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Flexural waves play a significant role for the radiation of sound from plates. The analysis of flexural

wave fields enables the detection of sources and transmission paths in plate-like structures. The

measurement of these wave fields can be carried out indirectly by means of near-field acoustic hol-

ography, which determines the vibrational wave field from pressure information measured in a

plane close to the plate under investigation. The reconstruction of the plate vibration is usually

obtained by inverting the forward radiation problem, i.e., by inversion of an integral operator. In

this article, it is shown that a pressure measurement taken in the extreme near-field of a vibrating

plate can directly be used for the approximate analysis of the dispersive flexural wave field. The

inversion step of near-field acoustic holography is not necessarily required if such an approximate

solution is sufficient. The proposed method enables fast and simple analysis of dispersion character-

istics. Application of dispersion compensation to the measured field allows for visualizations of

propagating wavefronts, such that sources and scatterers in the plate can be detected. The capabil-

ities of the described approach are demonstrated on several measurements.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3626164]
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I. INTRODUCTION

Dispersive flexural waves play a significant role in the

radiation of sound from constructions made of plates or

plate-like structures.1 The insight gained from their analysis

can be used to cope with problems related to structural vibra-

tion and sound radiation. The measurement of flexural wave

fields can be carried out indirectly by means of planar near-

field acoustic holography (NAH). The vibration of the plate

is thereby reconstructed from measurements of pressure2 or

particle velocity3 in a plane close to the vibrating plate.

Acoustical holography constitutes an ill-posed inverse prob-

lem requiring regularization.4 Several authors have proposed

additions and improvements in order to obtain accurate

reconstructions5 and improve the robustness to noise.6

However, it can be shown that essential information on

the dispersive flexural wave field is contained directly in the

pressure measurement taken in the near-field. A useful

approximation of the surface normal velocity can be

obtained from the pressure measurement by a simple filter-

ing operation, thereby circumventing the solution of an ill-

posed inverse problem. This relatively simple approach is

sufficient for a number of applications. For example, the dis-

persion characteristics of the medium under investigation

can be determined. Furthermore, it is possible to visualize

the propagation of wavefronts in combination with techni-

ques for dispersion compensation,7 thereby enabling the

analysis of wave propagation in the plate and the detection

of scatterers and reflectors.

Direct measurements on flexural wave fields at single

points can be carried out using accelerometers, for instance.

For the measurement of an entire wave field, a virtual array,

i.e., a system in which a single sensor can easily be reposi-

tioned, has to be preferred. Whereas direct measurements of

flexural wave fields using laser vibrometry achieve high

speed and accuracy, albeit at substantial hardware costs, the

usage of a microphone for near-field measurements provides

a relatively cheap solution for vibration analysis.

The proposed approach makes use of this basic mea-

surement setup needed for acoustic holography. However, it

abandons the associated cumbersome inversion of an integral

operator by introducing a simplified point-to-point corre-

spondence between the flexural wave field and a pressure

measurement taken in the extreme near-field of the plate.

The validity of this approximation is shown to depend on the

distance between the plate and the plane in which the pres-

sure measurement is taken.

The theory of near-field acoustic holography is outlined

in Sec. II A, followed by the derivation of an approximation

for the extreme near-field. The application of the proposed

approach to vibration analysis in plates is described in

Secs. II B and II C, and followed by the presentation of

a method for the removal of the effects of dispersion in

Sec. II D. The performance on measurements is tested and

demonstrated in Sec. III, followed by discussion and

conclusions.

II. THEORETICAL BACKGROUND

A. Planar near-field acoustic holography

The pressure Pðx;xÞ in a point x ¼ ðx; y; zÞT at the

angular frequency x due to a plate vibrating with normal
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velocity Vzðx0;xÞ can be calculated using the Rayleigh

integral:8

Pðx;xÞ ¼ 2jxq
ð

S

Vzðx0;xÞGðx; x0;xÞdS; (1)

with S denoting the plate surface over which the integral is

taken, q being the density of air, and Gðx; x0;xÞ being the

three-dimensional free-field Green’s function for acoustical

waves:

Gðx; x0;xÞ ¼
e�jkjx�x0j

4pjx� x0j
; (2)

with j being the imaginary unit (j ¼
ffiffiffiffiffiffiffi
�1
p

) and k represent-

ing the wavenumber k ¼ x=c, c being the velocity of sound

in air. The x- and y-direction are the in-plane directions. The

z-direction is perpendicular to the plate, such that

Dz ¼ jz� z0j describes the distance between the vibrating

plate and the plane in which the measurements are taken.

The geometry of this setup is shown in Fig. 1.

The reconstruction of the surface normal velocity

Vzðx0;xÞ from pressure measurements Pðx;xÞ requires the

inversion of Eq. (1). This equation is a Fredholm integral

equation of the first kind describing a spatial convolution

with the Green’s function. The inverse problem of near-field

acoustic holography can, therefore, be interpreted as a

deconvolution problem. Its ill-posed nature requires regulari-

zation to avoid the excessive amplification of noise.6

1. Approximation in the extreme near-field

The Rayleigh integral given by Eq. (1) states that all

points in the source plane have influence on all points in the

measurement plane. However, this influence is weighted by

the amplitude of the Green’s function. Eq. (2) shows that

this amplitude depends inversely on the distance d between a

point in the source plane and the measurement plane.

jGðx; x0;xÞj /
1

d
; with d ¼ jx� x0j: (3)

By taking the distance Dz between the plate and the mea-

surement plane as a parameter, the influence of a point

on the vibrating plate on a point in the measurement plane

can be expressed in terms of the in-plane distance

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
as shown in Fig. 1:

jGðx; x0;xÞj /
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðDzÞ2
q : (4)

Figure 2 presents a plot of this function for different distan-

ces Dz between the source plane and the measurement plane.

As expected, the closest point on the vibrating plate has

the strongest influence on the measurement. It can be seen

that the influence of neighboring points decays rapidly with

increasing in-plane distance r. This is especially the case if

the measurement is taken in the extreme near-field, i.e., at

close proximity to the vibrating plate. As an example, a grid

of 1 cm spacing for measurement and reconstruction is con-

sidered. If the measurement is taken at a distance of 3 mm

from the plate, for instance, the influence of a neighboring

point is found to be more than 10 dB lower than the influ-

ence of the point on the plate which is closest to the

microphone.

The extreme near-field can be defined by requiring a

certain quotient 0 < Q < 1 describing the relative influence

of neighboring measurement points with distance r. The

maximal measurement distance Dzmax can then be derived

from Eq. (4):

Dzmax ¼
rQffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Q2
p : (5)

If the minimal difference in influence between neighboring

points is chosen to be 6 dB, i.e., Q ¼ 0:5, Eq. (5) can be

used to derive that the maximum distance Dzmax for meas-

urements is approximately 5.8 mm for a grid spacing of

r ¼ 1 cm.

Hence, in rough approximation, the contribution of the

surrounding points can be neglected in the extreme near-

field. Equation (1) is then simplified:

FIG. 1. Geometry used for the description of near-field acoustic

holography.

FIG. 2. Influence of a point in the source plane on a point in the measure-

ment plane depending on the in-plane distance r for several values of the

measurement distance Dz. The plots are normalized with respect to the value

at the closest point (r¼ 0).
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Pðx; y; z;xÞ � jxqe�jkDz

2pDz
Vzðx; y; z0;xÞ: (6)

This simplification leads to a direct relation between the

measured pressure in the extreme near-field and the normal

velocity of the closest point on the vibrating plate: Eq. (6)

establishes a pointwise correspondence between the measure-

ment plane and the reconstruction plane. This straightforward

approach can be sufficient to retrieve the desired information

on the vibration of the plate from the measurement.

The approximation can be analyzed by comparing

Eq. (6) to the operator for radiation from a plate in the wave-

number-frequency domain as given by Williams:9

~Pðkx; ky; z;xÞ ¼
xq
kz

e�jkzDz ~Vzðkx; ky; z0;xÞ; (7)

with

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x � k2
y

q
: (8)

Here, ~Pðkx; ky; z;xÞ and ~Vzðkx; ky; z0;xÞ are the two-dimen-

sional spatial Fourier transforms of Pðx; y; z;xÞ and

Vzðx; y; z0;xÞ, respectively:

~Pðkx; kyÞ ¼
ð1
�1

ð1
�1

Pðx; yÞejðkxxþkyyÞdxdy: (9)

The link between planar near-field acoustic holography and

the approximation given by Eq. (6) can be established using

Weyl’s integral:10

e�jkr

r
¼ �j

2p

ð1
�1

ð1
�1

e�jðkxxþkyyþkzDzÞ

kz
dkxdky: (10)

By setting x¼ 0 and y¼ 0, the following relation is obtained:

j

2p
e�jkDz

Dz
¼ 1

4p2

ð1
�1

ð1
�1

e�jkzDz

kz
dkxdky: (11)

It can be seen that this expression provides the connection

between Eq. (6) and Eq. (7). Therefore, the proposed approx-

imation can be interpreted as averaging of the wavenumber

spectrum in the spatial wavenumber domain as expressed by

the right-hand side of Eq. (11). The wavenumber domain

provides a plane wave decomposition of the acoustical field.

Whereas for planar NAH, plane waves are assumed to propa-

gate from the source plane to the measurement plane under

all possible angles, the approximation given by Eq. (6)

restricts the propagation of waves to the direction normal to

the planes.

It is clear that this approximation cannot be used for

accurate reconstruction of the normal velocity from the pres-

sure measurement. For the qualitative analysis of the wave

field, however, the perfect reconstruction of the normal ve-

locity is not necessarily required. Typical applications

include the retrieval of the dispersion relation and the detec-

tion of sources, reflectors and scatterers. In these cases, the

desired information can directly be extracted from the pres-

sure measurement using the simple inverse of Eq. (6):

Vzðx; y; z0;xÞ �
2pDz

jxq
ejkDzPðx; y; z;xÞ: (12)

Hence, an estimate of the surface normal velocity can be

obtained without the inversion of a convolution operator as

demanded by Eq. (1). However, since Pðx; y; z;xÞ and

Vzðx; y; z0;xÞ are related by the frequency x, care must be

taken in order to avoid the excessive amplification of noise

at low frequencies when reconstructing the normal velocity

using Eq. (12). In Sec. III, some typical applications of this

approach are presented.

B. Flexural waves

The transverse motion of wave fields in plates can be

described by the biharmonic equation for flexural waves:1

r4 � k4
B

� �
u ¼ 0; (13)

with u being the normal displacement and kB being the flex-

ural wavenumber depending nonlinearly on the frequency as

shown by the dispersion relation:

kB ¼
x

cðxÞ ¼
ffiffiffiffi
x
p

A
: (14)

Here, A is the so-called dispersion constant:

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2E

12qð1� �2Þ
4

s
; (15)

with h representing the plate thickness, E being the Young’s

modulus, q being the mass density, and � representing the

Poisson constant of the plate material.

The phase velocity c for flexural waves depends on the

frequency x:

cðxÞ ¼ A
ffiffiffiffi
x
p

: (16)

In a dispersive medium, a wavefront caused by an impulsive

source signal tends to spread out during propagation. This

leads to decreasing resolution with increasing distance from

the source. In order to cope with this effect, it is first of all

necessary to determine the dispersion characteristics.

C. Retrieval of the dispersion relation

The dispersion properties of a wave field can be deter-

mined by sampling the wave field in both space and time

(x; y; t). Application of Fourier transforms to both the tempo-

ral and the spatial dimensions leads to a representation in the

wavenumber-frequency (kx,ky,x) domain. Here, kx and ky

are the spatial Fourier variables, and x is the Fourier vari-

able associated with time.

Transformation of Eq. (13) to the wavenumber-fre-

quency domain leads to the following condition for plane

propagating waves:
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k2
B ¼ k2

r ¼ k2
x þ k2

y : (17)

Note that kB is used to designate the wavenumber emanating

from the wave equation, whereas kr represents a Fourier

variable with respect to the radial spatial direction. For prop-

agating plane waves, these two variables are equal. Hence,

the flexural wavenumber kB and the dispersion relation can

be determined from a wavenumber-frequency representation

of a wave field containing propagating waves.11

The dispersion relation for flexural waves is given by a

parabolic curve described by Eq. (14). For acoustical waves,

however, the relation between wavenumber and frequency is

linear. Both curves are shown in Fig. 3 for a plate of 4 mm

medium density fiberboard (MDF) as used for the experi-

ments in Sec. III further below.

The acoustical radiation is known to be caused by the

flexural motion of the plate. The air surrounding the plate

can thereby be regarded as a spectral filter: only components

of the flexural field within the shaded region in Fig. 3 cause

radiation into the far-field. At the coincidence frequency, the

phase velocities of flexural waves in the plate and longitudi-

nal waves in air are equal. Flexural waves below the coinci-

dence frequency create evanescent acoustical waves, which

do not radiate into the far-field and can only be measured at

a distance of typically less than a wavelength from the plate.

For the analysis of the vibrations in the plate, only the

flexural wave field is of interest. Therefore, it is desirable to

minimize or even remove the effect of propagation from the

plate to the receiver. Near-field acoustic holography, on the

one hand, tries to invert entirely the process of propagation

through air. The vibrational field causing the measured radia-

tion is thereby retrieved. As explained above, this method is

based on the inversion of the integral operator in Eq. (1),

which can be carried out either in the spatial domain or in

the wavenumber domain, leading to an ill-posed problem

requiring regularization in both cases.

The approach presented in this paper, on the other hand,

suggests to change the physical measurement in such a way

that the simple, approximate relation between measured

pressure and estimated surface normal velocity described by

Eq. (12) can be applied. It is clear that the correctness of the

reconstruction obtained from this method depends on the

degree to which the requirement of proximity between plate

and receiver is fulfilled. The effects of propagation not com-

pensated for contribute as ‘noise’ to the result. Due to the

causal relation between flexural waves and acoustical radia-

tion, it has to be expected that this ‘noise’ is correlated with

the desired information.

D. Dispersion compensation

If the dispersion characteristics of the medium under

investigation are known, it is possible to compensate for the

effects of dispersion. Methods for dispersion compensation

are well-known in the fields of optics12 and non-destructive

material inspection.7 The result of this procedure does no

longer represent a flexural wave field. Instead, an analogous

wave field occurring in a non-dispersive medium is obtained.

This enables the observation of wavefronts, thereby helping

the interpretation of the wave field. Scatterers and reflectors

that are difficult to recognize in the measured wave field can

easily be detected in the dispersion-free representation.

A common approach for dispersion compensation is

given by transforming the measured time signal to a spatial

function of source-to-receiver distance. This can be achieved

by means of a mapping from frequency to wavenumber. A

plane flexural wave UðxÞ propagating in one dimension is

chosen for the derivation. The phase spectrum of a propagat-

ing flexural wave depends nonlinearly on the frequency:

UðxÞ ¼ SðxÞe�j½x=cðxÞ�r0 ¼ SðxÞe�jð
ffiffiffi
x
p

=AÞr0 ; (18)

with SðxÞ being the signal spectrum and r0 being the dis-

tance between the source position and the receiver position.

The dispersive temporal signal can be obtained by appli-

cation of an inverse Fourier transform:

uðtÞ ¼ 1

2p

ð1
�1

SðxÞe�j½x=cðxÞ�r0 ejxtdx: (19)

By performing a mapping from frequency x to wavenumber

kB using the dispersion relation given by Eq. (14), the phase

spectrum can be made linearly dependent on the Fourier

variable. It is seen from Eq. (17) that the wavenumber kB

can be replaced by a spatial Fourier variable kr for plane

propagating waves. Substitution of the integration variable x
by kr leads to the following equation:

uðrÞ ¼ 1

2p

ð1
�1

S½krðxÞ�e�jkrr0 ejkrr @x
@kr

dkr: (20)

In this equation, the frequency spectrum of the received sig-

nal is interpreted as a wavenumber spectrum by means of the

mapping described by Eq. (14). This mapping has conse-

quences for the result of the integral, too. Instead of being

caused by a certain time of flight between source and re-

ceiver, events in the received signal are now related to a

source-to-receiver distance expressed in terms of the spatial

FIG. 3. Dispersion curves for flexural waves in a medium density fiberboard

(MDF) plate of 4 mm thickness as used for the experiments in Sec. III and

for acoustical waves in air at room temperature; the shaded region contains

the components that are radiated into the far-field; evanescent components

can be measured only close to the plate. The coincidence frequency is indi-

cated by circles.
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wavenumber spectrum SðkrÞ. Therefore, the temporal signal

on the left-hand side of Eq. (19) is replaced by a spatial sig-

nal u(r) at the left-hand side of Eq. (20). However, the map-

ping itself has to be carried out from the temporal frequency

to the spatial wavenumber domain due to the phase velocity

being frequency-dependent. This processing step has to be

applied to every receiver signal.

The inverse Fourier transform described by Eq. (20)

results in a spatial signal containing a wavelet at the position

corresponding to the distance r0 between source and

receiver:

uðrÞ ¼ dðr � r0Þ �
1

2p

ð1
�1

S½krðxÞ�
@x
@kr

ejkrrdkr

� �
¼ dðr � r0Þ � sðrÞ; (21)

with d being the Dirac d function, the asterisk denoting con-

volution, and s(r) being the inverse spatial Fourier transform

of S½krðxÞ�@x=@kr. Dispersive temporal information is thus

mapped to non-dispersive information on source-to-receiver

distance. For every receiver, a spatial signal is obtained

which provides a pseudo representation of the wave field as

if it had occurred in a non-dispersive medium. The spectral

correction factor @x=@kr ensures the conservation of spec-

tral energy densities, but can be omitted from a signal proc-

essing point of view.13

This method for dispersion compensation is approximately

valid for two-dimensional wave fields, too. In the far-field, a

point source can be approximated by a combination of plane

waves. The main difference to the above derivation is given by

the distance-dependent attenuation factor
ffiffiffiffi
r0
p

for point sour-

ces, which has to be taken into account. Therefore, the resulting

wave field after dispersion compensation decays accordingly.

Figure 4 illustrates the idea of dispersion compensation

by spectral mapping. It can be seen that for a discrete imple-

mentation, interpolation of the spectrum is required.

III. APPLICATION TO MEASUREMENTS

The proposed approach was verified by application to

measurements taken on a medium density fiberboard (MDF)

plate of 50 by 80 cm with a thickness of 4 mm. The plate

was excited by means of a small shaker (Brüel & Kjær type

4810) with a linear sweep excitation signal up to 15 kHz

with a duration of 1 s. A deconvolution filter was applied to

the measured signals in order to determine the impulse

response. The radiated pressure is measured in a plane at a

distance of 5 mm from the plate on a grid of 70 by 100 cm

with a spacing of 1 cm using a 1/4 in. microphone (Brüel &

Kjær type 4136). Figure 5 shows the plate, the point of exci-

tation, and two small wooden beams glued to the plate in

order to create scattered and reflected flexural waves.

A. Determination of the dispersion relation

Figure 6 presents the measured pressure information in

the wavenumber-frequency domain. A slice at ky ¼ 0 is

shown. It is known that the flexural wavenumber kB of

waves propagating in the plate and the in-plane component

kr in the measurement plane above the plate are equal to

each other due to continuity conditions at the plate surface.1

For the slice at ky ¼ 0 shown in Fig. 6, Eq. (17) states that

kB ¼ kx. Therefore, the dispersion relation for the flexural

field can directly be retrieved from this slice of the pressure

measurement in the wavenumber-frequency domain. The

measurement is taken close enough to the plate to contain

evanescent components, which reveal the dispersion relation

of the flexural field below the coincidence frequency.

The dispersion relation can be determined by fitting a

curve to the measurement depicted in Fig. 6. The phase ve-

locity of the flexural waves in the plate is shown in Fig. 7; it

is obtained from the measured dispersion relation by means

of Eq. (14). This information can subsequently be used for

FIG. 4. Illustration of dispersion compensa-

tion by mapping from frequency to wave-

number. The phase spectrum is linearized,

leading to a compact spatial output signal

containing information about the distance

between source and receiver (Ref. 13).
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dispersion compensation as described in Sec. II D and dem-

onstrated in the following section.

B. Visualization of the wave field

An approximate reconstruction of the normal velocity

obtained by Eq. (12) is shown in Fig. 8(a). Due to the effects

of dispersion, there are no clear wavefronts visible. Figure

8(b) shows a reconstruction of the normal velocity of the

plate obtained by near-field acoustic holography, which is

used for comparison with the proposed approach. The NAH

result is obtained by inversion of the Rayleigh integral given

by Eq. (1). To this end, the forward and adjoint operators of

the operation described by the Rayleigh integral are formed.

A conjugate gradient scheme is then used to obtain an esti-

mate of the normal velocity. The inversion is carried out in

the spatial domain in order to avoid truncation effects and

spectral leakage.14

Ideally, the normal velocity outside the unbaffled plate

should be several orders of magnitude smaller than the normal

velocity on the plate.15 However, it can be observed in Fig. 8(b)

that there are significant wave field components in the recon-

structed velocity outside the plate, i.e., within a region of 10 cm

width surrounding the plate. This is due to several reasons. First

of all, the reconstruction of the surface normal velocity is

imperfect since the measurement distance of 5 mm can only be

kept approximately for the entire plate. Furthermore, there are

waves which are radiated from the far side of the plate and

reach the microphone after being reflected from the floor of the

semi-anechoic room used for the measurements.

In a subsequent step, the method for dispersion compen-

sation presented in Sec. II D is applied to the reconstructed

surface normal velocities obtained by application of Eq. (12)

and by NAH. For optimal resolution of the wave fronts in a

visual representation, the spectrum of the wave field should

be approximately flat. Therefore, the spectra of both recon-

structions are adjusted equally by application of a filter aim-

ing for flat amplitude spectra.

The results are shown in Fig. 8(c), for the approximate

reconstruction of the normal velocity according to Eq. (12),

and in Fig. 8(d), for the NAH reconstruction. It can be seen

that the visualizations of both approaches do not differ too

much after dispersion removal. In both cases, it is possible to

see the reflections from the plate boundaries and to identify

the circular wavefront caused by the scatterer on the plate.

Figure 9 shows the same visualizations as Fig. 8 at a

later point in time. The effects of dispersion are worse, and

compensation is required even more in order to be able to

analyze the observed wave field. Once more, the additional

effort of inverting the Rayleigh integral for the reconstruc-

tion of the surface normal velocity does not provide informa-

tion that cannot be obtained from the pressure measurement

by application of the approximate point-to-point relation

given by Eq. (12). In both Figs. 9(c) and 9(d), the reflection

from the wooden beam glued to the plate can be observed.

IV. DISCUSSION

It has been shown that an approximate reconstruction of

the normal velocity based on pressure measurements taken

in the extreme near-field can be used for the visualization of

the wave field in the plate. It enables the detection of trans-

mission paths and inhomogeneities. In this context, the

approximation for the reconstruction of the surface normal

velocity proposed in this work and the classical method of

near-field acoustic holography have been shown to exhibit

FIG. 5. MDF plate used for the experiments; the point of excitation (1) can

be seen. Two small wooden beams are glued to the plate in order to achieve

scattering (2) and reflection (3) of incident flexural waves.

FIG. 6. Wavenumber-frequency domain representation of a pressure mea-

surement taken close to a vibrating plate made of 4 mm MDF; the field

shows both the acoustical and the flexural dispersion relation; compare to

Fig. 3.

FIG. 7. Phase velocity of flexural waves in a 4 mm MDF plate as retrieved

from the measurement shown in Fig. 6.
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similar performance in the extreme near-field. The applica-

tion of dispersion compensation, however, has a significant

positive effect on the resolution of the visualization of the

wave field.

A drawback of the presented approach for the recon-

struction of the normal velocity is given by the fact that the

pressure measurement contains information which is deter-

mined by a small region on the vibrating plate rather than by

a point. The result of the point-to-point relation given by Eq.

(12) is, therefore, smoothed in comparison to measurements

obtained by laser vibrometry or NAH. The disadvantages of

laser vibrometry are the higher hardware costs and the

FIG. 8. Visualization of the wave field at t ¼ 0:8 ms: (a) estimate of the

normal velocity obtained according to Eq. (12), (b) reconstructed normal ve-

locity obtained by NAH, (c) dispersion-compensated representation of the

field shown in panel (a), (d) dispersion-compensated representation of the

field shown in panel (b); the arrow indicates a circular wavefront caused by

the scattering object (2) in Fig. 5. All amplitudes are normalized. The

boundary of the plate is indicated by the dashed line.

FIG. 9. Visualization of the wave field at t ¼ 1:3 ms: (a) estimate of the

normal velocity obtained according to Eq. (12), (b) reconstructed normal ve-

locity obtained by NAH, (c) dispersion-compensated representation of the

field shown in panel (a), (d) dispersion-compensated representation of

the field shown in panel (b); the arrow indicates a wavefront caused by the

reflecting object (3) in Fig. 5. All amplitudes are normalized. The boundary

of the plate is indicated by the dashed line.
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requirement of special surface conditions. Near-field acous-

tic holography does not suffer from these drawbacks to the

same extent. However, it requires extensive processing of

the measurements in order to focus the measured informa-

tion on the plane of interest.

For the simple approach presented in this paper, the anal-

ysis of the quantitative error and the limit of validity are pro-

posed as a topic for further research. Furthermore, better

focusing could be achieved by changing the directivity of the

receiver. For instance, the usage of a velocity probe instead of

an omnidirectional microphone is expected to lower the sus-

ceptibility to waves radiated from surrounding points on the

plate. The achievable resolution could thereby be improved,

and the presence of artifacts reduced. However, the present

paper focuses on the quality of results that can be achieved

even with the simple approach based on measurements with

an omnidirectional microphone. The usage of a velocity probe

is, therefore, suggested for future research.

V. CONCLUSIONS

An approximate method for the reconstruction of the

surface normal velocity from near-field pressure measure-

ments has been proposed as an alternative to near-field

acoustical holography. For measurements taken in the

extreme near-field of a vibrating plate, it could be shown

that the effort of acoustical holography is not necessarily

required to obtain a useful reconstruction of the normal ve-

locity. Furthermore, qualitative information, such as the

propagation speed in the plate, can be determined directly

from the pressure measurements.

For the analysis of flexural waves, dispersion compensa-

tion based on a mapping from frequency to wavenumber can

help to increase the resolution of visualizations of the wave

field and enable the visibility of propagating wavefronts.

The detection of scattering and reflecting inhomogeneities in

the plate is thereby simplified.

The usage of a velocity probe instead of a pressure-sen-

sitive microphone is suggested for future research since it is

expected to improve the achievable resolution further.
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