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ABSTRACT

Joint inversion of different geophysical methods is a powerful tool to overcome the limitations of

individual inversions. Body wave tomography is used to obtain P-wave velocity models by inversion of

P-wave travel times. Surface wave tomography is used to obtain S-wave velocity models through

inversion of the dispersion curves data. Both methods have inherent limitations. We focus on the joint

body and surface waves tomography inversion to reduce the limitations of each individual inversion. In

our joint inversion scheme, the Poisson ratio was used as the link between P-wave and S-wave

velocities, and the same geometry was imposed on the final velocity models. The joint inversion

algorithm was applied to a 2D synthetic dataset and then to two 2D field datasets. We compare the

obtained velocity models from individual inversions and the joint inversion. We show that the

proposed joint inversion method not only produces superior velocity models but also generates

physically more meaningful and accurate Poisson ratio models.

INTRODUCTION

Surface wave methods are usually used to retrieve

S-wave velocity models, and body wave tomography

(BWT) based on travel times inversion is used to

obtain P-wave velocity distribution. Regardless of the

chosen approach, inversion is an important step to

obtaining subsurface velocity models, and non-unique-

ness is an inherent problem of all geophysical

inversion methods (Menke, 1989). Surface wave

inversion is ill-posed and strongly nonlinear. In BWT,

some subsurface layers may not be recovered proper-

ly. This can be due to the presence of strong velocity

contrasts, velocity inversions, or thin layers (Reynolds,

1997).

Joint inversion approaches aim to reduce the

problems associated with geophysical data inversion.

In joint inversion methods, different types of geo-

physical data that contain complementary information

are inverted together to yield a more consistent final

model, which is representative of all the data.

Joint inversion approaches can be classified into

two main groups: structural and petrophysical joint

inversion (Garofalo, 2014). Structural-based methods

impose the same geometry on the model. On the

other hand, in petrophysical joint inversion approach-

es, not only the subsurface structure is considered the

same, but also model parameters are related to each

other through petrophysical relationships.

There are different approaches for structural

coupling in joint inversion. Gallardo and Meju (2003)

introduced cross-gradient as a structural constraint in

the joint inversion of direct-current resistivity and

seismic travel time data. Hu et al. (2009) employed

cross-gradient as the structural link between P-wave

velocity and electromagnetic data. Ogunbo et al.

(2018) applied joint inversion on seismic travel times

and the frequency domain electromagnetic data using

cross-gradient as the structural link. Paulatto et al.

(2019) used joint inversion of first arrival travel times

and gravity data with cross-gradient constraints to

model a magmatic system. Haber and Gazit (2013)

suggested another approach called joint total varia-

tion, in which the structural similarity was measured

based on the norms of the absolute spatial gradient

values of the models. Lien (2013) proposed a method

for the structural coupling of model parameters in

which the structure was considered as a transition

between dominating parameter values and inverted

for a common model parameter that represented the

structure in the different parameter fields.

Using petrophysical relationships, when available,

can further improve the joint inversion results. Ghose

and Slob (2006) showed improvements in non-

uniqueness problems exploiting petrophysical rela-

tionships in a joint inversion of ground-penetrating

radar and seismic reflection data. Gao et al. (2010)

used porosity as the physical link in the joint inversion

of seismic and EM data. They employed a petrophys-

ical relationship (Gassmann equation) to get the

porosity from P-wave velocities and then applied

Archie’s law to transform the computed porosities
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into resistivity values. Dell’Aversana et al. (2011)

applied empirical petrophysical relationships in their

joint inversion scheme to reduce the ambiguity of

well-log data interpretation. Moorkamp et al. (2011)

calculated conductivities and densities from P-wave

velocities using empirical relationships. Carter-McAus-

lan et al. (2015) demonstrated how fuzzy c-means

clustering could be used for coupling physical

properties in joint inversion. Wagner et al. (2019)

estimated the volumetric fractions of water, ice, air,

and the rock matrix from petrophysical joint inversion

of seismic refraction and electrical resistivity data.

Several researchers have applied different joint

inversion schemes in near-surface studies. Comina et

al. (2002) suggested a 1D joint inversion of surface

wave data and apparent resistivity based on the

layered model parameterization. Piatti et al. (2013)

proposed a 1D joint inversion scheme for surface

wave data and P-wave travel times. They demonstrated

that some low S-wave and P-wave velocity layers

which could not be detected by individual inversions

could be modeled using joint inversion. Garofalo et al.

(2015) suggested an algorithm for the joint inversion

among surface wave data, P-wave travel times, and

apparent resistivity data. They applied the structural

coupling among the methods, as well as the Poisson

ratio as the physical link between S-wave and P-wave

velocities.

The current paper focuses on the joint inversion

of surface wave tomography (SWT) and BWT with the

Poisson ratio as the physical link, using a layered

model parameterization strategy. The previous study

has demonstrated that BWT and 1D surface wave

analysis (SWA) can be merged in a joint inversion

scheme (Boiero and Socco, 2014). Here SWT replaces

SWA. In SWA, each dispersion curve (phase velocity as

a function of frequency) is assigned to one position

along the acquisition line, and since the final model is

a collection of 1D local models, it might be laterally

smoothed. However, in SWT, each dispersion curve

(DC) is estimated between a receiver pair, and the

forward operator considers the lateral variability in the

computation of the path-averaged slowness between

the receiver pair. Due to its ability to produce high-

resolution 2D or 3D S-wave velocity models, SWT has

recently gained considerable attention in near-surface

applications (Krohn and Routh, 2017; Papadopoulou

et al.,2020; Da Col et al., 2020, Khosro Anjom, 2021).

However, SWT inversion still suffers from ill-posed-

ness and non-uniqueness. This issue can be addressed

using the joint inversion of SWT and BWT.

In the remaining part of the paper, first, we

describe the applied algorithm, then we apply the

joint inversion scheme on 2D synthetic and field

datasets and compare the results with individual

inversions.

METHOD

The input data for the joint inversion of SWT and

BWT are dispersion curves and P-wave travel times

tt xr ; xsð Þ, respectively. Travel times are functions of

receiver position xr and source position xs . Here, the

travel times are manually picked on the seismograms. If

the S/N ratio of the recorded signal is poor at a receiver

location, which may happen particularly at far offset due

to attenuation, the travel time is not picked for the

corresponding trace. Dispersion curves are computed

using a modified two-station method (see Da Col et al.,

2020 for details). For a 2D line with nr being the number

of receivers, the total number of unique receiver pairs

are
nr�1ð Þ�nr

2
. Each dispersion curve dc xr ; fð Þ is extract-

ed between a pair of receivers alignedwith a source. The

lateral variations can be characterized by using this data

redundancy (Boiero and Socco, 2010).

The input data are integrated into the observed

data vector dobs as:

dobs ¼ dc xr ; fð Þ; tt xr ; xsð Þ½ �T : ð1Þ
The data uncertainty is described by the covari-

ance matrix Cobs as:

Cobs ¼
Cdc 0

0 Ctt

� �
; ð2Þ

where Cdc represents the covariance matrix of DC data,

Ctt is the covariance matrix for travel times. As it is often

assumed, the data covariance matrix, Cobs, is diagonal in

our case. However, Cobs may no longer be diagonal if

the modeling error is considered in the computation of

the data uncertainty (see Bai et al., 2021, for details).

The subsurface model is parameterized into a 2D set

of cells. In our 2D parameterization, the width of cells

and the number of layers nl should be defined. The

width of the cells does not change during the inversion

process. The height of each cell is a model parameter

and corresponds to the layer thickness h. Besides the

layer thickness, the model parameters at each cell are S-

wave velocity VS, P-wave velocity VP, and density q. We

assume that the density values are known as a priori

information. The vector of unknown model parameters

for the cell corresponding to the ith layer and the jth cell

along the horizontal axis is defined as:

mi;j hi;j ;VSi;j ;VPi ;j
� �

¼ hi;j ;VSi;j ;VPi ;j
� �

: ð3Þ

The unknown model parameters for the 2D media

are expressed by the matrix m2D :

m2D ¼
m1;1 h1;1;VS1;1;VP1;1

� �
. . . m1;k h1;k;VS1;k;VP1;k

� �
..
. ..

.

mnl ;1 hnl ;1;VSnl ;1;VPnl ;1

� �
. . . mnl ;k hnl ;k;VSnl ;k;VPnl ;k

� �

2
64

3
75;

ð4Þ
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where k is the number of defined cells along the

horizontal axis. The model parameters of the 2D

model m2D are re-organized into the model vector m
as:

m ¼ m1;1 h1;1;VS1;1;VP1;1

� �
; . . . ;

�
mnl ;k hnl ;k;VSnl ;k;VPnl ;k

� �
�: ð5Þ

The forward response fw mð Þ of the model m is

given by:

fw mð Þ ¼ fwSWT mð Þ
fwBWT mð Þ

� �
; ð6Þ

where fwSWT mð Þ and fwBWT mð Þ are the forward

response for SWT and BWT, respectively. In the

forward modeling of the surface wave tomography

fwSWT mð Þ, for each DC, the path between the

corresponding receiver pair is discretized to many

points (every 10 cm). For each frequency at each

point, the slowness is obtained as the linear

interpolation between the slowness of the two

surrounding cells. Then, for each frequency, the

path-averaged slowness is computed as the mean of

the slowness of all the discretized points. So, in SWT

forward modeling, differently from conventional

local 1D surface wave analysis, the lateral variations

along the path are also considered. The forward

response of BWT fwBWT mð Þ is computed by a 2D

finite difference method proposed by Noble et al.

(2014).

The inverse problem is solved by minimizing the

misfit function U; which is defined as:

U ¼ dobs � fw mð Þð ÞT C�1obs dobs � fw mð Þð Þ
h i
þ �Rmð ÞT C�1R �Rmð Þ
h i

ð7Þ

the variation of each model parameter between the

neighboring cells is controlled by the spatial regu-

larization matrix R, which has values ofþ1 and�1 for

the linked model parameters and zeros elsewhere.

The strength of this link is determined by the

covariance matrix of spatial regularization CR (see

Auken and Christiansen, 2004, for details). The values

of CR are chosen based on the available a priori

information. Stronger constraints lead to a smoother

final model. For weak, medium, and strong con-

straints, the values of CR can be set to 104, 1, and

0.01, respectively, and a value of 106 can be used to

remove the impact of the spatial regularization

(Boiero and Socco, 2010).

The model is updated at each iteration, aiming to

minimize the misfit function in Eq. 7. A quasi-Newton

damped least-squares algorithm (Tarantola, 1987) is

employed for the misfit minimization. At the nth

iteration, the model mn is updated to mnþ1 as:

mnþ1 ¼ mn

þ
GT

J C�1obsGJ þ RT C�1R R þ kI
h i�1

3 GT
J C�1obs dobs � fw mnð Þð Þ þ RT C�1R �Rmnð Þ

h i
0
@

1
A

ð8Þ
where k stands for the damping factor which stabilizes

the solution (for details, see Marquardt, 1963), and GJ

represents the sensitivity matrix of the data, which is

given by:

GJ ¼
GJ;SWT

GJ;BWT

� �
ð9Þ

where GJ;SWT and GJ;BWT are the sensitivity matrix of

SWT and BWT, respectively.

Since the elements of mn have different physical

dimensions and sensitivities can be different by

orders of magnitudes, normalization is important

for the stability of the results. Therefore, following

the normalization approach proposed by Boiero and

Socco (2014), all elements of mn, and all quantities

related to mn, such as GJ , are normalized with

respect to mn . Also, the dobs and the terms related to

it like fw mnð Þ and Cobs are normalized to dobs. At

each iteration of the joint inversion, it is possible

that the computed values of the Poisson ratio are not

physical (in the range of 0–0.5). If this problem

occurs, the damping factor is changed until at least

75% of all Poisson ratio values in the computed

model mnþ1 have physical values. Then, for each cell

with a non-physical Poisson ratio value, new P-wave

and S-wave velocities are computed by averaging the

corresponding values of the closest cells which have

physical Poisson ratio values. Having computed new

velocities for these grids, new Poisson ratio values

are computed. Having a physical Poisson ratio for all

cells, the inversion process continues to the next

iteration. The iterative process stops when either

the number of iterations exceeds 40 or the misfit

value of the updated model (mnþ1) decreases less

than 0.01% of the misfit value of the previous model

(mn).

Since all the following examples contain sharp

lateral variations, we set the values of the spatial

covariance matrix CR to 106 to damp the impact of

the spatial regularization. It should be noted that

there are different methods for spatial regulariza-

tion. For instance, some approaches promote the

sparse reconstruction of the model (see Vignoli et

al., 2021 for details). In this work, we focus on the

physical constraint in the joint inversion of SWT and

BWT, which acts as a smoothing operator for the

inversion cells with non-physical values of the

Poisson ratio.
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RESULTS AND DISCUSSIONS

Synthetic Example

The synthetic data have been generated using a

finite difference code (see Qin et al., 2020 for details).

The model presents a vertical uplift in the bottom-

right part of the model. The source emits a 20 Hz

Ricker wavelet. The receivers are located every meter

along the line, and there are 25 shots with 5 m

spacing. The seismic properties of the model are

presented in Table 1. The P- and S-wave velocity values

and the Poisson ratio distribution of the model are

shown in Figs. 1(a)–(c), respectively.

The dispersion curves were retrieved by applying

a modified two-station method (Da Col et al., 2020) to

different receiver couples. To select the receiver pairs,

the considered minimum distance between receivers

was 4 m, and the maximum distance was equal to 34

m. For each selected receiver couple, the obtained

cross-correlation matrices from different shots were

stacked to increase the signal-to-noise ratio. The travel

times were picked manually on the seismograms. A 1%

uncertainty was associated with all travel times data,

and the uncertainty values of the DC data are

computed based on the equation proposed by Passeri

(2019):

rV ¼ 0:2822e�0:1819f þ 0:0226e0:0077f
� �

� V ð10Þ

where V represents the phase velocity, rV is the

standard deviation of the phase velocity, and f is the

frequency. The estimated DCs and the picked first-

arrival times are depicted in Figs. 2(a) and 2(b),

respectively.

Initial model. A laterally homogeneous model

was defined as the initial model. The initial model

consisted of 3 layers, including the half-space. The

thickness of the first two layers was assumed to be 3

m. The initial seismic velocities were chosen close to

the true values. The seismic properties of the initial

model that was used in the inversion scheme are

presented in Table 2. The average relative error

between the initial VP and VS models and the true

model is 14.22 % and 16.55 %, respectively.

Inversion results. The considered width of the

inversion cells was 6 m. The initial model was updated

based on Eq. 8 until it satisfied the stopping criteria.

Very weak constraints were set for a priori informa-

tion so that mostly the experimental data contribute

to the solution. Hence, the value of the elements of CR

were set equal to 106. The same initial model was used

to perform individual inversions and joint inversions.

Figure 3 shows the normalized (per data number)

misfit U values at each iteration for individual and joint

inversions. Assuming the data are not redundant, the

larger the dataset, the harder it becomes to reduce the

misfit. Even though the joint inversion scheme deals

with a larger dataset, it generated a lower final misfit

Table 1 Geophysical parameters of the model (Karimpour et al.,
2021).

Layer VS (m/s) VP (m/s) h (m) q (g/cm3)

1 180 310 2 2

2 320 590 3–8 2.1

Half-space 480 950 – 2.2

Figure 1 (a) VS distribution of the true model, (b) VP distribution of the true model, and (c) Poisson ratio of the true model.

Table 2 Geophysical parameters of the initial model (Karimpour et
al., 2021).

Layer VS (m/s) VP (m/s) h (m) q (g/cm3)

1 200 300 3 2

2 300 600 6 2.1

Half-space 500 930 – 2.2
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than both individual inversions. This suggests that

there is indeed more information in combining the

two datasets than in either single dataset. The joint

inversion also stopped a few iterations before individ-

ual BWT (14 against 18 iterations).

The generated velocity models by joint inver-

sion and individual inversions are displayed in Figs. 4

and 5. As shown in Fig. 4, the second interface is

much better recovered in the joint inversion com-

pared to the individual SWT. In the case of individual

BWT inversion (Fig. 5(a)), the variation of the VP

values in the third layer is considerably high, with a

maximum velocity of more than 1,600 m/s, which is

far from the true value (950 m/s). This variation is

reduced significantly by applying the joint inversion

algorithm (Fig. 4(b)). The velocity models in Figs. 4

and 5 are used to compute an average error relative

to the true velocity models. The obtained velocity

models from the joint inversion algorithm have lower

average errors with respect to individual inversion

results. In the case of VS models (Fig. 4), the joint

inversion produces a model with an average error

equal to 8.62%, while this error for the VS model

from individual SWT is 12.51%. For VP models (Fig.

5), the average errors for the models from joint

inversion and individual BWT are 8.49% and 9.06%,

respectively. The obtained velocity models from

individual SWT and BWT inversions are used to

compute a Poisson ratio distribution (Fig. 6(a)). This

Poisson ratio model contains non-physical values in

many locations. However, the generated Poisson ratio

model from the joint inversion (Fig. 6(b)) is both

physically meaningful and close to the true model.

Even though the initial model has Poisson ratio values

that are far from the true values (average error of

22.4%), the obtained Poisson ratio from the joint

inversion algorithm is, with an average error of 5.2%,

substantially more accurate than the individual

inversions.

Field Example 1: CNR

Site description and field data. The field data

were acquired at the National Research Council

(CNR) headquarter in Turin, Italy. The site consists

of compacted sand and gravel formation surrounding

an artificial loose sand body. The extent of the sand

body is an area of 5 m 3 5 m at the surface, with the

maximum depth equal to 2.5 m.

The data were acquired along a 2D line crossing

the sand body. The acquisition was carried out using

an 8 kg hammer source in 11 positions. The data were

recorded using 72 vertical 4.5 Hz geophones with 0.3

m spacing. A detailed description of the dataset can be

found in Teodor et al. (2017). The acquisition outline

is depicted in Fig. 7.

Dispersion curves were estimated using the

modified two-station method (for details, see Da Col

et al., 2020). The chosen minimum and maximum

distances for the selection of receiver pairs were equal

Figure 2 The input data for the inversion process: (a) all extracted dispersion curves and (b) picked P-wave travel times.

Figure 3 Comparison of the normalized misfit value at each
iteration for different inversions.
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to 2.1 m and 9.9 m, respectively. All the extracted DCs

and the picked travel times are shown in Fig. 8. The

frequency band of the DCs varies from 11 Hz to 86 Hz,

and the wavelength ranges from 0.68 m to 77 m. The

assigned uncertainties of the travel times are 1%, and

the experimental uncertainties of the DCs are

computed using Eq. 10.

Model parameterization and the initial
model. The defined initial model was laterally

homogeneous. The assigned width of all cells was 1

m. The assigned number of layers was equal to 5

(including the half-space). The thickness of all layers

was assumed to be 1 m. The values of the spatial

covariance matrix CR were set equal to 106. To obtain

Figure 4 VS models from (a) individual SWT inversion and (b) BWT and SWT joint inversion.

Figure 5 VP models from (a) individual BWT inversion and (b) BWT and SWT joint inversion.
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the initial VS values, the DC with the broadest

frequency band was plotted as a function of pseudo-

depth (half-wavelength), and the phase velocities

were averaged in the pseudo-depth range correspond-

ing to each layer interval. The initial Poisson ratio

values were set equal to 0.33 for all layers. The initial

VP model was derived from the computed initial VS

and Poisson ratio values. The initial model parameters

are reported in Table 3.

For each estimated DC, the wavelength values

were computed, and the wavelength coverage was

obtained by computing the number of rays crossing

each cell of the initial model (Fig. 9(a)). The ray path

of travel times corresponding to the initial VP model is

displayed in Fig. 9(b). Very weak constraints were set

for a priori information so that mostly experimental

data contribute to the solution.

Inversion results. Individual and joint inver-

sions were carried out on the same initial model, a

priori information, and constraint values. The normal-

ized misfit values for different inversions, as a function

of iteration number, are displayed in Fig. 10, and the

obtained velocity models are displayed in Figs. 11 and

12. Figure 10 shows that the joint inversion algorithm

has both a lower misfit value and faster convergence

than individual BWT inversion. The SWT inversion

seems to get trapped in a local minimum, whereas the

joint inversion gives a better VS model, even though

with a slightly higher misfit value. This suggests a

modification of the solution space and hence the

benefit of extra information in the integration of the

two datasets. Although the velocity contrast between

the sandbox and the rest of the subsurface can be

observed in the models from individual inversions, the

joint inversion velocity models provide a much clearer

image of this contrast. Moreover, the gradual increase

of the velocities with depth inside the sand body is

more obvious in the joint inversion results (Figs. 11(b)

and 12(b)). Furthermore, the smooth lateral variation

of the depth boundary of the sand deposit is well

recovered by the joint inversion algorithm.

Figure 6 The obtained Poisson ratio model from (a) individual inversions and (b) BWT and SWT joint inversion.

Figure 7 Acquisition outline of the field data.
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Figure 13 depicts the ray path of the travel times

corresponding to the VP models in Fig. 12. As

mentioned previously in the method section, during

the joint inversion process, some cells may have non-

physical Poisson ratio values. This problem can be

solved by averaging the velocities of adjacent cells or

changing the damping factor. Figure 14 shows that

only a couple of cells in the last iteration of the joint

inversion have non-physical Poisson ratio values.

Hence, new velocities for each of these cells were

computed by averaging the velocities of the neigh-

boring cells. The obtained Poisson ratio distribution

from individual inversions and joint inversion is shown

in Fig. 15. The computed Poisson ratio model from

individual consists of non-physical values in several

locations. However, the obtained Poisson ratio values

Figure 8 Input data for the inversion: (a) dispersion curves, (b) first arrival times.

Figure 9 (a) The wavelength coverage of the retrieved DCs, (b) The ray path of the travel times corresponding to the initial VP model.

Table 3 Initial model properties for the physical joint inversion.

Layer h (m) q (g/cm3) m VS (m/s) VP (m/s)

1 1 2 0.33 100 200

2 1 2 0.33 120 240

3 1 2.1 0.33 150 300

4 1 2.1 0.33 190 380

Half-space – 2.2 0.33 260 520
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from the joint inversion algorithm (Fig. 15(b)) do not

suffer from this problem.

Field Example 2: Pijnacker

Site description and data acquisition. The

data were acquired in a field close to Pijnacker,

Netherlands. The available well data (Fig. 16) show

that the field consists of clay, peat, and sand. The

source was a vibrator that emitted a linear sweep

signal from 2 to 100 Hz for 5 s at a force level of 1,150

N. The data were recorded by 120 vertical 4.5 Hz

geophones with 0.5 m spacing and 16 shot points with

5 m spacing (Fig. 16). The DCs were extracted from

the raw data using an auto-picking code (Papadopou-

lou, 2021). Theoretically, a maximum number of 7140

pairs could be estimated from the 120 receivers. The

code computes the DC for every possible receiver

pair. Since the DC is an inherently smooth function

between the phase velocity and frequency, if the

smoothness of a DC shows ‘breaks’, it is rejected.

Moreover, an automatic quality control (QC) ap-

proach is applied to the automatically picked DCs. A

sub-set of the DCs is also picked manually, and the

similarity of the automatically picked DCs to the

manually picked DCs is evaluated. Then, the automat-

ically picked DCs with low-quality are rejected (see

Papadopoulou, 2021, for details). Due to the low

quality of the data, a significant amount of the DCs

were rejected, and only 175 DCs were obtained with a

frequency band of 11–78 Hz and wavelengths be-

tween 0.7 m and 74.8 m. All the picked travel times

and DCs are displayed in Fig. 17. The uncertainties of

the DCs are computed using Eq. 10, and the travel

times are assigned 1% uncertainties.

Model parameterization and the initial
model. An 8-layer laterally homogeneous model was

defined as the initial model. The cell width was equal

to 1 m for all cells. The thickness was 1 m for the first

four layers and 2 m for the deeper layers. The DC with

the broadest frequency band was plotted as a function

of pseudo-depth (half wavelength), and the mean

value of the phase velocities in the pseudo-depth

range corresponding to each layer interval was

computed to obtain the initial VS model. The initial

Figure 10 Comparison of the normalized misfit value at each
iteration for different inversions.

Figure 11 The obtained VS models are superimposed with the sand body shape in red from (a) individual SWT inversion and (b) BWT and SWT
joint inversion.
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Poisson ratio values were defined as 0.3 for the first

four layers and 0.4 for the deeper portions of the

model. The initial VP values were computed from the

obtained VS and Poisson ratio values. Also, in this case,

the values of the covariance matrix CR were set equal

to 106. Figure 18 shows the initial velocity models.

Inversion results. The same initial model and a

priori information were used for joint and individual

inversions. Figure 19 displays the normalized misfit

values as a function of iteration. It shows that the final

misfit of joint inversion is slightly higher than

individual SWT and that it has faster convergence

and lower misfit than individual BWT. The obtained

velocity models are depicted in Figs. 20 and 21.

A previous full-waveform inversion study was

performed in a clay field near to Pijnacker in which

Figure 12 The obtained VP models with the sand body shape superimposed in red lines. VP models from (a) individual BWT inversion and (b) BWT
and SWT joint inversion.

Figure 13 The ray path of first-arrival times from (a) individual BWT inversion and (b) BWT and SWT joint inversion. The sand body shape is
shown in black lines.
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the estimated VS values were in the range of 40–80

m/s (Bharadwaj et al., 2015). This range of VS value

can be seen in the obtained VS models from both

individual SWT and joint inversion (Figs. 20(a) and

20(b)), particularly in the shallower portions. This

range of VS can be indicative of layers of clay and peat,

and the levels with higher VS values (120–150 m/s)

are associated with sand layers. In the most parts of

the obtained VS model from individual SWT (Fig.

20(a)), higher VS values exist at the depth interval of

4–9 m, while in the VS model from joint inversion (Fig.

20(b)), the higher VS values mainly exist at levels

either deeper than 10 m or depth interval of 4–6 m. In

the obtained VP model from joint inversion (Fig.

21(b)), there are two high VP layers. The uppermost

one is approximately at the depth interval of 4–6 m

and agrees with well data (well A in Fig. 16(b)), where

the sand layer extends from 4–6.5 m, followed by peat,

where the VP values decrease significantly. Even

though the well data are not available for depths

more than 7 m, the high VP layer at a depth deeper

than 10 m probably represents the sand since the

velocity is close to the shallower high VP layer. The

two sand layers are retrieved clearer in the obtained

VP model from joint inversion (Fig. 21(b)) than

individual BWT (Fig. 21(a)). Figure 22 depicts the

corresponding computed ray paths for the VP models

in Fig. 21.

Figure 22 shows that the shallower sand layer has

been better retrieved by the joint inversion (Fig.

22(b)) than individual BWT inversion, particularly at

positions between 45 m and 63 m. The computed

Poisson ratio models are shown in Fig. 23, and

individual inversion leads to unrealistic values, partic-

ularly at the shallow depth where the formation is

highly heterogeneous (Fig. 23(a)). The joint inversion

algorithm, on the other hand, produced a physically

meaningful distribution of the Poisson ratio (Fig.

23(b)) in the whole medium.

Figure 14 The cells with non-physical Poisson ratio values in the last iteration of BWT and SWT joint inversion are shown in black.

Figure 15 The computed Poisson ratio distribution from (a) individual BWT and SWT inversions and (b) BWT and SWT joint inversion. The shape
of the sand deposit is depicted in red lines. The blocks in black or white have non-physical Poisson ratio values.
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Figure 16 (a) Acquisition scheme and locations of available wells, (b) examples of available well data near to the field.

Figure 17 Input data for the inversion. (a) estimated DCs, (b) first arrival times.

Figure 18 Initial velocity models for the inversion. (a) VS model, (b) VP model.
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CONCLUSIONS

We have proposed a joint inversion algorithm to

invert dispersion curves and P-wave travel times data

to obtain 2D velocity and Poisson ratio models. We

have shown that the constructed P-wave and S-wave

velocity models by joint inversion of BWT and SWT

appear more realistic than individual inversions. From

applying the proposed algorithm to synthetic and field

datasets, we conclude that the proposed joint

inversion scheme produces better subsurface velocity

models in terms of recovering layer interfaces and

velocity values. The proposed joint inversion algo-

rithm builds physically more meaningful Poisson ratio

models, which can retrieve the Poisson ratio distribu-

tion accurately. As a future work, we recommend

applying the proposed joint inversion algorithm to 3D

datasets and investigating the impact of employing

spatial regularization methods.

Figure 19 Normalized misfit value as a function of iteration for
different inversions.

Figure 20 The obtained VS models from (a) individual SWT inversion and (b) BWT and SWT joint inversion.

Figure 21 VP models from (a) individual BWT inversion and (b) BWT and SWT joint inversion.
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