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Abstract

Lithium-ion batteries are the dominant electrochemical energy storage device and are a key
enabler of portable electronics and electric vehicles. However, the technology is often criti-
cized for its use of rare metals. Extending the lifetime of lithium-ion batteries can allow for
more time to develop rare metal recycling efforts but this requires accurate knowledge of the
battery’s state-of-health.

The state-of-health is affected by degradation mechanisms that cause a fade in capacity and
power over time, which eventually leads to end-of-life. A common way to track capacity fade
is to compare state-of-charge values with changes in charge across a time period. The change
in charge can be found by accumulating current, while state-of-charge can be tracked using
estimation frameworks that use equivalent circuit models to mirror battery behavior. These
models require a relationship between state-of-charge and open-circuit voltage to link the
cell’s internal state with the observed voltage. However, establishing this relationship is a
time-consuming process.

Furthermore, the battery voltage partly depends on the direction of current, i.e. whether the
battery is being charged or discharged. This hysteresis effect is highly nonlinear and persists
when no current is applied. In past lithium-ion cell chemistries, voltage hysteresis was often
neglected but recent developments have introduced silicon doping, which improves energy
density, leading to a higher range for electric vehicles, but also increases the magnitude of
the hysteresis effect. This degrades the accuracy of model-based estimation frameworks that
neglect hysteresis. To improve state-of-charge estimation accuracy for silicon-doped cells,
battery models can be extended with additional complexity to match the effect of hysteresis
and improve the accuracy of state estimates.

This work combines the Plett hysteresis model with a single RC-pair equivalent circuit, the
RC-H model, and uses a joint unscented Kalman filter to identify model parameters and esti-
mate the state-of-charge during different dynamic testing profiles performed on an NMC/Si-C
lithium-ion battery. A second version of the model replaces the predetermined OCV function
with a simplification of the SOC-OCV relationship that is adaptively estimated using the
Kalman filter, the A-RC-H model. Both models are benchmarked against a single RC-pair
model, with a predetermined SOC-OCV relationship and no hysteresis component.
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The results show that the RC-H model produces lower SOC errors, but comes at the cost of
additional complexity and lower robustness to initial SOC error. While the A-RC-H model
produces reasonable SOC estimations and can reconstruct the main OCV trend, the RMSE
and MAE are only close to the RC model when the initial SOC error is small.

Future work could be aimed at understanding typical initial SOC errors and uncertainties
in practical scenarios, improving the filter tuning by adapting noise covariances online, and
reducing computational cost by separating states and parameters into two filters running
at different frequencies. Furthermore, the different frameworks should be combined with
capacity estimation methods to confirm the hypothesis that higher SOC accuracy leads to
improved estimation accuracy of the total capacity.
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Chapter 1

Introduction

Over 30 years since the rechargeable lithium-ion battery was made commercially available
by Sony, the technology has become indispensable in our everyday lives and is the dominant
energy storage device for portable electronics and electric vehicles due to its high energy
density, high power density, fast recharge rate, long cycle life, and low discharge rate [1, 2].

Technological innovations and the continued growth of the electric vehicle (EV) market have
significantly reduced the cost of Li+ batteries by about 97% since the 1990s, and the price is
expected to drop further as the EV market matures. Li+ batteries are also likely to play a role
in future electricity grids by acting as a storage medium to support unpredictable renewable
energy sources [3, 4].

Due to its contribution to sustainable transportation, lithium-ion batteries also have to be as
sustainable and safe as possible. Safety concerns are mainly focused on toxicity and flamma-
bility. Lithium and cobalt, a common battery material, can be toxic to humans. Especially
the production of cobalt metal is known to pollute water sources of human settlements near
extraction sites due to ore washing [3]. Relative to other technologies though, the toxicity of
lithium-ion batteries is low [1].

Flammability is the biggest concern in Li+ batteries, as faulty cells are known to catch fire or
even explode due to a self-heating process, called the thermal runaway effect. Once activated,
the increased heat generation can cause adjacent previously healthy cells to enter into a
thermal runaway as well, allowing it to spread through the entire battery pack. The effect
is generally caused by overcharging and cell aging, and optimizing cell chemistry to mitigate
thermal runaway is an active field of study [5, 6].

The sustainability of lithium-ion batteries is often criticized due to the reliance on two scarce
materials, lithium and cobalt. Especially the use of cobalt is concerning as its scarcity is
currently classified as ’critical’. Cobalt is actually more abundant than lithium, but most
cobalt is extracted as a byproduct of nickel and copper mining, and over 50% of the global
cobalt extraction is done in the Democratic Republic of the Congo, a country with a history
of political instability, low safety standards, and child labor. This byproduct mining makes
cobalt production inflexible and difficult to scale up, while mining cobalt as a primary product
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is often blocked by environmental concerns. The strained supply of cobalt is expected to lead
to a bottleneck in the production of lithium-ion batteries sometime in the future. Mitigation
of this coming bottleneck should thus be a priority if the current growth in Li+ battery use
is to be sustained [3, 7].
The bottleneck problem can be approached on two fronts: more reliance on cobalt-less and
cobalt-poor Li+ chemistries, and scaling-up battery reuse and recycling efforts. Cobalt-less
chemistries exist but typically have a lower energy density, which limits their applications to
short-range EVs, while cobalt-poor chemistries have become popular in the form of ternary
metal oxide materials, where the fraction of cobalt is reduced and replaced by other less scarce
metals like manganese and nickel [3].
The disposal of end-of-life batteries requires special handling to avoid toxic materials from
adversely affecting the environment and to minimize the risk of fires starting or accelerating
due to the presence of flammable battery materials. From a sustainability point of view, recy-
cling lithium-ion batteries is preferred over disposal, but Li+ battery recycling techniques are
mostly intensive processes and expensive, while the current technology for low-cost methods
is immature [8].
As an intermediate step between end-of-life and recycling, lithium-ion batteries can be reused
instead of disposed of. Reuse can be divided into remanufacturing and repurposing. In
remanufacturing, battery packs are partially repaired by finding and replacing the set of
batteries that are limiting performance. While repurposing refers to giving the battery a
second life in a less-demanding load environment such as in energy storage systems [8].
The desire to reuse and recycle aged batteries highlights the need for methods to determine
battery healthiness during both primary and secondary life applications. Battery aging is
caused by side reactions inside the cell structure that over time leads to a decrease in charge
capacity and an increase in resistance [9].
Health can be determined using experimental methods, but this is often impractical in real-life
applications. Instead, dynamical models of lithium-ion batteries, based on equivalent circuits,
are used to estimate necessary hidden states, like state-of-charge (SOC) and state-of-health
(SOH).
The models require a relationship between the SOC and the open-circuit voltage (OCV),
the cell voltage when no load is connected, which is often determined with time-consuming
experiments using expensive equipment [1]. Cell aging also causes this SOC-OCV relationship
to drift over time, increasing state estimation errors.
These equivalent circuit models are simplified representations and often neglect nonlinear
effects, such as hysteresis in the terminal voltage [9]. Neglecting hysteresis is a reasonable
assumption in Li+ cells with purely graphite anodes. However, a recent development in Li+
cell chemistry is to apply silicon doping to graphite anodes, which improves energy density
but also increases voltage hysteresis, resulting in larger state estimation errors [10, 11]. A
reduced SOC accuracy also impacts the SOH estimation, as capacity estimation methods
often rely on SOC estimations [9, 12, 13].
The uncertainty in the SOC-OCV relationship and the increased hysteresis in silicon-doped
graphite cells have motivated the following research questions:

• How can voltage hysteresis be modeled and included in state estimation frameworks for
lithium-ion cells with silicon-doped anodes?
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• Is the significance of voltage hysteresis in silicon-doped lithium-ion cells sufficient that
it is worth the additional complexity of including it in state estimation frameworks?

• Can time-consuming OCV tests be replaced by estimating the SOC-OCV relationship
online?

This report begins with two background chapters on the working principle behind lithium-ion
battery cells and commonly used materials, in Chapter 2, and the general causes and effects
of degradation mechanisms inside the cell, in Chapter 3.

Chapter 4 defines and derives the building blocks for modeling of observed behavior in Li+
cells, which is followed up by an introduction to the joint unscented Kalman filter in Chapter 5,
a model-based observer that combines voltage and current measurements with a battery model
to obtain estimates of states and parameters.

Chapter 6 displays and discusses the results of the application of the Kalman filter framework
on an NMC/Si-C lithium-ion battery from the publicly available EVERLASTING project
data set [14]. The report ends with a conclusion, a discussion, and recommendations based
on these results, in Chapter 7.
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Chapter 2

Electrochemistry

Electrochemical batteries are energy storage devices that are capable of releasing their stored
charge when connected to an electrical circuit. Batteries can be divided into two types:
primary and secondary batteries. Primary batteries are non-rechargeable after use, but sec-
ondary batteries can reverse the electrochemical reaction when connected to an external power
supply, making them rechargeable.
This chapter discusses the working principle of electrochemical cells and how these apply
to lithium-ion cell technology. Afterward, the versatility of lithium-ion cells is highlighted
by discussing the different electrode and electrolyte chemistries. While many principles are
applicable to primary batteries as well, the focus is on secondary/rechargeable batteries.

2-1 Working Principle

The working principle of a lithium-ion battery can be explained by looking at the chemical
reactions in the electrochemical cell. The cell can be divided into four parts: the electrodes,
the electrolyte, the separator, and the current collectors [1].

2-1-1 Electrochemical cells

The electrodes are the main components in the electrochemical cell, which are materials
capable of receiving and releasing electrons and ions. When two electrodes are connected, a
natural potential difference, called the electromotive force or open-circuit potential, pressures
electrons and ions to move from one electrode, the anode, to the other electrode, the cathode.
This discharges the cell. The process of releasing electrons increases the charge of the anode
and is called oxidation. At the cathode, the opposite happens and the extra electrons decrease
the charge of the cathode, called reduction. This reduction-oxidation (redox) reaction is the
driving force behind the electrochemical cell [1].
The natural potential can be overcome by applying a larger potential in the opposite direction.
This forces the reaction to reverse. Electrons and cations now move back, charging the cell.
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Figure 2-1: Schematic overview of a lithium-ion electrochemical cell.

The terminology also reverses. The anode now becomes the cathode and the cathode becomes
the anode. To avoid confusion, the electrodes are instead defined as the positive electrode
and the negative electrode. The negative electrode acts as the anode during discharge and
the positive electrode is the cathode during discharge [1].

In order to sustain the redox reaction and extract or store energy, the electrons are separated
from the electrodes by an external circuit, facilitated by current collectors at both electrodes.
While the ions are conducted through the electrolyte, a liquid or solid-like material that sur-
rounds both electrodes that are specialized to conduct ions. The cell is completed by placing
a physical barrier between the positive and negative electrode, the separator, which acts as
an insulating layer for electrons while allowing ions to pass through. The insulation prevents
electrons from directly moving between electrodes, instead of over the external circuit, which
would cause an internal circuit to form inside the cell, effectively short-circuiting the cell [1].
The cell can be used to store or extract energy by connecting the external circuit to a power
supply or load.

2-1-2 Lithium-ion cells

The principles of a general electrochemical cell also apply to a lithium-ion cell but with some
additional complexity. Li+ cells are insertion-electrode cells, where the electrodes are designed
such that lithium ions and electrons can insert themselves into their molecular structure.
Before entering the molecular structure lithium-ions react with free electrons in the reaction
Li+ +e− → Li. The now charge-neutral lithium atoms intercalate into the electrode material,
where they can move freely and diffuse across the electrode’s molecular structure [1].

When the voltage potential is reversed the lithium moves towards the surface of the electrode
and deintercalates out of the structure. The lithium then releases the electron from its
outer valence band, according to Li → Li+ + e−. The lithium ion is conducted to the other
electrode through the electrolyte and the separator, while the electrons are collected in the
current collectors and travel to the other electrode via the external circuit [1]. A schematic
overview of a lithium-ion cell is shown in Figure 2-1, showing the connections between the cell
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2-1 Working Principle 7

components and the movement of electrons and lithium-ions between the electrodes during
charge and discharge.

The movement of lithium ions in the cell causes lithium concentrations in the electrodes to
change over time. The fraction of lithium ions at the negative electrode indicates how much
charge is left to discharge from the cell. The relative concentration of lithium at time step k
at the negative electrode, ρ[k], is defined as [9]

ρ[k] = cavg[k]
cmax

(2-1)

Where cavg[k] is the average concentration at time step k and cmax is the maximum possible
concentration of lithium ions in the negative electrode. In practice, the charge is not con-
strained by the maximum concentration, but by upper and lower voltage limits that are based
on the cell chemistry. A more intuitive definition for the charge level is then given by

z[k] = ρ[k] − ρ0%
ρ100% − ρ0%

(2-2)

Here, z[k] is the state-of-charge (SOC) at time index k, 0 ≤ z ≤ 1. The cell is fully charged
when the SOC is 100% and fully depleted at an SOC of 0%. ρ0% and ρ100% are the average
concentrations of lithium at 0% and 100% SOC. Where 0% and 100% SOC are defined
according to the lower and upper voltage limits, respectively. Lithium concentrations are
impractical to assess during cell operation, so the SOC is not typically determined using
Equation 2-2. Practical methods to determine state-of-charge are discussed in Chapter 4.

Lithium-ion batteries have several advantages that make them the best choice over other
battery chemistries in many applications. Li+ cells can operate at higher voltages than
other secondary batteries, typically Vavg = 3.7 V, which directly correlates to greater energy
densities [1]. The chemistry also allows for high power density, long cycle life, and high
coulombic and energy efficiency. Lithium-ion batteries are relatively lightweight and have low
self-discharge rates compared to other chemistries [15].

However, lithium-ion batteries are not without disadvantages. Even though costs have come
down immensely, Li+ batteries are still relatively expensive due to their use of scarce materi-
als in the electrodes. They are sensitive to overcharging, which means they require additional
battery protection circuits that further increase cost [15]. Lithium and, a common electrode
material, cobalt are toxic to humans in large doses [16, 17]. This toxicity could be of concern
when end-of-life batteries are disposed of incorrectly and in large quantities, which can con-
taminate the environment [16]. However, relative to other chemistries, the overall toxicity of
Li+ batteries is low [1].

The biggest disadvantage of Li+ cells is the poor stability at high temperatures and the ther-
mal runaway effect. High cell temperatures cause exothermic reactions between the electrodes
and the electrolyte. When the produced heat cannot be dissipated fast enough, the thermal
runaway effect occurs. Cell temperature increases, which accelerates the exothermic reaction,
further increasing the temperature. This positive feedback loop can trigger fires and explo-
sions in the cell, which can spread to other cells in a battery pack. The major causes are
high operating temperatures and short circuits in the cell, caused by manufacturing defects
or degradation mechanisms [5].
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8 Electrochemistry

2-2 Electrode Materials

The previous section discussed the general working principle of lithium-ion cell chemistry.
In practice, many different types of chemistries exist that use different materials for the
electrodes and the electrolyte. The various types of positive and negative electrodes are
mainly of interest here, due to their impact on the energy and power density of a lithium-ion
battery.

Chemically, the energy density of a lithium-ion cell can be related to the amount of lithium
that can be stored in the electrodes per unit volume and to the difference between the positive
electrode potential and the negative electrode potential [9]. A high energy density is often
desired, because it allows the battery to power any device for a longer period of time, before
requiring charging [1]. For electric vehicles, this means larger distances can be traveled before
recharging. Power density is related to the speed at which electrodes can be (de)lithiated.
High power densities are desired, because this allows for quicker charging times and a higher
amount of energy that can be delivered to a load per time unit.

Choosing between the electrode materials is typically a trade-off between energy density,
power density, and cycle life.

2-2-1 Positive electrode

First discovered by Goodenough et al., one of the first Li+ battery cells was created using
lithium cobalt oxide (LCO) as the positive electrode material. Over 30 years since its com-
mercialization, LCO is still widely used as a positive electrode material in Li+ batteries today
[18]. LCO cells are known for their high theoretical specific and volumetric capacity but suffer
from high cost and poor thermal stability, which has prevented their application in electric
vehicles [18]. The high cobalt content in LCO cells is also not considered sustainable, since
the metal is a scarce material [19].

Following the discovery of the LCO electrode, Goodenough et al. later proposed lithium
manganese oxide (LMO) electrodes. LMO electrodes do not rely on cobalt metal, which
makes them more sustainable, but it suffers from high degradation and a relatively low specific
capacity [20, 18]. LMO cells do boast high power density and low cell resistance, which makes
them interesting in applications where power capability is preferred over high energy density
[1].

Another alternative positive electrode material is lithium iron phosphate (LFP). The main
advantage of LFP cells is that iron and phosphate are abundant materials, which makes LFP a
cost-effective and sustainable electrode material. The LFP electrode is also known for its high
stability. It suffers from a low energy density, which limits the use of LFPs to applications
where high safety is preferred over high capacity [1, 18].

LMO and LFP electrodes are improvements on the initial LCO electrode in the areas of safety,
cost, and sustainability, but in doing so they lose specific capacity. The current state-of-the-art
in high-capacity batteries is a family of electrodes called ternary metal oxides, which combine
several metals in one electrode. Nickel manganese cobalt oxide (NMC) and nickel cobalt
aluminum oxide (NCA) are part of this family [1, 18]. The ternary metal oxides improve the
thermal instability of LCO electrodes while achieving similar or higher specific capacities. In
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2-3 Electrolyte and Separator Materials 9

the NMC electrode, the addition of manganese allows for higher structural stability while
nickel increases the specific capacity. Some fraction of cobalt is still required to avoid nickel
from occupying positions meant for lithium, which has a negative effect on the reversibility
of the reaction [18]. The NCA electrode replaces manganese with aluminum, lowering costs.
Ternary metal oxides thus improve upon the original LCO electrode and lower the fraction
of cobalt in the electrode, which improves sustainability. Ternary metal oxides are currently
popular in electric vehicle applications due to their high energy density and stability [18].

2-2-2 Negative electrode

Initial research into Li+ cell used lithium metal as the negative electrode, which carried
significant safety risks due to the high reactivity of lithium [18]. The problem was largely
solved by Yoshino et al. by replacing lithium metal with a carbonaceous material, which allows
for a much more stable and safe (de)intercalation process. This would eventually evolve into
using the carbonaceous material graphite, which is the dominant negative electrode material
in present-day batteries [18, 21]. Relative to a metal-oxide positive electrode, graphite has
a low electrode potential, which results in a high cell voltage because the overall voltage is
determined by the difference between the positive and negative electrode potentials. Graphite
is well-balanced compared to other negative electrode materials, having low cost, high power
density, and long cycle life [21]. Graphite is also sustainable, as its only chemical component is
carbon. Graphite electrodes are built from stacked graphene layers with hexagonal structures.
When lithiated, lithium atoms occupy and move around the spaces between graphene layers.
Variations of graphite anodes exist, where the main difference is the uniformity of the graphene
layers in the overall structure of the graphite [1].
Graphite is not the only negative electrode material in use. Lithium titanate oxide (LTO)
cells use titanate oxide in their negative electrode, which allows for much faster charging and
power delivery than graphite and maintains a long cycle life. The disadvantage of LTO cells
is that cell voltages are severely reduced compared to graphite, which correlates to a lower
energy density [1]. LTO cells are interesting in applications where power density is preferred
over energy density, e.g. short-range EVs and renewable energy storage [22, 23].
Another alternative to graphite is silicon. Silicon is able to store more lithium per unit volume
in its chemical structure than graphite, which greatly boosts the cell’s energy density. The
major disadvantage when using silicon anodes is that the cycle life is heavily reduced [1, 21].
The large lithium capacity of silicon causes its molecular structure to heavily increase in
volume when lithiated compared to its unlithiated state. When cycled, the repeated large
changes in volume quickly cause irreversible damage to the silicon structure, which reduces
its capacity to hold lithium [18]. A recent trend is to combine the properties of graphite and
silicon by doping graphite electrodes with a small amount of silicon. When balanced correctly,
the cell’s lithium capacity is increased while the cycle life effect is minimized [18, 21].

2-3 Electrolyte and Separator Materials

The electrolyte and the separator are both parts of the battery cell that have to be designed
to conduct ions while limiting the movement of electrons. High ionic conductivity contributes
directly to increased reversible capacity, power capability, and cycle life [24].
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10 Electrochemistry

In lithium-ion cells, the electrolyte is often a lithium salt dissolved in an organic solvent
material. The solvent does not participate in the chemical reaction but has a small charge
polarization that facilitates the ionization of the lithium salt and the conduction of lithium
ions across the electrolyte [1].

The separator is a permeable membrane material. The holes in the membrane have to be large
enough to allow lithium ions to pass through but small enough to prevent the positive and
negative electrodes from contacting and short-circuiting the cell [1, 24]. This property has to
be maintained over the entire working temperature range of the cell, meaning the separator
requires a high degree of mechanical strength and thermal stability. These safety requirements
are at odds with battery performance. Increasing the separator thickness and decreasing the
porosity, for example, increases mechanical strength but decreases ionic conductivity [24].
Most Li+ cell separators are made from microporous polyolefin membranes, which have high
mechanical strength but suffer from large thermal shrinkage at high temperatures [24].
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Chapter 3

Degradation Mechanisms

The reversibility of the redox reaction in lithium-ion batteries is never ideal due to parasitic
side reactions at several locations in the cell and structural deterioration of the electrodes,
resulting in irreversible loss of lithium inventory (LLI) and loss of active material (LAM) [25].

The loss of lithium and active material affects the total capacity of the cell, as there are fewer
lithium ions to pull electrons from the external circuit and fewer locations for the lithium
to be stored. This causes a slow fade in the capacity as the cell ages [9]. The deterioration
also reduces electronic and ionic conductivity through the cell components, which is inversely
proportional to the cell resistance. This increasing resistance causes a fade in the power that
the cell can deliver or receive.

The capacity fade and power fade are the two main factors that determine the overall state-
of-health (SOH) of a battery cell. The SOH is quantified by relative relationships between
the current values and the begin-of-life (BOL) values, defined as

SOHC = C

CBOL
SOHR = R

RBOL

Where SOHC is the capacity state-of-health, and SOHR is the resistance state-of-health. The
BOL capacity is usually defined as the nominal capacity given by the manufacturer or the
initial capacity estimated from a capacity test. Picking an initial resistance value is less
straightforward, because of its strong dependence on temperature and SOC [9]. Note that an
increase in resistance can also lead to a lower discharge capacity, as the minimum operating
voltage is reached earlier due to the higher ohmic losses [26]. Discharge capacity should not be
confused with total capacity. The definitions are discussed in more detail in Subsection 4-2-2.

Typical end-of-life (EOL) definitions for electric vehicles are a doubling of the resistance or a
20% capacity fade, i.e. SOHC = 80% and SOHR = 200%.

A visual summary of the chapter can be found in Figure 3-1, adapted from [26], which shows
the path from cause to effect along different mechanisms and modes inside the lithium-ion
cell. Although the degradation mechanisms are complex and often interrelated, they can be
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12 Degradation Mechanisms

divided into three categories: surface reactions, active material degradation, and composite
electrode degradation. These are indicated in the cause and effect map by using different
colors, turquoise for surface reactions, gold for active material degradation, and orange for
composite electrode degradation.
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Figure 3-1: Cause and effect map for common lithium-ion cell degradation mechanisms, adapted
from [26].

The relative severity of mechanisms depends highly on the exact chemistry of the electrode
and the electrolyte. For metal-oxide/graphite cells, the main mechanisms that lead to capacity
fade and power fade are typically growth in the SEI layer and material loss [9]. This chapter
describes the main causes of LLI and LAM at both the negative and positive electrodes, with
a focus on graphite-based negative electrodes.

3-1 Surface Reactions

Over the life span of a lithium-ion cell, the positive and negative electrodes continuously inter-
act with the aqueous electrolyte, which results in thin layers of various chemical compounds
on the surface of both electrodes.

3-1-1 Negative electrode

Lithium-ion cells are manufactured in a discharged state, with all lithium inside the positive
electrode. After the fabrication process is completed, a cell requires a charge cycle to be
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3-1 Surface Reactions 13

activated, which lithiates the negative electrode for the first time [1]. When lithiating graphite
electrodes, the electrode potential drops outside the working region of the electrolyte, resulting
in a violent reaction between the organic solvent in the electrolyte and the graphite material
[9].
The reaction quickly forms a thin film around the surface of the electrode, which acts as a
passivation layer between the electrode and the electrolyte, the solid-electrolyte interphase
(SEI). Once fully formed, the SEI layer stops the electrode and electrolyte from interacting
directly, which prevents the reaction from completely destroying the electrode and semi-
stabilizes the SEI layer formation. The initial formation of the layer is thus actually desired
for the safe operation of the cell [1].
However, the formation of the SEI film consumes lithium atoms, leading to irreversible capac-
ity fade, and reduces electronic and ionic conductivity, as the particles have to move through
an additional membrane, resulting in increased cell resistance and power fade. After the for-
mation process, the SEI layer continues to grow from side reactions inside the cell at a slow
rate, continuously eating up lithium, decreasing cell capacity and increasing cell resistance
[27].
SEI layer growth can be further exacerbated by high temperatures and currents. At high
SOC, the electrode potential of graphite is lowest, and the difference between the working
region of the electrolyte is highest, causing SEI layer growth to be amplified. Under high
temperatures, the SEI film breaks down, exposing graphite to the electrolyte and causing
another violent SEI layer formation process [9].
High currents can allow for some of the electrolyte solvents to travel with the lithium into
the graphite electrode, called co-intercalation. The solvents react with the graphite inside the
electrode, cracking parts of the electrode or peeling off entire layers, which is called graphite
exfoliation. The surface inside the crack is then exposed to more electrolyte material, which
leads to even more SEI layer formation [27].
The electrolyte is often contaminated by trace amounts of water molecules and some elec-
trolyte salts can react with water to form hydrofluoric acid. When it contacts the SEI layer,
the acid has a thinning effect, which can expose graphite and cause rapid SEI growth. The
acid also reacts with the positive electrode and causes electrode ions to dissolve in the elec-
trolyte. These ions can move through the separator to the negative electrode, where they can
form part of the SEI layer and block lithium ions from moving through the SEI, a mechanism
called anode poisoning [28].
At cold temperatures, typically below freezing, the diffusion of lithium ions through the
negative electrode is slower. When combined with low SOC, the slower diffusion allows lithium
ions from the electrolyte and electrons from the external circuit to form lithium metal and
stick to the electrode surface, instead of intercalating into the structure. The lithium metal
plating enhances SEI layer growth and enables metal dendrites to form. Dendrites increase
the self-discharge rate of the cell and can also grow large enough to penetrate the separator
membrane and short-circuit the cell [1, 9, 27].

3-1-2 Positive electrode

Reactions between the electrolyte solvents and active electrode material are present at the
positive electrode as well. However, here this reaction only plays a small part in the formation
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14 Degradation Mechanisms

of a film around the electrode. Instead, metal dissolution is generally the primary cause of
film formation and growth [27]. This layer is sometimes referred to as the cathode-electrolyte
interphase (CEI), as the film is often thinner and the involved mechanisms are different from
SEI formation at the negative electrode [25]. Metal dissolution is a loss of active material
process, where metals from the electrode ionize and dissolve into the electrolyte. The ions can
form chemical compounds and form part of the CEI layer. The ions can also move through
the electrolyte, similar to lithium, and interact with the negative electrode on the other side
of the separator, causing anode poisoning, as mentioned in the previous subsection [27].

The process is accelerated by the presence of hydrofluoric acid in the electrolyte and tends to
occur more at high and low SOC, and at high temperatures [9].

3-2 Active Material Degradation

Degradation in the active material is associated with irreversible alterations in the structure
of the electrodes, typically from volume changes after repeated lithiation and delithiation
cycles.

3-2-1 Negative electrode

When the negative electrode is lithiated during charge, the intercalation of lithium atoms
causes the electrode structure to deform, increasing in volume. Once discharged, the volume
generally reverts back to the original size. However, repeated charge-discharge cycles cause
cracking in the structure and in the SEI film, which exposes the negative electrode to more
electrode-electrolyte reactions. Decreasing capacity and increasing resistance due to rapid
SEI layer formation.

3-2-2 Positive electrode

Lithiation and delithiation at the positive electrodes cause volume changes and distortions
in the crystal lattice of the electrode. These phase transitions result in large stresses on the
structure that lead to the cracking of the electrode particles. The cracks decrease the total
amount of lithium that can be stored in the electrode. This degradation typically occurs
when overcharging the cell [29].

The electrode particles can also break down completely, called structural disordering, which
destroys lithium storage sites and can trap lithium inside the electrode, both leading to
capacity fade [9].

3-3 Composite Electrode Degradation

Practical electrodes in lithium-ion cells contain additives and binders to improve electronic
conductivity and electrode cohesion but do not take part in the main reactions. The additives
can oxidize over time and deformation of the active material during (de)lithiation can cause
the binder material to fail, which reduces electronic conductivity between the electrode and
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3-3 Composite Electrode Degradation 15

the current collector. Additionally, particles might become fully isolated from the electrode,
leading to capacity fade [9].

Another result of deformation is a reduction of electrode porosity. A porous electrode allows
for a large surface to be surrounded by the electrolyte. This facilitates the transport of
lithium and thus improves ionic conductivity. As deformation from repeated cycling decreases
electrode porosity, the ionic conductivity drops and the cell resistance increases [27].

Lastly, over-discharging a battery cell can cause copper from the current collector to corrode
and dissolve copper ions into the electrolyte. The copper ions can react with the SEI layer,
where they increase cell resistance and enhance the growth of metal dendrites. At the current
collector, the contact with the electrode is reduced, increasing cell resistance. The corrosion
also causes an inhomogeneous distribution of voltage potential and current due to an uneven
resistance, which facilitates lithium plating and accelerates the aging process in some parts
of the cell [9].
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Chapter 4

Modeling

The process of modeling lithium-ion cell behavior starts by addressing the question of what
elements should be included in a cell model. In electric vehicles, an important metric is the
current travel range, which allows the end-user to judge whether a destination is reachable
or if a battery recharge is needed. The range is proportional to the amount of energy stored
in the vehicle’s battery pack. On a cell level, the available energy can be determined via [9]

E[k] = C

∫ z[k]

zmin

OCV(ζ)dζ (4-1)

Where E[k] is the available energy at the time index k in Wh, C is the total capacity in Ah,
OCV is the open-circuit voltage, and z[k] is the current state-of-charge (SOC). A minimum
SOC, zmin, is usually set to avoid high degradation effects at low SOC and reserve some
energy for emergency use [9]. The open-circuit voltage (OCV) is a measure of the natural cell
potential and increases monotonically with increasing SOC.

The available energy is only one part of the picture, however. To ensure the battery is
operated both efficiently and inside safety limits, estimates of available charge and discharge
power are required. Cell power is correlated with the electrical resistance inside a cell.

The evaluation of the available energy and power thus depends on the estimation of the
total capacity, the current SOC, the mapping between the SOC and the OCV, and the cell
resistance.

The chapter starts by introducing equivalent circuits that model the voltage behavior of a
battery cell to link voltage and current measurements with cell resistance and open-circuit
voltage. Afterward, the coulomb counting method for SOC estimation is described and def-
initions for common terminology are given. Lastly, experiments to uncover the SOC-OCV
relationship are discussed and a dynamical model for voltage hysteresis is derived.
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18 Modeling

4-1 Equivalent Circuit Model

Battery cells are complex electrochemical devices, requiring extensive physics-based mod-
els for high-fidelity representation. However, these models are built from partial differential
equations, which are generally too computationally complex to be used in real-time systems.
Therefore physics-based models are typically used for battery cell simulations, where compu-
tational resources are less constraining [30].

Circuit models limit themselves to empirical observations in the electrical domain and largely
neglect complex chemical behavior. This results in models with lower fidelity but reduces
the computational cost. Equivalent circuit models can be expressed as a set of ordinary
differential equations that can easily be combined with filtering or observer frameworks, like
Kalman or H∞ filters, to predict and correct internal states in real-time [31, 32, 33].

4-1-1 RC circuit

Figure 4-1 shows the measured battery voltage response when a step current load is applied
to the cell. A dynamical relationship can be observed with the current as the input and the
voltage as the output.
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Figure 4-1: Voltage response to constant current [14].

Two distinct phases can be observed in the voltage response. In the first phase, the voltage
drops almost instantaneously to a lower level. Using the electrical circuit analogy, this can
be associated with a typical voltage drop over an ohmic resistance element. Leading to the
first part of the circuit shown in Figure 4-2. Where i is the current going through the cell, R0
denotes the ohmic resistance, and Vt is the terminal voltage, which is the voltage measured
across the battery.
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i R0

+

−

Vt

Figure 4-2: Partial equivalent circuit with ohmic resistance.

The second phase in Figure 4-1 shows a slower transient response in the terminal voltage,
which is called the polarization phase. This indicates that there are elements inside the cell
that are resisting changes in the voltage. Continuing with the circuit analogy, this behavior
can be represented by a resistor and capacitor connected in parallel, i.e. an RC-pair. The
RC-pair can be combined with the ohmic element to create the next iteration of the equivalent
circuit, visualized in Figure 4-3.

i R0

Rp

Cp

+

−

Vt

Figure 4-3: Partial circuit with RC-pair and ohmic resistance.

The circuit is completed by adding a voltage source, which represents the inherent voltage
potential of the battery cell. Due to voltage losses over the other circuit components, this
potential is only directly measurable when zero current is flowing through the battery, which is
why this potential is referred to as the open-circuit voltage (OCV). The OCV is not constant.
Instead, its value depends on several factors, most notably state-of-charge and temperature.
The open-circuit voltage is discussed in more detail in Section 6-1.

The final circuit diagram, with the OCV source included, is shown in Figure 4-4. The circuit
is often referred to as the RC or Thevenin circuit because the RC-pair is the distinctive feature
that separates it from other equivalent circuits.

i R0

Rp

Cp

+

−

VtOCV

Figure 4-4: Finalized RC circuit.

This is the most basic version of the RC circuit. In general, a single RC-pair cannot com-
pletely capture battery behavior, because the transient voltage response is nonlinear. The
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nonlinearity can be more accurately modeled by constant phase elements (CPE) which are
generalized versions of the typical impedance elements. CPEs are fractional-order elements,
which increases the computational complexity of the model. Alternatively, CPEs can be ap-
proximated by adding additional RC-pairs in series with each other. In practice, however,
a single or double RC-pair often provides sufficient accuracy [31, 32, 33]. In this work, the
model is limited to a single RC-pair.

4-1-2 Circuit analysis

According to Kirchhoff’s voltage law, the net sum of voltages has to equal zero. Leading to
the relationship

OCV = Vt + Vp + V0

Where Vp is the voltage loss across the RC-pair, or polarization voltage for short, and V0 is
the ohmic voltage loss over the ohmic resistance. In practical applications, only the terminal
voltage is measurable and the ohmic voltage loss can be expressed in the control variable i
and the ohmic resistance R0 using Ohm’s law. The previous equation is then reformulated as

Vt = OCV − Vp − R0i (4-2)

The circuit can be transformed into a state-space format by analyzing the current flow using
electrical laws. According to Kirchhoff’s current law, the current flowing through both arms
of the RC-pair must sum up to the total current through the circuit, namely

i = i1 + i2 (4-3)

i1 is the current flowing through Rp and i2 is the current through Cp. Through the law of
capacitance, it is known that i2 is proportional to the amount of capacitance multiplied by
the time derivative of the voltage across the RC-pair, which gives

i2 = CpV̇p

i1 can also be related to the RC-pair voltage by using Ohm’s law, which states that i1 is
proportional to the voltage divided by the magnitude of the resistance, written as

i1 = Vp

Rp

These relationships can be inserted into Equation 4-3, resulting in

i = Vp

Rp
+ CpV̇p

Rewriting this equation yields a dynamical relationship for the change in polarization voltage
with respect to time,

V̇p = − 1
RpCp

Vp + 1
Cp

i (4-4)
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Which is an ordinary differential equation. By combining Equation 4-4 with Equation 4-2,
the equivalent circuit can be formulated in state-space form as

V̇p = − 1
RpCp

Vp + 1
Cp

i

Vt = OCV − Vp − R0i

(4-5)

Similar to the OCV, the circuit parameters, R0, Rp, and Cp, are not constant values, but
change continuously based on the current chemical structure of the cell. This variance occurs
on both short and long timescales and is related to the state-of-charge, temperature, and
state-of-health.

4-1-3 Discretization

For digital implementation, the polarization voltage relation from Equation 4-5 is more useful
when expressed as a difference equation, which can be found by discretizing the dynamical
equation. Any differential equation of the form

ẋ(t) = Ax(t) + Bu(t) (4-6)

can be written with the variation-of-constants-formula, as

x(tk+1) = eA(tk+1−tk)x(tk) +
∫ tk+11−tk

0
eAsdsBu(tk) (4-7)

Where k denotes the discrete-time index. When the sampling time Ts is known, the equation
can be rewritten to

x(tk+1) = eATsx(tk) +
∫ Ts

0
eAsdsBu(tk) (4-8)

In general, A and B are matrices, and solving the convolution integral is not straightforward.
However, for a first-order differential equation A and B are both scalars, denoted by a and
b. When a, b, and the input u(tk) are assumed to be constant during the interval between
samples, the convolution integral can be simplified to∫ Ts

0
easdsbu(tk) = b

a

(
eaTs − 1

)
u(tk)

Comparing Equation 4-6 with Equation 4-4, it can be seen that in the polarization voltage
equation, a and b are linked to the circuit parameters as

a = − 1
RpCp

b = 1
Cp

The discretized equation can be written in the form

Vp(tk+1) = e
− Ts

RpCp Vp(tk) + Rp

(
1 − e

− Ts
RpCp

)
i(tk) (4-9)
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Lastly, notation is simplified by defining the polarization time constant τ as τ = RpCp and
by referring to the time indices with k and k + 1. Together with Equation 4-2 this results in
the following discrete-time state-space of the RC circuit,

Vp[k + 1] = e−Ts/τ Vp[k] + Rp

(
1 − e−Ts/τ

)
i[k]

V [k] = OCV[k] − Vp[k] − R0i[k]
(4-10)

4-2 Coulomb Counting

One of the reasons for investigating methods to model lithium-ion batteries is to find a way to
track unmeasurable states, like state-of-charge. Equivalent circuit methods greatly simplify
battery behavior to a small set of equations, but the model parameters are all time-varying
and contain no direct link to state-of-charge. An additional equation is thus needed to track
battery SOC. A simple, but effective, method is to count the amount of charge that passes
through the battery during a specified interval. The change in charge q̇ can then be described
by the differential equation

q̇ = −ηi (4-11)

Where η is the coulombic efficiency, which is defined as 1 during discharging and generally
≤1 when charging. i is the current going through the cell. Throughout this work, the current
is defined as positive when discharging the battery and negative during charging. Using that
definition, a minus sign is required, as the amount of charge increases when charging and
decreases during discharging.
During battery operation, it is not intuitive to directly use the charge level as a remaining
capacity indicator. Instead, the state-of-charge (SOC) is used, which is a relative definition.
The state-of-charge is defined as the charge level relative to the total amount of cell capacity.
Normalizing the differential equation then yields

ż = − 1
3600

η

C
i (4-12)

Where z denotes the SOC and C is the total capacity of the cell. Capacity is often given in
milli-ampere-hours (mAh) or ampere-hours (Ah). Here, the capacity is defined in units of
Ah, so the capacity has to be multiplied by 3600 to convert to coulombs. To compute the
SOC at a time t, the differential equation can be discretized using the forward Euler method,
which states

z[k + 1] = z[k] + Tsż[k] (4-13)

Resulting in the difference equation

z[k + 1] = z[k] − Ts

3600
η

C
i[k] (4-14)

This equation is widely used as a SOC estimator and is often referred to as the coulomb
counting equation [1]. Coulomb counting is a simple SOC estimator but suffers from the
following error sources that affect its long-term behavior [34]:
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1. Initialization error - Coulomb counting relies on an accurate initial state-of-charge. Any
error will result in a constant bias.

2. Measurement noise error - The measured cell current will not be exactly equal to the
actual current acting on the battery, leading to an accumulating error due to the inte-
gration of noise.

3. Discretization error - Euler discretization is only a first-order approximation of the inte-
gration and assumes that the change in state-of-charge is constant during the sampling
interval.

4. Parameter error - The total capacity decreases over the lifetime of the cell due to
chemical degradation, overestimating the actual SOC, and coulombic efficiency varies
slightly with temperature and current [35].

In spite of these disadvantages, coulomb counting is still a valuable tool in state-of-charge
estimation and errors can be minimized by adding a second SOC estimator using the open-
circuit voltage of the battery.

4-2-1 State-of-charge

Equation 4-14 defines the change in SOC as a fraction relative to the total capacity, but a full
understanding of the state-of-charge requires definitions for when the cell is fully charged, at
100% SOC, and when the cell is empty, at 0% SOC.

The SOC is defined to be at 100% when the cell is charged by a completed constant current-
constant voltage (CC-CV) profile. The full CC-CV profile first charges the battery with a
constant current. Once the maximum voltage is reached, which depends on the cell chemistry
and is often set by the manufacturer, the voltage is kept constant and the current tapers off
until a specific cut-off current is reached. The charging process then stops and the cell is at
100% SOC [1].

To reach an SOC of 0%, the cell has to be discharged with an (infinitesimally) small current
until the minimum voltage, set by the manufacturer, is reached. If the current is too large,
ohmic voltage losses inside the cell will cause the minimum voltage to be reached at a higher
SOC level [1]. The terminology is connected with the definition of total capacity and will be
explained further in the next subsection.

4-2-2 Capacity

Capacity is often loosely defined in the scientific literature, which can be a source of confusion
due to the fact that several interpretations are possible depending on the point of view and
application.

The first capacity to define is the nominal capacity. This capacity is given by the manufacturer
of the battery cell and represents the design capacity of the cell. The real initial capacity will
generally deviate from the nominal capacity [12]. Current loads are often given as a relative
value to the nominal capacity using C-rates. C-rates reflect the time it will take to charge
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or discharge the cell, written as C/t, where t is the number of hours it will take to charge or
discharge the cell if the current is kept constant. For example, drawing a C-rate of C/2 from
a battery cell with a nominal capacity of 2 Ah means the cell is discharged with 1 ampere,
which should take two hours if kept constant and assumes that the total capacity is equal to
the nominal capacity.
The nominal capacity should not be confused by the total cell capacity C, used in Equation 4-
14, which is defined as the total amount of charge removed from the cell when discharging
from 100% SOC to 0% SOC at an infinitesimally small current. With an infinitesimally small
current, completely discharging the cell is incredibly time-consuming, so total capacity is
often computed using C/20 or C/30 tests. The current during the test is measured and can
be summed over the duration of the experiment [1]. The total capacity in Ah can then be
found via

C = Ts

3600

N∑
k=0

i[k] (4-15)

Where Ts is the sampling time and the division by 3600 is needed for the conversion to Ah.
The total capacity is independent of current load and temperature but reduces over time due
to degradation phenomena inside the cell [1]. During device or vehicle operation, performing
low-current full discharge experiments is impractical. Instead, other methods are employed to
estimate capacity. A common method is to express the coulomb counting equation in terms
of the total capacity and sum the currents over some window l, which can be written as

(z[k] − z[k − l]) C = Ts

3600

k−1∑
j=k−l

i[j] (4-16)

The total capacity can then be solved online by using recursive least squares techniques [9].
The main difference with Equation 4-15 is that this method requires SOC values. These values
cannot be directly estimated by coulomb counting to avoid a circular dependency. Instead,
SOC estimations need to come from voltage-based methods or from frameworks combining
coulomb counting and voltage-based methods. The accuracy of the total capacity estimation
is highly dependent on the accuracy of the SOC estimations. Alternatively, a data-driven
approach can be taken, where lookup tables or machine learning models are created to infer
total capacity online from voltage, current, and temperature observations. The main downside
to these methods is that they require large amounts of high-quality training data [12, 13].
The last capacity definition is the discharge capacity, which is defined as the total amount of
charge removed when discharging from 100% SOC until the cut-off voltage is reached. The
discharge capacity is always lower than or equal to the total capacity because the cut-off
voltage is often reached before 0% SOC due to increased ohmic losses at higher current loads.
The discharge capacity is thus dependent on current, but also on temperature because the
ohmic resistance varies with temperature. Just as the total capacity, the discharge capacity
trends downwards over time [1].

4-2-3 Coulombic efficiency

When keeping track of the amount of charge going into and out of a battery cell over the
duration of a battery cycle, it can be observed that the amount of charge going in exceeds the
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amount of charge going out. This implies that there are charge losses inside the cell, which
is quantified by the coulombic efficiency η, defined as [1]

η = charge out
charge in (4-17)

The charge losses are caused by several side reactions inside the Li+ cell that lead to a
degradation in performance over time. The coulombic efficiency can therefore be directly
linked to cycle-related cell degradation [35]. An advantage of lithium-ion cells is that their
coulombic efficiency is high compared to other battery chemistries, typically ≥ 0.99 [1, 35].

4-3 SOC-OCV Relationship

The stability of the coulomb counting method is problematic due to several error sources.
SOC is not a standalone state but has a clear correlation with other battery parameters. One
correlation is with the open-circuit voltage (OCV) of the battery cell. The OCV monotonically
increases with increasing SOC and is defined as the terminal voltage when no load is applied
and the cell has reached thermal equilibrium. This definition makes it difficult to measure in a
practical setting and is therefore determined in laboratory testing under isothermal conditions
with highly accurate voltage and current sensors.

4-3-1 Experiment design

Two common OCV tests are the low-current test and the incremental-current test [36, 1]. To
gather data in the entire working range of the battery cell, both tests discharge the cell from
100% SOC to 0% and then charge the cell from 0% to 100% again.

The incremental test uses a current pulse to discharge a specific amount of SOC, typically
10%. The cell is then rested for a couple of hours to allow it to reach thermal equilibrium.
The OCV is assumed to be equal to the measured terminal voltage at the end of the resting
period. The current pulse is repeated until 0% SOC. The same test is then done for the
charge curve by charging the battery cell with current pulses of equal width [36].

The second method is the low-current test, which discharges the cell from 100% SOC to 0%
using a small current value, typically C/20 or C/30 [1]. Voltage losses from polarization and
ohmic effects are proportional to the magnitude of the current and by using a low C-rate
these losses are considered negligible. After discharging to 0%, the cell is rested such that
thermal equilibrium is reached. The same C-rate is then used to charge the battery until
the battery reaches 100% again. One advantage of the low-current test is that the data can
also be used to estimate the total capacity of the cell, as discussed in Subsection 4-2-2. The
EVERLASTING data set used in this work contains low-current tests with a C/20 profile at
an ambient temperature of 25◦C.

In the low-current test, current sensors keep track of the accumulated charge during the
charge and discharge phases. This can be leveraged to compute the SOC at every point
in the experiment. First, the depth-of-discharge is defined as the difference between the
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Figure 4-5: C/20 charge and discharge curve relative to SOC.

accumulated charge out of the cell and the accumulated charge into the cell multiplied with
the coulombic efficiency, at a time index k [1],

DOD[k] = charge out[k] − η · charge in[k] (4-18)

Where η is computed by dividing the total charge out by the total charge in (Equation 4-17).
The SOC at every time index k throughout the experiment can then be calculated as [1]

z[k] = 1 − DOD[k]
total charge out (4-19)

Note that the total charge out is approximately equal to the total capacity. Figure 4-5 shows
the SOC-voltage relationship for both charge and discharge after performing a C/20 test
under an ambient temperature of 25◦C. The data is taken from the EVERLASTING project,
which subjected multiple Li+ battery cells with an NMC positive electrode and a silicon-
doped graphite negative electrode (NMC/Si-C) to cell aging tests [14]. This chemistry has a
maximum voltage of 4.2 V and a minimum of 2.5 V. More details on the used data set are
given in Chapter 6.

4-3-2 Voltage hysteresis

In Figure 4-5 the charge and discharge curves do not overlap. Instead, the charge curve
consistently shows a higher voltage than the discharge curve, i.e. the direction of travel
changes the SOC-voltage relationship. This phenomenon is common in physics and is referred
to as hysteresis [1, 10]. It can also be seen that the voltage hysteresis is not constant but
varies with SOC, with higher hysteresis at low SOC.

Several explanations and models of hysteresis have been proposed. The general explanation
is that for the same SOC, multiple thermodynamic equilibrium potentials are possible, as
two different phases can exist within an active particle, a lithium-rich and lithium-deficient
one. The exact composition of these phases is path dependent [37]. Because of the voltage
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Figure 4-6: C/20 charge, discharge, and OCV curve relative to SOC.

hysteresis, the SOC-OCV relationship is not directly observable but can be approximated by
taking the average between the charge and discharge curves, resulting in the SOC-OCV curve
shown in Figure 4-6.
Along with the charge and discharge curves, the open-circuit voltage also monotonically
increases with increasing SOC and can be used as a state-of-charge estimator.

4-3-3 Ordinary least squares

The SOC-OCV relationship can be included in the equivalent circuit model, derived in Sec-
tion 4-1, by fitting a function to the processed SOC-OCV data. The relationship is highly
nonlinear, so linear or affine functions are not sufficient to represent the OCV curve over the
entire SOC range [38, 39]. Instead, a polynomial model can be used, formulated as

OCV(z[k]) =
np∑
l=0

plz[k]l (4-20)

Where z[k] is the SOC at time step k and np is the degree of the polynomial function. pl

are entries of the vector p ∈ Rnp×1 which are the polynomial coefficients. The polynomial
function is linear in the coefficients and can be solved using a least squares approach. To
solve for p, the polynomial is written in the following format

Y = Hp + ε (4-21)

Where Y is a vector of length N filled with the open-circuit voltage values and N is the
number of data points. Hp is the linear model set by the polynomial, with H being a N × np

matrix filled with SOC data points in the following format

H =


1 z[0] z[0]2 · · · z[0]np

1 z[1] z[1]2 · · · z[1]np

...
...

... . . . ...
1 z[N ] z[N ]2 · · · z[N ]np

 (4-22)
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Lastly, ε is the error between the assumed model structure and the actual data points. The
coefficients p can be found with the least squares method by finding the values p̂ that minimize
the squared error between the model and the data points, which gives the objective function

min
p

J = min
p

ε⊤ε = min
p

(OCV − Hp)⊤(OCV − Hp) (4-23)

The minimum is found by taking the partial derivative with respect to p and setting it equal
to zero, yielding

∂J

∂p
= −H⊤(OCV − Hp̂) = 0

Expanding the terms and moving the OCV term to the right gives

H⊤Hp̂ = H⊤OCV

The optimal value for p is then found via

p̂ =
(
H⊤H

)−1
H⊤OCV (4-24)

which is known as the closed-form ordinary least squares (OLS) solution.

4-4 Hysteresis Model

In most Li+ chemistries, voltage hysteresis is small and can be ignored in identification and
state estimation frameworks. Nevertheless, hysteresis models do exist. One of these is the
Plett single-state model [10]. In this model, the hysteresis voltage is built up from two
components, a dynamic hysteresis, varying with the state-of-charge, and an instantaneous
hysteresis.

4-4-1 Instantaneous hysteresis

The instantaneous hysteresis is a simple representation and only depends on the sign of the
current and a scaling parameter M0. When no current is applied, the instantaneous hysteresis
does not disappear but equals the previous instantaneous hysteresis. Mathematically, this can
be written as

Vhinst
[k] =

{
M0sgn(i[k]) |i[k]| > 0
Vhinst

[k − 1] otherwise
(4-25)

Where Vhinst
is the instantaneous hysteresis voltage and sgn is the sign function, which outputs

1 when the argument is positive and -1 when the argument is negative. The instantaneous
hysteresis is thus always either −M0 or M0.

M. R. Menken Master of Science Thesis



4-4 Hysteresis Model 29

4-4-2 Dynamic hysteresis

Besides the instantaneous effect, hysteresis is a function of the change in SOC, which can be
represented as

dVhdyn

dz
= γ̄sgn(ż)(M(z, ż) − Vhdyn

) (4-26)

Where Vhdyn
is the dynamic hysteresis voltage and γ̄ is the hysteresis rate. M(z, ż) is the

maximum dynamic hysteresis as a function of SOC and the time derivative of SOC. The
rate of change is proportional to the distance between the current dynamic hysteresis and
the maximum dynamic hysteresis [1]. The sgn(ż) term guarantees stability regardless of the
current sign.

The dynamic hysteresis can be rewritten to an ordinary differential equation with respect to
time by multiplying both sides with dz/dt, yielding

V̇hdyn
=

dVhdyn

dz

dz

dt
= γ̄sgn(ż)(M(z, ż) − Vh)dz

dt

Filling in the continuous-time coulomb equation for dz/dt gives

V̇hdyn
= −γ̄

∣∣∣∣ η

3600C
i

∣∣∣∣Vhdyn
+ γ̄

∣∣∣∣ η

3600C
i

∣∣∣∣M(z, ż)

The parameters η and C are always positive values and are slowly time-varying, so the above
relationship can be written in a more compact form by redefining the hysteresis rate to
γ = γ̄η/(3600C), which results in

V̇hdyn
= −γ |i| Vhdyn

+ γ |i| M(z, ż) (4-27)

This differential equation can be discretized in a similar way as the polarization voltage
equation, resulting in the difference equation

Vhdyn
[k + 1] = e−γTs|i[k]|Vhdyn

[k] +
(
e−γTs|i[k]| − 1

)
M(z, ż) (4-28)

Where Ts is the sampling time, which is now included in the equation. The last step is to
define a function M(z, ż) that approximates the behavior of the hysteresis loop. From the
behavior of hysteresis in the SOC-OCV curve in Section 4-3, the maximum hysteresis should
be positive during charging, since the measured terminal voltage is generally higher than the
OCV during charge, and negative during discharging, where the opposite is true. A simple
maximum hysteresis function can then be realized as

M(z, ż) = −Msgn(i[k])

Where M is the maximum hysteresis value. Since the current is defined as positive during
discharging this equation complies with the expected sign of the dynamic hysteresis. Filling
in this formula into the dynamical equation gives

Vhdyn
[k + 1] = e−γTs|ik|Vhdyn

[k] + M
(
e−γTs|ik| − 1

)
sgn (i[k]) (4-29)
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Which is the final form of the discrete-time dynamic hysteresis. The total hysteresis as
described by the Plett single-state model can then be found by summing the dynamic and
instantaneous hysteresis voltages,

Vh[k] = Vhinst
+ Vhdyn

(4-30)

The total hysteresis voltage is included in the terminal voltage equation by adding it to the
right-hand side, which gives

Vt[k] = OCV[k] + Vh[k] − Vp[k] − R0i[k] (4-31)

Where the hysteresis is positive during charging and negative when discharging, corresponding
with the voltage observations in Figure 4-6.
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Chapter 5

Identification & State Estimation

Estimating and then tracking the states and parameters of a lithium-ion battery cell requires
the use of state estimation frameworks. In pursuit of this goal, this work applies an adaptive
method, the joint unscented Kalman filter, in combination with previously derived mathe-
matical models of the Li+ cell from Chapter 4.

First, the unscented Kalman filter algorithm is introduced and its three main steps are broken
down and explained. Afterward, a method is described to combine the mathematical models
of a lithium-ion cell with an unscented Kalman filter to perform identification and state
estimation in real time.

In total, three variations on the basic RC equivalent circuit are defined:

• One RC-pair model with a predetermined SOC-OCV relationship (RC).

• One RC-pair model with a predetermined SOC-OCV relationship and voltage hysteresis
(RC-H).

• One RC-pair model with an adaptive SOC-OCV relationship and voltage hysteresis
(A-RC-H).

The models will be referred to by their abbreviations, RC, RC-H, and A-RC-H (can be
pronounced as ’arch’).

5-1 Unscented Kalman Filter

The unscented Kalman filter (UKF) is part of the sigma point Kalman filter (SPKF) family
and is capable of handling nonlinear systems, similarly to the extended Kalman filter (EKF).
The main advantage of the UKF over the EKF is that it can represent Gaussian nonlinearities
with at least third-order accuracy, while the Taylor approximations in the EKF are only first-
order accurate. When inputs are non-Gaussian, at least a second-order accuracy is guaranteed
[40].
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32 Identification & State Estimation

5-1-1 Sigma points

The UKF achieves third-order accuracy by using the unscented transform (UT) to take sam-
ples around the predicted states, called sigma points. The UT can approximate the actual
mean and covariance of the system with higher fidelity compared to the EKF. The UT process
is shown and compared with the EKF in Figure 5-1, from [40].

Figure 5-1: Mean and covariance propagation using UT, compared with actual distribution and
the EKF approximation [40].

5-1-2 Overview

The UKF is initialized by guessing an initial set of states and a state covariance matrix
that represents the uncertainty in the correctness of the initial states. To fit the two-phase
structure of the UKF, the initial conditions are defined as the corrected states at time index
-1, which are x+[k − 1], and the corrected state uncertainty P +[k − 1]. Model predictions are
denoted by −. While the superscript + denotes estimations that have been corrected by the
filter.

The last initialization step is to specify a process noise covariance matrix Q and a measurement
noise covariance matrix R. Both are typically chosen to be square, diagonal, and positive
definite matrices, representing Gaussian noise in the process/model and the measurements,
which are assumed to be uncorrelated with each other. Their dimensions are determined
by the number of states and the number of outputs in the system, i.e. Q ∈ Rnx×nx and
R ∈ Rny×ny .

After initialization, the UKF can be divided into two phases that are executed at each time
index k:

1. Prediction - The sigma points X [k − 1] are generated with the corrected states and the
corrected state uncertainty from the previous time index, x+[k −1] and P +[k −1]. Each
of the sigma points is propagated separately using the state equation and sigma point
outputs are computed by inserting the propagated sigma points into the measurement
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Figure 5-2: Flowchart of the unscented Kalman filter algorithm.

equation. The propagated sigma points and outputs are then weighted to compute the
predicted states x−[k] and the predicted outputs ŷ−[k].

2. Correction - The predictions are used to compute covariance matrices, which then de-
termine the Kalman gain, a weighing matrix that balances model predictions and mea-
surements. Using the Kalman gain, the predicted states, the predicted outputs, and
the measurements are combined into the corrected states x+[k] and the corrected state
uncertainty matrix P +.

The algorithm repeats during every time step, using the previous corrected states and un-
certainty to initialize the next prediction step. A flowchart of the algorithm is shown in
Figure 5-2. The following subsections provide more details for each phase of the UKF.

5-1-3 Prediction

Sigma points are generated with the square root of the corrected state uncertainty matrix P +,
but taking the square root of a matrix directly is not well-defined and can lead to numerical
instability. The alternative is to use the Cholesky decomposition of P +, which defines a lower
triangular matrix S such that

P +[k − 1] = SS⊤ (5-1)

Master of Science Thesis M. R. Menken



34 Identification & State Estimation

In this work, S was determined using the chol function in MATLAB. The sigma points are
then sampled around the corrected states x+[k − 1] using S, resulting in 2n + 1 sets of sigma
points described by

X0[k − 1] = x+[k − 1] (5-2)
Xj [k − 1] = x+[k − 1] +

√
n + λ Sj (5-3)

Xn+j [k − 1] = x+[k − 1] −
√

n + λ Sj (5-4)
j ∈ [1, n] (5-5)

Here, S⊤
j denotes the j-th column of S⊤ and n is the number of states in the model. λ is a

constant and is initialized as

λ = n(α2 − 1) (5-6)

Where α is a hyperparameter that determines the spread of the sigma point sampling around
the state estimate, which is typically confined to 1e − 4 ≤ α ≤ 1 [41]. For all UKF imple-
mentations in this work, α was set to 1e − 3. Each sigma point is propagated one step ahead
via

Xi[k] = f(Xi[k − 1], u[k − 1]) (5-7)
i ∈ [0, 2n] (5-8)

Where f(·) is the state transition function of the dynamical system. These propagated points
are recombined into a prediction of the state x−[k] via

x−[k] =
2n∑
i=0

Wm
i Xi[k] (5-9)

Wm
i are entries of the mean weighting vector Wm. The weights can be determined in multiple

ways [40, 42]. In this work, the weights are defined as [40]

Wm =
(

λ
n+λ

1
2(n+λ) . . . 1

2(n+λ)

)
∈ R1×2n+1 (5-10)

The predicted output is found in a similar way. First, the output sigma points Y are found
by inserting each sigma point into the measurement equation h(·) as

Yi[k] = h(Xi[k], u[k]) (5-11)
i ∈ [0, 2n] (5-12)

The predicted output ŷ− is then computed by weighing the output sigma points

ŷ−[k] =
2n∑
i=0

Wm
i Yi[k] (5-13)
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5-1-4 Correction

The next step is to correct the prediction by combining it with a measurement y[k] and known
statistics. First, the state prediction uncertainty matrix P −[k] is computed as

P −[k] =
2n∑
i=0

Wc
i (Xi[k] − x−[k])(Xi[k] − x−[k])⊤ + Q (5-14)

Which uses the predicted states, the propagated sigma points, and the process noise covariance
matrix Q. Wc

i are entries of the covariance weighting vector, which is defined as [41]

Wc =
(

λ
n+λ + (1 − α2 + β) 1

2(n+λ) . . . 1
2(n+λ)

)
∈ R1×2n+1 (5-15)

Where β is another constant. When assuming a Gaussian distribution, β = 2 is the optimal
choice [40]. The output prediction uncertainty Py is computed in a similar way, namely

Py =
2n∑
i=0

Wc
i (Yi[k] − ŷ−[k])(Yi[k] − ŷ−[k])⊤ + R (5-16)

Which is determined using the predicted outputs, the output sigma points, and the measure-
ment noise covariance matrix R. The last covariance matrix to compute is the cross-covariance
matrix between the states and the outputs

Pxy =
2n∑
i=0

Wc
i (Xi[k] − x−[k])(Yi[k] − ŷ−[k])⊤ (5-17)

The Kalman gain K is then described by

K = PxyP −1
y (5-18)

The prediction correction is based on the Kalman gain and the current output error, defined
as

x+[k] = x−[k] + K(y[k] − ŷ−[k]) (5-19)

The Kalman gain is effectively a weighing matrix that dynamically determines a balance
between trusting the measurements and trusting the model predictions. The final part of
the correction step is to prepare for the next UKF iteration by updating the state correction
uncertainty P + via

P +[k] = P −[k] − KPyK⊤ (5-20)

The covariance matrix P only has a unique Cholesky decomposition when it is symmetric
and positive definite. Numerical errors in the iterative computation of P + can affect these
properties, causing the MATLAB chol function to fail. One solution to this problem is to use
an extension to the original UKF, the square-root UKF (SR-UKF). The SR-UKF propagates
the square-root covariance matrix S forward in time, instead of P , which leads to better
numerical robustness [41]. A simpler solution that should also lead to better robustness is to
preserve symmetry by using the transpose of P + and adjusting P + after the correction step
in Equation 5-20 with

P +[k] = 1
2P +[k] + 1

2P +[k]⊤ (5-21)
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5-2 Identification & State Estimation Framework

The unscented Kalman filter can be applied to the battery cell identification and state esti-
mation problem by combining the general algorithm with a mathematical model of the cell
that contains all relevant states and parameters. The RC equivalent circuit model derived in
Section 4-1 is capable of linking current and terminal voltage measurements to the circuit pa-
rameters, but fails to describe the state-of-charge dynamics, which is a key state that should
be estimated. To remedy this, the coulomb counting equation, Equation 4-14, is added to the
RC model structure. This links the identification of circuit parameters to the estimation of
the SOC but also allows any error sources in the coulomb counting equation to be implicitly
corrected by the long-term stable SOC-OCV relationship.

The regular UKF formulation, as described in Section 5-1, requires model states to have
dynamical equations that can be summarized in a state transition function x[k] = f(x[k −
1], u[k − 1]) and a measurement function y[k] = h(x[k], u[k]). The coulomb counting equation
and polarization voltage formula have this format, but the time-varying parameters do not
have easily defined dynamical equations. Luckily, the UKF can be modified to include the
estimation of time-varying parameters by using heavily simplified dynamical models. By
defining the original states as the vector ξ and the parameters as the vector θ, the vectors
can be appended together to form a new joint state vector x, given by

x =
(

ξ
θ

)

The time evolution of the parameters is described via

θ[k] = θ[k − 1] + wθ[k]

Where wθ[k] is the process noise in the parameters, assumed to be Gaussian. This model
structure assumes that the current parameter value is close to the previous value. This
combination of states and parameters in a UKF is sometimes referred to as the joint unscented
Kalman filter (JUKF). Although the parameter dynamics are extremely simple, it allows for
the state estimation and parameter identification to be performed simultaneously without
changing the UKF framework.

The next step is to define a state transition function f(x, u) and a measurement function
h(x, u), which are both needed in the filter. Depending on which model is used ξ, θ, f(x, u),
and h(x, u) will vary. In all equations, the input u is taken to be the current going through
the battery i, and the measurement y is equal to the terminal voltage Vt.

5-2-1 RC model

The simplest model using the RC equivalent circuit is a one-pair RC model. As derived
in Section 4-1, this model has three circuit parameters, the ohmic resistance, the RC time
constant, and the polarization resistance. θ can then be defined as

θ =
(
R0 τ Rp

)⊤
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In order to estimate state-of-charge, the coulomb counting equation, described in Section 4-2
is included in the model, leading to two states in total, the state-of-charge and the polarization
voltage. This defines ξ as

ξ =
(
z Vp

)⊤

The complete joint state vector then becomes

x =
(
z Vp R0 τ Rp

)⊤

The state transition function combines the dynamical relationship of the SOC and the polar-
ization voltage, as derived in Chapter 4, with the simple propagation of the parameters into
a vector, which gives the function

x[k] = f(x[k − 1], u[k − 1]) =


z[k − 1] − Ts

1
3600C u[k − 1]

e−Ts/τ [k−1]Vp[k − 1] + Rp[k − 1]
(
1 − e−Ts/τ [k−1]

)
u[k − 1]

R0[k − 1]
τ [k − 1]

Rp[k − 1]


(5-22)

Note that the coulombic efficiency η is neglected here in the coulomb counting equation. This
is a valid approximation on short timescales because the coulombic efficiency of Li+ cells is
generally high [1]. Lastly, the measurement function of the RC model is formulated as

y[k] = h(x[k], u[k]) = OCV(z[k]) − Vp[k] − R0u[k] (5-23)

Where OCV(·) is the nonlinear SOC-OCV function discussed in Section 4-3.

5-2-2 RC-Hysteresis model

The RC-Hysteresis (RC-H) model is an extension of the RC model and attempts to model
voltage hysteresis by including a model for the dynamic soc-varying hysteresis. This model
neglects the instantaneous hysteresis, as its inclusion was deemed to be negligible to model
performance after initial testing, meaning the voltage hysteresis is given by

Vh[k] = Vhinst
+ Vhdyn

≈ Vhinst

The dynamic hysteresis voltage is modeled using the difference equation derived in Section 4-
4, which adds two parameters, the hysteresis rate γ and the maximum hysteresis M , to the
parameter vector, turning θ into

θ =
(
R0 τ Rp γ M

)⊤

With the addition of the hysteresis voltage Vh, the state vector becomes

ξ =
(
z Vp Vh

)⊤
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The joint state vector for the RC-Hysteresis vector then becomes

x =
(
z Vp Vh R0 τ Rp γ M

)⊤

The state transition function is similar to the RC model, but now includes the difference
equation for the dynamic hysteresis voltage, which turns f(x, u) into

f(x[k − 1], u[k − 1]) =



z[k − 1] − Ts
1

3600C u[k − 1]
e−Ts/τ [k−1]Vp[k − 1] + Rp[k − 1]

(
1 − e−Ts/τ [k−1]

)
u[k − 1]

e−γ[k−1]Ts|u[k−1]|Vh[k − 1] + M [k − 1]
(
e−γ[k−1]Ts|u[k−1]| − 1

)
sgn (u[k − 1])

R0[k − 1]
τ [k − 1]

Rp[k − 1]
γ[k − 1]
M [k − 1]


(5-24)

The measurement function is modified by adding the voltage hysteresis state, which has a
positive effect on the terminal voltage. h(x, u) then becomes

h(x[k], u[k]) = OCV(z[k]) + Vh[k] − Vp[k] − R0u[k] (5-25)

5-2-3 Adaptive-RC-Hysteresis model

As discussed in Section 4-3, estimating the SOC-OCV relationship requires time-consuming
laboratory tests with expensive equipment. The relationship is also dependent on temperature
and drifts over time as the battery cell ages. It might then be beneficial to forego the OCV
tests and instead estimate the SOC-OCV relationship online using the RC equivalent circuit
model and the joint unscented Kalman filter.

One method is to include the polynomial coefficients from a high-order polynomial function
into the joint state vector and estimate the entire polynomial function using the JUKF. How-
ever, in practice, this does not lead to good results for the state and parameter estimations.
The joint UKF has difficulty converging with so many parameters and the high-order poly-
nomial function fit is meant for a global representation of the OCV over the entire SOC
range. The JUKF corrects the states and parameters in real-time and is "blind" to this global
optimality. Instead, the SOC-OCV is locally approximated by an affine function of the form

OCV(z[k]) = c0 + c1z[k] (5-26)

This represents a local linearization of the SOC-OCV curve, where only two coefficients, c0
and c1, need to be estimated by the JUKF. This local SOC-OCV function reconstruction
can be combined with the previously derived RC-H model by simply replacing the OCV(z[k])
function with Equation 5-26. This is referred to as the adaptive-RC-Hysteresis (A-RC-H)
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model. The A-RC-H functions can be written as

f(x[k − 1], u[k − 1]) =



z[k − 1] − Ts
1

3600C u[k − 1]
e−Ts/τ [k−1]Vp[k − 1] + Rp[k − 1]

(
1 − e−Ts/τ [k−1]

)
u[k − 1]

e−γ[k−1]Ts|u[k−1]|Vh[k − 1] + M [k − 1]
(
e−γ[k−1]Ts|u[k−1]| − 1

)
sgn (u[k − 1])

R0[k − 1]
τ [k − 1]

Rp[k − 1]
γ[k − 1]
M [k − 1]
c0[k − 1]
c1[k − 1]


(5-27)

h(x[k], u[k]) = c0[k] + c1[k]z[k] + Vh[k] − Vp[k] − R0u[k] (5-28)

Which has the joint state vector

x =
(
z Vp Vh R0 τ Rp γ M c0 c1

)⊤

5-2-4 SOC initialization

The Kalman filter requires a guess of the initial state-of-charge to kick-start the algorithm,
which can greatly affect the accuracy of the SOC estimation but is generally unknown. When
starting the filter during a no-load resting phase, however, the voltage measurements are
close to the actual OCV and can be used to guess the SOC, assuming that the remaining
polarization and voltage hysteresis only contribute a small amount to the terminal voltage.

This can be achieved with an inverse function of the SOC-OCV relationship, z = OCV′(Vt)
or by using a root-finding algorithm like the Newton-Rhapson method, which is an iterative
method that tries to find a value z that solves the equation OCV(z) − Vt = 0. At iteration i,
the method finds the next zi+1 according to

zi+1 = zi − OCV(zi) − Vt

OCV′(zi)
(5-29)

Where OCV′(z) is the derivative of OCV(z). Assuming the OCV function is a polynomial,
the derivative is trivial to derive. The Newton-Rhapson method again requires an initial value
for z, but a reasonable guess of 50% SOC, the middle of the SOC range, is enough for the
algorithm to converge to correct values around 100% SOC within 5-10 iterations. A downside
of the Newton-Rhapson algorithm is the possibility of a singularity in the fraction when the
derivative equals zero or a large change in the estimation when the derivative is very small.

The assumption that polarization and hysteresis are small enough such that the SOC initial-
ization is reasonably accurate, might not always be the case. Therefore, Section 6-4 investi-
gates the effect of significant initial SOC errors on the performance of the SOC estimation.
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Chapter 6

Results

This chapter details the results of applying the three different models to a lithium-ion bat-
tery data set produced by the EVERLASTING project, which subjected several lithium-ion
battery cells to aging tests over an almost one-year period [14]. The cells have a nominal
capacity of 3.5 Ah and have an NMC positive electrode with a negative electrode made from
silicon-doped graphite (NMC/Si-C). In between aging cycles, extensive check-up tests are
performed that include C/20 and dynamic stress tests. The C/20 tests are used to estimate
the total capacity and the SOC-OCV relationship. To limit the scope of this work, data from
only one cell was used, cell 88.

First, the SOC-OCV relationship is established and aging effects are discussed. Then the
dynamic profiles are introduced that will be used to identify battery states and parameters.
After a discussion on the tuning strategy, the three models are tested and JUKF residuals,
SOC estimations, and ohmic resistance estimations are discussed. Section 6-7 summarizes the
model performance by comparing the SOC estimation accuracies using several performance
metrics. Finally, the three models are tested on the same cell but after significant aging. The
Kalman filter is tuned based on the begin-of-life dynamic profiles, so the aged data acts as a
validation of the framework and the filter tuning.

6-1 SOC-OCV Relationship

This section shows the process of identifying the SOC-OCV relationship using C/20 tests
performed at an ambient temperature of 25◦C. First, the data is analyzed and processed to
create voltage curves as a function of SOC. The final polynomial degree for the SOC-OCV
function is chosen by evaluating several polynomial functions with varying degrees, fitted on
the BOL SOC-OCV data. The chapter concludes with an investigation of the fade in total
capacity and SOC-OCV drift as the battery cell ages.
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6-1-1 Data analysis

The original data set uses a variable sampling time, mostly with a sampling time of 60 seconds,
but with a sampling time of less than a second in other places. For consistency, the data was
transformed to an equally-spaced grid with a sampling time of 1 s using interpolation with
MATLAB’s interp1 function. The impact of processing the data on the accuracy of the
capacity estimation and SOC-OCV relationship determination was tested and determined to
be negligible.

The C/20 tests start from a fully charged cell and then discharge until 0% SOC. The cell is
then rested for 1 hour before charging the cell back to 100% again. The resulting voltage
and current data are shown in Figure 6-1. The total experiment time is about 40 hours. The
cell has a maximum voltage of 4.2 V and was charged to 100% using a full CC-CV profile
and then rested. At the start of the C/20 test, however, the cell voltage is about 4.185 V.
This has to do with the voltage decreasing slightly due to depolarization, no ohmic loss, and
thermal relaxation. The plot shows the voltage decreasing as the SOC decreases, with a large
rate of decrease at low SOC. The current is cut when the minimum voltage is reached at
2.5 V, where the SOC is defined to be zero. During the resting period, the terminal voltage
increases again due to the absence of ohmic losses, depolarization, and thermal relaxation.
The cell is then charged until 4.2 V, where the cell is at 100% SOC again.
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Figure 6-1: Voltage and current data during a C/20 test.

The amount of charge going in and going out is computed by summing the charge and
discharge currents, multiplying by the sampling time (set to 1 s), and dividing by 3600 to
convert the units to Ah. For discharge, the charge going out is defined as the total capacity
and equaled 3.387 Ah. The total charge going in was found to be 3.382 Ah, which results
in a coulombic efficiency of 1.0015. The coulombic efficiency should always be less than or
equal to one, but due to the high efficiency of Li+ cells and experimental error, the efficiency
can sometimes be slightly larger than one [1]. This coulombic efficiency is still used in the
remainder of the process. With the coulombic efficiency and the total capacity, the voltage
curves can be processed and plotted as a function of SOC, which is shown in Figure 6-2.

Under the assumption that voltage losses and hysteresis are small and approximately equal
for both charge and discharge, the average curves can be used to approximate the open-circuit
voltage of the cell. To average the curves, they have to be interpolated on an equally-spaced
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Figure 6-2: C/20 charge and discharge curve relative to SOC.

grid first, such that their data points have the same SOC values. Then the OCV points are
found by summing the voltages at each data point and dividing them by two. The resulting
OCV plot is shown in Figure 6-3.
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Figure 6-3: C/20 charge, discharge, and OCV curve relative to SOC.

6-1-2 Function fitting

The OCV curve is fitted using the ordinary least squares solution of a polynomial function.
The degree of the polynomial np is chosen by comparing several different fits. Figure 6-4
shows the comparison with six different polynomial functions and Table 6-1 shows their root-
mean-square error (RMSE). The RMSE is a common performance metric and is computed
as

RMSE =

√√√√ 1
N

N∑
i=0

e2
i (6-1)
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Table 6-1: Comparison of RMSE values for different polynomial degrees.

Degree 5 6 7 8 9 10

RMSE (mV) 17.59 16.37 13.08 11.27 7.123 6.851

Where N is the number of data points and e is the error between each data point and the
corresponding estimated value. Low RMSE values are indicative of high performance. All
fits capture the SOC-OCV relationship with good performance and their root-mean-square
error (RMSE) decreases with increasing np due to the larger degrees of freedom.
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Figure 6-4: Comparison of fits using different polynomial degrees.

However, minimizing the RMSE should not be the only objective. When plotting the error,
in Figure 6-5, it can be seen that the performance of all models degrades heavily as the SOC
approaches zero, and some models have difficulty portraying the curve at high SOC. In normal
battery operation, low SOC, < 0.1, is typically never reached because the cut-off voltage is
hit much earlier due to ohmic losses. This means that bad performance at low SOC is usually
acceptable. However, high SOC is reached during normal operation and good performance of
the polynomial in that region is desired.

By magnifying the high SOC range in Figure 6-5, Figure 6-6 can be plotted, which shows that
7 and 10 best describe the high SOC behavior. Interestingly, 8 and 9 have a lower RMSE
value than 7, but perform worse than 7 at high SOC.

In real-time battery management systems, the SOC-OCV function implementation is often
constrained by computational memory resources, which turns the choice of polynomial degree
into a trade-off between memory size and performance. In this work, computational and
memory efficiency was not a primary goal, and accuracy is preferred over computational
complexity, so a polynomial degree of 10 is chosen to represent the SOC-OCV relationship.
Higher-order polynomials were not considered. The final BOL OCV function can then be
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Figure 6-5: Error comparison of fits using different polynomial degrees.

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100

SOC (%)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

v
o

lt
a

g
e

 e
rr

o
r 

(V
)

Error Comparison of Fits Using Different Polynomial Degrees

n
p
=5

n
p
=6

n
p
=7

n
p
=8

n
p
=9

n
p
=10

Figure 6-6: Error comparison of fits using different polynomial degrees at high SOC.

written as

OCV(z[k]) = 2.754 + 15.63z[k] − 196.8z[k]2 + 1.492e3z[k]3 − 6.734e3z[k]4 + 1.884e4z[k]5

−3.344e4z[k]6 + 3.765e4z[k]7 − 2.598e4z[k]8 + 9.986e3z[k]9 − 1.630e3z[k]10

(6-2)

6-1-3 Aging effects

The SOC-OCV curve drifts as the battery cell ages. The significance of the drift can be
investigated by repeating the SOC-OCV identification process for subsequent C/20 tests in
the cell 88 data set. First, fade in the total capacity can be visualized by computing the
total capacity at every C/20 test, which is shown in Figure 6-7. Following the definition that
the first total capacity has 100% capacity state-of-health (SOHC), the plots show that every
aging test reduces the SOHC by roughly 10%.

Figure 6-8 and Figure 6-9 display the discharge and charge voltage versus SOC curves with
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Figure 6-7: Total capacity evolution over subsequent checkup tests.

decreasing SOHC . Both curves can be seen to drift upward at mid-low SOC as the cell ages.
The drift effect is notably smaller in the high SOC region.
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Figure 6-8: C/20 discharge voltage-SOC curve drift with decreasing SOHC .

Next, the fitted SOC-OCV function is plotted for each C/20 test in Figure 6-10. A clear
pattern can be observed. At high SOC the drift is negligible, except near 100% SOC where
the voltage decreases slightly with decreasing state-of-health. In the middle and lower SOC
range, the effect is much more noticeable and the curves drift upward with decreasing SOHC .
Interestingly, the drift between 90% to 80% SOHC is much smaller than between 100% to
90% and 80% to 70%, indicating that the effect is not linearly proportional to SOHC .

When the 100% SOHC SOC-OCV curve is the sole state-of-charge estimator, the drifting
effect can have a large impact on the SOC estimation due to the relative flatness of the curve.
In Figure 6-10, this is most apparent at 3.7 V between the 100% and the 70% SOHC curves.
At about this voltage, the 100% curve has an SOC of 50%, while the 70% has roughly an SOC
of 40%. The SOC would then be overestimated by about 10% from just SOC-OCV drift.
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Figure 6-9: C/20 charge voltage-SOC curve drift with decreasing SOHC .
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Figure 6-10: SOC-OCV curve drift with decreasing SOHC .
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6-2 Dynamic Profiles

The EVERLASTING project data set uses two different dynamic profiles to test and cycle
the battery cell, the dynamic stress test (DST) and a driving cycle test (DCT) [14]. Both
tests discharge the cell from 100% SOC to about 10% and are performed at a 25◦C ambient
temperature. The DST, shown in Figure 6-11, is a common cell test where the current is
varied in fixed periods of time, according to a set profile with repeating features. The current
pattern is similar in all DSTs but the current magnitude is scaled to the operating limits of
the considered cell. Negative/charging currents are also included in the DST.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.5

3

3.5

4

4.5

v
o

lt
a

g
e

 (
V

)

Dynamic Stress Test Voltage and Current

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (hrs)

-10

-5

0

5

10

c
u

rr
e

n
t 

(A
)

Figure 6-11: Voltage and current data during a dynamic stress test.

The second dynamic profile, the driving cycle test, is graphed in Figure 6-12. The DCT is
meant to represent realistic load profiles experienced by electric vehicles and was adapted
from data collected from a VOLTIA EV [14]. In comparison to the DST, the current load
in the driving cycle is more varied and the current often turns negative for short periods of
time. This is representative of the regenerative charging ability of EVs, where some energy is
recovered from the electric motors during coasting.

These DST and DCT experiments are performed a relatively short time after the first C/20
test. Therefore it can be assumed that the total capacity during the dynamic tests is equal
to the first C/20 test, 3.387 Ah.

Before applying the joint UKF framework to the data, the profiles were transformed to an
equally-spaced grid with 1 s time intervals by using MATLAB’s interp1 function.

The baseline for the state-of-charge estimation is computed using the coulomb counting
method with an initial SOC of 100%. This baseline is not an exact truth, as the current
measurements are never completely accurate and the initial SOC assumption could have a
small error. Still, the baseline gives the most accurate representation of the actual SOC and
is used to benchmark all SOC estimation results. The SOC error is then computed as the
baseline minus the estimate. A positive error thus means an underestimation of the SOC,
and a negative error is an overestimation.
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Figure 6-12: Voltage and current data during a driving cycle test.

6-3 Filter Tuning Strategy

Initializing the joint unscented Kalman filter requires an initial state estimate x+[0], an ini-
tial state uncertainty covariance matrix P +[0], a process noise covariance matrix Q, and a
measurement noise covariance R. These can be considered hyperparameters of the JUKF,
which have a large impact on the performance of the algorithm, as incorrect tuning can lead to
large errors in SOC estimation accuracy. Hyperparameter tuning is therefore done iteratively,
based on the first dynamic stress test and driving cycle test.
x+[0] can be tuned using typical battery cell parameter values. Cell resistances, for example,
are often in the range of 0-100 mΩ. The initial uncertainty covariance is assumed to be a
diagonal matrix and its entries can be found using the 3-σ principle. Assuming that the
probability is normally distributed, the actual value is very likely to be within three standard
deviations of the initial guess x+[0]. By setting this 3σ equal to the ± range where the optimal
value is likely to be found, the variance for that state can be found via (3σ/3)2. The 3-σ
strategy is not guaranteed to be an optimal tuning strategy at all, but it allows for a more
systematic way of tuning the uncertainty covariance. The noise covariances, Q and R, were
tuned iteratively using factors of 10. Parameter covariances were kept equal for all models
wherever possible and R was set to 1e-4 for the RC and RC-H models.
One method to evaluate the tuning is to look at the residual of the JUKF. The residual is
computed at every time step by comparing the measurement with the estimated output using
the corrected states x+[k],

r[k] = y[k] − h(x+[k], u[k]) (6-3)

In an ideal scenario, the residual should have zero mean. Most of the JUKF tuning was
performed using the SOC estimation accuracy during the first dynamic stress test with an
initial SOC guess of 90%. Afterward, the tuning was adjusted slightly based on the driving
cycle test SOC estimation.
Afterward, the tuning was adjusted slightly based on the driving cycle test SOC estimation,
by varying the Q matrix with factors of ten.
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6-4 RC Model

The RC model uses Equation 6-2 as its SOC-OCV relationship and has five states that were
initialized as

x+[0] =
(
z[0] Vp[0] R0[0] τ [0] R1[0]

)⊤

=
(
SOC0 0 0.05 10 0.05

)⊤

For the SOC, multiple simulations are run with different initial SOC conditions to assess
the influence of the initial SOC error on algorithm performance. Therefore, z[0] is replaced
by SOC0, which is set to 80%, 90%, and 100%. The polarization voltage is guessed at zero
because at the beginning of the experiment, the cell should be in a relaxed depolarized state.
P +[0] was tuned to

P +[0] =


(0.5/3)2 0 0 0 0

0 (0.2/3)2 0 0 0
0 0 (0.05/3)2 0 0
0 0 0 (10/3)2 0
0 0 0 0 (0.05/3)2


Where the initial conditions for the parameters are used as the 3σ values to compute their
initial state covariance. The SOC uncertainty uses a 0.5 value because this produced good
results for all initial SOC conditions and that is the maximum ±-range the SOC will have when
guessing 50% SOC, exactly in the middle of the region. The polarization voltage uncertainty
was set to 0.2 since the cell might not be fully depolarized from the charge phase when the
dynamic profile experiment starts.

Lastly, Q was found to improve the algorithm performance when the process noise covariance
of the polarization voltage was relatively high, and low for the other states, resulting in

Q =


1e-10 0 0 0 0

0 1e-5 0 0 0
0 0 1e-10 0 0
0 0 0 1e-10 0
0 0 0 0 1e-10


The improved performance with a high process noise on the polarization can be explained by
the fact that a more realistic representation of the battery cell voltage response to current
profiles is nonlinear, while in the RC model, the polarization is approximated by a single
RC-pair with linear dynamics. A higher process noise thus gives the JUKF more freedom to
adapt the polarization voltage.

6-4-1 Dynamic stress test

The JUKF RC model framework is first applied to the DST profile. The residuals between
the JUKF and the measurements for the three different initial SOC conditions are shown
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in Figure 6-13, where the residual voltage is in mV. The variance of the residuals is small
in magnitude and the mean is close to zero, which shows that the algorithm converges to a
solution quickly and is capable of following the measurements throughout the experiment.
However, a deviation from zero-mean can be seen at the end of the experiment when the SOC
is low, where the simple model struggles to represent the cell dynamics.
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Figure 6-13: DST residual with the RC model.

Figure 6-14 and Figure 6-15 show the SOC estimation and the estimation error using the RC
model. Initially, All starting conditions are able to converge to similar estimates of the baseline
SOC, within about 0.5%, but the estimations drift as the SOC decreases and eventually end
at about 2% error at the end of the DST.
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Figure 6-14: DST SOC estimation with the RC model.

Lastly, the ohmic resistance estimated by the JUKF is shown in Figure 6-16, which confirms
that the resistance is not constant but varies between roughly 35 to 43 mΩ, depending on
the state-of-charge. All three initial SOCs converge to roughly the same resistance values,
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Figure 6-15: DST SOC estimation error with the RC model.

indicating that the ohmic resistance estimation is largely independent of the initial conditions.
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Figure 6-16: DST resistance estimation with the RC model.

6-4-2 Driving cycle test

The RC model framework is now run on the DCT profile. The residuals are plotted in
Figure 6-17. In comparison with the DST results, these residuals show more variance and
higher frequency due to the more complex profile. Similarly to the DST, the residual deviates
significantly from the mean at the lower SOC range.

Figure 6-18 and Figure 6-19 plot the SOC estimation and the estimation error of the DCT over
time. Compared to the DST results, these plots show a similar drift of the SOC estimation
over time, but the magnitude of the error is larger in the DCT and at low SOC the baseline
SOC is underestimated by almost 6%.
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Figure 6-17: DCT residual with the RC model.
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Figure 6-18: DCT SOC estimation with the RC model.

The estimated ohmic resistance can be plotted for the DCT as well, which is shown in Figure 6-
20. The estimation again varies with SOC and the three initial conditions converge to very
similar resistance values. The overall DCT estimation converges to smaller resistance values
than the DST resistance. While both tests end at roughly 10% SOC, the DST ohmic resistance
reaches almost 43 mΩ, while the DCT estimation stops at 38 mΩ. This can likely be attributed
to different internal temperatures that influence the ohmic resistance.
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Figure 6-19: DCT SOC estimation error with the RC model.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (hrs)

25

30

35

40

45

50

55

re
s
is

ta
n

c
e

 (
m

)

DCT Resistance Estimation with RC Model

SOC
0
=100%

SOC
0
=90%

SOC
0
=80%

Figure 6-20: DCT resistance estimation with the RC model.
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6-5 RC-Hysteresis Model

The RC-H model again uses Equation 6-2 as its SOC-OCV relationship and includes three
additional states to the joint state vector, the hysteresis voltage, the hysteresis rate, and the
maximum hysteresis. The initial guess is given by

x+[0] =
(
z[0] Vp[0] Vh[0] R0[0] τ [0] R1[0] γ[0] M [0]

)⊤

=
(
SOC0 0 0 0.05 10 0.05 1e-3 0.1

)⊤

For the initial state uncertainty, the initial hysteresis uncertainty was determined from typical
hysteresis values seen in the low-current voltage data. The hysteresis rate was more difficult
and had to be tuned iteratively to find a suitable order of magnitude. The initial voltage hys-
teresis was set to zero, which produced reasonable results, although the hysteresis is expected
to be larger than zero because at the start the cell is recovering from a charge phase. Other
values are identical to the RC model tuning. P +[0] is tuned in the same way as for the RC
model with the addition of three more variances on its diagonal due to the increase in states,

P +[0] =



(0.5/3)2 0 0 0 0 0 0 0
0 (0.2/3)2 0 0 0 0 0 0
0 0 (0.1/3)2 0 0 0 0 0
0 0 0 (0.05/3)2 0 0 0 0
0 0 0 0 (10/3)2 0 0 0
0 0 0 0 0 (0.05/3)2 0 0
0 0 0 0 0 0 (1e-3/3)2 0
0 0 0 0 0 0 0 (0.1/3)2


In the third entry on the diagonal, the initial uncertainty in the voltage hysteresis is set by
the expected maximum hysteresis. Q is again very similar to the RC model tuning,

Q =



1e-10 0 0 0 0 0 0 0
0 1e-5 0 0 0 0 0 0
0 0 1e-9 0 0 0 0 0
0 0 0 1e-10 0 0 0 0
0 0 0 0 1e-10 0 0 0
0 0 0 0 0 1e-10 0 0
0 0 0 0 0 0 1e-10 0
0 0 0 0 0 0 0 1e-10


Hysteresis process noise is included to reflect the fact that the hysteresis model is a simplifi-
cation of the actual voltage hysteresis.

6-5-1 Dynamic stress test

Replacing the RC model with the RC-H model and using the dynamic stress test data results
in the residuals shown in Figure 6-21. Although the RC-H model has three extra states, the
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residuals show that it is still able to converge to a suitable solution fairly quickly. The residual
mean is close to zero for most of the time, but also still struggles with the lower SOC region.
In comparison to the RC model DST residual, Figure 6-13, the mean of the RC-H residual is
closer to zero, as the addition of hysteresis increases the model complexity and thus reduces
the overall model bias.
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Figure 6-21: DST residual with the RC-H model.

The SOC estimation and estimation error plots, in Figure 6-22 and Figure 6-23, show that
the SOC estimation benefits greatly from the additional model complexity. The SOC drift is
mostly eliminated and the error stays within about 0.5% SOC for all three initial conditions.
The largest errors can be seen at low SOC just before the test ends.
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Figure 6-22: DST SOC estimation with the RC-H model.

Figure 6-24 displays the estimation of the voltage hysteresis in the RC-H model for the
multiple initial conditions. All three initial conditions converge to almost identical values.
The estimated hysteresis starts out as slightly positive but then switches signs and stays
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Figure 6-23: DST SOC estimation error with the RC-H model.

negative for the entire DST, as expected during a discharge profile. The hysteresis is highest
near the end of the test, at low SOC.
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Figure 6-24: DST hysteresis estimation with the RC-H model.

The RC-H resistance estimation is shown in Figure 6-25. It can be seen that the estimation has
the same pattern and converges to similar values when compared to the RC DST estimation.

6-5-2 Driving cycle test

Figure 6-26 shows the residual of the RC-H JUKF framework on the DCT profile, which again
is close to zero-mean and similar to the residual of the RC model on the DCT data.

Figure 6-27 and Figure 6-28 display the results of the SOC estimation during the driving cycle
test. After a convergence period, the 100% and 90% initial conditions produce an almost ±1%
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Figure 6-25: DST resistance estimation with the RC-H model.
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Figure 6-26: DCT residual with the RC-H model.

accurate SOC estimation. The estimation pattern when using SOC0=80% differs greatly from
100% and 90%, especially in the first half of the test.

The estimated hysteresis voltage is shown in Figure 6-24. The three initial conditions converge
to similar hysteresis values, and the hysteresis is highest at low SOC. Interestingly, the DCT
hysteresis is larger than the DST hysteresis, especially at low SOC when the DCT hysteresis
increases rapidly.
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Figure 6-27: DCT SOC estimation with the RC-H model.
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Figure 6-28: DCT SOC estimation error with the RC-H model.
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Figure 6-29: DCT hysteresis estimation with the RC-H model.
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Figure 6-30: DCT resistance estimation with the RC-H model.
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6-6 Adaptive-RC-Hysteresis Model

The replacement of the OCV function with an affine relationship drastically changed the per-
formance of the JUKF and required partial retuning. The first challenge is to pick reasonable
initial values for the coefficients c0 and c1. Using a priori knowledge of this cell’s chemistry
and insights from Section 6-1, the SOC-OCV curve has a wide region between 10% to 100%
SOC where the trend is reasonably linear. A rough trendline through this region can approx-
imate the SOC-OCV relationship with OCV = 3.3 + 0.9z, meaning c0 = 3.3 and c1 = 0.9.
These values are used as initial conditions for the JUKF, turning the initial state vector into

x+[0] =
(
z[0] Vp[0] Vh[0] R0[0] τ [0] R1[0] γ[0] M [0] c0[0] c1[0]

)⊤

=
(
SOC0 0 0 0.05 10 0.05 1e-3 0.1 3.3 0.9

)⊤

The state uncertainty covariance matrix is purposely kept similar to the RC-H model’s P +[0],
with the addition of uncertainty in the affine function parameters,

P +[0] =

(0.5/3)2 0 0 0 0 0 0 0 0 0
0 (0.2/3)2 0 0 0 0 0 0 0 0
0 0 (0.1/3)2 0 0 0 0 0 0 0
0 0 0 (0.05/3)2 0 0 0 0 0 0
0 0 0 0 (10/3)2 0 0 0 0 0
0 0 0 0 0 (0.05/3)2 0 0 0 0
0 0 0 0 0 0 (1e-3/3)2 0 0 0
0 0 0 0 0 0 0 (0.1/3)2 0 0
0 0 0 0 0 0 0 0 (0.1/3)2 0
0 0 0 0 0 0 0 0 0 (0.1/3)2


The process noise covariance matrix is given by,

Q =



1e-10 0 0 0 0 0 0 0 0 0
0 1e-3 0 0 0 0 0 0 0 0
0 0 1e-5 0 0 0 0 0 0 0
0 0 0 1e-10 0 0 0 0 0 0
0 0 0 0 1e-10 0 0 0 0 0
0 0 0 0 0 1e-10 0 0 0 0
0 0 0 0 0 0 1e-10 0 0 0
0 0 0 0 0 0 0 1e-10 0 0
0 0 0 0 0 0 0 0 1e-10 0
0 0 0 0 0 0 0 0 0 1e-10


The biggest change is an increased process noise for the polarization and the hysteresis voltage.
For both coefficients, the process noise was set to 1e-10.

The measurement noise covariance had to be increased to R = 0.1, to improve estimation
performance. This is likely caused by the increased error in the model due to the replacement
of the high-order polynomial SOC-OCV function with a heavily simplified affine function.
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6-6-1 Dynamic stress test

The DST SOC estimation and the error between the baseline and the estimation using the
A-RC-H model are displayed in Figure 6-31 and Figure 6-32. The results show that the
performance is heavily influenced by the initial SOC guess. When the guess is correct, the
SOC error is within ±1.5% for the entire SOC range, but at SOC0=80% the error increases
to between 2.5% and 4%.
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Figure 6-31: DST SOC estimation with the A-RC-H model.
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Figure 6-32: DST SOC estimation error with the A-RC-H model.

The implicit OCV estimation can be reconstructed by computing c0 + c1z using the state
estimates at every time step, resulting in Figure 6-33. The plot shows the estimation compared
with the baseline SOC-OCV curve, calculated from the SOC baseline values, plugged into the
OCV polynomial function found in Section 6-1. The figure shows that the OCV estimation
can capture the overall downward trend of the SOC-OCV relationship, but mostly struggles
with the high and low SOC regions. Interestingly, a better approximation of the OCV does not
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seem to correlate with a better SOC estimation, as the SOC0=80% and SOC0=90% appear
to be closer to the actual OCV than the 100% initial guess. This can likely be attributed
to the non-uniqueness of the estimations in Kalman filters, where the convergence to actual
values is not guaranteed.
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Figure 6-33: DST OCV estimation with the A-RC-H model.

6-6-2 Driving cycle test

Figure 6-34, and Figure 6-35 display the residual, SOC estimation, and SOC estimation error
for the DCT using three different initial conditions. The DCT residuals follow a familiar
pattern, oscillating around 0 mV until about 2 hours into the test, where the SOC is low. The
SOC estimation again shows the correlation between the initial guess and the SOC error. In
the DCT, the error is amplified at low SOC, resulting in a maximum error of about 7% when
using an initial SOC of 80%. When the guess is correct, the error stays below 2% for most of
the SOC range but jumps to about 4% after the 20% SOC point.

Finally, the implicit OCV estimation can be derived from the estimations of c0 and c1, yielding
Figure 6-36. The OCV is initially overestimated and fails to capture the low SOC behavior
after about 1.7 hrs into the test, but the estimation still captures the main decreasing trend.
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Figure 6-34: DCT SOC estimation with the A-RC-H model.
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Figure 6-35: DCT SOC estimation error with the A-RC-H model.
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Figure 6-36: DCT OCV estimation with the A-RC-H model.
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6-7 Analysis of the Results

The SOC estimation results from each model are benchmarked using three performance met-
rics, root-mean-square error (RMSE), mean-absolute error (MAE), and max-absolute error
(MAXAE). The RMSE was defined in Equation 6-1. MAE is the normalized 1-norm,

MAE = 1
N

N∑
i=0

|ei| (6-4)

and MAXAE is the ∞-norm,

MAXAE = max |ei| (6-5)

The MAXAE is computed over the SOC errors after the approximate convergence of the
SOC. Otherwise, the max SOC error with an initial condition of 80% would always be 20%,
which is not a meaningful performance metric.

6-7-1 Dynamic stress test

Figure 6-37, Figure 6-38, and Figure 6-39 display the evaluation of the SOC estimation at
100%, 90%, and 80% SOC0 during the DST profile. The results show that the RC-H model
outperforms the RC and A-RC-H models. The second observation to make is, while the RC
and RC-H estimations are fairly insensitive to initial SOC, the A-RC-H performance is highly
dependent on the initial guess, with larger initial errors resulting in much higher RMSE,
MAE, and MAXAE values. At SOC0=100%, the RMSE and MAE values of the A-RC-H
model show similar performance compared to the RC-H model, but the MAXAE value is
larger and on par with the RC model.

The last thing to point out is that, for the RC and RC-H models, a lower initial SOC error
does not guarantee a better model performance. This can be attributed to the initial SOC
uncertainty, which is kept constant for all initial conditions. When the filter is initialized at
the ground truth of 100%, the high uncertainty means that the filter does not immediately
converge to 100% SOC but instead allows all parameters to vary according to their uncertainty
ranges to make the residual converge to minimum variance.

6-7-2 Driving cycle test

The analysis process is repeated for the driving cycle test, resulting in Figure 6-40, Figure 6-
41, and Figure 6-42. The DCT results parallel the DST graphs but with larger values due
to the increased difficulty of estimating SOC from the more complex dynamic profile. In
this case, an SOC0 of 80% actually produces the best performance for the RC model, and
SOC0=90% for the RC-H model. Compared to the DST, the maximum error of the RC-H
model during the DCT seems to be more affected by the initial guess. With SOC0=80% the
maximum error increases by about 50% compared to SOC0=100% and SOC0=90%.
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DST Root-mean-square Error with Different Models and Varying Initial SOC
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Figure 6-37: DST RMSE with different models and varying initial SOC.
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Figure 6-38: DST MAE with different models and varying initial SOC.
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Figure 6-39: DST MAXAE with different models and varying initial SOC.
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Figure 6-40: DCT RMSE with different models and varying initial SOC.
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Figure 6-41: DCT MAE with different models and varying initial SOC.
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Figure 6-42: DCT MAXAE with different models and varying initial SOC.
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6-8 Aging Effects

As the cell ages, total capacity decreases, ohmic resistance increases, and the SOC-OCV
relationship drifts. To investigate and validate the capability of the model to estimate the
rising resistance and the effects of capacity fade and OCV drift on the SOC estimation, the
remaining three dynamic stress tests, at different SOHC stages, are used as data for the three
model frameworks. The JUKF tuning parameters were unchanged from their begin-of-life
values.

The time it takes to run the DST profile decreases as the cell ages because the minimum
voltage is reached faster due to higher ohmic losses and decreased capacity.

6-8-1 Ohmic resistance

The ohmic losses are proportional to the ohmic resistance, one of the parameters being esti-
mated by the JUKF. To see the evolution of the ohmic losses over the SOHC , the estimated
ohmic resistance during each DST is shown in Figure 6-43. The results verify that the resis-
tance increases during the cell’s lifetime, almost doubling at 70% SOHC versus begin-of-life.
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Figure 6-43: DST resistance estimation with RC-H model at various SOHC (SOC0=90%)

6-8-2 SOC estimation

To visualize the progression of the SOC estimation over the SOHC , the estimation error is
plotted for each DST in Figure 6-44, using the RC-H model and an initial SOC of 90%. This
shows that the error tends to increase with state-of-health, which can be explained by the
SOC-OCV drift but could also be a consequence of the fact that the Kalman filter is tuned
based on BOL performance.
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Figure 6-44: DST SOC estimation error with RC-H model at various SOHC (SOC0=90%)

6-8-3 Analysis

The SOC estimation performance can be quantified and analyzed by applying the same anal-
ysis process from Section 6-7 on the fourth and last dynamic stress test, with SOHC ≈70.
The resulting RMSE, MAE, and MAXAE values using different initial conditions are plotted
in Figure 6-45, Figure 6-46, and Figure 6-47.
The results show that overall errors are larger at SOHC ≈ 70, but most of the conclusions
from Section 6-7 are valid here as well. The RC model is mostly independent of the initial
SOC guess, while the A-RC-H model is highly sensitive to the initial SOC, as all metrics
almost double in magnitude between 100% and 80%.
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Figure 6-45: 4th DST RMSE with different models and varying initial SOC.

With SOC0=100% and SOC0=90%, the performance of the RC-H model is still superior to
the other two models, but a spike in RMSE, MAE, and MAXAE can be observed at 80%
SOC0. The RC-H SOC estimation error versus time for the fourth DST is plotted in Figure 6-
48. It can be seen that the spike in performance at 80% SOC0 is due to the JUKF converging
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4th DST Mean-absolute Error with Different Models and Varying Initial SOC
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Figure 6-46: 4th DST MAE with different models and varying initial SOC.
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Figure 6-47: 4th DST MAXAE with different models and varying initial SOC.

to much lower values for the entire duration of the DST profile, which greatly underestimates
the SOC. With smaller SOC errors, the estimation converges normally to values close to the
baseline. The spike can be prevented by retuning the JUKF, but it was chosen not to do this
to preserve the idea that the aged data is ’unseen’ data.
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Chapter 7

Conclusion

The objective of this work was to explore the use of hysteresis models to improve SOC esti-
mations in NMC/Si-C lithium-ion cell chemistries and to investigate whether time-consuming
SOC-OCV tests can be replaced by an online estimation of the OCV. The SOC estimation
tests were run at three different initial SOC guesses and with three different battery cell
models, the RC, RC-Hysteresis, and A-RC-H models.
The results show that the RC-Hysteresis model produces superior SOC estimations compared
to RC model, reducing driving cycle test RMSE from at most 2.8% to only 0.74% and driving
cycle test MAXAE from at most 5.9% to 1.7%. However, the model is less robust to large
initial SOC errors when the cell has aged significantly. The RC model leads to higher SOC
errors, but is largely insensitive to the initial SOC error and has reduced computational
complexity due to its smaller joint state vector. The SOC errors are typically highest in the
low SOC region, which coincides with where the voltage hysteresis is highest and where the
fitted SOC-OCV polynomial has the largest error.
Lastly, the estimation results of the A-RC-H show that the model is capable of reconstructing
the main trend in OCV. However, the simplified SOC-OCV representation fails at capturing
the more nonlinear portions of the curve, which often results in large errors at low SOC
where the SOC-OCV trend is significantly different from the mid to high region. The overall
SOC estimates are similar to the RC model performance, but the A-RC-H model is highly
dependent on the initial SOC value, and lower initial errors always produce better results.
In conclusion, a single RC-pair battery model that includes voltage hysteresis vastly improves
SOC estimation performance versus the no-hysteresis model and should be used for maximum
SOC accuracy. However, this comes at the cost of additional complexity and lower robustness
to initial conditions. More accurate SOC estimations have a trickle-down effect, where the
accuracy of energy and capacity estimations are also improved, assuming the capacity is
estimated with SOC-based methods, meaning the range and the end-of-life conditions for an
electric vehicle can be assessed more accurately. This can effectively extend battery life and
support decision-making concerning battery repurposing.
Meanwhile, the A-RC-H model produces reasonable SOC estimations and can reconstruct the
main OCV trend. Though, the RMSE and MAE performance is only close to the RC model
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when the initial SOC error is small. Practical implementation of the A-RC-H model could
be viable if time-consuming and expensive SOC-OCV experiments are undesirable and the
additional model complexity and higher SOC error are tolerable.

7-1 Discussion

The first discussion point concerns the accuracy of the SOC-OCV relationship. A portion of
the accuracy of the SOC estimation depends on the correct measurement of the total capacity
and the SOC-OCV relationship. It should be noted that, although a C/20 rate with a 1-hour
resting time was used to compute the total capacity and SOC-OCV, the recommended setting
is a C/30 test with a 2-hour resting period [1]. The experiment is a trade-off between time
and accuracy and the EVERLASTING data set chose a quicker experiment that results in
a slightly less accurate SOC-OCV and total capacity estimate. It has also been argued that
SOC-OCV estimations from an incremental-current test produce better SOC results than the
low-current test [36]. However, incremental tests were not part of the data set.

A second source of error in both parameter and SOC estimations could be the use of inter-
polation to transform the data into a consistently-spaced grid. Because of the variable time
step in the original data, interpolation will create data points in some parts and decimate
points at other locations. This consistent grid is easier to work with but creates a modified
data set that is expected to be a slightly worse representation of the system than the actual
measurements.

A third point of discussion is the tuning of the JUKF. Due to the many states and parameters
involved, the tuning of x+[0], P +[0], Q, and R had a considerable impact on SOC estimation.
This was tackled by approaching the tuning in a more structured way and by limiting the
tuning of Q and R to factors of 10. This means that not all settings were tried and there
could be different x+[0], P +[0], Q, and R values for all models that produce better SOC
estimations on the same data set.

Lastly, the significant variance between different battery cells means that the results partly
depend on the properties of the cell and do not necessarily transfer to other similar chemistries
or even cells with the same chemistry. Furthermore, the fraction of silicon doping in the
negative electrode affects the magnitude of the hysteresis effect on the terminal voltage, but
in the tested cell the fraction is unknown as the manufacturer does not present this information
in their datasheet.

7-2 Recommendations

Firstly, the RC-H and A-RC-H models both showed a lack of robustness to the initial SOC
error. However, it is not clear whether a 20% initial SOC error will ever occur in a practical
scenario or whether the tuned initial uncertainty is a good representation of the actual uncer-
tainty. Typical initial SOC errors could be characterized using additional experiments to test
the accuracy of SOC initialization methods, as described in Chapter 5. These experiments
could validate the use of better initial SOC guesses and lower initial SOC uncertainties, which
will improve the performance of the JUKF SOC estimation.
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Secondly, it was shown that the SOC estimation error increases as the cell ages, likely due
to drift in the SOC-OCV relationship. The estimation error might be improved by retuning
the Kalman filter, but this is generally not viable in practical operations. Instead, one could
investigate the use of adaptive Kalman filters that automatically retune the Q and R matrices,
to improve long-term SOC estimation performance.

Thirdly, the models were limited to single RC-pair equivalent circuits. However, double RC-
pair models are also commonly used and it would be interesting to compare the RC-H model
with a double RC model on the same data set. These methods have similar complexity, as
both add three joint state variables and one differential equation to the basic RC model.

Fourthly, the JUKF framework produces state and parameter estimates with one joint state
vector at each time step, which is relatively computationally expensive. However, compu-
tational costs can be brought down by separating the joint filter into a state filter and a
parameter filter. This Kalman filter decreases the size of the matrices and improves compu-
tational efficiency [43]. The complexity can be reduced further by recognizing that the states
and parameters vary at different time scales. SOC, for example, typically varies faster than
the ohmic resistance. In this multi-rate filter, the state filter is executed every time stamp,
but the parameter filter is run at a lower frequency.

Lastly, this report mainly focused on improving SOC accuracy for silicon-doped lithium-ion
cells but the main motivation for this is to achieve better capacity estimation accuracy to be
able to extend the battery’s total lifetime. To confirm the hypothesis that higher SOC accu-
racy leads to improved capacity estimation accuracy, the RC and RC-H frameworks should
be combined with SOC-based capacity estimation methods and compared using suitable data
sets.
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List of Abbreviations

A-RC-H
BOL
CC-CV
CEI
CPE
DCT
DST
EKF
EOL
EV
JUKF
LAM
LCO
LFP
LLI
LMO
LTO
MAE
MAXAE
NCA
NMC
OCV
OLS
RC
RC-H
RMSE
SEI
Si-C
SOC
SOH
SR-UKF
UKF
UT

Adaptive OCV with Resistor Capacitor Pair and Hysteresis
Begin-of-life
Constant current, constant voltage
Cathode-electrolyte interphase
Constant phase element
Driving cycle test
Dynamic stress test
Extended Kalman filter
End-of-life
Electric vehicle
Joint unscented Kalman filter
Loss of active material
Lithium cobalt oxide
Lithium iron phosphate
Loss of lithium inventory
Lithium manganese oxide
Lithium titanate oxide
Mean-absolute error
Maximum-absolute error
Nickel cobalt aluminum
Nickel manganese cobalt
Open-circuit voltage
Ordinary least squares
Resistor Capacitor Pair
Resistor Capacitor Pair and Hysteresis
Root-mean-square error
Solid-electrolyte interphase
Silicon-doped graphite
State-of-charge
State-of-health
Square-root unscented Kalman filter
Unscented Kalman filter
Unscented transform
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