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Summary

This report describes the theoretical design of a three camera Michelson interferometer set-
up for quantitative refractive index measurements. Although a two camera system is easier
to align and less expensive, a three camera interferometer is preferred because the
expected measuring accuracy is much better. Here analytical expressions are found for the
calculation of the required alignment accuracy of the interferometer’s components: three
CCD-cameras (six degrees of freedom each), a quarter wave plate (one degree of freedom)
and a polariser (one degree of freedom). Also the required accuracy in the normalization
of the intensity levels on the CCD-cameras is calculated. If the maximum phase gradient
after imaging on the CCD-cameras is 10° rad/m and the average modulus of the phase
error is required to be less than 9% of 2=, the required alignment and normalization

accuracies are:

CCD-cameras:
translation perpendicular to beam propagation direction: 0.54m

translation parallel to beam propagation direction: 2.4m
rotation about axis perpendicular to beam propagation direction: 1.1°
rotation about optical axis of the beam: 0.01°
normalization factor two cameras: 13%
normalization factor one camera: 9%
rotation quarter wave plate: 1.7°
rotation polariser: 3.5°

The error of 9% of 27 in the average modulus of the phase error excludes errors due to
light refraction in the examined medium.




1. Imtroduction

Until now there exists almost no convenient way for real-time quantitative refractive index

measurements, especially when the refractive index profile is varying both temporally and

spatially. However, there are many applications for an instrument which is capable of

measuring refractive index profiles in real time. In most applications, the refractive index

profile in the examined transparent medium is caused by an existing density profile.

Scientific areas in which such an instrument can be applied, are:

- Compressible gas flow measurements.

- Heat transfer research. The density profile is caused by locally heating of a transparent
medium.

- Research on mixing of two or more fluids of different density.

- Combustion research. The density profiles are now caused by all three former effects:
compressibility, local heating and mixing.

- Optical research. The exact (time dependent) refractive index of optical components
can be measured before they are used in optical set-ups.

Interferometry has shown to be a convenient tool for refractive index profile
measurements. It is often applied, especially holographic interferometry. The disadvantage
of holographic interferometry, however, is that it is inconvenient for real-time
measurements and repetitive measurements. That is why a new interferometer has been
designed. The work described in this report is concerned with the development of an
electro-optical interferometer for real-time refractive index profile measurements.

The first application in mind is quantitative measurement of refractive index profiles in
compressible wind tunnel flows. The main objective is to provide a tool featuring density
turbulence diagnostics in two dimensional flow. In relation to other methods for flow
measurement, interferometry has several advantages. Unlike hot wire methods and pressure
measurement methods, the flow is not disturbed by a probe during the experiments. Unlike
laser-Doppler velocimetry and particle image velocimetry, there is no necessity of adding
particles to the flow. Unlike Schlieren methods, the absolute refractive index is measured
and not its gradient.

The new real-time interferometer is based on a Michelson interferometer set-up. An
alternative set-up would be a Mach-Zehnder interferometer set-up. The most essential
difference between these two set-ups is the number of passages of the test beam through
the test section. In a Mach-Zehnder interferometer the test beam passes the test section
only once. In a Michelson interferometer, however, the test beam passes the test section
twice: once in forward direction and after reflection by a flat mirror once in backward
direction. The main advantage of the Michelson interferometer when compared to the
Mach-Zehnder interferometer is the fact that it is relatively easy to install around large
objects like a wind tunnel. Contrary to the Mach-Zehnder interferometer, all optical
elements can be positioned on one side of the tunnel. Only one mirror has to be installed
on the other side. This implies that a Michelson interferometer set-up can lead to a
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relatively compact and transportable measuring system. However, due to the double
passage of the test beam through the test section there exist two disadvantages when a
Michelson interferometer is compared to a Mach-Zehnder interferometer. These

disadvantages are:
- A reference object in the test section cannot be imaged sharply in the interference

pattern.
- Disturbance of the interference pattern due to refraction in the test section will be

larger.

Refractive index profile measurements by interferometry require an analysis of two or
more interference patterns which are shifted in phase to each other. In holographic
interferometers and other interferometers for steady refractive index profile measurements,
these patterns are imaged on the same CCD-camera one by one. In the new real-time
interferometer, however, the interference patterns have to be analysed at the same time.
This requires that each interference pattern has to be imaged on a separate camera. This
implies that the interferometer has to be equipped with two or more cameras.

The exact number of cameras in the new interferometer is determined by the required
measuring accuracy of the set-up and the required maximum size of the set-up. A two
camera interferometer is more compact than a three camera interferometer. However, its
measuring accuracy is lower. For this reason the new interferometer contains three
cameras. A comprehensive description of both a two camera interferometer and a three
camera interferometer can be found in chapter 2.

The measuring accuracy of the interferometer is not only dependent on the number of
cameras in the set-up. For accurate measurements, the interference patterns on the CCD-
cameras have to be mutually related. This requires a good mutual alignment of the
cameras. The required alignment accuracy of the cameras is discussed in chapter 3.
Finally, all other optical components in the set-up have to be adjusted optimally to realize
an accurate interferometer. The required alignment accuracy of these components is
described in chapter 4. Summarized conclusions regarding the measuring accuracy of the
interferometer in relation to the alignment of all components can be found in chapter 5.




2. Two and three camera interferometers

2.1 Introduction

An interferometer measures the phase difference between its test beam and its reference
beam. This phase difference can be caused by a refractive index profile in the test section
of the interferometer, which is passed by the test beam and not by the reference beam.
Under the assumption that the refractive index profile is two dimensional, i.e., it is
constant in the propagation direction of the beam, the phase difference is linearly related
to the refractive index. Because the refractive index is a spatially varying function, the
phase difference is also a spatially varying function. The output intensity [, of a Michelson
interferometer is given by:'2

Iy = I,+I,+2)/I ], cosax @1)

where I, is the intensity distribution in the test beam traversing the test section, I, is the
intensity distribution in the reference beam, o is the phase difference between the test
beam and the reference beam caused by the refractive index field in the test section. The
phase « is the parameter of interest, I, is the measured intensity. Because of instabilities in
the laser output, possible vibrations in the optical system and unsteadiness of the examined
field, I, I, and & vary in time. So at an arbitrary time ¢ there are three unknowns in
equation (2.1): [,+1,, 2VIJ, and o. Two methods exist to solve equation (2.1) for the phase
a.

The first method is to measure /, simultaneously for three different externally applied
phase shifts between the test beam and the reference beam. To achieve this goal a three
camera detection system is required, measuring the intensities I, , (7=0,1,2), respectively:

Iy, =1,+1,+2\/I], cos(a+np) 2.2)

where B is a known phase shift. Equation (2.2) defines a system of three equations with
three unknowns from which o can be solved in the interval [0,2m).

The other method to solve the problem is to filter out the zero frequency component in the
intensity distribution, i.e., I,+/,, by using a Fourier filter. By measuring the intensity
distribution simultaneously for two different phase shifts, the system to be solved is:

Iny = 2,/@ |cos(a+nf) | (2.3)

where n=0,1. Equation (2.3) represents a system of two equations with two unknowns,
from which a can be solved in the interval [0,%) if B is not a multiple of x/2. In this case
only a two camera detection system is required in the set-up.
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In section 2.2 the two camera system is presented. Likewise the three camera system is
presented in section 2.3. In section 2.4 a trade-off is made between both systems resulting
in the choice to develop a three camera interferometer system.

2.2 A two camera interferometer

A Michelson interferometer system equipped with two cameras is shown in figure 2.1. The
laser emits a beam which is polarised in the x-direction and which propagates along the
z-axis. A half wave plate (hwp) with its fast axis under 22.5° with respect to the x-axis
rotates the polarisation direction of the beam over 45°. The non-polarising beamsplitter
(BS) splits the beam into two beams of equal intensities: a reflected beam, being the test
beam, and a transmitted beam, being the reference beam. Both beams have a polarisation
component in the x-direction as well as in the y-direction. The reference beam passes a
quarter wave plate (qwp) with its fast axis at 45° to the x-axis. Now the beam consists of
two circularly polarised components: one component is right circularly polarised, the other
is left circularly polarised. In the ideal situation, i.e., beamsplitter BS splits the beam
independently of the polarization state, the amplitudes of the circularly polarised
components are equal, which implies that the polarisation state of the total beam is still
linear. Next the beam passes a quarter wave plate rotating at the angular frequency o'
(rqwp), is reflected by the flat mirror M1 and passes the rotating quarter wave plate for
the second time. Now the originally right circularly polarised component becomes left
circularly polarised and frequency shifted over 2w '. The originally left circularly polarised
component becomes right circularly polarised and frequency shifted over -2w’'. After
having traversed the non-rotating quarter wave plate for the second time, the beam
contains two perpendicularly plane polarised components. The x-polarised component is
frequency shifted over 2w', the y-polarised component is frequency shifted over 2w .
After reflection by the beamsplitter, the test beam passes the test section, is reflected by

cCcD 2

Figure 2.1 A two camera interferometer. L=laser; BS=beamsplitter; PBS=polarising beamsplitter; hwp=half wave plate;
qwp=quarter wave plate; rqwp=rotating qwp; M1,M2=plane mirror; |=lens; ff=Fourier filter.
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the plane mirror M2 and passes the test section for the second time. As a consequence, the
test beam is shifted in phase over a.

The reference beam and test beam are recombined by the beamsplitter (BS). A lens images
the beam on the CCD-cameras. The optical Fourier filter (ff) in the plane of focus filters
out the DC-component in the intensity distribution. Next the beam is split by a polarising
beamsplitter so that the x-polarised component is transmitted to CCD1 and the y-polarised
component is reflected to CCD2. This implies that the intensity distribution on CCD1
results from the interaction between the test beam, which is phase shifted over o, and the
reference beam, which is frequency shifted over 2w'. Similarly, on CCD2 there is
interference between the test beam and the reference beam, which is frequency shifted
over -2w .

For a complete understanding of the interferometer, an analytical description is given

below.
The laser beam’s electric field vector E can be described by:

—iwt : (2.4)

where A is the amplitude of the electric field, w is the angular frequency and ¢ the time.
After having traversed the half wave plate, the electric field vector is given by:

-3
; V2

Just behind the beamsplitter the electric field of the reference beam E, can be written as:

1
1

o i 2.5)

e i1
“El—l

. C.
E = -4 |%|e-o (2.6)

r ﬁcxy

where c,, and ¢, are the amplitude transmission coefficients of the beamsplitter for x- and

y-polarised light, respectively: c%=cq,=-1h/2. After having passed the fixed quarter wave
4

plate, the electric field vector is:

E. = _'ﬁ 1 i o Tt = _‘i €7 e ~iot 2.7)
k 2 (- 1|y 2 [-icy*e,,

This is a summation of a right and left circularly polarised component. Next the beam
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passes the rotating quarter wave plate, is reflected by the plane mirror M1 and passes the
rotating quarter wave plate for the second time. This can be described as if the beam
passes a half wave plate rotating with angular frequency w'. Now the electric field vector

is:

by i -i
A {cosZw tsin20't ([CoaCy |
r S .
2 |sin2w’t ~cos2w’t||~iCy*C
Sl (2.8)
_ _Ac |l " w20y, A i o -ilw-20")t
2 i 21
Having passed the fixed quarter wave plate, the electric field vector is:
L {1 o -is20'y , A% 0] —itw-2u'y (2.9)
A —
vz 0 V2 !

The test beam traverses the test section twice, resulting in a phase shift of a. With the use
of equation (2.4) the electric field E, can be written as:

E = -4 Kad o —ilwr+a) (2.10)
c"}‘

B

where c,, and c,, are the amplitude reflection coefficients of the beamsplitter for x- and
y-polarised light, respectively: ¢ =c, =1/V2.

The electric fields E, and E, are recombined by the beamsplitter. Now, the total electric
field E,,, is the sum of E, (equation (2.9)) and E, (equation (2.10)) after they have been
corrected for reflection by the beamsplitter and transmission through the beamsplitter,
respectively. This correction implies multiplication of the x-component of equation (2.9)
by c,,, multiplication of the y-component of equation (2.9) by ¢,,, multiplication of the
x-component of equation (2.10) by c,, and multiplication of the y-component of equation
(2.10) by ¢, The total electric field E,,, can now be written as:

x
Eror = E
b

?vhcre €=CpC,=1/2 and ¢ =c, ¢, =1/2. The intensity distribution /, of the x-polarised light
IS:

ce —i{a+m/2) e “2iw't
-iwt (2.11)

— e

‘{2_ cye ~i{ c+m/2) +r.'ye 2iw't
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I, « EE] = A%c2(1+sin(a-2w'1) 2.12)
Similarly, the intensity distribution /, of the y-polarised light is:
I, x EE; =A%) (1-sin(a+20/) (2.13)

Since the DC-component in the intensity distribution is removed by the Fourier filter, the
resulting intensity distributions are given by:

I = Azcxz |sin(a-20'7)| (2.14)

I, = A%c] [sin(a+20/1)| (2.15)

Because x-polarised light is transmitted by the polarising beamsplitter, equation (2.14)
describes the intensity distribution on CCD1. Because y-polarised light is reflected by the
polarising beamsplitter, the intensity distribution on CCD2 is given by equation (2.15).

Eguations (2.14) and (2.15) define a system of two equations with three unknowns: cxz,
¢,” and a. The values of sz and cy2 are determined by the optical properties of the non-
polarising beamsplitter. Although they depend on x and y, they are system constants. The

quotient C; =cx2fc 2 can be determined by dividing I, and L, when w '=0. Equations (2.14)
and (2.15) can be rewritten as:

I = Achy2 |sin(a-20’£)| (2.16)

I, x A zc:;l |sin(a+20’ )| 2.17)

Under the assumption that C and o't are exactly known, equations (2.16) and (2.17)
describe a system of two equations with two unknowns (A%c? and o). If @ 't is not a
multiple of 7t/2, this system is solvable for a in the interval fO,:-t).

2.3 A three camera interferometer.

In figure 2.2 a three camera Michelson interferometer set-up is shown. The light source is
a red HeNe laser. The polarisation direction of the plane polarised beam, determined by a
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(180}

LO...L5: ACHROMATIC LENS (10,100,100,30,100,200)

RO: LAMBDA/2 RETARDATION PLATE

R1...A3: LAMBDA/4 RETARDATION PLATE

PO...P3: POLARISATION FILTER

MO, M1: MIRROR

PBSO,PES1: POLARISING BEAM SPLITTER CUBE

BS0: 50/50 BEAM SPUTTER CUBE

CCDO...CCD2: CCO-CAMERA

LASER: HeNe LASER

DO...D3: EXP(-0.5)-BEAM DIAMETER (0.3, 3.0, 10.0, 6.0)

LASER

Figure 2.2 A three camera Michelson interferometer.

half wave plate RO in front of the laser, is at 45° to the y-axis (which is perpendicular to
the plane of drawing). The remaining depolarised components are filtered out by polariser
P3. The beam is expanded by the lens combination LO and L1. Next the beam is split by
the polarising beamsplitter PBS0. Because of the polarisation direction of the beam, the
intensity of the transmitted reference beam and the intensity of the reflected test beam are
almost equal. The test beam is expanded by the lens combination L2 and L3, traverses the
test section twice and is shrinked to its original diameter again before it is transmitted by
PBSO0. It passes quarter wave plate R2 twice to obtain the right polarisation direction for
transmission by PBSO0. The reference beam is reflected by mirror M1. It passes quarter
wave plate R1 twice to get the right polarisation direction for reflection by PBS0. Because
the reference beam and the test beam are perpendicularly polarised after being recombined
by PBSO, both beams are circularly polarised after having passed the quarter wave plate
R3, whose fast axis is at 45° to the y-axis. The rotation directions of the two beams are
opposite. Interference between the reference beam and the test beam occurs if all light is
filtered out except the light polarised in one direction. The phase difference between the
interfering beams is determined by the polarisation direction which is transmitted. After
passage of the imaging system (lenses L4 and L5), the non-polarising beamsplitter BS and
the polarising beamsplitter PBS1, light polarised in the x-direction reaches CCDO. The
phase difference between the interfering beams is a-m/2. Here a is the phase shift of the
test beam relative to the reference beam due to the double passage through the test
section. Similarly light at CCD2 is polarised in the y-direction. The phase difference
between the interfering beams now is a+m/2. If the non-polarising beamsplitter BS splits
the beam independent of the polarisation state of the incoming beam and the transmitted
polarisation direction of polariser P1 is at 45° to the y-axis, the interference pattern on

14
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CCD1 is the result of interference between beams with a mutual phase shift a. If
beamsplitter BS does not split independently of the polarisation state, the same
interference pattern results if the transmitted polarisation direction of polariser P1 is
changed.

The imaging optics will be discussed in chapter 3. An analytical description of the set-up
will be given in chapter 4, where an error analysis for the situation that the quarter wave
plate R4 and polariser P2 are not perfectly adjusted.

2.4 Discussion

In section 2.2 a two camera interferometer was described, in section 2.3 a three camera
interferometer. Here the advantages and disadvantages of the two camera interferometer
relative to the three camera interferometer are discussed, so a clear choice can be made
between the two systems.

The obvious advantage of the two camera interferometer when compared to the three
camera interferometer is the use of a smaller number of cameras. This is advantageous
because:

- Cameras are relatively expensive components.

- Each camera in the set-up has six degrees of freedom. All cameras in the set-up have
to be mutually aligned with sub-pixel accuracy. This implies that the amount of
degrees of freedom which have to be adjusted increases with a factor six for every
extra camera. So a two camera interferometer has six degrees of freedom less to be
aligned than a three camera interferometer. This implies that a two camera
interferometer is easier to align.

The disadvantages of the two camera system are:

- Because of the use of equation (2.3) instead of equation (2.2), the interval in which a
is measured by the two camera interferometer is [0-x), while it is [0-27) for the three
camera interferometer.

- I, and I, are not spatial constants as assumed in the analysis, but there are low
frequency spatial variations in them due to the Gaussian intensity profile of the laser
beam. A Fourier filter does not filter out the low frequency variations in the intensity
distribution on the CCD-cameras due to the variations in /, and /, only, but also the
low frequency variation in the intensity distribution due to low frequency variations in
o.

- The transmittance of a quarter wave plate will not be homogeneous over its surface.
For this reason a rotating quarter wave plate will introduce undesired intensity
fluctuations.

- To know the relative phase shift between the equations (2.16) and (2.17), ¢ has to be
known exactly.

The disadvantages of the two camera system are directly related to the accuracy of the

15



whole measuring system. The advantages of the two camera system are related to the costs
and the required effort to align the system. Because the accuracy of the system is most
important, the three camera system is chosen for further development. Fortunately, as will
be shown in chapter 3, the number of degrees of freedom per camera can be reduced from
six to three if a suitable imaging system is used.
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3. Alignment accuracies of the cameras

3.1 Introduction

In chapter 2 it has been shown that a Michelson interferometer equipped with three
cameras is more accurate than one equipped with only two cameras. Therefore, from here
on the attention will only be focused on the three camera set-up. The accuracy of this set-
up is determined by the error in the measured phase shift between the test beam and the
reference beam. This error depends on the alignment accuracies of the optical components
and the accuracy of the normalization of the intensity levels on the CCD-cameras. The
alignment accuracies of the cameras are analysed in this chapter. In chapter 4 the
alignment accuracies of the quarter wave plate and the polariser will be analysed. Here
also attention will be paid to the normalization of the intensity levels.

The phase shift « is a function of x and y, i.e., the directions perpendicular to the
propagation direction of the beam. If the relative phase shift between the beams is a(x,y)
for CCDO, a(x,y)+m/2 for CCD1 and a(x,y)+n for CCD2, a(x,y) can be calculated from
the intensity distributions on the CCD-cameras:*

a(x,y) = arctan w a2 (3.1)
Iyxy)-I)(xy) | 4

Here Iy(x.y), I;(x,y) and I,(x,y) are the intensity distributions on CCD0, CCD1 and CCD2,
respectively. As shown in figure 2.2 the direction of the x-axis is not the same for all

cameras: the direction of the x-axis changes after reflection by beamsplitters BS and
PBSI1.

As shown in figure 3.1, each camera has six i e
degrees of freedom: translation along the x-axis, \

the y-axis and the z-axis and rotation about the x- \
axis, the y-axis and the z-axis. Misalignment of

any of these degrees of freedom of CCDj (j=0,1,2) QI
will lead to an error in I{x,y) and hence to an

error in the measured phase shift a(x,y), see Z—axis l
equation (3.1). The subject of this chapter is to

find out how accurate the cameras have to be

aligned in all their degrees of freedom so that the ~ Figure 3.1 The six degrees of freedom of 2 CCD-
error in a(x,y) will be smaller than 1% of 2. It chip.

will be shown in section 3.2 that the required

alignment accuracy of the translation along the x-axis and the y-axis and the rotation about
the z-axis are independent of the imaging optics used. The required alignment accuracy of

the translation along the z-axis and the rotations about the x-axis and the y-axis, however,

XN axis
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are dependent on the imaging optics. The required translational accuracy will be treated in
section 3.3, the rotational accuracy in section 3.4.

3.2 Translation along the x-axis and the y-axis
and rotation about the z-axis

In figure 3.2 the CCD-chips of CCDO, CCD1 and CCD2 are shown. Each chip is (partly)
illuminated by an interference pattern, representing the interference between the test beam
and the reference beam. It may not be expected in advance that the position of the beam is
the same on all three CCD-chips. To describe this misalignment, in the surface of each
chip a Cartesian coordinate system (x,y) is defined. The origin is at the centre of the
surface. Beside this coordinate system which is the same for each chip, a second Cartesian
coordinate system (x,.y,) is defined for CCDO. The x,-axis and yg-axis coincide with the
surface of the chip and are.parallel to the x-axis and the y-axis, respectively. The origin,
however, is in the centre of the beam. Similarly, the Cartesian coordinate systems (x;,y;)
and (x,,y,) are defined for CCD1 and CCD2, respectively. In the optical system (figure
2.2) the images on CCDO and CCD2 are mirrored compared to the image on CCD1.
However, mirroring of the coordinate systems is not shown in figure 3.2. Since the mirror
operation is a standard image processing operation, this artefact of the set-up will not

influence the present analysis.

The electric field £,; on CCDj due to the test beam can be described by:

it Z) (3.2a)
E, j(xpypt) = Eofxpy)e

where E,, is the (complex) amplitude of the electric field and j=0,1,2. Similarly, the
electric field E,; on CCDj due to the reference beam is given by:

E, (x;ypt) = Eg, xj,yj)ei‘“ (3:2b)

il [+

CCDO CCDA1 CCDh2
Figure 3.2 Beam incident upon CCD-chips and the definitions of the coordinate systems.
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Here E,, is the (complex) amplitude of the electric field of the reference beam. The
intensity distribution in the interference pattern on CCDj is proportional to the complex
conjugate product of the sum electric field of the reference beam and the test beam:

Ij(xjsyj) - (E{J(xjsy!!t) +Erd(xjay‘p‘f')) (E:J(xj!yj?r) *Er“:(xﬁy}?r))‘
= (3.32)
I ;(xj,y _,‘) = [y (x Y J.') + or(xjay j) +2 \|'1 odx Y j) I (x Y J.') cos(a+j ;)

Here Im(.xj,yj)xEm(xj,){j)Em'(xj,yj) and Inr(xj,yj)ccEDr(xj,yj)EU,'(xj,yj) are the intensity
distributions on CCDj of the test beam and reference beam, respectively. These intensity
distributions are assumed to be equal for j=0,1,2. Equation (3.3a) can be written as:

I(xpy) = Ixpy) +1M(xj,yj)cos(a+jizt.) (3.3b)
where I is the bias intensity, which is defined as:

Ip(59)) = TadXpy) *Ho%p¥)) (3.3¢)

and I, is the modulation intensity, which is defined as:

D%y = 24Toxy)To ;) (3.3d)

By substituting equation (3.3b) and assuming x,=x,=X,=x and y,=y,=y,=y, equation (3.1)
can be obtained. This is the optimal situation: the centres of the beams coincide with the
centres of the CCD-chips. In general x,=x,=x,=x and y;=y =y,=y because of a
misalignment of the CCD-chips along the x-axis and the y-axis. Then the measured phase
ay at the position (x,y) becomes:

+Z (3.42)

L5(%5,y,) =T (x
alxy) = ﬂrctan[ 25y -1y (xpy1) ;

I (](xoa)’n) = 1 (xpy D)

If the coordinate system (x;,y;) is shifted over Ax; the in x-direction and over Ay; in the y-
direction compared to the coordinate system (x,y), which implies Axi=x;-x and Ay=yry,
equation (3.4a) can be rewritten as:
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o (x,y,Ax0,Ay0,A%,8y1,A%,,Ay,) =

L=+ An, 3wy +Ay,) 1y Gy by yy =y +Ayy) | |
Lo(xg=x+Axq,yg =y +Ayg) =1y (x) =x+Ax,,y, =y +Ay,)

a(x,y) +Aa(x,y,AxgAygAx; Ay, A%, Ay,)

(3.4b)

n
arctan —
4

where a(x,y) is the exact phase shift and Aa(x,y,Axy,AyqAx,,Ay;,Ax,,Ay,) is the error in
the measured phase shift. By linearisation this error can be written as:

X=X ==X

da da da da da da
&8y ‘M ‘M M M M
Ao = _—Ax,+ Ay, + Ax, + Ay, + Ax, + zl?ﬁ'ﬁ'ﬁ’

dx, dyg dx, dy, dx,

(3.4¢)

where the dependence on (x;,y;) has been omitted for notational simplicity. Substitution of
equations (3.3b) and (3.4a) in equation (3.4c) gives:

Aa(x’y’AanAy(]sAxl:Ay]’MZ?Ay?) =

dal, df
coso.-sina (=B + M cosa _IMsma—)AIg

T,  dx &

. cosa-sina ‘ﬂa . d‘(M
2, dy dy

di, dI

cosa B M _. da

-——(—-——sina -1 coso.—)Ax
Iy 7R s ="

dr, dI
_cosa B _TM —!Mcosa%?-’-) Ay,

Iy, dy dy

dr, dI
cosa+s:na (_B M osa +IMsina.d_a.) Ax,
dx dx

2, &

‘ dr, dI
,cosassina Hp_ Fu o +IMsina%)Ay2
ly

2, dy dy

where a, [ and I, are functions of x and y. Under the assumption that the intensity
distributions in the test beam and the reference beam are equal, equations (3.3c) and (3.3d)

yield:
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Igxy) = Iyxy) = 2o(xy) = 205, (x.y) (3-6)

If it is further assumed that Jo,(x,y) and I, (x,y) are Gaussian distributed, i.e.,

Io(xy) = Io(xy) = # (3.7a)

W

the first order derivatives of I, (x,y) and [, (x,y) with respect to x and y are given by:

iy (x,y) dl,(x.) 4x 4x
- = ~——Iofxy) = ~—1o/x) (3.82)
dx dx - o
dly(xy)  dlp,(xy) 4 4
o - o - - i.;m(x,y) = -.1210, x.y) (3.8b)
dy dy w w

Here P, is the total power in the individual beams and w is the e waist at the CCD-
surface. This waist is given by:

(3.7b)

Here ) is the wavelength of the light, wy the minimum ¢ 2-waist of the beam and z the
distance from the position where the waist is w,. After substitution of equations (3.6),
(3.8a) and (3.8b) in equation (3.5) it is easy to see that:
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XxAx,+yA
Aa = —2(cosa—sina)(1+msa)#

da
—(cosa.-sina)sina| —Ax,+——A
-3¢ ) ( T yo)

XAx, +yAy,
w

da da
+cos?a =% Ax _.A
(dx 1 dy yl]

-4 cosa.(1-sinc)

Ax, +yAy,
2

w

X
-2(coso+sina) (1-cosar)

— (cosa +sina)sina d_sz EAy2
2 dx dy

From this equation an upper bound for the modulus of Aa can be deduced:

|Aa| = 2 |(cosa-sinar) (1 +cosar)| |

xAxy+yAy, |
2

w

- |(cosu-sma) sina | |(EAID EEAyo} |

dy
Ax, +yA
+4 |cosa (1 -sinar) | |—— i |
22

da
+cos?a |( S ax, + 2 Ay ]|

dy

xAx2+yAy2|

+2 |(cosa+sina) (1~cosar)| |
e

- % |(cosa+sina) sinar| | (%sz +d_aAy2) ]

Averaging over a while assuming that the first order derivatives of a are independent of a

gives:
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1idd N il b))

5.66  2(xAxy+YAyg)  3.57 (da da
[Ac|,,, | [+ |[==Axo*+—AYq ||
2n w? 4 | dx dy
2(xAx, +yA
P it 4 y‘)|+_1.| Ao py + 3% )| (3.11)
20 oy 2 | dx dy

2(xAx, +yA
, 5:66 | (xAx, +y. yz)l+ 3.57 | daMz_'_daAyz |
2n w? 4n | dx dy

where | Aa| , is the average modulus of Ac. Equation (3.11) shows that the influence of
Axg, Ax,, Ay, and Ay, on | Aa|,,, are equal. The influence of Ax, and Ay, is larger,
because the multiplicative constants of the terms containing Ax, and Ay, are larger than
the multiplicative constants of the terms containing Ax,, Ay, and Ax,, Ay,. This implies
that if CCD1 is chosen to be the reference camera, i.e., Ax;=Ay,=0, | Aa| ,,, is minimised.
Under the assumptions Axy=Ay=Ax,=Ay,=Ax and do/dx=da/dy, this minimum value of

| Aa| ., can be written as:

& 22.64 l(x+y)Ax |+ 7.14 |daM|

Aa
1A e 2% w2 2n  dx

(3.12a)

In the case that the assumptions are not valid and some of the parameters Ax,, Ay, Ax,
and Ay, are smaller than Ax or da/dy<do/dx, then | Act | ave Will be smaller than the value
given by equation (3.12a). This equation can now be seen as an upper bound of | Act| .
For w—>cc inequality (3.12a) transforms into:

7.14  da
|8t = 222122 ] (3.12b)

If | Aat|,,, is required to be smaller than 1% of 2 the next upper bound for | da/dx| is
found:

da 0.127
|—| =

—_— g T (3-12¢)
A 7.4 |Ax]|

In the case of 2/3" CCD-chips, the pixels are about 10um square and the total sensitive
surface is about 6x4mm. This implies that the chips contain about 600x400 pixels. If the
alignment accuracy of the chip is half a pixel for both translation along the x-axis and
translation along the y-axis (i.e., 5 um), equation (3.12c) requires | da/dx| to be smaller
than 10°m™ to keep | Aa| ,,, smaller than 1% of 2x. This implies that at least 59 pixels
are needed per fringe, so that the maximum number of fringes on the CCD-chip is about
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10 in the horizontal direction and 7 in the vertical direction. However, it is desirabie t0
analyse fringe patterns whose frmge densities are a factor 10 higher. This implies that a
gradient of at least | da/dx|=10°m™ has to be measurable. To keep | Aat| ,,, smaller than
1% of 2=, equation (3.12¢) now requires a translational accuracy of at least Ar—O.S,um.

This implies at least 6 pixels per fringe.

Now the translational accuracy along the x-axis y—axis
and the y-axis are known (0.5um), it is easy to T
calculate from them the required accuracy for
rotation about the z-axis. The rotation and the
translation are coupled to each other, see figure

[---«l:_::

3.3. When the rotation about the z-axis p, is small, 7 _ y
F " i Z—axis X—axis
it can locally be seen as a translation Ay at a T
distance r from the axis: N
rp, = Ay (3.13) Figure 3.3 A small rotation p, of a CCD-chip
about the z-axis.

see figure 3.3. Given a maximum value of the translation Ay, the allowed maximum value
of p, depends on the maximum value for r. If the z-axis is in the centre of a 6mm CCD-
chip, the maximum value of r is 3mm. This means that if a :ranslat:on of 0.5um
corresponds to an error of 1% of 2x in «, then a rotation of 0.01° will yield the same
error. As will be clear, the error is maximum at the edges of the CCD-chip and will be

smaller for r<3mm.

In the above derivation several assumptions were made. The question which remains to be

answered is how these assumptions affect the maximum value of | do/dx | .

- The assumption w—>c implies that the true value of | da/dx| will be smaller than
calculated. However, the modulus signs in equation (3.10) imply that an upper bound
on Ax is calculated, corresponding with a lower bound on | da/dx | . So the two
approximations have an opposite effect on the maximum value of |do/dx | .

- For a one dimensional fringe pattern (i.e., a fringe pattern whose intensity distribution
only varies in one direction), the maximum value of |do/dx| is larger than calculated
here. For w— the value increases by a factor 2.

- In general the maximum value of da/dx increases with the allowed error in a.
According to equation (3.12b), a linear relation exists.

In summary, to analyse fringe patterns with a fringe density of 1 fnnge per 6 pixels, a
translational accuracy of 0.5um and a rotational accuracy of 0. 01° are required. Under the
assumption that the accuracy of the translation along the z-axis and the rotation about the
x-axis and y-axis are infinite, the average error in a will be about 2% of 2n: about 1% due
to the limited translational accuracy along the x-axis and the y-axis and about 1% due to
the limited rotational accuracy about the z-axis. There exists an almost linear relation
between the translational and the rotational accuracy and the average error in a. For w—
an almost linear relation exists between da/dx and the average error in c, which implies
an almost linear relation between the average error and the fringe density on the CCD-
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chip.

33 Translation along the z-axis

In figure 2.2 the experimental set-up is shown. A laser beam with an ¢’'2.beam diameter
of 0.3mm is expanded to a beam with an e12. beam diameter of 3.0mm. After reflection
by PBSO the test beam diameter is expanded to 10.0 mm before entering the test section.
The whole system of lenses L2, L3 and an imaging system images a plane in the test
section on the CCD-chips. The e*”-diameter of the illuminated part of the plane is
10.0mm. To image it on a 6mm diameter CCD-chip, a lateral magnification factor of 3/5
is required for the lens combination L2, L3 and the imaging system. Because this
magnification factor of the lens combination L2, L3 is 3/10, a lateral magnification factor
of 2 is required for the imaging system. The imaging system may consist of two lenses or
a single lens. The imaging system determines the translational accuracy of the CCD-chips
along the z-axis. In this section this translational accuracy is calculated for both imaging
systems. The resuits show that a two lens imaging system is preferred.

In figure 3.4 imaging in the interferometer by the single lens imaging system is shown.
The focal length of the single lens imaging system, i.e., lens L4, is 80 mm. This relatively
large focal length is needed to obtain an imaging distance, which is large enough to
position optical components like beamsplitters and polarisers between the lens and the
CCD-cameras. The object plane of lens L4 is the image plane of lens combination L2, L3.
This plane is at a distance of 3f,/2 in front of lens L4 to obtain a magnification of 2 in the
image plane at a distance of 3f, behind the lens. If the disturbances in the test beam by
the medium in the test section are small, the beam is almost paraxial Gaussian. The

image/
object object
plane plane
MO L2 L3 L4
—d-==fl lF’ESSO
=100 =30 f=80

Figure 3.4 Imaging in the interferometer by a single lens imaging system.
The symbols are from figure 2.2.
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object object

plane plane

4
MO L2 L3 L
el PBSO
e o =1 T
L}
=100 =30 f=100 =200

Figure 3.5 Imaging in the interferometer by a two lens imaging system.
The symbols are from figure 2.2.

minimal beam waist of the beam behind L4 is in the focal plane of the lens. After this
minimal waist the beam is expanding. This means that the beam is expanding in the image
plane. Because of this expansion the magnification factor of the image depends strongly
on the exact position of the imaging plane, i.e., the position of the CCD-chip along the
z-axis.

In figure 3.5 imaging by a two lens imaging system (lenses L4 and LS5) is shown. The
focal planes of L4 and L5 coincide. To realize a magnification factor of 2 and a sufficient
image distance, the focal lengths f;=100 mm and ;=200 mm were chosen for the lenses
L4 and L5, respectively. If the object plane is the focal plane of LA, then the image plane
is in the focal plane of LS. If the beam is paraxial, then the minimal waist behind the
imaging system is also in the focal plane of LS. This implies that the position of the
image plane and the position of minimum beam waist coincide. Now the first order
derivative of the beam waist is zero in the image plane and so the magnification of the
beam is almost constant in some interval along the z-axis. This implies that the positioning
of the CCD-chip is not critical: it can be positioned anywhere in this interval. So a two
lens imaging system requires a lower translational accuracy of the CCD-cameras along the

z-axis than a single lens imaging system.

The fact that the single lens imaging system requires a better translational accuracy for the
CCD-chip than a two lens imaging system can be further clarified by looking at the set-up
in a different way. In this alternative approach the whole lens system for imaging a plane
in the test section is considered, i.e., the combination of 1.2, L3 and the imaging system in
figures 3.4 and 3.5. When the single lens imaging system is used, a small translation of
the CCD-chip along the z-axis leads to a change of both the position of the object plane in
the test section and the magnification of the image in relation to the object. When the two
lens imaging system is used, however, a small translation of the CCD-chip around its
optimal position only leads to a displacement of the object plane. The magnification of the
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image remains the same. So it is easy to see that the position of the CCD-chip is more
critical for a single lens system than for a two lens system.

To calculate the required alignment accuracy of the CCD-cameras, a relation has to be
known between the misalignment of the CCD-chip and the error in the measured phase
due to this misalignment. Below this relation will be derived for both the single lens
imaging system and the two lens imaging system. The required translational accuracy is
calculated for the situation that | Ac| ,,, has to be smaller than 1% of 2.

For both the single lens imaging system and the two lens imaging system, a Cartesian
coordinate system (x,y,2) is defined in the beam behind the imaging system, see figures 3.4
and 3.5. The z-axis is defined on the optical axis of the beam, the position of the origin is
the position of minimal waist. With equations (3.3b) and (3.6) the intensity distribution
I{x.y,G) on CCDj can be written as:

I(x,y,G) = LI- i,-i = ifn_,_{,l 1+cos|a i,.i +j£
. G2 \G G Gt "\G G G G| 2

(3.14a)

where G is the magnification factor of the beam waist compared to the minimal waist and
J=0,1,2. If I,, (and [;,) has a Gaussian intensity distribution equation (3.14a) can be written
as:

2

4P, - 2,2
I(xyG) = 0, G [1 ms(a(i ¥y ),,jg]] (3.14b)
nG 2wn G G| 2

Here P is the power of the test/reference beam, w; is the minimal beam waist and G is a
function of z given by:

2

6o 18 Y (3.15)
Z'EWD

If the CCD-chips are perfectly aligned for translation along the x-axis and the y-axis and
for all rotations, then the measured phase oy can be written as:

L(x,y,G,) -1, (x,y,G,)
Iﬂ(x’y’G[)) '11(35:)’,61}

"l (3-16a)
4

o(x.y,GyG,,G,) = arctan[
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where Gj is the magnification factor of the beam waist on CCDj. This can be written as:

o (x.9,G,G1,Gp) = a(x,y,Gy=G ,G,=G ,G,=G ) +Ac(x, \AG,AG,AG,)

(3.16b)

Here G, is the magnification factor of the beam waist at the CCD-chip if the chip would
be positioned perfectly in the image plane at z=z. Then the measured phase is
a(x,y,Gy=G,,G,=G,,G,=G ). Due to misalignment of CCDj, the position z; of the CCD-
chip is unequal to z, and the magnification of the beam waist on the CCD-chip Gj differs
a factor AG; from G,: AG=G-G,. The error in the measured phase due to the
misalignment is given by Aa(x, ,AG,AG,,AG,). Here the phase error is not written as a
function of the misalignment of the CCD-chips, but as a function of the magnification
errors AG: of the beam waists due to the misalignment of the chips. Linearisation of a

with respect to G,, G, and G, gives for Aa(x.y,AGp,AG,AG)):

da

ac, AG, !cu=cl=cz=ot

da da
Aa(x,y,AGo,AG,,AG,) = AG,+ 2% AG, +
(63,AGpAG,AG)) a6, ° 4G,

(3.16¢)

Substituting equation (3.16a) and using equation (3.14b) gives:
Aa(x,y,AGyAG,AG,) =

da X, da y AG,

Z 2
axyGe, a2 G,
(G) (G)

€ e

2 L.
l(cosa -sina) -i+4x 4 (1 +oosa] +sina
2 Ge G: WOZ

da X, da y2 AG, +
2

aXy 6, a6,

() G aF)

3

2,2
+COsa. —Gi“i'(ﬂz_) (1-sina) +cosa
Gew{}

-4

2,2
+_1.{cosa+sina} — 2 4% +y2 (1-cosa) —sina do x2+ do yz AG,
k e G.wg a2 G, 4G
Ge Ge

(3.16d)
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where o is a function of x/G, and y/G,. From this expression an upper bound for the
modulus of the phase error can be found:

2.,2
-GL+2x 3")’2 |(cosc-sina) (1+cosa)| |AG|

e Gewo

|Aa| =

Jda  x . da Y | cosa-sina)sinal |AG,|

Z 2
4(Z) 26 (220,

e e

22
w22 +2 X2 2 Jeosa(1-sina)| AG|
G ijo

a9 ¥ do ¥ |cos?'a |AG, |

a Xy 262 4L 26]
(G) (G)

e €

(3.16€)

_1 +sz-ry <
G, Gawn2

(3

%

|(cosa+sina) (1-cosa)| |AG, ]

" da x da ¥ l|(cosa+sina)sina| |AGZ|

x 2 y 2
d(—=—)2G, d(=-)26G
(G) e (G) e

e e

Averaging over a and assuming AG=AG;=AG,=AG gives:

Y
L px T 0782 X 42 Y (liag)
G, Giw? &G, &G

[

|Aal,,, = 43.07

(3.16f)

In the case that AG,, AG; or AG, is smaller than AG, then | Aat| . is smaller than the
value given by this equation. This value can now be seen as an upper bound.

In equation (3.16f) | Aa |, is dependent on x and y. To obtain an upper bound for

| Aat| ,,, which is independent of these parameters, the two terms on the right-hand side
have to be maximised. The first term is maximised by choosing x=y=0. Under the
assumption that da/dx=da/dy and that the CCD-chips have a diameter of G,w,, the second
term is maximised by choosing x=y=G_w/2. In this case [ Ac | ave Can be estimated by:
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3.16
lAal,,, < 3'0"'+1.07rw0|‘f_d‘;’L 1AG| (3.162)

ave |G

al

To find | Aa| . as a function of the misalignment Az of the CCD-chip, the relation
between AG and Az has to be known. For a single lens imaging system this relation can be

found by linearisation of equation (3.15) with respect to z about z,:

z 2
IAG]| =‘E‘3 L] Az| AT (3.17)
& G, [

where A is the wavelength of the light. Substitution in equation (3.16g) gives:

|Act| . G,

|az| <

2 2
'.'1:0]0
y ] (3.18a)

307 L1 g7, 92| Il
G i

€

Here | Aa|,,, is the maximum average modulus of the error in o found to be acceptable
by the user. In the set-up of figure 3.4 a lens L4 with a focal length f;=80mm is used. To
realize a magnification factor of 2, z, must be equal to 160mm. The minimum waist w,
behind lens L4 is 5.4 um, as can easily be verified by using the theory of Gaussian optics.
Under the assumptions that a 632.8nm laser is used, that the maximum phase gradient

| do/dx| is 10°m™ (six pixels per fringe, see section 3.2) and that the average modulus of
the error in o is 1% of 2, then equation (3.18a) requires | Az| to be smaller than 15um.
The second term in the denominator of equation (3.18a) dominates the first term, so the
error is determined by the change in the intensity distribution in the fringes.

To estimate Az for the two lens imaging system, equation (3.17) cannot be used. Because
the image is in the focus (i.e., z,=0), dG/dz is zero at z=z,=0 and the first order
approximation of | AG| (equation (3.17)) is also zero. To find a second order relation
between | AG | and | Az|, G (equation (3.15)) is expanded with respect to z and G,=1 is

subtracted:

2

2
] e L (3.19)
2 J'l:wo

Here Az=z because z,=0. Substitution of equation (3.19) in equation (3.16g) gives:
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nwﬂz 2 I Aa | ave

|az| <
A | 307

(3.18b)

+1.07w, |°}_i:|

[

where G =1 because the image is at the position of the minimal waist. When equation
(3.18b) is applied to the set-up of figure 2.2 (A=632.8 nm, f,=100m, £5=200mm and wy=6
mm) under the assumption da/dx=da/dy<10°m™, an upper bound for | Az| of 2.4 m
results if | Aa|,,, is required to be smaller than 1% of 2n. Again the change in intensity
distribution due to the fringes dominates the change in intensity distribution due to the
changing profiles of the reference and test beam.

When the translational accuracies found above are compared, it can be concluded that the
single lens imaging system requires a much better translational accuracy than the two lens
imaging system. When | da/dx| <10°m™ and |Aa| . is smaller than 1% of 2=, the
required translational accuracy for the CCD-chip along the z-axis is | Az|=15um for the
single lens system. For the two lens system, however, this accuracy is 2.4 m. This implies
that for a single lens imaging system the translation of the CCD-chip along the

z-axis is a serious degree of freedom, which has to be adjusted exactly. For the two lens
imaging system, however, this translation is not a serious degree of freedom. So an
interferometer equipped with a two lens imaging system is much easier to align than an
interferometer equipped with a single lens imaging system.

3.4 Rotation about the x-axis and the y-axis

The CCD’s last degree of freedom due to
which errors in the measured value of o
can occur is a rotation of the CCD-chip
about any axis through O in the xy-plane. x=axis
In this section | Aat|,,, due to a rotation T }\’51_“'5
of the CCD-chip about the y-axis will be

calculated. The result, however, is valid
for rotation about any axis in the xy-plane
through O.

|

parallel 8 ('
beam

In figure 3.6 the parallel beam leaving the
two lens imaging system is incident upon
the chip of CCDj. A Cartesian coordinate
system (x,y) is defined perpendicular to the
propagation direction of the beam. Its
origin is in the centre of the beam and on

the CCD-surface. The CCD-chip is rotated  Figure 3.6 A parallel beam is incident on the chip of CCDj,
which is rotated 6, around the y-axis.

y-axis
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about the y-axis, so there is an angle 6; between the propagation direction of the beam and
the normal on the CCD-surface. Parallel to the CCD-surface and perpendicular to the
y-axis, an gj-axis is defined. Its origin coincides with the origin of the coordinate system
(x.), so there is an angle 6; between the x-axis and §j-axis. The intensity distribution in
the beam is the result of interference between the interferometer’s reference beam and test
beam. Because the beam is assumed to be parallel, the interferometer’s reference beam
and test beam are parallel too, i.e., w=w,. Under the assumption that the test beam and the
reference beam have a Gaussian intensity distribution, the intensity distribution ; in the
beam illuminating CCDj can be calculated by substituting equations (3.6) and (3.7) in
equation (3.3b):

) i +y

4P 2
I(xy) = 02 e ’ (1 +C0S [o.(x,y) +j£D (3.19)
W, 2

The intensity distribution [; 5, measured by CCDj differs from this intensity distribution for

two reasons:
- the beam waist in E-direction is a factor 1/cos6; larger than in x-direction, so the

effective beam surface is larger while the same power is passing through,
- the fringe pattern is scaled by a factor 1/cos6; compared to the x-direction.
Therefore the intensity distribution on CCDj can be described as:

" g 5 §j—zmszej+y2
4P cosb; we .7 3.20
LyfE) = _Uz_-’. e 0 [] ms{a(‘g}cosaj,y) ﬂED (3:20)
W
where the coordinate §; is given by:
x
;= 3.21
g cosf; (B

So the phase shift o,(E,y) measured with a three camera interferometer is:

4

L (&), _M(El,y)} L (3.222)

(ot Er)) = arctan[ TG TipEry) | 4

which will be interpreted as:

32




a(x,y) = arctan[

Lexy)-[,xy) | x (3.22b)
Io(x.y)-1,(x.y)

ry

To approximate the error Ac in the phase shift made by the interferometer due to a small
rotation about the y-axis, equation (3.22a) should be expanded linearly to 6y, 8, and 0,
about 8,=0,=0,=0 (i.e., §=E;=E,=x). However, [}, is only dependent on 8; by cosine
terms, so the first order derivative of ; ,, with respect to 0; is zero for 6;=0. This implies
that the first order derivatives of o, with respect to 8, 8, and 8, are zero for 8,=0,=6,=0
(§;=x) and a second order approximation of the error has to be made. This second order
approximation can be obtained by expansion of equation (3.22a) to cosB, cosB; and cosf,
about cosBy=cosB;=cosB,=1 (that is §=x):

Al

— _, AcosB
d(COS'BG) tmsﬁj—l 0

doy,
Aa(EyE;,Ey) = T
oM

doy, d/

LM
Yoo TR0 SR _, AcosB
., d(cosei)lmse,.-x 1 (3.23a)
da d/
% __ 2N Acos8, (i=0,1,2)

* @, Aeosdy !
o p dlcos 2)

where Acosf=cosf-1. Here equations (3.20) and (3.22a) can be substituted. The fact that
the first order derivative of a,, with respect to I, and the first order derivative of [; 5,
with respect to cos 6, are evaluated at cosf=1 d‘=0,1,2) yields §=x. So the error in the
measured phase can be expressed in terms of x and the exact phase a:

2
Aa(xy) = % 4}:_2] (cosa-sina) (1+cosa) - %%2 sina (cosa-sina) ¢ AcosB,

1_
Yo
2
- 1-2" ) cosa(1-sina) - x 8% cos?a Acosb,
- dx

2
0

2
+ l l-ftx_ (cosa+sina)(1-cosa) + .f.d_asina(cosa+sina) AcosB,
2| W 2 dx

(3.23b)
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From this expression the following upper bound for | Aa(x,y)| is deduced:
[Aa(xy)| = _| 1- ._2.. | |(cosa-sina)(1+cosa)| |Acosy|
Yo
|_| | | |sina(cosa-sina) | |Acos8y |
+ | g | |cosat(1-sina)| |Acos8, |
""’n
+ |x] ] ] cos’a |Acosh, |

3 |[1 % ]| |(cosa+sinar) (1-cosa)| |Acosh, |

|—E | % | |sina(cosa+sina)| |Acos8, |

(3.24)

Averaging | Aa,, | over o under the assumption that do/dx is independent of o gives:

2
|Ac(eY) |, S 2_1“. [1 _3%][ (2.83 | AcosBy| +4 |Acos8, | +2.83 |Acosb, )
W,
0

+

2:!

If it is further assumed that

|AcosB,| = |AcosB,| = |AcosB,| = |Acos6|

equation (3.25a) simplifies to:

[Aa(x)],. = 1.54 |{ ]I |AcosB| + 1.076 |x| | |AcosB |
Wo
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e | (1.28|Acos8,| +3.2|Acos, | +1.28|Acosb, )

(3.252)

(3.26)

(3.25b)




An upper value is found by separate maximisation of the two terms on the right-hand side.
The first term is maximum at the centre of the CCD-chip, i.e., at x=0. The second term is
maximum at the border of the CCD-chip, i.e., at x=w/2. Under the assumption that the
maximum gradient in o is 10°m™ (see section 3.2) equation (3.25b) reduces to:

|Act,, = 324 |AcosB | (3.25¢)

Equation (3.25c) implies that if 8 is smaller than 1.1° then | Aa| ,,, will be smaller than
1% of 2x. So if the angle between the normals of all three CCD-surfaces and the
propagation direction of the beam is smaller than 1.1°, | Aat|,,, will be smaller than 1% of
2m.

The maximal angle of 1.1° found for the rotation about the y-axis is valid for rotations
about every axis in the CCD-surface through the origin. The reason is that by rotating the
coordinate system about the propagation direction of the beam (z-axis), every axis can be
described as y-axis while the analytical formalism remains the same. Compared to the
required accuracy of 0.01° for rotation of the CCD-chip about the z-axis, a rotation
accuracy of 1.1° is realized easily. The result, however, is only valid for the two lens
imaging system. If the single lens imaging system is used, the beam is not parallel at the
CCD-surface, so the intensity distribution will be more sensitive to 8. This means that a
smaller variation in 8 is allowed while maintaining the same accuracy.

3.5 Conclusions.

Each camera in a three camera interferometer has six degrees of freedom: translation along
the x-axis, the y-axis and the z-axis and rotation about the x-axis, the y-axis and the z-axis.
The alignment accuracy of these degrees of freedom is calculated under the assumption
that the phase gradient of the beam at the position of the CCD-chips is smaller than
10°m™.

The translational accuracies along the x-axis and the y-axis and the rotational accuracy
about the z-axis are independent of the imaging system. The required translational
accuracies are Ax=Ay=0.5um. The required rotational accuracy is A8=0.01°.

The translational accuracies along the z-axis and the rotational accuracy about the x-axis or
the y-axis are dependent on the applied imaging system. The accuracies are much more
critical for an interferometer equipped with a single lens imaging system than for an
interferometer equipped with a two lens imaging system. Under the assumption that the
test beam is still paraxial after passage through the test section, the required accuracy for
the translation is 15um and 2.4m, respectively. Despite the assumptions made in the
derivation, the accuracies found here are a good first approximation. For an interferometer
equipped with a two lens imaging system, a rotational accuracy of the CCD-chips about
the x-axis or the y-axis of 1.1° is required. An interferometer equipped with a single lens
imaging system requires a much better accuracy.
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Because the translational accuracies of the CCD-chips along the z-axis and the rotational
accuracy about the x-axis or the y-axis are less critical, a two lens imaging system is
preferred to a single lens imaging system. When using the two lens imaging system, not
only the translational accuracy of the CCD-chips along the z-axis is not critical, but also
the rotational accuracy about the x-axis and the y-axis are not critical when compared to
the required rotational accuracy about the z-axis. In a practical set-up these accuracies can
be realized easily. So it can be concluded that in an interferometer with a two lens
imaging system instead of a single lens imaging system, the number of degrees of freedom
per camera is only three instead of six.

The accuracies mentioned above are based on a maximum average modulus of the error in
the measured phase (| Aa| ,,,) of 1% of 2. They were calculated under the assumption
that the CCD-cameras are perfectly aligned in all degrees of freedom, except the degree(s)
of freedom under study. When all degrees of freedom of the CCD-cameras are adjusted
with the mentioned accuracy, the total value of | Aa |, is 4% of 27: 1% due to the
limited translational accuracy along the x-axis and the y-axis, 1% due to the limited
rotational accuracy about the z-axis, 1% for the limited translational accuracy along the
z-axis and 1% due to the limited rotational accuracy about the x-axis or the y-axis. This
value excludes phase errors due to misalignment of the quarter wave plate and the
polariser in front of CCD1 as well as phase errors due to the limited accuracy in the
normalization of the intensity levels on the CCD-chip.
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4. Alignment accuracies of the quarter wave plate
and the polariser

4.1 Introduction

The detection system of an interferometer with three cameras is shown in figure 4.1. The
electric field of the beam entering the system contains two rectangular polarisation
components. Component E(f), polarised in the x-direction, is the electric field of the
interferometer’s test beam. Due to the passage through the test section it is shifted in
phase over a. Component E,(7), polarised in the y-direction, is the electric field of the
interferometer’s reference beam. A quarter wave plate R3, whose fast axis is at 45° to the
x-axis, transforms the rectangular linear polarisation states of E(z) and E,(z) into opposite
circular polarisation states. In this beam the phase difference between E(f) and E (t) can
be selected easily, because an extra phase shift can be introduced to the phase shift a.
This extra phase shift is dependent on the linear polarisation direction which is transmitted
by the optical components in the set-up. The opposite circularly polarised beam is split by
beamsplitter BS. The transmitted beam is next split by the polarising beamsplitter PBS1.
The x-polarised light, i.e., the x-components of E(?) and E (1), is transmitted to CCDO.
The y-polarised light, i.e., the y-components of E () and E (1), is reflected to CCD2. The
beam reflected by beamsplitter BS passes a piece of glass (to compensate for the fact that
the transmitted beam passes the polarising beamsplitter cube PBS1) and a polariser whose
transmission axis is at 45° to the x-axis. So the light reaching CCD1 is linearly polarised
at 45° to the x-axis. Due to the different polarisation directions of the light on the three
CCD-chips, the phase difference between E(f) and E (1) differs for each camera. In the
x-polarised beam on CCDO, an extra phase shift of 7/2 is introduced in E (f) relative to
E(?). Because E(f) is shifted in phase over o due to the passage through the test section,
the total phase difference between E,(?) and E (?) is equal to a-w/2. Similarly, in the
y-polarised beam on CCD2 an extra phase shift of 71/2 is introduced to E(f) relative to

E (), so the total phase difference is o+m/2. In the beam on CCD1, polarised at 45° to the

PBS1
ccbo

imaging system

7]
ccD2

Figure 4.1 The three camera detection system. The symbols are from figure 2.2.
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x-axis, E(f) and E (1) are not shifted in phase relative to each other, so the phase
difference is c.. The phase shift between E(t) and E,(f) on a CCD-chip is equal to the
phase of the interference pattern on the CCD-chip. This implies that the interference
pattern on CCD2 is shifted in phase over =t compared to the interference pattern on CCDO.
Similarly, the interference pattern on CCD1 is shifted in phase over n/2 compared to the

interference pattern on CCDO.

In the set-up, beside the CCD-cameras four optical components have to be aligned: the
quarter wave plate, the non-polarising beamsplitter, the polariser and the polarising
beamsplitter. The depolarisation rate of the beams leaving the polarising beamsplitter is
negligible and the polarisation directions are perpendicular, so this element is easily
aligned. The non-polarising beamsplitter, however, is not ideal: transmission and reflection
are not independent of the polarisation state. This will influence the measured phase a,
just as small errors in the orientation of the quarter wave plate and the polariser will do.

In this section the error in a due to a misalignment of the quarter wave plate and the
polariser will be analysed. The errors in a due to the polarisation dependency of the non-
polarising beamsplitter can be corrected in an optical way. Attention will be paid to the
questions how to make this correction and how this correction influences the required
normalization of the intensity distributions on the three cameras.

4.2 Phase error calculation

In this section an analytical expression will be derived for the intensity distributions on
CCDO0, CCD1 and CCD2 as a function of the orientation of the quarter wave plate, the
orientation of the polariser and the transmission/reflection coefficient of the non-polarising

beamsplitter.

In figure 4.1 the output beam of the interferometer enters the detection system. The beam
contains two components: the x-polarised test beam with electric field amplitude E, and
the y-polarised reference beam with electric field amplitude E,. The total electric field

vector Exy can be written as:

£ 4.1)

where the time dependence has been omitted for notational simplicity. The subscript xy
refers to the Cartesian coordinate system (x,y) to which the vector is attached. This electric
field passes a quarter wave plate whose fast axis is oriented at (45-¢)° to the x-axis, see
figure 4.2. In figure 4.3 a new Cartesian coordinate system (x',y ) is defined. The origin
of this coordinate system coincides with the origin of the coordinate system (x,y).
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Figure 4.2 The orientation of the quarter wave plate’s Figure 43 Definition of the coordinate system (x'y’)
fast axis in the electric field of the interferometer in the compared to the coordinate system (x,y) and the fast axis
ideal situation and in the actual situation. of the quarter wave plate.

However, the coordinate system (x',y') is rotated over an angle ¢ about the origin. So the
fast axis of the quarter wave plate is at 45° to the x'-axis. The electric field of equation
(4.1) expressed in these coordinates, E, - -, is:

g cospe "*-E sin 42)

xly! T, " o
sing cos || E, Singe “*+E cos¢

E _ [cosq: -sing

When the electric field has passed the quarter wave plate, it is equal to:>*

; -ia_g g -i(4+0)_iE ¢ it
O 1 5 v O 3 il
7 2 I 1[Esinge ™+Ecos¢| 2 -iEe @) 4E '

Transformation to the coordinate system (x,y) gives:

o
I

1 {COS¢ Sll‘ld) ] !e =i(p+ar) —iEre -i§

o 72_- -sing cos || ~iE e (®~)+E ¢ if
(4.4)
| |Ecosoe ~i9+@)_E cospe " -iE singe ¢ ")+E sinpe

f -E singe " +iE singe "?-iE cospe €0-a).E cospe®

Next the beam is split by a non-polarising beamsplitter BS, whose power reflection
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coefficient is a for x-polarised light and b for y-polarised light. The transmitted beam is
split again by the polarising beam splitter. The power transmission coefficient of this
beamsplitter is 1 for x-polarised light. The power reflection coefficient is 1 for y-polarised
light. So the electric field E; on CCDO is x-polarised and is given by:

Eyi= ‘_1;" (E cospe " iE cospe " -iE sinpe ®I+E sinpe ) (4.52)
The electric field E, on CCD2 is y-polarised and is given by:
(4.5b)

By = -lz;b (-E sinpe “#*9)+iE sinpe 7®-iE cospe (4~ +E cospe ?)

For the electric field vector E,  between the non-polarising beamsplitter and the polariser
follows:

i Ja (E cospe @ ~E cospe *-iE singe (*"+E singe ¢)

P V2 Wb (-E sinpe @ +iE singe " ~iE cospe +E cospe )
(4.5¢)
Behind the polariser whose transmission axis is oriented at an angle 6 to the x-axis, the
electric field E, is given by:

(E cospe @ D —iE cospe “®~iE sinpe *0)+E singe *)cos6

(-E singe " D +E singe " -iE cospe 1®=2)+E cospe ‘*)sind

w| o l TR |

(4.5d)

This is the electric field on CCD1. The polarisation direction of this linearly polarised
field is at an angle 8 to the x-axis. The intensity distributions I, I;, I, on CCD0, CCD1
and CCD2 can easily be calculated by multiplying the electric fields with their complex

conjugates:




Iy = EoEo'

1_;2. [Efz *Ef +2E E cos2¢ oos(a—%) +(Er2—Er2)sin22¢ +E E sind¢ cosa)

(4.62)

I = EzEz-

% (E f +Er2 +2E E cos2¢ cos(a +.’25) -(E ‘2 -E f) sin22¢ -E (E,sindd cosa)

(4.6b)
I, « EE
acos®® . _+ . bsin®® . .«
= E + E
T Eofo * e
+ Jab cosOsind[2E E, (cos*2¢ cosa ~sin2¢ sinc) +_;.(E,2—Er2)sin4¢)
(4.6c)

If the quarter wave plate is aligned perfectly, i.e., $=0°, the expressions for the intensity
distributions on CCD0, CCD2 and CCD1 reduce to:

I, = EEq = 17“’(53 +E? +2E,E,oos(a-%)) (4.73)
I, x EE, = I_;E(Ef +E? +2E,E,cos(a+_’2£)) (4.70)
2 s 2
I, « EE, = “‘:1"_503 EOE(,‘J’*;'_’JE)8 E,E; +ab cos0sin6(2E E,cosa) (470)

To realize a modulation of I; which is independent of cos(a-m/2) and cos(o+/2) terms,
these terms should cancel in equation (4.7c). This will be the case if the next condition is
fulfilled:
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acos?® = bsin®0 (4.8)

I, can now be written as:

I, « amszﬁ(f?,2 +Er2 +2E_,Ercosa) (4.7d)

Requirement (4.8) implies that for the situation a is equal to b, 8 has to be 45°. In
practice, however, a is unequal to b, so 6 has to be unequal to 45°,

Equations (4.7a), (4.7b) and (4.7d) show a phase shift of -/2 in the intensity distributions
I compared to equation (3.3b). This means that substitution of these values of I, I; and I,
in equation (3.4a) will also lead to a value for a which is shifted over -m/2. So if the
intensities defined in equations (4.7a), (4.7b) and (4.7d) are used, the correct value for a

1S:

-x. I
ax,y) = arctan 21_2._‘.(1_1.. i (4.9)
Kolo~k ;| 4

In this equation kg, «;, and k, are normalization factors. If the sensitivity is the same for
all cameras, it is easy to see with equations (4.7a), (4.7b) and (4.7d) that:

i s (4.10a)
l-a
5 - (4.10b)
) acoszﬁ
Ky = '12—1; (4.10¢)

The non-polarising beamsplitter in the set-up of figure 4.1 is characterised by a=0.45 and
b=0.65. So for exact phase measurements the required exact values for 6, ¢, kg, k; and x,
are: 8=0.694 rad (39.76°), ¢=0 rad, x;=3.64, x,=3.76 and k,=5.71. However, in a practical
set-up it is difficult to adjust 6 and ¢ exactly. So it is important to know the absolute error
in a if 8 is not exactly equal to 0.694 rad and ¢ is not exactly equal to 0 rad, while for
Kg» K and k, the exact values are used. Under the assumption E=E, these errors are
calculated by using equations (4.6a), (4.6b), (4.6¢) and (4.8). Figure 4.4 shows the phase
error Aa when 8=0.694 rad and ¢=0.017 rad (1°), i.e., 6 has its exact value and ¢ is
shifted over 1° compared to its exact value. Figure 4.5 shows the phase error Aa when
8=0.711 rad (46°) and ¢=0 rad, i.e., 0 is shifted over 1° compared to its exact value and ¢
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has its exact value. Figure 4.6a,b shows the modulus of Ac averaged over o (| Aa|,,,) as
a function of ¢ when 6=0.694 rad (exact value). If the system is aligned exactly, |Aa|
is independent of the quotient E,/E,. However, if the system is not aligned exactly |Aa |,
is not independent of this quotient. So in figure 4.6a,b | Aa|,,, is represented as a
function of ¢ for E /E,=1, EJE,=125 and E/E,=10. Figure 4.7a,b shows |Act|,, as a
function of 6 for E/E =1, E/E,=1.25 and E/E =10, when ¢=0 rad (exact value).

Inverting the quotient E/E, does not change | Act| ,,, as function of ¢ when 6, kg, k;, and
K, have their exact value. Similarly, inverting E/E_does not change | Aa| . as function
of 8 for $=0, no matter what the values of k, k;, and «, are. This is easy to see if one
realizes that:

Aa =(
1A Koo %y | 4

arcwn{gz.j(_lf_l] =2 —a‘ > (4.11a)

For the first situation, the argument of the arctangent function can be written as:

Koy =1 ¢ (Ef—Eﬁ +c,E E cosa+c,E E sina

(4.11b)
Kolo =%/ g(E,ZvErZ) +¢sE E cosa +cgE E sina

where ¢, (i=1,2,3,4,5,6) are functions of ¢. In the second situation the argument can be
written as:

Koly=kidy _ fi(E[+E]) +hE E,sina +fE,E, cosa
%lo=%idy  f,(E?+E?) +f;E,E,sina +f4E E,cosa

(4.11¢)

where f; are functions of some of the parameters 8, K, x; and k,. Substituting the two
arguments in equation (4.11a) and averaging over o give the same result for the case that
the quotient is E/E, and the case the quotient is inverted.

Figure 4.8a shows |Aa| ,, as a function of k, with free parameter E/E,. The values of
K1, K5, 0 and ¢ have their exact values. Similarly figure 4.8b and 4.8c show |Ac|,, as
function of x, and k, when k, 8 and ¢ have their exact values, just as k, and k,
respectively. Also here inverting E,/E, will not lead to a change in | Aa| 4,
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Figure 4.4 The absolute phase error Aa as a function of the phase « when 8 has its exact value 0.694 rad and ¢ is
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Figure 4.8c The average modulus of the phase error | A | _,. as a function of x, with free parameter EJE,. The other
paramelers are exact.

4.3 Discussion and conclusions

To evaluate the results of section 4.2 some new parameters are introduced: A¢, AB, Ak,
Ak, and Ax,. These parameters are equal to the modulus of the difference between the
exact and the actual values of the parameters ¢, 6, K, k; and x,, respectively:

Ad = |¢] (4.12a)

A8 = [0.694-6)| (4.12b)

Ay = "i%"‘"‘ (4.12¢)

Ak, |0'5;10 -, | (4.12d)
Ak, = I..I%E—le (4.12¢)
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Figure 4.6a shows that the error in the average modulus of « is a periodic function of ¢
with period z. This is easy to understand, because after rotating the quarter wave plate
over an angle =, the fast and slow axis of the crystal obtain their original directions again.
Similarly, the average modulus of the error in a as a function of 0 is periodic with period
7 (see figure 4.7a): after rotating the polariser over an angle x, the transmission axis
obtains its original direction again.

Figure 4.6a shows that for ¢=kn (k=0,1,2..) the measured phase a is correct, independent
of EJE,. For small values of A¢ there exists an almost linear relation between |Ac|,,,
and A¢, see figure 4.6b. When E/E,=1 and A¢<0.8 rad (=45°) this relation can be
approximated by: | Aa |, /A¢=2.08. If an average error in o of 1% of 27 due to
misalignment of ¢ is allowed, the accuracy to which the quarter wave plate has to be
adjusted is A¢=0.03 rad (1.7°). The relation between |Ac | ave a0d ¢ almost does not
change when E/E, increases from 1 to 1.25. However, if E/E, increases to 10 the relation
changes and | A | ave! A for small A¢ also increases strongly.

Similarly, figure 4.7a,b shows that | Aat| ,, is zero for 8=0.694+kn (k=0,1,2...),
independent of E/E,. For small values of A, the relation between |Aa |, and A8 is
almost linear. When E/E =1 and A8<0.4 rad (=23°) this relation is: | Aa| ,,/A8=1.03. So
to keep the error smaller than 1% of 2m, it is required that AB<0.06 rad (3.5°). Increasing
EJE, to 1.25 almost does not change |Aa |, as function of 8. However, increasing E/E,
to 10 changes the curve strongly.

The relation between |Aa |, and the normalization factor k; (i=0,1,2) is almost linear for
small Ax; when all other parameters (including the other normalization factors) have their
exact values, see figure 4.8a,b,c. This relation is almost the same for E/E =1 and
E/E=125. For E/E,=10, however, | Aa| ,,/Ax; increases. To keep | Aa| ,, smaller than
1% of 2n when E/E =1, it is required that:

3.16 < x4 < 4.16 (4.13a)
342 < x; < 4.16 (4.13b)
4.97 < x, < 6.54 (4.13¢c)

This implies that x, and x, are allowed to be 13% smaller and 14.5% larger than the exact
values 3.64 and 5.71, respectively. x, is allowed to be 9% smaller and 10.5% larger than
the exact value 3.76. The linear relation between | Aa|,,, and Ax; is given by:

A

Blae _ 15 (k<3.64) (4.14a)
Ak

Aa

Ao _ 15 (k>3.64) (4.14b)
Ak,
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Aa

1A _ 0.18  (x,<3.76) (4.14c)
Ax,y

A

lAclae 0.16  (x,>3.76) (4.14d)
Ak,

Aa

1A lae _ 0.082 (k,<5.71) (4.14e)
Ax,

A

18ae _ 0075 (e>5.71) (4.14f)
Ak,

in this section lead to the

The theoretical derivations in section 4.2 and the discussion
h a non-polarising beamsplitter

following conclusions for a three camera interferometer, wit

that is characterised by @=0.45 and b=0.65:
- For a correct phase measurement the parameters ¢, 8, Ko X3, and Kk, have to be equal

to their exact values: $=0°, 8=39.76° x,=3.64, x;=3.76, x =5.71.
- Increasing E/E, from 1 to 1.25 almost does not influence 2[ Aat | aver SO 2 difference
between the electric field of the reference beam and the test beam of 25% is allowed.
- If all parameters have their exact values except one, the allowed variation in this
parameter while keeping | Act | ,,, smaller than 1% of 2, is: A¢<1.7°, AB<3.5°,
Ax,<0.48 (13% of the exact value for Ko), Ax;<0.34 (9% of the exact value for x;),
Ax,<0.74 (13% of the exact value for Ky)-
- There exists a complex relation between the different parameter errors and | Aat| 4y
However, to a first approximation the total error | Act| ,,, due to a combination of errors
in ¢, 6, ¢, k; and x, will be the sum of the errors | Aa| ., due to the errors inthe
individual parameters. So if the parameters are adjusted with the accuracy as described
here, the maximal total error | Act| ,,, amounts to about 5% of 2m.
These conclusions are the result of an analysis in which the errors due to a misalignment
of the CCD-chips were excluded. Chapter 3 has shown that if the alignment of the CCD-
chips satisfies the required accuracy, | Aa|,,, due to the misalignment of the CCD-chips
is less than 4% of 2. This value of | Aa |, has to be added to the value of 5% of 21
found in this section. So the total estimated error in a, | Act| 4 is equal to 9% of 2.
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5. Summarized conclusions.

A Michelson interferometer for quantitative refractive index measurements has been

designed. A Michelson interferometer is preferred to a Mach Zehnder interferometer

because it is easier to install around large objects like a wind tunnel. This report is a

theoretical analysis of the interferometer and treats two major subjects:

1. The choice between a two and a three camera interferometer.

2. The required alignment accuracy of the elements in the interferometer as well as the
required accuracy in the normalization factors.

Ad 1.

A three camera interferometer is preferred to a two camera system because:

- the range in which the phase shift can be detected is 0-2x for a three camera
interferometer and 0-n for a two camera interferometer,

- the two camera interferometer is less sensitive to spatial low frequency phase variations,

- the two camera interferometer introduces more undesired intensity fluctuations due to a
rotating inhomogeneous quarter wave plate.

- the sampling moments at which the phase is measured have to be known exactly when
using the two camera interferometer.

Ad 2.

A three camera interferometer equipped with a two lens imaging system is preferred to a
interferometer equipped with a single lens imaging system. The two lens system reduces
the degrees of freedom of the CCD-camera’s from 6 to 3 per camera. If the maximum
phase gradient in the image on the CCD-chips is 10° rad/m, the total average modulus of
the error in the measured phase can be kept smaller than 9% of 2. This error excludes
errors due to refraction effects in the examined medium in the test section. For an
interferometer equipped with a two lens imaging system, the required alignment accuracy
for the optical components is given by:

CCD-cameras:

x,y translation: 0.5 pm

z translation: 2.4 m

rotation about x,y-axis: 1.1°

rotation about z-axis: 0.01°

rotation quarter wave plate: 1.7°
rotation polariser in front of CCD1: 3.5°

The required accuracy in the normalization factors of the intensity distributions on the
CCD-chips are:

normalization factor CCD0 and CCD2: 13%
normalization factor CCD1: 9%

The influence of unequal intensities in the test section and in the reference path on the
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average modulus of the phase error is negligible if the quotient of the electric fields is

smaller than 1.25.
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This book describes the theoretical design of a three camera
Michelson interferometer set-up for quantitative refractive index
measuerments. Although a two camera system is easier to align and
less expensive, a three camera interferometer is preferred because
the expected measuring accuracy is much better. Here analytical
expressions are found for the calculation of the required alignment
accuracy of the interferometer’s components: three CCD-cameras
(six degrees of freedom each), a quarter wave plate (one degree of
freedom) and a polariser (one degree of freedom). Also the required
accuracy in the normalization of the intensity levels on the CCD-
cameras is calculated.
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