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Abstract. This paper describes the use of the Least-Squares Spectral Element Method
for non-linear hyperbolic equations. The one-dimensional inviscid Burgers equation is
specifically subject of investigation. A second order backward difference method is used for
time stepping. The behaviour of this formulation is examined by application to a testcase
where a moving shock develops. For this testcase an hp-convergence study is performed.

1 INTRODUCTION

The Least-Squares Spectral Element Method (LS-SEM) combines the robust features
of the Least-Squares Finite Element Method1 (LS-FEM), with the high accuracy of the
Spectral/hp Element Method2. Proot and Gerritsma3, 4 and Pontaza and Reddy5, 6 were
the first to investigate this method. Given well-posedness, LS-SEM will transform any
system of partial differential equations to a symmetric positive definite system of algebraic
equations. For time dependant problems recently a space-time formulation was applied
to a number of testcases7, 8. In this work an implicit time integration scheme is chosen.
This is less intensive computationally compared to a space-time formulation but also less
accurate.

Problems where shocks develop pose severe stability requirements on the approximation
method and therefore often unphysical damping is used. This is not the case for LS-
SEM. When a discontinuity is formed Gibbs-like oscilations do emerge but they don’t
tend to pollute the whole domain. They will stay in the vicinity of the discontinuity.
If high accuracy around the shock is required it is possible to reconstruct the solution
accurately8, 9.

The outline of this paper is as follows. In section 2 the LS-SEM formulation with its
constituting parts, the Least-Squares minimisation method and the Spectral/hp element
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method will be discussed. Then in section 3 the Burgers equation will be subjected to
LS-SEM with implicit time stepping after the equation is linearised. Finally, results on
a test case will be shown, where a moving shock develops. Conclusions will be drawn in
Section 4.

2 LEAST-SQUARES SPECTRAL ELEMENT FORMULATION

2.1 Least-Squares Formulation

Consider following linear boundary value problem

Lu = f in Ω, (1)

Ru = g on Γ. (2)

Here L is a linear first order differential operator and R is a linear algebraic boundary
operator. In this work the residual of the boundary conditions is minimised along with
the residual of the differential equation, thus enforcing the boundary conditions weakly.
It will be assumed that the operator (L,R) is a continuous mapping from the underlying
function space X onto the space Y (Ω) × Y (Γ). The least-squares formulation now seeks
to minimize the residuals of (1) and (2) by finding a u that minimizes the following
functional:

J (u) =
1

2

(

‖Lu − f‖2
Y (Ω) + ‖Ru − g‖2

Y (Γ)

)

. (3)

So a u must be found for which it holds that:

lim
ε→0

d

dε
J (u + εv) = 0. (4)

With v a sufficiently smooth test function. We obtain:

(Lu,Lv)Y (Ω) + (Ru,Rv)Y (Γ) = (f ,Lu)Y (Ω) + (g,Rv)Y (Γ) . (5)

Or with f = g = 0:
(Lu,Lv)Y (Ω) + (Ru,Rv)Y (Γ) = 0. (6)

The minimisation will be done in the L2-norm. It is not trivial that minimisation of the
residual automatically leads to minimisation of the error. Generally for linear equations
it is possible to show that the error will be minimised along with the residual but for non-
linear equations this is hard to prove. In this work it will be assumed that minimisation
of the residual does lead to minimisation of the error. Nevertheless proving this remains
an issue of interest.

2.2 Spectral/hp elements

In order to discretise the variational problem the domain Ω is divided into Nel elements.
In each element the approximate solution ue is expanded in continuous basis functions φi

uP
e (ξ) =

P
∑

i=0

ûiφi(ξ), (7)
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with ξ the coordinate of the standard domain to which every element is mapped, ξ ∈
[−1, 1], P the polynomial degree and ûi the coefficients of the basis functions in the
approximate solution. For the basis functions a nodal expansion through the Gauss-
Lobatto-Legendre (GLL) collocation points is used2

φi(ξ) =















1−ξ

2
, i = 0,

(

1−ξ

2

)(

1+ξ

2

)

P
1,1
i−1(ξ), 0 < i < P ,

1+ξ

2
i = P .

(8)

where P
1,1
i−1(ξ) is the Jacobi polynomial P

α,β
i−1(ξ) with α = β = 1. Here the GLL-points ξi

are the roots of the first derivative of the Legendre polynomial of degree P complemented
by the boundary nodes of the standard domain. To evaluate the integrals in (6) Gauss-
Lobatto quadrature is used

∫ 1

−1

f(ξ)dξ ≈

Q
∑

i=0

wif(ξi), (9)

with ξi the Q + 1 GLL-roots and wi the GLL-weights

wi =

∫ 1

−1

hi(ξ)dξ, (10)

with hi the Lagrange interpolant through the GLL-points. It was shown that for equations
where discontinuous solutions can occur the use of a larger number of integration points Q

than the polynomial order P improves convergence10 . Therefore in this work Q = 3
2
(P +1)

is used.

3 BURGERS EQUATION

The inviscid Burgers equation with boundary and initial condition is given by

∂u

∂t
+

∂u2

∂x
= 0 in [0, L] × (0, T ], (11)

u(0, t) = 0 in (0, T ], (12)

u(x, 0) = uin(x) in [0, L]. (13)

In this section this equation will be linearised, the time derivative will be discretised and
results of a testcase where the solution displays a moving shock will be discussed.

3.1 Newton linearisation

First the non-linear term in (11) will be linearised. Let δu be the difference of two
consecutive non-linear iteration steps

δu = u[k+1] − u[k] (14)
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where k denotes the iteration count. The nonlinear term in (11) can now be linearised by
inserting (14) and neglecting terms of order O((δu)2)

(u[k+1])
2 = (u[k] + δu)2

= ((u[k])
2 + 2u[k]δu + (δu)2)

≈ ((u[k])
2 + 2u[k]δu)

= ((u[k])
2 + 2u[k](u[k+1] − u[k]))

= 2u[k]u[k+1] − (u[k])
2. (15)

Inserting this in (11) yields the expression

∂u

∂t
+ 2u[k]

∂u[k+1]

∂x
+ 2u[k+1]

∂u[k]

∂x
− 2u[k]

∂u[k]

∂x
= 0, (16)

which is the Newton linearisation of the Burgers equation (11). The terms with subscript
[k] will be iterated until convergence is reached at every timestep.

3.2 Implicit timestepping

Next the time derivative will be discretised using a second order backward difference
scheme

∂u

∂t
=

3un+1 − 4un + un−1

2∆t
+ O(∆t2), (17)

where the superscript now denotes the different time-levels. This yields

3

2
un+1

[k+1] − 2un +
1

2
un−1 + ∆t

(

2un+1
[k]

∂un+1
[k+1]

∂x
+ 2un+1

[k+1]

∂un+1
[k]

∂x
− 2un+1

[k]

∂un+1
[k]

∂x

)

= 0. (18)

With for the first iteration un+1
[0] = un. For the first timestep a first order backward

difference scheme is used. The Least-Squares formulation of section 2.1 will now be
employed to minimise the residual of (18).

3.3 Results

For the testcase the initial condition is given by

uin(x) =

{

1
2
− 1

2
cos(πx) for 0 ≤ x ≤ 2,

0 elsewhere
(19)

and the domain by [0, 4] × (0, 2]. In Figure 1 the initial and final conditions are shown.
Every timestep the solution is obtained iteratively until convergence is reached

|∆R| ≤ tol, (20)
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Figure 1: Initial condition and exact solution of the testcase.

with
∆R =

∥

∥R(u[k])
∥

∥

L2
−
∥

∥R(u[k+1])
∥

∥

L2
, (21)

where tol = 1 · 10−9 and

‖R(u)‖L2 =

(
∫ 4

0

(Lu − f)2dx

)

1

2

. (22)

So ‖R(u)‖L2 is the L2-norm of the residual. A simulation was performed with a timestep
of ∆t = 0.05. Figure 2 shows the LS-SEM solution with polynomial degree P = 7 at
the final timestep alongside the exact solution. It can be seen that the LS-SEM solution
displays a smooth oscillation just left of the shock. The shock position is somewhat too
far to the right initially and was observed to go to the left with increasing number of
degrees of freedom.

For the same problem a hp-convergence study was performed, the results of which
can be seen in Figures 3 and 4. Here Rave is the sum of the residual at each timestep
divided by the number of timesteps. Figure 4 shows initially a fast converging solution
in the Nel = 8 line of the L2-error followed by a large increase in error. This behaviour
was observed more often, especially for smaller values of ∆t. In these cases initially the
approximated shock position converges to a value close to the exact value from the left
but suddenly the approximated shock position jumps to a location right of the exact
value and the error starts converging. The jump to the right coincides with the increase
in L2-error. During the initial phase of this process the residual does not converge.
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Figure 2: Exact and LS-SEM solution (Nel = 32, P = 7, Q = 12, ∆t = 0.05).
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Figure 3: h-convergence of the error and averaged residual for ∆t = 0.05. The numbers are the absolute
values of the slope of the curves.

For all tested numbers of elements Nel from a certain point onwards the error decreases
with increasing P as expected. In all figures at high numbers of degrees of freedom the
lines seem to flatten out. The averaged residual diplays a more smooth behaviour and
also decreases with increasing P . A somewhat similar behaviour with increasing spatial
resolution as with P -enrichment is shown by the error. In the behaviour of the residual
an anomaly can be seen when refining ∆x. For linear elements the residual seems to
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Figure 4: P -convergence of the error and averaged residual for ∆t = 0.05. The numbers are the absolute
values of the slope of the curves.

grow but decreasing the mesh size more was observed to lead to a decreasing residual.
Whereas with smooth problems exponential convergence can be expected this is not the
case here. For ∆x-refinement as well as P -enrichment algebraic convergence occurs. In
the clearly distinguishable convergent part of the lines the order of convergence of the
residual is around 1.5 and that of the error is around 1.0. Convergence with polynomial
enrichment is limited to algebraic convergence, because the underlying exact solution has
limited regularity, thus preventing exponential convergence.

4 CONCLUSIONS

The least-squares spectral element formulation with implicit time integration has been
applied to the one dimensional inviscid Burgers equation. An initial condition has been
used which gives rise to a solution where a moving shock develops. It has been observed
that for every case convergence of the error and residual occured. An interesting phe-
nomenon in the process of convergence was observed. In the initial phase of P -enrichment
on a mesh consisting of eight elements no convergence of the residual occurs and the error
even diverges before the final trajectory towards convergence is reached. The LS-SEM
approximation to the solution does show Gibbs-like oscillations but although no form
of damping/stabilization/upwinding is required these oscillations never grow beyond the
direct vicinity of the shock. Because of the very local nature of the large gradients in this
problem an hp-adaptive algorithm is expected to reduce the amount of degrees of freedom
in this problem considerably 11.
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