
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

GPU-Accelerated
Atmospheric Large Eddy
Simulation
Preparing the Dutch Atmospheric Large Eddy
Simulation model for the Exascale Era

C.A.A. Jungbacker

GPU-Accelerated
Atmospheric Large
Eddy Simulation

Preparing the Dutch Atmospheric Large Eddy
Simulation model for the Exascale Era

by

C.A.A. Jungbacker

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday, March 28 at 10:30 AM.

Student number: 4911067
Project duration: May, 2023 – March, 2024
Thesis committee: Dr. S. R. de Roode, TU Delft, chair

Dr. F. R. Jansson, TU Delft, supervisor
Dr. P. Simões Costa, TU Delft, supervisor
Prof. dr. A. P. Siebesma, TU Delft

Cover: Storm Cell Over the Southern Appalachian Mountains by
NASA (Modified)

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

With the completion of this thesis, my time as a student at TU Delft has come to an end.
During my BSc in civil engineering, I developed a passion for fluid dynamics, numerical
mathematics and scientific programming. Naturally, when the time came to choose an
MSc program, I was searching for something in which I could combine the three. After I
attended an information session on the Geoscience and Remote Sensing track and was
introduced to the field of atmospheric modeling, I knewmy destiny. Needless to say, this
thesis topic really was the cherry on top of the cake.

This thesis would not have been possible without my supervisors. First and foremost,
I would like to thank Fredrik, my daily supervisor, for his support during this project.
Besides providing me with excellent guidance and valuable feedback, you have made me
feel part of the research group by invitingme to various sectionmeetings, introducingme
to new people and showing off the cool projects you were using DALES for. I look forward
to working with you in the future. Pedro, thank you for your great advice on OpenACC
programming and for helping me out with the infamous Poisson solver. Last but not
least, thank you Stephan for setting me up with this topic in the first place and for the
enthusiasm with which you have received my work over the past months.

I would also like to thankNiels Jansen for keeping Suske andWiske (the GPUworkstations,
named after the famous cartoon characters) running during my thesis work, and SURF
(www.surf.nl) for the support in using the National Supercomputer Snellius. The com-
puting time was provided by the Ruisdael Observatory (www.ruisdael-observatory
.nl).

Finally, a word of thanks to my friends and family for their support over the past eleven
months, and to my fellow students in “Het Afstudeerhok” on the third floor. I truly cher-
ished the coffee breaks and the trips to PSOR, the latter of which seemed to happen
increasingly more often near the end of our theses.

Caspar Jungbacker
Delft, March 2024

iii

www.surf.nl
www.ruisdael-observatory.nl
www.ruisdael-observatory.nl

Abstract

Large Eddy Simulation (LES) is a mathematical technique for performing simulations of
turbulent flows, such as those found in the Earth’s atmosphere. Compared to traditional
numerical weather and climate models, LES is more accurate in representing turbulent
processes and cloud dynamics. The computational burden of LES, however, has histor-
ically limited its application to relatively small domain sizes. In this work, part of the
DALES atmospheric LESmodel was ported to Graphics Processing Units (GPUs) using the
OpenACC programming model. GPUs, originally designed for accelerating computations
related to 3D computer graphics, excel at parallel computations, which are abundant in
LES models. The performance of the GPU port of DALES was measured on an NVIDIA
RTX 3090 in a desktop workstation and an NVIDIA A100 in the Snellius supercomputer
and compared to the existing CPU implementation. For the BOMEX intercomparison
case, a speedup of 11.6 was achieved versus 8 CPU cores on the desktop system, while
on Snellius a speedup of 3.9 was observed compared to 128 CPU cores. Furthermore,
the existing MPI parallelization of DALES was adapted such that multiple GPUs can be
used simultaneously. The multi-GPU implementation was tested on up to 64 NVIDIA
A100 GPUs. This thesis represents a step towards the enhancement of the scalability of
DALES, enabling simulations on larger domains at higher resolutions. While a substantial
acceleration of DALES was achieved, further efforts are needed to port more components
of themodel to the GPU to facilitate the simulation of increasingly realisticmeteorological
phenomena.

v

Contents

Preface iii

Abstract v

1 Introduction 1

2 Atmospheric Large Eddy Simulation 3
2.1 Turbulent flows . 3
2.2 Turbulence modeling . 4
2.3 Towards high-resolution weather and climate models 6
2.4 DALES . 7

2.4.1 Prognostic equations . 7
2.4.2 Subfilter-scale model . 8
2.4.3 Mass conservation . 9
2.4.4 Discretization . 10
2.4.5 Parallelization . 10
2.4.6 Applications . 11

3 Graphics Processing Units 13
3.1 CPU and GPU architecture . 13
3.2 Programming GPUs . 16
3.3 Usage of GPUs for computational fluid dynamics (CFD) 17
3.4 Trends in GPU computing . 18

4 Implementation 19
4.1 OpenACC . 19
4.2 Offloading loops . 19

4.2.1 The kernels construct . 20
4.2.2 The parallel construct . 20

4.3 The Poisson solver . 21
4.4 Optimizations . 23

4.4.1 Optimizing data locality . 23
4.4.2 Memory allocation . 24

4.5 Asynchronous kernels . 25
4.6 Extension to multiple GPUs . 26

5 Validation and Benchmarking 27
5.1 BOMEX . 27
5.2 Model validation . 27
5.3 Performance metrics . 28
5.4 System configuration . 30
5.5 Speedup . 31
5.6 Scaling . 34
5.7 Single precision calculations . 36

vii

viii Contents

6 Conclusions and Recommendations 39
6.1 Conclusions . 39
6.2 Recommendations . 40

6.2.1 Accelerating more components . 40
6.2.2 Performance tuning . 40
6.2.3 Exploring portability . 40

A Compiling and Running DALES on GPUs 49
A.1 Setting up the NVIDIA HPC SDK . 49
A.2 Obtaining the DALES source code . 49
A.3 Running DALES on the GPU . 50

1
Introduction

Large Eddy Simulation (LES) is a technique used to accurately simulate complex fluid
flows, of which the Earth’s atmosphere is an example. Specifically, LES explicitly partly
resolves turbulence, as opposed to traditional numerical weather and climate models.
The latter use parameterizations for turbulent processes, leading to significant uncertain-
ties (Schalkwijk, Jonker, Siebesma, & Van Meijgaard, 2015). However, due to resolution
requirements, LES is computationally too expensive to apply on large domains.

Since it was discovered that Graphics Processing Units (GPUs) can be used to accelerate
Artificial Intelligence (AI) models, the complexity of these models has been increasing at
an ever-increasing rate (Mittal & Vaishay, 2019). This has sparked the onset of a feedback
loop, where successes in AI lead to improvements in GPU technology, and vice versa. AI
models consist of a large number of parallel computations, an area where the GPU excels.
Fortunately, LES models are also comprised of such computations. Therefore, GPUs can
help accelerate LES models and enable simulations on larger domains.

This thesis describes the process of GPU-accelerating DALES, an LES code tailored for
atmospheric flows, by using the OpenACC programming model. The efforts are limited to
the dynamical core andmoist thermodynamic routines of DALES. Furthermore, themodel
is going to be adapted such that multiple GPUs can be used simultaneously. Validation of
the accelerated model will be done through an approach based on ensemble statistics. A
study of the performance of the model will be done on computer systems on two different
scales: a desktop system with consumer hardware, and the Snellius supercomputer,
hosted at SURF1 on the Amsterdam Science Park. For both systems, the speedup of the
accelerated model is going to be examined and on Snellius, the scaling to multiple GPUs
will be tested.

The outline of this report is as follows: in chapter 2 the theory behind the modeling of
turbulent flows is discussed and a technical description of DALES is given. Chapter 3
will explain GPU technology, and how GPUs can be used to accelerate fluid simulation
codes. Then in chapter 4, the implementation of OpenACC in DALES will be described.
Chapter 5 will present the results of the validation and performance studies. Finally, the
conclusions and recommendations for future work are to be found in chapter 6.

1https://www.surf.nl/

1

https://www.surf.nl/

2
Atmospheric Large Eddy Simulation

This chapter focuses on the science of computational fluid dynamics. First, a general
description of turbulent flows is given. Second, different techniques for performing
computer simulations of turbulent flows are explained and discussed in the context of
numerical weather and climate modeling. Finally, the subject model of this thesis, the
Dutch Atmospheric Large Eddy Simulation (DALES) model, will be discussed in more
detail.

2.1. Turbulent flows
Under the right conditions, a fluid (or gas) in motion exhibits circular patterns that vary
in size (Figure 2.1). A flow that features such patterns is described as a turbulent flow, and
in turbulence theory, the circular patterns are called eddies (Pope, 2000). We, as mankind,
are surrounded by these kinds of flows in our daily lives. Examples include the flow of
water through pipes, airflow around a moving car, waterfalls and the Earth’s atmosphere.
Because turbulent flows are so predominantly present in our living environment, they
are studied intensively by the scientific community and the industry. With these insights,
accurate computer models are developed that attempt to predict the effects of turbulence.

To characterize turbulent flows, several scaling laws and non-dimensional numbers have
been derived. The Reynolds number Re is defined as the ratio between inertial forces and
viscous forces in a fluid:

Re= Inertial forces
Viscous forces

= uL

ν
(2.1)

in which u is the flow speed,L is a characteristic length scale of the flow, usually deter-
mined by the geometry of the flow, and ν is the kinematic viscosity of the flow. In turbulent
flows, the inertial forces dominate and the Reynolds number is therefore high (> 4000
(Pope, 2000)).

In turbulent flows, the larger an eddy, themore unstable it is. Therefore, large eddies tend
to break up into slightly smaller eddies. These smaller eddies are once again unstable
and break up into even smaller eddies. This phenomenon is repeated until the eddies are
small enough such that the viscous forces in the fluid are able to convert the remaining
kinetic energy into heat. The length scale at which the conversion of kinetic energy into
heat happens is called the Kolmogorov length scale, and is given by:

3

4 Chapter 2. Atmospheric Large Eddy Simulation

η=
(
ν3

ε

)1/4

(2.2)

where ε is the rate of dissipation of kinetic energy.

2.2. Turbulence modeling
The motion of fluids is mathematically described by the famous Navier-Stokes equations,
of which various forms exist. Here, the form that applies to incompressible fluids is used.
An incompressible fluid is a fluid whose density does not change as a result of pres-
sure changes (Pope, 2000). Using Einstein’s summation convention, the Navier-Stokes
equations for an incompressible fluid are given by:

∂ui

∂xi
= 0, (2.3)

∂ui

∂t
+u j

∂ui

∂x j
=− 1

ρ

∂p

∂xi
+ν∂

2ui

∂x2
j

+ gi , (2.4)

where ui denotes the velocity (i = 1,2,3, corresponding to x, y and z directions respectively),
ρ is thedensity, p is thepressure, gi denotes thebody forces andν is thekinematic viscosity.
If one desires to study the evolution of a flowfield in time, onewould have to find a solution
to Equations 2.3 and 2.4. However, no analytical solution to the general form of these
equationshas been found. Tofindanapproximate solution to theNavier-Stokes equations,
numerical methods are often used.

The objective of solvingEquations 2.3 and2.4 such that eddies of all scales are represented
imposes two requirements on the computational mesh. First, the mesh has to span a
large enough area such that the largest scales can be captured. Second, the mesh spacing
must be small enough to be able to represent the Kolmogorov scale. If both requirements
aremet, all turbulentmotions can be resolved and no parameterizations are needed. This
technique is called Direct Numerical Simulation (DNS) (Pope, 2000). While DNS is very
accurate, it is computationally very expensive. Even for moderate domain sizes, DNS is
often unfeasible due to the resolution requirements.

Smagorinsky (1963) proposed the idea of explicitly resolving only the largest, most en-
ergetic eddies and using a model for the smaller eddies. This idea was further worked
out by Lilly (1967) and Deardorff (1974). To arrive at the governing equations of LES, a
filter is applied to Equations 2.3 and 2.4. This filter can be thought of as a low-pass filter;
small-scale, high-frequency motions are filtered out and large-scale motions remain
(Leonard, 1975). After the filtering operation, the filtered Navier-Stokes equations are
obtained:

∂ui

∂xi
= 0, (2.5)

∂ui

∂t
+ ∂ui u j

∂x j
=− 1

ρ

∂p

∂xi
+ν∂

2ui

∂x2
j

+ fi −
∂τi j

∂x j
. (2.6)

2.2. Turbulence modeling 5

In Equation 2.6, it can be seen that the term ∂τi j /∂x j arises, which is called the subfilter-
scale stress tensor. The evaluation of τi j requires a model, called the subfilter-scale model.
Some examples of subfilter-scale models include the Smagorinsky model (Smagorinsky,
1963), the Bardina model (Bardina, Ferziger, & Reynolds, 1980) or the Vreman model
(Vreman, 2004). These models are turbulent viscosity models, which assume that the
subfilter-scale motions similarly dissipate kinetic energy as the viscous forces in the
fluid. Because the small-scale turbulent motions are modeled in an LES, the required
resolution of the computational mesh is significantly lower compared to DNS, making it
a suitable technique for a wider variety of problems, specifically problems that require
larger domain sizes. Still, a high enough resolution must be used such that enough
of the energy-carrying eddies are resolved. For this reason, LES is not considered as
computationally cheap.

Instead of attempting to (partly) resolve the small-scale turbulent motions, as done with
DNSandLES, one could also choose tomodel the effect of turbulence on themeanflowfield.
Models that follow this line of thought are referred to as Reynolds-Averaged Navier-Stokes
models (Pope, 2000). The governing equations of a RANSmodel follow from applying the
Reynolds averaging rules to the Navier-Stokes equations (Equations 2.3 and 2.4). To this
end, the velocity field ui is decomposed into a mean part ui , and a part u′

i that represents
fluctuations due to turbulence, such that:

ui = ui +u′
i . (2.7)

This act is called Reynolds decomposition. This decomposition operation is applied to
Equations 2.3 and 2.4, yielding:

∂
(
ui +u′

i

)
∂xi

= 0, (2.8)

∂
(
ui +u′

i

)
∂t

+
(
u j +u′

j

) ∂(
ui +u′

i

)
∂x j

=− 1(
ρ+ρ′) ∂

(
p +p ′)
∂xi

+ν∂
2
(
ui +u′

i

)
∂x2

j

+ gi + g ′
i , (2.9)

Finally, all terms in Equations 2.8 and 2.9 are averaged in time, yielding the RANS equa-
tions (Pope, 2000, Chapter 4):

∂ui

∂xi
= 0, (2.10)

∂ui

∂t
+u j

∂ui

∂x j
=− 1

ρ

∂p

∂xi
+ν∂

2ui

∂x2
j

+ gi +
∂u′

i u′
j

∂xi
. (2.11)

The term u′
i u′

j in Equation 2.11 is called the Reynolds stress. A RANSmodel only solves
Equations 2.10 and 2.11 for the mean quantities ui and p, meaning that the Reynolds
stress term needs to be modeled. Often used models include turbulent viscosity models
(similar to LES) or Reynolds stress models, which use transport equations to evaluate the
Reynolds stress (Pope, 2000). More recently, the use of machine learning methods has
been explored formodeling the Reynolds stress (Brunton, Noack, & Koumoutsakos, 2020).

6 Chapter 2. Atmospheric Large Eddy Simulation

Figure 2.1: Visualization of the velocity distribution of a jet flow, as simulated by the three turbulence
modeling techniques. From left to right: Direct Numerical Simulation (DNS), Large Eddy Simulation (LES)

and Reynolds-Averaged Navier-Stokes (RANS). Adapted from Rodriguez (2019).

Because turbulence is not explicitly resolved by RANSmodels, the required resolution is
the least out of the three simulation techniques. For this reason, RANS is computationally
cheap but is also the least accurate.

A visual comparison between the three techniques can be found in Figure 2.1. Following
the theory, it can be seen that compared to the full-resolved DNS flow field, the LES
simulation is able to reproduce most of the large-scale turbulent features. Especially at
a greater distance from the entry of the main jet (at the top of the image), LES loses the
small-scale details compared to DNS. The RANS flow field shows little instabilities at all
as a consequence of the time averaging.

2.3. Towards high-resolution weather and climate models
Due to limitations of computational capacity, global numerical weather and climate mod-
els often use grids with low horizontal resolution in combination with the RANS formula-
tion. Due to the low resolution, small-scale phenomena, such as cloud formation, have
to be parameterized, which introduces significant uncertainties in weather forecasts
and climate projections (Slingo & Palmer, 2011). At higher resolutions (in the order of
1-2 kilometers), these small-scale processes are still not fully resolved, but their influ-
ence on the resolved flow field can be captured partly (Schär et al., 2020). Therefore,
global weather and climate models are continuously developed and updated to support
increasing resolutions. One of the problems that arise at these high resolutions is that the
aforementioned parameterizations do not perform well when convective processes are
partly resolved, and therefore have to be adapted to this fact (Wyngaard, 2004). The range

2.4. DALES 7

of resolutions at which this problem persists is also referred to as the terra incognita, or
the grey zone (Schalkwijk et al., 2015; Wyngaard, 2004). Furthermore, Schär et al. (2020)
identify the exploitation of modern Graphics Processing Unit technology as another key
challenge towards high-resolution weather and climate modeling. GPU technology will
be explained more thoroughly in chapter 3, but for now it suffices to say that a GPU is a
hardware device that can accelerate specific calculations of a weather or climate model.
To allow a numerical weather or climate model to make use of this specialized hardware,
significant changes to the source code are needed.

On the other end of the resolution spectrum, the LES technique has been used to develop
atmospheric models that explicitly resolve turbulent motions and do not require the
aforementioned parameterizations, therefore also lacking the associated uncertainties
(Schalkwijk et al., 2015). Hence, LES can potentially act as a replacement for RANS-based
models for high-resolution atmospheric modeling. However, as discussed before, the
computational burden associated with LES is quite high, which limits the application of
LES over very large domain sizes. Again, GPUs can help speed up calculations, making
large-scale LES possible. The use of GPUs in LES has been demonstrated by Schalkwijk
et al. (2015), who were able to do a weather forecast-like simulation over the entire
Netherlands using an LESmodel.

2.4. DALES
The Dutch Atmospheric Large Eddy Simulation (DALES) model is a large-eddy simulation
model designed for high-resolution modeling of the atmosphere and its processes, like
cloud formation and precipitation (Heus et al., 2010; Ouwersloot, Moene, Attema, &
De Arellano, 2017).

2.4.1. Prognostic equations
DALES uses five prognostic variables to define the state of the atmosphere: three velocity
components u, v and w , the liquid water potential temperature θl and the total water
specific humidity qt . The general form of the momentum equation (Equation 2.4) for the
atmosphere is given by (Stull, 1988):

∂ui

∂t
+u j

∂ui

∂x j
=− 1

ρ

∂p

∂xi
− gδi 3 + fi . (2.12)

Compared to Equation 2.4, Equation 2.12 lacks the viscous term and introduces the
gravity g . In atmospheric flows, the Reynolds number (Equation 2.1) is large, which is why
the viscous term can be safely neglected. DALES makes use of the anelastic approximation,
meaning that density differences are neglected except for the vertical direction (Böing,
2014). To this end, a time-independent base density profile ρ0 is introduced, which only
varies in the vertical direction. Equation 2.12 then can be written as:

∂ui

∂t
+ 1

ρ0

∂ρ0ui u j

∂x j
=− 1

ρ

∂p

∂xi
− gδi 3 + fi . (2.13)

The pressure gradient ∂p/∂xi /ρ can be expressed as a function of the virtual potential
temperature (Böing, 2014):

8 Chapter 2. Atmospheric Large Eddy Simulation

1

ρ

∂p

∂xi
≈−gδi 3 − gδi 3

θv −θv,e

θv,e
+ ∂

∂xi

p ′

ρe
, (2.14)

in which the subscript e denotes an environmental state that only varies in the vertical
direction and in time. p ′ is the pressure fluctuation from the environmental pressure pe .
In turn, θv can be evaluated from the prognostic variables:

θv =
(
θl +

Lv

cpdΠe
qc

)(
1−

(
1− Rv

Rd
qt

)
− Rv

Rd
qc

)
, (2.15)

where Lv , cpd , Rv and Rd are constants (their meaning and values are omitted here for
brevity but can be found in e.g. Stull (1988)), Πe = (pe /p0)Rd /cpd in which p0 = 105 is a
reference pressure and qc is the cloud condensate, which can be diagnosed. After com-
bining Equations 2.13 and 2.14 and applying the LES filtering operation, we arrive at the
governing momentum equation of DALES:

∂ui

∂t
=− 1

ρ0

∂ρ0ui u j

∂x j
− ∂π

∂xi
+ gδi 3

θv −θv,e

θv,e
+ fi −

∂τi j

∂x j
(2.16)

where π denotes the modified pressure given by π= p ′/ρe +2e/3, where e is the turbulence
kinetic energy. Furthermore, fi contains the body forces (e.g., the Coriolis force) and τi j is
the subfilter-scale stress tensor. Similarly, the momentum equation for a scalar ϕ, where
ϕ ∈ {θl , qt }, is given by:

∂ϕ

∂t
=− 1

ρ0

∂ρ0u jϕ

∂x j
−
∂Ru j ,ϕ

∂x j
+Sϕ, (2.17)

in which Ru j ,ϕ is a sub-filter scale flux and Sϕ is a source term.

2.4.2. Subfilter-scale model
DALES uses an eddy-viscosity model to evaluate the subfilter-scale fluxes. Following this
model, the subfilter-scale stress tensor in Equation 2.6 is given by:

τi j =−Km

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (2.18)

in which Km is the eddy viscosity for momentum. For scalars, the subfilter-scale flux Ru j ,ϕ

is given by:

Ru j ,ϕ =−Kh
∂ϕ

∂x j
, (2.19)

where Kh is the eddy diffusivity for thermodynamic scalars. Km and Kh can be calculated
in two ways: as a function of the turbulence kinetic energy e as formulated by Deardorff
(1980) or using the Smagorinsky model. Following Deardorff (1980), Km and Kh are
modeled as:

2.4. DALES 9

Km = cmλe1/2, Kh = chλe1/2, (2.20)

where cm and ch are constants and λ is a length scale. This formulation introduces a new
prognostic variable, namely the turbulence kinetic energy e. The prognostic equation for
e is given by:

∂e

∂t
=−∂u j e

∂x j
−τi j

∂ui

∂x j
+ g

θ0
Rw,θv −

∂Ru j ,e

∂x j
− 1

ρ0

∂Ru j ,π

∂x j
−ε, (2.21)

of which the first two terms can be calculated from the resolved velocity field. The terms
containing subfilter-scale fluxes (Ru j ,ϕ) and the dissipation rate εhave to be parameterized.
The third term, representing the subfilter-scale production of TKEdue to buoyancy effects,
is parameterized as:

g

θ0
Rw,θv =

g

θ0

(
ARw,θl +BRw,qt

)
, (2.22)

in which A and B are coefficients whose value depends on moisture and temperature.
Next, the fourth and fifth terms of Equation 2.21, which represent the turbulent transport
of TKE, are combined into a single term:

− ∂

∂x j

(
Ru j ,e + 1

ρ0
Ru j ,π

)
= ∂

∂x j

(
2Km

∂e

∂x j

)
. (2.23)

Finally, the dissipation rate ε is modeled as:

ε= cεe3/2

λ
, cε = 0.19+0.51

λ

∆
, (2.24)

where ∆ is the LES filter width. Equations 2.21, 2.22, 2.23 and 2.24 are combined into a
prognostic equation for the square root of e:

∂e1/2

∂t
=−u j

∂e1/2

∂x j
+ 1

2e1/2

(
Km

(
∂u j

∂xi
+ ∂ui

∂x j

)
∂ui

∂x j
−Kh

g

θ0

∂

∂z

(
Aθl +B q t

))
+ ∂

∂x j

(
2Km

∂e1/2

∂x j

)
− cεe

2λ

(2.25)

2.4.3. Mass conservation
Following the anelastic approximation, the expression for mass conservation reads:

∂ρ0ui

∂xi
= 0. (2.26)

Equation 2.26 states that the divergence of the velocity field ui must be equal to zero.
This condition can be enforced by using Chorin’s projection method (Chorin, 1967). Per
Chorin’s method, the time integration of ui is split into two parts. The first step consists

10 Chapter 2. Atmospheric Large Eddy Simulation

of calculating an intermediate velocity field that is not divergence-free, by evaluating all
right-hand terms of Equation 2.16, except for the pressure term:

∂u∗
i

∂t
=− 1

ρ0

∂ρ0ui u j

∂x j
+ gδi 3

θv −θv,e

θv,e
+ fi −

∂τi j

∂x j
, (2.27)

where u∗
i denotes the velocity field that is not divergence-free. From Equation 2.27, it

follows that:

∂ui

∂t
= ∂u∗

i

∂t
− ∂π

∂xi
. (2.28)

To obtain an explicit equation for the pressure π, the divergence of Equation 2.28 can be
taken. After rearranging terms, this leads to the following expression:

∂2π

∂x2
i

= ∂

∂xi

∂u∗
i

∂t
. (2.29)

Despite its simplicity at first sight, Equation 2.29 is often the most costly part of a CFD
simulation (Costa, 2018). DALES offers the option to solve this equation with the Fast
Fourier Transform (FFT) algorithm, which can offer significantly better performance
compared to iterative solvers that are often used (Hockney, 1965). After Equation 2.29 is
solved, the velocity field is corrected according to Equation 2.28, which concludes the
projection method.

2.4.4. Discretization
For the discretization of the governing equations, DALES makes use of an Arakawa C-grid
(Arakawa & Lamb, 1977). This means that the velocity components are defined at the
faces of the grid cells, while pressure, turbulence kinetic energy and scalars are defined
at the centers of the grid cells. DALES features several numerical schemes to evaluate
advective terms, ranging from a simple but less accurate second-order central difference
scheme to accurate fifth and sixth-order schemes. The κ advection scheme, as described
by Hundsdorfer, Koren, vanLoon, and Verwer (1995), is also available. The latter scheme
ensures that the advected quantity remains positive.

For time integration of prognostic variables, DALES uses a third-order Runge-Kutta
scheme. The maximum time step size ∆t for which numerical stability is guaranteed is
determined by the Courant-Friedrichs-Lewy criterion (CFL) and the diffusion number d :

CFL= max

(∣∣∣∣ui∆t

∆xi

∣∣∣∣) , d = max

(
3∑

i=1

Km∆t

∆x2
i

)
. (2.30)

For the CFL and d maximum values are prescribed, from which the maximum time step
∆t is determined.

2.4.5. Parallelization
To speed up computations, DALES is parallelized using the Message Passing Interface
(MPI). MPI is a protocol and programming interface for managing data communication
between processors. Whenmultiple processors are used for running a DALES simulation,

2.4. DALES 11

the computational domain is split up into sub-domains, and each sub-domain is assigned
to a processor. MPI is then used whenever a processor needs access to data that is located
on a different sub-domain. The sub-domains can have various shapes, as illustrated in
Figure 2.2. The computational efficiency of each decomposition depends, among other
factors, on the size and shape of the full domain and the number of processors used.

Figure 2.2: Possible domain decompositions in DALES. The full computational domain is illustrated by the
cube and sub-domains are indicated by the different colors. From left to right: z-aligned pencils, y-aligned

slabs and x-aligned slabs.

2.4.6. Applications
DALES has been tested in a variety of model intercomparison studies. Examples include
the BOMEX case on shallow cumulus convection (Siebesma et al., 2003), the GABLS case
on stable boundary layers (Beare et al., 2006) and the ASTEX case on stratocumulus
transition (Van Der Dussen et al., 2013). DALES also features an interactive chemistry
module, whichhasbeenusedbyVilà-GuerauDeArellano et al. (2011) to study thebehavior
of atmospheric chemical reactants over the Amazon rainforest. De Bruine, Krol, Vilà-
Guerau De Arellano, and Röckmann (2019) expanded DALES with an explicit aerosol
scheme to study aerosol-cloud interactions. Furthermore, a Python interface has been
developed for DALES by Van Den Oord et al. (2020). Using this interface, the model can
be coupled to other (global) weather and climate models. This functionality has been
exploited by Jansson et al. (2019) to perform superparameterization experiments; a DALES
instance is nested in each column of a selected region of a global atmosphericmodel such
that processes related to clouds and convection are solved explicitly.

3
Graphics Processing Units

This chapter starts with an introduction to the technology behind Graphics Processing
Units (GPUs) and how it compares to Central Processing Units (CPUs). Next, different
methods of GPU programming are presented. Third, some examples of how GPUs are
applied to accelerate CFD applications are given. Finally, some trends in the field of GPU
computing are discussed.

3.1. CPU and GPU architecture
Themain component of a CPU is the core, which performs arithmetic operations. Nowa-
days, CPUs often consist of multiple cores, from which the termmulticore processor arises
(Rauber & Rünger, 2023). These cores each have private access to a small amount of fast
memory called cache memory. Cores are connected via an interconnection network to form a
CPU. The main memory is not part of the CPU and is physically located somewhere else
in the computer. A schematic of a multicore CPU can be found in Figure 3.1. In a CPU,
each core can be controlled individually, which makes the CPU a Multiple Instructions,
Multiple Data (MIMD) system; each core can fetch instructions by itself at any time and
it does not have to wait until all other cores in the CPU have finished executing (Flynn,
1966). In practice, the MIMD design of CPUs means that each core can be occupied with a
different application. A modern high-end CPU can have in the order of tens of cores.

The GPU was originally invented to accelerate computations revolving around 3D com-
puter graphics (Aamondt, Wai Lun Fung, & Rogers, 2018). In the early 2000s, it was
discovered that GPUs could also be used for general calculations. Specifically, GPUs were
found to offer enormous performance benefits over the traditional CPU for highly parallel
computations, such as the matrix-matrix product (Larsen & McAllister, 2001).

GPUs are made up of Streaming Multiprocessors (SMs), and each SM contains multiple
cores that can perform calculations (Rauber & Rünger, 2023). A schematic representation
of an SM can be found in Figure 3.2. Unlike the cores inside a CPU, the cores in an SM
cannot function independently; each core has to execute the same instruction, and a
new instruction can only be executed once all cores have finished executing the previous
instruction. This execution model is called Single Instruction, Multiple Data (SIMD)
(Flynn, 1966). The NVIDIA A100, a modern high-end data center GPU, consists of 108
SMs, each containing 64 single-precision cores for a total of 6,912 cores and 32 double-
precision cores for a total of 3,456 cores (NVIDIA, 2020). Despite their massive amount

13

14 Chapter 3. Graphics Processing Units

Figure 3.1: Diagram of a modern multicore CPU (Rauber & Rünger, 2023). The arrow indicates a connection
to other components of the computer, such as the main memory.

of cores, GPUs do not outperform CPUs in every workload. To fully utilize the potential
performance of a GPU, an algorithm has to be suited for SIMD execution. I.e., an algorithm
has to consist of a (very) large amount of independent calculations that can be executed
in parallel. This is the reason why GPUs can never fully replace CPUs. The majority of the
tasks related to the operating system of a computer are sequential by nature, for which
the CPU is much better suited.

Another area where GPU design is different from traditional CPUs is the memory con-
figuration. GPUs generally do not share memory with CPUs. Rather, GPUs store data in
memory that is located on the GPU itself. This memory is optimized for high throughput,
meaning that a large amount of data can flow from or to memory in a given time interval
(Aamondt et al., 2018). CPUmemory, on the other hand, is located somewhere else in the
computer and is optimized for providing low latency. This means that the time between
the CPU requesting data from memory and receiving the requested data is low. The
high memory bandwidth makes the GPU also a suitable device for memory-intensive
applications.

The last important component in a GPU system is the interconnection between CPU
and GPU. This connection is often quite slow compared to the memory bandwidth of
both CPUs and GPUs. Because the CPU and GPU do not share memory, data transfers
between CPU and GPU are needed during runtime, which can significantly slow down an
application.

3.1. CPU and GPU architecture 15

Figure 3.2: Diagram of a Streaming Multiprocessor (SM). The boxes indicated by “INT32”, “FP32” and
“FP64” are the computational cores for integers, single-precision floating-point and double-precision

floating-point calculations, respectively. (Rauber & Rünger, 2023)

16 Chapter 3. Graphics Processing Units

3.2. Programming GPUs
To exploit the capabilities of GPUs, an application has to be written using a specialized
programming model. There are numerous programming models available, each with
different characteristics, which can be categorized as follows:

Native kernel-basedmodels
Kernel-basedmethods involve the writing of special functions (also referred to as kernels)
that describe the computations that have to be done by a single thread of the GPU. At
runtime, this kernel is then launched across multiple threads, which all perform the
kernel on their own piece of data. The word native in this context means that the model is
designed for use with a specific family of GPUs. Perhaps the most well-known example of
a native kernel-based model is NVIDIA’s Compute Unified Device Architecture (CUDA)
(Dally, Keckler, & Kirk, 2021). Native kernel-based programming models provide very
fine-grained control over the GPU, thereby allowing for a great degree of optimization
and consequently, the best performance. A drawback, however, is that these methods
require (partial) rewriting of existing code. If a CPU version of the program is required
in addition to a GPU version, two separate versions of the code have to be maintained,
which is expensive and can introduce bugs.

Portable kernel-basedmodels
As opposed to native kernel-based models, portable kernel-based models are designed to
work on hardware from a variety of vendors. The program still consists of kernels, but
these kernels can be launched with different backends of different accelerator vendors.
The great benefit is that a program can run on different hardware without the need to
rewrite the code, hence the name portable. When the application is compiled, the target
hardware is selected and the kernels are translated into code that can run natively on
the selected hardware. Examples of portable kernel-based programming models include
Kokkos (Trott et al., 2022) and SYCL (Khronos Group, 2023).

Directive-basedmodels
A fundamentally different approach to GPUprogramming is the use of compiler directives.
Compiler directives are instructions to the compiler to handle a section of code differently.
These compiler directives are placed near computationally expensive sections of the code
that canbenefit fromGPUacceleration. When the code is compiled, the annotated sections
of code are compiled into GPU-compatible code. Because directive-basedmethods do not
require the writing of kernels, an application can be ported to GPUs with relatively low
effort. An additional benefit of compiler directives is that they are added to the original
code, meaning that only one version of the source code has to be maintained. When the
application has to be built for CPUs, the directives are simply ignored by the compiler. Two
popular directive-based programming models are OpenACC (Farber, 2017) and OpenMP
(Antao et al., 2016).

Standard language parallelism
A more recent trend has been the implementation of parallel programming features
directly in programming languages. An example is the Fortrando concurrent construct.
Its usage is similar to directive-basedmodels: parallelizing loops. With the right compiler,
do concurrent loops can be executed on GPUs (Kedward et al., 2022). A great benefit of
standard language parallelism is that it is part of the syntax of the language, thus offering
good usability for developers already familiar with the language.

3.3. Usage of GPUs for computational fluid dynamics (CFD) 17

3.3. Usage of GPUs for computational fluid dynamics (CFD)
Niemeyer and Sung (2014) have examined the status of GPU computing in the field of
CFD. To demonstrate the potential benefits of using GPUs for CFD, two case studies
were performed: a 2D Laplace equation solver, resembling the Poisson equation that
is often found in CFD codes, and a lid-driven cavity flow. Four implementations were
tested: single-core CPU, multi-core CPU with OpenMP, GPU with CUDA, and GPU with
OpenACC. For mesh sizes up to 5122, the wall-clock time for the GPU implementations
exceeded that of the multi-core GPU implementation. While the authors do not explicitly
explore the possible causes of this behavior, it can be argued that the increase in wall-
clock time is due to data transfers between the CPU and GPU. For larger mesh sizes,
the GPU implementations outperformed the CPU implementations. Specifically, for the
Laplace equation, the GPU solver showed a speedup of about 4.6, while for the lid-driven
cavity flow, the speedup was about 2.8. Remarkably, Niemeyer and Sung (2014) showed
that as the mesh size increases, the wall-clock time of the OpenACC implementation
converges to that of the CUDA implementation, indicating that the benefits of the low-level
optimizations that CUDA offers are not as important for large problem sizes.

Costa (2018) has developed a tool for DNS of turbulent flows, called CaNS. The dynamical
core of CaNS is very similar to that of DALES: both use finite-difference discretization on
a structured, staggered grid, an FFT-based solver for the pressure, and third-order Runge
Kutta time integration. Parallelization of CaNS is achieved throughdomaindecomposition
with MPI, with further fine-grained (i.e., at the level of loops) parallelization via OpenMP.
CaNS was later adapted for GPUs using CUDA Fortran (Costa, Phillips, Brandt, & Fatica,
2021), but this was later switched out in favor of OpenACC. NVIDIA’s cuFFT library was
used to perform the FFT calculations on GPUs. Performance analysis was done on two
systems: anNVIDIADGXStation, a system comparable in size to amodern desktop PC and
containing 4 Tesla V100 GPUs, and an NVIDIA DGX-2, a system that is more comparable
to something that one would find in a supercomputer. The NVIDIA DGX-2 contains 16
of the same Tesla V100 GPUs. Costa et al. (2021) found that for a constant problem size,
one would need about 6100 to 11200 CPU cores to match the wall-clock time per time
step of the 16 Tesla V100s in the NVIDIA DGX-2. This is still a conservative estimate,
as linear scaling was assumed for the CPU code, whereas in reality, performance often
scales sublinearly for a given problem size due to overhead introduced by communication
between CPUs.

DALES itself has been ported to GPUs before by Schalkwijk, Griffith, Post, and Jonker
(2012). To this end, the original Fortran code of DALES was translated to C++, and calcu-
lations were moved to the GPU using CUDA, resulting in the GPU-resident Atmospheric
Large-Eddy Simulation (GALES) model. Schalkwijk et al. (2012) found that GALES was
able to reduce the wall-clock time per time step by a factor of 2 compared to DALES.
Since then, the company Whiffle has adopted GALES and further developed it into the
GPU-Resident Atmospheric Simulation Platform (GRASP). GRASP is often used for very
accurate simulations of windfarms (Verzijlbergh, 2021).

Another LESmodel that shares characteristics with DALES is MicroHH, as described by
VanHeerwaarden et al. (2017). In terms of the physical assumptions, DALES andMicroHH
are almost identical, but MicroHH also features the option to performDNS of atmospheric
flows. MicroHH is written in C++ and simulations on the GPU are made possible through
CUDA. Again, significant performance benefits were found when running the model on
the GPU. A limitation of MicroHH, however, is that it cannot utilize more than one GPU at
a time.

18 Chapter 3. Graphics Processing Units

3.4. Trends in GPU computing
As can be seen in Figure 3.3, the number of supercomputers with hardware accelerators
(of which GPUs are an example) installed has grown steadily over the last decade. With
the launch of Frontier in 2022, supercomputers have reached a significant milestone: the
ability to perform 1×1018 floating-point operations per second (Choi, 2022). To reach this
level of performance, Frontier too makes heavy use of GPUs. This trend can be partially
attributed to the rapid advances in the field of Artificial Intelligence (AI), whose algorithms
greatly benefit from the large number of cores offered by GPUs (Mittal & Vaishay, 2019).
As the development of AI algorithms does not show any sign of slowing down (Xu et al.,
2021), GPU technology will continue to improve for the foreseeable future fromwhich the
CFD community can profit too.

Figure 3.3: Total number of systems in the TOP500 (list of the 500 most powerful supercomputers
worldwide) that feature hardware accelerators over time. Data from TOP500 (2023)

4
Implementation

In this chapter, the technical details of the implementation of OpenACC in DALES are
discussed. First, an explanation is given on why OpenACC was chosen for DALES. There-
after, it is explained how OpenACC was used to offload computationally expensive parts of
the code to the GPU, where special attention is given to the Poisson solver. Finally, some
further optimizations are covered, as well as the extension to multiple GPUs.

4.1. OpenACC
As discussed in section 3.2, there are numerous programming models available for tar-
getting accelerators (GPUs). For this work, the directive-based approach with OpenACC
was chosen. This choice was based on several observations. For once, DALES features a
wide palette of physical schemes for the simulation of processes related to clouds, precip-
itation, land surface, buildings, et cetera. Consequently, the sheer volume of the DALES
source code is also quite large. Because it can be added to the existing code, the usage of
OpenACC prevents the code base from growing even more. Second, DALES is constantly
being updated and extended by developers with various backgrounds, ranging from stu-
dents to researchers. Often, these developers do not possess intimate knowledge of GPU
architecture and GPU programming. In this regard, OpenACC is a good choice because it
removes the need for low-level optimization of kernels. Finally, DALES is deployed on
various computer systems, ranging frommodest desktopworkstations to supercomputers
like Snellius and Fugaku (Jansson et al., 2023). In this regard, OpenACC is a good choice
because it can be compiled for a variety of computing devices.

To compile OpenACC code, one has to use a compatible compiler. Throughout this work,
the NVFortran compiler has been used. This compiler is included in the NVIDIA HPC SDK,
a collection of compilers and libraries for the development of GPU applications, such as
an MPI library.

4.2. Offloading loops
The first step towards a GPU port of DALESwas to offload computationally expensive parts
of the code. These parts generally consist of (nested) loops that perform some calculation
local to each grid point. This offloading was done by adding compute constructs to the code.
In OpenACC terms, a compute construct instructs the compiler that the annotated code
should be compiled for the selected device. Here, the term device refers to the accelerator.

19

20 Chapter 4. Implementation

Following this terminology, the CPU is referred to as the host OpenACC features three
compute constructs: kernels, parallel and serial. In this work, the kernels and
parallel constructs were used, which will be discussed in the following section.

4.2.1. The kernels construct
When a loop or structured block is annotated with a kernels construct, the compiler is
given the freedom to parallelize the code by itself. To do so, the compiler first has to deter-
mine if the annotated code can be parallelized at all. Thismeans that the generated device
kernels are guaranteed to produce correct results, but it may also lead to unnecessary
serial execution of parallelizable code because the compiler has to make a conservative
decision.

In this work, the kernels construct was mainly used to offload sections that contained
Fortran array syntax. Array syntax is a special syntax that allows for compact notation of
operations on (multi-dimensional) arrays. For example, instead of constructing a (nested)
loop to add two arrays to each other, one can simply write C = A + B. The kernels
construct can be used to efficiently offload these sections of code. An example of a section
of Fortran array syntax that is offloaded with the kernels construct can be found in
Listing 4.1.

Listing 4.1: Fortran array syntax offloaded using the OpenACC kernels construct. This snippet comes from
the module tstep of DALES and resets the arrays for the prognostic variables between time steps.

1 !$acc kernels
2 up = 0.
3 vp = 0.
4 wp = 0.
5 thlp = 0.
6 qtp = 0.
7 svp = 0.
8 e12p = 0.
9 !$acc end kernels

4.2.2. The parallel construct
Similar to the kernels construct, the parallel construct also lets the compiler generate
parallel device code. The difference between the two is that the parallel construct lets
the programmer decide how a section of code should be parallelized, while the kernels
construct transfers this responsibility to the compiler.

By default, code that is annotated with a parallel construct will be executed by all
available cores on the device redundantly. In other words, all cores will execute all loop
iterations at the same time. It should be clear that this will not result in any speedup,
since the parallelism offered by the accelerator is not being exploited. Therefore, by itself,
the parallel is not useful. To distribute loop iterations over the available device threads,
the loop directive can be added to a parallel construct. An example of the usage of the
parallel loop construct can be found in Listing 4.2. In this example, the loop contains
1000 iterations. When the programencounters this loop, 1000 threadswill be spawned on
the device. Each core will get a private copy of the loop index i and will do the calculation
for this value of i.

In DALES, loops are often nested. These nested loops can be offloaded by nesting loop
directives. This is demonstrated in the left pane of Listing 4.3. Again, when the outermost
loop is encountered, 1000 threads will be generated. Then, each thread will generate
1000 more threads for the next loop. This procedure is repeated until the innermost loop

4.3. The Poisson solver 21

is reached. Another option is to add a collapse clause to a parallel loop directive.
The collapse clause will combine all nested loops into one large loop. This approach is
often more efficient than nesting loop directives as all threads can be generated at once.

It should be noted that for a loop to be parallelizable, all iterations should be independent
of one another. In contrast to the kernels construct, the compiler will not check for
such dependencies if the parallel loop construct is used. Dependencies between loop
iterations can lead to incorrect results or performance bottlenecks if one does not take
appropriate action.

Listing 4.2: Example of a simple loop that is parallelized using the parallel loop constuct.
1 !$acc parallel loop
2 do i = 1, 1000
3 a(i) = b(i) + 2
4 end do

Listing 4.3: Two ways to offload nested loops: in the left pane by nesting loop directives, and in the right
pane by using the collapse clause. This snippet comes from the tstepmodule of DALES and integrates

the velocity field u in time.

1 !$acc parallel loop
2 do k = 1, k1
3 !$acc loop
4 do j = 2, j1
5 !$acc loop
6 do i = 2, i1
7 u0(i,j,k) = um(i,j,k) + rk3coeff

* up(i,j,k)
8 end do
9 end do
10 end do

1 !$acc parallel loop collapse(3)
2 do k = 1, k1
3 do j = 2, j1
4 do i = 2, i1
5 u0(i,j,k) = um(i,j,k) + rk3coeff

* up(i,j,k)
6 end do
7 end do
8 end do

4.3. The Poisson solver
As discussed in subsection 2.4.3, DALES uses a pressure correction method to ensure a
divergence-free velocity field. In the current version of DALES, the Poisson equation can
be solved in two ways: with Fast Fourier Transforms (FFTs) or an iterative solver. In this
work, the solver based on FFTs has been extended to make use of GPUs.

The Poisson solver consists of five steps :

1. Evaluate the right-hand side of Equation 2.29;

2. Perform a 2D FFT at every vertical level;

3. Solve a tridiagonal system;

4. Perform a 2D inverse FFT at every vertical level;

5. Correct the velocity field with the gradient of the calculated pressure to make it
divergence-free.

Steps (1), (3) and (5) mainly consist of nested loops that have been parallelized using the
parallel loop and kernels constructs. In DALES version 4.4, the FFTs of steps (2) and
(4) can be evaluated either by using the FFTPACK library (Swarztrauber, 1982), which is
included with the source code of DALES, or the more recent Fastest Fourier Transform
in the West (FFTW) library (Frigo & Johnson, 1998). Neither one of these libraries can

22 Chapter 4. Implementation

utilize GPUs. Therefore, DALES had to be coupled to a new FFT library. Currently, there
aremultiple FFT libraries available that support execution on GPUs. NVIDIA offers cuFFT,
which is designed for NVIDIA GPUs (Nvidia, n.d.). cuFFT is written in C++/CUDA, but
Fortran bindings are included. rocFFT is a similar library developed by AMD, for AMD
GPUs (AMD, 2023b). Additionally, AMD offers the hipFFT library (AMD, 2023a). hipFFT
functions as a wrapper library around cuFFT and rocFFT, allowing for execution on both
Nvidia GPUs and AMD GPUs. Another promising new library is VkFFT, developed by
Tolmachev (2023). VkFFT supportsmultiple backends allowing for execution on all major
vendors of data center GPUs (Nvidia, AMD, Intel). In addition, VkFFT supports discrete
cosine transforms, which are useful for simulations with Dirichlet or Neumann boundary
conditions 1 (Schumann & Sweet, 1988). For this work, the cuFFT library was chosen
because of the availability of Fortran bindings and its tight integration within the NVIDIA
HPC SDK.

The evaluation of 2D Fourier transforms in a pencil decomposition is a non-trivial task.
In this setting, each sub-domain has access to the full vertical direction, but only parts
of the horizontal direction (see Figure 2.2). To be able to evaluate a Fourier transform
in a horizontal direction, the sub-domains have to be transposed such that each device
has full access to that direction. This transposition is further complicated by the fact that
communication between processes (GPUs) needs to take place. The complete forward
FFT algorithm is as follows:

1. The domain is transposed from z-aligned to x-aligned;
2. 1D Fourier transforms are evaluated in the x-direction;
3. The domain is transposed from x-aligned to y-aligned;
4. 1D Fourier transforms are evaluated in the y-direction;
5. The domain is transposed from y-aligned to z-aligned.

After the final transposition, a tridiagonal system is solved for the Fourier coefficients
of the pressure ˆ̂p. Then, to convert the Fourier coefficients back to pressure in physical
space, the algorithm above is executed in reverse order. The full routine for solving the
Poisson equation in a pencil decomposition is visualized in Figure 4.1.

1DALES version 4.4 does not support Dirichlet or Neumann boundary conditions. However, work is
currently being done to include these in an updated version of DALES (see Liqui Lung, Jakob, Siebesma, and
Jansson (2023))

4.4. Optimizations 23

Figure 4.1: Impression of transpositions required for a multi-dimensional FFT on a pencil-decomposed
domain.

4.4. Optimizations
4.4.1. Optimizing data locality
In most computing systems, the host and device both have their own memory space.
Therefore, if the device has to perform calculations on some data, this data has to be
copied from the host memory to the devicememory. With OpenACC, the programmer has
the option to leave datamanagement to the compiler or tomanage it themselves explicitly.
In most cases, letting the compiler decide when to move data will be detrimental to the
performance of an application.

Data movement by the compiler will be illustrated with Listing 4.4 as an example. Upon
reaching the first loop, the array a is not present in device memory yet. Hence, the
compiler adds an instruction right before the loop to copy array a from host to device
memory. When the copy has finished, the loop is executed on the device. After the loop is
done executing, a is copied back to the host again and the device memory is freed. Next,
the program reaches the second loop. Once again, the compiler adds instructions to copy
a to the device before the loop and copy it back to the host after the loop. One may notice
that there is no need to perform any data movement between these loops; data can be
copied to the device before the start of the first loop, and only has to be copied back to
the host after the second loop has finished executing. Since data transfers are a major
bottleneck in device computing, optimizing the transfers manually is an essential task to
improve performance.

OpenACC offers multiple directives to manage data transfers manually. The enter data
directive has been used the most in DALES. This directive can be used with a create
clause, which takes a list of variables as input and allocates device memory for these
variables, or a copyin clause, which does the same but additionally initializes the device
copies of the variables with the values that are in host memory. Data that is moved by
the enter data directive stays on the device until the program has finished executing,
or an exit data directive is encountered. The latter deallocates device memory after
(optionally) copying the data back to the host. Thismethod of datamanagement is applied
to the algorithm of Listing 4.4 in Listing 4.5. In this example, array a is allocated before
the first loop. Between the two loops, no data movement is done. After the second loop is
done, a is copied back to the host memory and the device memory that was occupied is
made available again.

24 Chapter 4. Implementation

In Listing 4.5, one can also notice the use of the default clause. This clause can be used
on a compute construct and tells the compiler what the default assumption on the locality
of the data accessed in a loop should be. By providing the value present, the compiler
assumes that the data is already present on the device and no data movement is needed.
If the data is not present, the program will crash. The default(present) clause was
added to all compute constructs in DALES to ensure that all data resides on the device.

Listing 4.4: Example algorithm without explicit data management.
1 !$acc parallel loop
2 do i = 1, i1
3 a(i) = a(i) + 2
4 end do
5

6 !$acc parallel loop
7 do i = 1, i1
8 a(i) = a(i) / 4
9 end do

Listing 4.5: Example algorithm with explicit data management by including enter data and exit data
directives.

1 !$acc enter data copyin(a)
2

3 !$acc parallel loop default(present)
4 do i = 1, i1
5 a(i) = a(i) + 2
6 end do
7

8 !$acc parallel loop default(present)
9 do i = 1, i1
10 a(i) = a(i) / 4
11 end do
12

13 !$acc exit data copyout(a)

4.4.2. Memory allocation
In DALES, most of the memory required for storing variables is allocated during the
startup procedure and is deallocated only after the simulation has finished. Some sub-
routines, however, allocate and deallocate memory once they are called, which can be
every time step. As memory allocations on the GPU are quite costly, this workflow can
introduce a significant performance penalty. This was fixed by moving arrays from the
subroutine scope to the module scope. The arrays are then allocated once during the
startup procedure and are kept alive throughout the time loop. The implementation of
this optimization is illustrated in Listing 4.6.

4.5. Asynchronous kernels 25

Listing 4.6: Improving memory allocation. On the left, the array profile belongs to the scope of the
subroutine calculate_profile. On the right, profilemoved to the scope of the module and allocated in

the subroutine init_profile, which is called once in the startup procedure of the program.

1 module statistics
2

3 contains
4

5 subroutine calculate_profile
6 implicit none
7 real, allocatable :: profile(:)
8 allocate(profile(kmax))
9 !$acc enter data copyin(profile)
10 ! Perform calculation on profile
11 !$acc exit data copyout(profile)
12 end subroutine
13 end module

1 module statistics
2

3 real, allocatable :: profile(:)
4

5 contains
6 subroutine init_profile
7 implicit none
8 allocate(profile(kmax))
9 !$acc enter data copyin(profile)
10 end subroutine
11

12 subroutine calculate_profile
13 implicit none
14 ! Perform calculation on profile
15 end subroutine
16

17 subroutine exit_profile
18 implicit none
19 !$acc exit data delete(profile)
20 deallocate(profile)
21 end subroutine
22 end module

4.5. Asynchronous kernels
OpenACC allows for asynchronous execution of device kernels. This means that when the
host sends a task to the device, it does not wait until the device has finished executing
this task. The host is allowed to continue running the program while the device is busy
processing. New tasks can even be sent to the device while it is still occupied with the
previous task. This is possible because the device manages tasks through queues. When
the host sends a task to the device, the task is put in a queue. The device then executes
the enqueued tasks in order. Additionally, tasks can be executed concurrently by placing
them in different queues.

Asynchronous kernel execution can significantly benefit performance. This performance
increase can especially be noticed for relatively small loops that, for example, only iterate
over one or two dimensions. In these cases, the cost of sending the kernel to the device
can be relatively high compared to the actual cost of executing the kernel. Most of the
offloaded loops in DALES have beenmade asynchronous by adding an async clause to the
parallel loop or kernels directives. The usage of the async clause is demonstrated
in Listing 4.7. Here, the calculations for thvf and thv0 are fully independent and are
therefore put in two different queues (indicated by the argument provided to the async
clause). The expression for rhof depends on thvf and is therefore put in the same queue
as the latter. Once this section of code is reached during execution, all loops are sent to
the device without waiting for each to complete before sending the next one. At line 21 in
Listing 4.7, a wait directive is encountered, where the program will wait until the tasks
in all queues have been executed.

26 Chapter 4. Implementation

Listing 4.7: Example of the usage of the async clause in the thermodynamics module of DALES.
1 !$acc parallel loop default(present) async(1)
2 do k = 1, k1
3 thvf(k) = thvf(k) / ijtot
4 end do
5

6 !$acc parallel loop collapse(3) default(present) async(2)
7 do k = 1, k1
8 do j = 2, j1
9 do i = 2, i1
10 thv0(i,j,k) = (thl0(i,j,k) + rlv * ql0(i,j,k) / (cp * exnf(k))) &
11 * (1 + (rv / rd - 1) * qt0(i,j,k) - rv / rd * ql0(i,j,k))
12 end do
13 end do
14 end do
15

16 !$acc parallel loop default(present) async(1)
17 do k = 1, k1
18 rhof(k) = presf(k) / (rd * thvf(k) * exnf(k))
19 end do
20

21 !$acc wait

4.6. Extension to multiple GPUs
With OpenACC, it is possible to utilize multiple GPUs (Farber, 2017). However, OpenACC
can only make use of devices that live on the same node. In practice, this means that
one is limited to using only a few GPUs (for example, the Snellius supercomputer has 4
GPUs per node (SURF, n.d.-a)). Another option is to adapt the current MPI parallelization
described in subsection 2.4.5, which was done in this work. Following this approach, the
full computational domain is decomposed into sub-domains and distributed across CPUs.
Each CPU then has access to a GPU. This approach is very flexible as multiple nodes can
be used, allowing DALES to scale to an arbitrary number of GPUs.

As mentioned before, data transfers from GPU to CPU are expensive. To circumvent the
need for CPU-GPU data transfers when doing MPI communications, special implemen-
tations of the MPI standard have been developed, often referred to as GPU-aware MPI
(Potluri, Hamidouche, Venkatesh, Bureddy, & Panda, 2013). As the name suggests, a
GPU-aware MPI implementation can handle data that is located in GPUmemory. When a
call to the MPI library is made, the GPU-aware MPI backend checks if the provided data
is located in CPU or GPUmemory. If the data is indeed located in GPUmemory, the MPI
backend will make sure that data is transferred directly from GPU to GPU and does not go
through the CPU first.

To make the location of the data in GPUmemory available to the MPI backend, the Ope-
nACC host_data directive can be used in combinationwith the use_device clause. This
is illustrated in Listing 4.8. In this example, the reference to array in the MPI_Allreduce
call will point to device memory.

Listing 4.8: Providing a device pointer to an MPI call with a host_data directive.
1 !$acc host_data use_device(array)
2 call MPI_Allreduce(MPI_IN_PLACE, array, sz, MPI_REAL, MPI_SUM, comm, ierror)
3 !$acc end host_data

5
Validation and Benchmarking

This chapter delves into the validation and performance analysis of DALES on the GPU.
First, the test case used for validation is introduced and the results of the validation
study are presented. Next, the systems and performance metrics used for examining the
performance of the model are explained. Finally, the model performance is discussed.

5.1. BOMEX
The Barbados Oceanographic and Meteorological Experiment (BOMEX) case has been
used for benchmarking and validation of the GPU-accelerated version of DALES. This
case originates from the field experiment carried out by Holland and Rasmusson (1973).
During this experiment, observations of horizontal wind components, temperature and
specific humidity were made every 90 minutes over a 500×500 km area in the Atlantic
Ocean, east of the island of Barbados. The meteorological conditions during the observed
period of five days were relatively constant and gave rise to the development of shallow
cumulus convection without the presence of precipitation. Because of these steady-state
conditions, the BOMEX observations formed a good base for the LES intercomparison
study carried out by Siebesma et al. (2003). One of the main goals of this study was
to compare the ability of different LES models, including DALES, to produce shallow
cumulus clouds. Since the original publication, the BOMEX case has been widely used as
a benchmark for new LESmodels (e.g. Van Heerwaarden et al. (2017)). The setup of the
BOMEX case is described by Siebesma and Cuijpers (1995). Because of the nature of the
case, BOMEX only stresses a relatively limited portion of the components of DALES: the
dynamical core, which is occupied with solving the horizontal and vertical transport of
momentum and scalars, and the moist thermodynamics scheme, responsible for cloud
formation. Therefore, BOMEX is a good starting point for validation, which can later be
expanded on as more components of DALES are accelerated.

5.2. Model validation
Modifying the source code of an application carries the risk of introducing bugs. Therefore,
the updated source code was validated against the original CPU implementation to ensure
that the application logic did not change as a result of the addition of OpenACC directives
and associated optimizations. However, validation of an atmospheric code like DALES is
complicated by the fact that weather is a chaotic phenomenon. As described by Lorenz
(1963), a small change in the initial conditions of a simulation can lead to vastly different

27

28 Chapter 5. Validation and Benchmarking

outcomes. Furthermore, computers cannot work with infinitely long decimal numbers,
giving rise to intermediate round-off errors during the simulation. These round-off errors
can accumulate and influence the simulation. Therefore, the output of twomodel runs,
both started from the same initial conditions, will generally not be identical. In this
work, a statistical approach was used to validate the model instead. First, the original
CPU version of DALES was used to create an ensemble data set. For this data set, fifty
model runs (also called ensemble members) were used, each initialized with a random
perturbation applied to the prognostic fields. Next, the ensemble mean and standard
deviation were calculated. Similarly, a fifty-member ensemble was generated using the
OpenACC version of DALES. In Figure 5.1, the OpenACC ensemble mean and standard
deviation are compared to the statistics of the original ensemble for the liquid water
potential temperature θl , total water specific humidity qt (both prognostic variables),
total liquid water potential temperature flux w ′θ′l and the total moisture flux w ′q ′

t (both
diagnostic variables). The plotted quantities were calculated during the last hour of the
case. It can be seen that the statistics of the OpenACC version show good correspondence
with the original version. Hence, there is little reason to believe that the model physics
have changed as a result of the offloading.

5.3. Performance metrics
Wall clock time and speedup
Wall clock time is the total time it takes for an application to finish executing. In other
words, wall clock time is the real-world time that passes while the application is running.
When speaking of the speedup of an application, what is usually meant is that the wall
clock time of that application has decreased. Speedup is often defined as the performance
of the improved application relative to the old application for a constant problem size.
Mathematically, this is equal to:

Speedup= told
tnew

, (5.1)

in which told and tnew are the wall clock time needed to solve the same problem by the old
application and improved application respectively. In the context of DALES, a constant
problem size means that the size and resolution of the computational grid stay constant
and that the same physical schemes are used.

Strong scaling
A parallel application may still have sections that have to be executed sequentially and
therefore do not benefit from the utilization of more processors. Hence, the speedup that
an application obtains from parallelization is ultimately limited by the work that has to
be executed serially. This limitation was first quantified by Amdahl (1967) in what is now
known as Amdahl’s law:

Speedup= 1

(1− f)+ f

N

(5.2)

in which f denotes the fraction of the application that can be run in parallel, and N is
the number of processors. To illustrate the significance of Amdahl‘s law, assume an
application that can be fully parallelized. In this case, the fraction f is equal to 1. Notice
that under the assumption that f = 1, Equation 5.2 reduces to: Speedup = N . In other

5.3. Performance metrics 29

Figure 5.1: Ensemblemean vertical profiles and standard deviation of (a) liquid water potential temperature,
(b) total water specific humidity, (c) total liquid water potential temperature flux and (d) total moisture flux.

30 Chapter 5. Validation and Benchmarking

words: if the application is executed on, for example, 512 processors, it theoretically
runs 512 times faster compared to a single processor. Now, assume that only 99% of
the application can be parallelized. Using f = 0.99, it follows from Equation 5.2 that the
application only runs 83.8 times faster when using 512 processors. Therefore, to create
an efficient parallel application, the sequential portion of the application should be kept as
small as possible. The speedup of an application as a function of the number of processors
is also called strong scaling. To measure the strong scaling performance of an application,
the problem size (i.e., the number of grid points) is kept constant and the number of
processors is increased. The strong scaling performance helps to determine the optimal
amount of resources to use for an application.

Weak scaling
Gustafson (1988) voiced some skepticism regarding Amdahl’s law. He stated that it is
not realistic to assume that the problem size stays constant whenmore processors are
available for the task. Instead, it shouldbeassumed that theproblemsize tends to increase
with the number of processors. Gustafson proposed that the speedup should be calculated
as:

Speedup= (1− f)+ f ×N . (5.3)

Now, for the same parallel fraction as above (f = 0.99), using 512 processors would result
in a speedup of 506.89. This is a muchmore promising number than the upper bound
of 83.3 obtained from Equation 5.2. The performance of a parallel application in the
context of Gustafson’s law is called weak scaling. Weak scaling performance is a useful
metric to assess whether an application can efficiently tackle larger problem sizes if more
computational resources are available.

5.4. System configuration
Performance testingofDALESwasdoneon three systems: ahigh-enddesktopworkstation,
and the Snellius supercomputer. On Snellius, DALES was tested on both a CPU-only node
and a node containing GPUs. The specifications of all tested systems can be found in
Table 5.1 and an impression of a CPU andGPUnode of Snellius can be found in Figures 5.2
and5.3, respectively. OnSnellius, insteadof comparing a singleGPU to a single (multicore)
CPU, amore fair comparison is to compare one GPU to a full CPU node which contains two
(multicore) CPUs. The reason for this is that on supercomputers like Snellius, accounting
of the used resources happens through System Billing Units (SBUs). When a proposal
for a certain project is granted computational resources, an amount of SBUs is obtained.
As computing resources are being used, SBUs are subtracted from the granted budget
depending on the type and amount of systems and the run time of the application. A
single A100 GPU and a full CPU node both cost 128 SBU per hour (SURF, n.d.-b).

5.5. Speedup 31

Table 5.1: Specification of the computer systems used for performance testing of the CPU and GPU versions
of DALES.

Desktop system Snellius CPU node Snellius GPU node
CPU Intel Core i9 11900K AMD EPYC 7H12 Intel Xeon Platinum 8360Y

CPU clock speed 3.50 GHz
(5.40 GHz Turbo)

2.60 GHz
(3.30 GHz Turbo)

2.40 GHz
(3.50 GHz Turbo)

CPU cores 8 64 per socket
(2 sockets per node)

36 per socket
(2 sockets per node)

Memory 64 GB 256 GB 512 GB

GPU NVIDIA RTX 3090 - NVIDIA A100 SXM
(4 GPUs per node)

GPUmemory 24 GB - 40 GB

Figure 5.2: Snellius CPU node (Watts, 2024b).

5.5. Speedup
Wall-clock time and speedup of the GPU-accelerated DALES were measured on both the
desktop system and the Snellius supercomputer. This was done for multiple horizontal
grid configurations, starting from 128 × 128 grid points up to 1024 × 512 on the desktop
system and 1024 × 1024 grid points on Snellius. Each run was limited to 100 time steps
with afixed timestep size, andonly thewall-clock timeof the time loop itself (i.e., excluding
the startup phase of the model) was measured.

Figure 5.4 shows the wall-clock time and speedup as measured on the desktop system.
Speedup was calculated according to Equation 5.1, where told denotes the CPU run and
tnew denotes the GPU run, and was only considered for the multi-CPU case. Speedup
was found to increase with domain size until the maximum domain size of 1024 × 512
grid points was reached, where it reached a value of 11.6. The trend indicates that the
overhead related to GPU execution (sending data, sending instructions) is relatively large
for small problem sizes, but decreases with problem size.

32 Chapter 5. Validation and Benchmarking

Figure 5.3: Snellius GPU node (Watts, 2024a).

As discussed in section 5.4, on Snellius, a single GPU was compared to a full CPU node,
which hosts two 64-core CPUs (Table 5.1). Because these configurations cost the same
amount of SBUs per hour, “speedup” can also be interpreted as “cost savings” in this
case. Similar to the desktop system, speedup increased with domain size. The maximum
speedup was about 3.9. The absolute value of the speedup was lower compared to the
desktop system, as the Snellius CPU node features more CPU cores in total.

Comparing Figure 5.4 to Figure 5.5, it can be seen that theA100GPU in the Snellius system
only marginally outperformed the RTX 3090 GPU. This is an interesting observation, as
the A100 offers more than 17 times the performance in double-precision calculations
compared to the RTX 3090 (NVIDIA, 2020, 2021). This indicates that the main factor
preventing speedup is not the amount of cores in aGPU. Jansson et al. (2023)mention that
DALES was found to be limited by memory bandwidth. In other words, DALES performs
relatively few arithmetic operations to the amount of data it has to read from and write
to memory, a measure which is also referred to as arithmetic intensity. The memory
bandwidth of the A100 is only about 1.7 times higher than that of the RTX 3090, which
explains why it is only marginally faster.

Interestingly, a single desktop CPU significantly outperformed a single CPU of a Snellius
CPU node. This can be explained by the fact that the Core i9 processor in the desktop
system has a higher turbo clock speed. CPU clock speed denotes howmany instructions
a CPU can process in a second (Rauber & Rünger, 2023). In the context of scientific
computing, a higher clock speed generally leads to more computations per second but
also increases power usage and heat generation by the CPU, which is why the turbo clock
speed cannot be sustained for long periods. Overheating is generally not a problem when
only a single core of the CPU is performing at the turbo clock speed, however, from which
the desktop CPU can benefit in this test.

5.5. Speedup 33

Figure 5.4: Speedup for different horizontal grid sizes on the desktop system.

Figure 5.5: Speedup for different horizontal grid sizes on Snellius.

34 Chapter 5. Validation and Benchmarking

5.6. Scaling
Strong and weak scaling tests were performed exclusively on Snellius, as the desktop
system only features a single GPU. For strong scaling, a horizontal grid size of 1024 ×
1024 points was used, which nearly fully utilized the available 40Gb ofmemory of a single
NVIDIA A100 GPU. Then, while keeping the domain size constant, the number of GPUs
was doubled for each subsequent simulation until a maximum of 64 GPUs was reached.
The task of choosing a suitable domain decomposition was left to MPI, leading to a slab
decomposition along the y-direction in all cases. The wall-clock time of the time loop
itself (i.e., excluding the start-up phase of the model) was measured during the first 100
time steps and averaged. Figure 5.6 shows the average wall-clock time per timestep as a
function of the number of GPUs used. It can be seen that up to four GPUs, DALES scales
nearly linear, meaning that at four GPUs the simulation is almost four times as fast than
when using a single GPU. At eight GPUs, the wall-clock time is greater than when using
four GPUs. This decrease in performance is expected, as the eight GPUs are spread over
two nodes and data therefore has to traverse the inter-node interconnection network.
This network is significantly slower than the NVLink interconnection between the four
GPUs within a node.

To measure weak scaling performance, a horizontal domain size of 1024 × 1024 grid
points with a grid spacing of 100 m in both directions was used per GPU. Next, the
number of GPUs was doubled per simulation, therefore also doubling the total domain
size. The domain was extended alternating in the x and y direction. Again, the wall-clock
time of the time loop was averaged over the first 100 times steps. For this test, both
a slab decomposition along the y-direction and a pencil decomposition of the domain
were tested. In Figure 5.7, the ratio of the wall-clock timemeasured for multi-GPU runs
to the single-GPU run is plotted. A wall-clock time ratio greater than one indicates a
slowdown. In the ideal case, indicated by the horizontal black line, the runtime would
not increase with the number of GPUs as the workload per GPU stays constant. In reality,
however, inter-GPU communication introduces a performance penalty that can grow
quite significant. From Figure 5.7, it can be seen that the wall-clock time remained near
constant up to four GPUs, likely due to the availability of the fast NVLink connection
between GPUs. From eight GPUs onward, the wall-clock time increases with the number
of GPUs. This is expected, as the amount of data that has to be communicated also
increases with the number of GPU. Finally, the pencil decomposition showed strikingly
worse performance than the slab decomposition, which also worsened with the number
of GPUs. This could be explained by the fact that in the setting of a slab decomposition,
each GPU contains the full x and z directions of the domain, thus requiring two fewer
collective inter-GPU communications in the Poisson solver.

Figure 5.8 provides further evidence for the hypothesis that communications hinder
performance in simulations with multiple nodes. Here, the speedup of using 2 nodes (8
GPUs) over 1 node (4 GPUs) for different computationally expensive modules of DALES is
plotted. The grid size was equal for both simulations. It can be seen that the advection,
thermodynamics and subgrid modules experienced a speedup that was close to the ideal
value of 2. The Poisson equation solver, which contains the global transpose operations
as described in section 4.3 and therefore heavily relies on communication between GPUs,
showed a significant slowdown compared to the single-GPU case. The bar labeled “Other”
contains, among other things, the routines that manage the exchange of data at the
boundaries of the MPI sub-domains.

5.6. Scaling 35

Figure 5.6: Strong scaling on Snellius for a horizontal domain size of 1024 × 1024 grid points.

Figure 5.7: Weak scaling on Snellius for a horizontal domain size of 1024 × 1024 grid points per GPU

36 Chapter 5. Validation and Benchmarking

Figure 5.8: Speedup of the computationally most expensive modules of DALES when using 2 nodes (8 GPUs)
versus 1 node (4 GPUs) GPUs on a horizontal domain of 1024 × 1024 grid points.

5.7. Single precision calculations
DALES offers the option to store the prognostic variables as single-precision floating point
numbers (Jansson et al., 2023). As a single-precision floating point number consists of
half as many bits as a double-precision floating point number (the default precision in
DALES), it can be read from and written tomemorymuch quicker, offering possibly a very
significant performance enhancement for a memory bandwidth-bound application like
DALES. Moreover, GPUs, specifically GPUs that are produced for the consumer market,
often contain significantly more cores for single-precision calculations than for double-
precision calculations. For example, the NVIDIA RTX 3090 GPU present in the tested
desktop system (Table 5.1) features just two double-precision cores per SM for a total of
164 cores, versus 128 single-precision cores per SM for a total of 10,496 cores (NVIDIA,
2021). Therefore, switching from double-precision calculations to single-precision calcu-
lations should, in theory, lead to a 64-fold speedup on the RTX 3090.

To assess whether or not the usage of single-precision for the prognostic variables leads to
any significant performance increase, DALESwas compiledwith single-precision enabled
and the simulations described in section 5.5 were repeated on the GPU of the desktop
system. The speedup of the single-precision simulations over the double-precision simu-
lations canbe found inFigure 5.9 for different horizontal grid configurations. Interestingly
enough, single-precision simulations were only found to be slightly faster than double-
precision simulations.

Why did the usage of single-precision floating-point numbers for the prognostic variables
not lead to a speedup of 64 compared to double-precision? First, such a speedup can only
arise in the absence of anymemory considerations. As has beenmentioned several times,
DALES is a memory-bound application and a speedup of the order of 64 was therefore
already highly unlikely. A closer inspection of the source code of DALES revealed another
issue. Most Fortran compilers, including the GFortran and NVFortran compilers used in
this work, use single-precision floating-point numbers for any real-valued variable (e.g.
velocity, temperature, grid spacing, et cetera). For compatibility reasons, however, DALES

5.7. Single precision calculations 37

Figure 5.9: Obtained speedup when using single-precision floating-point numbers for the prognostic
variables.

has to be compiled with the option -fdefaultreal8 (GFortran) or -Mr8 (NVFortran),
which increases the default precision of real values to double precision. This means
that all calculations in DALES are done in double precision. When the single-precision
option for prognostic variables as described by Jansson et al. (2023) is used, only the
prognostic variables are stored in single-precision format. All other real-valued variables
and parameters are nevertheless compiled with double precision. In Fortran, when a
single-precision variable encounters a double-precision variable in a calculation, it has to
be temporarily converted to a double-precision floating-point number for the computer
to be able to execute the calculation. This means that many of the calculations in DALES
are executed in double precision, regardless of the precision used for the prognostic
variables. For this reason, the single-precision cores of the RTX 3090 GPU were still not
utilized in this test. The observed speedup in Figure 5.9 can therefore be attributed to
savings in memory bandwidth by the reduced precision of the prognostic variables.

6
Conclusions and Recommendations

6.1. Conclusions
The objective of this thesis was to accelerate the DALESmodel by using GPUs. This has
been achieved through the use of the OpenACC GPU programming model. The scope of
the research was limited to the BOMEXmodel-intercomparison case which uses a limited
subset of the physical schemes offered by DALES. Validation of the offloaded code was
done using ensembles. For both the unmodified and GPU-accelerated versions of DALES,
fifty-member ensembles were constructed and compared. The ensemble mean and
standard deviation of the GPU-accelerated version of DALES did not show any significant
deviations from the original version.

On a high-end desktop workstation, featuring an 8-core CPU and an NVIDIA RTX 3090
GPU, DALES was found to be up to 11.6 times faster when running on the GPU compared
to the 8 CPU cores. On the Snellius supercomputer, the wall-clock time of DALES running
on a single NVIDIA A100 GPU was compared to that on a full CPU node, because these
two configurations cost the same number of SBUs per hour. The GPU was up to 3.9 times
faster than the CPU node.

Oneof the goals of this thesiswas to enableDALES tomakeuse ofmultipleGPUs for a single
simulation, which was achieved through the use of GPU-aware MPI. The implementation
was tested on the Snellius supercomputer. Strong scaling tests showed near-linear strong
scaling up to 4 GPUs. From 8 GPUs onward, diminishing returns were observed. This
performance drop is most likely caused by the relatively slow interconnection between
nodes. Weak scaling tests show that multiple GPUs can be used relatively efficiently for
large domain simulations. Up to 4 GPUs, near-linear weak scaling was observed. Similar
to the strong scaling tests, a performance decrease was observed going from a single
node to multiple nodes.

In general, the performance of DALES seemed to be limited by memory bandwidth. This
is supported by the observation that the NVIDIA A100 GPU, as present in Snellius GPU
nodes, only slightly outperformed the NVIDIA RTX 3090 GPU of the desktop workstation,
despite the A100 offering 17 times the theoretical computational performance. The use
of single-precision floating-point numbers for the prognostic variables did not yield a
significant speedup either, because most of the calculations in DALES are still executed
in double precision.

39

40 Chapter 6. Conclusions and Recommendations

6.2. Recommendations
6.2.1. Accelerating more components
Since only a limited portion of DALES was accelerated in this work, a clear direction for
future work is to add OpenACC directives to other components of DALES. For example,
the Cloud Botany case as described by Jansson et al. (2023) requires, in addition to the
components used by the BOMEX case, a radiation scheme and a precipitation scheme.
Offloading more components of the model to the GPU will accelerate these more realistic
cases, and can, through longer simulations, bigger domains and/or bigger ensembles,
help with the development of new scientific insights.

6.2.2. Performance tuning
For improving performance when using a large number of GPUs (O (102) to O (103)), the
use of a specialized domain decomposition library could be explored. Romero, Costa,
and Fatica (2022) developed such a library, called cuDecomp. cuDecomp automatically
chooses themost efficient domaindecomposition and inter-GPUcommunicationbackend
at runtime. This is done through the same transposition algorithm as encountered in
the Poisson solver of DALES. While the slab decomposition outperformed the pencil
decomposition in all cases of the weak scaling benchmarks of DALES, Romero et al. (2022)
found, for an application similar to DALES, that the slab decomposition is not necessarily
themost efficient option when hundreds of GPUs are used. Moreover, Romero et al. (2022)
found that MPI is not always the most efficient backend for inter-GPU communication
between high numbers of GPUs.

As DALES appears to be severely memory bandwidth bound, the model’s performance
could be improved by attempting to reduce memory usage. In practice, this can be done
by storing fewer variables and computing more “on the fly”. This strategy will, however,
only yield a performance benefit in cases where the additional computations save on
memory operations (loading and storing data).

GPUs are well suited for calculations in single precision, especially consumer-grade GPUs
targeted for computer gaming like the RTX 3090 used in this work. Since the current
GPU port of DALES is not yet fully configured for using single-precision floating-point
numbers, performance can still be gained in this regard. Full single-precision support
can be achieved by converting more variables to variable precision, as is the case for
the prognostic variables, such that no conversion to double-precision has to be done at
runtime. During this process, care has to be taken to make sure that the loss of precision
does not result in any numerical instabilities.

6.2.3. Exploring portability
The current GPU-implementation of DALES has been tested exclusively on NVIDIA GPUs.
However, newer supercomputers are starting to feature accelerators made by different
vendors. For example, the Frontier and LUMI supercomputers both use GPUsmade by
AMD,while theGPUs of the upcomingAurora supercomputer are supplied by Intel (Trader,
2021). Therefore, it would be worthwhile to examine how DALES performs on GPUs other
than NVIDIA. While OpenACC code can be compiled for AMD GPUs, it cannot for Intel
GPUs. One approach to reaching portability is to translate the OpenACC directives to
OpenMP. While this strategy appears to be very involved, tools exist that can perform this
translation automatically (Servat, 2022). With the use of such tools, the only task left to
the developer is to validate the translated code.

Another component that requires extra care when exploring execution on GPUs from

6.2. Recommendations 41

other vendors is the FFT library. In this work, the cuFFT library has been used, which
only supports execution on NVIDIA GPUs. As discussed in section 4.3, multiple other FFT
libraries exist that support execution on AMD and/or Intel GPUs. Out of these libraries,
rocFFT supports both NVIDIA and AMD GPUs and features bindings for the Fortran
programming language. Furthermore, rocFFT has a similar interface as cuFFT andwould
therefore be relatively straightforward to implement in DALES. Alternatively, vkFFT could
be used. vkFFT offers multiple benefits over rocFFT: it supports NVIDIA, AMD and Intel
GPUs and features discrete cosine transforms for non-periodic boundary conditions.

OpenACC can also be compiled for multi-core CPUs. While DALES can already make use
of multiple CPU cores via the existing MPI parallelization, switching to OpenACC may
improve efficiency for multi-core CPU runs. The reasoning behind this line of thought is
that OpenACC is a shared memory programming model, meaning that all CPU cores have
access to the samememory space. In practice, this means that no domain decomposition
is needed (unlike with MPI) to make use of multiple CPU cores, which also removes
the need for communication between cores and thus can speed up simulations. For
simulationswithmultiple CPUs and/ormultiple nodes in a supercomputer, MPIwould still
be needed as only the cores inside a CPU can share memory. Once again, the FFT library
requires some care, as it would also need to operate in a shared memory configuration.
The performance of DALES onmulti-core CPUs using OpenACC is particularly interesting
for supercomputers that rely on massive amounts of CPUs for their computational power,
such as the Fugaku supercomputer (Sato et al., 2020).

References

Aamondt, T. M., Wai Lun Fung, W., & Rogers, T. G. (2018). General-Purpose Graphics
Processing Architecture (No. 44). Morgan & Claypool.

AMD. (2023a). hipFFT. Retrieved from https://hipfft.readthedocs.io/en/rocm-5
.7.0/

AMD. (2023b). rocFFT. Retrieved from https://rocfft.readthedocs.io/en/rocm-5
.7.0/index.html

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference on - AFIPS ’67 (Spring) (p. 483). Atlantic City, New Jersey: ACM Press. doi:
10.1145/1465482.1465560

Antao, S. F., Bataev, A., Jacob, A. C., Bercea, G.-T., Eichenberger, A. E., Rokos, G., … O’Brien,
K. (2016, November). Offloading Support for OpenMP in Clang and LLVM. In 2016
Third Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) (pp. 1–11). Salt
Lake City, UT, USA: IEEE. doi: 10.1109/LLVM-HPC.2016.006

Arakawa, A., & Lamb, V. R. (1977). Computational Design of theBasic Dynamical Processes
of the UCLA General Circulation Model. InMethods in Computational Physics: Advances
in Research and Applications (Vol. 17, pp. 173–265). Elsevier. doi: 10.1016/B978-0-12
-460817-7.50009-4

Bardina, J., Ferziger, J., & Reynolds, W. (1980, July). Improved subgrid-scale models
for large-eddy simulation. In 13th Fluid and PlasmaDynamics Conference. Snow-
mass,CO,U.S.A.: American Institute of Aeronautics and Astronautics. doi: 10.2514/
6.1980-1357

Beare, R. J., Macvean, M. K., Holtslag, A. A. M., Cuxart, J., Esau, I., Golaz, J.-C., … Sullivan,
P. (2006, February). An Intercomparison of Large-Eddy Simulations of the Stable
Boundary Layer. Boundary-Layer Meteorology , 118(2), 247–272. doi: 10.1007/s10546
-004-2820-6

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020, January). Machine Learning for
Fluid Mechanics. Annual Review of Fluid Mechanics, 52(1), 477–508. doi: 10.1146/
annurev-fluid-010719-060214

Böing, S. (2014). The interaction between deep convective clouds and their environment (Doc-
toral dissertation, [object Object]). doi: 10.4233/UUID:AA9E6037-B9CB-4EA0-9EB0
-A47BF1DFC940

Choi, C. Q. (2022, June). TheBeatingHart of theWorld’s First Exascale Supercomputer. Retrieved
from https://spectrum.ieee.org/frontier-exascale-supercomputer

Chorin, A. J. (1967). The numerical solution of the Navier-Stokes equations for an
incompressible fluid. Bulletin of the American Mathematical Society , 73(6), 928–931.
doi: 10.1090/S0002-9904-1967-11853-6

Costa, P. (2018, October). AFFT-basedfinite-difference solver formassively-parallel direct
numerical simulations of turbulent flows. Computers & Mathematics with Applications,
76(8), 1853–1862. doi: 10.1016/j.camwa.2018.07.034

Costa, P., Phillips, E., Brandt, L., & Fatica, M. (2021, January). GPU acceleration of CaNS for
massively-parallel direct numerical simulations of canonical fluid flows. Computers
& Mathematics with Applications, 81, 502–511. doi: 10.1016/j.camwa.2020.01.002

43

https://hipfft.readthedocs.io/en/rocm-5.7.0/
https://hipfft.readthedocs.io/en/rocm-5.7.0/
https://rocfft.readthedocs.io/en/rocm-5.7.0/index.html
https://rocfft.readthedocs.io/en/rocm-5.7.0/index.html
https://spectrum.ieee.org/frontier-exascale-supercomputer

44 References

Dally, W. J., Keckler, S. W., & Kirk, D. B. (2021, November). Evolution of the Graphics
Processing Unit (GPU). IEEE Micro, 41(6), 42–51. doi: 10.1109/MM.2021.3113475

Deardorff, J. W. (1974, August). Three-dimensional numerical study of the height and
mean structure of a heated planetary boundary layer. Boundary-Layer Meteorology ,
7(1), 81–106. doi: 10.1007/BF00224974

Deardorff, J. W. (1980, June). Stratocumulus-capped mixed layers derived from a three-
dimensional model. Boundary-Layer Meteorology , 18(4), 495–527. doi: 10.1007/
BF00119502

De Bruine, M., Krol, M., Vilà-Guerau De Arellano, J., & Röckmann, T. (2019, December).
Explicit aerosol–cloud interactions in the Dutch Atmospheric Large-Eddy Simula-
tion model DALES4.1-M7. Geoscientific Model Development, 12(12), 5177–5196. doi:
10.5194/gmd-12-5177-2019

Farber, R. (2017). Parallel Programming with OpenACC. Elsevier.
Flynn, M. (1966). Very high-speed computing systems. Proceedings of the IEEE, 54(12),

1901–1909. doi: 10.1109/PROC.1966.5273
Frigo, M., & Johnson, S. (1998). FFTW: An adaptive software architecture for the FFT.

In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP ’98 (Cat. No.98CH36181) (Vol. 3, pp. 1381–1384). Seattle, WA, USA:
IEEE. doi: 10.1109/ICASSP.1998.681704

Gustafson, J. L. (1988, May). Reevaluating Amdahl’s law. Communications of the ACM , 31(5),
532–533. doi: 10.1145/42411.42415

Heus, T., Van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S., Van
Den Dries, K., … Vilà -Guerau De Arellano, J. (2010, September). Formulation of the
Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications.
Geoscientific Model Development, 3(2), 415–444. doi: 10.5194/gmd-3-415-2010

Hockney, R.W. (1965, January). A Fast Direct Solution of Poisson’s Equation Using Fourier
Analysis. Journal of the ACM , 12(1), 95–113. doi: 10.1145/321250.321259

Holland, J. Z., & Rasmusson, E. M. (1973, January). Measurements of the Atmospheric
Mass, Energy, and Momentum Budgets Over a 500-Kilometer Square of Tropical
Ocean. Monthly Weather Review , 101, 44. doi: 10.1175/1520-0493(1973)101<0044:
MOTAME>2.3.CO;2

Hundsdorfer, W., Koren, B., vanLoon, M., & Verwer, J. (1995, March). A Positive Finite-
Difference Advection Scheme. Journal of Computational Physics, 117(1), 35–46. doi:
10.1006/jcph.1995.1042

Jansson, F., Janssens, M., Grönqvist, J. H., Siebesma, A. P., Glassmeier, F., Attema, J.,
… Kölling, T. (2023, November). Cloud Botany: Shallow Cumulus Clouds in an
Ensemble of Idealized Large-Domain Large-Eddy Simulations of the Trades. Jour-
nal of Advances in Modeling Earth Systems, 15(11), e2023MS003796. doi: 10.1029/
2023MS003796

Jansson, F., van den Oord, G., Pelupessy, I., Grönqvist, J. H., Siebesma, A. P., & Crommelin,
D. (2019, September). Regional Superparameterization in a Global Circulation
Model Using Large Eddy Simulations. Journal of Advances in Modeling Earth Systems,
11(9), 2958–2979. doi: 10.1029/2018MS001600

Kedward, L. J., Aradi, B., Certik, O., Curcic, M., Ehlert, S., Engel, P., … Vandenplas, J. (2022,
March). The State of Fortran. Computing in Science & Engineering, 24(2), 63–72. doi:
10.1109/MCSE.2022.3159862

Khronos Group. (2023, October). SYCL 2020 Specification (revision 8) (Tech. Rep.). Re-
trieved from https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/
sycl-2020.pdf

https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

References 45

Larsen, E. S., & McAllister, D. (2001, November). Fast matrix multiplies using graphics
hardware. In Proceedings of the 2001 ACM/IEEE conference on Supercomputing (pp.
55–55). Denver Colorado: ACM. doi: 10.1145/582034.582089

Leonard, A. (1975). Energy Cascade in Large-Eddy Simulations of Turbulent Fluid
Flows. In Advances in Geophysics (Vol. 18, pp. 237–248). Elsevier. doi: 10.1016/
S0065-2687(08)60464-1

Lilly, D. K. (1967). The representation of small-scale turbulence in numerical simulation
experiments. In Proc. IBM sci. Comput. Symp. on environmental science (pp. 195–210).

Liqui Lung, F. P. A., Jakob, C., Siebesma, A. P., & Jansson, F. R. (2023, November). Open
Boundary Conditions for Atmospheric Large Eddy Simulations and the Implementation in
DALES4.4 (Preprint). Atmospheric sciences. doi: 10.5194/gmd-2023-196

Lorenz, E. N. (1963, January). Deterministic Nonperiodic Flow. Journal of the Atmospheric
Sciences, 20(2), 130–141. doi: 10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0
.CO;2

Mittal, S., & Vaishay, S. (2019, October). A survey of techniques for optimizing deep
learning on GPUs. Journal of Systems Architecture, 99, 101635. doi: 10.1016/j.sysarc
.2019.101635

Niemeyer, K. E., & Sung, C.-J. (2014, February). Recent progress and challenges in
exploiting graphics processors in computational fluid dynamics. The Journal of
Supercomputing, 67(2), 528–564. doi: 10.1007/s11227-013-1015-7

Nvidia. (n.d.). cuFFT. Retrieved from https://docs.nvidia.com/cuda/cufft/index
.html

NVIDIA. (2020). NVIDIA A100 Tensor Core GPU Overview (Tech. Rep.). Re-
trieved from https://images.nvidia.com/aem-dam/en-zz/Solutions/data
-center/nvidia-ampere-architecture-whitepaper.pdf

NVIDIA. (2021). NVIDIA Ampere GA102 GPU Architecture (Tech. Rep.). Retrieved
from https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu
-architecture-whitepaper-v2.1.pdf

Ouwersloot, H. G., Moene, A. F., Attema, J. J., & De Arellano, J. V.-G. (2017, January).
Large-Eddy Simulation Comparison of Neutral Flow Over a Canopy: Sensitivities
to Physical and Numerical Conditions, and Similarity to Other Representations.
Boundary-Layer Meteorology , 162(1), 71–89. doi: 10.1007/s10546-016-0182-5

Pope, S. B. (2000). Turbulent flows. Cambridge ; New York: Cambridge University Press.
Potluri, S., Hamidouche, K., Venkatesh, A., Bureddy, D., & Panda, D. K. (2013, October).

Efficient Inter-node MPI Communication Using GPUDirect RDMA for InfiniBand
Clusters with NVIDIA GPUs. In 2013 42nd International Conference on Parallel Processing
(pp. 80–89). Lyon, France: IEEE. doi: 10.1109/ICPP.2013.17

Rauber, T., & Rünger, G. (2023). Parallel programming: For multicore and cluster systems
(Third edition ed.). Cham: Springer.

Rodriguez, S. (2019). LES and DNS turbulence modeling. In Applied computational fluid
dynamics and turbulence modeling: Practical tools, tips and techniques (pp. 197–223).
Cham: Springer International Publishing. doi: 10.1007/978-3-030-28691-0_5

Romero, J., Costa, P., & Fatica, M. (2022, July). Distributed-memory simulations of
turbulent flows onmodern GPU systems using an adaptive pencil decomposition
library. In Proceedings of the Platform for Advanced Scientific Computing Conference (pp.
1–11). New York, NY, USA: Association for Computing Machinery. doi: 10.1145/
3539781.3539797

Sato, M., Ishikawa, Y., Tomita, H., Kodama, Y., Odajima, T., Tsuji, M., … Shimizu, T. (2020,
November). Co-Design for A64FX Manycore Processor and ”Fugaku”. In SC20: Inter-

https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/cuda/cufft/index.html
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf

46 References

national Conference for High Performance Computing, Networking, Storage and Analysis
(pp. 1–15). Atlanta, GA, USA: IEEE. doi: 10.1109/SC41405.2020.00051

Schalkwijk, J., Griffith, E. J., Post, F. H., & Jonker, H. J. J. (2012, March). High-Performance
Simulations of Turbulent Clouds on a Desktop PC: Exploiting the GPU. Bulletin of the
American Meteorological Society , 93(3), 307–314. doi: 10.1175/BAMS-D-11-00059.1

Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P., & Van Meijgaard, E. (2015, May). Weather
Forecasting Using GPU-Based Large-Eddy Simulations. Bulletin of the American
Meteorological Society , 96(5), 715–723. doi: 10.1175/BAMS-D-14-00114.1

Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di Girolamo, S., …Wernli, H. (2020,
May). Kilometer-Scale Climate Models: Prospects and Challenges . Bulletin of the
AmericanMeteorological Society , 101(5), E567-E587. doi: 10.1175/BAMS-D-18-0167.1

Schumann, U., & Sweet, R. A. (1988, March). Fast Fourier transforms for direct solution
of poisson’s equation with staggered boundary conditions. Journal of Computational
Physics, 75(1), 123–137. doi: 10.1016/0021-9991(88)90102-7

Servat, H. (2022). Intel Application Migration Tool for OpenACC* to OpenMP * API.
Retrieved from https://github.com/intel/intel-application-migration
-tool-for-openacc-to-openmp

Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., …
Stevens, D. E. (2003, May). A Large Eddy Simulation Intercomparison Study of
Shallow Cumulus Convection. Journal of the Atmospheric Sciences, 60(10), 1201–1219.
doi: 10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2

Siebesma, A. P., & Cuijpers, J. W. M. (1995, March). Evaluation of Parametric Assumptions
for Shallow Cumulus Convection. Journal of the Atmospheric Sciences, 52(6), 650–666.
doi: 10.1175/1520-0469(1995)052%3C0650:EOPAFS%3E2.0.CO;2

Slingo, J., & Palmer, T. (2011, December). Uncertainty in weather and climate prediction.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 369(1956), 4751–4767. doi: 10.1098/rsta.2011.0161

Smagorinsky, J. (1963, January). General Circulation Experiments with the Primitive
Equations . Monthly Weather Review , 91, 99–164. doi: 10.1175/1520-0493(1963)
091%3C0099:GCEWTP%3E2.3.CO;2

Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer
Academic Publishers.

SURF. (n.d.-a). Snellius hardware and file systems. Retrieved from https://servicedesk
.surf.nl/wiki/display/WIKI/Snellius+hardware+and+file+systems

SURF. (n.d.-b). Snellius partitions and accounting. Retrieved from https://servicedesk
.surf.nl/wiki/display/WIKI/Snellius+partitions+and+accounting

Swarztrauber, P. N. (1982). Vectorizing the FFTs. In Parallel Computations (pp. 51–83).
Elsevier. doi: 10.1016/B978-0-12-592101-5.50007-5

Tolmachev, D. (2023). VkFFT-A Performant, Cross-Platform and Open-Source GPU FFT
Library. IEEE Access, 11, 12039–12058. doi: 10.1109/ACCESS.2023.3242240

TOP500. (2023). TOP500 Lists. Retrieved from https://www.top500.org/lists/
top500/

Trader, T. (2021, September). How Argonne is Preparing for Exascale in 2022. Retrieved
from https://www.hpcwire.com/2021/09/08/how-argonne-is-preparing
-for-exascale-in-2022/

Trott, C. R., Lebrun-Grandie, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., … Wilke,
J. (2022, April). Kokkos 3: Programming Model Extensions for the Exascale Era.
IEEE Transactions on Parallel and Distributed Systems, 33(4), 805–817. doi: 10.1109/
TPDS.2021.3097283

https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://servicedesk.surf.nl/wiki/display/WIKI/Snellius+hardware+and+file+systems
https://servicedesk.surf.nl/wiki/display/WIKI/Snellius+hardware+and+file+systems
https://servicedesk.surf.nl/wiki/display/WIKI/Snellius+partitions+and+accounting
https://servicedesk.surf.nl/wiki/display/WIKI/Snellius+partitions+and+accounting
https://www.top500.org/lists/top500/
https://www.top500.org/lists/top500/
https://www.hpcwire.com/2021/09/08/how-argonne-is-preparing-for-exascale-in-2022/
https://www.hpcwire.com/2021/09/08/how-argonne-is-preparing-for-exascale-in-2022/

References 47

Van Den Oord, G., Jansson, F., Pelupessy, I., Chertova, M., Grönqvist, J. H., Siebesma, P., &
Crommelin, D. (2020, July). A Python interface to theDutchAtmospheric Large-Eddy
Simulation. SoftwareX , 12, 100608. doi: 10.1016/j.softx.2020.100608

Van Der Dussen, J. J., De Roode, S. R., Ackerman, A. S., Blossey, P. N., Bretherton, C. S.,
Kurowski, M. J., … Siebesma, A. P. (2013, July). The GASS/EUCLIPSEmodel inter-
comparison of the stratocumulus transition as observed during ASTEX: LES results.
Journal ofAdvances inModelingEarthSystems, 5(3), 483–499. doi: 10.1002/jame.20033

Van Heerwaarden, C. C., Van Stratum, B. J. H., Heus, T., Gibbs, J. A., Fedorovich, E., &
Mellado, J. P. (2017, August). MicroHH 1.0: A computational fluid dynamics code for
direct numerical simulation and large-eddy simulation of atmospheric boundary
layer flows. Geoscientific Model Development, 10(8), 3145–3165. doi: 10.5194/gmd-10
-3145-2017

Verzijlbergh, R. (2021). Atmospheric flows in large wind farms. Europhysics News, 52(5),
20–23. doi: 10.1051/epn/2021502

Vilà-GuerauDeArellano, J., Patton, E. G., Karl, T., VanDenDries, K., Barth, M. C., & Orlando,
J. J. (2011, April). The role of boundary layer dynamics on the diurnal evolution of
isoprene and the hydroxyl radical over tropical forests. Journal of Geophysical Research,
116(D7), D07304. doi: 10.1029/2010JD014857

Vreman, A.W. (2004, October). An eddy-viscosity subgrid-scalemodel for turbulent shear
flow: Algebraic theory and applications. Physics of Fluids, 16(10), 3670–3681. doi:
10.1063/1.1785131

Watts, D. (2024a, January). Lenovo ThinkSystem SD650-N V2 Server (Tech.
Rep.). Lenovo. Retrieved from https://lenovopress.lenovo.com/lp1396
-thinksystem-sd650-n-v2-server

Watts, D. (2024b, March). Lenovo ThinkSystem SR645 Server (Tech. Rep.). Retrieved from
https://lenovopress.lenovo.com/lp1280-thinksystem-sr645-server

Wyngaard, J. C. (2004, January). Toward Numerical Modeling in the ”Terra Incognita”.
Journal of theAtmospheric Sciences, 61(14), 1816–1826. doi: 10.1175/1520-0469(2004)
061%3C1816:TNMITT%3E2.0.CO;2

Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., … Zhang, J. (2021, November). Artifi-
cial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4),
100179. doi: 10.1016/j.xinn.2021.100179

https://lenovopress.lenovo.com/lp1396-thinksystem-sd650-n-v2-server
https://lenovopress.lenovo.com/lp1396-thinksystem-sd650-n-v2-server
https://lenovopress.lenovo.com/lp1280-thinksystem-sr645-server

A
Compiling and Running DALES on

GPUs

A.1. Setting up the NVIDIA HPC SDK
First, an OpenACC compatible compiler is needed. As discussed, the NVIDIA HPC SDK
was used in this work. The HPC SDK is bundled with the nvfortran compiler, the cuFFT
library required for the Poisson solver and a GPU-aware MPI library. In In this work,
version 23.3 was used, which can be installed as follows:
$ wget https://developer.download.nvidia.com/hpc-sdk/23.3/

nvhpc_2023_233_Linux_x86_64_cuda_multi.tar.gz
$ tar xpzf nvhpc_2023_233_Linux_x86_64_cuda_multi.tar.gz
$ nvhpc_2023_233_Linux_x86_64_cuda_multi/install

This will install the SDK under the directory /opt/nvidia/hpc_sdk. The compilers and
other libraries can be added to the PATHwith the following script:

1 #!/bin/bash
2 YEAR=2023
3 NVHPC_INSTALL_DIR=/opt/nvidia/hpc_sdk
4 NVARCH=‘uname -s‘_‘uname -m‘; export NVARCH
5 NVCOMPILERS=$NVHPC_INSTALL_DIR; export NVCOMPILERS
6 MANPATH=$MANPATH:$NVCOMPILERS/$NVARCH/$YEAR/compilers/man; export MANPATH
7 PATH=$NVCOMPILERS/$NVARCH/$YEAR/compilers/bin:$PATH; export PATH
8 export PATH=$NVCOMPILERS/$NVARCH/$YEAR/comm_libs/mpi/bin:$PATH
9 export MANPATH=$MANPATH:$NVCOMPILERS/$NVARCH/$YEAR/comm_libs/mpi/man
10 export PATH=$NVCOMPILERS/$NVARCH/$YEAR/profilers/Nsight_Systems/bin:$PATH
11 export LD_LIBRARY_PATH=$NVHPC_INSTALL_DIR/$NVARCH/$YEAR/compilers/lib:

$LD_LIBRARY_PATH
12 export LD_LIBRARY_PATH=$NVHPC_INSTALL_DIR/$NVARCH/$YEAR/comm_libs/mpi/lib:

$LD_LIBRARY_PATH
13 export LD_LIBRARY_PATH=$NVHPC_INSTALL_DIR/$NVARCH/$YEAR/math_libs/lib64:

$LD_LIBRARY_PATH

A.2. Obtaining the DALES source code
Themost up-to-date version of the OpenACC version of DALES can be found on GitHub
(https://github.com/dalesteam/dales) under the branch OpenACC. Downloading
is easily done through a Git Clone:
$ git clone -b OpenACC https://github.com/dalesteam/dales.git

49

https://github.com/dalesteam/dales

50 Appendix A. Compiling and Running DALES on GPUs

For building DALES, NetCDF-Fortran and CMake are required, in addition to the NVIDIA
compilers and libraries. Assuming that all requirements are met, DALES can be built as
follows:
$ mkdir dales/build
$ cd dales/build
$ export SYST=NV-OpenACC
$ cmake ..
$ make -j

A.3. Running DALES on the GPU
The input files for the BOMEX case as used in this thesis are included in the DALES source
code and can be found under /cases/bomex. To run the case on the GPU, two modifi-
cations to namoptions.001 are needed: 1) under the section &PHYSICS, add the line
lfast_thermo=.true. and 2) under the section &SOLVER, add the line solver_id=200.

Finally, DALES can be run using mpirun:
$ cd <path to dales>/cases/bomex/
$ mpirun -np N <path to dales>/build/src/dales4.4 namoptions.001

where N is the number of GPUs available on the system.

	Preface
	Abstract
	Introduction
	Atmospheric Large Eddy Simulation
	Turbulent flows
	Turbulence modeling
	Towards high-resolution weather and climate models
	dales
	Prognostic equations
	Subfilter-scale model
	Mass conservation
	Discretization
	Parallelization
	Applications

	Graphics Processing Units
	cpu and gpu architecture
	Programming GPUs
	Usage of gpu for cfd
	Trends in gpu computing

	Implementation
	OpenACC
	Offloading loops
	The kernels construct
	The parallel construct

	The Poisson solver
	Optimizations
	Optimizing data locality
	Memory allocation

	Asynchronous kernels
	Extension to multiple GPUs

	Validation and Benchmarking
	BOMEX
	Model validation
	Performance metrics
	System configuration
	Speedup
	Scaling
	Single precision calculations

	Conclusions and Recommendations
	Conclusions
	Recommendations
	Accelerating more components
	Performance tuning
	Exploring portability

	Compiling and Running dales on gpu
	Setting up the NVIDIA HPC SDK
	Obtaining the dales source code
	Running dales on the gpu

