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Abstract—In this paper, a wire detection algorithm is proposed
for synthetic aperture radar (SAR) images. The algorithm is
specifically designed for SAR images generated from an agile,
drone-mounted, omnidirectional radar array to be used for the
detection of improvised explosive devices (IEDs). A multistage ap-
proach consisting of denoising, constant false alarm rate (CFAR)
thresholding, feature extraction, and automated detection using
the Radon transform, is proposed and applied to a set of SAR
images with multiple aspect angles. At each detection step, the
look-angles of individual pixels are used to remove false alarms,
and improve detection accuracy. The algorithm is tested using
measured data and provides an acceptable detection performance
on straight wire segments even in the presence of a strong
background clutter.

I. INTRODUCTION

The conventional methods of detection for improvised ex-

plosive devices (IEDs) are slow and potentially dangerous.

Since radio-controlled IEDs can be counteracted using jammer

systems, most IEDs resort to command wires for detonation.

Because of this, IEDs must be manually detected using hand-

held devices or vehicle-mounted devices. Specialized airborne

sensor systems exist to aid with the removal of IEDs. However,

these are not easily deployable in many scenarios.

Different radar systems for the detection of landmines and

IEDs have been proposed in recent literature [1]–[3]. Recent

systems are based on unmanned aerial vehicles (UAVs) due to

their ease of deployability, and usually exploit ground penetrat-

ing radar (GPR) to directly detect buried explosives. Another

approach is the detection of IEDs through the presence of

command wires. Since large parts of these wires are above

ground, it is possible to use higher frequencies for imaging,

leading to a compact payload. In [4], the detectability of IED

command wires is investigated using ground-based synthetic

aperture radar (SAR). An airborne, drone-based SAR system

for the detection of thin metallic tripwires is presented in [5]

which highlights the importance of imaging from multiple

aspect angles, as well as the need for an accurate positioning

system.

Wires can be relatively difficult to detect using radar, as

the radar cross section (RCS) of a wire-segment decreases

sharply when illuminated from oblique angles [6]. Therefore,

a wide field-of-view, and imaging from multiple aspect angles

is necessary for good detection performance. Moreover, as

command wires are relatively thin, the signal-to-clutter ratio

(SCR) may be too low to spot the intended targets through

visual inspection, even after constant false alarm rate (CFAR)

detection. This is highlighted in [7], where an algorithm for

the detection of power lines in polarimetric SAR images

is proposed. In [8], the phase signature along specific wire

orientations is exploited using a spatial frequency domain

filter.
At TNO, an innovative multichannel omnidirectional SAR

system has been developed for mini-UAV/drone platforms [9].

This compact SAR system consists of two circular, multilayer

circuit boards with horizontal dipole antennas along the edges.

The transmitter board comprises 16 elements, that can be

switched on and off separately to shape the transmit beam. The

receiver board comprises 32 elements which are digitized indi-

vidually allowing full digital beamforming on receive. Metal

discs are placed in between and over the circuit boards to

provide transmit/receive isolation and elevation beam shaping.

The complete system, shown in Fig. 1, weighs approximately

800 grams including the battery and has a maximum diameter

of 25 cm. The system is based on the frequency modulated

continuous wave radar principle and operates in X-band. The

bandwidth is 1 GHz.

Fig. 1: The omnidirectional SAR system mounted on a drone.

Because of its wide field-of-view, the presented SAR system

can serve as an ideal platform for the detection of IED

command wires through SAR imaging. Backprojection applied978-1-7281-8942-0/20/$31.00 c©2020 IEEE
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Fig. 2: Top level flowchart of the processing chain. The proposed wire detection block is highlighted in blue. This block is

detailed in Fig. 3.

to subsequent subsets of receive channels implicitly performs

beam steering and produces a set of SAR images of the

targeted area with different aspect angles. The difference

between the aspect angles, or look-angles, is chosen such that

the subsequent synthetic apertures overlap. As a consequence,

a wire segment yields a high RCS in at least one of the SAR

images, i.e., the SAR image with look-angle perpendicular to

the orientation of the wire segment. Note that a curved wire

will be highlighted in several SAR images.

In this paper, we propose a multistage automated wire

detection method that exploits the specifics of the omnidi-

rectional SAR system. False alarms are minimized by taking

into account the properties of wire returns from multiple

look angles. Using image processing techniques applied in an

adaptive manner, the algorithm extracts the location and length

of potential wire segments in the SAR images.

The rest of the paper is organized as follows: The data set

and collection geometry is presented in the next section. This

is followed by an overview of the proposed algorithm. Finally,

the detection results are compared to the ground-truth wire

locations followed by a short conclusion.

II. SAR DATA SET

For the creation of SAR images, a subset of transmit and

receive antennas are used in order to operate the radar in a

side-looking mode. At an altitude of ∼ 15 m, the drone flies

along a straight trajectory at a distance of ∼ 40 m to the

scene center while the data are captured. The collected data

are processed using a backprojection algorithm in combination

with autofocusing to create a set of SAR images with different

aspect angles. The imaging algorithm also generates a set of

“maps” indicating the average look-angle of each pixel in each

SAR image.

After the SAR images are generated, an image registration

algorithm is used to align the images. The aligned images, as

well as the look-angle map for each image, are used as an

input to the detection algorithm. A top-level flowchart of the

processing chain can be seen in Fig. 2.

III. PROPOSED METHOD

The proposed wire detection algorithm is depicted in the

flowchart in Fig. 3. As seen from the flowchart, the algorithm

has two inputs; namely, coregistered SAR images and their

associated look-angle maps. Fig. 4 shows the sum of all

SAR images (after coregistration) taken from different aspect

angles. The associated look-angle map of a single SAR image

is presented in Fig. 5.

In the upcoming processing steps, images and look-angle

maps will be defined by the functions

f(x, i)|x ∈ X ∧ i ∈ I (1)

and

L(x, i)|x ∈ X ∧ i ∈ I, (2)

respectively. Where the vector x denotes the x, y coordinate,

and i denotes the image number. Furthermore, to make it

clear which step in the processing chain is being addressed, a

subscript will be added to the function f . Therefore, fk(x, i)
denotes the pixel value of the ith image at position x after the

kth processing step.

A. Noise Filtering

To reduce the effect of speckle noise in the images, a noise

filter is used. A simple approach for speckle noise filtering

could be to average between multiple images. However, this

leads to a loss of information, since each image has a unique

look-angle map which is useful to determine wire returns. A

filter which has been shown to provide adequate smoothing

while preserving edges is the non-local means filter [10]. The

non-local means filter replaces a target pixel with a weighted

average of the mean of all pixels in the image. When filtering a

certain pixel, the weight of every other pixel is determined by

the similarity between its neighborhood, and the neighborhood
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of the pixel under test. The filter is applied separately to each

backprojected SAR image. The effect of the filter on one of

the data sets can be seen in Fig. 6.

B. Adaptive Cell Averaging CFAR Detection

As an initial screening step, a cell averaging CFAR (CA-

CFAR) detector is used. The CFAR guard window is line

shaped to improve the detection of wire-shaped returns. Since

the strongest reflection is expected at perpendicular illumina-

tion [6], the CFAR window is made adaptive in the sense that

it rotates to be perpendicular to the angle defined in the look-

angle map. To achieve this, the image is first divided into a

number of angle segments by dividing the range of L into a

number of subranges.

Given the ith image and its look-angle map, its nth segment

is given by

f1,n(x, i) =

{

f1(x, i), for θn − δ < L(x, i) < θn + δ

0, otherwise,
(3)

where θn is the average look-angle, and δ is used to define

the interval of angles belonging to a single segment. Each

segment is then convolved with a different CFAR window

with an orientation perpendicular to θn. The output from each

segment is then summed to obtain the final clutter estimate.

An illustration of this principle can be seen in Fig. 7.

The clutter estimate is divided by the original image pixel

value in order to obtain the SCR. The SCR images are

thresholded based on the expected SCR of wire returns (this

depends on the scene being imaged).

Fig. 3: Wire detection algorithm flowchart.
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Fig. 4: The sum of 28 coregistered SAR images. The image

is displayed in dB.
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Fig. 5: An example of the look-angle map of associated with

a single SAR image from the sum shown in Fig. 4. The angles

correspond to the average look-angle of the radar during the

imaging of a certain pixel.
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Fig. 6: The set of SAR images after non-local means filtering

(for speckle noise reduction). Each image has been filtered

individually. However, the sum is shown for illustration.

C. Gabor Filtering

After CFAR detection, there are usually still many false

alarms present because of the relatively weak reflections from
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Fig. 7: Illustration of clutter estimation. The CFAR window

is shown on the left side, the middle figure shows the current

image segment in yellow, and on the right the running sum of

all segments is illustrated.

wire segments. To further separate potential wire segments

from clutter returns, a Gabor filter is used. The filter can be

described by a Gaussian kernel modulated with a complex

sinusoid

h(x, y) = ej(2π
xr
λx

+ψ) e−
x2
r+γ2y2

r

2σ2 , (4)

where xr = x cos θ+y sin θ, yr = −x sin θ+y cos θ, λx is the

wavelength of the modulating sinusoid and γ and σ are the

aspect ratio and standard deviation of the Gaussian envelope

respectively. The parameter θ determines the orientation of the

filter.

By using a bank of filters with different orientations, it is

possible to determine the presence and location of specific

spatial frequency components in an image. This is commonly

used for image processing applications such as edge detection

and fingerprint recognition [11], [12]. For this application

however, a separate filter is applied to each image segment

as defined in (3). This is done to suppress the returns from

pixels which are aligned in unexpected orientations. The filters

are oriented such that they are perpendicular to the average

look-angle of their corresponding segment. Additionally, only

the real part of the Gabor filter is used. This is because the

features of interest are lines, which are symmetric features.

The parameters of the filters are empirically chosen based on

experiments with the data set. In Fig. 8, the chosen Gabor

kernel can be seen.

The CFAR detections are filtered based on a threshold, ηgb,

applied to the output of the filter

f3(x, i) =

{

f2(x, i), for g(x, i) > ηgb

0, otherwise,
(5)

where g is the output of the Gabor filter. Fig. 9 shows the

detections after filtering.

D. Connected Component Labeling

Another behavior of wire returns that can be exploited, is

their short persistence over multiple look-angles. This means

that given a certain detection, if it persists in the same location

over an angle interval greater than some threshold, it can be

determined that this detection does not originate from a wire

but from some other strong reflector. This can be observed

in Fig. 10, where a data set with many persistent targets is
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(a) Gabor spatial kernel.
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(b) Gabor filter output.

Fig. 8: Illustration of a) the Gabor spatial kernel and b) its

output after convolution with the CFAR detections.
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Fig. 9: The sum of detections after thresholding with the Gabor

filter.

used to illustrate this principle. By generalizing the notion of

adjacency of pixels as given in [13] to 3D images, we define

the ”persistence” of any given detection in the following way:

• Given the set of thresholded images f3(X, I), the pixel

values of each image can be considered as voxels in a 3D

array. All voxels are grouped based on their connectivity.

Voxels connected by face or edge are considered to be a

single three-dimensional detection.

• The persistence, θp, of each detection is then calculated

by determining the interval of look-angles spanned by the

detection.

When an interval of acceptable persistence values is defined,

the detections outside of this interval can be discarded or

labeled for further analysis.

E. Morphological Filtering

To further enhance wire-like detections and filter out un-

wanted detections, A number of morphological operations are

applied [13]. This will reduce noise when applying the Radon

transform in later steps. The operations are applied in the

following order:

1) The image is divided into angle segments as defined in

(3). Using a set of line-shaped structuring elements, a
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Fig. 10: An example of persistent target labeling: strong,

stationary targets are easily detected and labeled.
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(a) Detections before closing op-
eration.
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eration.

Fig. 11: This figure shows the effect of the closing operation

performed on a single image in the data set.

morphological closing is performed on each segment.

This has the effect of connecting pixels which are

aligned in the expected orientation for wire returns, as

shown in Fig. 11.

2) Extended targets are identified using a series of clos-

ings, openings and morphological reconstructions using

square structuring elements of varying sizes. The output

of these operations yields a template for unwanted

detections in the images. These are then removed using

a pixel-wise XOR operation.

After morphological filtering, the final images are summed

up and thresholded to a single binary image.

F. Line Segment Detection using the Radon Transform

For automated detection of potential wire segments in the

final image, the Radon transform is used [13]. The Radon

transform maps a function defined on the x,y-plane to a

function defined on the θ,ρ plane. where θ and ρ parameterize

a line l on the x,y-plane. More specifically, ρ is the distance of

l from the origin and θ is the angle that the normal vector of l

makes with the x-axis. The two-dimensional Radon transform

is expressed by

Rf5(θ, ρ, i) =

∫

∞

−∞

f5((z sin θ + ρ cos θ),

(−z cos θ + ρ sin θ), i)dz,

(6)
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Fig. 12: This figure shows the subimages and the result of

applying the Radon transform to such a subimage.
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Fig. 13: The dashed lines show the potential wires obtained

after the Radon transform. The actual location and length of

a wire segment is found by analyzing the image profile along

the related dashed line.

where p is the original function defined on the x, y-plane. A

single line with angle θ and distance from the origin ρ is

mapped to a single point on the Radon parameter space, with

value equal to the sum of pixels along the line. Peaks in the

Radon parameter space can therefore be used to to detect the

location of lines in an image.

Before applying the Radon transform, images are first

subdivided into smaller blocks, see Fig. 12. This is done to

minimize peaks caused by a summation of clutter pixels across

the entire image. The Radon transform is then applied to

each block separately. Peaks in the Radon transform represent

the orientation and approximate location of potential wire

segments as shown in Fig. 13. The length of a detected wire

segment is determined by analyzing the profile along the line

parameterized by the peak. The final wire segments are then

constructed by combining detected segments from each image

block. The detected wire segments can be seen in Fig. 14.
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Fig. 14: The wire segments detected by the Radon transform.
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Fig. 15: The actual wire locations positioned in the scene. The

outline of the SAR image shows the relative rotation between

the two images.

IV. RESULTS

The output of the detection algorithm for a scene with

multiple wire segments at different orientations can be seen

in Fig. 14

The wires detected by the algorithm are parts of the straight

red/black and blue wire as shown in Fig. 15. Returns from

other segments are either not illuminated properly or over-

powered by clutter returns. From the detections in Fig. 14, it

can be seen that the tree trunks lying on the ground on the

right side of the image are also detected as a wire return due

to similar behavior.

V. CONCLUSION

This paper presented an automated wire detection algorithm

for a set of SAR images with different aspect angles. By

exploiting the spatial resolution of a SAR image, the detection

algorithm can adequately detect long, straight wire segments

of approximately 5 m, providing an indication of potential IED

devices in close proximity. In the presence of strong clutter,

wires are still detectable. However, the minimum detectable

length increases, as more pixels are required to find line

features in the image. False alarms caused by objects with

similar behavior can pose a problem for automated detection.

These can be identified by either cross-referencing with a map

of the environment or images from an on-board camera sensor.

The detection algorithm can be improved by performing

multiple passes along a given area of interest to suppress

random clutter. Incorporating data gathered from the other side

of the wire segment would also increase SCR. In practical

scenarios, full 360 degrees imaging of the area of interest

would be desirable. Furthermore, to make the algorithm more

robust, it would also be useful to establish some relationship

between the imaging conditions and the detection parameters.
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