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Preface

The observations of the Event Horizon Telescope led to the first mages of a black hole, an object with
so much gravity that not even light can escape it. These images remain fuzzy but clearly show the
shadow of a black hole with a bright disk and will only improve in quality over time.

We want to be able to deduce, from the images, the following properties of the observed black hole;
the mass, the angular momentum and the orientation of the black hole. This can be done by visualising
the mathematical model of a black hole. This model is a result of the theory of general relativity and
comparing the theoretical model to the real-life observations could be used to validate this theory.

We have visualized a Kerr black hole. This is a black hole that is more realistic than the original
Schwarzschild black hole because it also includes the angular momentum of the black hole. The Kerr
solution describes the curvature of space-time around a rotating black hole. This curvature of space-
time causes light rays to travel in a curved path instead of a straight line. The distortion of light rays
causes distortions in the image of a black hole in a similar way that a lens of a camera causes distortion
in an image by curving light. By using the mathematical field of differential geometry we can exactly
describe the curved path of a light ray around a Kerr black hole. This path of the light ray can be
formulated in different coordinate systems. We will use the so-called Kerr-Schild coordinate system
because it does not have the coordinate-related singularities of other coordinate systems.

To create the visualisation of a Kerr black hole we will implement a ray-tracing algorithm. This is an
algorithm that can create a 2D projection of a 3D space. The algorithm normally uses straight light rays
to create an image, we will however adapt this program to model the curved light rays around a Kerr
black hole. The visualisation employs a celestial sphere around the black hole to project the universe
around it. Furthermore, an accretion disk around the black hole is added to model light-emitting particles
orbiting the black hole.

Our ray-tracing algorithm makes it possible to realistically visualise a Kerr black hole with varying
parameters. These parameters are the mass of the black hole, the angular momentum, orientation
compared to the observer and the size and structure of the accretion disk. To exemplify the ability of
the ray-tracing model to fit these parameters, different angular momentum and orientation values are
compared to the properties of the resulting image.

This means that when in the future we get higher resolution observations of a black hole, the prop-
erties of this black hole can be deduced from the ray-tracing model. This can help our understanding
of the curvature of space-time caused by general relativity and our understanding of the universe as a
whole.

T.M. Kamminga
Delft, June 2022
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Introduction

(a) Messier 87*, a supermassive black hole with an (b) Sagittarius A*, the supermassive black hole at the
estimated mass of 6 - 10° times the mass of the sun. centre of the milky way with an estimated mass of 4 - 10°
times the mass of the sun.

Figure 1.1: The first two images of a black hole, generated by the Event Horizon Telescope.

The first two images of a black hole have been released, of Messier 87* in 2019 visible in figure 1.1a
and of Sagittarius A* in 2022 visible in figure 1.1b. These images remain fuzzy, but clearly show the
shadow of a black hole in the middle of the image. They are both located at the centre of a galaxy and
have masses of multiple magnitudes greater than the sun. But what is a black hole?

A black hole is an object with so much gravity that nothing can escape it. This means that even
particles without mass like photons can not escape it. If you would look at the centre of a black hole
there would be a black sphere emitting no light, explaining the name black hole. This sphere of no
return surrounding the mass point has a radius called the Schwarzschild radius. The existence of
black holes was first theorized before any observation. This was plausible because it is a result of
Einstein’s theory of general relativity. The main assumption of special relativity is that the speed of light
can not be exceeded, in general relativity 4-dimensional space-time is curved which results in gravity.
This curvature is also caused by the presence of mass. If this curvature is sufficient no particle can
escape it and we end up with a black hole.

The theory of general relativity made many predictions which turned out to be true. It has also had
many practical applications, such as more accurately determining your location with GPS, where time
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dilation on GPS satellites has to be taken into account. Physics is however on an endless journey to
check and expand its theories, so for general relativity we also want to do this. Near a black hole, the
effects of relativity are the most severe and these objects thus are a great place to check the theory of
general relativity in its most extreme environment.

Now that we have observations of black holes from the Event Horizon Telescope, can we use them
to find the physical properties of these black holes? Three important parameters are mass, orientation
and angular momentum of the black hole. A black hole is in a sense also a mathematical object, since
it was at first a mathematical product of general relativity before any physical observation of it. A good
place to start studying this object is by visualising it. The way to do this is by tracking the interaction
of the black hole with the light hitting it and travelling in its surroundings. This light does not travel in a
straight line because the space-time surrounding the black hole is curved.

Mathematics has a great tool set to study such curved spaces called differential geometry. The
essential tools in this toolbox needed for modelling light in curved space-time will be defined chapter 2.
Most important will be the concept of geodesics along which light rays travels. In chapter 3 we find the
systems of differential equations which describe these geodesics for rotating and non-rotating black
holes in different coordinate systems. After we have developed the mathematical know-how to model
light around a black hole we can generate an image of it. This is done using ray tracing, where every
pixel of an image is coloured using the path light would take to hit a virtual camera. This algorithm is
further explained in chapter 4 starting at flat space and then expanding to curved space-time. Having
developed the mathematics and the ray tracing algorithm, we can now generate images of black holes.
This can be used to study black holes observed by astronomers. In chapter 5 an example of this is
given by estimating the different parameters of a black hole based on a generated picture of it. Giving
an amazing conclusion that you can study far-away black holes using only mathematics and a computer.

Before continuing on to the rest of the thesis | would like to thank Dr. P.M. Visser for his excellent
support during the research en writing process. Without him the results would not be plausible. | would
also like to thank Dr. K.P. Hart for joining the advisor committee.



Differential geometry

2.1. Metric spaces

Generating a simulated image of a black hole means that the paths of light through space-time curved by
gravity have to be calculated. In normal day-to-day life we use Cartesian coordinates, often expressed
as x, y and z coordinates. Furthermore, we calculate distances using the Pythagorean formula. This
system is called the Euclidean space and is an example of a metric space. A metric space is defined
as a non-empty set with a metric on the set. The metric is a distance function for this set defined as
follows in Lay’s book [5].

Definition 2.1.1. (Metric). Let X be any nonempty set. A functiond : X X X — R is called a metric on
X if it satisfies the following conditions for all x,y,z € X.

(1)d(x,y) =20

(2)d(x,y) =0ifand only if x = y

(3)d(x,y) = d(y,x)

(4)d(x,y) <d(x,z) +d(z,y) (triangle inequality)

Example 2.1.1. Let X = R x R = R? and define d : R? x R? - R by

d (1, y1), (62, ¥2)) = J (2 = x)" + 02 =)

for points (x;,y;) and (x,y,) in R?

Example 2.1.2. Let X be a nonempty set and define d on X by

0, ifx=y,
d(x,y) = .
) {1, if x #y.
Example 2.1.1 is the Euclidean metric in R%. This metric combined with the set R? gives the Euclidean
space in two dimensions, denoted by E2. Example 2.1.2 gives the discrete metric, any nonempty set
can be turned into a metric space using the discrete metric.

2.2. Smooth manifolds

As shown by example 2.1.2 metric spaces can be very general. Differential geometry studies more
specific metric spaces called smooth manifolds. Bas Janssens in his course reader [4] roughly de-
scribes a smooth manifold as "a topological space that locally looks like R™”. The notion of a smooth
manifold allows the use of differentiability in more general spaces than R™. The definition of a smooth
manifold requires further concepts which will be given first. The definitions are from Bas Janssens’s
reader [4].
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Definition 2.2.1. (Hausdorff Spaces). A topological space M is called Hausdorff if for any two distinct
points x,y € M, there exist open neighbourhoods U, of x and U,, of y which do notintersect, U,NU,, = @.

Hausdorff spaces have the property that every sequence in the topological space has at most one limit.
Spaces which are not Hausdorff will not be of interest to us.

Definition 2.2.2. (Chart). A chart on M is a homeomorphism

¢p:M2U - ¢pU) S R"
from an open subset U € M to an open subset ¢(U) € R™. U is the patch of the chart.
A chart can be seen as a coordinate transform from a specific set to R™

Definition 2.2.3. (Topological Atlas). Let A = {(U,, ¢,); a € A} be a collection of charts, labelled by
an index set A. We say that A is a topological atlas for M if M is the union of the coordinate patches
Uy M = Ugeys Ug-

A topological Atlas gives a coordinate transform for all points of the original set to R"

Definition 2.2.4. (Smooth Atlas). Let

Kap * oM (Ua n UB) - ¢),5’ (Ua n UB)

be defined by
Kap = ¢p ° Pg’

Two charts (Uy, ¢,) and (Ug, ¢) are called compatible if both .z and kg, are smooth. A topological
atlas A is called smooth is all its charts are compatible.

This definition of two compatible charts means that if two different charts (¢, U,) and (qsﬁ, Uﬁ) describe
the same function f : M — R at p, they have to agree if f is smooth or not.

Definition 2.2.5. (Smooth manifold). A smooth manifold is a Hausdorff topological space M, together
with a smooth atlas A. We say that M is of dimension n if its charts take values in R™.

Example 2.2.1.
$%:={(x,y,2) € R} x%? +y? + 22 = 1}

Example 2.2.1 is an example of a smooth manifold. S? is the 2-sphere embedded in R3 and has
dimension 2. Let n := (0,0,1) be the North Pole of the 2-sphere and s := (0,0,—1) the south pole.
Then a possible chart for $2 \ {n} is where the coordinates (x,y) € R? of a pointp = (¢,7,) in S are

(o1t

This is a projection in which every point p of the sphere is mapped to a point on the xy-plane which
intersects the line, starting at n and passing through p. This projection is illustrated in figure 2.1.
A projection for $2 \ {s} is

(¢ n
o -(re i)

This is the same projection as before just starting at the south pole. These two charts form a smooth
atlas for $? and S? is a Hausdorff topological space. This means that $? is a smooth manifold.

Now that we have defined a smooth manifold we can define differentiability in a smooth manifold.
This will allow us to use calculus to solve problems in these spaces.

Definition 2.2.6. (Differentiable and smooth functions). A function f : M — R is differentiable at
p € M if for some chart U, containing p, the coordinate representation f o ¢ : R® o ¢, (U,) = R
is differentiable at ¢, (p) € R™. Similarly, f is smooth at p if its coordinate representation is smooth at

ba ()
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Figure 2.1: Stereographic projection of a 2-sphere to the xy-plane. Made by Mark Howison at English Wikipedia.

2.3. Einstein notation

Now that differentiation in a smooth manifold is introduced, we have the ability to do all kinds of calculus
operations. This will often lead to long and cumbersome notation given a lot of partial differentials
in different directions of the local unit vectors. To shorten the notation we will introduce the Einstein
notation. In this notation summation over the indexes will be implied. This means that the vector y € R?

3
y = z cixt = cpxt + cx? + c3x3
i=1
is simplified in Einstein notation to:
Where x! represents a basis for R3.

2.4. Tangent spaces

To study tangent spaces we will start with $2 given in example 2.2.1. Here we have the 2-dimensional
smooth manifold embedded in R3. For a point p on the sphere there exist multiple vectors such that
these vectors are tangent to the surface in p. All these vectors form the tangent space. In this case,
the tangent space is a plane. This tangent plane is illustrated in figure 2.2. If we define this tangent
plane for every point we get the $? x R? tangent bundle of S? existing of all tangent vectors for every
point on the sphere.

In this case, we embedded the two-dimensional sphere into the three-dimensional R3. This meant
that the tangent plane could leave the sphere as it lives in R3. Most of the time we will not have the
luxury of a manifold embedded in R™ so we need to find a general definition for tangent spaces of
a manifold. Bas Janssens gives the following definition for a tangent space which first requires an
equivalence class:

Figure 2.2: Tangent plane to point on the Sphere.
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Two curves y and [ that pass trough p are equivalent, y ~,, [, if there exists a chart (U, ¢) around p
in which the first order derivatives vl = y4(0) and wk = i%(0) agree.
The u in the superscript implies that all coordinate directions of the chart U, must agree.

Definition 2.4.1. (Tangent space). A tangent vector atp € M is an equivalence class v, = [y] of curves
through p with respect to the relation ~,,. The set T,M of tangent vectors is called the tangent space
of M at p.

A tangent vector van be tought of as the derivative of a curve y(t) € [y] when it passes trough p. So a
vector v € T,M can be written as v = v#d,, a linear combination of a basis 9, of T,M.
The 0 sign comes from the fact that we use infinitely small basis vectors to represent the tangent space.
Using the earlier example of a point p on the 2-sphere. There are no finitely sized tangent vectors of
p on the sphere. But if we infinitely zoom in on the point p, the neighbourhood of p becomes flat and
there are tangent vectors for p in this neighbourhood. This means that we have found infinitely small
tangent vectors for p. The definition of a general tangent space is less intuitive than the more simple
example of the plane tangent to the sphere, but the great improvement is that the smooth manifold
does not have to be embedded in R™.

Now that we have defined tangent spaces we can also introduce tensors. A tensor is an algebraic
object that allows us to do lots of calculations. The definition of a tensor is quite vague as the definition
of a metric but can be defined for a manifold to make it more specific.

Definition 2.4.2. ((covariant) tensor). Let M be a manifold, and let p be a point in M. A (covariant)
tensor of rank k at p € M is a multilinear map

Tp TpMX ...xT,,M - R.

k times

We will exclusively use tensors of rank 2, so bilinear maps: T,M x T,M — R. A tensor field assigns a
tensor to every point in a space.

2.5. Riemann manifolds

When we specified the notion of a smooth manifold we were able to use differentiability. But smooth
manifolds still lack the concepts of distances and angles. So to constrain a space further we will intro-
duce the concept of a Riemannian metric. This Riemannian metric differs from the Minkowski metric
we will later use to study problems in space-time. We will however be able to introduce and study
Geodesics which will be very important in the rest of this report. Bas Janssens [4] defines the Rieman-
nian metric in the following way:

Definition 2.5.1. (Riemannian metric). A Riemannian metric g on M is a covariant tensor field of rank
2 such that for every point p € M, the bilinear form g,, : T,M X T,M — R is an inner product.

For g, to be an inner product it must be symmetric and g,(v,v) > 0 for all nonzero v € T,M. A
Riemannian manifold is a smooth manifold equipped with a Riemannian metric. The most familiar
Riemannian metric is the Euclidean space. The square of the Euclidean metric is equal to the dot
product of two vectors in R™. The dot product is an example of an inner product. This implies that for
all points p € R" the Euclidean metric gg is Riemannian. This is illustrated in the language of tangent
spaces by Janssens in example 2.5.1

Example 2.5.1. (Euclidean metricon R" ). Let M = R", and let x1, ..., x™ be the Cartesian coordinates
on R™. This choice of local coordinates allows us to write v,w € T,R" as v = v#9, and w = w#d,. The
Euclidean metric on M = R" is given by

gL (v*a,,w¥a,) = viw! + .+ v "wh

We can now define any Riemannian metric on a smooth manifold as a matrix. For this, we will use
the fact that for two points v,w € T,M the metric must be a bilinear combination of the coordinates
of v,w in a basis of T,M. So for any x in the local coordinates of the chart of the manifold we have
Ip(v,w) = g (x)v¥w”. We can now fill a matrix with all the different entries of g, (x). This matrix
G satisfies g, (v,w) = v"Gw. This can be done for every tensor, the special feature of a Riemannian
metric is that this matrix will be symmetric and positive.
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Example 2.5.2. (Euclidean matrix on R™) The Euclidean metric on R™ has been given in example 2.5.1.
The first thing we can see is that the metric is not dependent on the location x in R™. We further have
gﬁv(x) = 6,y This means that the Euclidean matrix on R™ is equal to the identity matrix .

Example 2.5.3. (Euclidean metric on spherical coordinates) We start with the M = R? and will then
use the coordinate transfer to polar coordinates. So x = r cos(¢) and y = r sin(¢). This means that
in the tangent space we have using the chain rule:

ox dy i
0, = 5 0y + an = cos(¢)0y + Sln(¢)ay
ox ay .
0y = G50+ 350, = TSIy + 705,

This allows us to quickly calculate all tensors using the Euclidean metric. We will use that g, = g¢r
because the Euclidean metric is symmetric.

grr = 9(0y,0,) = cos?(¢) + sin’(¢) =1
Gpp = 9(0, ) = —1?sin’(¢) + r2 cos?(p) = 2
Irep = Gpr = g(6¢,6r) = —r cos(¢) sin(¢) + r cos(¢) sin(¢p) =0

So this results in the following matrix:
Irr grqh — 1 0
Jor YIéo 0 r?

Now that the Riemannian metric is introduced we can have a definition of distance. If we think back to
the example of the 2-sphere embedded in R3, any vector between two different points on the sphere
leaves the sphere. So measuring distances this way does not make sense in the 2-sphere. We will
begin by defining distances for the infinitesimally small vectors in the tangent space T, M of a point p in
a smooth manifold M.

Definition 2.5.2. (Length tangentspace). If (M, g) is a Riemannian manifold, then the length of v € T,M
is defined as

vl = |gp(v,v)

Now that we have defined the length of a vector in the tangent space we can ”stitch” all these lengths
together by integration to get the length of a piecewise regular curve in a smooth manifold.

Definition 2.5.3. (Length curve). Let [a, b] € R be a closed interval. Then the piecewise regular curve
y : [a,b] = M on a Riemannian manifold (M, g) has length defined by

b
o) = [ Ir@lde
a
A curve is regular if it is smooth and y(t) # 0 for all t € [a, b]. A curve is piecewise regular if a finite
closed subdivision of the curve is regular.

Example 2.5.4. (length equator 2-sphere) Let SZ be the 2-sphere with radius » embedded in R3. We
will use the Euclidean metric. The path around the equator can be parameterised by the function
y : [0,27] = S2 given by

y(t) := (rcos(t),r sin(t),0)
This gives a length

21 2m

L) = fo 17Ol de = fo (=7 sin(e), r cos(t), 0)[| de

21
= f \/rz(cosz(t) +sin®(t)dt =2 -r
0
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Figure 2.3: The equator of a sphere

Which is the size of the equator of a sphere with radius r, as illustrated in figure 2.3. The only thing
left to define before we can continue to geodesics is a distance function between two points. This is
quite straightforwardly defined as the infimum of the length of all curves between the two points.

Definition 2.5.4. (Distance). The distance d(p, q) between two points p and q on M is defined as

d(p,q) :=inf{L(y);y(a) =p and y(b) = q}

where the infimum is taken over all piecewise regular curves y : [a, b] - M that start at p and end at q.

2.6. Geodesics

In non-curved flat space straight lines exist and give the shortest path possible between two points. In
curved spaces “straight lines” do not always exist. We can think of walking over the earth’s surface, if
we walk between two cities we can never walk in an exact straight line. The path we would walk has
some curvature because the earth is not flat. We would like to generalise the concept of a "straight line”
to curved surfaces such that we can still find the shortest path between two points. This can be done
by a geodesic, which can be thought of as the most straight-line plausible. Bas Janssens [4] gives the
following definition for a geodesic, where regular means that it's derivative never vanishes.

Definition 2.6.1. (Geodesics). A geodesic on M is a piecewise regular curve y : [a,b] - M with unit
speed ||y (t)|| = 1, such that for all t, € [a, b], there exists an open interval I < [a, b] around t, with

diy@),y@)) =t—-t'|
forall¢,t’' €1.

On R™ all geodesics are straight lines as shown in example 2.6.1, but if the space is curved the geodesic
can have other forms. Figure 2.3 illustrates a geodesic on the 2-sphere, which we prove in section 2.7
are all great circles. Further examples in different curved spaces will be given in the next chapter.

Definition 2.6.1 is a very elegant and compact definition for a geodesic we would, however, like to
have an alternative way to find geodesics using differential equations. This will allow us to numerically
approximate geodesics in the future. Theorem 2.6.1 gives us these differential equations. The proof
for this theorem is available in the reader by Bas Janssens [4].

Theorem 2.6.1. (Geodesic equation). Every geodesic is regular. In local coordinates, it satisfies the
second-order ODE
P+ Ty =0

with the so-called Christoffel symbols T's; given by
H 1 ua
[or = Eg (aag‘r(x + 0:9ac — aaga‘[)

Where gt* are the elements of the inverse matrix of g,,,. So if we use the matrix of example 2.5.3 we
get.
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(grr gr¢> — (grr gr¢v>
g¢r g‘M’ Ior YGoo
If a manifold has n dimensions there are n3 Christoffel symbols. Example 2.6.1 shows that all geodesics

in Euclidean space are straight lines. Many more examples of the applications of the geodesic equa-
tions in curved spaces will be given in the next chapter.

-1

Example 2.6.1. (Geodesics in Euclidian space) From example 2.5.2 we know thatin E" g,,,, = §,,. So
any partial derivative of the metric is 0. This implies

U
I5t

1
Egua (aag‘ra + a‘rgao - aagor)

%g““(O +0-0)
=0
By the geodesic equation, we have that all geodesics [Thave the property
=0
So all geodesics are linear curves in E™.
2.7. Geodesics on the 2-sphere

For an example of non-straight geodesic will look at the example of the 2-sphere. In example 2.2.1 we
defined the 2-sphere S$? in the following way.

$%:={(x,y,2) € R} x% +y? + 22 = 1}
We can use the following parameterization for the 2-sphere embedded in R™.
x =cos¢sinf,y =sin¢psinb,z = cosb

The chain rule then gives us the following basis for the tangent space.

dx dy 0z
0g = %6,{ + %ay + ﬁaz
=cos¢pcosfdy +singcosfa, +sinda,
dx dy 0z
0p = 570x+ 250y + =0,

0¢ a¢ a9

= —sin¢sindd, + cos¢psind 9,

Taking the inner products we can now calculate the tensors.

Joe = cos? ¢ cos? 0 + sin’ pcos? 6 + sin’ 0 = 1
Jdogp = 9po = —sing cos P cos O sinf + sin¢p cos ¢ cosfsinf = 0

9op = sin® 6 sin® ¢ + sin” @ cos? ¢ = sin” @

So we end up with the following matrix and inverse matrix for the tensors.

Goo  Gog | _ 1 02
9o 9o 0 sin" 0

1
()G 8- )
g%? g%* 9deo Yoo 0 sin "6
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Now we can calculate the Christoffel symbols 'y, using the following formula.
U 1 ua
Ior = Eg (0597a + 0:9ac — 0aGor)
As 0 is the only variable in the tensors we get that dg g4 is the only nonzero partial derivative in the

formula of the Christoffel symbols. We can also use that I'y; = I't; because of the symmetry of the
tensors. So all nonzero Christoffel symbols are:

cos B
sin @

1 1 .
Fg¢=F$6=§g¢¢69g¢¢=ESIH 0 -2 sinfcosh =
M, = —2g%9 = 1 2sinfcosh = —sinbcos
99 = —59°099pp = —7 -2 sinb cosf = —sin 6 cos

So by the geodesic equation of theorem 2.6.1 we get that any geodesic y on the unit sphere must
adhere to the following differential equations.

P+ 2 T30 =0
7O +T547%7% =0

Which gives

7% —sin@cos0y?y? =0

A simple curve on S$? that is a solution of these differential equations is the great circle on the unit
sphere from example 2.5.4. This great circle is parameterized in the following way.

y(8) = (cos(t), sin(t), 0)
In spherical coordinates this curve is described as
V3
(¢(®).0() = (. 5)
We getthatj® = 7% = y? = 0 so this curve is a solution to the previous system of differential equations.

We can use the symmetry of the sphere and the indifference of the orientation of the coordinate transfer
to conclude that all great circles on the sphere must be geodesics.



Geodesics in space-time

3.1. Minkowski space

In previous examples, we only looked at spatial dimensions but the Einstein’s relativity uses the concept
of space-time. This means we will have 3 spatial dimensions and a special time dimension. These
dimensions are combined using the Minkowski metric. This metric n treats time different than the
spatial dimensions and is given by

N, w) = —vgwy + v1wy + VW, + v3Ws

The Minkowski space M* is defined as the set R* with the Minkowski metric 7. 7 is not actually a metric
by definition 2.1.1 because we can have n(v,w) < 0 and n(v,w) = 0 for v = w. We will however call
it a metric from now on. A big assumption in Einstein’s relativity is that the speed of light can not be
exceeded. This can be seen as a limit on the Minkowski metric. Assume a particle travels at a speed
less than or equal to the speed of light. Let p,q € M* and Ax, Ay, Az be the distance traveled from p
to q in the x, y and z direction respectively. Assume the time difference At is positive. The speed limit
implies

VAx2 + Ay? + Az2
<c
At
Ax? + Ay? + Az?
At?
Ax? + Ay? + Az? — At?c? <0

<c?

We can choose the units such that ¢ = 1 for example by using seconds for the time and distances. So
for an observer in the present place p, a future event ¢ must have n(q—p, g—p) < 0. If a particle travels
without acceleration at the speed of light we must have n(q — p,q — p) = 0. The limit on the speed of
a particle can be seen as a restriction such that all future events in space-time must be in a 4D cone
with radius cAt. If we only allow for 2 spatial dimensions the cone becomes three-dimensional and is
easier to visualise. This cone can be seen in figure 3.1. There is a cone for future and past events. If
a particle travels with the speed of light it must be on these cones otherwise, it has to be inside these
cones.

We can write the metric n(v, w) in matrix form as

-1

n(v,w) =v'

S O O

S O = O
O = OO
= O O O

Since there are no variables in this tensor matrix we can conclude that all Christoffel symbols are equal
to 0. From theorem 2.6.1 we thus get that all straight lines are geodesics in M*. This will include curves
representing particles going faster than light these can be filtered out by the additional constraintn < 0.

11
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AAST LIGHT CON:

Figure 3.1: Past and future light cone

3.2. Lorentzian manifolds

In section 2.5 we defined a Riemannian metric as an inner product g,, : T,MxT,M — R. Fora Lorentzian
metric we drop the positive definite assumption of the inner product but add a new assumption; at point
p there must be a basis e°(p),e* (p), e*(p), e*(p) of T,M such that g, (eg, e9) = —1, g,(e;, e;) = 1 for
i =1,2,3and g,(e;e;) = 0 forj # i. ALorentzian manifold is a manifold with a Lorentzian metric. For
a Riemannian manifold it was the case that the infinitely small tangent space T,,M around p had the
structure of an Euclidean space. The tangent space T,,M around p in a Lorentzian manifold has the
structure of a Minkowski space. This allows us to make calculations in curved space-time. Because
a Lorentz manifold is an generalisation of a Riemannian manifold it is called a pseudo-Riemannian
manifold.

Definition 2.6.1 of a geodesic does not make sense in a Lorentzian manifold because the condition
of unit speed ||y (t)]| = 1 for a curve y is not plausible with the Minkowski metric. There however still
exists a similar definition that still leads to the same geodesic equation of theorem 2.6.1. This is the
equation we will use to find geodesics in Lorentzian manifolds. namely

P+ Ty =0

3.3. Schwarzschild solution

In 1915 Einstein published the Einstein field equations. These formulas describe the curvature of
space-time by gravitation. In the same year, Karl Schwarzschild found a solution to the field equa-
tions for a non-rotation non-charged spherical mass. This is the most simple example of space-time
deformed by gravitation. The solution is given by the Schwarzschild metric in spherical coordinates
taken from the Encyclopedia of Mathematical Physics [3]. Using natural units means we can take the
gravitational constant G = 1.

-1

2M 2M
ds? = — <1 - T) dt? + (1 - T) dr? + r? (d@z + sin® 9d<p2)

Where 0,¢ and r are the spherical coordinates with a spherical mass at the center. The spherical
object at r = 0 has mass M. Equivalently the metric can be written in matrix form using the formula
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ds? = gopdx®dxF.

gie Gir Gto Gt -1+ % 0 0 0
Irt Irr  YGre gr¢ — 0 12M 0 0
got Yor Yoo Yoo 1-=-
9ot Gor 946 YGoo 0 0 r? 0
0 0 0 r?sin[6]?

To find the paths of light rays in the Schwarzschild solution the Christoffel symbols of theorem 2.6.1
again need to be calculated. This can be done by hand, but this is a long and error-prone problem,
especially in the next parts of this chapter where the complexity of the metric will increase. So instead
we will calculate these Christoffel symbols using the symbolic computation program Wolfram Mathe-
matica. This will allow us to insert an arbitrary metric and get the resulting Christoffel symbols and
geodesic equation. The code to calculate the Christoffel symbols and geodesic equation is adapted
from a paper by Erik Tollerud [9]. The function used to calculate a Christoffel symbol from a metric and
an inverse metric is given below. It is the Mathematica interpretation of the definition of a Christoffel
symbol from 2.6.1.

christ[a_,b_,c_]:=christ[a, b, c] =
Simplify [Z;=1 (1/2)inversemetric[[a, d]](
D[metric[[d, c]], coord[[b]]]
+ D[metric[[d, b]], coord[[c]]]
— D[metric[[b, c]], coord[[d]1D]]

"metric” and “inversemetric” are the metric matrix and the inverse metric matrix respectively, coord”
is the list with coordinates {t,x,y,z}. This gives the following non-zero Christoffel symbols for the
Schwarzschild metric.

. . M - M(r —2M)
fr =l =~ opr =72 ="
1 M
6 _ 16 _ —
I =Tor ==~ b = or =12
1
¢ _rd _ _
Mo =Tl == Iy =2M—r
Ig, =Ty = cot(6) I} = sin’(0)(2M — 1)
I§s = sin(6)(—cos(8))

We can now use these Christoffel symbols and theorem 2.6.1 to calculate the differential equations
for the geodesics for the Schwarzschild solution. The following piece of code is the translation of the
geodesic equation in Mathematica.

geodesic:=
geodesic =
Simplify[Table[
— Sumlchrist[i, j, k]Jcoord[[j]]'coord[[k]]’, {j, 1, n}, {k, 1,n}], {i, 1,n}]]
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Where christ is the previously defined function and coord[[j]]’ represents the derivative of the coordinate
in the coordinate list coord. This results in the following system of differential equations.

_2Mit
£= 2Mr — 1?2
0 —2M)? (Mi? =73 (6 + sin’(0)§?)) — Mr?72
r =

r3(2M — 1)

. . 207
0 = sin(0) cos(0)¢? — —
. 2¢ (7 +710cot(8))
¢ - T

3.4. Schwarzschild solution in Kerr-Schild Cartesian

In 1963 Roy Kerr expanded the Schwarzschild metric to add rotational momentum to the model. In
the original Schwarzschild model the mass is centred at a single point so has no angular momentum.
However when black holes collapse they are generally rotating so this angular momentum is retained.
This means that Kerr’s solution is more realistic. If we set the angular momentum to be 0 in Kerr’s
solution we end back up at the Schwarzschild case. The Kerr solution has different geometrical forms,
one of which is in Cartesian coordinates. This solution is called Kerr—Schild “Cartesian”. The Kerr-
Schild metric with no angular momentum in Cartesian coordinates is given by Matt Visser [10] as

xdx+ydy-+-zdz>2
T

2M
ds? = —dt2+dx2+dy2+dz2+7<dt+

where
r=+x%+y?+z?

When m = 0 this metric returns to the Minkowski metric. This solution has several advantages com-
pared to the Schwarzschild solution of part 3.3. One advantage is that the gravitational curvature is
given by only the last element. This means that an approximation could be made of a situation where
there are more than one mass point in the simulation. Another advantage is there is no singularity
along the z-axis because of the Cartesian coordinates instead of the spherical coordinates. A further
advantage is that the solution is still stable inside the Schwarzschild radius. In the real world, the vol-
ume inside of this radius is not relevant but the model should give no problems if a simulated light ray
enters this sphere because of numerical errors. Near r = 0 these problems will still occur, but this is
unavoidable. In matrix form, the metric can be written as

2M 1 2Mx 2My 2Mz
r r2 T2 T2
gtt  Gex Gty Gtz 2Mx 2Mx? 2Mxy 2Mxz
Ixt YGxx YGxy YIxz _ r2 r3 123 r3
- 2My 2Mxy 2My 2Myz
Iyt YGyx YGyy UYGyz — 3 = +1 "
9zt Yzx YGzy Yzz 2Mz 2Mxz 2Myz 2Mz?
2 3 3 3 +1
r r r r

What stands out is that this is not a diagonal matrix like previous tensor matrices of the metric. This
is because the curved space is not symmetric in the Cartesian coordinates. The fact that the matrix
is not diagonal adds two complexities to calculating the ODE for the geodesic. The first is that finding
the inverse of the matrix is not as trivial as with a diagonal matrix, where the individual element of the
matrix can be inverted. However because the last non-Minkowski part of the metric forms a null vector
this inverse can still be written in the nice form

x0x + ydy + z@z)z
T

2M
—0t® +0x* +0y* + 02% — — (—at +

The second complexity is that since more tensors are nonzero, more Christoffel symbols will be nonzero
and the complexity of the differential equation will increase. However by letting Mathematica do the
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algebraic work this inconvenience is mostly overcome. Reusing the geodesic function of part ,3.3 we
get the following ODE

Po= 2M(y2 (P —y? (M+2r))+22(r3 —z2 (M+2r))—Mr?£2 432 (r(r2 —2x2)—Mx?) —rt @M +1) (xxX+yy+2z2) - 2x3 (M+2r) (yy+22)—2yyzz(M+2r))
- 5
E

¥ = Max (% (x? (2M+3r)—-2r3)+r2t2 (2M—1)+22 (22 (2M+1)—2r(r? —z2)) +aMri (xt+yy+2z2) +y2 (2My? +r(—2x2 +y? —222))+2x% (2M +31) (yy+22)+2yyz2(2M+3r))
- 6
r

§ = My(22(x?(2M+30)—2r3)+r2 2 (2M-1)+2% (22 2M+1)—2r(r? —z2) ) +4Mri (xx+yy+22)+y? (2My? +r(—2x% +y? —222) )+ 2% (2M+31) (yy+22) +2yyz2(2M +3r))
= r6

Mz(#2(x? (2M+3n)—2r3)+r2i2 (2M-1)+22 (2% 2M+1)—2r(r2 —22)) +4Mrt (xx+yy+22) +y% (2My2 +1(—2x2 +y2 —222) ) +2x% (2M+31) (yy+22) +2yyz2(2M +3r))
r6

3.5. Kerr solution in Kerr-Schild coordinates

As mentioned in paragraph 3.4 Roy Kerr discovered the solution to the Einstein equations for a spinning
black hole. This solution, just like the Schwarzschild solution has many coordinate forms. One of the
most common ones is the solution in Boyer—Lindquist coordinates. The Boyer—Lindquist coordinates
are oblate spheroidal coordinates, a generalisation of spherical coordinates where for a given radius
you get an oblate spheroid instead of a sphere. So the 2D equivalent is elliptical coordinates instead of
polar coordinates. This solution uses the “shape” of the spinning black hole to make the metric as simple
as possible resulting in only two non-diagonal elements in the metric matrix giving more zero Christoffel
symbols and a shorter geodesic equation. This coordinate system just like the Schwarzschild solution
of paragraph 3.3 has mathematical singularities on the z-axis which leads to big numerical errors in
the ray tracing process as seen in the image generated by Raquepas and Schulz [6] in figure 3.2. One
solution is to use another numerical method near the poles as in Chan’s webinar [1].

Figure 3.2: Singularity in the z-axis as a result of using the Boyer—Lindquist coordinates. Where the image is
generated by Renaud and Schulz [6].

The more general solution to this problem is to use Kerr-Schild coordinates, which are well behaved
on the z-axis and only have a singularity at the centre of the black hole. This is the approach used in
this thesis. The Kerr-metric in Kerr-Schild coordinates is given as [10]

ds? = — dt? + dx? + dy? + dz?

2mr3 rxdx+ydy) a(ydx—xdy) =z 2
- + +-dz
r*+a?z? a?+r? a?+r?

+

with
R?=x%+y%+ 22

R%Z —a? + \/(RZ - a2)2 + 4a?z2
2

r =
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Where a is the rotational parameter that can vary between 0 and M. As a — 0, we get the Schwarzschild
case of paragraph and if also M — 0 we get the Minkowski case. In matrix form, we write the metric as

gt Gix Gty Ytz
Ixt Gxx Yxy IGxz | _
Iyt YGyx YGyy UIGyz
gzt gzx gzy gZZ
2M7r3 2Mr3(ay+rx) 2Mr3(ry—ax) 2Mr?z
a?z2+r4 (a?+r?)(a?z%+r4) (a?+r?)(a?z%+1r*) a?z2+r4
2Mr3(ay+rx) 2Mr3 (ay+rx)? 2Mr3 (ay+rx)(ry—ax) 2Mr?z(ay+rx)
(@+72)(a2z2+7%)  (a2+72)*(a222+7%) (@2+1r2)*(a2z2+1%)  (a%+r2)(a?z2+1%)
2Mr3 (ry—ax) 2Mr3 (ay+rx)(ry—ax) 2Mr3(ry—ax)? 2Mr?z(ry—ax)
(a2+r2)(a?z%+14) (a2+72)* (a2z2+74) (a2+712)% (a2z2+74) (a%+7r2)(a2z2+1%)
2Mr?z 2Mr?z(ay+rx) 2Mr?z(ry—ax) 2Mrz? 11
a?z?+r4 (a?+7r2)(a?z%+1%) (a?+7r2)(a?z%+r%) a?z2+r4

This shows the many off-diagonal elements and complexity of the metric. Especially the expression
for r leads to long partial derivatives when calculating the Christoffel symbols. The Mathematica code
of paragraph 3.3 does however still produce the correct geodesic equations. Because this system
of differential equations is multiple pages long it is not given here. There exist ways to optimize this
systems and lower the number of floating point calculations needed [2]. This leads to less computation
needed but the same results, so for the limited time of this thesis was not deemed necessary.



Ray tracing in curved space

4.1. Ray tracing

Ray tracing is a technique in 3D graphics to create a 2D projection of a 3D scene. It is generally a
more computationally intensive method of rendering than more common methods but allows for more
realistic lighting effects. We will be using ray tracing because this technique can also be extended to
images in curved spaces where light does not travel in a straight line.

The ray-tracing process starts by placing a camera in your virtual scene, in front of this camera a
virtual screen is projected. Now we can trace a ray starting from the camera going through the pixel of
the virtual screen and continuing into the scene. Using vector calculus we are able for every object in
the scene to calculate if there is an intersection between the object and the light path. This intersection
point then determines the colour of the pixel given on the virtual screen. This process is illustrated in
figure 4.1.

The implementation of this ray-tracing algorithm was made by following the excellent ebooks Ray
Tracing in One Weekend [7] and Ray Tracing: The Next Week [8] of Peter Shirley. These books give a
very detailed and step-by-step approach to implementing the code allowing for a solid structure and a
great understanding of the code. This formed a solid basis which was later extended for curved spaces.
The code is written in C++ which is compiled straight to machine code giving better performance than
higher-level programming languages like Python and Matlab. These higher-level languages often do
have libraries which are written using faster protocols but this limits the flexibility of the implementation.

The ray tracer has two different objects which can be placed in the scene, spheres and flat squares.
Checking for intersection with a sphere can be done by finding the root of a quadratic equation. Check-
ing for an intersection with a square can be done by finding the intersection point with the plane con-

camera
origin

|

ray miss

Figure 4.1: Graphic from the scratchpixel.com blog illustrating the ray tracing process
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taining the square and then checking if this point lies on the square. Another feature of the ray tracer
is that two different materials are implemented. The first material has Lambertian reflectance, which
means that a light ray reflects diffusely using Lambert’s cosine law. When a light ray hits the object it
is reflected off the object in the direction which is chosen randomly in a circle tangent to the point of
impact. This kind of reflectance leads to an object that has a matt appearance. By recursively following
the light ray bouncing off the object and letting every bounce influence the colour of the pixel, shadows
appear in the image because light can then be blocked by objects. The other material implemented is a
light-emitting material. This material only gives off light, so light bounces are not registered and when a
light ray hits it the path is ended there. This process is illustrated in the following piece of pseudocode.
Where ray is a vector with a position and a direction.

Algorithm 1 Basic ray tracing algorithm

for i < 0,imageHeight do
for j < 0,imageWidth do

ray « GetRay(i, j, cameraPosition) » Generate ray trough screen
Imagel(i][j] « PixelColor(ray) « Color pixels of image
end for
end for
function PixelColor(ray)  Recursive function for bouncing ray

for all object € objects do
if Hit(ray, object) then « When ray hits, scatter
scatterdRay « Scatter(ray, object)
return object.color(ray) * PixelColor(scatterdRay)
end if
end for
return BackgroundColor(ray) « No further hits, exit recursion
end function

To avoid hard edges in the picture and average out the hard random noise of the Lambertian scatters
it is possible to sample the pixels multiple times with a small random offset. At this stage, the program
can generate the following scene of figure 4.2 filled with coloured Lambertian balls against a blue sky
background.

Figure 4.2: Image of Lambertian spheres generated by the ray tracer in flat space
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To generate more realistic images, the textures of objects are necessary. The previously explained
code used solid colours for the objects, but to add textures to the object we can map the point of
intersection with the light ray to a location on a texture image. By centring a ball around the camera
position with the texture of NASA's Deep Star Map 2022 [11] we can project the milky way realistically.
A ball with Earth’s texture was added to make the composition of figure 4.3.

(a) NASA Deep Star Map 2020 (upper) and (b) Ball with earth texture and celestial sphere with Deep Star Map texture
earth texture (lower)

Figure 4.3: Combining Textures to create a image of earth in front of the milky way

4.2. Extending ray tracing to curved space

The big difference between ray tracing in curved space is that the light rays do not travel in a straight line.
Since light rays travel at the constant speed of light and do not undergo any acceleration they travel
along the geodesics of chapter 3 that have the Minkowski metric n = 0 locally everywhere. To find
the paths in the Schwarzschild case of a single mass point we can use either the series of differential
equations from paragraph 3.3 or of paragraph 3.4. Because of the previously stated benefits, we will
use the latter. For the Kerr case of a rotating black hole, we will use the differential equations derived
from paragraph 3.5. We now need to set up the initial conditions for the light rays. If we are far enough
away from the mass object the curvature will decrease and the space will be approximately Minkowski.
This means that we can approximate the position and orientation of the light rays by the ones produced
in the previous algorithm in Euclidean space. They all start at the camera so for the x, y, z coordinates
we must choose the coordinates of the camera position. The time variable t can be chosen arbitrarily
so we will use t = 0. For the velocities we will insure the speed of light in the initial conditions, this is
done by choosing the velocities such that n = 0. For each pixel i,j we calculate the velocities such
that they point on the virtual screen of the original ray tracing algorithm from section 4.1. This velocity
is then normalized such that 2 + y2 + 22 = 1. In the ray-tracing process we follow the light ray in a
backward direction, to do this and insure the speed of light we will use ¢ = —1. So the initial conditions
can be written for every pixel i,j as

_ . Xpixel(i,j)
xl,] - xCamera xl,] - ”(x . . . Sz . )”E
pixel(i,j)» Ypixel(i,j)r Zpixel(i,j)
yii=y Fup = Ypixel(i,j)
i,j — Jcamera i,j — E
I (Xpixei(i,jy Ypixel(i,jy Zpixer(i,jy)]
_ . pixel(ij)
Zj,j = Zcamera Zi,j

| (Xpixer(i,jy Ypixet(i,jy Zpixerci, ) 1E

ti,j =0 ti,j =—1
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Now that we have the system of differential equations and initial conditions we can numerically integrate
to get the path the light rays would travel. To do this the classic Runge—Kutta method was used be-
cause it has a reasonable accumulated error of 0(h*) and is also used in other relativistic ray tracers [1].

We are now able to approximately get the points along the path of the light ray. It is not however
possible to do ray tracing in an efficient way along a curve. So the light path is approximated by line
segments in between the points on the curve as illustrated in figure 4.4, where the black line is the
path of light and the red lines are used by the ray tracer. The program finds the intersection of the ray
with any of the objects, if this intersection lies between the two points the colour of the object on that
point will be adapted. In figure 4.4 this is illustrated by the upper curve hitting the ring around the black
hole. To stop the ray from travelling indefinitely two stopping conditions are implemented. The first
one is if the ray intersects with a black sphere at the Schwarzschild radius. Light is not able to escape
this sphere and the original pixel becomes black. This is illustrated in the lowest light ray of figure 4.4.
The second stopping condition is if the ray hits the background sphere around the black hole. If this
is the case the angle of the light ray when it hits the sphere determines the position on the textured
sphere that is sampled. This simulates the background sphere having an infinite radius, illustrated by
the middle light ray of figure 4.4.

\

mass object

area border

Figure 4.4: The ray-tracing process illustrated in 2D. Where 3 different geodesics are black and there linear
approximations in red at every integer value of the progress variable 2. The upper geodesic hits the ring around
the black hole, the middle one hits the celestial sphere and the lower one hits the Schwarzschild radius sphere.
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The program follows the following pseudocode to generate the images. For every pixel, the Pixel-
Color algorithm is called which recursively steps over the curve and checks if it has not intersected any
of the objects or satisfied any of the stopping criteria in between.

Algorithm 2 Ray tracing algorithm in curved space

n « 100 e Set maximum number of steps
for i < 0,imageHeight do
for j « 0,imageWidth do

X « SetX(i, j, cameraPosition) « Set initial conditions
Image[i][j] « PixelColor(X, ray, n) « Color pixels of image
end for
end for
function PixelColor(X, ray, n) « Recursive function for bouncing ray

X « RK4_Step(X)
ray « UpdateRay(ray, X)
for all object € objects do
if Hit(ray, object) then « When ray hits, scatter
X, scatterdRay« Scatter(ray, object, X)
return object.color(ray) * PixelColor(X, scatterdRay, n)
end if
end for
if d(blackHole, ray) > 12 * r gchwarzschiid then

return BackgroundColor(ray) « Limit reached, exit recursion
end if
if n < 0 then

return errorMessage « Too little steps, exit program
end if
return PixelColor(X, ray, n — 1)  Not stopped, next step

end function
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4.3. Resulting Images

Now that we have adjusted the ray tracer to make use of the curved light paths we can generate images
of virtual black holes. Figure 4.5 shows the results of an image generated by the algorithm. It is the
Schwarzschild case using Kerr-Schild coordinates with the properties G = M = 1 resulting in a black
hole with a Schwarzschild radius of 2. The background is NASA's Deep Star Map [11]. The curvature
is clearly visible in the picture, the milky way in the background can be seen to the left of the black hole
as well as to the right. This is because light rays originating from the milky way can both curve around
the black hole from the left side of the black hole or the right side and hit the camera. So the same
”picture” can be seen from different angular locations. Around the black hole, multiple rings are visible
which correspond to light rays making consecutive orbits and ending up at the camera position where
a small change of the exit angle can make the difference between 3 or 4 orbits around the black hole.

Figure 4.5: Schwarzschild black hole in front of the milky way with M = 1, G = 1 and NASA's Deep Star Map as
the celestial sphere. The curvature leads to multiple projections of the milky way background around the black
hole. The image is 1080 pixels high and has 8 samples per pixel.
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Just like stars and planets, black holes can have particles orbiting them. These particles form the
accretion disk surrounding the black hole. This accretion disk is filled with fast-moving and high-energy
particles thus emitting light. To model the accretion disk a 2D circular texture was added around the
black hole that emits light. The light emitted by the accretion disk overshadows the background light,
so the celestial sphere will be solid black. The innermost stable orbit is the smallest orbit for which
matter can have a stable circular orbit around the black hole. This determines the inner circle of the
accretion disk, and for a non-rotational black hole is equal to 3 - rschwarzschiid- 1here is no limit on the
size of the accretion disk outer radius, but a radius of 8 - rschwarzschila Was chosen. The texture used
for the simulation can be seen in figure 4.7. The result of the simulation can be seen in figure 4.6. The
back side of the accretion disk is visible as the light rays originating from the disk can travel in a curved
path over the black hole and reach the camera. Multiple smaller versions of the disk are visible around
the black hole as light travels in multiple circles around the black hole and ends up at the camera.

Figure 4.6: Schwarzschild black hole with M = 1, G = 1, a black celestial sphere and the accretion disk from
figure 4.7. The accretion disk has a inner radius of 3 - r'schwarzschia @nd an outer radius of 8 - rsehwarzschid- 1€ image
is 800 pixels high and has 16 samples per pixel.

Figure 4.7: Texture for the accretion disk consists of an orange ring with varying opacity simulating different
brightness levels.
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We can now also use the geodesic paths from paragraph 3.5to simulate a Kerr black hole. The
camera position, location of the accretion disk, M, and G will remain the same but we will have rotation
parameter a = 0.99 instead of 0. This rotation will cause extra curvature of space-time, visible in the
asymmetry of the image. Where the left side of the accretion disk appears longer than the right side
and the shadow of the black hole has moved to the right. The image is only 400 pixels high and has 4
samples per pixel instead of 800 and 16 respectively. This is because the render time was much longer
using the full Kerr metric. Even with the lower image quality settings figure 4.8 took over 2 hours to
render whereas the render process for figure 4.6 took only a few minutes.

Figure 4.8: Kerr black hole with M = 1, G = 1, a = 0.99, a black celestial sphere and the accretion disk from
figure 4.7. The accretion disk has a inner radius of 3 - rschwarzschia @nd an outer radius of 8 - rsehwarzschid- 1€ image
is 400 pixels high and has 4 samples per pixel.

again



Fitting the parameters of a Kerr black
hole

Because of the curvature of space-time and the distortion of light rays by this curvature, it is not trivial
to estimate the parameters of an observed black hole. A way to still be able to get these parameters is
to simulate the observed black hole and compare this simulated black hole with the actual black hole.
We will assume that we have a picture of the observed black hole, the mass of the black hole and the
radius of the accretion disk. The two parameters we want to estimate are the angular momentum of
the black hole and the inclination of the accretion disk.

(a) Edge on view of a Kerr black hole with M =1, G = 1, (b) Schwarzschild black hole with M = 1,6 = 1, ¢ = =
a=095,¢ = 3 and an accretion disk with outer radius 7
3. .rSchwarzschild.

and an accretion disk with outer radius 3 - rSchwarzschild

Figure 5.1: r* : In red the distance from the centre of the black hole shadow to the right edge of the disk. r~ :
In blue the distance from the centre of the black hole shadow to the left edge of the disk. h : In blue the distance
from the centre of the shadow to the lower edge of the disk.

We assume that the plane of rotation of the black hole is the same as that of the accretion disk. To
measure the angular momentum we must have a side view because there are no asymmetries in the
plane tangent to the accretion disk.We define r* and r~ as in figure 5.1 (a). The ratio between r* and
r~ can now be used to estimate the rotation parameter a. In the following table the values for r* and
r~ are given in pixels for the case M = 1, G = 1, we are looking at the black hole in the plane tangent
to the accretion disk and the disk had a diameter of 6 : rsghwarzschiig- YWhich is small for an accretion disk
but allows us to measure using a low-resolution simulation.

The curvature caused by the rotation of the black hole results in unequal lengths v~ and r*. In this
case we have a relation between the rotation % ratio and the ratio between r* and the total diameter

T+

—+ that seems linear.
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% r~ (pixels) r7* (pixels) — 7
0,00 | 76 76 0,500
0,20 | 77 72 0,517
0,40 | 79 7 0,527
0,60 | 80 69 0,537
0,80 | 86 67 0,562
0,90 | 85 65 0,567
0,95 | 87 65 0,572

To measure the inclination of the accretion disk we can use the ratio between r* and h as defined in
figure 5.1. In non-curved space, we would expect this ratio to be equal to cos(¢) where ¢ is the angle
of the inclination. In curved space, this is however not true and we can use the black hole visualisation
to get the actual values. In this simulation the parameters where M = 1, G = 1, a = 0 and the diameter
of the accretion disk was again 6 - rschwarzschild-

The ratio % gives values for ¢ that are higher than the expected cos(¢). The ratio is the same as
T
cos(¢p)at¢p =0and ¢ = % but is higher in between.

¢  h(pixels) 77 (pixels) = cos(¢)
= |90 89 1,01 1,00
= | 95 90 1,06 0,97
=98 90 1,09 0,90
= | o7 91 1,07 0,78
= | 87 91 0,96 0,62
= | 69 91 0,76 0,43
= | 38 93 0,41 0,22
Z o 91 0,00 0,00

These ratios can be hard to pinpoint for combinations of non-zero inclination and rotational mo-
mentum but illustrate the ability to study astronomical observations of a black hole with the pictures
generated by the ray tracing algorithm.



Conclusion

In this thesis, the mathematics and ray racing algorithm for generating images of a Kerr black hole
with an accretion disk in a celestial sphere where studied and implemented. This allowed us to create
amazing visualisations of black holes. There are however still limitations to the implemented approach.

One of the assumptions made is the shape and texture of the accretion disk that surrounds the
black hole. This shape was assumed to be a flat circle with a hole in the middle. The actual structure
of a black hole’s accretion disk could be more complicated. The accretion disk of an actual black hole
would also have asymmetries in colour and brightness because of the Doppler effect, this is however
not modelled in this thesis.

The second main limitation is the speed of the algorithm. Especially rendering an image of a ro-
tating Kerr black hole can take hours because of the number of calculations needed to numerically
integrate the multi-page system of differential equations. There are shorter ways to write the system
and these could be implemented. An additional way to decrease the render times is to implement par-
allel computing. Multiple calculations of pixel colour can be done in parallel on different computer cores
to significantly increase the speed of the progress.

Acknowledging the shortcomings of the model, it can still be useful to study the properties of ob-
served black holes. In the future, we expect to get higher-resolution images of black holes. We can
then use these images to estimate the inclination of the accretion disk and the angular momentum of
the black hole. The ray tracing model also makes it plausible to see if our mathematical models of
a black hole are correct and discover the structure of the material surrounding the black hole in the
accretion disk. Making ray tracing in curved space-time a essential tool to study the effects of general
relativity such as objects like black holes
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Code

The code for this thesis with instructions for building and running is available at:
https://github.com/thomaskamminga/RayTracingUsingRelativity
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