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Summary

Originated from the electron’s intrinsic angular momentum, magnetism has endowed
various manipulations in both macroscopic and microscopic setups with another degree
of freedom. Beyond the traditionally developed usage such as storage and sensors, there
are enormous applications based on engineering and integrating magnetism into het-
erostructures and their susceptibility to external stimuli. The emergent fields of nano-
level spintronics and spin caloritronics with novel properties have been intensively stud-
ied both theoretically and experimentally. Within those developments, the interaction of
atomic spins with electromagnetic waves (photons) and elastic dynamics (phonons) are
of fundamental importance. This thesis is devoted to investigating the interplay of mag-
netism with electrodynamics and lattice elasticity in several hybrid systems.

In Chapter 2 I study the chiral pumping of surface acoustic wave (SAW) by the fer-
romagnetic resonance (FMR) of a yttrium iron garnet (YIG) nanowire mounted on top
of an acoustic substrate. The linear magnetoelastic coupling for small perturbation has
been utilized and the second quantization formalism has been developed. The magnetic
dynamics in single nanowire pumps SAWs with opposite angular momenta into oppo-
site directions, thus generates a phonon spin current. I further predict the two parallel
nanowires forms a phononic cavity which at geometrical resonances pumps an unidi-
rectional SAW into half of the surface plane.

While Chapter 2 studies the magnetically ordered state far below the critical tem-
perature, Chapter 3 continues to discuss the magnetoelastic coupling but with the ex-
tension into a broader temperature range where the spin ordering breaks. I present a
theoretical scheme of incorporating the exchange magnetoelastic interaction into the
thermal elastic dynamics for thin membranes of 2D antiferromagnetic (AFM) material
with restricted geometry. Here, I generalize the elastic Grüneisen relation into an effec-
tive version which includes the magnetic counterpart to the volume change of internal
energy. Based on the specific heat and thermal conductivity from elastic and magnetic
origins I demonstrate the temperature dependence for experimental observables over
a wide range, even beyond the phase transition temperature. This model of analysis as
been validated by applying it to the case of a FePS3 flake resonator and the theoretical
predictions fit well with the reported experiment data.

Chapter 4 and 5 turn to investigate the interaction of spins with the electromag-
netic degree of freedom in waveguide and cavity setups. In Chapter 4 I discuss the
inter-excitations between multiple millimeter-sized ferromagnetic spheres mediated by
waveguide photons. By adjusting the position of the magnets in the waveguide, the
magnon-photon coupling can be tuned to be chiral, i.e., magnons only couple with
photons propagating in one direction, leading to an asymmetric transfer of angular mo-
mentum and energy between the magnets. I demonstrate for a chain consisting of a
large number of magnetic spheres, the concentration of the magnon’s population can
be achieved at the chain edge and super/sub-radiant states can be realized for selected

xi



xii Summary

waveguide photon frequencies.
In Chapter 5 I propose an optical method to manipulate the spin flipping process

which serves as an energy exchange protocol between charging environment (cavity
photons) and the storage element (an array of spins). This system is modeled by the
Dicke Hamiltonian in which the collective spins dynamics can be interpreted into a har-
monic oscillator-like behaviour. Compared to the separate charging protocol the collec-
tive spins flipping speed can be enhanced proportionally to the square root of the spin
numbers. Unlike previous studies, I point out that such speedup effect does not origi-
nate from entanglement but is due to the coherent cooperative interactions among the
spins.

Chiral couplings discussed in this thesis are based on the effect of spin-momentum
locking. Although it emerges in selected modes of propagating photons in the waveguide
shown in Chapter 4, it is difficult to excite an unidirectional acoustic wave for a single
nanowire as in Chapter 2. Further design of sophisticated structures shall be considered
for realizing the intrinsic chiral magnon-phonon interaction. Furthermore, the generic
model of analysis for magnetism-based thermal dynamics of thin membranes developed
in Chapter 3 can be extended to study other materials. Knowledge for the detailed lattice
layout and anisotropy helps to improve the prediction accuracy. Focus on the speedup
effect for the spin flip may also be incorporated into researching more complex models
such as the one with superradiance. Overall, I hope the works presented in this thesis
will motivate and serve as a foundation for future studies.



Samenvatting

Ontstaan uit het intrinsieke impulsmoment van het elektron, heeft magnetisme diverse
manipulaties in zowel macroscopische als microscopische opstellingen van een extra
graad van vrijheid voorzien. Naast de traditioneel ontwikkelde toepassingen zoals op-
slag en sensoren, zijn er enorme toepassingen op basis van engineering en integratie
van magnetisme in heterostructuren en hun gevoeligheid voor externe stimuli. De opko-
mende gebieden van de spintronica op nanoniveau en de spin caloritronica met nieuwe
eigenschappen zijn zowel theoretisch als experimenteel intensief bestudeerd. Binnen
deze ontwikkelingen is de interactie van atomaire spins met elektromagnetische golven
(fotonen) en elastische dynamica (fononen) van fundamenteel belang. Dit proefschrift
is gewijd aan het onderzoeken van de wisselwerking van magnetisme met elektrodyna-
mica en roosterelasticiteit in verschillende hybride systemen.

In hoofdstuk 2 bestudeer ik het chiraal pompen van oppervlakte akoestische golven
(SAW) door de ferromagnetische resonantie (FMR) van een yttrium ijzer granaat (YIG)
nanodraad gemonteerd bovenop een akoestisch substraat. De lineaire magnetoelasti-
sche koppeling voor kleine verstoringen is gebruikt en het tweede kwantiseringsforma-
lisme is ontwikkeld. De magnetische dynamica in een enkele nanodraad pompt SAWs
met tegengesteld impulsmoment in tegengestelde richtingen en genereert zo een fon-
spinstroom. Ik voorspel verder dat twee parallelle nanodraden een fononische holte
vormen die bij geometrische resonanties een unidirectionele SAW in de helft van het
oppervlaktevlak pompt.

Terwijl hoofdstuk 2 de magnetisch geordende toestand ver onder de kritische tempe-
ratuur bestudeert, gaat hoofdstuk 3 verder met de bespreking van de magnetoelastische
koppeling, maar met de uitbreiding naar een breder temperatuurgebied waar de spinor-
dening breekt. Ik presenteer een theoretisch schema om de magnetoelastische wissel-
werking op te nemen in de thermo-elastische dynamica voor dunne membranen van
2D antiferromagnetisch (AFM) materiaal met beperkte geometrie. Hier veralgemeent
ik de elastische Gr üneisen relatie tot een effectieve versie die de magnetische tegen-
hanger van de volumeverandering van de inwendige energie omvat. Gebaseerd op de
specifieke warmte en warmtegeleidingscoëfficiënt van elastische en magnetische oor-
sprong toon ik de temperatuurafhankelijkheid aan voor experimentele waarnemingen
over een breed gebied, zelfs voorbij de faseovergangstemperatuur. Dit analysemodel
is gevalideerd door het toe te passen op het geval van een FePS3 flake resonator en de
theoretische voorspellingen komen goed overeen met de gerapporteerde experimentele
gegevens.

Hoofdstuk 4 en 5 onderzoeken de interactie van spins met de elektromagnetische
vrijheidsgraad in golfgeleider- en holteopstellingen. In hoofdstuk 4 bespreek ik de inter-
excitaties tussen meerdere ferromagnetische bollen van millimetergrootte, gemedieerd
door golfgeleiderfotonen. Door de positie van de magneten in de golfgeleider aan te pas-
sen, kan de koppeling tussen magnonen en fotonen chiraal worden ingesteld, d.w.z. dat
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xiv Samenvatting

magnonen alleen koppelen met fotonen die zich in één richting voortplanten, wat leidt
tot een asymmetrische overdracht van impulsmoment en energie tussen de magneten.
Ik demonstreer voor een keten bestaande uit een groot aantal magnetische bollen, dat
de concentratie van de magnonpopulatie kan worden bereikt aan de rand van de keten
en dat super/sub-stralingstoestanden kunnen worden gerealiseerd voor geselecteerde
golfgeleider fotonfrequenties.

In hoofdstuk 5 stel ik een optische methode voor om het spin flipping proces te
manipuleren dat dient als een energie-uitwisselingsprotocol tussen de oplaadomgeving
(holte fotonen) en het opslagelement (een array van spins). Dit systeem wordt gemo-
delleerd door de Dicke Hamiltoniaan waarin de dynamica van de collectieve spins kan
worden geïnterpreteerd in een harmonische oscillator-achtig gedrag. Vergeleken met
het afzonderlijke oplaadprotocol kan de flipsnelheid van de collectieve spins evenredig
worden verhoogd met de vierkantswortel van het aantal spins. In tegenstelling tot eer-
dere studies, wijs ik erop dat een dergelijk versnellingseffect niet voortkomt uit verstren-
geling, maar te wijten is aan de coherente coöperatieve interacties tussen de spins.

Chirale koppelingen die in dit proefschrift worden besproken zijn gebaseerd op het
effect van spin-momentum locking. Hoewel dit effect optreedt in geselecteerde modi
van voortplantende fotonen in de golfgeleider die in hoofdstuk 4 wordt getoond, is het
moeilijk om een unidirectionele akoestische golf te exciteren voor een enkele nanodraad
zoals in hoofdstuk 2. Verder ontwerp van verfijnde structuren zal worden overwogen
voor het realiseren van de intrinsieke chirale magnon-fonon interactie. Verder kan het
generieke analysemodel voor magnetisme-gebaseerde thermische dynamica van dunne
membranen, ontwikkeld in Hoofdstuk 3, worden uitgebreid om andere materialen te
bestuderen. Kennis voor de gedetailleerde rooster layout en anisotropie helpt om de
nauwkeurigheid van de voorspelling te verbeteren. Focus op het versnellingseffect voor
de spin flip kan ook worden meegenomen in het onderzoek naar complexere modellen,
zoals die met superradiantie. Al met al hoop ik dat de in dit proefschrift gepresenteerde
werken zullen motiveren en als basis zullen dienen voor toekomstige studies.



1
Introduction

道可道，非恒道；名可名，非恒名。
无，名天地之始；有，名万物之母。

故，常无，欲以观其妙；常有，欲以观其微。
此两者，同出而异名，同谓之玄。玄之又玄，众妙之门。

道德经

The Tao that can be told is not the Absolute Tao;
the existence that can be named is not Absolute Existence.

The nameless void is the origin of universe;
the named interaction is the mother of all particular things.

Therefore.
To the void, you feel the secret elegance;

to the ubiquitous interaction, you see various manifestations.
Yet secret and manifestations arise from the same source;

they may both be called the cosmic mystery.
Reaching from the mystery into the deeper mystery is the gate to the secret of all forms.

Tao Te Ching

1
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2 1. Introduction

1.1. Magnetism
The elementary quantity in solid-state magnetism is the magnetic moment m. On an
atomic scale, intrinsic magnetic moments are associated with the spin of each elec-
tron and a further contribution is associated with its orbital motion around the nucleus.
The spin S and orbital moments L of the atomic electrons add in ways governed by the
laws of quantum mechanics given the total spin J = S +L. The proportionality between
magnetic momentum and orbit angular momentum is given by the Bohr magneton µB

such that m = ´µB L. However, for the electron spin momentum this proportionality
reads m =´2µB S such that the proportionality associated with the total atomic spin is
m = ´gµB J ” ´γJ with the g -factor and γ (referred to the gyromagnetic ratio) varies
for different materials [1, 2]. In some cutting-edge researches this g -factor can be even
tuned by external gate controls and has application in spin-qubit manipulations [3]. For
simplicity, in this thesis, the notation of S is used to replace J as the total spin momen-
tum of magnetic atom.

Thus the local magnetic momentum m is a discrete quantity varying rapidly from
atom to atom. But viewing in mesoscopically, it can be averaged over a distance of order
of few nanometers and nanoseconds. The magnetization density of a solid M , which is
defined as

M =
N

ÿ

i=1

mi (1.1)

with N the number of spins per unit volume, varies smoothly on a mesoscopic scale.
This is the so-called continuous medium approximation. At temperatures above a cer-
tain critical value Tc , the ground state of local magnet m points to all the directions
in real space, possessing the full symmetries of the Hamiltonian. Such high symme-
try phase in magnetism is mentioned as the paramagnetic phase and the long-range
(macroscopic) order parameter M which is the average of the fully-filled order space
of m (Eq. 1.1) equals zero. Breaking from high symmetry phase into the low symmetry
phase means the order space is partially filled and the accompanying establishment of
order parameter [2, 4]. This is a fundamental phenomenon in condensed matter physics,
and in the language of magnetism this means the transition from para-phase into ferro-
or antiferro-phase in which the long-range order M or L acquires non-vanishing values.
Thus the symmetry breaking goes along with the decrease of entropy and in the limiting
case of the very low temperature the symmetry is broken into a single point in the order
space. In ferromagnetism this means all the atomic spins point to the same direction and
the magnet becomes saturated and rigid so that to be responsive to the external pertur-
bations. Elementary excitation in rigidity is to excite the single point in order space to
a limited range, such that the entropy increases from zero to a small amount. The ex-
citation energy ω proportional to ∆S is low, and in the real space the order parameter
varies slowly leading to the long wavelength modulation [5]. Specifically, the energy re-
quired for elementary excitations depends on the interactions between the participants.
Needless to say the spin wave for magnetic rigidity and elastic wave for elastic rigidity
depends on the lattice structures.

Based on the fact that macroscopical order parameter is nonzero in low symmetry
phase and zero in the high symmetry phase, Landau suggested that the basic features
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Figure 1.1: The plot of Landau free energy as function of order parameter M with or without the external field
showing the spontaneous symmetry breaking as the temperature decreases blow the critical value Tc . Here
t = (T ´Tc )/Tc .

of the critical behavior near the transition for a given system may be determined by
expanding its free energy in powers of these order parameters [2]. Since the magnetic
phase transition is of second order, in the sense that the second derivative of the free
energy is divergence while the first derivative is continuous at critical point, the Landau
free energy near phase transition has the form [6]

F (T ) = F0(T )+a0t M 2 +b0M 4´hM , t = (T ´Tc )/Tc and |t |! 1. (1.2)

Here h stands for the external field and parameters a0,b0 > 0, F0 is the energy of non-
magnetic parts. These coefficients (a0,b0,Tc ) are determined by external observations
so that Landau’s expansion is a phenomenological theory. The plot of free energy as
function of order parameter with or without the external field h is shown in Fig. 1.1. We
see that indeed there is gradual emergence of spontaneous magnetization as t < 0 and
the external field tilts the concave shape along with its direction. Through minimiza-
tion of F one can derive the critical exponents of magnetization M and specific heat Cm

by such a simple expansion expression. In spite of the success of Landau’s theory, one
should note that it is still a mean-field theory (or zero-order approximation) in which all
spins are assumed to ’feel’ an identical average molecular field and completely ignores
the correlations and fluctuations. One obvious drawback is that as T > Tc the long-range
order M = 0 which leads to a vanishing magnetic energy and thus the specific heat col-
lapses to zero just after the phase transition. For realistic materials this is not the case
because the short-range order still persists in the system even above Tc which results
in a non-vanishing energy and specific heat [7]. Thus in Chapter 3 when we study the
heat conduction problem of 2D Ising material it is essential to apply the Onsager’s result
instead of the Landau’s mean field approximation.

The energy for a ferro- or antiferro-magnetic body can be categorised into two parts [1,
2]. The first is the magnetostatic energy which involves the Zeeman term describing the
interaction of the magnet with external magnetic field H 0, as well as the self-energy for
the interaction with the internal magnetic field generated by itself. The Zeeman energy
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derived from the torque on magnet acquires the simple form

Hzm =´µ0H 0 ¨M , (1.3)

with µ0 is the vacuum permeability. Apart from H0, the spins inside a magnet feel the
dipolar field created by other spins (dipolar anisotropy) and also the demagnetizing field
H d which originates from the magnetic discontinuity on the body surface. The field H d

is opposite to M with phenomenological expression H d =´ØN M , and in this sense the
name ’demagnetizing’. Thus the demagnetization energy is

Hdm = 1

2
µ0

ÿ

i j

Ni j Mi M j , (1.4)

with the tensor element Ni j provided according to the body shape. The second part is
the electrostatic energy including the exchange interaction and single-ion anisotropy.
Written as the summation between neighbouring spins, the exchange Hamiltonian [8]

Hex =´2J
ÿ

〈i , j〉
S i ¨S j (1.5)

is an effective Hamiltonian in that it uses the spin representation to effectively describe
the Coulomb repulsion of two nearby electrons, sitting on neighbouring atoms. So the
strength J is an effective parameter representing all the influences on orbital dimensions
such as the external magnetic field, electric field, the distance between lattice sites, and
etc. The tuning of J between coupled semiconductor quantum dots is the cutting-edge
development in recent quantum gate mechanism [9, 10]. It can be proven that for S = 1/2
the two-spin’s singlet and triplet states are eigenstates of the exchange Hamiltonian with
eigenvalues 3J/2 and´J/2 respectively. Thus the energy difference between the parallel
and antiparallel state is εÒ´εÖ =´J . If J > 0 the state Ò is energetically favored leading
to the ferromagnetism while as the opposite if J < 0 the state Ö is more preferred which
shall result in antiferromagnetism.

The single-ion anisotropy originates from the electrostatic interaction between the
orbit and crystalline field which tends to stabilize a particular orbit. Due to the spin-orbit
coupling the magnetic moment is then inclined to a specific direction. In ferro- and anti-
ferromagnetic crystals, the single-ion anisotropy and dipolar anisotropy are summed to
produce a phenomenological energy term of various forms for different materials. For
example in antiferromagnetic MnF2 the easy-axis anisotropy along the [001] direction
is described by Han = ´A

ř

i (Sz
i )2 [11] and for the RbMnF3 the anisotropy along [111]

crystallographic axes is described by Han =´A
ř

i [(Sx
i )2(S y

i )2 + c.p.] [12], with c.p. de-
notes the cyclic permutation of indices (x, y, z). Overall, the general Hamiltonian for
magnetism includes the above terms

Hm = Hzm +Hex +Hdm +Han , (1.6)

and it is the exchange interaction as the main contribution which dominates various
magnet properties. The anisotropy energy works as a bias term tuning the equilibrium
magnetic direction and spin wave dispersion relations. Usually in bulk materials, the de-
magnetizing energy can be neglected and other contributions may be added according
to specific considerations.
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1.1.1. Macrospin precession and quantization
The equation of motion for magnetism can be obtained by simply considering the con-
servation of angular momentum, leading to the well known Landau-Lifshitz (LL) equa-
tion [13]

´
1

γ

d M

d t
=µ0MˆH e f f , γ> 0, (1.7)

with the effective field He f f provided by the minus of derivative of the free energy in
magnetism,

µ0He f f =´
BF

BM
. (1.8)

Thus various properties about magnetic precession can be derived by given the free en-
ergy expression. According to the previous analysis, the ferro- and antiferromagnetic
free energy is dominated by the exchange interaction and accompanied by several bias
terms. Expressed in the macroscopic magnetization M , the exchange interaction (Eq. 1.5)
leads to the energy density per unit volume

Fex =´ 2J

Nγ2 M i ¨
ÿ

j

M j , (1.9)

and in the case of Kittel mode, i.e. all spins evolves simultaneously (k = 0), it can be even
simplified into the form

Fex =´ 2J z

Nγ2 M1 ¨M2”´µ0
HE

Ms
M1 ¨M2, (1.10)

in which the M 1,2 stands for the uniform magnetizations in (sub) lattices of 1 and 2 re-
spectively, and Ms = NγS is the saturated magnetization. The same applies for uniax-
ial anisotropy, for example, Han = ´A

ř

i (Sz
i )2 rephrased as Han = ´A/(Nγ)2 ř

i (M z
i )2

leading to the energy density in Kittel mode

Fan =´ A

Nγ2 [(M z
1 )2 + (M z

2 )2]”´µ0
HA

2Ms
[(M z

1 )2 + (M z
2 )2]. (1.11)

The effective exchange and anisotropy field in this example then becomes

HE = 2|J |zS

γµ0
, HA = 2|A|S

γµ0
, (1.12)

with direction oriented to the˘z axis for spin up and spin down respectively.
We solve the EOM for antiferromagnetism as an example to illustrate the general fea-

ture of magnetic precession. Departing the time-dependent varying part from the equi-
librium constant, the magnetization can be written into M 1(t ) = Ms ẑ +ξ(t ) and M 2(t ) =
´Ms ẑ+η(t ). The equations of motion are linearized by assuming small shear deviation,
i.e.

a

|ξ|2 +|η|2/Ms ! 1. Consider the contribution from exchange and anisotropy, the
Kittel eigen frequency„ e iωt and amplitudes can be derived from this eigen-equation

iω

γ


ξx

ξy

ηx

ηy

=


0 HA +HE 0 HE

´HA´HE 0 ´HE 0
0 ´HE 0 ´HA´HE

HE 0 HA +HE 0



ξx

ξy

ηx

ηy

 . (1.13)
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One can find the degenerate eigenvalue ω= γµ0

b

H 2
A +2HA HE with the eigenvectors

ξx

ξy

ηx

ηy

=


a

i a
b
i b

 ,


ξx

ξy

ηx

ηy

=


a
´i a

b
´i b

 . (1.14)

Thus in antiferromagnetic precession, there are two eigenstates with opposite chirality
which are usually referred to as the two-mode of the AFMR.

Beyond classical approach, the magnetism dynamics can be viewed from quantum
mechanical viewpoints. The Holstein-Primakoff (H-P) transformation is the standard
way of associating the local spin operators Si with the deviation operator ai . From the
usual expression of raising and lowing spin operator

S˘i |S,Sz〉 =
a

(S¯Sz )(S˘Sz +1) |S,Sz˘1〉 (1.15)

we define the derivation number n = S´ Sz and identify the state |S,Sz〉 ” |n〉. Then
the previous relation can be rephrased into S´i |n〉 =

?
2S
?

1´n/2S ¨
?

n +1 |n +1〉 and

S+
i |n〉 =

?
2S
?

1´ (n´1)/2S ¨
?

n |n´1〉, which is strikingly similar to the harmonic os-

cillator a:i |n〉 =
?

n +1 |n +1〉 and ai |n〉 =
?

n |n´1〉. Thus we make the operator asso-
ciations for the upward spin

S´i =
?

2S a:i

d

1´
a:i ai

2S
, S+

i =
?

2S

d

1´
a:i ai

2S
ai , Sz

i = S´a:i ai . (1.16)

The similar association applies for the downward spins but with the interchange of S+
i

and S´i , and reverse the sign of Sz
i .

In order to study the properties of collective vibrations, i.e. the magnons, one needs

a further transformation of shifting from the local deviation operators (ai , a:i ) to the on-

the-fly deviation operators (ak , a:k ). This can be done by the Fourier transformation such
that

ai = 1
?

N

ÿ

k

e i k¨r i ak , (1.17)

with the orthonormality condition

1

N

ÿ

n

e i (k´k1)¨r n = δ(k´k 1) (1.18)

so as to maintain the canonical bosonic commutation relations. One can also prove that

the equality
ř

i a:i ai =
ř

k a:k ak holds due to this orthonormality.
As an example, we quantize the antiferromagnetic Hamiltonian of a 3D crystal ma-

terial with the simplified two-sublattice model. We consider the spins of two sublattices
pointing to the directions ˘z in equilibrium. The Hamiltonian including external field
H 0, exchange interaction and the single-ion easy-axis anisotropy reads [11, 14]

H =´γµ0

ÿ

i , j

H 0 ¨S i , j ´
ÿ

i‰ j

J (S+
i S´j +S´i S+

j +2Sz
i Sz

j )´ A
ÿ

i

(Sz
i )2, (1.19)



1.1. Magnetism

1

7

where the sub-indices i and j refer to sites in the sublattice of spin-up and spin-down
respectively. For the spin-up sublattice, the lowering spin operator corresponds to the

creation of spin deviation a:i , while for the spin-down sublattice it is the raising spin op-

erator corresponds to the creation of spin deviation d:j [11]. Taking the H-P and Fourier

transformations, the Hamiltonian Eq. 1.19 can be written into the form of H = E0+H (2)+
H (4) + ¨ ¨ ¨ , with each term contains an even number of bosonic operators about the on-
the-fly deviations. To the low-temperature or spin-wave approximation it corresponds

to taking fi (S) =
b

1´a:i ai /2S « 1, which results in the quadratic Hamiltonian, while
the non-linear effect which is important for thermal and magnon transport properties is
elucidated by the higher order expansion of the factor fi (S). Now focusing on the spin-
wave approximation and assuming the external field H 0 applied along the z-direction,
the quadratic form reads

H (2) = γµ0

ÿ

k

(HE +HA +H0)a:k ak + (HE +HA´H0)d:
´k d´k +γk HE (ak d´k +a:k d:

´k ),

(1.20)
where

HE = 2Sz|J |
µ0γ

, HA = 2S A

µ0γ
, (1.21)

are the effective exchange and anisotropy field respectively, and z is the lattice coordi-
nate number. γk is the structure factor defined by γk = (1/z)

ř

δ e i k¨δ, in which δ is the
vector connecting the z nearest neighbouring spins of opposite orientations. Diagonal-
izing this Hamiltonian requires a general treatment called para-unitary transformation
which is illustrated in the next subsection.

1.1.2. Para-unitary transformation
In order to make clear the diagonalization of this typical quadratic Hamiltonian, which
shall be used frequently in the following chapters, we introduce here a general treatment
of solving this problem. The treatment which provides us with a systematic procedure
in practice is mentioned as the para-unitary transformation [15, 16]. The general Hamil-
tonian has the form,

H =
m
ÿ

r 1,r=1

α
:

r 1
∆1r 1rαr +α:r 1∆2r 1rα

:
m+r +αm+r 1∆3r 1rαr +αm+r 1∆4r 1rα

:
m+r

= (
α: αm

)(∆1 ∆2

∆3 ∆4

)(
α

α
:
m

)
,

(1.22)

where theα= (α1, . . . ,αm)T andα:m = (α:m+1, . . . ,α:2m)T should be understood as column
vectors of operators. Such Hamiltonian does not contains terms such asα2, and is called
bilinear Hamiltonian or Bogoliubov Hamiltonian. It often shows up in condensed matter
physics e.g. all operators with index 1r 1 correspond to the same wave vector k , while
those with 1m + r 1 to´k , and 1m1 denotes the number of degrees of freedom within the
unit cell [16]. Diagonalizing the matrix H amounts to a linear transformation (mixing)
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of the annihilation α and creation α:m operators into γ and γm such that,

H = (
α: αm

)
H

(
α

α
:
m

)
= (

γ: γm
)
S :H S

(
γ

γ
:
m

)
= (

γ: γm
)
E

(
γ

γ
:
m

)
=ωγ:γ+ω1γ:mγm .

(1.23)

One should note that here the mixing of creation operators and annihilation operators
is not that of Bogoliubov. The pure Bogoliubov transformation mixes the creation and
annihilation operators of the same mode. But for the diagonalization of Eq. 1.22, the
mixing of operators of different modes makes the column vectors of transforming matrix
S still the eigenvector of H , although such eigenvectors do not concur with the unitary
understanding but to the so-called para-unitary concepts.

To begin with, we firstly introduces the definition of para-unit matrix Ĩ2mˆ2m with
Ĩρρ = 1 (1ď ρďm), Ĩρρ =´1 (m+1ď ρď 2m), and Ĩρρ1 = 0 (ρ1‰ ρ). Any para-unitary

matrix S satisfies the relation S :ĨS = Ĩ and S ĨS : = Ĩ . We claim that the Hermit
matrix H can be diagonalized by the para-unitary matrix S such that S :H S = E if
and only if matrix H is positive definite. The proof is to find such para-unitary matrix
S . Since H is positive definite, it can be written as H = D:D with D is invertible. We
construct the unitary diagonalization for the matrix DĨD: such that U :(DĨD:)U =Λ,
and construct the positive diagonal matrix E = ĨΛ. Then it can be proved that the trans-
forming matrix S =D´1UE 1/2 is para-unitary and it indeed diagonalizes the Hamilto-
nian H such that S :H S = E . Note here that due to the Sylvester’s law of inertia, the
diagonal matrix Λ contains m number of positive elements and m number of negative
elements (sorted), and the eigen-matrix E is positive definite like H itself. From an-
other view of point, S :H S = E equals to the fact that H S = ĨS Λ. So as H

∣∣wρ

〉 =
λρĨ

∣∣wρ

〉
, the column vector of S is the para-eigenvector for matrix H . Under the def-

inition of inner product with metric Ĩ , i.e.
〈

vρ
∣∣vρ1〉Ĩ

”
〈

vρ
∣∣Ĩ ∣∣vρ1〉, the paraunitary

matrix S is orthonormal as
〈

wρ

∣∣wρ1
〉
Ĩ
= δ̃ρρ1 =˘1 and

〈
wρ

∣∣H ∣∣wρ1
〉
Ĩ
= ερδρρ1 .

Such column vector of S as paraunitary eigenvector has an important interpreta-
tion that it can be viewed as the wavefunction of the original excitation expanded in the
basis of elementary excitations. For simplicity, we illustrate this by taking the case that
there are 2 degrees of freedom within the unit cell such as the spin-up and spin-down
sublattice in the case of AFM. The transformation looks like(

αu

α
:

d

)
=

(
s1 s3

s2 s4

)(
γ1

γ
:
2

)
. (1.24)

If we only excite the mode of γ1, that is
(〈
γ1

〉
,
〈
γ2

〉)T = (1, 0)T , then the local spin devi-
ation can be deduced that (〈αu〉 , 〈αd 〉)T „ (s1, s2)T and the relative strength of preces-

sion for spin-up and spin-down sublattice is
∣∣s1

/
s2

∣∣2. It also should be noted that the
canonical commutation relation for bosonicαs and γs is preserved by the para-unitarity
S :ĨS = Ĩ and S ĨS : = Ĩ .

As an example, we derive the dispersion relation for the antiferromagnetic magnons
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based on the Hamiltonian (Eq. 1.20). The paraunitary transformation has the form

H (2) = γµ0

ÿ

k

(
α
:

k β´k

)(
uk vk

vk uk

): (
HE +HA +H0 γk HE

γk HE HE +HA´H0

)(
uk vk

vk uk

)(
αk

β
:

´k

)
=

ÿ

k

ωαα
:

kαk +ωββ:´kβ´k .

(1.25)

It can be proven that the column vector of transforming matrix S is

uk =
c

γµ0HE +γµ0HA +ωk

2ωk
, vk =´

c

γµ0HE +γµ0HA´ωk

2ωk
.

and one can check it is indeed a para-unitary matrix. The dispersion relation is given by

ωα,β =ωk ˘γµ0H0, ωk = γµ0

b

H 2
A +2HE HA +H 2

E (1´ψ2
k ). (1.26)

For cubic lattice, the structure factor is

ψk = cos(kx a/2)cos(ky b/2)cos(kz c/2), (1.27)

where (a,b,c) are the lattice constants of the (x̂, ŷ , ẑ) direction. In the case of AFMR, k = 0
so that the resonant frequency without external field results in

ωAFMR« γµ0

a

2HE HA , (1.28)

with the assumed week anisotropy HA ! HE . Compared to the AFMR frequency solved
in the previous subsection, one can see that the process of diagonalization is equivalent
to solving the equation of motion under the same Hamiltonian.

1.2. Elastic degree of freedom
1.2.1. Strain, stress, and the elasticity
In a solid elastic material, a point r is displaced by externally applied stress into another
point r +u. Here r is the point coordinate before deformation and u is the displacement
vector. Consider a line element dl in the material between two points and after the de-
formation it becomes dl 1. Suppose the deformation is small, it is easy to show that the
change of line element is essentially captured by the elastic strain tensor εi j as

dl 12 = dl 2 +2εi j d xi d x j , (1.29)

with εi j = 1/2(Bi u j +B j ui ) as defined. Thus the fractal change of length can be calculated

δl

l
= dl 1´dl

dl
= εi jηiη j (1.30)

with (η1,η2,η3) are the unit vector of length l̂ . Furthermore, to the first order of εi j , the
volume change due to the deformation is dV 1 = dV (1+εi

i ) with

εi
i = εi jδ

j i ”
ÿ

i

εi i (1.31)
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is a Penrose notation where the summation over dummy indices is assumed. The strain
tensor is symmetric and the diagonal terms εi i = Bi ui are associated with longitudinal
deformation and off-diagonal terms are associated with shear (transverse) deformation.
It is only the longitudinal strain that contributes to a change in volume, δV /V = εi

i .
The stress tensor σi j stands for the force in the i -th direction applied onto the unit

area of the j -th surface. Thus for a volume element inside the elastic bulk, the total force
along i -th direction is Fi = Bσi j /Bx j (where the summation among dummy indices is
assumed). It follows that the net force on an internal volume part of ∆V is

ż

∆V
Fi dV =

ż

∆V

Bσi j

Bx j
dV =

ż

σi j dS j , (1.32)

where dS j is the surface element vector directed along the outward normal. This means
the internal force on the volume is applied through surface contact with the neighbour-
ing portions and thus the equation of motion for the displacement field is

ρ
B2ui

Bt 2 = Bσi j

Bx j
. (1.33)

The virtual work due to the internal force F onto the virtual displacement δu is δR =
Fiδui so that in the volume bulk the loss of potential energy reads

ż

δRdV =
ż

δui
Bσi j

Bx j
dV =

ż

σi jδui dS j ´

ż

σi jδ
Bui

Bx j
dV. (1.34)

For simplicity, stress on the material surface is neglected thus we have dR =´σi j dεi j .
Accordingly, the change of free energy reads dF =´T dS +σi j dεi j and the relation

σi j = BF

Bεi j
(1.35)

can be understood. For isotropic bulk material the elastic free energy density acquires
the following form [17]

Fel =
1

2
λ

(
εi

i

)2 +µ
ÿ

i j

ε2
i j , (1.36)

where λ and µ are the Lamé constants. Thus we have the relation between stress and the
strain for isotropic material

σi j = 2µεi j +λ
(
εi

i

)
δi j , (1.37)

which is consistent with the general elasticity tensor relation

σi j =
ÿ

kl

Ci j kl εkl , (1.38)

whose stiffness elements read C1111 = λ+2µ, C1133 = λ, C1313 = 2µ, C1113 = 0, and other
elements are acquired based on the symmetry [18]. We see typically the coefficient C1111

relates σi i to longitudinal strain εi i while the C1313 relates σi‰ j to shear strain εi‰ j , and
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the C1133 depicts the transverse deformation ε j j due to the stress σi i of the orthogonal

direction (~i K~j ).
Based on the elasticity tensor relation we have σi

i = 3KT ε
i
i with KT = λ+2µ/3, such

that for homogeneous compression σi i = ´p the fractal change of volume is δV /V =
εi

i =´p/KT and thus we define the compressibility for isotropic material

βT = K´1
T =´ 1

V

BV

Bp
. (1.39)

Then the elastic free energy can be rephrased into the part combination of longitudinal
and shear deformations

Fel =
1

2
KT

(
εi

i

)2 +µ
ÿ

i j

(
εi j ´

1

3
εi

i δi j

)2

, (1.40)

To the uniaxial stretching, for example only σzz ‰ 0, one can calculate the static defor-
mation as εzz =σzz /3(1/µ+1/3KT ), εxx = εy y =´σzz /3(1/2µ´1/3KT ), and others zero.
We define the Young’s modulus as the linear relation for longitudinal stretching σzz =
Y εzz and Poisson ratio as the accompanying transverse compression εxx = εy y =´σεzz .
Their relation with the Lamé coefficients are

λ= Y σ

(1+σ)(1´2σ)
, µ= Y

2(1+σ)
, KT = Y

3(1´2σ)
. (1.41)

The longitudinal acoustic velocity is vL =
b

(λ+2µ)
/
ρ while the shear acoustic veloc-

ity is vS =
b

µ
/
ρ. For isotropic material the averaged velocity by fitting to the Debye’s

temperature is [19]

v̄ =
[

1

3

(
1

v3
L

+ 2

v3
S

)]´ 1
3

. (1.42)

1.2.2. Thermodynamic properties
The lattices vibration is accompanied by the change of temperature within the body ei-
ther due to the internal friction or external temperature gradient. The thermal elastic
coupling is made through the thermal-expansion coefficient α such that the free energy
at temperature T is [17]

F (T ) = F0(T )´KTα (T ´T0)εi
i +

1

2
KT

(
εi

i

)2 +µ
ÿ

i j

(
εi j ´

1

3
εi

i δi j

)2

, (1.43)

with F0 is the thermodynamic part and T0 is the equilibrium temperature at the initial
time. Since S = ´BF /BT we understand the entropy increase can be divided into two
part:

∆S(T ) =∆S0(T )+KTαε
i
i . (1.44)

The ∆S0 denotes the thermal entropy increase without deformation

∆S0 =
ż T

T0

CV dT /T «CV
T ´T0

T0
. (1.45)
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This means that the absorption of heat ∆Q = T∆S leads not only to the increase of ther-
mal phonon intensity, but also to the volume expansion εi

i = δV /V . In practice, the
elastic vibration can be classified into two extreme cases. One is called the isothermal
process, which means the deformation is slow enough such that there is abundant heat
exchange between the elastic body and the environment. So the body temperature is
kept the same as the environment and is homogeneous within the body. For example,
in the free expansion of the elastic block as environment temperature slowly increases
from T0 to T , the corresponding volume change is εi

i = α(T ´T0). Thus the coupling

strength α is the isothermal expansion coefficient α = 1
V
BV
BT

∣∣∣
p

. Another extreme situa-

tion is called adiabatic process, in which the deformation is changed fast enough that
there is no heat exchange with the environment nor within the body itself. During this
vibration, there is an accompanying temperature field entwined with the local volume
expansion CV (T ´T0)/T0 = ´KTαε

i
i . Thus without heat exchange, the contraction of

elastic body would lead to an internal temperature increase. Combing thermal resis-
tance with adiabatic compression, a new bulk modulus Kad can be derived from ther-
modynamic formula

1

Kad
= 1

KT
´

Tα2

CV
, (1.46)

and the thermal-incorporated elastic free energy is

F = F0 + 1

2
Kad

(
εi

i

)2 +µ
ÿ

i j

(
εi j ´

1

3
εi

i δi j

)2

(1.47)

From Eq. 1.44 we see the specific heat at constant pressure is CP = T dS/dT = CV +
T KTα

2, and thus leads to the equality

CP

CV
= Kad

KT
, (1.48)

within the first order approximation.
Since the specific heat CV = dE/dT is defined as the change of energy per unit of

temperature increase and α denotes the volume expansion as for temperature increase,

these two moduli should be somehow related. Therefore it yields thatαKT =´BV
BT

∣∣∣
p

BP
BV

∣∣∣
T
=

BP
BT

∣∣∣
V

meaning the pressure required to prevent thermal expansion at fixed volume. It

equals to BS0
BV

∣∣∣
T

because of the thermal dynamics potential relation. From another point

of view, thermal entropy S0 is related to the volume due to the fact that the phonon fre-
quency is volume dependent. The Boltzmann entropy is S0 = ´kB

ř

n pn log pn with

pn = eβħω´1
eβħω e´βħωn stands for the probability of n number of phonons of energy ħω in-

side the solid bulk. With the phonon’s specific heat CV = B
BT

ř

n pnħωn, it can be proven

that the relation BS0
BV

∣∣∣
T
=´ 1

ω
Bω
BV CV holds, and defining the elastic Grüneisen parameter

γE =´B logω/B logV we arrive at the Grüneisen relation [20]

γE =αKT V /CV ÐÑ α=βTγEρCV . (1.49)
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The central point is that thermal and elastic properties are controlled by the same inter-
atomic forces and it is the Grüneisen parameter that gives them a theoretical connection.
For isotropic materials the elastic Grüneisen parameter can be calculated from the Pois-
son ratio [21, 22]

γE = 3

2

(
1+σ

2´3σ

)
. (1.50)

1.2.3. Magnetoelastic coupling
The magnetoelastic coupling (MEC) in magnetic insulator mainly comes from two ori-
gins. One is the crystal field applied to the spin has dependency on the elastic deforma-
tion and the second comes from the dipolar interaction between the spins which also
depends on the distance between such spins. To the lowest order expression, the phe-
nomenological Hamiltonian density for MEC is given by [23]

HMEC = B1[(α2
1 +β2

1)ε11 + c.p.]+B2[(α1α2 +β1β2)ε12 + c.p.]

+B3[α1β1ε11 + c.p.]+B4[(α1β2 +α2β1)ε12 + c.p.],
(1.51)

where αi = M 1
i /Ms and βi = M 2

i /Ms stand for the cosine of angle of the magnetization
with respect to the crystallographic axis, and c.p. denotes cyclic permutation. We see
that the B1 and B2 represent the MEC strength of one-ion and B3 and B4 of the two-ions
respectively. For antiferromagnetic case one should usually discern theα andβ because
the two spins of the sub-lattice are often not anti-parallel to each other unless for very
small external field. However, for the case of ferromagnet, there is no sub-lattice and
α=β, thus Eq. 1.51 can be simplified into

HMEC = B∥
(
α2

1ε11 + c.p.
)+BK

(
α1α2ε12 + c.p.

)
= B∥

M 2
s

(
M 2

1ε11 + c.p.
)+ BK

M 2
s

(
M1M2ε12 + c.p.

)
.

(1.52)

These MEC strengths can be determined through the magnetostriction experiment
in which the magnetization orientation can be tuned by an external field while the static
volume change δV /V or fractal change of length δl /l can be measured. Together with
the elastic free energy HE (Eq. 1.40) the static strain can be derived by differentiating the
total Hamiltonian B(HE +HMEC )/Bεi j = 0 and the link between magnetization and static
(equilibrium) strain is thus established.

In many applications, the elastic deformation could be considered as static com-
pared to the high magnetic precession frequency. Then the magnetoelastic coupling can
be treated as an effective anisotropy which is a function of strainµ0H MEC

A =´BHMEC /BM .
Due to the fact that the AFMR frequency is largely affected by the anisotropy field (Eq. 1.28)
such stress-dependent MEC effects are much more accentuated in antiferromagnets
than in ferromagnets and play an important role in studying the spin waves of Heisen-
berg antiferromagnetic models [24].

One should keep in mind that the MEC described by Eq. 1.51 is valid only for the case
of small external field and the magnet stays in the low symmetry phase. If the external
field is larger than the spin-flop limit or the temperature is close to the phase transition
then the spins within magnet cannot keep parallel (or anti-parallel for AFM) so that the
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coupling energy becomes lattice dependent. This regime is referred to as the exchange
magnetoelastic effect and the volume change is related to the change in the static two-
spin correlation function between nearest neighbours [23]

δV

V
=´N zβT JγM

δ
〈

S i ¨S j
〉

V
, (1.53)

with N the number of spins per unit volume, z the lattice coordinate number, J the cou-
pling strength before the additional deformation, and βT is the compressibility as noted
in previous section. γM =´B log J/B logV is the magnetic Gruneisen constant which de-
picts the dependence of J on elastic deformation [25]. Similar to the elastic Gruneisen
relation (Eq. 1.49), we see that the Eq. 1.53 can be rephrased into αM = βTγMρCM with
the magnetic specific heat due to the exchange coupling when temperature close to Tc

is

CM =´N z J
B

〈
S i ¨S j

〉
BT

. (1.54)

1.3. The electromagnetic modes in waveguide
In this section we describe the TE and TM mode of electromagnetic (EM) waves in a hol-
low waveguide of uniform cross section. Classically the electrodynamics is described by
the Maxwell equations in vacuum and by assuming sinusoidal time dependence e´iωt

the equations take the form [26]

∇ˆE = iµ0ωH

∇ˆH =´iε0ωE

∇ ¨H = 0

∇ ¨E = 0.
(1.55)

Applying the cross product twice to E and H in Eq. 1.55 and using the relation ∇ˆ (∇ˆ
A) =∇(∇ ¨ A)´∇2 A, the electromagnetic wave equation of motion has the formula(∇2 +µ0ε0ω

2){E
H

}
= 0. (1.56)

Assuming the cylindrical waveguide having its longitudinal direction point along the z-
axis, we can exclude the travelling wave dependence on z as e i kz so that E =E(x, y)e i (kz´ωt )

and H =H(x, y)e i (kz´ωt ). The equation of motion reduced to the dimension of trans-
verse plane (x, y) becomes an eigenvalue problem[∇2

t +
(
µ0ε0ω

2´k2)]{
E
H

}
= 0, (1.57)

which can be solved together with the proper boundary conditions. Assume the waveg-
uide is made of perfectly conducting material so that there is no EM field inside, then the
boundary conditions on the cylinder’s inner surface are nˆE = 0 and n ¨H= 0.

By separating the transverse components from the longitudinal part, the Maxwell’s
equation can be rephrased into the relation [27]

Et = i

(µ0ε0ω2´k2)

[
k∇t Ez´µ0ωẑˆ∇t Hz

]
(1.58)

Ht = i

(µ0ε0ω2´k2)
[k∇t Hz +ε0ωẑˆ∇t Ez ] . (1.59)
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We see the transverse components can be determined if Ez and Hz have been solved
from the eigenvalue problem (Eq. 1.57). It turns out that the low-energy branches of EM
modes in the waveguide have the property that either Ez = 0 or Hz = 0 and they are
referred to as transverse electric (TE) mode and transverse magnetic (TM) mode respec-
tively. For solving the eigenvalue equation of each modes the boundary condition shall
be written in more detail. In specific the surface boundary condition for the TE mode is
BHz
Bn

∣∣
S = 0 and for the TM mode it is required Ez

∣∣
S = 0. Thus the profile of electromag-

netic wave can be determined by solving the scalar equation [27](∇2
t +γ2)ψ= 0, γ2 =µ0ε0ω

2´k2, (1.60)

subjecting to the boundary conditions on the waveguide surface,

ψ
∣∣
S = 0 or

Bψ

Bn

∣∣∣
S
= 0. (1.61)

We see the contracting nature in the (x, y) plane shall lead to a standing wave profile for
the field ψ and the discrete branching modes in the dispersion relation, i.e. the γλ and
ωλ(k), should be expected. One should also note that for either TM or TE modes the
transverse electric and magnetic fields are related by

Ht = 1

Z
ẑˆEt , (1.62)

with Z = k
/

(ε0ω) or Z = µ0ω
/

k are called the impedances for the TM and TE mode
respectively.

As an example which will be used in Chapter 4, we consider the rectangular waveg-
uide with inner dimension (a,b,L) and assume the length L " a > b. For the TE mode,
the profile equation is (B2

/
Bx2+B2

/
By2+γ2)Hz = 0 with boundary condition BHz

/
Bx =

0 at x = 0, a and BHz
/
By = 0 at y = 0, b. The solution is therefore

Hz = B0 cos
(nπx

a

)
cos

(mπy

b

)
Hx =´ i kB0

(ωλ
/

c)2´k2

(nπ

a

)
sin

(nπx

a

)
cos

(mπy

b

)
H y =´ i kB0

(ωλ
/

c)2´k2

(mπ

b

)
cos

(nπx

a

)
sin

(mπy

b

)
,

(1.63)

with dispersion relation

ωλ(k) = c
b

γ2
λ
+k2, (1.64)

in which c = 1?
µ0ε0

is the speed of light in vacuum and

γλ =
b

γ2
x +γ2

y =
b

n2π2
/

a2 +m2π2
/

b2 (1.65)

stands for the cut-off frequency. λ represents the mode structure (including the polar-
ization), noted such as λ= {1,0,TE}. The chirality of transverse magnetic field flips sign
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Figure 1.2: The spatial distribution of magnetic field H for the TE10 mode which has lowest dispersion band
in the rectangular waveguide. The arrows shows the direction of H field and the color shading indicates its
relative magnitude.

for the reversed propagation and in general we have

Eλ(k) =Et ,λ(k)+Ez,λ(k)ẑ

Hλ(k) =Ht ,λ(k)+Hz,λ(k)ẑ

Eλ(´k) =Et ,λ(k)´Ez,λ(k)ẑ

Hλ(´k) =´Ht ,λ(k)+Hz,λ(k)ẑ.

(1.66)

Since the TM10 mode does not exist, the TE10 mode has the lowest cutoff frequencyω10 =
cπ

/
a and therefore is the one used in most practices [28]. A snapshot of the oscillating

magnetic field H is shown in Fig 1.2.
Quantum mechanically the E and H fields can be expanded into the combination of

eigen-profile distribution multiplied by time-dependent photon operator,

E =
ÿ

k,λ

Eλ(k)e i kz p̂k,λ+ Ēλ(k)e´i kz p̂:k,λ

H =
ÿ

k,λ

Hλ(k)e i kz p̂k,λ+H̄λ(k)e´i kz p̂:k,λ.
(1.67)

Since the profile distributions are solved from the eigen equation different modes should
be orthogonal to each other. Thus by proper normalization one can rewrite the EM
Hamiltonian into the independent harmonic oscillator form. It turns out for the TE and
TM mode, the proper orthonormal conditions are

ż

Et ,λ(k) ¨Et ,µ(k)d A = ξW δλµ
ż

Ht ,λ(k) ¨Ht ,µ(k)d A = ξW
1

Z 2
k

δλµ

ż

Ez,λ(k)Ez,µ(k)d A =´ξW
γ2
λ

k2 δλµ

ż

Hz,λ(k)Hz,µ(k)d A =´ξW
γ2
λ

k2Z 2
k

δλµ,

(1.68)

where the factor ξW =ħωk
/
ε0 and Zk is the waveguide impedance for TE and TM mode.



1.4. Thesis outline

1

17

Inserting these component relations into the electromagnetic energy we have the pho-
ton Hamiltonian per unit length of waveguide reading as

Ĥem =
ż

dr
ε0

2
Ê

2 + µ0

2
Ĥ

2

=
ÿ

k,λ

ż

d xd y
[
ε0Eλ(k) ¨ Ēλ(k) p̂:k,λp̂k,λ+µ0Hλ(k) ¨H̄λ(k) p̂:k,λp̂k,λ

]
=ħ

ÿ

k,λ

ωλk p̂:k,λp̂k,λ.

(1.69)

Note that during the derivation, the terms p̂k,λp̂´k,λ cancel out by the summation of
Eλ(k) ¨Eλ(´k)+Hλ(k) ¨Hλ(´k).

1.4. Thesis outline
In this thesis we study the interplay of magnetism with the elastic and electrodynamics
degree of freedom in several hybrid systems. As first part of this thesis, Chapter 2 and
3 have been devoted to investigate the magnetoelastic coupling in specially designed
nanostructures. In Chapter 2 we worked on the chiral pumping of surface acoustic wave
by the ferromagnetic resonance of YIG nanowire mounted on top of an acoustic sub-
strate. The linear magnetoelastic coupling for small perturbation has been applied and
the magnet stays in ordered state far below the critical temperature. In Chapter 3 we ex-
tended the analysis into a broader temperature range even over the phase transition. We
discussed a theoretical scheme of incorporating the exchange magnetoelastic interac-
tion into the thermal elastic dynamics for the thin membranes of 2D antiferromagnetic
material with restricted geometry. This model has been validated by predicting the tem-
perature dependency of observables and followed by comparison with the experiment
measured curves for the FePS3 flake resonator.

The second part of this thesis turns to investigate the interaction of spins with mi-
crowaves in the waveguide and cavity setups. Chapter 4 discusses the inter-excitations
between multiple millimeter-sized ferromagnets mediated by waveguide photons. The
magnon-photon couplings are found to be chiral by tuning the magnet’s position inside
the waveguide and super/sub-radiant states can be realized for selected frequencies. In
Chapter 5 we study an optical method to manipulate the spins flipping process which
serves as an energy exchange protocol between charger (photons) and the storage ele-
ment (spins). We demonstrated the enhancement of collective spin flipping speed in-
side a single mode photon cavity which can be modeled by the Dicke Hamiltonian. This
speedup effect is found to originate from the cooperative interactions among the spins
instead of the quantum entanglement.
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2
Nonreciprocal pumping of

phonon spin by magnetization
dynamics

The first step to achieve your goal is to make this goal your dream.

Lao-tzu

In this chapter we propose a theory of chiral pumping of surface acoustic waves (SAWs)
by magnetic nanowires on top of a dielectric film. The magnetic dynamics in a single
nanowire pumps SAWs with opposite angular momenta into opposite directions, thus
generates a phonon spin current. Two parallel nanowires forms an phononic cavity that
at geometrical resonances it pumps an unidirectional SAW current into half of the surface
plane. This mechanism paves the way to control surface-phonon transport by magnetiza-
tion dynamics.

This chapter have been published in Phys. Rev. Lett 125, 077203 (2020) [1] with some modifications.
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2.1. Introduction
Surface acoustic waves (SAWs) on the surface of high-quality piezoelectric crystals are
frequently employed for traditional signal processing [2], but are also excellent media-
tors for coherent information exchange between distant quantum systems such as su-
perconducting qubits and/or nitrogen-vacancy centers [3–5]. Piezoelectrically excited
coherent SAWs drive the ferromagnetic resonance (FMR) by magnetostriction [6–11], ex-
cite spin waves parametrically [12], and generate electron spin currents by the rotation-
spin coupling [13, 14]. Conventional insulators often have good acoustic quality but only
small piezoelectric effects, rendering the direct excitation, manipulation, and detection
of the coherent SAWs challenging. The phonon pumping [15], i.e., the excitation of bulk
sound waves in a high-quality acoustic insulator by the dynamics of a proximity mag-
netic layer via the magnetoelastic coupling [16, 17], may be useful here. Bulk phonons in
the insulator gadolinium gallium garnet (GGG) can couple two yttrium iron garnet (YIG)
magnetic layers over millimeters [18, 19].

Here we address the coherent excitation and manipulation of Rayleigh SAWs by mag-
netization dynamics, which is possible in a lateral planar configuration with ferromag-
netic nanowires on top of a high-quality nonmagnetic insulator, as illustrated in F2.1.
Similar configurations on magnetic substrates led to the electrical detection of diffuse
magnon transport [20, 21] and discovery of nonreciprocal magnon propagation [22], i.e.,
the generation of a unidirectional spin current in half space. Magnetic stray fields of
the magnetization dynamics also generate chiral electron and waveguide photon trans-
port. The unidirectional excitation of SAWs is important for acoustic device applications,
which conventionally is achieved by metal electrodes on a piezoelectric crystal such that
reflected SAWs constructively interfere with the source. This is a pure geometrical ef-
fect that is efficient at sub-GHz frequencies and sample dimensions that match the SAW
wavelength [23].

We focus on the unidirectional excitation of SAWs via magnetic nanostructures on
top of a dielectric substrate that are brought into FMR by external microwaves. We pre-
dict effects that are very different from the reported nonreciprocity, i.e., a sound veloc-
ity that depends on direction [10, 24], which is enhanced in magnetic multilayers on
top of a piezoelectric substrate [25, 26]. The magnetic order of, e.g., a wire on top of
a dielectric, does not couple nonreciprocally to the surface phonons in the configura-
tion in Fig. 1, but excites both left- and right propagating phonons, even though the
angular momentum current has a direction because of the momentum-rotation cou-
pling of Rayleigh SAWs. However, we predict robust unidirectional excitation of SAW
phonons in a phononic cavity formed by two parallel wires. The SAWs actuated by the
first wire interact with the second one (which does not see the microwaves) and excite
its magnetization, which in turn emits phonons. The phonons from both sources inter-
fere destructively on half of the surface and the net phonon pumping becomes unidirec-
tional. Constructive interference between the two nanowires induces standing SAWs as
in a Fabry-Pérot cavity. Conventional unidirectional electric transducer [23] operate by a
pure geometrical interference effect that works only for a fixed sub-GHz frequency. Our
magnetic unidirectional transducer operates by a dynamical phase shift and provides
new functionalities, such as robust high frequency tunability and switchability.

We firstly introduce the derivation of surface acoustic wave profile in section 2.2
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Figure 2.1: Surface-phonon pumping by one magnetic nanowire (brown) on top of the acoustic insulator
(blue). A static magnetic field H 0 applied in the~x direction saturates the magnetization. The pumped Rayleigh
SAWs by the nanowire FMR propagate and rotate in opposite directions at the two sides of the nanowire as in-
dicated by the green and black arrows, respectively.

based on which the quantization into SAW phonons are presented in the following sec-
tion 2.3. The quantization of the hybrid system, namely the magnetic FMR and its cou-
pling to the SAW phonons are derived in details. In section 2.4 we derives explicitly the
SAW pumping driven by the FMR on single magnetic nanowire. The unidirectional angu-
lar momentum flux of surface acoustic wave has been derived. We clarifies the coherent
reflection of SAW phonon by introducing a second nanowire in section 2.5. The standing
wave profile is shown and the photon transmission is plotted. We conclude with a short
discussion in Sec. 2.6.

2.2. Surface acoustic wave
We start our discussion by providing the necessary formalism about the Rayleigh surface
acoustic wave which shall be often cited in the following sections. We only consider
the Rayleigh SAW on the surface of solid, isotropic, perfectly elastic plane and the main
contents are referred to the book [27] with some notation adjustments.

We first introduce the scalar potentialϕ and vector potential~A for the displacements
field so that it can be written in the form,

u =∇ϕ+∇ˆ A. (2.1)

For Rayleigh SAW only component of the vector potential along y axis will have nonzero
magnitude so that Al = Ay~y . In this case, the ϕ and Ay are called the potentials of longi-
tudinal and shear waves, respectively. Thus the displacement is further expressed in the
potential formalism,

u =∇ϕ+∇ˆ A =
(
Bϕ

Bx
´
BAy

Bz

)
~x +

(
Bϕ

Bz
+ BAy

Bx

)
~z. (2.2)



2

24 2. Nonreciprocal pumping of phonon spin by magnetization dynamics

Since there is no displacement along y axis, only the strain tensors εxx ,εzz ,εxz have none
vanishing magnitudes, which can be expression in the potential fields

εxx = B
2ϕ

Bx2 ´
B2 Ay

BxBz
,

εzz = B
2ϕ

Bz2 + B
2 Ay

BxBz
,

εxz = B2ϕ

BxBz
+ 1

2

(
B2 Ay

Bx2 ´
B2 Ay

Bz2

)
.

(2.3)

Based on the elasticity tensor relation σi j =
ř

kl Ci j kl εkl and stiffness coefficient Ci j kl

(Eq. 1.38), the strain tensors then read

σxx =λ
(
B2ϕ

Bx2 + B
2ϕ

Bz2

)
+2µ

(
B2ϕ

Bx2 ´
B2 Ay

BxBz

)
,

σzz =λ
(
B2ϕ

Bx2 + B
2ϕ

Bz2

)
+2µ

(
B2ϕ

Bz2 + B
2 Ay

BxBz

)
,

σxz =µ
(

2
B2ϕ

BxBz
+ B

2 Ay

Bx2 ´
B2 Ay

Bz2

)
.

(2.4)

Putting the stress and displacement expression (Eq. 2.4 and Eq. 2.2) into the elastic equa-
tion of motion

ρ
B2ui

Bt 2 =
ÿ

j

Bσi j

Bx j
, (2.5)

we can derive the wave equations for longitudinal and shear potential respectively:

B2ϕ

Bx2 + B
2ϕ

Bz2 = ρ

λ+2µ

B2ϕ

Bt 2 ,

B2 Ay

Bx2 + B
2 Ay

Bz2 = ρ

µ

B2 Ay

Bt 2 .

(2.6)

Next we assume the plane wave solution, letting ϕ(r , t ) = ϕ(z)e i (kx´ωt ) and Ay (r , t ) =
Ay (z)e i (kx´ωt ) and defining ω = kl

a

(λ+2µ)/ρ = kt
?
µ/ρ, the potential wave equation

can be simplified as

B2ϕ

Bx2 + B
2ϕ

Bz2 +k2
l ϕ= 0,

B2 Ay

Bx2 + B
2 Ay

Bz2 +k2
t Ay = 0.

(2.7)

We clearly see that the potential ϕ represents the longitudinal vibration and A for the
shear one (henceforth referred to as the longitudinal and shear potential). Further solve
this equation of motion we get

ϕ=ϕk e

b

k2´k2
l z
¨e i (kx´ωt ),

Ay = Ak e
?

k2´k2
t z ¨e i (kx´ωt ).

(2.8)
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We note the reader that z takes negative values inside the acoustic substrate and thus it
decays out into the depth.

The boundary condition is that there is no stress along the z axis on the surface, that
is, σzz |z=0 = 0, σxz |z=0 = 0. Based on these requirements we insert the solution Eq. 2.8
back into the stress expression (Eq. 2.4) to derive the relation between ϕ0 and A0 and
also the dispersion relation ω(k) that:

Ak =
i 2k

b

k2´k2
l

k2
t ´2k2

ϕk =´ i 2kq

k2 + s2ϕk , (2.9)

and
4k2qs´ (k2 + s2)2 = 0 (2.10)

with q =
b

k2´k2
l and s =

b

k2´k2
t . Note that the wave vectors of longitudinal and

shear wave (kl , kt ) is a linear function of frequency ω and one shall see later that the k
for SAW shall definitely larger than kl and kt . After a transformation, the Eq. 2.10 reduces
to the form of polynomial equation

η6´8η4 +8(3´2ζ2)η2 +16(ζ2´1) = 0, (2.11)

which incorporates the unknown η = kt /k = cr /ct and the parameter ζ = kl /kt = ct /cl .
Here the cl =

a

(λ+2µ)/ρ, ct =
?
µ/ρ shall be understand as the phase velocity of lon-

gitudinal and shear wave respectively while cr = ω/k is the phase velocity of SAW. This
relation is sometime called the Rayleigh equation. It has six roots, the values of which
depends on the material parameters λ and µ.

The Rayleigh wave (SAW) corresponds to the root ηr which lies between 0 and 1 such
that |k| > |kt | > |kl | is confirmed. It can be shown that for any real media Eq. 2.11 has
one and only one such root. Note again that the parameters in equation 2.11 does not
depends on ω, which means that the solution ηr is simply a constant if the materials
parameters is fixed. This leads to the fact that cr = ηr ct and the dispersion relation,

ω(k) = cr |k| = ηr ct |k| (2.12)

is of linear dependence. We note the reader that it is the velocity relation cr < ct < cl

maintains the wave front of Rayleigh SAW staying on the surface instead of sinking into
the bulk because the waves inside the bulk travels faster.

Next putting the potential wave solution Eq. 2.8 into the displacement expression
(Eq. 2.2) we have the general Rayleigh acoustic wave profile

ux = i kϕk

(
eqz´

2qs

k2 + s2 e sz
)

e i (kx´ωt ),

uz = qϕk

(
eqz´

2k2

k2 + s2 e sz
)

e i (kx´ωt ).

(2.13)

where ϕk is the normalization factor which shall be defined in later usage. Since the rel-
ative phase between φ(ux /uz ) changes sign as the direction of propagation is reversed,
we call the surface acoustic wave is spin-momentum locked just like a rotating wheel.
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2.3. Quantization of the hybrid magnetization and elastic sur-
face system

We consider a rectangular magnetic nanowire (YIG) on top of the surface of a thick di-
electric (GGG) that spans the x, y plane. It extends along the y direction with z P [0,d ]
and x P xi + [´w/2, w/2], as shown in Fig. 2.1. For an analytical treatment, d is assumed
to be much smaller than the skin depth of the SAWs, such that the displacement field in
the wire is nearly uniform in the z dependence. The lattice and elastic parameters at the
YIG|GGG interface match well [15, 18, 19, 28] and are assumed equal. A uniform and suf-
ficiently large static magnetic field H 0 along ~x saturates the equilibrium magnetization
Ms~x, normal to the wire.

The system Hamiltonian consists of the elastic energy He , the magnetic energy Hm ,
and the magnetoelastic coupling Hc . Firstly according to the Ref. [29] in our setup the
magnetic energy of the Kittel mode Hm under the external field H 0 is

Hm =µ0

ż

dr
(
´Mx H0 + 1

2
Nxx M 2

x +
1

2
Nzz M 2

z

)
, (2.14)

where M = (Mx , My .Mz )T is the magnetization vector and the demagnetization con-
stants are taken as Nxx » d/(d + w) and Nzz » w/(d + w). Here the µ0 is the vacuum
permeability and in the following γ= gµB is the gyromagnetic ratio for YIG and is taken
as positive constant. Although the predicted effects are classical, we use a quantum de-
scription for convenience and future applications in quantum phononics [3–5, 30, 31];
we can always recover the classical picture by replacing operators by amplitudes.

The transverse magnetization is quantized by the Kittel-magnon operator β̂(t ) with
normalized wave function my,z

M̂y,z =´
a

2γħMs

(
my,z β̂(t )+m˚

y,z β̂
:(t )

)
. (2.15)

Similar to the citation [32], the normalized wave function is derived from the criteria
that,

ż

dr
(
my m˚

z ´m˚
y mz

)
=´ i

2
. (2.16)

The Landau-Lifshitz equation for the transverse dynamics in our configuration with sat-
urated magnetization along the~x direction reads

d My

d t
=´µ0γ(H0´Nxx Ms +Nzz Ms ) Mz ,

d Mz

d t
=µ0γ(H0´Nxx Ms ) My ,

(2.17)

which is solved by
mz = iξ2

M my , (2.18)

with dimensionless ellipticity

ξM =
(

H0´Nxx Ms

H0´Nxx Ms +Nzz Ms

)1/4

. (2.19)
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With the normalization condition (Eq. 2.16) the magnon amplitudes read

my =´ 1

2
?

Lwd

1

ξM
, mz =´ i

2
?

Lwd
ξM . (2.20)

Inserting these wave amplitudes into magnetization operators M̂y,z and further the Ĥm

the Hamiltonian of magnetization can be diagonalized into the simple harmonic oscil-
lator form

Ĥm =ħωF β̂
:β̂, (2.21)

with eigenfrequency ωF =µ0γ
?

(H0´Nxx Ms )(H0´Nxx Ms +Nzz Ms ).
In our configuration, only the Rayleigh SAWs couple efficiently with the magnet which

by their surface nature and long decay length are well suited to exchange information
with spatially remote magnets (check the appendix 2.7 to see other acoustic modes damped
away). Thus the elastic Hamiltonian which is a sum of the kinetic and potential energy
can be represented by the twice of kinetic energy dues to SAW displacement vibration
as [31]

He = ρ
ż

dr u̇2(x, z, t ). (2.22)

The displacement field (ûx , ûz ) can be expanded into the eigenmodesψ(k) and phonon
operators b̂k (t ) [31]

û(x, z, t ) =
ÿ

k

[
ψ(x, z,k)b̂k (t )+ψ˚(x, z,k)b̂:k (t )

]
. (2.23)

In order to properly diagonalize the elastic Hamiltonian, we shall require the Rayleigh
wave profile (Eq. 2.13) been normalized as

ż 0

´8

d z(|ψx |2 +|ψy |2) = ħ
2ρLωk

, (2.24)

leading to the normalization factor

ϕk = 1

|k|
1+b2

2a(1´b2)

d

2ħ
ρLcr

ξP , (2.25)

where

ξP = a(1´b2)

1+b2

(
1+a2

2a
+ 2a(a´2b)

b(1+b2)

)´1/2

(2.26)

with the dimensionless material constants

a = q

|k| =
a

1´ (cr /cl )2, b = s

|k| =
b

1´η2
r . (2.27)

Then the elastic Hamiltonian can be rephrased into second quantization formalism,
which as expected, is the sum of harmonic oscillators of different modes

Ĥe = ρ
ż

dr ˙̂u2(x, z, t ) =
ÿ

k

ħωk b̂:k b̂k . (2.28)
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In YIG films, the magnetocrystalline anisotropy is relative week [15, 19] and the mag-
netoelastic coupling can be simplified from the general expression (Eq. 1.52) by retaining
only the linear term of smallness My,z /Ms that

Hc = BK
Ms

ż

dr
(
MyBx uy +MzBz ux +MzBx uz

)
, (2.29)

with BK is the shear magnetoelastic coupling constant. The magnetic wire and non-
magnetic substrate are coupled by the dynamics of the surface strain. By the translation
symmetry along the nanowire y direction, the displacement field excited by the Kittel
magnon shall does not depend on y and dues to the arguing in appendix we can focus
on the only interaction between the Kittel mode and SAWs which propagate along the
x direction. Performing the integration within the magnetic nanowire with length L the
coupling Hamiltonian becomes

Hc =BKL

Ms

ż d

0
Mz (uz |x=w/2+xi ´uz |x=´w/2+xi )d z

+ BKL

Ms

ż w/2+xi

´w/2+xi

Mz (ux |z=d ´ux |z=0)d x.

(2.30)

We note that for the generality the nanowire is centered at position xi . Limited to the
realistic situation in which the wire thickness d is much smaller than the decay length
of the SAWs into the bulk, the second term of this integral vanishes [11] and in the first
term displacements can be treated as universe along the z direction

Hc Ñ
BKLd

Ms
Mz

(
uz |x=w/2+xi ´uz |x=´w/2+xi

)
. (2.31)

From classical aspect the canonical equation based on the coupling Hamiltonian gives
the oscillating force applied onto the substrate surface

F |x=˘w/2+xi =¯
BKLd Mz

Ms
~z

which could excite SAW which traveling outwards in both directions. In this research,
however, we consist to the second quantization approach and one can refer to the ap-
pendix for the classical formula of pumping of surface acoustic wave.

Substituting Eqs 2.15 and 2.31 we arrive at the quantized magnetoelastic coupling
Hamiltonian

Ĥc =ħ
ÿ

k

gk β̂
:b̂k +H .c., (2.32)

in which the coupling constant (qd ! 1, sd ! 1)

gk »´BK

c

γ

Msρcr

c

d

w
sin

(
kw

2

)
ξMξP e i kxi . (2.33)

The form factor e i kxi oscillates and tunes the phase of excited SAW which shall play a
vital role for multi nanowire presents. We see that the derived coupling strength is rea-
sonable because it vanishes as the nanowire width w and thickness d approaches 0. We
also note that such coupling is reciprocal since |gk | = |g´k |.



2.4. Pumping of SAW by the FMR magnetic nanowire

2

29

2.4. Pumping of SAW by the FMR magnetic nanowire
We now calculate the phonon pumping by a single magnetic nanowire transducer cen-
tered at x0. We excite the FMR inside the nanowire by external microwave field which
is quantized and represented by the photon operator p̂i n as an external input into the
magnons’ equation of motion. The Hamiltonian Ĥ = Ĥm + Ĥe + Ĥc leads to the Heisen-
berg equation of motion [33, 34]

d β̂

d t
=´i [β̂, Ĥ ] =´iωF β̂´ i

ÿ

k

|gk |e i kx0 b̂k´ (κm +κw )
β̂

2
´
?
κw p̂in,

db̂k

d t
=´i [b̂k , Ĥ ] =´iωk b̂k´ i |gk |e´i kx0 β̂´δk

b̂k

2
.

(2.34)

Here κm and δk are the intrinsic damping rates for the nanowire magnons and surface
phonons, while the κw is the radiative damping induced by the contact with microwave
field. This equation of motion can be solved by the Fourier transformation

Ô (ω) =
ż

d t Ô (t )e iωt ,

that

β̂(ω) = ´i
?
κw p̂i n

ω´ωF + i (κm +κw )/2´
ř

k |gk |2Gk (ω)
,

b̂k (ω) =Gk (ω)|gk |e´i kx0 β̂(ω),

(2.35)

where

Gk (ω) = 1

ω´ωk + iδk /2
(2.36)

is the phonon’s Green function. From the expression of β̂(ω) we see the additional mag-
netic damping dues to the phonon pumping at the FMR is given by the imaginary part
of the magnon’s self-energy [15, 35]

σkr =´Im

(
ÿ

k

|gk |2Gk (ωF )

)
= |gkr |2

cr
, (2.37)

where we have used the Sokhotski–Plemelj approximation,

lim
εÑ0+

1

x˘ iε
=¯iπδ(x)+P

(
1

x

)
, (2.38)

with ωÑ ωF and kr = ωF /cr . The real part of the self-energy causes a small frequency
shift which is absorbed into ωF and shall be neglected in the following analysis.

The displacement field given by Eq. 2.23 is a superposition of coherent phonon
〈

b̂k
〉

that are excited by the microwave input
〈

p̂i n(ω)
〉

. At resonance frequency ω = ωF , the
contour of the k integral must be closed in the upper (lower) half of the complex plane
for x > x0 (x < x0), selecting the poles kr + iε (´kr ´ iε) in the denominator, where ε is
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the inverse of the phonon propagation length. The low ultrasonic attenuation in GGG at
room temperature corresponds to characteristic SAW decay lengths of up to 6 mm [18].
We can therefore safely disregard the phonon damping by setting εÑ 0+, which leads to
the displacement fields

u(t ) =´ 1

cr

{
iψ(kr )g˚kr

〈
β̂(t )

〉+H .c., x > x0

iψ(´kr )g˚
´kr

〈
β̂(t )

〉+H .c., x < x0
(2.39)

On the right (left) side of the nanowire x > x0 (x < x0), the right- and left-propagating
waves possess opposite rotations whose directions depends on z are pumped as illus-
trated schematically in Fig. 2.1. We point out that a classical treatment for the SAW
pumping shown in the appendix 2.7 leads to exactly the same results as in Eq. 2.39.

In recent literature such as Ref. [16, 36] the mechanical angular momentum is often
referred as phonon spins defined as l = ρ 〈uˆ u̇〉t , where the subscript t indicates time
average. According to a recent PNAS paper [36], such phonon spin can be calculated in
operator form, which is similar to the electron spin but with the state vector identified
with the normalized displacement of (x, y, z) directions, i.e. l = 〈u|l̂ |u〉 with

l̂x =´i

0 0 0
0 0 1
0 ´1 0

 , l̂y =´i

0 0 ´1
0 0 0
1 0 0

 , l̂z =´i

 0 1 0
´1 0 0
0 0 0

 , (2.40)

and the state vector |u〉 =?ρω/2(ux ,uy ,uz )T . Thus the pumped SAW possess a constant
elastic spin into the y-direction as

l (z) =~y 4ρωF

c2
r

|〈β̂〉 |2|gkr |2ˆ Im

{
ψx (kr , z)ψ˚z (kr , z), x > x0

ψx (´kr , z)ψ˚z (´kr , z), x < x0
(2.41)

We see that l is proportional to the excited magnon population and opposite on each
side of the nanowire sinceψx (´k)ψ˚z (´k) =´ψx (k)ψ˚z (k). Into the substrate (´z direc-
tion), the SAW eigenmodes have a node at which l changes sign as sketch in Fig. 2.1. We
point out that the phonon pumping does not remove angular momentum from the fer-
romagnet since only the x component of the magnetic precession is damped. The force
on the interface is a superposition of opposite angular momenta 2~z = (~z + i~x)+ (~z´ i~x)
that by the spin-momentum locking couples to the phonon moving in opposite direc-
tions.

We show the efficiency of surface acoustic wave pumping by applying the YIG|GGG
material parameters at room temperature. For GGG, it density is ρ = 7080 kg/m3 and
bulk acoustic velocity cl = 6545 m/s,ct = 3531m/s [37], leading to the Rayleigh param-
eter ηr = 0.927, cr = ηr ct = 3271.8 m/s, and ξP = 0.537. For the YIG, its gyromagnetic
ratio and saturated magnetization is γ = 1.82ˆ 1011 s´1T´1 and µ0Ms = 0.177 T [38].
The BK = 6.96ˆ 105 J/m3 [15] and ξM « 1 when H0 is comparable to Ms . We plot the
pumped phonon spin density at different depths of z = 0 and z =´1.5 µm in Fig. 2.2(a)
with typical FMR frequency ωF = 3 GHz and setting the nanowire thickness and width
as d = 200 nm and w = 2.5 µm respectively. We see that the spin density is opposite at
two sides of the nanowire and changes sign at large depth. The tiny damping along the
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(a) (b)

Figure 2.2: Pumped phonon spin density (a) and additional magnon damping coefficient αR =σkr /ωF (b) for
a YIG wire on a GGG substrate as function of FMR frequencies and wire widths.

propagation matches with the good quality factor of GGG substrate as acoustic mate-
rial. Figure 2.2(b) is a plot of the additional magnon damping coefficient αR = σkr /ωF

in the dependence of FMR frequency ωF and nanowire width w . We observe periodic
geometric effect dues to the 1

w sin(kw/2) factor in the coupling strength. The calcu-
lated αR « 10´4 is of the order of the intrinsic Gilbert damping for YIG single crystals
α0 = 4ˆ10´5 and films α0 = 8ˆ10´5.

2.5. The chiral phonon pumping through two parallel nanowire
In previous section the single wire emits spin-momentum locked SAWs into two direc-
tions. Here we propose a truly unidirectional phonon source in the form of two parallel
and identical nanowires located at r 1 = R1~x and r 2 = R2~x of which only the left one is
addressed by a local microwave strip line. The excited phonons on the substrate surface
propagate to and are then absorbed by the second nanowire whose dynamics re-emits
phonons that subsequently interfere with the original ones. Such case is similar to the
setup used in Ref. [18] but with the modification from bulk acoustic wave into the surface
one.

Denoting the Kittel-magnon operators in the left and right nanowire as β̂L and β̂R

and assume R1 < R2, the Heisenberg equations of motion for the magnon-phonon cou-
pled system (including the microwave source and various dissipation) read

d β̂L

d t
=´iħωF β̂L(t )´ iħ

ÿ

k

|gk |e i kR1 b̂k (t )´
(κL +κw,L

2

)
β̂L(t )´

?
κw,L p̂L

in(t ),

d β̂R

d t
=´iħωF β̂R (t )´ iħ

ÿ

k

|gk |e i kR2 b̂k (t )´
κR

2
β̂R (t ),

db̂k

d t
=´iħωk b̂k (t )´ iħ|gk |e´i kR1 β̂L(t )´ iħ|gk |e´i kR2 β̂R (t )´

δk

2
b̂k (t ).

(2.42)

As in previous here the κL and κR denote the intrinsic (Gilbert) damping of the Kittel
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modes in the left and right nanowire, and κw,L is the radiative coupling of the left wire
to the microwave source. For sufficient large distance |R2´R1| (tens of micrometers for
the present system), the excited magnon and phonon operators in frequency space read

β̂L(ω) = ´i
?
κw,L

ω´ωF + i
κL+κw,L

2 ´
ř

k |gk |2Gk (ω)´ f (ω)
p̂L

in(ω),

β̂R (ω) =
ř

k |gk |2Gk (ω)e i k(R2´R1)

ω´ωF + iκR /2´
ř

k |gk |2Gk (ω)
β̂L(ω),

b̂k (ω) = |gk |Gk (ω)
(
e´i kR1 β̂L(ω)+e´i kR2 β̂R (ω)

)
,

(2.43)

where

f (ω) =
(|gk |2/cr

)2
e i 2ω(R2´R1)/cr

ω´ωF + iκR /2´
ř

k |gk |2Gk (ω)
, (2.44)

and Gk (ω) is the phonon’s Green function as in Eq. 2.36.
At the FMR ωÑωF then

β̂R (ωF ) =χ(kr )e iπ+i kr (R2´R1)β̂L(ωF ), (2.45)

with the ratio χ(kr ) = σkr /(κm/2+σkr ) modulates the magnetization amplitude in the
second wire. The kr (R2´R1) is the usual phase delay by the phonon transmission and
the phase shift ofπ reflects the dynamical phase relation between magnons and phonons
which is the key factor for unidirectionality. By substituting the magnon relation (Eq. 2.45)
back into the phonon’s solution (Eq. 2.43) we arrived at the phonon’s amplitude for the
left and right going wave respectively

b̂´kr = |gkr |Gkr e i kr R1 β̂L(ωF )
[

1´χ(kr )e i 2kr (R2´R1)
]

,

b̂kr = |gkr |Gkr e´i kr R1 β̂L(ωF )
[
1´χ(kr )

]
.

(2.46)

In the strong magnon-phonon coupling limit σkr " κm/2 leading to χ(kr ) Ñ 1, thus
the right-going phonon (kr > 0) is not excited by the double-wire configuration. Finite〈

b̂´kr

〉
by vanishing

〈
b̂kr

〉
implies a unidirectional phonon current. Such unidirection-

ality vanishes when the second wire is weakly coupled to the SAW, i.e., σkr ! κm/2, that
is the phonon transmits through without interacting with the magnet.

By Eqs. 2.23 and 2.46, the displacement fields at the FMR frequency ωF read

u = 2|gkr |
cr

Im


ψ(´kr )e i kr R1

〈
β̂L(t )

〉[
1´χ(kr )e i 2kr (R2´R1)

]
, x < R1

e i kr (R2´R1)
〈
β̂L(t )

〉[
ψ(kr )e´i kr R2´χ(kr )ψ(´kr )e i kr R2

]
, R1 < x < R2

ψ(kr )e´i kr R1
〈
β̂L(t )

〉[
1´χ(kr )

]
, x > R2

.

(2.47)
As we see when χ(kr )Ñ 1, the displacement field indeed vanishes in the region x > R2

but is a traveling wave for x < R1 whose amplitude depends on the geometry phase
e i 2kr (R2´R1). Between the two nanowire with R1 < x < R2 the SAW form standing wave
with uz „ sinkr (x´R2) and ux „ coskr (x´R2). The pumping is unidirectional apart
from special cases with frequency or distance that kr (R2´R1) = nπwith n PZ0, in which
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(a) (b)

Figure 2.3: Snapshot of the displacement field at the GGG surface |u| (a) and phonon spin density (b), pumped
by a YIG wire at the origin under FMR and modulated by a second YIG wire at 30µm sitting to the right.

case the SAW on the left-hand side vanishes as well and the phonon is fully trapped be-
tween the two wires to form a cavity. The phonon emission is not perfectly unidirec-
tional when χ(kr ) < 1. As in Fig. 2.3(a) is a plot of the magnitude of the displacement

field at the GGG surface |u|z=0 =
a

u2
x +u2

z

∣∣∣
z=0

with the intrinsic Gilbert damping in YIG

α0 = 8ˆ10´5. We choose the two wires centered at R1 = 0 and R2 = 30µm respectively,
and d = 200nm, w = 2.5µm as previous. The FMR frequency is set to be ωF = 3GHz
such that the additional damping coefficient isαR = 1.2ˆ10´4. In Fig. 2.3(b) we plot the
phonon spin density on the surface for distance far away from the nanowires. The asym-
metry of the pumped phonon spin at the two sides of cavity is not perfect, but clearly
shows a strong non-reciprocal property contrary to the case of single nanowire.

Another experimentally measurable quantity which inductively shows the resonant
cavity feature is the microwave transmission spectra. The microwave output of the left
and right nanowires is detected by striplines represented by photon operator p̂L

out and
p̂R

out that are related by the input-output relations [33, 34]

p̂L
out(ω) = p̂L

in(ω)+?κw,L β̂L(ω),

p̂R
out(ω) =?κw,R β̂R (ω).

(2.48)

The microwave reflection (S11) and transmission (S21) spectra become

S11(ω) = p̂L
out

p̂L
in

= 1´
iκw,L

ω´ωF + i (κL +κw,L)/2´
ř

k |gk |2Gk (ω)´ f (ω)
,

S21(ω) = p̂R
out

p̂L
in

= (S11(ω)´1)

c

κw,R

κw,L

ř

k |gk |2Gk (ω)e i k(R2´R1)

ω´ωF + iκR /2´
ř

k |gk |2Gk (ω)
.

(2.49)

When the two magnetic nanowires are assumed to be identical, the microwave transmis-
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Figure 2.4: Microwave transmission (|ReS21|) between two YIG nanowire transducers on top of a GGG sub-
strate. (a) The minima in the transmission (black contour) anticross with the ωF near regularly spaced fre-
quenciesωn . (b) Transmission spectra along the FMR resonance line. Note that the transmission dips originate
from the think black contour hidden within the FMR peaks (yellow region) shown in the magnified insert.

sion with excitation (input) at R1 and detection (output) at R2 which is

S21(ω) = (S11(ω)´1)

〈
β̂R (ω)

〉〈
β̂L(ω)

〉 , (2.50)

can measure the phase relation between the Kittel modes at FMR in the two wire as

S21(ωF ) = (1´S11(ωF ))χ(kr )e i kr (R2´R1). (2.51)

At the special microwave frequencies ωF = ωn = πcr (n + 1/2)/(R2´R1), where n P Z0,
S11(ωF ) is real while the phase factor e i kr (R2´R1) = i (´1)n becomes purely imaginary
then ReS21(ωn) = 0 develops the minima.

We plot the real part of the transmission amplitude in Fig. 2.4(a) as a function of mi-
crowave frequency closed to ωK = 3GHz and static magnetic field H0. The parameters
are chosen the same as in previous and the radiative damping as κw = 1MHz. The dips
in the transmission are traced by the black contours and the horizontal dash line corre-
spond to the special frequencies ωn . Due to the magnon-phonon coupling, these hori-
zontal lines are deformed to the anti-crossing shape when ωF Ñ ωn . The transmission
dips are shown more vivid alone the FMR resonance line as in Fig. 2.4(b). For R2´R1 =
300µm the frequency space between these dips is∆ω=πcr /(R2´R1) = 34.26MHz which
matches exactly to the gap of horizontal dash lines.

2.6. Summary and outlook
In conclusion, we developed a theory for pumping SAWs based on the magnetoelastic
coupling and proposed a phonon cavity device that realizes unidirectional phonon cur-
rent in a reciprocal system. When exciting a single magnetic nanowire by microwaves,
we predict an additional passive wire could induce the unidirectional phonon current



2.7. Appendix: Classical formalism for SAW pumping

2

35

and formation of standing waves in the region between two magnetic nanowires. De-
vices with more than two wires or made from magnetic materials with larger magne-
toelastic coupling may achieve full unidirectionality. Here the unidirectionality emerges
from a dynamical phase shift, rather than the purely geometrical interference employed
by electrical unidirectional SAW generators [23].

The pumped phonon can propagate coherently over millimeters on the substrate
surface, which is very promising for classical and quantum transport of spin informa-
tion. It can be measured by Brillouin light scattering [16] and/or the spin-rotation cou-
pling by fabricating a conductor on top of the acoustic medium [13, 14]. Such a gener-
ation of unidirectionality from interference does not require a nonreciprocal coupling
mechanism but only an out-of-phase relation of the two fields at resonance. The phe-
nomenon should be universal for many field propagation phenomena, such as exchange
coupled magnetic nanowires and films and reciprocally coupled magnons and waveg-
uide photons.

2.7. Appendix: Classical formalism for SAW pumping
In this appendix we calculate in classical formulation the excitation of Rayleigh SAW by
the oscillating surface force

F |x=˘w/2+xi =¯
BKLd Mz

Ms
~z, (2.52)

which arises from the magnetoelastic coupling Hamiltonian (Eq. 2.31). We shows that
the classical results matches exactly to the quantum mechanical calculation and ex-
plains the reason that we ignore other branches of acoustic modes but leaving only the
surface modes into consideration.

The boundary conditions for the stress tensor (line load) reads

σzz |z=0´ = 1

L

dF

d x
»´

BKd

Ms
Mz

[
δ

(
x´

( w

2
+xi

))
´δ

(
x´

(
´

w

2
+xi

))]
,

σxz |z=0´ = 0.
(2.53)

The displacement field can be written as u =∇V +∇ˆA, with vector potential A = A~y for
omitting the ~y ’s dependency of displacement. For isotropic material and using the stiff-
ness relation, one can solve the elastic equation of motion (Eq. 2.7) with these conditions
by a plane-wave ansatz (dropping the explicit time harmony) [27]

V =
ż 8

´8

V (k)e
i

(
kx+

b

k2
l ´k2 z

)
dk,

A =
ż 8

8

A (k)e
i
(
kx+
?

k2
t´k2 z

)
dk.

(2.54)

With the Fourier transformation of the boundary condition

σzz (k)|z=0´ = i
fz

π
sin(kw/2)e´i kxi σxz (k)|z=0´ = 0, (2.55)
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where fz = (BKd/Ms )Mz , we find the excited elastic potential in k-space is given by

V (k) = i
fz

πµ

2k2´k2
t

F (k)
sin(kw/2)e´i kxi ,

A (k) =´ fz

πµ

2k
b

k2´k2
l

F (k)
sin(kw/2)e´i kxi ,

(2.56)

and

F (k) = (2k2´k2
t )2´4k2

b

k2´k2
l

b

k2´k2
t . (2.57)

Then the displacement field on the substrate surface (z = 0) reads

ux |z=0 =´ fz

πµ

ż 8

´8

k sin(kw/2)

F (k)

[
(2k2´k2

t )´2
b

k2´k2
l

b

k2´k2
t

]
e i k(x´xi ) dk,

uz |z=0 =´
i fz k2

t

πµ

ż 8

´8

b

k2´k2
l sin(kw/2)

F (k)
e i k(x´xi ) dk.

(2.58)

For locations far away from the nanowire, i.e. |x´ xi |" w , this integral can be per-
formed analytically by resorting to the complex contour integral (see Fig. 2.5). Taking
the root of equation F (kr ) = 0 (Rayleigh equation) as singularity and also note the ˘kl

and ˘kt as branching point, one can solve this integration by choosing proper contour
according to the case x > xi or x < xi . In addition we apply the Watson’s lemma for
the asymptotic treatment of integration along the branch cuts, leading to the results of
displacement field on the substrate surface (z = 0)

u˘x |z=0 =˘
i fz

2µ

(1 ´ b2)

´4+ (1+b2)
[

1+ 1
2 ( 1

a2 + 1
b2 )

] sin

(
kr w

2

)
e˘i kr (x´xi )

˘
2 fz e´i π4

µ

c

2

π

d

a2 ´ b2

1 ´ b2

[
(1 ´ a2)

1
2 (1 ´ b2)

3
2

(1+b2 ´ 2a2)3
sin

(
kl w

2

)
e˘i kl (x´xi )

[kl (x ´ xi )]3/2
+ sin

(
kt w

2

)
e˘i kt (x´xi )

[kt (x ´ xi )]3/2

]
+O (kx)´

5
2 ,

u˘z |z=0 =´
fz

µ

a(1 ´ b2)

(1+b2)
[
´4+ (1+b2)[1+ 1

2 ( 1
a2 + 1

b2 )]
] sin

(
kr w

2

)
e˘i kr (x´xi )

˘
fz ei π4

µ

c

2

π

[
(1 ´ a2)(1 ´ b2)

(1+b2 ´ 2a2)2
sin

(
kl w

2

)
e˘i kl (x´xi )

[kl (x ´ xi )]3/2
+ 4(a2 ´ b2)

1 ´ b2
sin

(
kt w

2

)
e˘i kt (x´xi )

[kt (x ´ xi )]3/2

]
+O (kx)´

5
2 .

(2.59)

Here the 1˘1 sign stands for the right and left going wave which exist on the right and left
side of nanowire respectively. One see that the bulk plane wave, including the longitudi-
nal e i kl (x´xi ) and shear e i kt (x´xi ) type, decaying as 1/[kl (x´xi )]3/2 and 1/[kt (x´xi )]3/2
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Figure 2.5: Contour in the complex k plane. The upper half plane is used for x > xi and lower half plane for
x < xi . Branch cuts at˘kl and˘kt are indicated. The Rayleigh points˘kr acquires a small imaginary part by
causality of sound attenuation.

respectively, leaving only the Rayleigh surface wave e i kr (x´xi ) at the position tens of mi-
crometers away from the nanowire.

Thus retaining only the SAWs, we find the displacement field from the integral for
general z,

ux =´
fz

πµ

ż 8

´8

k sin(kw/2)

F (k)

[
(2k2 ´ k2

t )e

b

k2´k2
l z

´ 2
b

k2 ´ k2
l

b

k2 ´ k2
t e

b

k2´k2
t z

]
ei k(x´xi ) dk,

uz = i fz

πµ

ż 8

´8

b

k2 ´ k2
l sin(kw/2)

F (k)

[
(2k2 ´ k2

t )e

b

k2´k2
l z

´ 2k2 e

b

k2´k2
t z

]
ei k(x´xi ) dk.

(2.60)

We get the Rayleigh surface acoustic wave as

u˘x =˘ i fz

µ

1

´4+ (1+b2)
[

1+ 1
2 ( 1

a2 + 1
b2 )

] sin

(
kr w

2

)[
eqz´

2ab

1+b2 e sz
]

e˘i kr (x´xi ),

u˘z = fz

µ

a

´4+ (1+b2)
[

1+ 1
2 ( 1

a2 + 1
b2 )

] sin

(
kr w

2

)[
eqz´

2

1+b2 e sz
]

e˘i kr (x´xi ).

(2.61)

Inserting the force term fz = (BKd/Ms )M̂z and the expression of M̂z in the main text, we
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arrived at the final expression of excited displacement fields

u˘x =¯BKξMξP

ρc2
r

d

2ħγd

Lw Ms

ξP

1´b2 sin

(
kr w

2

)[
eqz´

2ab

1+b2 e sz
]

e˘i kr (x´xi )〈β̂(t )〉

=´ 1

cr
iψx (˘kr )g˚˘kr

〈β̂(t )〉,

u˘z = i BKξMξP

ρc2
r

d

2ħγd

Lw Ms

aξP

1´b2 sin

(
kr w

2

)[
eqz´

2

1+b2 e sz
]

e˘i kr (x´xi )〈β̂(t )〉

=´ 1

cr
iψz (˘kr )g˚˘kr

〈β̂(t )〉,

(2.62)

in which we used the Rayleigh relation 4ab = (1+ b2)2. These final results exactly re-
produce the displacement expression we derived in the main text through the quantum
formalism (Eq. 2.39).
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3
Magnetism on the thermal

dynamics of 2D
antiferromagnetic membranes

In the end, it’s not the years in your life that count. It’s the life in your years.

Abraham Lincoln

We developed a theoretical scheme of incorporating the magnetoelastic contribution into
the thermal elastic dynamics for the thin membranes of 2D antiferromagnetic material
with restricted geometry. We extended the elastic Grüneisen relation into an effective ver-
sion which includes the magnetic counterpart to the volume change of internal energy.
Based on the specific heat and thermal conductivity from the elastic and magnetic ori-
gins we predicted the dependency of observables, such as effective Grüneisen parameter,
thermal expansion coefficient, and the damping factor, with respect to a wide range of
temperature across the phase transition. Our model of analysis as been validated by ap-
plying to the case of FePS3 flake resonator and the theoretical predictions fits well with the
reported experiment data.

Manuscript in preparation.
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3.1. Introduction
In recent decades the 2D magnetic (van der Waals) layered materials have consistently
attained the focus of research from both theoretical and experimental aspects [1, 2].
Compared to the three-dimensional counterpart, the 2D magnetic membranes consti-
tute ideal platform to explore fundamental physics of magnetism and also its coupling to
other degrees of freedom in the low dimensional regime [3]. The heterostructures build
upon the 2D magnetism show susceptibility with respect to external stimuli leading to
the emergent interfacial phenomena and novel spintronic devices [1, 4]. Within these
materials, the FePS3 compound is of particular interest because it is measured to be a 2D
Ising model with zigzag antiferromagnetic (AFM) order in which the magnetic Fe atom
constitute honeycomb lattice [5, 6]. Although the magnetic and electronic structure of
this material has been studied intensively, there is limited understanding of its thermal
properties and especially the magnetic contribution to the specific heat and thermal flux
in the restricted geometry such as the thin membranes of several nanometers in thick-
ness and micrometers in the planar dimension [5, 7, 8]. The knowledge of its thermal
properties is important for further application in spin-caloritronics [4] and also stands
for another tool of investigating the magnetic phase transition apart from the Raman
spectroscopy [5, 9].

In this Chapter, we extend the analysis of magnetoelastic coupling into a wide range
of temperature beyond the phase transition, aiming at providing a theoretical explana-
tion for the observed anomaly [9] in thermal transport of FePS3 flake resonator. Showing
in the Fig. 3.1, the membranes suspended over a cavity undergo a drum-like vibration
whose eigenfrequency is related to the planar strain which can be tuned by the gate volt-
age and also by the environment temperature due to the thermal expansion. At a fixed
gate voltage the membrane is pushed down, and the increase of temperature leads to
the drop of strain that at around the Neel temperature (TN « 114K) the breaking of mag-
netic stiffness would soften this material and a sudden drop of resonance frequency has
been observed [9]. Moreover, the vanishing of magnons as additional thermal carrier
after T > TN would lead to a drop of the overall thermal conductivity which has been
measured through the damping factor Q´1 as function of temperature.

Si
SiO2 VG

DC

Fel (V  ) 

FePS3

G
DC

a
δ

 θ
R

g0 SiO2

Si

(b)(a)

Figure 3.1: (a) Schematic figure for the FePS3 resonator setup. The device is settled in nearly vacuum environ-
ment so that the thermal transfer through air damping can be ignored. Thermal expansion coefficient of the
SiO2 substrate is tiny and the silicon base is also small compared to the FePS3. The flake thickness is h = 45nm
and diameter d = 10µm. (b) Fixed gate voltage pushes down the membranes and as temperature increases the
flake expands leading to a decrease of planar tension. Figure quoted from publication [9].

In order to quantitatively explain experimental findings for thermal phenomena of
the hybrid system, we develop a scheme of merging the magnetic contribution into the
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thermoelastic dynamics and predict the temperature dependence for observables in-
cluding heat capacity, linear expansion coefficient, and damping factor for the clamped
FePS3 membranes. Starting from the non-magnetic thermoelastic free energy we firstly
derive the expression for the damping factor Q´1 of thin membrane/plate which turns
out to be a function of the overall thermal expansion coefficient, the specific heat, and
the thermal conductivity (See section 3.2). Then we derive the total specific heat CV

which has origins including the phonon and magnon excitations and also the part of
energy required to break the Ising coherence around phase transition. We calculate the
thermal conductivity κ as a sum of the phonon and magnon both as heat carriers and
showed its magnitude are much smaller than the bulk compound because the limited
particle lifetime due to the restricted geometry. Most importantly, by including the mag-
netoelastic Hamiltonian into the thermoelastic free energy we prove the total thermal
expansion coefficient α̃ retains the usual formalism of Grüneisen relation but with the
incorporated effective Grüneisen parameter γ̃. It essentially describes the variation of
internal energy including all the components ascribed to the volume change (See sec-
tion 3.3). Using real material parameters we fitted experimental measurements with our
model of analysis. Good agreement with recent experiment data [9, 10] supports the va-
lidity of our results (See section 3.4). The strong magnetic weight as part of the internal
energy for this geometry restricted membranes making it an ideal platform to study the
optomechanics integrated with the magnetism tuning. It is also expected that the model
developed in this work can be useful for further analysis in the 2D spin-caloritronic de-
vices.

3.2. Bending of thin plate and the temperature gradient
In order to calculate the damping coefficient Q´1, we firstly have to solve the coupled
dynamics including the degree of freedom from elasticity, magnetism, and temperature
field. In the following section 3.3.3, one shall see that the contribution of magnetoelas-
tic coupling can be incorporated into the effective thermoelastic coupling and the gov-
erning equations of motion can be narrowed to including only the dynamics of elastic
vibration and temperature gradient. In this section, we deal with the round plate with
its undeformed surface lying on the X´Y plane and study its out-of-plane (ẑ) vibration.
We use the cylinder coordinate (r,ϕ, z) and assume its thickness h is much smaller than
the plate diameter d , i.e. h ! d . The displacement uz and deformation εi j for plate are
also considered to be small such that ui ! h and εi j ! h.

The displacement fields along (r̂ ,ϕ̂) direction are respectively represented by ur mean-
ing the radial extension and uϕ meaning the circumferential distortion. One should note
that uϕ represents the displaced distance along the ϕ̂direction not theϕ itself, uϕ = r dϕ.
The strain tensor in cylinder coordinate is expressed in the form [11]

εr r = Bur

Br
, εϕϕ = 1

r

Buϕ
Bϕ

+ ur

r
, εzz = Buz

Bz
,

εϕz = 1

2

(
1

r

Buz

Bϕ
+ Buϕ
Bz

)
, εr z = 1

2

(
Bur

Bz
+ Buz

Br

)
,

εrϕ = 1

2

(
Buϕ
Br

´
uϕ
r

+ 1

r

Bur

Bϕ

)
.

(3.1)
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It is easy to show that according to the coordinate transformation, the relation εr r +εϕϕ+
εzz = εxx + εy y + εzz holds, meaning the volume change, as it should, does not depends
on the choice of coordination. Beyond this, the thermoelastic free energy (Eq. 1.43) and
elastic tensor relation for isotropic material

σi j = KT ε
i
iδi j +2µ(εi j ´

1

3
εi

iδi j ), εi
i =

ÿ

i

εi i , (3.2)

also hold true in formalism for any orthogonal coordinates [11].
In order to effective describe the characteristic deformation of the 3D elastic body

we establish a concept of neutral surface. Regarding to the bending of thin plate, one
side is compressed (the concave side) while the opposite is extended (convex side). Be-
tween these two sides, there is a surface which has neither extension nor compression,
i.e. εi

i = 0, and is referred as the neutral surface. Mount the undeformed neutral surface
onto the z = 0 plane and based on the small deformation assumption, the displacement
on the neutral surface is u0

r = 0, u0
ϕ = 0, u0

z = ζ(r,ϕ, t ) with ζ! h. Due to the small de-
formation, the internal stress on z-th surface should be much smaller than the stress
along the longitudinal direction, σi z = 0, which leads to the hypotheses inside the bulk
volume [12, 13]

εr z = 0, εϕz = 0, σzz = 0. (3.3)

With the assumed neutral surface hypotheses, the displacement inside the plate can be
expressed by the function of ζ that

ur =´z
Bζ

Br
, uϕ =´ z

r

Bζ

Bϕ
, uz = ζ. (3.4)

and the remaining strain components are given by

εr r =´z
B2ζ

Br 2 ,

εrϕ =´z
B

Br

(
1

r

Bζ

Bϕ

)
,

εϕϕ =´z

(
1

r

Bζ

Br
+ 1

r 2

B2ζ

Bϕ2

)
,

εzz = zσ

1´σ

(
B2ζ

Br 2 + 1

r

Bζ

Br
+ 1

r 2

B2ζ

Bϕ2

)
.

(3.5)

Define the Laplace operator on the plane

∆= B2

Br 2 + 1

r

B

Br
+ 1

r 2

B2

Bϕ2 , (3.6)

then εr r +εϕϕ =´z∆ζ and εzz = zσ
1´σ∆ζ. For the case of axial symmetric plate it is reason-

able to assume ζ = ζ(r, t ) which does not depends on the polar angle ϕ, then the strain
can be even simplified into

εr r =´z
B2ζ

Br 2 , εϕϕ =´ z

r

Bζ

Br
, εzz = zσ

1´σ
∆ζ, ∆= B2

Br 2 + 1

r

B

Br
, (3.7)

and other components equals to zero. Substituting the strain tensor into the thermoe-
lastic free energy (Eq. 1.43) one can derive its expression as the function of ζ

Fel =
ż 2π

0
dϕ

ż R

0
r dr

Y h3

12(1´σ2)

[
(1+σ)

α

3
IT∆ζ+ 1

2

(
ζ2

2 + 1

r 2 ζ
12 + 2σ

r
ζ1ζ2

)]
, (3.8)
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where the thermal inertia

IT (r ) = 12

h3

ż h/2

´h/2
z θ(r, z)d z, (3.9)

in which θ = T ´T0 is small differences between the temperature within the plate T and
the environment temperature T0. The internal force exerted on to the volume element of
unit surface is fζ =´δFel

/
δζ and the equation of motion for the vibration of the circular

plate is

ρh
B2ζ

Bt 2 + BFel

Bζ
= 0 Ñ ρh

B2ζ

Bt 2 + Y h3

12(1´σ2)
[∆∆ζ+ (1+σ)α/3∆IT ] = 0. (3.10)

As for the dynamics of temperature field the heat diffusion equation is a rephrase of
energy conservation, that is the heat absorption equals to the energy flows T BS

Bt =´∇ ¨
q = κ∆T with q =´κ∇T is the thermal flux and κ is the heat conduction coefficient [14].
From the thermoelastic coupling we understand that the heat absorption leads to not
only increase of particle motion but also the volume expansion, dS = dS0(T )+KTαε

i
i .

Applying the relation BS0
/
BT = ρCV

/
T , we have ρCV BT

/
Bt = κ∆T´KTαT0Bε

i
i

/
Bt . The

equation of motion for describing the dynamics of small temperature differences within
the plate has the general form

κ∆θ+κB
2θ

Bz2 = ρCV
Bθ

Bt
+KαT0

Bεi
i

Bt
. (3.11)

As from Ref. [15] we make an approximation that the temperature gradient is small in the
longitudinal direction compared to the vertical direction, ∆θ ! B2θ/Bz2. Combing the
strain components from Eq. 3.7 the governing equation for the dynamics of temperature
field in thin plate then becomes

κ
B2θ

Bz2 = ρCV
Bθ

Bt
´ zKTαT0

1´2σ

1´σ

B∆ζ

Bt
. (3.12)

Inserting the ansatz solution ζ = ζ0e iωt and θ = θ0e iωt into the Eq. 3.12 we have the
equation for temperature field which can be solved by the boundary condition that there
is no thermal conduction on the top and bottom surface,

Bθ0

Bz
= 0 at z =˘h

2
. (3.13)

The solved temperature profile across the plate is given by

θ0(r, z) = KTαT0

ρCV

1´2σ

1´σ

[
z´

sin(mz)

m cos(mh/2)

]
∆ζ0, (3.14)

with the wave vector

m =
c

´
iωρCV

κ
= (1´ i )

c

ωρCV

2κ
. (3.15)

Applying this temperature profile into the moment of inertia (Eq. 3.9) and the elastic
equation of motion (Eq. 3.10) becomes an eigen-equation

ρhω2ζ0 = Y h3

12(1´σ2)
[1+∆Y (1+ f (ω))]∆∆ζ0 Ñ

Yωh3

12(1´σ2)
∆∆ζ0 = ρhω2ζ0, (3.16)
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with the modified Young’s modulus Yω = [1+∆Y (1+ f (ω))] is frequency-dependent and
the adiabatic degree f (ω) ranges from´1 to 0 for low and high vibrating frequency iden-
tifying the isothermal and adiabatic extremes,

f (ω) = 24

m3h3

[
mh

2
´ tan

(
mh

2

)]
. (3.17)

The quantity ∆Y which is a measure of thermal relaxation strength acquires the from

∆Y = 1+σ
1´σ

Y α2T0

ρCV
. (3.18)

Letting 12(1´σ2)ρω2
/

Yωh2 = q4, then the Eq. 3.16 becomes ∆∆ζ0 = q4ζ0 and can be
solved by∆ζ0 = q2ζ0 with ζ0 = AJ0(qr )+BY0(qr )+C I0(qr )+DK0(qr ). Here (J0,Y0, I0,K0)
are the first and second Bessel functions of the zero-th order respectively. Due to the
finite value of ζ0 at r = 0, the B = D = 0 and ζ0 = AJ0(qr ) +C I0(qr ) with the coeffi-
cient (A,C ) to be defined by the boundary condition. For the case of clamped plate, the
boundary condition (a is plate radius) has the form ζ0

∣∣
r=a = 0, Bζ0

/
Br

∣∣
r=a = 0, which

can be satisfied by (qn a)2 ” Cn = {10.21,39.38,89.10, ¨ ¨ ¨ }. The complex eigenfrequency
then reads

ω=ω0

a

1+∆Y (1+ f (ω0)), (3.19)

with the unperturbed eigenfrequency for the n-th vibration mode is

ω0 = q2
nh

d

Y

12ρ(1´σ2)
=Cn

h

a2

d

Y

12ρ(1´σ2)
. (3.20)

Due to the complex value of frequencyω, the time dependency e iωt of physical quan-
tity decays along with the oscillation. Assuming ω = ω0(1+ iη) then the displacement
decays as ζ(t )„ e iω0t e´ηω0t . The damping for this oscillating system is captured by the
damping factor Q´1 which is defined to be the ratio of energy loss per radian to the
energy stored in the oscillator. Because the oscillating energy is quadratic to the dis-
placement field so we have E(t ) „ e´2ηω0t leading to the fractional energy loss per ra-
dian is 1´ e´2η « 2η. Thus the system damping for elastic oscillator is qualified by the
Q´1 = 2|Im(ω)

/
Re(ω)|. Shortening the parameter mh within the function f (ω) into a

single variable ξ [15]

ξ= h

c

ω0ρCV

2κ
, (3.21)

the thermoelastic damping Q´1 can be derived as

Q´1 =∆Y

(
6

ξ2 ´
6

ξ3

sinhξ+ sinξ

coshξ+cosξ

)
= 1+σ

1´σ

Y α2T0

ρCV

(
6

ξ2 ´
6

ξ3

sinhξ+ sinξ

coshξ+cosξ

)
. (3.22)

Since the thermoelastic variables such as α, κ and CV are temperature dependent, it
is easy to understand the damping factor Q´1 also changes with T0 and it will show
anomaly in the present of second order phase transition with which the specific heat
CV has observed discontinuity. For convenience, in the following we will replace the
environment temperature T0 by the symbol T with consensus.
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3.3. Thermal observables for elastic plate hybrid with mag-
netic phase transition

In this section we study the thermal observables for the elastic plate hybrid with mag-
netism for a wild range of temperature across the phase transition. To this aim we start
with deriving the heat capacity and thermal conductivity due to the bosons. Then we
shows the incorporation of magnetoelastic coupling into the effective thermoelastic free
energy and derive the effective expansion coefficient α̃ and damping factor Q´1 for the
thermal-magnetic-elastic vibrating system.

In general, below the phase transition the material’s heat capacity C = dQ/dT comes
from the thermal excitation of the bosons, which are quasi-particles mainly the phonons
for ordinary insulators and also include magnons for FM and AFM materials. If the tem-
perature is homogeneous then the Bose-Einstein density of excited bosons is uniformly
distributed across the material. However, the existence of temperature field leads to the
excess number of quasi-particles staying out of equilibrium and then transport accord-
ing to the temperature gradient. If the environment temperature is close to the range of
magnetic phase transition, the coherence of precession between the neighbouring spins
breaks down and an additional contribution to the specific heat should be taken into
account. The decaying of magnetization M as the heating procedure leads to an accom-
panying decrease of the effective exchange field HE and anisotropy field HA in magnon’s
dispersion equation 1.26. This energy renormalization [16, 17] should also be incorpo-
rated into the calculation of magnon’s specific heat and thermal conductivity.

Mathematically the heat capacity due to the bosons is

CV = 1

V

B

BT

ÿ

k

ħωk n̄k , n̄k = 1

eβħωk ´1
, (3.23)

where n̄k is the Bose-Einstein’s equilibrium amount of bosons of energy ħωk . The ther-
mal conductivity is defined as the coefficient for heat flux due to the temperature gradi-
ent, q =´κ∇T . From kinetic transfer theory this thermal flux can be calculated by

q =´ 1

V

ÿ

k

ħωk v k (τk v k ¨∇n̄k ) =´ 1

V

B

BT

ÿ

k

ħωk n̄kτk (∇T ¨v k )v k , (3.24)

in which an isotropic κ can be extracted if the particle velocity v k is homogeneous to
each direction. However, if the particle velocity has directional bias then κ depends on
the orientation and thermal transfer shows anisotropy. In the simplest case, if the parti-
cle’s lifetime τk = τ0 and velocity v k = v̄ does not depends on wavevector k we see that

the thermal flux can be simplified as q =´ v̄2τ0
V

B
BT

ř

k ħωk n̄k∇T ”´C v̄2τ0 ¨∇T leading
to the simple form κ = C v̄2τ0. Once we know the dispersion relation ωk and the life-
time τk for the mobile quasi-particles we can determine specific heat CV and thermal
conductivity κ at least in a numerical way.

The elastic specific heat and thermal conductivity can be derived from the statistics
of low lying phonon modes (acoustic modes) based on the general equations of 3.23
and 3.24 with the sound wave dispersion relation ωk = v̄k , and v̄ is the Debye averaged
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acoustic velocity defined in Eq. 1.42,

Cdb(T ) = ħ2

2π

3

kB T 2

ż kdb

0
dk

kω2
k eβħωk

(eβħωk ´1)2
,

κdb(T ) = ħ2

4π

3v̄2

kB T 2

ż kdb

0
dk

τk kω2
k eβħωk

(eβħωk ´1)2
.

(3.25)

The elastic zone boundary can be defined by the Debye temperature as kdb = kB Tdb
/ħv̄ .

Note that here we have assumed the elastic lattice is of 2D while the vibration is still 3
dimensional. It can be adjusted easily to the longitudinal or shear polarization only by
replacing the factor 3 into 1 or 2 respectively.

3.3.1. Specific heat and thermal conduction due to the magnon excita-
tions

Specific to the 2D AFM material, we set the external field H0 = 0 and according to Eq. 1.26
the dispersion relation depends on the direction of wave vector k . Contrary to detailed
treatment as in the Refs. [7], in this work we simplify the detailed 2D lattice structure and
make the homogeneous assumption (a = b) such that we rephrase theψk of Eq. 1.27 into
ψk = cos(πk

/
2km) being isotropic with k P [0,km] is limited to the first Brillouin zone

and km is defined from the spherical energy boundary assumption [16, 18],

ÿ

k

= V

(2π)2

ż

dk = N a2

(2π)2

ż km

0
2πkdk = N Ñ

km a

2
=?π. (3.26)

Thus, the dispersion relation for AFM magnon becomes

ħωk = γµ0HE

b

sin2 (πk/2km)+η2 +2η, (3.27)

with η= HA
/

HE is the ratio of anisotropy field to the exchange field. For some AFM ma-
terial such as the RbMnF3 which has very small anisotropy HA = 4.5 Oe, the exchange
field is as large as HE = 830 kOe leading to η « 0 and it is considered as a typical 3D
Heisenberg antiferromagnet [19, 20]. For other materials such as the FeF and the FePS3

used in our experiment the magnetic anisotropy is strong and comparable to the ex-
change field, resulting in ηÇ 1 which makes them a quasi Ising system [19, 21].

As environment temperature goes up, the spontaneous magnetization M(T ) decays
because the thermal magnon excitation [16, 22] and also the decoherence between neigh-
bouring spins for the T Æ TN . Since M = ´gµB N S, the effective spin magnitude S(T )
decays which results in the decreasing of HE = 2Sz|J |/µ0γ and HA = 2S A

/
µ0γ in the dis-

persion relation. As a consequence, the temperature dependence for the ω(T ) should
be taken into account in deriving the magnon specific heat and thermal conductivity.
For simple treatment one can apply the molecular field approximation (mean field the-
ory) in which the magnetization M(T ) = M0B(x) with B(x) is the Brillouin function and
x = µ0nw M(T )gµB S0

/
kB T is the normalized energy [23]. Although this mean field ap-

proach does not provide the correct magnetization around phase transition, it leads to
good results of magnon spectra at temperatures T < 0.8TN [16, 17].



3.3. Thermal observables for elastic plate hybrid with magnetic phase transition

3

49

(a) (b)

0.5

0

1

1.5

2

Figure 3.2: (a) The magnon’s specific heat and (b) thermal conductivity derived from the complete 2-D integral
and the simplified 1-D integral respectively. Here we assumed the lifetime for magnon is approximately 1.8ps
and does not depends on the modes for simplicity. The results indicate the difference between these two
integral strategy is small and we can use the simplified version for further calculations.

With the derived dispersion relation, the heat capacity due to thermal magnons ex-
citation in the 2D AFM model is

Cmag(T ) = ħ2

2π

1

kB T 2

ż km

0
dk

kω2
k ¨e

βħωk

(eβħωk ´1)2

= ħ2k2
m

2πkB

1

T 2

ż 1

0
d q

qω2
q ¨e

βħωq

(eβħωq ´1)2
,

(3.28)

where the explicit temperature dependence on ωk (T ) has been suppressed and we re-
place k with the normalized wave vector q = k

/
km ranging from 0 to 1. As a compari-

son, we plot the Cmag(T ) derived from the 2-D integral of (qx , qy ) of the dispersion re-

lation ħωq = γµ0HE

b

(1´ψ2
q )+η2 +2η with ψq = cos(qxπ/2)cos(qyπ/2). Showing in

Fig. 3.2(a) we see the complete 2-D integral and the simplified one result in almost ex-
actly the same curve which validates that we can indeed ignore the direction of (qx , qy )
and shorten the ψq into 1-D integral on q with the ψq = cos(qπ/2).

For the magnon’s thermal conductivity, it is defined from the heat flux (Eq. 3.24) that

q =´ 1

(2π)2

ż

dk
1

kB T 2

τk (ħωk )2 eβħωk

(eβħωk ´1)2
(∇T ¨v k )v k . (3.29)

Using the 2-D dispersion relation we derive the velocity of magnons to be

(vx , vy ) = γµ0HE

2ħkm

πψk
b

(1´ψ2
k )+η2 +2η

¨

(
sin

kxπ

2km
cos

kyπ

2km
, cos

kxπ

2km
sin

kyπ

2km

)
, (3.30)

with which the integral can be performed as
ż

(∇T ¨v k )v k dk =∇T
1

2

ż

(v2
x + v2

y )dk , (3.31)
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where we have used the fact that
ş

v2
x dk = ş

v2
y k due to the symmetry consideration.

From the heat flux expression we extract the thermal conductivity and written into the
form of 2-D integral,

κmag =
(
γµ0HE

8

)2 1

kB T 2

ż

τk eβħωq

(eβħωq ´1)2

[(
γµ0HE

ħ
)2

´

(
ω2

q´ω
2
0

)]
(1´cos qxπ¨cos qyπ)d q ,

(3.32)
Based on the homogeneous lattice assumption, it can be further simplified into the 1-D
integral of q such that

κmag =
(
γµ0HE

8

)2 π

kB T 2

ż 1

0

τk ω
2
q eβħωq

(eβħωq ´1)2

q sin2 qπ

sin2 qπ/2+η2 +2η
d q, (3.33)

where ħωq = γµ0HE

a

sin2 qπ/2+η2 +2η. Showing in Fig. 3.2(b) we notice again the dif-
ference between complete 2-D integral and the simplified one is small enough for the
case of κmag, and in the following we shall use the 1-D integral of q for the thermal ob-
servables. At low temperatures the heat capacity and thermal conductivity share the
same growing curve due to the fact that κ«C vl =C v2τ and v,τ are almost constant for
small T . At large enough temperatures the exchange fields HE (T ) decays in step with the
decreasing of M(T ) which leads to the softening of magnons and after phase transition
there is no existence of magnons. Thus we see the drop of Cmag and κmag for T > TN . Ad-
ditionally the particle’s lifetime (or its inverse τ´1 = η the relaxation rate) plays an impor-
tant role in their transport properties. In general, the relaxation rate for various particles,
either bosons or fermions, comes from several origins [24] that η= ηbd +ηpt +ηnlsc, with
ηbd is the boundary deflection by material edges, ηpt is the scattering with the point de-
fects, and ηnlsc stands for the non-linear scattering among particles themselves. Usually
ηbd + ηpt = η0 ” τ´1

0 is a constant which does not depend on wavevector k and tem-
perature T . The non-linear scattering has several origins for different particles but it is
generally proportional to T for the 3-particle scattering and T 2 for the 4-particle scat-
tering process [25, 26]. Therefore ηk = η0(1+ bk T + ck T 2) and the coefficients can be
calculated by studying the detailed process. However, in this work of membranes setup
both the phonon and magnon’s lifetime are limited by the defect and boundary scatter-
ing [27]. Therefore we shall ignore the non-linear scattering between quasi-particles and
claim the lifetime τ = τ0 is a constant which does not depends on the wave vector nor
the temperature.

3.3.2. Specific heat due to the break of spin coherence around phase
transition

As the environment temperature close to the phase transition regime the magnetic spe-
cific heat is dominated by energy absorption for the breaking of spin coherence and due
to the nature of second order phase transition the anomaly of CM near TN should be ex-
pected [23]. The derivation for anomaly of CM depends on the detailed lattice structure.
In this chapter we focus on the material FePS3 which is an Ising-type 2D antiferromag-
net of the honeycomb (hexagon) lattice [6–8, 28]. According to the references [29–31],



3.3. Thermal observables for elastic plate hybrid with magnetic phase transition

3

51

(a) (b)

Figure 3.3: The temperature dependence of magnetic energy and specific for 2D Ising honeycomb lattice, nu-
merically calculated according to the Eq. 3.36. One can check that at T = 0, K Ñ8 then EIs

/
N J 1Ñ´3/2 as

expected because the coordination number for honeycomb lattice is 3.

the partition function for honeycomb lattice reads

1

N
log Z (T ) = log2+ 1

16π2

ż 2π

0

ż 2π

0
dθ1dθ2 log

[
cosh3 2K +1´ sinh2 2K ¨Pθ

]
, (3.34)

where K = J 1
/

kB T ” βJ 1 is the normalized temperature in which J 1 is the effective cou-
pling energy from the exchange Hamiltonian H = ´2J

ř

S i ¨ S j ” ´J 1
ř

Ŝ i ¨ Ŝ j , thus
J 1 = 2JS2 [30]. The integrand parameter is Pθ = cosθ1 + cosθ2 + cos(θ1 +θ2) [31]. The
critical point for honeycomb lattice is reached as sinh2Kc =?3 and the Neel tempera-
ture is

TN = 2J 1

kB log(2+?3)
. (3.35)

Thus one can derive the effective coupling energy J 1 based on the measured Neel tem-

perature. Following the procedures of differentiating EIs = ´d log Z
dβ and CIs = dEIs

dT , we
have the specific heat due to the breaking of spin coherence reads

1

N kB
CIs(T ) = K 2

16π2

ż 2π

0

ż 2π

0
dθ1dθ2

{
6sinh4K sinh2K ´4cosh4K (2Pθ´3cosh2K )

cosh3 2K +1´ sinh2 2K ¨Pθ

´
sinh2 4K (2Pθ´3cosh2K )2[

cosh3 2K +1´ sinh2 2K ¨Pθ
]2

}
.

(3.36)

The temperature dependence of the Ising type magnetic energy and specific heat is shown
in Fig. 3.3 Although there is no macroscopic magnetization above TN , the short range
spin correlations still persist and shall finally vanish to zero for large enough tempera-
ture. The total magnetic specific heat for our material FePS3 is then a sum of the Ising
and magnon’s contribution CM =CIs +Cmag.
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3.3.3. Incorporating the magnetoelastic coupling into thermoelastic free
energy

The previous analysis for the damping of thin plate in section 3.2 does not involve the
magnetic effect on the heat transportation. In nature, the magnetoelastic coupling should
be included into the total free energy and the analysis of the hybrid of magnetic, elastic,
and thermal dynamics should be considered [32, 33]. According to Refs. [34, 35], the
magnetoelastic coupling energy in general has the form

FMEC =´N z
BJ

BV

〈
S i ¨S j

〉
εi

i , (3.37)

in which N is the number of spins per unit volume, z is the coordination number, and
εi

i is the fractional volume change. The two-spin correlation function
〈

S i ¨S j
〉

indicates
the average over space and time for any two nearest neighbouring spins. Incorporating
this free energy into the thermal elastic one (Eq. 1.43) we write down the total free energy
taking both the thermal and magnetic elastic coupling into consideration

F = F0´KTαE θε
i
i +

1

2
KT

(
εi

i

)2 +µ
ÿ

i j

(
εi j ´

1

3
εi

i δi j

)2

´N z
BJ

BV

〈
S i ¨S j

〉
εi

i . (3.38)

Note that we have replaced α in Eq. 1.43 with the symbol αE in order to highlight its
elastic origin. The strain in equilibrium can be derived from BF

/
Bεi

i = 0, leading to the
combined effect on volume changes due to both thermal expansion and magnetostric-
tion

εi
i =αEθ´βT N z

J

V
γM

〈
S i ¨S j

〉
, (3.39)

where the magnetic Grüneisen constant γM describing the volume dependence on the
exchange coupling strength has the form [34, 36]

γM =´V

J

BJ

BV
. (3.40)

The part of volume changes due to the magnetostriction is proportional to the two-spin
correlation function which can be changed by the variation of either temperature or ex-
ternal field. In this chapter we assume there is no external field applied onto the plate,
then the temperature increase leads to the decaying of spin correlation and results in the
magnetostriction expansion. Since the magnetic energy derived from the Heisenberg
Hamiltonian H =´2J

ř

S i ¨S j is that EM =´N z J
〈

S i ¨S j
〉

, it is reasonable to defines the
magnetic specific heat as [33]

CM =´N z J
B

〈
S i ¨S j

〉
BT

. (3.41)

As a result the deviation of local spin coherence due to the small change of local temper-
ature θ is CMθ =´N z J

〈
S i ¨S j

〉
and the total volume change can be succinctly expressed

into the form

εi
i =αEθ+βTγM

CM

V
θ = (αE +αM )θ” α̃θ. (3.42)
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Figure 3.4: Temperature dependence for the effective Grüneisen parameter γ̃ derived from Eq. 3.44. The elastic
parameter is calculated to be to be γE = 1.798 [9] and the ratio is chosen to be γM

/
γE = ν= 4. The γ̃ start from

γE because the CM « 0 for small temperatures.

We see that by merging the magnetoelastic coupling into the free energy, the thermal
expansion coefficient αE should be extended to the one including the magnetic contri-
bution α̃=αE +αM .

The magnetic Grüneisen relation αM = βTργM CM is almost similar to the elastic
counterpart (Eq. 1.49) meaning the thermal and magnetic properties both originate from
the variation of spin coherence and it is the magnetic Grüneisen parameter makes them
a connection. Therefore the overall thermal expansion coefficient for the hybrid system
can be written into the form

α̃=βTργE CE +βTργM CM =βTρ
(
γE CE +γM CM

)=βTργ̃CV , (3.43)

which maintains the Grüneisen relation formalism but with CV = CE +CM is the total
specific heat combining the elastic and magnetic ones and with the effective Grüneisen
parameter defined as

γ̃= γE CE +γM CM

CE +CM
. (3.44)

Although the elastic and magnetic Grüneisen parameters are both almost independent
of temperature [35, 37], the effective Grüneisen parameter usually presents a peak at
phase transition TN (as shown in Fig. 3.4). This phenomenon originates from the anomaly
of magnetic specific heat near phase transition rendering the γ̃ « γE for T far away
from TN and γ̃« γM for the T close to TN . Usually the γM is several times larger than
the elastic γE and it can be theoretically predicted based on detailed study of magnetic
structure [36]. In this work, however, we shall simplify the analysis by assuming a phe-
nomenological factor ν= γM

/
γE which can be further determined by fitting the theoret-

ical prediction of the thermal observables such as the α̃ and Q´1 to the measured values.

In this way the part of thermal expansion mediated by magnetostriction can be ef-
fectively absorbed into the non-magnetic formalism simply by replacing αE with α̃. To-
gether, the specific heat and thermal conductivity in the elastic and thermal dynam-
ics equation (Eq. 3.10 and Eq. 3.12) should also be replaced by the total specific heat
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CV = CE +CM and total thermal conductivity κ = κE +κM [32]. The overall damping
coefficient Q´1 for the elastic and magnetic hybrid plate has the form (Eq. 3.22)

Q´1 = 1+σ
1´σ

Y α̃2T

ρCV

(
6

ξ2 ´
6

ξ3

sinhξ+ sinξ

coshξ+cosξ

)
, ξ= h

c

ω0ρCV

2κ
, (3.45)

with the α̃, CV , and κ are thermal observables which can be measured and predicted
based on the theory developed in this chapter.

Furthermore, the magnetoelastic coupling of Eq. 3.37 can be rephrased as FMEC =
N zργM J

〈
S i ¨S j

〉
εi

i and for the Ising model it can be simplified into the spin correla-

tion about ẑ axis. Then the FMEC = N zργM J
〈

Sz
i Sz

j

〉
εi

i ”ΛL2
zε

i
i can be included into the

Landau free energy that

F = F0 +
[

a(T ´TN )+Λεi
i

]
L2

z +BL4
z , (3.46)

and the Neel temperature at the influence of elastic strain is

T˚N = TN ´
Λ

a
εi

i . (3.47)

Since the proportionality Λ and Landau factor a are positive, we predict the decreasing
of Neel temperature with the enhancing of plate strain εi

i [9].

3.4. Model validation through the thermal observables mea-
sured for the 2D AFM material FePS3

Here we validate the theory developed in this chapter by calculating the linear thermal
expansion coefficient αL and damping factor Q´1 of the Ising-type 2D antiferromag-
netic material FePS3 whose phase transition temperature is about TN = 114K [9]. In the
published paper (Ref. [9]), S̆is̆kins and etc. have measured the vibration frequency of the
base model f0 for the membrane-plate of FePS3 in the setup of Fig. 3.1. According to
Ref. [38] the resonance frequency of the round resonator in the membrane-plate regime
can be approximated by

f0 =
b

f 2
membrane + f 2

plate , (3.48)

in which the plate frequency is fplate = ω0
/

2π according to the Eq. 3.20 and the mem-
branes fundamental frequency is

fmembranes =
2.4048

2πa

d

N

ρh
, (3.49)

with N = N0+Y hεth
r

/
(1´σ) is the in-plane tension along radial direction. N0 is the initial

tension introduced by fabrication and can be further tuned by the external gate voltage
VG . The second part comes from the thermal expansion of the membranes which be-
comes a solely factor for the temperature dependency of the resonance frequency f0 if
we assume the plate frequency fplate is independent to the environmental temperature
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Figure 3.5: (a) Solid-blue line: the measured fundamental resonator frequency f0 as function of temperature
for the FePS3 plate-membranes. Solid-red line: the derivative of f 2

0 to T . (b) Derived linear thermal expansion
coefficient of FePS3 plate-membranes according to Eq. 3.50. Quoted from the Fig.2 in Ref. [9].

because the Young’s modulus Y and Poisson coefficient σ are almost independent to a
small range of T varying from 0 to 200K in the S̆is̆kins’ experiment. The thermal strain
is relate to the linear expansion coefficient of the resonator and silicon substrate by the
relation dεth

r

/
dT = ´(αL´αsi). As a consequence, by measuring the temperature de-

pendency of f0(T ) one can derive the thermal expansion coefficient of FePS3 such that

αL =αsi´

(
2πa

2.4048

)2 ρ(1´σ)

Y

d( f 2
0 )

dT
. (3.50)

The experimental measurement are presented in Fig. 3.5 and one indeed observes the
αL anomaly around the phase transition.

From the theoretical point of view, the linear expansion coefficient is one-third of
the volume expansion coefficient developed in the previous section of the hybrid sys-
tem, namely αL = α̃/3 based on Eq. 3.43. In order to derive the theoretical prediction
of αL , one needs to calculate the specific heat of the elastic and magnetic parts. Firstly,
for the magnetic specific of the Ising origin (Eq. 3.36), the effective coupling energy J 1 is
derived from the measured Neel temperature TN = 114K and according to Eq. 3.35 we
have J 1 = 6.48meV. Therefore the nearest neighbour spin-to-spin coupling energy in the
Hamiltonian H =´2J

ř

S i ¨S j has the value J = J 1
/

2S2 = 0.81meV since the atomic spin
for FePS3 is S = 2. One sees that the derived J is very close to the first-nearest neigh-
bour interaction (shown in Fig. 3.6) J1 = 2J « 1.5meV measured in the neutron scatter-
ing experiment [7, 8]. Using this derived J 1 we plot the CIs in Fig. 3.3(b). Secondly, for
the magnetic specific of the magnon origin (Eq. 3.28), it is necessary to figure out the ex-
change and anisotropy field on the sublattices in order to apply the dispersion relation in
Eq. 3.27. However, according to the magnetostriction effect the inter-atomic interaction
are modulated by the strain and varies with the membranes thickness [28]. Here we sim-
plify the analysis by selecting the effective field as µ0HE = 69Tesla and µ0HA = 138Tesla
in order to best fit the derived CM (T ) and αL(T ) with the measured data. According
to Eq. 1.21, the effective interaction between sublattices then becomes Jsub « ´1meV
and anisotropy is A « 6meV which are close to the measured data whose values take
J2 =´0.04meV, J3 =´0.96meV, and A = 3.78meV as quoted from Refs. [7, 8]. The cal-



3

56 3. Magnetism on the thermal dynamics of 2D antiferromagnetic membranes

Figure 3.6: Schematic of the magnetic lattice for FePS3 quoted from Ref. [8]. White dots mean the spin pointing
out of the page and the black dots mean the spins pointing into the page. J1, J2, J3 are the first-, second-, and
third nearest neighbour interaction for the Hamiltonian H = ´ř

i , j Ji , j Si ¨ S j [7]. The magnon dispersion
relation with the effective exchange field is calculated based on the sub-lattice structure indicated by the red
and blue rhombus. Total spin of magnetic Fe atom is S = 2 and the coordination number for sublattice is z = 2.

culated Cmag is shown in Fig. 3.2(a) and the total magnetic specific heat CM is shown
in Fig. 3.7(a). Obtained from first-principle calculation, the elastic parameters of FePS3

are Y = 103GPa, σ = 0.304, ρ = 3375kgm´3 and v̄ = 3823ms´1 [9]. According to the
Ref. [10], the elastic specific heat for FePS3 is a mixing of Debye and Einstein parts with
the Debye temperature Tdb = 236K and Einstein temperature Tei = 523K. The suggested
combination ratio is 0.54 and the elastic specific heat CE = (1´0.54)Cdb+0.54Cei can be
derived from Eq. 3.25. In Fig. 3.7(b) we present the calculated CE as doted blue line and
the total specific heat CV =CE +CM as solid red line.

Our theoretical predictions fit well the measured data shown in Fig. 3.8 and therefore
validate the choice of parameters and the applicability of our model. Furthermore, using
these parameters we get the elastic Grüneisen factorγE = 1.798 based on Eq. 1.50 and the
compressibility βT = 1.14ˆ10´11 Pa´1. By assuming the ratio ν= γM

/
γE = 4 and apply-

ing the derived specific heats we calculate and plot the effective Grüneisen parameter
γ̃ as function of temperature in Fig. 3.4. It is then straightforwards to derive the over-
all linear expansion coefficient for the hybrid system αL = α̃

/
3 based on equation 3.43.

Bear in mind that if one uses molar specific heat from the Fig. 3.7(b), the density should
also chosen to be the molar density which is ρ = 18443molm´3 for FePS3. Showing in
Fig. 3.9 the theoretical prediction for αL fits well the measured data which consolidates
the scheme of merging the magnetoelastic coupling into the non-magnetic equation of
motions for the hybrid system.



3.4. Model validation through the thermal observables measured for the 2D AFM
material FePS3

3

57

(b)(a)

Figure 3.7: (a) Magnetic specific heat CM = CIs +Cmag is the sum of the 2D Ising statistics and the magnon’s
contribution. (b) Solid red: total specific heat CV =CE +CM of the FePS3. It shows anomaly around the phase
transition because the divergence of magnetic CM . Doted blue: the elastic specific heat CE = (1´0.54)Cdb +
0.54Cei according to Ref. [10]. We point out that there are 5mol of atoms per 1mol molecule for the FePS3
compound.

(b)(a)

Figure 3.8: Measured Specific heat for FePS3 quoted from Takano’s paper [10]. (a) the experimental data and
Takano’s prediction for CM . In his calculation, the magnetic specific heat instantly decays to zero which does
not fits into the measurements whereas my plotting fits better. (b) the experimental data for the total specific
heat. Note here the temperature ranges from 0 to 300K while in my plotting the temperature stops at 200K.
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Figure 3.9: Solid red: theoretical predicted linear expansion coefficientαL = α̃/
3 based on the Eq. 3.43 with the

derived specific heat from Fig. 3.7 and effective Grüneisen parameter γ̃ from Fig. 3.4. Solid blue: experimental
derived αL from Fig. 3.50(b).

In order to calculate and plot the damping coefficient Q´1 according to Eq. 3.45
one still needs to know the temperature dependence of thermal conductivity κ espe-
cially in the hybrid materials whose thermal conduction has several different origins.
As for the FePS3, we have κ = κph + κmag and we can ignore the scattering between
phonons and magnons because the magnon’s energy in antiferromagnetic is usually
at the range of THz while the phonon’s energy is usually of several GHz which means
the coupling between these two quasi-particles is small. As stated in the previous sec-
tion, particle lifetime is limited by the boundary scattering and can be treated as a con-
stant τ = τ0. The κmag can be derived according to Eq. 3.33 together with material con-
stants and the fitting parameter τ0,mag « 3.8ps [39]. As for the phonon’s contribution,
we simplify the analysis by utilizing the Debye averaged sound velocity and apply the
fitting parameter τ0,ph « 0.8ps such that κph = CE v̄2τ0,ph. The total thermal conduc-
tivity is plotted in Fig. 3.10(a) and we see it is much smaller than the measured value
for bulk FePS3 compound which has κ« 1W

/
mK at room temperature [5]. This is due

to the membranes geometry whose thickness is only h = 45nm which limits mobility
of phonons and thus the small thermal conductivity. The transverse thermal time con-
stant τz = h2ρCV

/
πκ, which measures the time for establishing the temperature equi-

librium across the plate, is also plotted and it is close to the S̆is̆kins measurement. With
the parameter ξ=π

a

f0τz and based on the previously derived expansion coefficient α̃
and total specific heat CV , we have the damping coefficient Q´1 derived and shown in
Fig. 3.11. We see the agreement between theoretical prediction and experiment data is
good enough and the drop of thermal transfer after phase transition can be ascribed to
the depletion of magnons as thermal carriers.
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Figure 3.10: (a) Total thermal conductivity which is a sum of the phonon and magnons’ contribution as thermal
carriers κ = κph +κmag. For the membranes setup the magnetic part dominates before the phase transition

and vanishes afterwards. (b) The thermal time constant along the ẑ-th direction τz = h2ρCV
/
πκ. The smaller

of τz means the faster of temperature approaching equilibrium.
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Figure 3.11: Solid red: theoretical prediction for damping coefficient Q´1 based on the Eq. 3.45 with FePS3
material parameters stated in the main texts. Solid blue: experimentally measured curve quoted from S̆is̆kins
paper (Ref. [9]).

3.5. Summary and outlook
In conclusion we studied the magnetoelastic effect on the thermal transfer within the
thin AFM plate for a wide range of temperature across the magnetic phase transition. In
specific, we developed a theory of merging the exchange magnetoelastic interaction into
the thermal elastic free energy and further predicted the temperature dependence for
observables such as specific heat CV , linear expansion coefficient α̃, and damping factor
Q´1 for the quasi-2D Ising AFM material FePS3. Compared to the experimentally mea-
sured data, our theoretical predictions agree very well especially for the specific heat and
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linear expansion coefficient. As for the transport related property, the theoretical plot of
Q´1(T ) shows the overall trend consistent with the measured curve and it still has rooms
for improvement. It is because in this work we have simplified the magnon and phonon
velocity v k to be homogeneous and utilized an isotropic thermal conductivity for analy-
sis. According to the quasi 2D material these assumptions may not sufficient enough and
one can improve these transport properties by studying the detailed lattice structure [8].
It may also helpful to find a double peak effect [40] for the κ(T ) is helpful to explain
the secondary surging of Q´1 after T > TN . However, our theoretical treatment builds
a general scheme to study the thermal observables for the magnetic-elastic-thermal in-
tegrated system. The key is generalizing the Grüneisen relation by incorporating vari-
ous contributions and arriving at an effective Grüneisen coefficient γ̃ (Eq. 3.44). This
quantity essentially describes the variation of internal energy with respect to the volume
change and its temperature dependency represents the changing of weight in the inter-
nal energy for each components in the hybrid system. Therefore the scheme developed
in this chapter can be extended to include other contributors such as electrons in the
spintronic and spin-caloritronic devices.
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4
Chiral coupling of magnons in

waveguides

The secret of happiness, you see, is not found in seeking more,
but in developing the capacity to enjoy less.

Socrates

In this chapter we theoretically investigate the collective excitations of multiple millimeter-
sized ferromagnetic spheres mediated by waveguide photons. By the position of the mag-
nets in the waveguide, the magnon-photon coupling can be tuned to be chiral, i.e., magnons
only couple with photons propagating in one direction, leading to an asymmetric trans-
fer of angular momentum and energy between the magnets. A large concentration of the
magnon’s population can be achieved at an edge of long chain of magnets. The chain also
supports standing waves with low radiation efficiency that are inert to the chirality.

Parts of this chapter have been published in Phys. Rev. B 101, 094414 (2020) [1] with some modifications.
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4.1. Introduction
Magnetic insulators are promising materials for low dissipation information technology
with magnons, the elementary excitation of magnetic order, rather than electrons [2–
5]. The long lifetime of magnons in high-quality magnetic insulators such as yttrium
iron garnet (YIG) [6] are suitable for data storage, logic, and medium-distance inter-
connects but cannot compete with photons in terms of speed and coherence lengths.
Coupled magnon-photon systems are therefore promising for quantum communication
over large distances [7]. The interface to conventional electronics are metal contacts
that allow magnons to interact with conduction electrons by interfacial exchange inter-
action, giving rise to spin pumping and spin transfer torques [8, 9]. Magnons in separate
nanomagnets couple by the long-range dipolar interaction, giving rise to chiral transport
phenomena [10–12].

Strong coherent coupling between photons in high-quality cavities and spin ensem-
bles such as NV centers in diamond [13, 14], rare earth ions [15, 16], and ferromagnets
[17, 18], is attractive because of its potential for quantum memories [19] and transduc-
ers. While a (nearly) closed cavity can have very long photon lifetimes, efficient photon
transport requires an open waveguide, the main object of the present study. Coherent
microwave emission from a precessing magnetization of a ferromagnet in a waveguide
can be measured via the additional damping of magnons [20–22] on top of the intrinsic
Gilbert damping. The Larmor precession of the magnetization couples preferentially to
photons with the same polarization. Due to the tunable ellipticity of the AC magnetic
field, magnets at certain locations in a waveguide (to be discussed in the main text) also
couple preferentially to photons propagating in one direction. Such a chiral coupling of
atoms and quantum dots with optical photons attracts much attention [23, 24].

Here we study a collection of magnetic particles placed in a microwave waveguide
[21, 25], as shown in Fig. 4.1. The radiation emitted by a magnet typically drives all the
other magnets, leading to an effective long-range dissipative coupling, reminiscent of
the coherent coupling in a closed cavity [19]. The coupling mediated by travelling pho-
tons in atomic ensembles [26–30] causes collective super- and sub-radiance. Here, we
discuss analogous modes in macroscopic magnonic systems but with incorporating the
chirality, which can be probed by microwaves at room temperature.

We show magnets can couple chirally to waveguide photons, leading to the non-
reciprocal magnon-magnon interaction [23]. For given locations in a waveguide, one
magnet can affect another one without back-action [24]. We predict the imbalance of
the magnon population in a chain of magnets that can be significantly enhanced up to
several order of magnitude. We study the collective excitations of up to „ 100 magnets,
with focusing on super-radiant and sub-radiant modes, i.e. modes with very higher or
lower radiation efficiency than the independent one [31]. We find that the superradiant
states [26–30] are well localized at the edge of the chain [26, 32]. In contrast, the lowest
subradiant states are standing-wave–like and centered in the chain and are only weakly
affected by the chirality of the coupling. Here we formulate the theory for the physical
properties of the collective modes for one, two and many spheres in a waveguide, such
as the microwave transmission spectra.

This chapter is organized as follows. We introduce the model in Sec. 4.2 including the
Hamiltonian for subsystems and especially calculate the magnon-photon coupling con-
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Figure 4.1: Chain of magnetic spheres with period d in a microwave waveguide. The chain and waveguide
are parallel to the ẑ axis and magnetizations are oriented along ŷ axis by a magnetic field Hy . Every magnet
interacts with all other magnets to the right (ΣR ) and to the left (ΣL ). Small coils attached to magnet can excite
and detect the local magnon accumulation.

stants. Based on the input-out theory, in Sec. 4.3 we derived the photon scattering matrix
for a general waveguide geometry and positions of the magnets. As an example we fo-
cus on magnon-photon coupling in a rectangular waveguide in Sec. 4.4. We specifically
address the coupling constants and radiative damping of magnet in this case. We de-
rive collective modes with super- and sub-radiance in long magnetic chains in Sec. 4.5.
Finally, Sec. 4.6 contains a discussion of the results and conclusions.

4.2. Model description
We focus here on magnets that are small enough compared with the photon wavelength
such that only the homogeneous collective excitation or Kittel mode couples with the
microwave photon [33]. We consider a waveguide infinite in the z-direction with a rect-
angular cross-section from (0,0) to (a,b), as shown in Fig. 4.1. We assume metallic bound-
aries, i.e. the electric field parallel to the surface vanishes. There are N equivalent mag-
nets with gyromagnetic ratio ´γ, saturated magnetization Ms , and volume Vs . Their
centers are located at r i = (ρρρi , zi ), where ρρρ = (x, y) is the position in the waveguide’s
cross-section.

The dynamics is governed by the Hamiltonian Ĥ = ĤEM + ĤM + Ĥint, with electro-
magnetic contribution

ĤEM =
ż [ε0

2
E 2(r )+ µ0

2
H 2(r )

]
dr , (4.1)

the magnetic part

ĤM =´µ0

ż [
H0(r )My (r )+H 1(r ) ¨M(r )

]
dr , (4.2)
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and the magnon-photon interaction

Ĥint =´µ0

ż

H(r ) ¨M(r )dr . (4.3)

The time-dependence is implicit. Here, {E , H } represent the electric and magnetic fields
of the photons in the waveguide, H 1 is the sum of dipolar and anisotropy field [34]. For
simplicity we assume it is much smaller than the external saturating field, H0 " H1, so
that it can be ignored. M is the magnetization, ε0 and µ0 are the permittivity and per-
meability of the free space, and H0 ŷ denotes the static applied field that saturates the
magnetizations.

The electromagnetic fields can be expanded in photon operators,

H(r ) =
ÿ

k,λ

(
HHH λ

k (ρρρ)e i kz p̂λk +h.c.
)

, (4.4)

with HHH λ
k (ρρρ) being the eigenmodes for the magnetic field in the waveguide [35], and sim-

ilarly for the electric field with H Ñ E and HHH Ñ EEE (Eq. 1.67). Here k denotes the mo-
mentum in the z-direction, and λ is the mode index. The photon operators satisfy the
field commutation relations [

p̂λk , p̂λ
1:

k1

]
= δ(k´k1)δλλ1 . (4.5)

By proper normalization (Eq. 1.68) the Hamiltonian for EM field can be rephrased into
(up to a constant)

ĤEM =ħ
ÿ

k,λ

Ωλ
k p̂λ:k p̂λk , (4.6)

with the photon frequency

Ωλ
k = c

b

γ2
λ
+k2 , (4.7)

and c is the speed of light in vacuum. We assume the losses in high-quality waveguide to
be small compared to the magnetic dissipation and not important on the length scale of
interest.

The magnetization M(r ) is confined to the magnets that are much smaller than typi-
cal photon wavelengths and waveguide dimensions (usually > 1 cm), such that the mag-
netic field is a constant inside each magnet. The excitations of the (linearized) magnetic
Hamiltonian are spin waves, or its quanta, magnons. For magnets with axial symmetry
around the magnetization, the microwaves couple strongly only with the Kittel mode,
i.e. the uniform precession of the magnetization and we disregard other modes in the
following. We quantize the magnetization as [36, 37]

M j ,z´ i M j ,x =
d

2ħγMs

Vs
β̂ j ,

M j ,z + i M j ,x =
d

2ħγMs

Vs
β̂
:

j ,

M j ,y = Ms´
ħγ
Vs
β̂
:

j β̂ j ,

(4.8)
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where β̂ j is the annihilation operator for a Kittel magnon in the j -th magnet with j P
{1, . . . , N }. The coefficients are chosen to ensure that M j ¨M j « M 2

s and the magnetic
Hamiltonian Eq. (4.2), up to a constant becomes

ĤM =ħ
N

ÿ

j=1

ω j β̂
:

j β̂ j , ω j = γµ0H0(r j ). (4.9)

Inserting Eqs. (4.6) and (4.9) into the interaction Hamiltonian the equation 4.3 be-
comes

Ĥint =ħ
ÿ

j

ÿ

k,λ

[
gλj (k)p̂λk β̂

:

j +h.c.
]

, (4.10)

with the coupling constant

gλj (k) =µ0

c

γMsVs

2ħ
[

iH λ
x (k)´H λ

z (k)
]

e i kz j . (4.11)

The chirality of coupling g (k)‰ g (´k) arises based on the non-symmetric reflection of
EM wave travelling in ˘k as shown in Eq. 1.66. In physics, this reflects this coupling
is of angular momentum conservation such that the counter-clockwise precession of
spins only couples to the counter-clockwise polarization of EM waves. If the magnetic
field is circular polarized then this coupling is fully chiral, while if the magnetic field
is elliptical polarized the coupling is partially chiral. The distributed magnets experi-
ence different phases along the waveguide longitudinal position and we can tune this
coupling strength and chirality by the position of the magnets ρρρ j . One can see in the
sec 4.4 that in rectangular waveguide the coupling constant can be written into the form
of gλj (k) = i e i kz j g̃λj (k) with the g̃λj (k) is real number.

4.3. Photon mediated interaction between magnetic spheres
From the Hamiltonian Ĥ = Ĥem + Ĥm + Ĥint, we obtain the equation of motion for pho-

tons by the Heisenberg relation ˙̂O =´i [Ô , Ĥ ],

d p̂λk
d t

=´iΩλ
k p̂λk ´ i

ÿ

j

ḡλj (k)β̂ j . (4.12)

The symbolic solution is

p̂λk (t ) = p̂λk,ine´iΩλk t
´

ÿ

j

i ḡλj (k)

ż t

´8

β̂ j (τ)e´iΩλk (t´τ)dτ, (4.13)

where p̂k (´8)” p̂λk,in is the microwave input [38, 39]. The first term is the free evolu-
tion and the second term is the (spontaneous and stimulated) radiation generated by

magnons. The output field p̂λk,out = limtÑ8 p̂λk (t )e iΩλk t then reads

p̂λk,out = p̂λk,in´ i
ÿ

j

ḡλj

ż 8

´8

β̂ j (τ)e iΩλkτdτ. (4.14)
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The magnon dynamics is governed by equation of motion

d β̂ j

d t
=´iω j β̂ j ´ D̂int, j ´ D̂ph, j , (4.15)

where

D̂int, j =
κ j

2
β̂ j , D̂ph, j = i

ÿ

k,λ

gλj (k)p̂λk . (4.16)

This is equivalent to the linearized Landau-Lifshitz-Gilbert (LLG) equation. Here the
linewidth κ j = 2αGω j , where αG is the Gilbert damping parameter. Each magnet is con-
nected to an intrinsic bath of phonons and other magnons, which generates the thermal
torque. However, in our model we assume this interaction is Markovian and all magnons
are Gibbs distributed at equilibrium [38], leading to the vanishing thermal torque in the
intrinsic damping.

When magnons are coupled by photons, the torque D̂ph, j can be split as

D̂ph, j (t ) = T̂ j (t )+ i
ÿ

l

ż t

´8

dτΣ̃ j l (t´τ)β̂l (τ), (4.17)

where the first term is generated by the photon input,

T̂ j (t ) = i
ÿ

k,λ

gλj (k)p̂λk,ine´iΩλk t , (4.18)

while the second term describes the photon-mediated coupling

Σ̃ j l (t´τ) =´i
ÿ

k,λ

gλj (k)ḡλl (k)e´iΩλk (t´τ), (4.19)

which can be interpreted as (real or virtual) (k,λ)-mode photon emission from magnet l
with amplitude ḡλl (k) followed by the absorption in magnet j with amplitude gλj (k). The

interaction is retarded by the finite light velocity. However, even for large distances r j l <
1 m, κ j r j l

/
c < 0.02, where κ j = 2πˆ1MHz is a typical magnon linewidth, so Σ̃ j l (t´τ)

decays much faster than the magnon envelope dynamics. For short times |t´τ| < r j l
/

c

the magnons can be assumed to move coherently β̂l (τ)« β̂l (t )e iωl (t´τ). This Markovian
approximations simplifies Eq. (4.15) to

dB̂

d t
=´i ω̃B̂´ iΣB̂´ T̂ , (4.20)

introducing the column vectors for local magnetization B̂ = (
β̂1, . . . , β̂N

)T
, and the (mi-

crowave) torque

T̂ ” (T̂1, ¨ ¨ ¨ , T̂N )T = i
ÿ

k,λ

p̂λk,ine´iΩλk t Gλ
k , (4.21)

according to the coupling vector Gλ
k = (

gλ1 (k), . . . , gλN (k)
)T

. A local antenna such as metal-
wire coils close to each sphere [19] can locally excite or detect its dynamics, leading to
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the distributed torque T̂ Ñ T̂ + T̂l , where T̂l = (P̂1, ¨ ¨ ¨ , P̂N )T and P̂i is the local input
amplitude. The elements of the matrices ω̃ and Σ read

ω̃ j l = δ j l

(
ω j ´ i

κ j

2

)
, (4.22)

Σ j l =
ż 8

0
Σ̃ j l (t )e iωl t d t . (4.23)

Inserting Σ̃, we obtain the magnon self-energy

Σ j l =
ÿ

k,λ

gλj (k)ḡλl (k)

ωl ´Ω
λ
k + i 0+

. (4.24)

According to (Eq. 4.20), the ReΣ modulates the frequencies of each magnet by the other
magnets (coherent coupling), while the ImΣ changes their damping rate (dissipative
coupling).

The diagonal elements of the coupling Σ j j in Eq. (4.24) are magnet’s self-interaction
that shifts the frequencies by a small amount (ReΣ j j ! ω j as shown below) and also
describe the radiative damping by ImΣ j j . The non-diagonal elements Σi‰l couple dif-
ferent magnets. Taking the complex integral of k that

ř

k = 1
2π

ş

dk and using residual
theorem, we obtain the effective coupling from magnet l to magnet j as

Σ j l =
Imkλl =0

ÿ

λ


´i

(
ΣλL +ΣλR

)
/2´δωλj , j = l

´iΣλR e i kλl (z j´zl ), z j > zl

´iΣλL e i kλl (zl´z j ), z j < zl

. (4.25)

The summation till Imkλl = 0 limits over the λ’s for which kλl =
b

ω2
l /c2´γ2

λ
is real, i.e.

the frequency of the l -th magnet is larger than the λ-band edge. The frequency shift for
magnet j by the photon band λ is calculated to be

δωλj =
γµ0MsVs kc

ab
sin2

(
γλx x j

)
cos2

(
γλy y j

)
, (4.26)

where kc is an upper cut-off for the wave numbers, which is typically governed by high-
frequency losses in the boundaries. For typical electron relaxation time in copper, τel =
50 fs (Ωc „ 2πˆ 20 THz) [40], kc = 2π/(τelc) „ 105 m´1 and δωλj À 2πˆ 100 MHz for

a „ b „ 2 cm and the sphere radius of 0.5 mm, which is much smaller than the Kittel

mode frequency ω j „ 2πˆ10 GHz. Taking the ´i e´i kz j gλj =
∣∣∣gλj ∣∣∣” g̃λj , the rightwards

and leftwards inter-magnets coupling magnitude is calculated to be

ΣλR =
g̃λj

(
kλl

)
g̃λl

(
kλl

)
vλ

(
kλl

) , ΣλL =
g̃λj

(
´kλl

)
g̃λl

(
´kλl

)
vλ

(
´kλl

) . (4.27)

Here the photon group velocity derived from dispersion relation (Eq. 4.7) is

vλ(k) =
∣∣∣∣∣dΩλ

k

dk

∣∣∣∣∣= c2 |k|
Ωλ

k

. (4.28)
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4.3.1. Collective modes
The coupling between magnets by photon exchange in the waveguide gives rise to col-
lective excitations. In the language of quantum optics [26, 28], it can be interpreted as an
effective non-Hermitian Hamiltonian between magnons, Ĥeff =ħB̂:H̃effB̂ and matrix

H̃eff = (ω̃+Σ) , (4.29)

with which (ignore input T̂ ) its Heisenberg equation of motion would recover the magnon
dynamics as in equation 4.20. Since the Hamiltonian is of non-Hermitian these cou-
plings are dissipative and the level attraction in the transmission spectrum can be ex-
pected. In general, any two systems coupled via continuous travelling waves are dissi-
patively coupled.

The right and left eigenvectors of the non-Hermitian H̃eff are not the same. Let
the right eigenvectors of H̃eff to be {ψζ} with corresponding eigenvalues {νζ} where ζ P
{1, . . . , N } labels the collective modes. It is also convenient to define the right eigenvec-

tors of H̃:eff as {φζ} with corresponding eigenvalues {ν̄ζ}. Without degeneracies, i.e. @ζζ1

νζ‰ νζ1 , we have bi-orthonormalityψ:
ζ
φ1
ζ
=φ:

ζ
ψ1
ζ
= δζζ1 after normalization. It is easy to

prove then φ:
ζ

is a left eigenvector of H̃eff, i.e. ψ:
ζ

H̃eff = νζψ:ζ . The non-uniqueness of the
normalization condition does not affect the observables.

Defining matrices L = (
φ1, . . . ,φN

)
and R = (

ψ1, . . . ,ψN
)

in terms of left and right
eigenvectors, the bi-orthonormality R:L =L :R =IN , where IN is the NˆN identity
matrix, leads to

ω̃+Σ=RνL :, (4.30)

with matrix elements νi j = (ν1, . . . ,νN )δi j . Defining the collective mode operator

α̂ζ =φ:ζB̂, (4.31)

α̂ζ annihilates a quasiparticle in a collective mode with “wave function”ψζ. Introduce
the column vector for collective excitations α̂ = (α̂1, . . . , α̂N )T it relation with the local
magnon excitation can succinct to be α̂=L :B̂. As an inverse transformation, the mag-
netization follows from the right eigenvectors

B̂(t ) =
ÿ

ζ

ψζα̂ζ(t ) Ñ B̂ =Rα̂. (4.32)

Substituting (Eq. 4.30) into (Eq. 4.20) leads to the equation of motion on the collective
mode

dα̂ζ
d t

=´iνζα̂ζ´ τ̂ζ, (4.33)

where the torque on ζ mode is

τ̂ζ =φ:ζT̂ . (4.34)

4.3.2. Photon scattering spectrum
The coupled set of magnons leads to collective excitations that affect the transmission
and reflection of input photons with fixed frequency ωin. The ensemble average 〈¨ ¨ ¨〉 of
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input mode λ is 〈
p̂λk,in

〉
= Aλδ(k´kλ), (4.35)

where Aλ is the amplitudes of the incoming microwave field and kλ is the positive wave
vector satisfyingΩλ

kλ
=ωin and we assume that kλ is unique. The average of torque acting

on the mode ζ deduced from its definition (Eq. 4.34 and 4.21) is〈
τ̂ζ

〉= i e´iωint
ÿ

λ

AλA λ
ζ+. (4.36)

The absorption coefficients for λ band

A λ
ζ˘”φ

:

ζ
Gλ
˘kλ

Ñ A λ =L :Gλ (4.37)

are a linear combination of gλj with weights given by the left eigenvector. We argue in

section 4.5 that as the number of magnetic N goes large, magnons may be localized to
only a few magnets, such that a local coupling constant can dominate the global absorp-
tion. The average amplitude of mode ζ follows from Eq. (4.33). In the steady state

〈
α̂ζ(t )

〉= e´iωint
ÿ

λ

Aλ

A λ
ζ+

ωin´νζ
. (4.38)

Mode ζ is resonantly excited when ωin = Reνζ with spectral broadening Imνζ.
Similarly the emission coefficients for λ band defined as

E λ
ζ˘”G

λ:

˘kλ
ψζ Ñ E λ =Gλ:R (4.39)

are linear combination of couplings ḡλj weighted by the right eigenvector. When the lat-

ter is localized, emission is governed by a few local magnetizations and their couplings.

It is easy to understand the relation Gλ:B̂ = E λα̂ holds, and the averaged photon output
according to Eq. 4.14 can be rephrased into〈

p̂λk,out

〉
=

〈
p̂λk,in

〉
´ i

ÿ

ζ

E λ
ζ˘

ż

α̂ζ(τ)e iΩλkτdτ, (4.40)

with + (´) sign for k > 0 (k < 0). Inserting the magnon mediated absorption 〈α̂〉 from
Eq. 4.38, one can present the overall output as the form of photon transmission and re-
flection 〈

p̂λk,out

〉
=

ÿ

λ1

[
Sλλ

1

21 δ(k´kλ)+Sλλ
1

22 δ(k +kλ)
]

Aλ1 , (4.41)

with the transmission amplitude

Sλλ
1

21 (ωin) = δλλ1´
i

vλ(kλ)

N
ÿ

ζ=1

E λ
ζ+A λ1

ζ+
ωin´νζ

, (4.42)
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and the reflection amplitude

Sλλ
1

11 (ωin) =´ i

vλ(kλ)

N
ÿ

ζ=1

E λ
ζ´

A λ1

ζ+
ωin´νζ

. (4.43)

S12 and S22 can be found respectively from S11 and S21 by the substitution A λ1

ζ+ÑA λ1

ζ´
.

The (inter-band) scattering amplitudes resonate at N eigen frequencies of the collective
magnetic modes. We point out the photon transmission spectra can also calculated from
the scattering theory leading to exactly the same results. Check the appendix 4.7 for more
details.

4.4. Rectangular waveguide
Here as an example, we discuss the coupling matrix Σ for a rectangular waveguide with
cross-section goes from (0,0) to (a ě b,b). We use mode index λ = {n,m,TE/TM}, in
which integers n,m ě 0 are the number of nodes of magnetic (or electric) field in the
x- and y-directions, and TE or TM denotes the polarization. In rectangular waveguide
the photon dispersion of equation 4.7 has the property γx =πn/a, γy =πm/b (Eq. 1.65),
and it does not depend on polarization. For simplicity it is also assumed the magnetic
spheres are all identical.

The magnetic field of the TM modes are

H λ
x =

d

2ħΩλ
k

µ0ab

γy

γ
sin(γx x)cos(γy y),

H λ
y =´

d

2ħΩλ
k

µ0ab

γx

γ
cos(γx x)sin(γy y),

(4.44)

with both n,m > 0, and of the TE modes read

H λ
z =´i

d

2ηħ
abε0Ω

λ
k

γ

µ0

|k|
k

cos(γx x)cos(γy y),

H λ
x =

d

2ηħ
abε0Ω

λ
k

|k|
µ0

γx

γ
sinγx x)cos(γy y),

H y =
d

2ηħ
abε0Ω

λ
k

|k|
µ0

γy

γ
cos(γx x)sin(γy y),

(4.45)

in which the parameter η = 2´δn,0´δm,0 and at least one of the indices n,m > 0. Ac-
cording to general expression of coupling constant in Eq. 4.11 we have

gλj
∣∣
TM = i e i kz j

d

γµ0MsVsΩ
λ
k

ab

γy

γ
sin(γx x j )cos(γy y j )

” i e i kz j g̃λj (k)
∣∣
TM,

(4.46)
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and

gλj
∣∣
TE = i e i kz j

d

2ηγMsVs

abε0Ω
λ
k

|k|
k

γx

γ
cos

(
γy y j

)[
k sin(γx x j )+ γ2

γx
cos(γx x j )

]
” i e i kz j g̃λj (k)

∣∣
TE.

(4.47)

For the TE modes, the magnon-photon coupling depends on the direction of propaga-
tion. The chirality g̃λj (k)

∣∣
TE‰ g̃λj (´k)

∣∣
TE is caused by a magnetic field that is not linearly

polarized. For example in the {1,0,TE} mode, the two magnets j and l located at z j > zl

and the j -th magnet sits on a position x j satisfying

cot
(πx j

a

)
=´

d

a2ω2
l

π2c2 ´1, (4.48)

then the photon mediated magnon-magnon coupling is fully chiral, i.e. Σ j l = 0 accord-
ing to Eq. 4.27. So the l-th magnet does not affect the j -th meaning the coupling is
nonreciprocal, one magnet feels the dynamics of another but not the other way around.

When tuning the magnon frequency to below the bottom of all λ-bands except for
the lowest TE10 mode (the TE00 mode does not exist), i.e.

π

a
< ωl

c
<

{
π

b
,

2π

a

}
, (4.49)

we can freely tune the chirality. Fig. 4.2 shows a snapshot of the magnetic field for
the lowest TE10 mode propagating along the ´z-direction. For the modes along the z-
direction, the local ellipticity is reversed. Solving Eq. (4.48) with ωl =

?
5cπ/a, magnon-

photon coupling is fully chiral for magnets sitting on the green and red dotted line. The
chirality vanishes on the center (black dotted) line and is partially chiral elsewhere. Spec-
tral overlap with TM-photons at higher frequencies would reduce the chirality.

For a single magnet with (Kittel) frequency ωm , its magnon lifetime broadening is
δω= 2(αG +αr )ω, where αG is the Gilbert damping parameter and

αr = ´ImΣ

ωm
=

ÿ

λ

∣∣gλ (
kλ

)∣∣2 + ∣∣gλ (
´kλ

)∣∣2

2c2kλ
, (4.50)

To the lowest TE10 mode of a rectangular waveguide the associated radiative damping
do not depend on the y-coordinate. Results are plotted in Fig. 4.3 for two frequencies
of ωm/c = (2/

?
3)π/a and ωm/c =?3π/a with parameters a = 1.6 cm, b = 0.6 cm, mag-

netic sphere of radius rs = 0.6 mm and intrinsic Gilbert damping αG = 5ˆ10´5 [21]. αr

depends strongly on x, but weaker when close to the special position of chiral coupling,
i.e., x = a/3 and 2a/3 at ωm/c = (2/

?
3)π/a.

The broadening of the ferromagnetic resonance is not so sensitive to g ’s chirality,
but the transmission is. In the λ= {1,0,TE} mode the scattering matrix in Eqs. (4.42) and
(4.43) reduces to

S21 (ωin) = ωin´ωm + iαGωm + i (ΣL´ΣR )/2

ωin´ωm + iαGωm + i (ΣL +ΣR )/2
, (4.51)
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Figure 4.2: Snapshot of the spatial distribution of the AC magnetic field of the lowest TE10 mode in a rectan-
gular wave guide propagating along the ´z-direction. The arrows indicate the direction and modulus of the
field. The latter is also indicated by the color shading, from zero (dark blue) to maximum value (dark red). The
vector field of modes along the z-direction (not shown) is reversed. The green and red (black) dotted lines in-
dicate the locations at which the magnon-photon coupling is chiral (non-chiral) for magnon frequency tuned
to ωl =

?
5cπ/a. On the red (green) line, the magnon mode only couples to photons with positive (negative)

linear momentum.
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Figure 4.3: Position-dependent radiative damping αr scaled by the intrinsic Gilbert damping αG of a YIG
sphere by the TE10 mode of a rectangular waveguide for two magnetic frequencies ωm . The parameters are
specified in the a = 1.6cm, b = 0.6cm, and magnet sphere of radius rs = 0.6mm.
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where the magnet’s directional self-coupling magnitude is

ΣR =
∣∣g (k)

∣∣2

v(k)

∣∣∣∣
TE10

, ΣL =
∣∣g (´k)

∣∣2

v(k)

∣∣∣∣
TE10

. (4.52)

When ΣL = ΣR , the transmission amplitude drops at the resonance ωin = ωm to a small
value „ αGωm/ΣR . However, for full chirality with ΣR = 0, the magnet does not absorb
photons travelling towards the right and the waveguide is transparent. When ΣL = 0, on
the other hand the transmission probability is still unity, but the phase is shifted by π.

4.5. Magnets chain
The imbalance of the magnon distribution is enhanced when more magnets are added
to the waveguide. Let us consider a chain of N identical magnets located on a line (ρρρ@i =
ρρρ) at equal distance z j+1´ z j = d

(
0 < j < N

)
. This scheme is realized already (but in

a closed cavity) for N = 7 according to the paper [19]. We study the eigenvectors and
eigenvalues of the non-Hermitian matrix

H̃eff =
(
ωm´ iαGωm´ i

ΣR +ΣL

2

)
INˆN

+


0 ´iΣLe i kd ´iΣLe2i kd . . . ´iΣLe(N´1)i kd

´iΣR e i kd 0 ´iΣLe i kd . . . ´iΣLe(N´2)i kd

´iΣR e2i kd ´iΣR e i kd 0 . . . ´iΣLe(N´3)kd

...
...

...
. . .

...
´iΣR e i (N´1)kd ´iΣR e i (N´2)kd ´iΣR e i (N´3)kd . . . 0

 ,
(4.53)

where we dropped the TE10 mode index λ and

k =
d

ω2
m

c2 ´

(π
a

)2
. (4.54)

The photons emitted by magnet j to the right are, in our perturbative and adiabatic ap-
proach seen, equivalently and instantaneously by all magnets on the right but with a

phase factor e i k
∣∣z j´zl

∣∣
, and analogously for the magnets to the left.

The photon-mediated interaction generates a band structure with generalized Bloch
states labelled ζ P {1, . . . , N } with right eigenvectors {ψζ} and corresponding eigenvalues
{νζ},

(νζ´ H̃eff)ψζ = 0. (4.55)

The real part of νζ is the resonance frequency of the ζ-mode and the imaginary part its

lifetime. The eigenvectors of H̃:eff, φζ with eigenvalue ν˚
ζ

are related to ψζ by a parity-
time reversal operation when the spectrum is not degenerate, which is the case for the
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simple chain considered here. Let T be the complex conjugation and

P =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

 (4.56)

exchanges the magnets 1 Ø N , 2 Ø N ´ 1 and so on, akin to the inversion operation.
However, P does not act on the waveguide and is therefore not a parity operator of the
whole system. Clearly, P 2 =T 2 = 1. P interchanges ΣLØR in Eq. (4.53), which is equiv-

alent to the transpose operation, i.e. H̃ T
eff =P H̃effP , while H̃:eff =P T H̃effT P and

H̃:effP T ψζ = ν˚ζP T ψζ, (4.57)

implying that φζ =P T ψζ. We chose a normalization

ψT
ζ Pψζ = 1 (4.58)

such that φ:
ζ
ψζ = 1 and it is then sufficient to describe the dynamics in terms of only the

right eigenvectors ψζ.
The magnets interaction with the photons (again suppressing indices) are coherently

tuned by the phase vector,

G =´i
a

ΣR v
(
1,e i kd , . . . ,e i (N´1)kd

)T
. (4.59)

The emission amplitude Eζ =G :ψζ = i
?
ΣR vψ̃ζ(k), where we defined the discrete Fourier

transform

ψ̃ζ(k) =
(
1,e´i kd , . . . ,e´i (N´1)kd

)T
ψζ. (4.60)

The absorption amplitude Aζ =φ:ζG is related to the emission by

Aζ = e i (N´1)kd Eζ. (4.61)

The global transmission (Eq. 4.42)

S21(ωin) = 1´ iΣR e i (N´1)kd
ÿ

ζ

ψ̃2
ζ

(k)

ωin´νζ
, (4.62)

is governed by the right eigenvectors. The total coherent magnetization of the array

〈
B̂(t )

〉= A
a

ΣR ve´iωint e i (N´1)kd
ÿ

ζ

ψ̃ζ(k)

ωin´νζ
ψζ (4.63)
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is proportional to the amplitude of the incoming photons A (introduced in Sec. 4.3.2).
Magnons can be flexibly excited and detected by local antennas that interact only with
one magnet [19]. With local input at frequency ωin,

〈
T̂l (t )

〉= i e´iωint (P1,P2, ¨ ¨ ¨ ,PN )T ,

〈
B̂(t )

〉=´i
ÿ

ζ

(Pψζ)T
〈
T̂l (t )

〉
ωin´ ω̃m´γζ

ψζ. (4.64)

Note that (Pψζ)T = (ψζ,N ,ψζ,N´1, ¨ ¨ ¨ ,ψ1). When an edge state ζ˚ exists, say on the right
with large ψζ,N , the antenna array with controlled phase difference φ, i.e.

〈
T̂l (t )

〉 =
exp

[
´i Re

(
γζ˚

)
t
]
i P (1,e iφ, ¨ ¨ ¨ ,e i (N´1)φ)T , can excite a large magnetization at the right

edge, where it can be detected by the same local antenna.
It is seen that the excitation of magnetization is determined by the eigenvectors ψζ

and their eigenvaluesνζ. In the following we present the numerical study for the dissipatively-
coupled magnet chain with the special attention for superradiant and subradiant modes,
i.e. those with the largest and smallest radiation rates, respectively. As before, a = 1.6 cm,
b = 0.6 cm, rs = 0.6 mm, and αG = 5ˆ10´5 [21]. Typically, ωm

/
c =?3π

/
a correspond-

ing to the photon momentum k = ?2π
/

a, so only the lowest TE10 mode contributes.
The magnet chain is parallel to the waveguide and shifted from the chiral line to mod-
ulate the chirality ΣR

/
ΣL = 1, 0.5, 0.25, where ΣL

/
(2π) P (0,20) MHz. We choose N = 80

magnetic spheres and kd = π
/

5. So d = a
/

(5
?

2)« 0.2 cm, and the total length of the
magnon chain is N d « 18 cm. While such a long chain is experimentally impractical, the
results are not qualitatively different and emphasize our message.

Fig. 4.4 is a plot of the imaginary (Σζ) and real (Eζ) parts of νζ´ωm as a function of
mode number ζ, scaled by the local dissipation rate Σa =αGωm +(ΣL +ΣR )

/
2. The mode

numbers ζ = {1,2, ..., N } are ordered by magnitudes of Σζ. When ΣR = ΣL (non-chiral
case) and ζ« 80 (ζÀ 10), the decay rates are larger (smaller) than the localΣa , indicating
superradiance (subradiance). The decay rates of the most-superradiant states„Σa N

/
4

can simply be enhanced by increasing the number of magnets. The decay of the most-
subradiant states „ Σaζ

2
/

N 3 [26–30] are found at the lower band edge. The value of
the magnon energy shifts Eζ in the inset of Fig. 4.4 are enhanced to a peak around the
boundary between sub- and superradiance (Σζ « Σa). Eζ and Σζ have not simple func-
tional relationship, which is reflected by the oscillations (peaks) that look erratic for small
mode numbers. The energy shift of the most-subradiant states is very small, but it can
be as large as „ 10Σa for the superradiant ones, roughly proportional to the number of
magnets. The largest energy shift 2πˆ100 MHz is still small compared toωm , which jus-
tifies the on-shell approximation forΣL andΣR . Eζ oscillates with ζ between positive and
negative values. A chiral coupling with ΣR

/
ΣL = 0.5 and 0.25 does not strongly change

the above features, such the decay rates of the most-subradiant states„Σaζ
2/N 3.

The intensity distributions
∣∣ψζ, j

∣∣2 of modes ζ= 1,2,80 over the chain j = {1,2, ¨ ¨ ¨ , N }
are shown in Fig. 4.5. When ΣR = ΣL for the non-chiral case, the most-superradiant
state is enhanced at both edges of the magnon chain (the red solid curve). The most-
subradiant states are standing waves „

∣∣sin(ζπ j /N )
∣∣ delocalized over the whole chain,

but have small amplitudes at the edges (see the inset of Fig. 4.5). Partially chiral coupling
does not affect the amplitude distributions of the most-subradiant states. The symmet-
ric distribution of the most-superradiant states relative to the center of the chainΣR =ΣL
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Figure 4.4: Imaginary (Σζ) and real (inset, Eζ) parts of the eigenvalues (νζ´ωm ) of the non-Hermitian Hamil-
tonian [Eq. (4.53)], scaled by the individual damping rate Σa . kλd =π/

5 and N = 80. ΣR
/
ΣL = 1, 0.5 and 0.25,

respectively. Eζ oscillates as a function of ζ and Σζ in anon-systematic manner.
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Figure 4.5: Intensity distributions of magnons
∣∣∣ψζ, j

∣∣∣2
in magnetic spheres labeled by j for the most superadi-

ant and subradiant (inset) states for chiralities ΣR
/
ΣL = 1, 0.5, and 0.25, respectively.
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becomes increasingly skewed, i.e., the dynamics is enhanced at one edge only. Particu-
larly, when ΣR <ΣL (ΣR >ΣL), the edge state is localized at the left (right) side. When the
radiation to the left is stronger than to the right, the magnets on the left side experience
more radiation. On the other hand, the magnets in the middle of the chain are part of
a standing wave with destructive interference in the average. A larger chirality ΣR

/
ΣL

consequently mainly affects the edge states.

4.6. Discussion and Conclusion
In conclusion, we find and report the consequences of chiral and dissipative coupling
of small magnets to guided microwaves. We predict a rich variety of physical phenom-
ena, such as directional photon emission and magnon imbalanced pumping and su-
per(sub)radiance of collective magnon modes. Polarization-momentum locking of the
electromagnetic field inside a rectangular waveguide and conservation of angular mo-
mentum are the physical mechanisms behind chiral magnon-photons interaction. Chi-
rality can be tuned via the positions of the magnetic spheres inside the waveguide and
applied static magnetic fields. We develop the theory starting with a single magnet and
demonstrate strong radiative damping. Loading the waveguide with two or more mag-
nets causes nonreciprocal tunable coupling between different magnetic spheres. We
predict chirality-dependent large magnon amplitudes at the edges of long chains with
superradiance. We also reveal subradiant eigenstates, which are standing waves with
small amplitude at the edges, that depend only weakly on chirality and therefore scale as
different systems without chirality.

The magnetic chain in a waveguide is also a new platform to study non-Hermitian
physics [41, 42]. The rich magnon-photon dynamics suggests several lines of future re-
search. Tunable waveguides allow manipulation of the local density of photon states
and linewidth for each collective mode [21], while arrangements of the magnetic spheres
into rings, lattices or random geometry promise a new “magnon chemistry”. Some non-
Hermitian Hamiltonians may result in topological phases, a hot topic in condensed mat-
ter physics [32, 43]. The non-Bloch-wave behavior of eigenstates of a chiral magnon-
photon system can cause a non-Hermitian skin effect and a non-Bloch bulk-boundary
correspondence. The non-linear dynamics of a chirally vs. non-chirally coupled magnon-
photon system can be accessed by the photon statistics of the waveguide to specify the
entanglement of sub- and super-radiant states [30].

4.7. Appendix: Derivation of the S21 and S11 from scattering
theory

For the coupled waveguide and local resonator system as in this research, the Hamil-
tonian can be divided into two parts, namely the isolated Hamiltonian for each sub-
systems Hiso and their coupling V [44]. In our case, Hiso = HEM + HM as in Eqs. 4.6, 4.9
and V = Hint as in Eq. 4.10. Assume the waveguide mode |kin〉 as the input state and the
total state

∣∣ψout
〉

as the final output, in general we have the relation [45]

∣∣ψout
〉= |kin〉+ 1

Ωkin´H0 + i 0+
V

∣∣ψout
〉
” T |kin〉 . (4.65)
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If we define the matrix T j i =
〈
ψ j

∣∣T ∣∣ψi
〉

meaning the transfer from general state i into
state j , then the scattering amplitude from input |k〉 into the output

∣∣k 1〉 is

Tk1k = δk1k +
1

Ωk´Ωk1 + i 0+
〈

k 1
∣∣V T

∣∣k〉
. (4.66)

In our special case, as an illustration we assume only one sphere exist in the waveguide
and ignore the band index λ, then

Tk1k = δk1k +
1

Ωk´Ωk1 + i 0+
ḡk1Tmk . (4.67)

Here Tmk stands for the transfer from photon state |k〉 into the magnon state |m〉 and
ḡk1 meaning the re-emission of photon

∣∣k1〉 under the cost of radioactive damping of
magnon. Thus the amplitude Tmk in turn can be expressed as

Tmk = 1

Ωk´ωm + i 0+
ÿ

q

gq Tqk , (4.68)

and the photon-photon scattering can be expressed into the recursive form

Tk1k = δk1k +
1

Ωk´Ωk1 + i 0+
ḡ 1k

1

Ωk´ωm + i 0+
gk

+ 1

Ωk´Ωk1 + i 0+
ḡk1

1

Ωk´ωm + i 0+
ÿ

q

gq
1

Ωk´Ωl + i 0+
ḡq Tmk .

(4.69)

It is easy to reach the enclosed formula

Tk1k = δk1k +
1

Ωk´Ωk1 + i 0+
ḡk1G(Ωk )gk , (4.70)

with G(ω) = [ω´ωm ´Σ(ω)]´1 is the magnon’s Green function and Σ is the magnon’s
self-energy, which is exactly the same as the one derived from the equation of motion
(Eq. 4.24)

Σ(ω) =
ÿ

q

|gq |2
ω´Ωq + i 0+

. (4.71)

Next we want to calculate the scattering matrix element S21 and S11 describing the
transmission and reflection respectively. Define the transmitted ψt (r ) and reflected
ψr (r ) photon wave at position far away from the magnetic sphere which located at z = 0,

ψt =
ÿ

k1>0

〈
zÑ+8∣∣k1〉Tk1k = 〈zÑ+8|k〉+

ÿ

k1>0

〈
zÑ+8∣∣k 1〉

Ωk´Ωk1 + i 0+
ḡk1G(Ωk )gk ,

ψr =
ÿ

k1<0

〈
zÑ´8

∣∣k 1〉
Ωk´Ωk1 + i 0+

ḡk1G(Ωk )gk .

(4.72)
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Using the residual integral one can obtain the scattering matrix with the one magnetic
sphere inside waveguide

S21(Ωk ) = 1´ i
1

vk

|gk |2
Ωk´ωm´Σ(Ωk )

,

S11(Ωk ) =´i
1

vk

ḡ´k gk

Ωk´ωm´Σ(Ωk )
,

(4.73)

which is the same as in Eq. 4.42 and 4.43. With the single magnet self-energy

Σ(Ωk ) =´i
1

2vk

(|gk |2 +|g´k |2
)

, (4.74)

it is proved that |S21|2 +|S11|2 = 1.
Finally the general transfer of various states mediated by the multi-resonators ab-

sorption and emission is [46]

Tk1k = δk1k +
1

Ωk´Ωk1 + i 0+
ÿ

m,n

Vk1,mGm,n(Ωk )Vn,k , (4.75)

Tm,k =
ÿ

m

Gm,n(Ωk )Vn,k , (4.76)

with Gm,n is the Green function from resonator n to m describing the remote coupling
between them. It can be derived that

G(ω) = 1

ω´H + i 0+
Ñ G´1

m,n = (ω´ωn)δm,n´Σm,n , (4.77)

with the effective inter-magnet self-energy Σm,n given by Eq. 4.24.
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5
Enhanced energy transfer in a

Dicke quantum battery

If I had an hour to solve a problem and my life depended on the solution,
I would spend the first 55 minutes determining the proper question to ask,

for once I know the proper question,
I could solve the problem in less than five minutes.

Albert Einstein

We theoretically investigate the enhancement of the charging power in a Dicke quantum
battery which consists of an array of N two-level systems (TLS) coupled to a single mode
of cavity photons. In the limit of small N, we analytically solve the time evolution for
the full charging process. The eigenvectors of the driving Hamiltonian are found to be
pseudo-Hermite polynomials and the evolution is thus interpreted as harmonic oscillator
like behaviour. Then we demonstrate that the average charging power when using a col-
lective protocol is

?
N times larger than for the parallel charging protocol when transfer-

ring the same amount of energy. Unlike previous studies, we point out that such quantum
advantage does not originate from entanglement but is due to the coherent cooperative
interactions among the TLSs. Our results provide intuitive quantitative insight into the
dynamic charging process of a Dicke battery and can be observed under realistic experi-
mental conditions.

This chapter have been published in arXiv: 1812.10139 (2018) [1] with minor modifications.
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5.1. Introduction
Batteries have become ubiquitous in modern technology, supplying power to devices
as small as nano-robots and as large as automotive engines. However, the continuing
miniaturization technology gradually pushes those traditional batteries into the atomic
limit, i.e. the quantum world. This trend, rather than bringing us into an uncontrol-
lable regime, offers the possibility of utilizing quantum properties for investigating and
developing more efficient energy manipulations [2–6].

The emerging field of quantum batteries, started by Alicki and Fannes [7], is aimed at
searching for adequate protocols based on quantum coherence and entanglement to the
efficient charging-discharging energy transfer. In general, a quantum battery is a system
possessing discrete energy levels and interacting with external driving and consumption
sources in a controllable fashion. The internal energy of a quantum battery is defined
as Tr[ρHB ], with ρ the density matrix describing the state of the battery and HB the bat-
tery Hamiltonian (see section 5.2). Charging (discharging) of a quantum battery means
evolving into a higher (lower) energetic state ρ1 by cyclic unitary operations. From the
viewpoint that information is a form of energy, research on quantum batteries intrinsi-
cally involves using the notions and techniques of quantum information [8]. Questions
like whether entanglement plays a role in speeding up the energy transfer and how does
entropy (and related concepts) evolve in specific battery systems are under active re-
search. [9–17]

As an answer to these questions, Binder et al. suggested that energy can be de-
posited into an array of N working qubits with speed-up in charging time T such that
Tglobal = Tpar

/
N for the use of a globally entangling charging Hamiltonian compared to

a parallel individual protocol [18]. In consequence, the average charging power defined
by 〈P〉 = Tr[(ρ1´ρ)HB ]

/
T is N fold stronger for the entangling charging protocol com-

pared to the parallel one. However, such a global entangling operation involves highly
non-local interactions, which might be difficult to realize in practice. Le et al. there-
fore designed a practical model consisting of a solid state spin-chain driven under ex-
perimentally available resources such as electron spin resonance and exchange interac-
tions [19]. They predict that in the strong coupling regime the time-averaged charging
power for an entangling protocol is actually worse than for individual charging. While
the instantaneous charging power could be large, the total amount of energy stored in a
spin chain is negligibly small. This conflicting scenario leads us to investigate if the en-
hancement of charging can always be attributed to the shortened passage through the
entangled subspace [19].

Another practical setting for global charging is based on the Dicke model [20], which
describes an array of two-level systems (TLS) enclosed in a photon cavity whose fre-
quency is on resonance with the Zeeman splitting of those TLSs. A recent paper shows
that in the thermodynamic limit (i.e. the number of TLS N " 1) quantum enhancement
of charging power is proportional to

?
N in the normal phase and N in the superradi-

ant phase [21, 22]. It is argued in Ref. [21] that the cause of such enhancement is the
entanglement between TLSs, which is induced by the sharing of photons in the cavity.
However, the conclusion from Ref. [23] suggests that there is actually no entanglement
generated in the Dicke superradiant phase. Based on this conclusion and the conjec-
ture of Ref. [19] that entanglement may not be the only cause of quantum speed-up, we
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investigate in this chapter the question whether for other limits of a Dicke quantum bat-
tery there is also a speed-up effect in charging and whether entanglement plays a role in
this.

In particular, we analytically prove that in the opposite limit, when the number of
TLSs is much smaller than the number of cavity photons (N

/
n ! 1), there is also an

enhancement of charging efficiency. According to experimental practice, we limit the
Dicke Hamiltonian to a range where the coupling strength is smaller than the Zeeman
splitting of the TLS and thus the rotating wave approximation (RWA) is applied. To the
first-order approximation of N

/
n, the eigenvectors of the driving Hamiltonian are found

to be pseudo-Hermite polynomials and the evolution is thus interpreted as harmonic
oscillator like behavior. We calculate the time of charging all the TLSs from the ground
state to excited state and find τ = π

2g
?

n
, independent to the number of TLSs N . Given

this universal flipping duration we argue that the power for a collective charging proto-
col is

?
N times larger than for an individual charging one. Quite contrary to previous

studies [7, 18, 21], there is no entanglement created during such a process. By solving
the von Neumann equation, we clearly see that the source of speed-up comes from the
coherent but non-entangling cooperative interaction among the spins.

The remaining part of this chapter is organized as follows. In Sec. 5.2 we provide the
definitions of fundamental concepts, charging protocols, and specify the Hamiltonian
for the system. Next in Sec. 5.3 we diagonalize the driving Hamiltonian and solve the
Schrödinger equation. We then derive the boost of the energy transfer efficiency for our
Dicke quantum battery. Sec. 5.4 is devoted to investigating the origin of such enhance-
ment and comparing our model with other studies. We provide concluding remarks in
Sec. 5.5.

5.2. Model description
The model of a quantum battery, shown in Fig. 5.1, is an array of two level systems en-
closed in a photon cavity. Since there is an equivalence between the ground/excited
state of two level system to the spin down/up state of Zeeman splitting, we will refer to
these TLSs as spins in the following. Without loss of generality, we set the spin down |Ó〉
to be the ground state and initialize the battery system into the state of all spins down∣∣ψ0

〉 = |Ó,Ó, . . . ,Ó〉. When applying a magnetic filed Bz the internal Hamiltonian of the
battery system reads:

HB = g˚µB Bz Sz (5.1)

where Sz = řN
j=1σ

( j )
z , the index j refers to the j th spin inside the cavity and σz denotes

the Pauli spin operator in the z-direction. Sz is the total spin operator, counting the
Zeeman splitting for all the spins. Working in units of ħ = 1, the battery Hamiltonian
(5.1) can be simplified as:

HB =ωaSz (5.2)

where the frequency ωa can be tuned by changing the external magnetic field Bz . The
initial energy for such a N -spin battery then corresponds to be E0 = 〈

ψ0
∣∣HB

∣∣ψ0
〉 =

´N
2 ωa for Sz = 1/2, and the energy stored in the battery is given by:

W (t ) = 〈
ψt

∣∣HB
∣∣ψt

〉
´

〈
ψ0

∣∣HB
∣∣ψ0

〉
. (5.3)
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Figure 5.1: (a) Schematic representation of a Dicke quantum battery as an array of identical two level systems
with energy splitting ħωa . The ground state (black bar) and excited state (red bar) are equivalent to the states of
spin down and up (see arrows). The batteries are charged inside a single cavity (green background) of photonic
mode ωc and g is the coupling constant among TLSs and cavity photons. (b) Initially the coupling signal λ is
set to be 0 and the batteries are prepared in the ground state. The coupling is switched on at time t = 0+ and
maintained as constant g for a period of τ. Then we turn off the coupling and the charging process therefore
stops. Energy is transferred from cavity photons into the batteries whose final states are expected to be fully
charged (all spins up).

In this chapter, we focus on the time required to flip all spins down
∣∣ψ0

〉 = |Ó,Ó, . . . ,Ó〉
to all spins up

∣∣ψτ

〉 = |Ò,Ò, . . . ,Ò〉. So the energy stored in the battery by this process is
expected to be:

W (τ) = 〈
ψτ

∣∣HB
∣∣ψτ

〉
´

〈
ψ0

∣∣HB
∣∣ψ0

〉= Nωa (5.4)

and the average charging power is:

P (τ) = W (τ)

τ
. (5.5)

The cavity, as the charger, is set to stay in a single mode of the quantized electromag-
netic field. Its internal Hamiltonian reads Hc = ωc a:a, with ωc the photon frequency
and a:, a the creation and annihilation operators of cavity photons. We assume the cav-
ity has high quality factor and the leakage of photons can be ignored. As the flipping
duration is short enough, the relaxation and dephasing effect of TLS can also be safely
neglected. Moreover, we assume that by tuning the external magnetic field Bz , the Zee-
man splitting of the spins is on resonance with the cavity photons, i.e. ωc = ωa . Origi-
nating from magnetic dipole interactions, the coupling between the cavity photons and

spins is modeled as the Dicke interaction Hint = g (a:+a)(S++S´), where S˘ =řN
j=1σ

( j )
˘

are the (summed) raising and lowering operators and g is the coupling constant. The full
Hamiltonian describing the charger-battery system is now given by:

HDicke(t ) =ωc a:a +ωaSz +λ(t )g (a:+a)(S++S´). (5.6)
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Here λ(t ) is a time-dependent coupling signal set to be 1 during the charging period
[0,τ] and 0 otherwise, as illustrated in Fig. 5.1. Before t = 0 there is no coupling between
photons and spins, and the cavity is assumed to stay in a n-photon Fock state |n〉. The
initial state of total system |Ψ0〉 then reads:

|Ψ0〉 = |Ó,Ó, . . . ,Ó〉b |n〉 (5.7)

At t = 0+ the coupling is turned on. Driven by the Dicke Hamiltonian (5.6) energy starts
to be transferred from cavity photons to battery spins. The coupling is kept constant
during this charging period t P [0,τ] and shall be switched off at t = τ. The quantum
state of the total system will then be static again with the battery spins expected to be
fully flipped up. Similar process of start and pause of swapping has been achieved with
high fidelity in recent experiment setup of superconducting quantum circuit with multi
qubits inter-connected by the photon cavity [24].

In typical experiment settings, the coupling constant g is much smaller than cavity
energyωc so that the Dicke interaction can be simplified using the rotating wave approx-
imation. Thus resulting in the Tavis-Cumming Hamiltonian as from Ref. [25]:

H =ωc a:a +ωc Sz + g (S+a +S´a:) (5.8)

We point out four prominent properties of this charging protocol:

• When the photon frequency is on resonance with Zeeman energy, we have [H , a:a+
Sz ] = 0, i.e. the “excitation number" is conserved during the evolution. For exam-
ple if we have 3 spins inside the cavity, the initial state can be denoted as

∣∣ 3
2 ,´ 3

2 ,n
〉

with J = 3
2 and M =´ 3

2 standing for the state of three spins down and n the ini-
tial photon number. During the evolution this charger-battery system can only
evolve into states

∣∣ 3
2 ,´ 1

2 ,n´1
〉

,
∣∣ 3

2 , 1
2 ,n´2

〉
, and

∣∣ 3
2 , 3

2 ,n´3
〉

, keeping the excita-
tion number n´ 3

2 conserved.

• The coupling term in Eq. (5.8) commutes with the remaining part of Hamiltonian
H , meaning that there is no thermodynamic work cost for switching on and off the
coupling [13].

• The Tavis-Cummings Hamiltonian is not exactly solvable except for two limiting
cases. The first one is when the number of spins N approaches thermodynamic
limit. In this situation one can transform the collective spin operators using Holstein-
Primakoff transformation which leads to a simplified Hamiltonian of quadratic
form [26]. A second case is for the number of spins N much less than the num-
ber of photons, N ! n. To the first-order approximation [27], the second case will
result in solving a symmetric tridiagonal matrix which can be done analytically.

• The initial Fock state is relatively difficult to prepare in practice. But according to
the conclusion of Ref. [13], the same efficiency of energy transfer can be achieved
by replacing the Fock state with a coherent state of the same energy.
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5.3. Collective Charging of a Dicke Quantum Battery
In this research, we calculate the time of flipping the spins in Schrödinger picture and
we analytically solve the matrix representation of the charging Hamiltonian (5.8). Due
to the conservation of excitation number, the quantum states of such charger-battery
system flipping from

∣∣ N
2 ,´N

2 ,n
〉

to
∣∣ N

2 , N
2 ,n´N

〉
can only evolve within the subspace in

which the total spin momentum (J = N
/

2) is preserved. Thus the matrix representation
of the Hamiltonian is limited to dimension N + 1 instead of 2N . Taking these states as
basis and within the first-order approximation of N ! n, i.e. the strong field of driving
photons [28], the charging Hamiltonian is represented as H = Nex 1+ H̃ , with Nex the
excitation number and

H̃ = g
?

n



0 b1

b1 0 b2

b2 0 b3

. . .
. . .

. . .
bN´1 0 bN

bN 0


(5.9)

where each element bk =?N´k +1
?

k and k = 1,2, . . . , N . Because the identity matrix
commutes with all other operators, the first term of H only adds a common phase factor
to the quantum state which does not influence the spin-flip duration. So we can ignore
the first term and only include the second part of H (i.e. the symmetric tridiagonal ma-

trix) into the calculation of propagator U (t ) = e´i H̃ t .
Given the matrix form of H̃ we are now ready to determine analytically the flip dura-

tion τ for fully charging the spins: 
1
0
...
0

 τ?
ùù e´i H̃τ


0
0
...
1

 . (5.10)

However, direct substitution of the matrix expression (Eq. 5.9) into the propagator e´i H̃ t

results in a cumbersome expression. In practice, we therefore first diagonalize this Hamil-
tonian such that H̃ = V DV :, with D a diagonal matrix whose elements represent the
eigenvalues of H̃ , and V a unitary matrix in which each column stands for the corre-
sponding eigenvectors. After that we can write the propagator as U (t ) =V e´i Dt V :.

The calculation of eigenvalues and eigenvectors of matrix H̃ (5.9) is straightforward
but involves rather technical expressions. Here we therefore only present the final re-
sults. The eigenvalues of H̃ are:

D = g
?

n


N

N´2
. . .

´N +2
´N

 . (5.11)
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Disregarding the common factor g
?

n, these eigenvalues form a sequence from N to´N
with a consecutive difference of´2. These results coincide with the numerical analysis
of the Rabi splitting for Tavis-Cumming Hamiltonian in the large photon limit [29]. The
eigenvectors corresponding to eigenvalues g

?
n(N´2k) (k = 0,1, . . . , N ) are:

V k = 1

2N

1

k !
b(N

k

)


xk
0

xk
1
...

xk
N

 , (5.12)

with each of the column entries xk
ξ

(ξ= 0,1, . . . , N ) given by:

xk
ξ =

d(
N

ξ

)
Pk (ξ). (5.13)

The characteristic polynomials Pk (ξ) obey the recursion relation:

P0(ξ) = 1

P1(ξ) = N´2ξ

Pk (ξ) = [N´2ξ]Pk´1´ (k´1)(N´k +2)Pk´2.

(5.14)

They are orthogonal to each other and alternating between even and odd parity. Actu-
ally, as the number of spins N approaches the thermodynamic limit, these polynomi-
als converge into the Hermite polynomials. Because ξ = 0,1, . . . , N , we have N ´ 2ξ =
N , N ´1, . . . ,´N . If we let N ´2ξ = N x, then x goes from 1 to ´1 in discrete steps and
the recursion relation (5.14) reads:

P0(x) = 1

P1(x) = N x

Pk (x) = N xPk´1´N (k´1)Pk´2

(5.15)

with corresponding Rodrigues’ formula:

Pk (x) = (´1)k e
N x2

2
d k

d xk
e´

N x2
2 . (5.16)

Eq. (5.15) is just the scaled version of the standard Hermite polynomials whose Rodrigues’

formula is Hk (x) = (´1)k ex2 d k

d xk e´x2
. Thus the characteristic polynomials of eigenvec-

tors of H̃ converge into Hermite polynomials if the number of spins approaches the ther-
modynamic limit. This phenomenon can be understood because Hermite polynomials
represent the eigenstates of a quantum harmonic oscillator (QHO) [30]. For an array with
finite number of spins, however, the spectrum resembles that of a pseudo-harmonic os-
cillator with equally spaced eigenvalues and the corresponding eigenvectors (Eq. 5.12)
are of the pseudo-Hermite form. One should notice that for QHO the coordinate in
eigenvectors is a continuous variable in real space, while the coordinate x in expres-
sion (5.15) takes the form of discrete variables in the (N + 1)-dimensional spin space.



5

92 5. Enhanced energy transfer in a Dicke quantum battery

Figure 5.2: (a) Individually charging three spins in a parallel protocol. Each cavity is filled with n photons and
in total 3n number of photons are used. (b) The three spins are collectively charged inside a single cavity. To
make a fair comparison the same amount of photons should be provided as in the parallel protocol.

This could be understood as if the number of spins stays finite, the battery subsystem
behaves like a pseudo-harmonic oscillator swinging in quantized energy levels.

Once the form of propagator is known, the time of flipping spins from down to up
can be derived by solving the Schrödinger equation. In appendix 5.6 we show that the
collective spin dynamics follows a periodic fashion and the duration of flipping all spins
from ground to excited state is

τ= π

2g
?

n
, (5.17)

independent to the number of spins N . However, it is worth mentioning that this pe-
riodic evolution of spins is limited to the first-order approximation of the parameter
ε”N

/
n! 1. The higher order terms diminish in the strong driving field setting [31].

Based on the above analysis, we show that from the aspect of energy transfer there
is an enhancement for the charging efficiency in aforementioned charger-battery setup.
If the time of flipping N spins equals τ = π

2g
?

n
, then the average charging power for

collective charging protocol is
?

N times larger than for the corresponding parallel (in-
dividually charging) protocol. Let us set N = 3 as an example. The proof can be straight-
forwardly extended to arbitrary N spins. First, it is easy to see that the time of flipping
three spins in parallel is the same as the time required to flip each spin individually. That
is, τpar = π

2g
?

n
where n denotes the number of driving photons in each cavity (as shown

in figure 5.2(a)). Therefore, the total amount of photons for driving 3 spins simultane-
ously should be summed to be 3n. In order to make a fair comparison, it is important
to make sure that the energy of the charging field in the collective protocol (shown in
figure 5.2(b)) equals to the parallel one. That is, in this example the number of photons
in collectively charging cavity should set to be 3n (instead of n). Thus the time required
to flip three spins in a single cavity is given by τcol = π

2g
?

3n
= 1?

3
τpar.
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In both protocols, the energy transferred to the 3-spin battery is the same (Eq. 5.4);
only the time of charging collectively is

?
3 times faster than the parallel one. As a result,

the average charging power for collective protocol is
?

3 times stronger than the corre-
sponding parallel protocol. One can easily extend this result to a N -spin battery as long
as the assumption N ! n is preserved.

5.4. Quantum speed up originating from coherent coopera-
tive interactions

In order to understand the origin of the speedup effect described in previous section,
we first calculate the quantum speed limit (QSL) which forms the lower bound of the
evolution duration that could possibly be achieved by corresponding Hamiltonian. For
the parallel protocol, its energy variance reads ∆H̃par = N ¨ 2g

?
n and the number of

charging photons is nN . According to Refs. [18] and [32], we have the QSL as:

Tpar = π

2∆H̃par
= π

4N g
?

n
(5.18)

For collective charging, the energy variance for the same number of charging photons is
∆H̃col = N ¨2g

?
nN , and the corresponding QSL is:

Tcol =
π

2∆H̃col
= π

4N g
?

nN
= 1
?

N
Tpar (5.19)

We see that due to the collective effect, the quantum speed limit has also been pushed
down by a factor of 1?

N
. This analysis agrees with the discussion in Ref. [33], stating

that the speed limit for parallel driving is
?

N times larger than that for the collective
one. Together with the previous result of τcol = 1?

N
τpar, we conjecture that the coherent

cooperative effect among N spins inside the cavity leads to a shortcut of duration by
factor 1?

N
for all time related phenomena.

By taking partial trace of the density matrix of the collectively charged spins, we can
calculate and plot the development of entanglement during the evolution. As shown in
Fig. 5.3, no entanglement develops during the flipping process. Upon detailed numerical
inspection, one finds that all spins process exactly in step, i.e. follow the same evolution.
This result differs from the conclusion of Ref. [21], which states that long-range entan-
gling interactions among the spins will be formed due to the mediation of the common
photon field inside the cavity. We have thus found an example where it is not the globally
entangling operations that lead to the enhancement of charging. This raises the ques-
tion what is the source of quantum speed-up in our model, if there is no entanglement
involved.

To answer this question we symbolically solve the von Neumann equation with Hamil-
tonian Eq. (5.8):

da

dt
= i [H , a] =´iωc a´ i g S´

dσ( j )
z

dt
= i [H ,σ( j )

z ] = i g (a:σ( j )
´
´aσ( j )

+ ).

(5.20)
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Figure 5.3: (a.1) The evolution of 10 spins with 104 driving photons under the charging Hamiltonian Eq. (5.8).

The gray curve stands for the energy deposited into each battery W (t )
Nωa

(in dimensionless units), which evolves

periodically as the spins are consistently flipped from down to up and vice-versa. We take the Von Neumann
entropy of the first spin from reduced density matrix as a measure for the amount of entanglement of the
batteries. This indicator (blue dotted line) stays 0 meaning that there is no entanglement being created during
the process. The overlapping green and red curves depict the evolution of cosθ j , with θ j the angle between〈

s j

〉
and the z+ axis for the j th spin (shown as the right sphere). Here the red curve stands for the first spin,

i.e. j = 1 and the green one represents for another randomly picked spin out of the batteries. This overlap
means all spins in the cavity evolve exactly in step. (a.2) From top to bottom these three subplots indicate the
charging of 10 spins with 100, 20, and 12 photons respectively. As before, solid curves refer to the deposited
energy on each spin and the dotted line stands for the amount of entanglement. As the number of cavity
photons shrinks, entanglement shows up and the spins cannot be fully charged. Such a result suggests that the
requirement of N

/
n! 1 can be reached as long as the photons outnumber the spins by an order of magnitude.

(b) The supplementary plot for the evolution of 100 spins driven by 90 photons. As time progresses, dynamical
equilibrium between the photons and spins will be formed as indicated in Ref. [34].
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Here j = 1,2, . . . , N numbers the spins inside the cavity. Solving the dynamic equation
for operator a(t ) one finds that:

a(t ) =´i g

ż t

´8

e iωc (t 1´t )S´(t 1)d t 1

a:(t ) = i g

ż t

´8

e´iωc (t 1´t )S+(t 1)d t 1.

(5.21)

Substituting these expressions back into Eq. (5.20) we obtain the equation of motion for
a single spin:

dσ( j )
z

dt
=´g 2

[
σ

( j )
´

(t )

ż t

´8

e´iωc (t 1´t )S+(t 1)d t 1

+σ( j )
+ (t )

ż t

´8

e iωc (t 1´t )S´(t 1)d t 1
]

.

(5.22)

Eq. (5.22) shows that by integrating out the photon field, the effective force applied on
an arbitrary spin j is proportional to

şt
´8 e iωc (τ´t )S˘(τ)dτ. We thus see that the inter-

actions between the spins mediated by cavity photons act cooperatively, leading to an
evenly distributed enhancement of the driving force on each of the battery spins. Since
numerical calculation shows that all spins follow the same evolution in time, we can re-

place S˘ in Eq. (5.22) with S˘ =řN
j=1σ

( j )
˘

= Nσ˘ leading to the spin dynamics:

dσz

dt
=´N g 2

[
σ´(t )

ż t

´8

e´iωc (t 1´t )σ+(t 1)d t 1

+σ+(t )

ż t

´8

e iωc (t 1´t )σ´(t 1)d t 1
]

.

(5.23)

This final form explicitly shows that the coupling strength of each spin has been in-
creased by

?
N . With this in mind, it is easy to understand that all the time-related phe-

nomena that depend linearly on the coupling strength would be accelerated by a factor
of
?

N .
As argued by Binder et al., quantum speed up originates from two different sources.

One is the reduction of path length between initial and final state in projected Hilbert
space following the geodesic curve. Another is the enhanced driving energy felt by each
local spin. Focusing on the fact that all spins follow the same evolution as if they are
charged individually, we realize that the path length of evolution is the same for both
protocols. This means that the collective protocol which does not create entanglement
among spins also cannot drive them through the geodesic in projected Hilbert space [35].
This explains that the speed up we observe in this research is

?
N -fold instead of N -fold

because the Tavis-Cumming Hamiltonian only increases the energy per spin but does
not shorten the length of passage in the projected Hilbert space.

5.5. Summary and conclusion
We have studied the energy transfer efficiency of an ideal Dicke quantum battery within
the limit N

/
n ! 1. Under the constraint of full charging, we predict a

?
N -fold boost of
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the charging power for a collective protocol compared to the parallel one. Using the ma-
trix representation of the driving Hamiltonian we have analytically solved the eigenener-
gies and eigenstates for this charger-battery system. We find that the collective dynamics
of spins mimics the process of swinging a pseudo-pendulum in quantized and finite-
dimensional energy levels. We then apply these tools to the unitary evolution equation
of the spins and demonstrate the existence of a universal flipping time for an arbitrary
number of spins. Based on this, we show a boost of the averaged charging power for a
collective charging protocol with evenly distributed driving forces.

Contrary to previous studies (see e.g. Refs. [18, 21]) which require multi-particle en-
tanglement as the key part of quantum speed up, in our model there is no entanglement
generated for the collective charging protocol. However, it is the coherent cooperative
interactions inside the cavity that lead to increased coupling strength for each spin. Such
effect results in the lowering of the quantum speed limit by a factor 1?

N
. In conclusion,

for our Dicke battery the boost of charging power arises from the enhanced driving forces
exerted on each spin, and not from a shortened path length in the projected Hilbert
space.

Although the Dicke battery presented here only shows ‘half’ the amount of speed
up (factor

?
N instead of N ), it exhibits a scalable quantum advantage for faster energy

transfer. Moreover, by cutting-edge development of cavity spintronics this battery setup
is ready to be implemented in practice. For instance, nitrogen-vacancy (NV) centers are
well suited for studying spin dynamics. NV spins can be optically implanted, initialized,
and read out [36]. As shown in Ref. [37], the implantation of a few NV spins into the L3
photonic crystal cavity for coherent manipulations has already been realized. And the
coupling of an ensemble of NV spins to a frequency tunable superconductor resonator
has also been reported [38].

Future work could focus on adding entangling interactions between the spins in or-
der to further explore the remaining

?
N factor of speedup. Another interesting line of

research is to include spin decay and the injection of photons, which leads to a non-
Hermitian quantum mechanical system [39]. By careful tuning such that the rate of in-
jecting photons matches the decay rate of spins, this system allows for a transition into
the regime of parity and time reversal symmetry, i.e. P T symmetry [40, 41]. Within P T

symmetry, the eigenvalues of the non-Hermitian Hamiltonian become real and several
exceptional properties such as the increase of coupling strength and the decrease of the
quantum speed limit would be expected [42, 43].

5.6. Appendix: The universal flip duration
Equipped with the eigenvalues (5.11) and eigenvectors (5.12) of H̃ , we can now replace

the propagator e´i H̃τ with V e´i DτV :. Substituting the expression of D and V one finds
the integrated Schrödinger equation

1
0
...
0

 τ?
ùùV e´i DτV :


0
0
...
1

 . (5.24)
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can be rephrased into two algebraic equations with even and odd number of spins re-
spectively:

Case I: For odd numbers of spins N = 2m +1, the algebraic equation corresponding
to Eq. (5.24) is

m
ÿ

k=0

2
(2m+1

k

)
22m+1 (´1)k sin(2m +1´2k)g

?
nτ

τ?
ùù˘1. (5.25)

One can see that if τ= π
2g
?

n
, then

(´1)k sin(2m +1´2k)g
?

nτ= (´1)m

holds such that the left-hand side of (5.25) becomes:

(´1)m
m
ÿ

k=0

2
(2m+1

k

)
22m+1 = (´1)m =˘1.

So in case that N is odd, the flip duration τ= π
2g
?

n
.

Case II: For even number of spins N = 2m, the algebraic equation corresponding to
Eq. (5.24) is given by

m´1
ÿ

k=0

2
(2m

k

)
22m (´1)k cos(2m´2k)g

?
nτ+ (´1)m

(2m
m

)
22m

τ?
ùù˘1. (5.26)

Similarly as the odd-spin case above, for τ= π
2g
?

n

(´1)k cos(2m´2k)g
?

nτ= (´1)m

holds such that the left-hand side of (5.26) becomes:

(´1)m
m´1
ÿ

k=0

2
(2m

k

)
22m + (´1)m

(2m
m

)
22m = (´1)m =˘1

Thus in case that N is even, the flip duration is given by τ= π
2g
?

n
.

Thus we conclude that the time required to flip all the spins is τ= π
2g
?

n
, independent

to the number of spins N . This result is derived based on the Tavis-Cummings charging
Hamiltonian, it is valid under the assumption that the number of photons saturates the
number of spins [31, 44].
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