points at two sides of the center line and another 5 points in the middle, and the
output is a vector with 7 points selected from the center line. After that, the
offset is added to the points to get the points from the bounding boxes. However,
the output TBO map from the nb is not as good as the one from the inference
model, reflecting in two aspects: 1. some of the offsets are opposite to the correct
ones; 2. most of the offsets appear to be smaller than the correct one2. To fix the
above problems, for each point in the center line, the y coordinate of points in the
border point pair is compared, and the one with a smaller y coordinate is kept as
the upper border point. In addition, if the distance between the upper and lower
point is smaller than a specific value, their distance will enlarged.

After getting the border point pair for each point in the center line, they
are rearranged to the clockwise sequence, and the point list is pushed into the
OCRPredictResult.point type variable for the final output.

7.7 Java implementation

The Java codes mainly aim for the transmission of data, building the interface,
and displaying the output of the OCR.

7.7.1 Transmission of data

The Java code employs the JNI method to call the C++ function, as depicted
in Figure 7.2. The returned values from C++ functions can be transferred
back by calling this method from Java codes. Within the PaddleOCR android
demo, the runImage function in the file OCRPredictorNative.java invokes the
forward function, which is implemented in the file native.cpp. This func-
tion orchestrates the preprocessing, model execution, and postprocessing steps,
which are called from other C++ files. The result is returned in the form of
std::vector::ppredictor::OCRPredictResult. In the native.cpp file, this re-
turned value is serialized into a float array, transmitted to the Java layer, and
subsequently deserialized.

7.7.2 Interface building

The interface is constructed in the file activity main.xml in the Android demo.
This file specifies the placement of buttons and determines which commands to
call through the functions. We incorporated an ’E2E’ button in the mode list
within this file. When selected, it triggers the functions to execute the end-to-end
OCR model.

51

Figure 7.2: JNI

7.7.3 Displaying the output

The function for drawing results is defined in the file Predictor.java, where a
Canvas variable is first created for the input image, and the bounding boxes are
drawn on it by calling the function Canvas.drawPath.

7.8 Performance test

The fine-tuned mode for the curved-texts is used due to its higher precision. The
performance is tested on multiple curved texts, and the performance and the in-
ference time are compared with the original end-to-end model.

7.8.1 Hardware

The performance of the demo is tested on a Huawei P40 mobile device with a CPU
of Octa-core (2x2.86 GHz Cortex-A76 & 2x2.36 GHz Cortex-A76 & 4x1.95 GHz
Cortex-A55).

7.8.2 End-to-end performance

Figure 7.3 showcases diverse outcomes obtained through the execution of our end-
to-end OCR model. Take instance (a) for illustration: Upon selecting the SELECT
button, users can designate an image from the repository for model application.
Activation of the RUN button initiates the model, presenting bounding boxes su-
perimposed on the image. Below the visual representation are the coordinates of
bounding box points for each text instance, concomitant with their corresponding
recognition outcomes and the computational time taken for inference. Should the

52

need arise to reset the results for the same image, clicking the CLEAR button will
reestablish the model’s initial state, enabling further execution.

7.8.3 Comparison to the original model

A straightforward comparison was conducted with the original PPOCR-v2 model,
as illustrated in Figure 7.4. (a) displays the result of the original model, while
(b) showcases our model’s output on the same image. The PPOCR-v2 model,
being 9.8MB and smaller in size, boasts a shorter inference time. However, our
model demonstrates superior performance for curved texts by accurately detecting
bounding boxes and recognizing words. In contrast, the PPOCR-v2 model can only
detect isolated characters.

7.8.4 Inference time and size

The inference time was evaluated using 50 images from the Total-text dataset.
The model was run ten times for each image to obtain an average. The inference
time for our nb model is 433ms, whereas the original nb model requires 925ms. In
terms of size, our end-to-end nb OCR model is 19MB, significantly smaller than
the original model, which is 198MB.

53

Figure 7.3: Example results of the android demo of the end-to-end OCR model.

54

(a) OCR original model (b) End-to-end model

Figure 7.4: Comparison between the demo performance and the original one.

55

56

Conclusion 8
8.1 Conclusion

In this study, we focused on the development of compact end-to-end OCR models
capable of offline operation on mobile devices. By substituting the stem network
of the original PaddleOCR end-to-end model with an optimized MobileNetV3 net-
work and introducing a new FPN structure, we successfully created an end-to-end
OCR model with a reduced size of 19MB, representing only a tenth of the original
model’s size. However, this reduction in model size inevitably led to a decrease in
performance.

Through extensive training on diverse datasets and conducting fine-tuning ex-
periments, we achieved a 14% reduction in end-to-end precision for curved texts
and an 11% reduction for rectangular texts. Additionally, for both rectangular
and curved texts, the model’s frames per second (FPS) increased by a factor of
10. This level of performance is comparable to some of the previous end-to-end
models that utilized larger networks like ResNet50 and VGG19.

Furthermore, we developed an Android demo to showcase the model’s perfor-
mance on mobile devices, highlighting its proficiency in handling OCR tasks for
curved texts and its rapid processing speed.

8.2 Further insight

From the perspective of model thresholding, using smaller models may lead to in-
formation loss compared to employing larger networks like ResNet50. To mitigate
this, maximizing the utilization of all features extracted by the network is crucial.
It becomes evident when comparing different Feature Pyramid Network (FPN)
structures that the depth of the FPN structure significantly influences the result,
despite appearing as a mere ’connection’ between the backbone and the head part
in the full structure. Additionally, adding layers to the original model can extract
even more features.

Turning to the OCR model, despite extensive research in the field, OCR tech-
nology still has room for improvement. As most current models are two-stage
models, their application is primarily limited to instances with rectangular shapes.
Furthermore, recognizing text instances in multiple languages poses a significant
challenge. Moreover, for both online and offline models running on mobile devices,
speed remains a concern. For real-time OCR tasks, there is currently no model

57

capable of running on mobile platforms in real-time while maintaining satisfactory
accuracy. Hence, additional techniques, such as recognizing similarities in images,
need to be incorporated to meet the requirements.

In addition to general OCR models like the Tesseract OCR model used in
Google Translator, there are specialized OCRmodels designed for specific verticals,
such as medical text recognition or formula recognition. In such cases, creating
more specific datasets for training the model can lead to improved accuracy.

Speaking of datasets, although OCR is a widely discussed topic, sourcing and
formatting datasets for this project proved to be a complex task. I experimented
with labeling tools like PaddleLabel and SynthText to generate datasets, but the
results were not of sufficient quality to use, especially for images with curved-text
instances. Therefore, creating flexible and user-friendly labeling tools remains an
area with potential for improvement in OCR. In a broader context, achieving clean
and accurate datasets remains an open challenge in the field of machine learning.

On a larger scale, given that machine learning is often likened to a black box,
there are many aspects of models that remain unclear. Consequently, there is a
need for further exploration of methods for interpreting models. While the model I
designed is significantly smaller than the original model and may have a potential
performance trade-off, it’s important to acknowledge that we still have limited
understanding of the inner parameters and the potential for further fine-tuning.
Additionally, when evaluating parameters, attention should be directed not only
towards achieving higher evaluation benchmarks, but also towards considering
how the statistics are distributed in the dataset. In specific terms, we should
seek ways to qualitatively describe the dataset, which can ultimately enhance our
comprehension of the model.

58

Bibliography

[1] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” 2017.

[2] “Google translator.” https://translate.google.com/. Accessed: August
5, 2023.

[3] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” 2017.

[4] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and ¡0.5mb model size,” 2016.

[5] Y. Du, C. Li, R. Guo, X. Yin, W. Liu, J. Zhou, Y. Bai, Z. Yu, Y. Yang,
Q. Dang, and H. Wang, “Pp-ocr: A practical ultra lightweight ocr system,”
2020.

[6] M. Liao, Z. Wan, C. Yao, K. Chen, and X. Bai, “Real-time scene text detection
with differentiable binarization,” 2019.

[7] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “East:
An efficient and accurate scene text detector,” 2017.

[8] P. Wang, C. Zhang, F. Qi, Z. Huang, M. En, J. Han, J. Liu, E. Ding, and
G. Shi, “A single-shot arbitrarily-shaped text detector based on context at-
tended multi-task learning,” in Proceedings of the 27th ACM International
Conference on Multimedia, ACM, oct 2019.

[9] J. Baek, G. Kim, J. Lee, S. Park, D. Han, S. Yun, S. J. Oh, and H. Lee,
“What is wrong with scene text recognition model comparisons? dataset and
model analysis,” 2019.

[10] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for
image-based sequence recognition and its application to scene text recogni-
tion,” 2015.

[11] F. Borisyuk, A. Gordo, and V. Sivakumar, “Rosetta,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, ACM, jul 2018.

[12] M. Bušta, L. Neumann, and J. Matas, “Deep textspotter: An end-to-end
trainable scene text localization and recognition framework,” in 2017 IEEE
International Conference on Computer Vision (ICCV), pp. 2223–2231, 2017.

59

https://translate.google.com/

[13] Y. Liu, H. Chen, C. Shen, T. He, L. Jin, and L. Wang, “Abcnet: Real-time
scene text spotting with adaptive bezier-curve network,” 2020.

[14] W. Feng, W. He, F. Yin, X.-Y. Zhang, and C.-L. Liu, “Textdragon: An end-
to-end framework for arbitrary shaped text spotting,” in 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 9075–9084, 2019.

[15] L. Xing, Z. Tian, W. Huang, and M. Scott, “Convolutional character net-
works,” in 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 9125–9135, 2019.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[17] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,”
2017.

[18] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for
mobilenetv3,” 2019.

[19] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” 2017.

[20] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text localisation
in natural images,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[21] X. Zhou, S. Zhou, C. Yao, Z. Cao, and Q. Yin, “Icdar 2015 text reading in
the wild competition,” 2015.

[22] R. Gomez, B. Shi, L. Gomez, L. Numann, A. Veit, J. Matas, S. Belongie,
and D. Karatzas, “Icdar2017 robust reading challenge on coco-text,” in 2017
14th IAPR International Conference on Document Analysis and Recognition
(ICDAR), vol. 01, pp. 1435–1443, 2017.

[23] C. K. Ch’ng, C. S. Chan, and C. Liu, “Total-text: Towards orientation ro-
bustness in scene text detection,” IJDAR, 2019.

[24] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Freezeout: Accelerate
training by progressively freezing layers,” 2017.

[25] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural
networks for volumetric medical image segmentation,” in 2016 Fourth Inter-
national Conference on 3D Vision (3DV), pp. 565–571, 2016.

60

[26] W. Chen, L. Sui, Z. Xu, and Y. Lang, “Improved zhang-suen thinning algo-
rithm in binary line drawing applications,” in 2012 International Conference
on Systems and Informatics (ICSAI2012), pp. 1947–1950, 2012.

61

	Abstract
	Acknowledgments
	Introduction
	OCR
	The main problem
	thesis pipeline

	Current State of art
	End-to-end model
	OCR technology
	OCR models
	2-stage models
	Text recognition part
	End-to-end models and paddle end-to-end model
	Paddle end-to-end model

	Model threshold
	Overall approach
	Backbone
	MobileNet
	MobileNetV3
	MobileNetV3 rebuild

	Neck
	FPN structure
	FPN structure rebuild

	E2E algorithm
	General
	Preprocess
	Features
	TCL
	TBO
	TDO
	TCC

	Postprocess
	Pivot
	CTC decoder
	Restore_poly

	Drawing

	Experimental setting
	Deep learning platform
	Model types

	Hardware and version
	Datasets and label format
	Datasets
	PaddleOCR label format

	Dataset processing
	SynthText
	ICDAR2019-ArT
	ICDAR2017
	ICDAR2015 & Total-Text

	Image augmentation
	Base model and fine tuning
	Base model
	Freezing layers
	Warm up steps
	Cosine
	Fine tuning
	Ratio of datasets

	Loss function
	TCL loss
	TBO and TDO loss
	TCC loss

	Results
	Evaluating parameters
	Precision
	Recall
	F-score
	Frame per second(FPS)

	Ablation study
	TDO map
	FPN structure

	Detection results
	Rectangular texts
	Curved texts

	End-to-end results
	Rectangular texts
	Curved texts

	Freezing layer training
	Comparison with the original PaddleOCR end-to-end model
	FPS and size comparison
	Detection result comparison
	End-to-end result comparison

	Android application
	General
	Model conversion
	original demo
	Code debugging method
	Visual Studio implementation details
	Function in getting instance center line
	Function in determining corresponding characters

	C++ implementation
	Pre-process
	Inference
	Post-process

	Java implementation
	Transmission of data
	Interface building
	Displaying the output

	Performance test
	Hardware
	End-to-end performance
	Comparison to the original model
	Inference time and size

	Conclusion
	Conclusion
	Further insight

