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Abstract

Energy systems have been continuously evolving with the advancement in technology. The
expected result would be a smooth transition towards clean and more sustainable energy
systems which work closely with one another. Conventionally electricity and natural gas have
been the most commonly available resources. These two extensively used energy sources are
on the forefront of this progress. The focus on using the available energy resources optimally
and effectively is a need for energy providers as well as the energy consumers. However,
there are different challenges in making these optimal decisions because most of the energy
providers have their independent networks. The progress in energy sector has promoted the
use of integrated energy systems from different geographical locations. A smart energy system
that connects energy consuming sectors to the power grid to improve the synergy between
energy production and consumption is referred as integrated energy system or sector coupling.

This is the point where the research on Integrated Electricity and Natural Gas System (IEGS)
plays an important role. These integrated systems include several large subsystems referred
as areas consisting of electricity and natural gas networks. These large systems are connected
to one another through one or more connections known as tie-lines and/or tie-pipes and the
energy dispatch can be controlled by the area operator. The main intention of an integrated
system is that the electricity and natural gas networks are closely linked as opposed to the
formerly isolated systems. The interdependence of systems adds to the complexity of the
network and calls for new methods to optimally solve this multi-area IEGS problem.

The goal of this thesis report is to delve into the different optimization methods for multi-area
IEGS and providing a benchmark for the possible methods based on their performance. There
has been a good deal of research on single-area electricity and gas systems, but the multi-area
problem is more complex. Hence it is important to understand how optimization problems
are formulated in the context of such multi-area IEGS and what approaches are currently
used to solve it. This study comprises of an optimization problem for an IEGS network by
considering all the network constraints for these integrated systems. It also emphasizes the
need of relaxation methods used to convexify the highly non-convex natural gas flow equations
as they cause difficulty in finding the optimal solution.

The goal of an Optimal Energy Flow (OEF), optimization problem for an IEGS network
consisting of an objective function is to minimize the system’s overall operational cost while
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satisfying the constraints for the electricity network, natural gas network and the coupling
constraints. The coupling constraints play a critical role in finding the optimal solution since
multi-area systems are being studied. In this overview, various formulations and solution
methods of the optimization problem have been examined. Their performance has been
compared based on certain performance metrics in order to find the best possible method to
solve such complex optimization problems.

Out of the two networks, the electricity network constraints are usually either linear or convex
and hence comparatively easy to deal with using existing solvers. However, the natural
gas network constraints contain nonlinear, non-convex constraints which make it difficult to
determine the solution of the optimization problem. Such problems cannot be easily solved
using existing solvers. There are some techniques for overcoming such difficulties posed by
these non-convex equations such as relaxing/approximating these non-convex constraints and
reformulating the optimization problem. This study discusses a number of strategies used to
reformulate the non-convex constraints into linear, quadratic, or mixed integer forms. Having
a reformulated problem makes it possible to find the best possible solution for the defined
problem. If this reformulation is not done, the original problem could be infeasible.

Since the integrated systems usually are extremely large, it is vital to separate them into
smaller subsystems in order to solve the optimization problem efficiently. For instance, the
electrical and natural gas networks can be separated based on their physical properties, leav-
ing just the coupling constraints between these regions to be taken into account. This is
known as decentralizing the network. There are different methods used for the decentralized
optimization and it is important to study these algorithms for multi-area IEGS. A summary
of the features and simulation results of various methods has been provided.

Finally, this thesis concludes by summarizing all the primary findings for the best possible
optimization method and suggesting future research possibilities in this topic. To determine
which approach best fits the OEF problem for IEGS, a thorough numerical comparison of
various relaxation techniques, centralized and decentralized scheme of operation must be
made. It is imperative to note that these techniques solve the approximated problem, not the
original nonlinear, non-convex problem, which would leave some room for errors and hence
an area of future improvement.
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Preface

The following document is prepared at the Delft Center for Systems and Control (DCSC)
within Delft University of Technology as a part of my Master of Science graduation thesis.
This report presents a study of Optimization methods for Integrated Electricity and Natural
gas systems. The integration of different energy sources, for example natural gas network
with the electricity network has provided the energy business with new opportunities and
tremendous challenges.

Since electricity and natural gas are the two most commonly utilized energy sources, there
has been quite some research on their independent usage. New optimization approaches are
required to balance the electricity and natural gas networks as the natural gas network brings
a strong non-convexity to the optimal flow problem making it difficult to solve using commer-
cial solvers. This study attempts to provide insights into some of the available methods of
relaxation/approximation, their performance, efficiency and reliability of these methods for
multi-area networks.

The investigation begins with an introduction of the research problem and the rationale for
the investigation. This report emphasizes the significance of relaxation techniques used to
relax the non-convexity and studying optimization methods for integrated electricity natural
gas systems. The mathematical formulations and optimization strategies utilized to solve
the models are explained in detail. The performance of optimization algorithms is assessed
based on certain performance metrics. Finally, this thesis adds to the continuing study on
optimization approaches for integrated electrical and natural gas systems. It is my hope that
the findings of this study would help regulators, policy-makers and industry professionals
develop and operate more efficient, dependable and sustainable energy systems.
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“Right knowledge is the ultimate solution, guiding us beyond illusion to the truth.”
— Inspired by the teachings of the Bhagavad Gita, Chapter 2






Chapter 1

Introduction

Chapter 1 introduces fundamental concepts related to optimization methods for Integrated
Electricity and Natural Gas System (IEGS) and builds the foundation of this report. It
begins with a general overview, which contains key concepts required to understand the
world of IEGS and the necessity of optimization methods for these large systems. Further
it presents the research questions and the motivation for studying this topic.

1-1 Overview

In this dynamic and rapidly evolving energy landscape, there has been increasing interest in
the field of energy technology. Due to the depletion of fossil fuels, many researchers claim
that the world is on the verge of an energy catastrophe [7]. In this regards, it can be seen that
more and more companies and individuals are focusing on energy-related technologies such as,
seeking alternatives for non-renewable resources, using the existing sources as effectively as
possible, etc. The investment in this topic has also been increasing since there is widespread
concern about reducing the cost of energy usage and maintaining a sustainable supply of
energy for increasing demands. Integrated energy systems have thus gained lot of importance
and are increasingly popular in research and development. With a strong base of research,
industries can use these integrated energy solutions in real life applications to provide optimal
as well as more sustainable solutions to the consumers.

In the past, independent infrastructures have been responsible for supplying consumers and
businesses with the majority of their energy needs. Even if the two energy systems worked in
the same network, the mathematical problem formulation has been historically such that the
two networks do not interfere with each other. To give an example of such a scenario where
independent suppliers play a role, consider petroleum which is mostly utilized in transporta-
tion, whereas coal and natural gas are used to produce electricity and heat homes. These
independent systems are still common today. With the development in the energy indus-
try, this sector will have more interconnected systems in the future for the optimal use of
resources.

Master of Science Thesis Akshada Anand Palnitkar (5235170)



2 Introduction

Figure 1-1 shows an example of simple IEGS. The green arrows show electricity network
while blue arrows refer to natural gas pipeline. Both the electricity load and gas load can be
fulfilled while optimally using the resources and preventing wastage. The ITEGS, refer to the
interconnection of electricity grids and natural gas infrastructure, enabling the exchange of
energy between these traditionally distinct systems. These two networks have been considered
independently for the longest time [8], [9].

Non Natural gas-fired unit
(example: coal-fired unit)

=%

* Electricity network

) Electricity load

Gas-fired unit

Natural gas network

; ¥
o oy

Gas wells Gas storage

) Gas load

Figure 1-1: Example integrated electricity and natural gas system [1]

Modern integrated energy systems are characterized by their large scale and complex nature,
comprising of multiple subsystems located across different areas and serving diverse types of
users. These systems aim to efficiently meet the energy demands and enables optimization
opportunities for improved reliability, enhanced flexibility, cost-effectiveness, etc. Interde-
pendent energy infrastructure has thus become a reality and that is for the advantage of
not only the consumers but also the producers. On the contrary, these systems also intro-
duce new challenges in terms of modeling, optimization and computational loads [10]. To
ensure dependable, economical and sustainable operation, the size and complexity of these
systems necessitate advanced modeling, optimization and control methodologies. The ongo-
ing advancements in technology, policy frameworks and stakeholder collaboration continues
to drive the evolution and optimization of these integrated energy systems.

The focus of this study is on electricity and natural gas, which are the two most popular and
widely available sources of energy [11]. The electricity grid forms the backbone of any urban
energy systems since it provides energy to residential, commercial and industrial consumers. It
includes power generation sources, transmission lines, distribution networks, etc. that deliver
electricity to end-users. The natural gas networks also deliver natural gas to residential,
commercial and industrial users for heating, cooking and industrial processes. These networks
comprise pipelines, storage facilities and distribution systems to ensure the reliable supply of
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1-1 Overview 3

natural gas. Rapid development of Natural Gas-fired Unit (NGU)s in the power industry is
a cause of natural gas being available at low cost and possessing higher efficiency [12].

The electricity and natural gas systems are interdependent, as seen in Figure 1-2. Despite
the growing discussion around electricity and natural gas networks interactions, there is a
dearth of research on multi-area IEGS in comparison to single-area studies. Typically in
the case of an IEGS, the NGUs act as producers in electrical networks and consumers in
natural gas networks. A notable feature of the IEGS is that the system operator can dispatch
both networks and ensure optimal system operation rather than just one network [13]. The
effective integration of electricity and natural gas systems has emerged as a critical challenge
for ensuring reliable, efficient and sustainable energy supply.

gl‘
g2 N . :
.atu.ral G.as Transmission Grid
Distribution P
@ -~ “ X
— f E '
LDC Service Area Power Plant

¥ 3

oD

A 4

® —— m B —— =
4™~
— — Natural Gas
Nl G Processing Plant Distribution Grid
Pipeline

Figure 1-2: Interdependence of electricity and natural gas system [2]

Multi-area integrated electricity and natural gas networks

The IEGS in different geographical locations can be connected by electrical or gas transmission
lines, thus formulating multi-area IEGS. A multi-area IEGS consists of different subsystems,
thus enabling the transmission of excess energy between each other. Multi-area problems play
a significant role in the optimization of these integrated systems. As electricity and natural
gas networks often span multiple regions, it becomes essential to account for the interactions
and dependencies between these areas. Multi-area problems involve addressing coordination,
communication, and decision-making challenges among various stakeholders, including power
grid operators, gas pipeline operators, market participants, and regulators.

Figure 1-3 shows a schematic of a sample multi-area IEGS where 'xxx’ can be any number of
areas. The interconnections between the network are referred to as tie-lines for electricity and
tie-pipes for natural gas. A multi-area model differs from the traditional single-area TEGS
model as it takes tie-lines and tie-pipe scheduling into account.
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4 Introduction

Tie-pipes

Tiedines

Figure 1-3: Example multi-area IEGS [1]

As the demand for energy continues to grow, optimizing the operation and planning of these
interconnected networks becomes paramount. This report explores the concept of optimiza-
tion methods specifically tailored to address the complexities and intricacies of integrated
electricity natural gas systems. In the context of energy systems, optimization methods are
employed to enhance the performance of integrated electricity natural gas networks by max-
imizing overall efficiency, minimizing costs and ensuring system reliability. In an integrated
setup, the coordinated operation is converted to optimal operation problem. This is because
the operator needs to dispatch from two networks and optimal operation of the overall system,
rather than optimal operation of a single network.

Few pros and cons of IEGS are listed below:
Pros:

1. Lowering the use of primary energy sources while meeting the increasing energy demand.
2. Boost asset usage to cut down on capital expenditure.

Cost effective provision of flexibility in the electrical power systems.

- w

Increased reliability of the electrical power system (e.g. security of supply).

5. Carbon emission can be reduced by increasing energy efficiency of the system as the
operation is optimized.

Cons:

1. The fragmented institutional and market structures in the different energy sectors.

2. The increased complexity of integrated energy system necessitates the use of more robust
analysis software.

3. The integration of various energy systems may result in systems that are more prone
to cascading failures that compromise reliability of supply.

4. Research and development in integrated systems is multidisciplinary, which presents a
difficulty because different technical knowledge requirements arise from diverse economic
and market contexts.

Akshada Anand Palnitkar (5235170) Master of Science Thesis



1-1 Overview 5

Economic dispatch and optimal energy flow problem

When discussing a transmission system, economic dispatch refers to the process of economic
optimization, given the operational limitations of the generating system, that chooses a com-
bination of generation levels to satisfy demand at the lowest feasible cost [14]. The reduction
of consumer energy costs is the primary goal of economic dispatch. The economic dispatch
problem for a given network of power generators minimizes the total operating cost while
determining the quantity of power generated by each unit for a given demand. In order to
determine the minimum cost of power generation, such a problem requires n power generators

[15].

In the past, the Economic Dispatch Problem (EDP) was formulated as a convex optimization
problem or non-convex optimization problem depending on the constraints of the gas-flow
equations and other components in the network. The convexity or non-convexity of the
problem depends on how the components in the network are modeled. As an illustration,
consider a model with energy flow and gas flow equations which are nonlinear, thus non-
convex. The EDP formulated for such a model will be non-convex. This problem becomes
difficult to solve hence giving rise to the need of studying different methods to solve EDP
depending on the problem formulation. Some examples of traditional convex optimization
methods consist of Newton method [16] and gradient search method [17]. Examples of non-
convex optimization methods include genetic algorithm [18], particle swarm algorithm [19].
Most of these algorithms solve EDP in centralized way, wherein a central controller collects
all the information and processes large amounts of data [17]-[19].

The optimization problem formulation can be done separately taking into account constraints
for electricity and natural gas networks. The Optimal Power Flow (OPF) problem is primarily
for electricity network and addresses the power flow constraints. Numerous OPF techniques
have been studied to reduce cost or power loss [20]. OPF combines economic dispatch and
optimal flow problems and hence can be considered as an extension of the conventional EDP
[21]. For simplification, steady-state gas flow equations are used [22]. The nonlinear form
of gas flow equations adds to the complexity of the optimization problem. As these systems
are very large, with multiple parameters being involved, the need for computational power
increases. The traditional solvers fail to provide a solution to these problems. It is therefore
necessary to use some approximation techniques or relaxations to convert the problem into
simpler form so that it can be put into an existing solver. In order to solve this reformulated
nonlinear problem, it is necessary to study the different techniques used for approximating
these nonlinear constraints.

Figure 1-4 shows an example of a model introduced by Aurangzeb et al. in [3], which can
be considered to understand the supply and demand side of a basic power flow system whilst
diving into details of Optimal Energy Flow (OEF). Industrial load, commercial load and
residential loads make for the demand side, while the distribution systems, transmission net-
work, and generation systems are part of the supply side. The control center is where the area
operator makes the optimal dispatch decisions. This can be centralized or decentralized type
of optimization, which will be discussed in detail further. The power flow is unidirectional,
from supply side to the control center and from control center to the demand side. However,
the information related to other power flow parameters is bidirectional in-case of both supply
and demand side.

Master of Science Thesis Akshada Anand Palnitkar (5235170)



6 Introduction

*—* Bi-directional information flow
———* Power flow

Supply side
v i = SR ~
7 A

/ y

i

! Transmission + | I
network é{%\

-
Thermal

generation system Distribution system

Control center -

Demand side

Residential load

Commercial load

Figure 1-4: Example of power flow system [3]

In the planning and execution of an IEGS, the OEF plays a crucial role. Natural gas flow
presents a challenge in solving the optimization problem when compared to fast electrical
transients [23]. But as the systems get more inter-linked, the economic dispatch problem needs
to be solved simultaneously. A mathematical model in the form of an optimization problem
which integrates the optimal dispatch problem for electricity and natural gas networks is
discussed in [24]. Numerous studies have been conducted on integrated networks, paper [25]
discusses a security constrained scheduling framework.

The OEF problem deals with the dispatch of optimum amount of energy through the network.
This can be mathematically expressed as an optimization problem. Generally an optimization
problem consists of an objective function, the decision variable (parameter to be optimized),
constraints that restrict solution to certain area (equality constraints), constraints that restrict
solution to certain allowed region of the parameter space (inequality constraints). The final
goal of this optimization is to minimize the total cost of the network, while meeting the
electricity and natural gas constraints. Since the focus of this study is only IEGS network,
the objective function could be the total cost of the multi-area IEGS which includes the
natural gas fuel cost of NGUs, operation cost of the non-NGUs, load shedding cost, start-up
cost for units, shut-down costs, etc. This is formulated in different ways in various studies
and hence different optimization algorithms are used to solve these optimization problems.
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1-1 Overview 7

Optimization algorithms

In this report, we delve into the different types of optimization models and algorithms utilized
for integrated electricity natural gas systems. Centralized or decentralized methods are used
by most of the researchers. Figure 1-5 shows these two types of widely used networks. The
red circle represents the controller while yellow circle represents subsystems. The black lines
show connections between the subsystems and/or controllers representing the communication
between them. In centralized methods, there is always a central control system, which is
connected to all the subsystems. On the other hand, a decentralized scheme comprises of
several controllers that communicate with each other and their individual subsystems. Thus,
under decentralized control, hierarchical control can be applied.

(a) Centralized (b) Decentralized

Figure 1-5: Centralized and Decentralized scheme [4]

In paper [5], a decentralized scheme for managing the operation and control of a multi-
area integrated power and natural gas system is put forward. Instead of relying on a single
controller to make decisions, a decentralized method distributes authority across several con-
trollers, which are then in charge of smaller subsystems. Several benefits of decentralized
approach, including faster calculations and fewer large-scale modeling requirements, are cov-
ered in [5]. When separate operators in various regions independently make optimal dispatch
decision and communicate that information to the adjacent subsystems, the communication
load is reduced.

The centralized model can be broken down into multiple sub-problems pertaining to distinct
subsystems, allowing for the independent operation of each area while sharing information.
Using decentralization model simplicity and privacy protection can be achieved. Decentralized
scheme is used widely for the operation of a multi-area system [26], [27]. Some decentralized
optimization methods cited in paper [26] include Lagrangian Relaxation (LR), Augmented
Lagrangian Decomposition (ALD), and Alternating Direction Multiplier Method (ADMM).
Even though OEF is one of the most fundamental and critical problems for IEGS, it brings
obstacles caused by coupling relations, for instance, security related issues [6]. This is quite
a recent area of research and the methods available for solving such problems still pose some
challenges like unavailability of solvers for highly non-convex constraints from natural gas
network, no convergence guarantee for the decentralized algorithm, etc.
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8 Introduction

1-2 Research question

In this section, the main research question that drives this study has been articulated along-
with a set of sub-questions. This research question will serve as a compass, providing direction
to the efforts and shaping the subsequent chapters. By clearly formulating the research
question, the rationale behind the chosen research question is discussed.

Main Research Question:

Which would be a better performing method for optimization of multi-area IEGS
for solving an OFEF problem, when different methods for relaxing the non-convex
gas flow equations and optimization algorithms are implemented?

In order to find the better performing optimization method, this broad question can be broken
down into smaller parts and can be considered as the steps taken during this research. The
research question can be simplified by formulating following sub-questions like:

Sub-questions:

Q1) Why is it important to study different optimization methods for IEGSs?

Q2) What are the technical and operational challenges posed by IEGS? Is it possible to
overcome these challenges? If so, how?

Q3) How to find which method has better performance?
Q4) What is the result when each method is implemented?

Q5) What is the result of comparison of these methods with respect to each performance
metric?

Q6) What are the limitations of this work?

The answers to these sub-questions will aid in finding the answer for the main research
question. All the answers found during this study will be summarized in the conclusion

(Chapter 5).
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1-3 Motivation

The motivation for studying different optimization methods for IEGS stems from the current
need of the energy market where optimal use of energy is as crucial for producers as that for
the end users. The integration of different energy sources is garnering increased attention as a
possible option to accommodate the growing share of different resources like natural gas, heat,
renewable energy sources like wind, solar energy, etc. The alliance among different energy
carriers introduces versatility to the system and can very well compensate for the fluctuations
in production and demand.

Studying optimization methods for IEGSs has practical implications for the energy transition.
There is a great deal of challenges at intersection of the two domains since these systems are
inherently independent. They affect the stability of the system and impact on reliability and
efficiency of the network. TEGSs becomes critical as the world transitions towards cleaner
energy sources. The highly non-convex and nonlinear characteristics of natural gas flow
equations cause challenges. Figure 1-6 shows an example of the nonlinear nature of the
natural gas flow equation (Weymouth equation).

Nature of natural gas flow (Weymouth equation)

Weymouth equation

Figure 1-6: Example to illustrate nature of natural gas flow equation

Balancing electricity generation, gas supply and demand requires innovative approaches. Ef-
fective IEGS operation directly impacts costs and resource utilization. Optimization of dis-
patch schedules helps with economic savings. Optimization can help ensure continuity under
adverse conditions like natural disasters, supply disruptions or cyberattacks. Integrated sys-
tems can enhance resilience by dynamically reallocating resources between electricity and
natural gas. Studying IEGS requires collaboration across different disciplines promoting need
for interdisciplinary research.

Specifically the communication between electricity and natural gas has also increased substan-
tially due to increased electricity production from gas fired power plants. It is also interesting
to study the hypothesis that coupled electricity and natural gas network is beneficial as it
improves energy utilization, efficiency and provides system flexibility [28]. An addition to this
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10 Introduction

is the paper [5], which uses decentralized optimization based on cone reformulation for IEGS.
The nonlinear, non-convex natural gas flow equations are convexified in this study by second
order cone reformulation method.

The challenges of non-convexity can be computationally expensive. Relaxations methods
provide a way to approximate these non-linearities while maintaining tractability. Convex
relaxations could help in flawless integration between electricity and natural gas networks by
simplifying the optimization problem. Convex relaxations provide tight bounds which help
ensure feasibility and stability of gas networks. This becomes an interesting area of research

since we want to focus on obtaining feasible solutions for the desired optimization problem of
IEGS.

The section on motivation behind studying this topic of optimization methods for TEGSs
intends to answer the first sub-question introduced in the above section. The importance of
studying electricity and natural gas related systems will provide to be a baseline for integrating
other energy resources and thus moving towards a more sustainable future using optimum
energy sources. If the energy demands are optimally met, the prices of energy can also be kept
under control. With the development of newer methods studied in the research, faster ways
of fulfilling customer needs can be developed and implemented for industries. Before going
further, it is important to consider the different challenges involved in the implementation of
these methods. These are introduced in the subsequent section.
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1-4 Challenges posed by integrated electricity natural gas system

As mentioned above, IEGS poses technical as well as operational challenges. This section
aims to answer the sub-question: What are the technical and operational challenges
to integrated electricity and natural gas systems? Is it possible to overcome these
challenges? If so, how?

Theoretically, it could be possible to overcome these challenges. For this, it is important
to study optimization methods in order to find ways to overcome challenges and improve
performance of IEGS.

Technical challenges are as follows:

1. Infrastructure differences: Electricity and natural gas systems have different infrastruc-
tures, which can make integration challenging and expensive. For example, natural gas
pipelines and electricity transmission lines are completely different objects and have
different materials, diameters, etc. This makes it technically difficult to use existing
infrastructure and accommodate integrated systems.

2. System stability: The integration of electricity and natural gas systems can result in
changes in system stability, which can impact the safety of the systems.

3. Capacity constraints: The integration of electricity and natural gas systems may have
different demands and peak periods which results in capacity constraints. This can
result in technical challenges in managing the supply and demand of energy across the
integrated system.

4. Cybersecurity: IEGS creates new cybersecurity risks, as the integrated system becomes
more complex and interconnected they require the development of new cybersecurity
strategies and technologies to protect the integrated system from cyberattacks.

It may be possible to overcome these technical challenges through optimization,
for instance:

a. Optimization methods can be used to identify cost-effective ways to use existing infras-
tructure to accommodate integrated systems. This may involve identifying the optimal
locations for gas injection points or designing new pipeline that can accommodate both
natural gas and electricity transmission.

b. Optimization methods can also help address capacity constraints by predicting demand
and supply patterns and optimizing the distribution of energy resources. This may in-
volve using algorithms to determine the optimal allocation of natural gas and electricity
resources across the integrated system, taking into account factors such as peak periods
and seasonal variations in demand.

c. Optimization methods can help address system stability by modeling and simulating
the behavior of integrated electricity and natural gas systems. This can help iden-
tify potential issues and develop effective strategies for managing system stability and
reliability.
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Operational challenges are as follows:

1. Interoperability: Currently different area or system providers have different control and
automation requirements, and may use different communication protocols and technolo-
gies. In a multi-area integrated systems, development of interoperable technologies and
systems that can communicate and operate across different areas is required. This can
be challenging if the current systems are incompatible and need complete replacement.

2. Control strategies and coordination: Different areas have different energy demand and
supply requirements which might change the required control strategy. Different rules
and regulatory policies apply to different areas. Hence, multi-area integrated systems
require effective coordination and control mechanisms to manage the flow of energy
across different areas.

3. Regulatory and policy barriers: Integration can be challenging because different regu-
latory and policy frameworks are applicable in different areas. Multi-area integrated
systems is also a huge area of study in economics and finance since it may include
differences in energy market structures, pricing mechanisms, and incentive structures.

4. Resilience and reliability: An integrated system needs to be resilient and reliable, with
the ability to respond quickly to failures in any part of the system. This requires
effective risk management strategies, contingency planning, and investment in backup
and redundancy systems.

5. Data management: Storage and analysis of large amounts of data, including data on
energy demand and supply, weather patterns, market prices, etc. This can be challeng-
ing, as data may be fragmented or inconsistent across different areas, making it difficult
to develop accurate models and forecasts.

These operational challenges can be overcome through innovation and new tech-
nologies, for instance:

a. New technologies, standards and regulations that support the integration of electricity
and natural gas systems across different areas must be introduced widely. The study of
optimization methods’ performance can be useful to develop such standards.

b. Optimization methods can be used to determine the optimal mix of energy sources to
minimize the risk of supply disruptions, or to develop risk management strategies that
take into account the uncertainties of the energy market.

c. Effective collaboration and communication among stakeholders from different sectors.

d. Effective governance structures and decision-making processes.
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1-5 Thesis outline

To summarize this Chapter 1, a solid foundation of concepts has been established which
encompasses the introduction to key ideas, the research question, the motivations driving
this investigation. The rest of this document is organised as follows. Chapter 2 covers the
background of the topic, some methodologies used by other researchers in the literature for
optimization of IEGS. Additionally, it introduces a multi-area IEGS network and introduces
the optimization problem formulation for the same. Further Chapter 3 consists of the non-
linear gas flow equations and different relaxation methods currently used for approximating
these nonlinear optimization problems. The performance metrics are also discussed in detail.
Chapter 4 shows the performance of the optimization algorithms used for IEGS. This is
followed by Chapter 5 which summarizes the key points of this study, provides summary of
answers to the research question and the goals for further research.
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Chapter 2

Background and Optimal energy flow
problem

This chapter presents a summary of comprehensive background study that synthesizes rel-
evant literature and previous research conducted in the field of optimization of Integrated
Electricity and Natural Gas System (IEGS) and relaxation techniques. It further intro-
duces a generalized optimization problem followed by the actual optimization problem for
integrated electricity and natural gas systems used for implementation during this thesis.

2-1 Literature summary

After studying relevant topics from literature, a synopsis to get insights on the existing work
related power flow systems, natural gas systems, IEGS, optimization algorithms, etc. is pre-
sented here. There are differences in the problem formulations and methods implemented in
each study, hence it is necessary to study them and highlight the gaps. A comprehensive
research on existing literature, [29] by Enrica Raheli et al. examines the short-term optimal
operation of IEGS. This study identifies the advantages of coordinated optimization over
independent scheduling of the two sectors and concludes that fully integrated optimization
solutions results in lower operational costs and greater utilization of resources including re-
newable resources. The work of [30] consists of a detailed gas model and further provides an
Optimal Energy Flow (OEF) model for IEGS. A Mixed Integer Linear Programming (MILP)
method consisting of logical programming and customized piecewise linearization is imple-
mented by the authors to deal with the nonlinear gas flow equations.

Approaches for controlling dynamic gas flows on pipeline networks were presented for the
operation of IEGS in paper [31]. The use of gas-fired generators for peak load causes variations
due to high-pressure gas transmission systems leading to gas price fluctuations and supply
disruptions. This affects the electric generator dispatch, electricity prices and poses a threat
to the security of the power and gas networks. The authors A Zlotnik et al. have proposed
techniques that could effectively investigate the day-ahead scheduling of power generation and
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16 Background and Optimal energy flow problem

gas operation and hence quantify the economic efficiency and security benefits of electricity-
gas coordination. Another paper [32], discusses about a day-ahead economic dispatch model of
IEGS with reserve scheduling which is helpful to manage uncertainties. It introduces a Second
Order Cone (SOC) relaxation for the nonlinear gas flow equation (Weymouth equation). It
further transforms the non-convex optimization problem to Mixed Integer Second Order Cone
(MISOC) programming problem. The authors conclude from their simulation results that the
proposed model provides more economical dispatch solution with shorter computational time
than MILP models.

In paper [5], authors Yubin He et al. propose a decentralized OEF calculation as opposed
with a centralized solution method which is more popularly used. They present the merits of
decentralized OEF for a large IEGS. Their model aims at reducing the communication bur-
den on the central controller and allowing individual area operators to make optimal dispatch
decisions for their respective areas. Only required information is shared amongst the adjacent
areas thus reducing the computational load as well as speeding up the process. Their model
also introduces SOC reformulation to deal with the nonlinear, non-convex gas flow equation.
The non-convex optimization problem is transformed into a MISOC problem. Decentralized
optimization algorithm, Iterative Alternating Direction Multiplier Method (I-ADMM) is fur-
ther used in order to achieve the convergence performance. The authors also emphasize that
decentralization provides an advantage in terms of scalability and adaptability.

Another paper on day-ahead optimization for gas-electric systems [33], utilizes SOC program-
ming method to solve the IEGS optimization problem. It consists of a daily operation model
with electric power system, natural gas system and energy hubs and transforms the non-
linear, non-convex problem into a convex one. Convex relaxation method transforms some
parts of the model from equalities to inequalities [34]. The strategic use of cone reformula-
tion is crucial for maintaining a delicate balance in the distribution of electricity and natural
gas. The crux of the mentioned relaxation method lies in employing cone reformulation, a
mathematical tool that boosts the effectiveness of decentralized optimization. Distributing
optimization tasks across regions enhances system resilience and responsiveness to localized
changes. Decentralization minimizes the risk of widespread failures by containing disruptions
within specific regions.

In the paper [6] by RP Liu et al., the primary focus is on introducing a distributed opera-
tional strategy for the seamless integration of electricity and gas systems. The authors suggest
an approach based on extended convex hull, leveraging mathematical concepts to optimize
the coordination between these interdependent systems. The extended convex hull method,
as elucidated in the paper, plays a pivotal role in achieving optimization objectives. The
Extended convex hull (ECH) based relaxation method is used to convexify the nonlinear,
nonconvex Weymouth equation. The ECH based constraints convexify the OEF problem
without the need of introducing new binary variables. Further Jacobi Proximal Alternating
Direction Multiplier Method (J-ADMM) algorithm is used to solve the convexified model.
Ultimately they provide condition to check the feasibility of the optimal solution for the con-
vexified problem. Their proposed method is able to recover an optimal solution for the original
non-convex problem if the desired conditions are met. Overall, the research contributes to the
ongoing discourse on integrated energy systems, presenting a distributed operational strategy
that holds promise for optimizing the coordination between electric and gas networks.

Since there is quite a bit of research going on around relaxation methods for Weymouth
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equation, the paper [35] introduces a technique called Reformulation-Linearization Tech-
nique (RLT) for reformulation. The nonlinearity is transformed into a linear program-
ming/quadratic programming model, leading to improved computational efficiency. The au-
thors J Fan et al. discuss a new model for OEF considering gas inertia and wind power
uncertainties for IEGS dispatch. The RLT method works in two stages, first it reformulates
the problem by constructing a set of non-negative variable factors using the problem con-
straints and generates valid quadratic constraints by using pairwise products of inequality
constraints or products of equality constraints with variables to generate additional nonlinear
constraints. The resulting problem is then linearized by defining a set of new variables, one for
each nonlinear term. The effectiveness of the method has been shown by performing different
simulations.

A piecewise linear approximation method can also be employed for relaxing the nonlinear,
non-convex gas flow equations. This method consists of constructing a function that fits
the nonlinear objective function by adding extra binary variables, continuous variables and
constraints to reformulate the original problem. A single valued function of one variable is
approximated in terms of a sequence of linear segments. The paper [36] proposes Piecewise
Affine (PWA) approximation method for relaxing the Weymouth equation using mixed inte-
ger linear constraints. The authors formulate the Economic Dispatch Problem (EDP) as a
game equilibrium problem. They transform the nonlinear, non-convex optimization problem
into a mixed integer game. Further an iterative two-stage method is used to compute the
approximate generalized Nash equilibrium. Similar to the PWA relaxation, studies presented
in papers [37], [38], [39] also use PWA functions to approximate gas flow equations. Here,
binary variables are required to indicate the active region of the PWA functions and thus
turn into mixed integer linear constraints.

2-1-1 Summary of relaxation methods for nonlinear gas flow equations

As discussed in the previous section, the nonlinear gas flow equation (Weymouth equation)
is relaxed using different methods in various studies. This part provides a summary of the
relaxation methods used in literature for IEGS in the form of Table 2-1.

Table 2-1: Relaxation methods

Sr. | Method Auxiliary Resulting  opti- | Scalability*

No. variables mization problem

1. | Second Order Cone | Yes Mixed integer sec- | Yes
(SOC) [5] ond order cone

2. | Extended convex hull | No Convex Yes
(ECH) [6]

3. | Reformulation Lin- | Yes Linear/quadratic | Yes
earization  Technique
(RLT) [35]

4. | Piecewise linear approx- | Yes Mixed integer lin- | Yes
imation (PWA) [36] ear

Note: * scalability must be checked when the actual relaxation method is implemented.
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2-1-2 Summary of optimization algorithms

As introduced in Chapter 1, different optimization algorithms exist in the fields of science,
engineering and mathematics. The goal of this thesis is to study the performance of different
optimization methods for IEGS. During the implementation of the methods both central-
ized and decentralized optimization algorithms have been implemented. In summary, while
centralized optimization relies on a central coordinator, decentralized optimization leverages
distributed collaboration among nodes to achieve optimal solutions.

This chapter summarizes few of the distributed algorithms used in literature for IEGS. From
the papers studied, following observations have been noted. Table 2-2 shows the summary of
some of the important features of the methods discussed.

Table 2-2: Features of algorithms

Sr. | Method Iterative | Gas flow | Type of | Convergence| Number of lay-
No. equation | problem ers or loops in
approx- | solved the algorithm
imation
method
1. | Standard No SOC MISOC Not guar- | 1
ADMM [5] anteed
2. | LADMM [5] Yes SOC MISOC Guaranteed | 2
when
used with
Sequential
Cone
Program-
ming (SCP)
3. | JJADMM |[6] No ECH Convex Guaranteed
4. | Two-Stage No PWA Mixed inte- | Guaranteed | 1
method [36] ger linear

Since the optimization problem in each paper has been reformulated using different methods,
it seems that all of the algorithms are scalable. However, it is necessary to check this before
making any final remarks.
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2-2 Generalized optimal energy flow problem

It is possible to formulate the optimal energy flow problem as an optimization problem as
shown in equation 2-1. Typically, an optimization problem has an objective function, a
decision variable which is the parameter to be optimized, constraints that limit the solution
to a particular area of the parameter space (equality constraints), and constraints that limit
the solution to a specific area of the parameter space that is allowed (inequality constraints).
The solution of such an optimization problem is a set of values for the decision variables that
satisfy all the constraints and optimize (minimize or maximize) the objective function. This
solution can be a single point for continuous problems or a set of points for other problems.

In case of optimization problems for IEGS, the ultimate objective is to reduce the overall
cost while still adhering to the limitations on electricity and natural gas systems. All the
constraints must be satisfied in order to have a feasible solution. In case of a multi-area IEGS
model, a generalized OEF model can be formulated as follows:

min f(z,)

subject to  gx(ze) =0, k=1,...... ) e (2-1)
hl(l‘a) < 0, l= 1, ...... , Nie,
where,
a: subsystem considered for analysis, where a=1, ---, N

f(zq): objective function, comprising the total cost of the network

xq: the parameter vector used to optimize the objective function f (decision variable)

gk (xq) = 0: equality constraint which correspond to coupling constraints

hi(zs) < 0: inequality constraint represent local constraints depending on electricity and gas
network

Ne, Nie: number of equality and inequality constraints, respectively.

The objective function f for an IEGS network may be the entire cost of the multi-area IEGS,
which would include the natural gas fuel cost of Natural Gas-fired Unit (NGU)s, operation
cost of the non-NGUs, the cost of load shedding, start-up cost for units, shut-down costs, etc.
Various authors formulate this differently and hence it becomes difficult to directly compare
the results. In this study we focus on one specific formulation and try to implement different
relaxation methods and optimization algorithms for the same problem.

2-3 Optimization problem formulation for integrated electricity and
natural gas network

After carefully reviewing various studies, it was observed that different studies take into
account different network components in order to formulate the optimization problem for
OEF. In order to compare the results of different methods, one specific model and specific
datasets must be used to obtain accurate results. The formulation chosen in this thesis is
similar to the one discussed in the paper [5]. It differs from the conventional single area IEGS
models as there are tie-lines and tie-pipes due to multi-area model. The objective function
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of this OEF for a multi-area IEGS is shown in equation (2-2). It represents the total cost
of the multi-area IEGS, which includes the natural gas fuel cost of NGUs, operation cost of
non-NGUs and penalty cost for load shedding in each subsystem.

N M
f(xa) = Z Z HgVai + Z Fa,i (Pa,i) +VP. Z La,j ) (2'2)
a=1 \iew iENNG j=1
where,
a: subsystem under analysis, where a=1, ---, N

ftg: natural gas price

Va: natural gas production of well W

F, ;: natural gas consumption of gas fired unit ¢
NG: non gas fired unit

P, ;: real power generation

VP: penalty price for load shedding

L;: load shedding at bus j, where j=1, ---, M.

Equivalent to the paper [5], the decision variable x, includes generator outputs (P;), bus
phase angles (6;,9;), load shedding (L;), natural gas well outputs (v;), nodal pressures (w;)
and natural gas flows on tie-pipes (g(; ;))-

Lo = {{Pi}ieNguN]%]G ) {ei}ieBa ’{6i}z‘e]§a v{Li}z‘eB’a v{vi}z‘ewa )

{wi}ieNg ; {g(i,j)}(i,j)eEgas}v Va,
where,
N¢: set of gas fired units
NR: set of non-gas fired units
B®: set of inner buses
B®: set of boundary buses
B’*: set of buses with load shedding
W set of natural gas production wells

Ej.s: set of all gas flow between nodes (i, j)

{Note that the superscript ’a’ for these sets can be skipped for ease of notation.}

2-3-1 Electricity network constraints

An electricity network mainly consist of generators, transformers, transmission lines and supply elec-
tricity to consumers. Before introducing constraints, here Figure 2-1 is a representation of the electrical
network as an undirected graph G¢ = (B, ), where B = {b1,ba,...,bp}, the set of busses (nodes) and
E C B x B, is the set of power lines.

The optimization of an electric network refers to the deduction of the necessary network reinforcements
that guarantee the supply to electrical loads. This optimization is basically minimizing the cost for
both distribution and transmission systems [40]. The nodal balance is extremely crucial for any
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b_3

b_2

b1 () : )

b_N
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Figure 2-1: Electrical network

network. Therefore, the nodal balance equation for electricity network is also an important constraint
as it represents the fundamental principle of power flow conservation in electrical networks and must
be satisfied for all nodes in the system. The constraints represent physical limitations, operational
requirements that must be satisfied for the reliable and efficient operation of the electric grid.

The electrical network constraints discussed in paper [5], consist of generation limits of generators,
equation (2-4), nodal balance equation for electric network, equation (2-5), the DC power flow func-
tion for inner-lines and tie-lines, equation (2-6), transmission capacity constraints of electricity lines,
equation (2-7), phase angle limits for reference bus, equation (2-8). Load shedding component is
constrained for maintaining the security of system operation, equation (2-9).

PR < P < PP Vi€ Ng, (2-4)

where,
Pmin and PMaX; Jower and upper limits on the power generated

The nodal power balance equation is:

LR Oy ) 29
iEGj he./\fig

where,

N7 = {j|(i,j) € E}: set of transmission lines
G;: set of all units connected to bus j

p{M): power flow on transmission line (3, j)
Dj: electricity demand at bus j

L;: load shedding at bus j.

The DC power flow function of inner lines and tie lines:
p{h,j) = (0n — 0;) Jxnj, heN], je B
p{h,j) = (0, — 6;) Jxn;, heB*jeB® (2-6)
p{h]):(éh_(;])/xh]a h7j€Baa

where,
01 phase angle of inner bus h
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0;: phase angle of inner bus j
d;: phase angle of boundary bus j
0p: phase angle of boundary bus h.

Transmission capacity of electricity lines:

_Fimax < p{i,h) < Fimax, Vi € Nyg

where,
F;: cost function of non-natural gas unit.

Phase angle limits for reference bus:

where,
R®: index of reference electric bus.

Load shedding component:
0<L; <L™ Vie B

2-3-2 Natural gas network constraints

(2-8)

(2-9)

The natural gas system exhibits dynamic characteristics which increases complexity of the mathemat-
ical model thus making it difficult to solve the optimization problem. Therefore steady-state natural
gas flow is commonly used in dispatch problems. Since the natural gas flow system can be modeled us-
ing the Weymouth equation which is nonlinear, non-convex. It characterizes the relationship between
natural gas flow and pressure at the inlet and outlet of a gas pipeline. Consider the gas network as an
undirected graph G9 = (N, P), where N' = {ny,na,...,nx}, the set of gas nodes and P C N x N, is
the set of edges, with both the edges (i,7), (j,) € P representing the pipeline that connects nodes 4
and j. Figure 2-2 shows an example of a natural gas network with nodes and edges.

Figure 2-2: Natural gas network
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The natural gas network constraints represent the physical, operational and safety limitations that
must be satisfied for the effective management of natural gas flow within the network. The network
constraints discussed in [5] describe the static characteristics of natural gas system, equation (2-10)-
(2-16). The natural gas fuel consumption function of NGUs is shown in equation (2-10). The steady
state natural gas flow function of inner pipeline, defined by difference of pressures on two end nodes
is referred in equation (2-11). The constraint due to the boundary for natural gas nodal pressure is
shown in equation (2-12). The capacity constraint of tie-pipe, equation (2-13). Equation (2-14) is nodal
natural gas balance for natural gas network. Equation (2-15) is nodal natural gas demand, including
residential and NGU gas demands. Equation (2-16) represents the production limit of natural gas
wells.

F;, = o —i—ﬁiPi—i—% (Pi)Q, ieEN (2—10)

where,
«;, Bi, vi: Fuel coeflicients of natural gas-fired unit 4

. (i,5) eI?, (2-11)

9(i,5) = sgn (wi, wj) - Ci ) ’wf — w3

where,

9(i.;): Natural gas flow on pipeline (4, 5)

Cli,j: the Weymouth constant which depends on the characteristics of the pipeline
(i,7): represents gas pipeline in which the first and last node is ¢ and j respectively
I”: Set of inner pipes

wj: the pressure of initial node

wj: the pressure of end node,

The operator sgn represents the direction of natural gas flow:
1 if  w; > w;

sgn(wi,wj) =< 0 if w=w,
-1 if w; < wj

Then the nodal pressure of the upper and lower boundary:

WMt < w; < WV € Ng (2-12)

—90% < g6y <905, (65) €TP (2-13)

where,
TP: Set of tie-pipes

The nodal balance for natural gas network:

Z Vgr — Qi — Z 95 + Z 965 =0 (2-14)

sPEG(i) (i,5)€GFF (i,5)eGPF

where,
sP: index of natural gas well
G(7): set of thermal units
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Q;: Nodal natural gas demand
GPF: set of natural gas pipelines from node i
GFE: set of natural gas pipelines to node i.

Qi=DF+ > FY, (2-15)
i€CU (4)

where,
D¢ residential natural gas demand at node i
CY(i): set of natural gas-fired units connected to node 4.

U;min <wv, < VieW (2-16)

2-3-3 Coupling constraints

When a large system is partitioned, there are constraints which couple multiple subsystems and are
referred to as coupling constraints. A coupling constraint comes into play when it is no longer possible
to split up a large problem. These constraints represent the interactions and dependencies between
the electricity and natural gas networks in this case. These constraints make sure that the operation
of one network does not compromise the performance or safety of the other. Coupling constraints
are useful in cases where a large number of nodes are concerned. It is important to find the proper
coupling constraints among connected subsystem areas. Figure 2-3 shows decomposition strategy for
coupling variables of multi-area TEGS.

Adjacent
area

3,
gas flow (

|
5, |
) gastiow |

Vi

Figure 2-3: Decomposition of coupling variables [5]

In the model discussed in [5], phase angle of boundary bus and natural gas flow on the tie-pipe are
selected as coupling variables. Equation (2-17) indicates that the phase angles of an end bus perceived
by its connected subsystems should be identical. Similarly, equation (2-18) states that the natural gas
flows on the tie-pipe perceived by its connected subsystems are also identical.

Sy(hyh = Oy Ouny.g = Su(iygr  (hed) € TF, (2-17)

where,
¥(h): subsystem that electricity bus h belongs to adjacent area
1 (7): subsystem that electricity bus j belongs to in area a.
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9e(i),(ind) = Jp(i)ig)>  (6,5) € P, (2-18)

where,
(1), (7): subsystems such that natural gas nodes, i from area a and j from adjacent area belong to
respectively.

By incorporating coupling constraints into optimization models for IEGS, planners and operators can
effectively manage the complex interactions between the two networks. They can optimize their joint
operation to achieve objectives such as cost minimization, emissions reduction and system reliability.
Failure to consider the coupling constraints can lead to suboptimal solutions, inefficiency in operation
and increased risks in the operation of IEGS. Hence accurate modeling and enforcement of constraints
are important for successful integration.
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Chapter 3

Methodology

In this Chapter 3, a detailed explanation of techniques used for reformulation of the
nonlinear, non-convex constraints and various optimization methods that are implemented
to find optimal solutions have been presented. Further the list of performance metrics
which would be used to analyze the results in the following chapters has been defined
along-with their definitions.

3-1 Methods implemented

Moving further after introduction of the optimization problem, an overview of the methodologies that
will be employed to address the identified mathematical problem is presented below. These method-
ologies encompass reformulation techniques for Weymouth equation and optimization algorithms. A
detailed explanation of each method has been summarized. Here is a list of relaxation methods and
optimization algorithms that have been implemented during the course of this study:

1. Second Order Cone (SOC) relaxation method

2. Centralized optimization algorithm

3. Standard Alternating Direction Multiplier Method (ADMM) algorithm

4. Tterative Alternating Direction Multiplier Method (I-ADMM) optimization algorithm

5. Extended convex hull (ECH) relaxation method

6. Jacobi Proximal Alternating Direction Multiplier Method (J-ADMM) optimization algorithm
These methods might have a different representation while explaining the method in this chapter
but during this study, the optimization algorithm is implemented for the optimization problem with

defined objective function in equation (2-2) along-with all the constraints and the relaxation method
is mainly for the nonlinear, non-convex Weymouth equation (2-11).
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3-1-1 Second order cone relaxation method

Conic optimization problem has been increasingly studied in different fields recently [41]. SOC is an
effective way used to approximate the non-convex constraints (equations (2-10) to (2-12)). The SOC
is also known as Lorentz cone, shown in Figure 3-1. The SOC uses a slack variable which is added
to an inequality constraint to transform it into an equality constraint and introduces a non-negativity
constraint on the slack variable. The main idea of this technique is to relax the Weymouth function
into a SOC form and use an auxiliary function to maintain the accuracy of slack variables. Note that
convexification must be exact to ensure that the feasible region remains the same as the original primal
problem.

Figure 3-1: Second order cone

The solution proposed in paper [5] for independent subsystems is converting nonlinear, non-convex
constraints, equations (2-10) to (2-12) into mixed-integer SOC constraints. Constraint in equation
(2-10) can be directly converted into following SOC form. This constraint is always tight since the
unnecessary natural gas consumption by Natural Gas-fired Unit (NGU)s will lead to higher operating
costs.

Flgzai+ﬂipi+7i(ﬂ)2v ieN. (3-1)

The equations (2-11), (2-12) show highly nonlinear steady state pipeline flow which can be converted
to Mixed Integer Non Linear Programming (MINLP) form as shown in equations (3-2) to (3-5), where
m; is the squared nodal pressure.

(I(t‘,j) - I(m‘)) (mi —mj) = (1/Clip) 9(,5)> (3-2)
+ max — max
B (1 B I(m)) 9G.4) S 96.5) < (1 - I@-,J—)) 9(is) s (3-3)
Iip*Tag =1 (3-4)
where,
I (J; ) 1 (i) binary indicators of natural gas flow direction on pipeline (i,j).
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7T.’Lmin S T S 7_‘_Zrlmax, (3_5)

where,
mM:Minimum value of squared nodal pressure of node 4,
m**:Maximum value of squared nodal pressure of node i.

Equation (3-2) can be replaced by further relaxing the constraint into Mixed Integer Second Order
Cone (MISOC) constraints form as shown below:

g > (1/C0s)” 90 (3-6)
Liigy 2 mj —mi+ (I(Jaj) —dG T 1) (”é‘mn - ”;nax) ) (3-7)
D 2 m— i+ (1) — 1oy — 1) (@0 —mn), (3-8)
Dagy <5 =it (I = Iy +1) (o —w) (39)
Ty < mi— 5+ (I(*;,j) I, - 1) (rmin — grmax) (3-10)

Here, I'(; ;) is the auxiliary variable for SOC relaxation.

Further, the SOC constraints, equations (3-6) to (3-10) are equivalent to equation (3-2) when equation
(3-6) is tight (an inequality constraint is tight at a certain point if the point lies on the corresponding
hyperplane).

The pros and cons of SOC are discussed below,

Pros:

o The SOC reformulation presented in paper [5] obtains a reliable solution.
e The SOC programming method shows high computational efficiency [33].
e The accuracy and computational speed of SOC is high.

e This approach seems scalable to large-scale instances.
Cons:
e The solution time is higher since additional iterations are required to drive the cone constraints
tight.

o The operation cost is slightly increased due to narrow feasible region.

3-1-2 Centralized optimization algorithm

As introduced in Chapter 1, centralized optimization algorithm is used to optimize systems where all
decision making processes and computations are conducted by a single central entity. This entity is the
decision maker responsible for formulating and solving the optimization problem. The central control
center gathers information, makes decisions and coordinates actions to achieve a desired objective. It
has visibility over the entire system, irrespective of how big or small the system is. It has access to
global information about the system in order to make informed decisions.

Figure 3-2 shows the flowchart for centralized algorithm.
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Figure 3-2: Centralized algorithm

Here a pseudo-code for centralized algorithm for Integrated Electricity and Natural Gas System (IEGS)

is introduced in Algorithm 1.
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Algorithm 1 Centralized optimization
Step 1:
Initialize all the system parameters and constraints.
Define electricity demands, gas demands, operational constraints like power generation lim-
its, gas pipeline limits, etc.
Step 2:
Define decision variables for both electricity and natural gas networks.
Step 3:
Formulate the objective function, here minimization of the operational cost including nat-
ural gas fuel cost and penalty cost of load shedding is considered.
Step 4:
Set up constraints for both electricity network and natural gas network. Include the power
balance equations and gas balance equations. The constraints for operational limits for
generators, gas pipelines, should be considered. The nonlinear, non-convex gas flow equa-
tion is relaxed by either of the relaxation methods. The constraints to suffice for this must
be included.
Step 5:
Solve the optimization problem using solver like Gurobi to obtain optimal solution.

Some challengess posed by centralized optimization are that it considers all information is available
centrally. It may be difficult to solve large-scale problems due to increased computational complexity
and it might require lot of time to solve such problems. Hence distributed or decentralized or hybrid
approaches are also being studied specifically for large-scale problems like the case here for IEGS.

3-1-3 Standard Alternating Direction Multiplier Method algorithm

The most commonly used method when considering decentralized optimization is the method of
ADMM. ADMM breaks down the large, complex problem into smaller, more manageable sub-
problems. It alternates between updating variables with each sub-problem and does not affect the
consistency across them. It provides a lot of advantages specially to handle large-scale problems. This
is a versatile algorithm and can be applied for parallel and distributed computing. Before focusing
on Standard ADMM algorithm, it is important to to establish the foundation for this method. The
ADMM algorithm was originally proposed in the 1970’s by Glowinski & Marrocco (1975) and Gabay
& Mercier (1976). This algorithm is used for solving particular types of convex optimization prob-
lems. ADMM is becoming popular because it is a simple and powerful algorithm which often allows
for solving distributed optimization. It takes the form of a decomposition-coordination procedure, in
which the solutions to small local sub-problems are coordinated to find a solution to a large global
problem [42].

ADMM can be considered as a combination of the dual decomposition method and the Augmented
Lagrangian Decomposition (ALD) method. It combines the benefits of both and demonstrates superior
convergence properties. ADMM particularly deals with optimization problems which have a separable
objective function, meaning that the objective function can be split into multiple small parts. Several
different types of convex optimization problems can be framed as an ADMM. The paper [42] provides
a detailed explanation of how ADMM works and that is explained here before studying its application
in IEGS optimization problems.
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General optimization problem formulation for ADMM:

ADMM solves problems of the form presented as follows:

min - f(z) +g(2)
st. Ax+ Bz =c¢,
with x € R™ and z € R™, where A € RP*™, B € RP*™ and c € RP.

(3-11)

The optimal value of the problem equation (3-11) will be:

p* = inf{f(x) + 9(2) | Az + Bz = c}.

The functions f and g are assumed to be convex. The only difference from the general optimization
problem equation (2-1) is that the decision variable, has been split into two parts, called = and z
here, with the objective function separable across this splitting. Note that for ease of notation we
consider the decision variable  and split it into x and z, whereas decision variable in equation (2-1)
isxeVa=1,---,N.

ADMM algorithm:

To improve the convergence, ALD introduces a quadratic penalty term (p > 0) to the objective function
in equation (3-11). The augmented Lagrangian is defined as follows:

Ly(2,2,0) = f(z) + 9(2) + 07 (Az + Bz — ) + ]| v+ Bz — cf}}, (3-12)

where,
p > 0: penalty parameter
0: dual variable.

The ADMM algorithm consists of steps for z-minimization (3-13), z-minimization (3-14) and dual
variable (6) update (3-15), shown as follows:

2! = argminZ, (z, 2, 9’“) , (3-13)

x
2l = argminL, (xk'H, z, Hk) , (3-14)
OF T = 0% + p (A"t 4+ B2F —¢). (3-15)

The dual variable update uses a step size equal to the augmented Lagrangian parameter p. The name
alternating direction boils down to the fact that  and z are updating in an alternating way.

ADMM convergence:
Many convergence results have been discussed in literature for ADMM. Prior to studying the conver-
gence results for ADMM, two assumptions must be considered as discussed in [42]:

Assumption 1: The function f and g are closed, proper and convex.
This assumption implies that the sub-problems arising in the x-update ((3-13)) and z-update ((3-14))
are solvable, that is, there exist x and z, that minimize the augmented Lagrangian.
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Assumption 2: The unaugmented Lagrangian Ly has a saddle point.
There exist Lo (z*, 2*,0*), not necessarily unique. From assumption 1, Lo (z*, 2*, 6*) is finite for any
saddle point (z*, z*,0*). This implies that (z*, z*) is a solution to equation (3-11).

The ADMM satisfies the following, under assumptions 1 and 2:

1) Residual convergence: 7% — 0 as k — oo, i.e. the iterates approach feasibility.

2) Objective convergence: f (zk) +g (zk) — p* as k — o0, i.e. the objective function approaches
the optimal value.

3) Dual variable convergence: 6% — 6* as k — oo, where 6* is a dual optimal point.

Note that ¥ and z* need not converge to optimal value.

In practice, ADMM can be very slow to converge. Often it converges to modest accuracy (sufficient for
most applications) within a few tens of iterations. This is usually acceptable for large scale problems.
In some cases it is possible to combine ADMM with another method for obtaining better accuracy.

To extend the discussed ADMM algorithm in the applications for TEGS, different studies provide
various ways, with the goal of achieving convergence. Following subsection discusses the standard
ADMM approach before actually focusing on the dedicated methods used in literature for multi-area
IEGS. It explains how the steps for z-minimization (3-13) and z-minimization (3-14) occur in the
standard ADMM algorithm proposed in [5].

Standard ADMM for IEGS:

Standard ADMM can be applied for an Optimal Energy Flow (OEF) problem of a multi-area IEGS.
Let us first recall the problem defined in equation (2-2) (also presented in paper [5]),

mmz Zugvm—l- Z Foi(Pai) + VP ZLJ

a=1 ieW 1ENNG

The coupling constraints are phase angles of boundary buses and natural gas flows on tie-pipes per-
ceived by connected subsystems. First the areas are decoupled by relaxing the coupling constraints
equation (2-17) and (2-18) by an augmented Lagrangian function of each subsystem. The area sub-
problem (SP,) for IEGS, which is equivalent to equation (3-11) is given as:

mlnz Zugvaz-&- Z Foi(Pai) + V7P ZL,J

a=1 | ieW i€NNG
- - \2
+ ) { eai (8a5 =07) + 05 pej (da; = 05) }
jepe (3-16)
+ > P\g,a,(m) (ga,@,j) _g(i,j))
(1,5)ETS

2
+0.5 pg.i.5) (gu,(i,j) *§(i,j)) ]

s.t. (2-4) to (2-9) and (2-10) to (2-16) holds.
Here, (5; and g; ;): average values of coupling variables perceived by their connected areas given as:
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5= > by | /160Gl (3-17)

a€d(j)
and
Tin=| 2 gata | /1eED) (3-18)
a€ep((4,4))
where,
¢(7): set of areas connected to boundary bus j.
Function | - | denotes the number of areas connecting to bus j or tie-pipe (4, j).

@((4,7)): set of areas connected to tie-pipe (i, 7).

The coordination among subsystems is achieved by updating Lagrangian multipliers. This is equivalent
to 0-update (3-15). The corresponding multipliers A q ; and Ay, (i ;) are given as follows:

AL = NF o+ e (08— 08 (3-19)

€,a,j €,a,j

where,
Ae,a,j: ADMM multipliers for electricity network and

k+1 _ ©\k 2 —k;
Xt = Meain) +Poin) (9 sy — T ) (3-20)
where,
Ag,a,(i,5): ADMM multipliers for natural gas network.

Each subsystem calculates the regional sub-problem with updated Lagrangian multipliers. The de-
centralized algorithm can be terminated when all coupling variables perceived by their connected
subsystems are close enough. The paper [5] claims that the proposed decentralized operation scheme
is highly efficient because the coupling constraints J, ; and g(; ;) is the only information shared among
subsystems. The regional privacy is protected and communication burden is reduced.

Figure 3-3 shows the flowchart for standard ADMM algorithm.
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Figure 3-3: Standard ADMM for decentralized scheme [5]

Here a pseudo-code for a decentralized algorithm for IEGS is introduced in Algorithm 2.
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Algorithm 2 Standard ADMM

Step 1:

Initialize values of shared information &2
Set iteration index k=0.

Initialize Lagrangian multipliers )\S@J, /\2,a,mn for electricity and gas network respectively
for each area.

Set ADMM residuals tolerance ef, P,

0
,jvga,mn'

Step 2:
Latest shared information 557 o gfj’mn of each area is sent to adjacent area.
Step 3:

The average shared information is updated by each area operator by following equations,
where d; and g,,,, are the average values of coupling variables perceived by their connected
areas and function | - | denotes the number of areas connecting to bus j or tie-pipe mn.

5= > baj|/l¢0)l

a€d(j)

Imn = Z Ja.mn | [|¢(mn)]

ac€p(mn)

Step 4:
Each area operator solves it’s own sub-problem with average shared information and latest
Lagrangian multipliers. The updating process of Lagrangian multipliers is as follows:

k+1 k k sk
)\ev—g)j = )\evavj + pe"j <5a’7j B 5])

k+1 __ 1k k —k
)‘g,a,mn - )‘g,a,mn + Pgﬁmn (ga,mn - gmn)

For each subsystem, optimal solutions ¥ are obtained.

Step 5:

Each subsystem checks if the convergence residuals are within tolerances:
if Both residuals are within tolerance

then End ADMM procedure

gap?l = max {H (55]- - Sf) /:rthQ

2
k —k P
97 ga,mn_gmnHQ} <e ,VCL

o 2
D E_ sk— —k k- D
gap, = max{’ Pe.j (5j —0; 1) /xhj’ ) lpg,mn (gmn— gmn 1) H%} <e”,Va
else Each area operator updates its multipliers by equations in Step 4.
endif
Step 6:

Set k=k+1. Continue the same process steps 2 to 4 until the stopping criteria are met.
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3-1-4 Ilterative Alternating Direction Multiplier Method optimization algorithm

Iterative ADMM as the name suggests extends the basic ADMM by introducing an iterative process for
solving the smaller sub-problems obtained by decomposing large-scale problems. Since the standard
ADMM may not guarantee convergence in case of non-convex MISOC problem, an iterative ADMM
algorithm is proposed in paper [5] and it is studied here. The authors state that this algorithm
improves the convergence performance by removing integers through fixing continuous and binary
variables in each iteration. This means that, during each FADMM iteration, the standard ADMM
and SOC reformulation are utilized with fixed integer variables to perform decentralized operation of
the multi-area IEGS. The shared information between each area is fixed by the Area Operator (AO),
equivalent to the latest ADMM values. The iterative procedure stops when integer variables between
two adjacent iterations do not change significantly. The iterative framework contributes a lot to
enhance the convergence, although this algorithm is heuristic and cannot guarantee global optimality.

Figure 3-4 shows the flowchart for iterative ADMM algorithm.
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Figure 3-4: Iterative ADMM for IEGS [5]
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Here a pseudo-code for iterative ADMM algorithm for IEGS is introduced in Algorithm 3.

Algorithm 3 Iterative ADMM
Step 1:
Represent the multi area OEF problem as Mixed Integer Second Order Cone Programming
(MISOCP) and relax integer variables to continuous variables [0], [1], for converting the
model into Second Order Cone Programming (SOCP).
Apply Standard ADMM for decentralized operation.
This initialization step provides the initial values of shared information.
Set iteration index k=0.
Step 2:
Solve each single-area OEF with integers which are not fixed.
Each subsystem area models its OEF problem as MISOCP and fix its shared information.
Each AO solves its OEF problem by SOC reformulation and obtains the optimal value of
binary variables I*.
Step 3:
Solve each multi-area OEF with integers fixed.
Apply Standard ADMM (Algorithm 2) to the multi-area IEGS with fixed I*.
The convexity of the SOCP guarantees the convergence of ADMM.
This step updates the shared information P of each subsystem.
Step 4:
Check if the integer variables change between two adjacent iterations:

GAP! =1F —1+-!

if GAP/ =0
then End I-ADMM procedure
Return PP to obtain the final schedule.
else Go to Step 5.
endif
Step 5:
Set k=k+1. Continue steps 2 to 4 until the stopping criteria are met.

In the paper [5], an additional constraint (3-21) is included to make equation (3-6) tight. This gives
a MISOC problem with concave constraints, making it hard to find global optimum.

2
Lag) = (1/Cap) gy <0 (3-21)

The idea of Sequential Cone Programming (SCP) is to approximate (3-21) by a first order Taylor

expansion with respect to gé‘fjﬁ obtained in the last iteration.

2 _1\2 _ _
TG — (1/Cup) {(925) +290) (9@::') - gé}jﬁ)}

k
< S(i,j)

(3-22)

where,
5(i,j): non-negative slack variable
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A penalty factor, 1 is introduced. The penalty function method can effectively bring the I'(; ;) close to

(1 /C, j))2 g(zi i) without increasing the computational burden. 1 has a small value in the beginning so
as to find a good enough solution quickly. It increases the value as the sequential procedure proceeds
which brings the value of 5(; ;) to zero.

Figure 3-5 shows the flowchart for SCP algorithm.
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Figure 3-5: Sequential Cone Programming for SOC reformulation [5]

3-1-5 Extended Convex Hull relaxation method

An ECH based relaxation technique has been proposed in paper [6] to convexify the Weymouth
equations. The ECH-based constraints lead to a convexified OEF problem without introducing new
binary variables. Before studying what an ECH is, let us first define the convex hull. From the
definition in the book [41], the set S is convex if the line segment connecting any two points in S lies
in S. The convex hull of a set S is denoted by conv S and defined as a set of all convex combinations

of points in S:

convS ={bx1 4+ -+ 0z |2, €C,0, >0,i=1,....k, 0, +---+ 6 =1},
where,

x;: set of points
0: parameter value.

Master of Science Thesis Akshada Anand Palnitkar (5235170)



40 Methodology

(a) Extended convex hull (ECH) for the Weymouth equation

N
y

(b) Convex hull for the Weymouth equation

Figure 3-6: Extended convex hull and convex hull [6]

As the name suggests, the ECH of a set is convex. It contains the convex hull of this set. It should
also contain less redundant elements and have a simple analytical form. Denote the convex hull and
the ECH of the set Y as Y. and Y, respectively. Y, is convex and Y, C Y. as per the above discussion.
The redundant elements are those which belong to Y, but not Y.. The proposed ECH is problem
dependent.

The ECH and convex hull of Weymouth equation is shown in Figure 3-6. The horizontal axis, x
denotes the difference between the pressure squares of gas nodes i and j (w? — wf) The vertical axis,
y is the gas flow g(; j). The blue curve depicts the Weymouth equation. In Figure 3-6a, the region
surrounded by red lines is the ECH and the red lines and the outermost blue lines in Figure 3-6b
consist of the convex hull boundary.

The convex hull is the tightest convex relaxation, but the proposed ECH in Figure 3-6a is comparatively
more prone to being characterized mathematically, although it contains a larger area consisting of
redundant elements. Additionally, the ECH does not introduce any binary variables to the gas block
model whilst preserving the bi-directional property of the Weymouth equation. In the paper [6],
Weymouth equations are replaced by ECH-based constraints, and the mathematical formulation is as
follows:

Wit < wi < W, (3-23)
af - (wiy —wjo) +bi <w, LeP, (3-24)
w <a - (wigy —wjqy)) +by, LEP. (3-25)
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Constraint (3-23) sets the upper and lower bounds of the gas flow in a gas passive pipeline. It also
states the upper and lower bounds of the ECH (Figure 3-6a). Constraints (3-24), (3-25) represent the
left and right bounds of the proposed ECH (Figure 3-6b), respectively, where a}, alU, b}, and blU are
constants.

Therefore, the gas model along with constraints equations (2-11) to (2-16) can be approximated as a
convex by replacing the Weymouth equation (2-11) by ECH-based constraints.

The pros and cons of ECH are discussed here,

Pros:

e The resulting convex problem is comparatively easier to solve.
¢ No additional binary variables are required.

o Bi-directional property of gas pipelines is respected, which increases the gas transmission flexi-
bility.

o This approach seems scalable to large-scale instances.
Cons:

e The values of constants in the left and right bounds (constraints (3-24), (3-25)) must be chosen
carefully.

In order to centrally solve the optimization problem, this ECH relaxation method can
be used to relax the nonlinear, non-convex gas flow equations and further solved using
Algorithm 1.

3-1-6 Jacobi Proximal Alternating Direction Multiplier Method optimization al-
gorithm

Jacobi Proximal Alternating Direction Multiplier Method is an extension of the basic ADMM and
is also an iterative optimization technique. It can be used where variables are updated in parallel
with an advantage of faster processing time compared to other iterative techniques. The J-ADMM
algorithm has been implemented in paper [6] to solve the convexified model wherein the Weymouth
equation is relaxed by ECH based constraints as discussed in Section 3-1-5. The multi-block dis-
tributed optimization problems does not necessarily converge. The J-ADMM algorithm [43], can be
proved to converge when solving multi-block optimization problems. The J-ADMM algorithm, allows
parallel computing and can provide the unique optimal operation policy for the multi-block IEGS with
guaranteed convergence and hence seems quite applicable and thus adopted to solve the distributed
OEF problem.

In this paper [6], the power network and gas network are decoupled based on physical differences and
power network is further divided into blocks (r). The objective function for OEF problem defined in
equation (2-2) is therefore split into separate functions corresponding to blocks. The compact form
of convexified OEF problem, in which the Weymouth equation is reformulated by its ECH based
constraints is represented below:

min  f1 (x1) + -+ fv (xn)

X1, XN

st. A - x1+--+AN Xy =cC (3-26)
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Xleﬂl,“-,XNEQN

where,

N: number of blocks (N > 2)

x,: variables belonging to block r with r =1,.... N

Q,.: convex feasible regions for block r (which is similar to £, in (2-3))
fr: convex objective functions for block r i.e.

N M
II;II’IZ Z HgUa,i + Z Fa,i (Pa,i) + ve. Z La,j
a =

a=1 | ieW i€ENNG .

A.,.: constant matrices
c: constant vector.

The procedure for solving the multi-block optimization problem using J-ADMM algorithm as presented
in the paper [6] consists of initializing the penalty parameter d, damping parameter v, matrix P” with
r = 1,.., N and Lagrangian multiplier Ag. The next step is to solve the objective function (3-27) for
blocks 1 to N in parallel.

2

2
pro (3_27)

(3 b

d \F
k+1 _ : k
X, farg)zlnelg,fr(xr)+ (2) AT‘XT’+ZAj'Xj —c— (d)
J#r 9
with,
r=1,---,N
k

x,: optimal solutions for block r at k-1 iteration

P: positive semi-definite matrix.

Next step is to obtain the updated values of x**1 for r = 1,..., N from equation (3-27). Then update
the Lagrangian multiplier as follows:

N
AL Ry (Z A, -xFHL c> . (3-28)
r=1

According to the algorithm presented in paper [6], J-JADMM converges to its global optimum if matrix
P and damping parameter ~ satisfy following conditions.

1
PT>-d~<1>~E,T~ET, r=1,---,N. (3-29)
o
where,
E,.: constant matrix.
N
Y op<2-5, r=1,---,N (3-30)
r=1

where,
o,: constant value.

If all o, < %Tﬂ{’ r=1,---, N, the conditions (3-29)-(3-30) can be simplified as follows:

P’">d-<2N—1)-EE-ET, r=1,---,N. (3-31)
-
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Figure 3-7 shows the flowchart of J-ADMM algorithm.

]

Parameter initializations

pl
-

Y

Solve equation (3.27) forr=1, _N in
parallel

Mew
iteration

L J

Calculate multiplier
(equation (3.28))

MNo

J-ADNMM
converges?

Return optimal solutions
for all blocks

h 4

=)

Figure 3-7: J-ADMM algorithm [6]

Here a pseudo-code for Jacobi proximal ADMM algorithm for IEGS is introduced in Algorithm 4.
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Algorithm 4 Jacobi Proximal ADMM
Step 1:
Initialize all the parameters: penalty parameter d, damping parameter v, matrix P"
(r=1,...,N), stopping criteria £; and 2, maximum number of iterations kg
Initialize variables zj (r=1,...,N) and Lagrangian multiplier Ao.
Set iteration index k=0.
Step 2:
Solve equation (3-27).
Obtain the updated values zj,(r = 1,..., N)
After obtaining zj,_ ; for r=1,...,N, update Lagrangian multiplier Ay
Step 3:
Check whether both stopping criteria are satisfied

if Yes
then Stop and return zj,_; (r=1,...,N)
else if k= knax

Stop and return NULL (fail to converge).
else Set k=k+1.

Go to Step 2.
endif

Solution feasibility and recovery method

The optimal solution obtained by solving the convexified problem may not be feasible for the original
non-convex problem because the feasible region for the original problem is expanded. Therefore, the
optimal value of the problem (3-26) may be smaller than that of the original problem. The paper
[6] proposes the following to check whether the two optimum solutions are equal without solving the
original non-convex problem.

Proposition: The original and the convexified problems have the same optimum if the problem:

min 1767 +17.6"

7,0t 6~
st. (g7) -sen(g)) = Wi (mqy —m)), LEP
" 1 g/ =0
sgn(gz)={ 1 g<oc lEF (3-32)

(1-6;) -G <m < (1+61) - GP¥ieN
Tie) S QeTi(e)s
§;,6; =0,

is feasible and its objective value is equal to zero,

where, 87 = (5?, e ,5&)11 and § = (51_, e ,5;4)T are slack variables.

The paper [6] also provides a proof for the above proposition. It can be further used to recover the
feasible optimal solution for the original problem from the convexified problem.
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3-2 Performance metrics

Performance metrics can be defined as quantitative measures used to assess the performance of a
system or a method based on specific criteria. These metrics can include measures such as accuracy,
speed, reliability, scalability, efficiency, cost, etc. The metrics used to evaluate a system or a method
should be relevant to the goals and objectives of the system or the method, and they should be
measurable and quantifiable. To assess the effectiveness of proposed solutions, it is essential to establish
performance metrics that allows for objective comparison. Benchmarking involves comparing one or
more optimization algorithms based on such a set of performance metrics.

Performance metrics are often used in engineering, science, and business to evaluate the effectiveness
and efficiency of systems, processes, and products. They help make informed decisions, to identify
areas for improvement, and to compare different methods or systems. They can also be used to
establish benchmarks and to track progress over time. In this section, performance metrics tailored to
the specific requirements of our problem have been introduced. These performance metrics will serve
as a benchmark for evaluating and comparing the results obtained in Chapter 4.

Two main classifications of metrics can be given as theoretical metrics and simulation based metrics.
This is based on the way in which the metric is found. Following Table 3-1, provides some of commonly
studied metrics and provides the type to which it belongs.

Table 3-1: Types of metrics

’ Sr.No. ‘ Metric ‘ Type
1. Optimal cost Simulation
2. Number of iterations Simulation
3. CPU time Simulation
4. Convergence Theoretical & Simulation
5. Solution feasibility Theoretical & Simulation
6. Scalability Simulation
7. Adaptability Simulation
8. Communication burden | Theoretical
9. Stability Simulation
10. Algorithmic complexity | Theoretical & Simulation
11. Robustness Simulation
12. Energy efficiency Theoretical

Here a description of some of the most commonly used performance metrics has been provided to
better understand their function and reason for the choice of these metrics in our comparative study.
Not all the performance metrics mentioned in Table 3-1 have been considered under the scope of this
study.

1. Optimal cost (optimal value): The best possible solution to an optimization problem is
known as the optimal value. It is obtained from values of the decision variables that attain
the minimum (or maximum) value of the objective function over the feasible region. In an
optimization problem where the objective function is to be maximized the optimal value is the
least upper bound of the objective function values over the entire feasible region. If there is
no upper bound, then we say that the optimal value is + inf, while if the feasible region is the
empty set, we define the optimal value of a maximization problem to be —inf. Conversely, in
an optimization problem where the objective function is to be minimized the optimal value is
the greatest lower bound of the objective function values over the entire feasible region. If there
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is no lower bound, then we say that the optimal value is — inf, while if the feasible region is
the empty set, we define the optimal value of a minimization problem to be +inf. Therefore,
every optimization problem has a well-defined optimal value. But the important note is that
not every optimization problem has an optimal solution.

. Number of iterations: Number of function evaluations or number of iterations refers to the

count of repetitive steps taken by an algorithm to find an optimal solution. These iterations
depend on the optimization problem convexity, algorithm used, most importantly convergence
criteria like upper/lower bounds, tolerance, etc.

. CPU time: The total computational time or time required for entire execution of a program is

referred here as CPU time. It includes the time required for computations, memory access and
other CPU-related activities. In other words, the length of time that a central processing unit
takes to process instructions for a particular program or task. The CPU time is used to quantify
the overall empirical efficiency of functionally similar algorithms. Better efficiency algorithms
are those which have minimum CPU time.

. Convergence: Convergence can be defined as a process by which a sequence of values ap-

proaches a specific limit or target value. As a fundamental concept in mathematics, property
(exhibited by certain infinite series and functions) of approaching a limit more and more closely
as an argument (variable) of the function increases or decreases or as the number of terms of
the series increases. In the context of optimization, convergence implies that an algorithm is
getting closer to an optimal solution. Algorithms are considered convergent if they approach
the optimal solution as the number of iterations increases. The speed at which an algorithm
converges is also important and is known as convergence rate.

. Solution feasibility: Optimization problems may have feasible or infeasible solutions. Solution

feasibility refers to whether the obtained solution satisfies all the constraints and requirements
for a given problem. A solution is considered feasible if it meets all the necessary requirements
without violating any constraints. Feasibility ensures that the solution is practically usable and
aligns with the problems objectives. An infeasible solution is the one which violates one or
more constraints. In most of the optimization algorithms, first an attempt is made to find the
feasible solution and then another attempt is made to locate another feasible solution which will
improve the objective function value. This ensures that the solution remains valid and the best
optimum value can be found at the end.

. Scalability: Scalability can be explained as the ability of a system to handle bigger demands

or larger problem sizes or increased complexity in the network efficiently. Scalable algorithms
can handle problems with a large number of variables, constraints or nodes. As the problem size
increases, computation time or memory usage should not degrade significantly for a scalable
algorithm. It is important to balance accuracy and efficiency while achieving scalability of
optimization algorithms.

. Adaptability: It is important to consider if an optimization algorithm is capable to handle

changing conditions, for example, load changes, network size or network topology changes, etc.
Adaptability can be explained as the ability of the system to adjust, modify or respond efficiently
to changes in the environment, thus implying flexibility. Adaptive algorithms are more preferable
in dynamic environments since it is easier to keep the same algorithm and extend it to a different
condition as compared to devising an entirely new algorithm for including a change in condition.

. Communication burden: In simple words, communication burden refers to the cost or effort

required for different parts of the algorithm (for instance nodes in a network) to exchange
information with each other. It can be understood as a balance of efficiency, scalability and
convergence. Excessive communication burden can slow down the convergence. In order to
achieve optimal solutions, efficient communication strategies are crucial which can be obtained
by keeping the communication burden low.
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9.

10.

11.

12.

Stability: This metric could be used to evaluate how well the algorithm maintains stability
during execution. It provides an intuition to understand if an algorithm can be scalable. Sta-
ble algorithms are considered to achieve good general performance. Unstable algorithms may
oscillate or diverge.

Algorithmic complexity: Algorithmic complexity or computational complexity refers to the
quantity of computational resources (such as time, memory etc.) needed by an algorithm.
Complexity analysis can be useful in understanding if the algorithm is scalable with the problem
size. This metric can provide an insight into the efficiency of the algorithm. Efficient algorithms
have lower complexity.

Robustness: The metric which ensures that the performance of an optimization algorithm
remains stable and reliable under uncertainty or variations is referred to as robustness. Robust
algorithms maintain good performance even with variations.

Energy efficiency: While evaluating the performance of an optimization algorithm, computa-
tional tasks are usually resource intensive and consume energy. Thus, energy efficiency becomes
an important metric to minimize power consumption, reduce energy usage meaning lowering
operational costs, etc. Energy-efficient algorithms minimize resource usage by minimizing un-
necessary computations. Such algorithms aim to reduce the environmental impact.

To conclude Chapter 3 has provided a comprehensive description of the methodologies employed for
relaxing the non-convexity as well as the optimization algorithms used to solve the OEF problem
for IEGS. The later half provides the need of performance metrics and describes them in detail.
Some of these metrics are important for evaluating the proposed solutions. By establishing a solid
foundation in the theoretical aspects of our research, we can now move into the realm of practical
implementations. In Chapter 4, we shift our focus to the empirical findings and analysis obtained
through experimentation. These results will allow us to gain valuable insights into the effectiveness
and viability of these methodologies.
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Chapter 4

Results

In this Chapter 4, the results of experimentation and analysis obtained through the appli-
cation of different methods have been presented. This chapter serves as a bridge between
theoretical foundations established in the previous chapters and practical implementation.
Deeper insights into the performance and effectiveness of the various methods can be
established by examining and interpreting these results.

4-1 Case study

Simulations carried out on system with specifications as follows:

¢ Numerical tests are performed by a Matlab 2021b platform
o Gurobi Optimizer version 10.0.2 build v10.0.2rc0 (win64)

e Processor: AMD Ryzen 7 4700U with Radeon Graphics

o Installed RAM: 16 GB

e System type: 64-bit operating system, x64-based processor

The data sets used for this case study:

The test cases used for this study are similar to those used in paper [5] which comprise of the required
system parameters. Table 4-1 provides a summary of the systems in each test system used in respective
case studies.

¢ One-area 6-bus-6-node Integrated Electricity and Natural Gas System (IEGS) : Gastranss-
mion6  1.xlsx

o Two-area 12-bus-12-node IEGS (2A-IEGS) : motor.ece.iit.edu/data/Gastranssmionl12_multi-area.
xlsx
o Three area 73-bus-30-node IEGS (3A-IEGS) : motor.ece.iit.edu/data/Gastranssmion73_

multi-area.xlsx

o Four area 472-bus-40-node ITEGS (large) (4A-IEGS): motor.ece.iit.edu/data/Gastranssmiond72_
multi-area.xlsx
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Table 4-1: Summary of test systems in Case study

System No. of non- | No. of | No. of gas | No. of tie- | No. of tie-
Natural NGU wells lines (elec- | pipes (gas)
Gas- tricity)
fired Unit
(NGU)

1A-IEGS 1 3 2 0 0

2A-IEGS 2 6 4 1 1

3A-IEGS 75 24 9 5 3

4A-TEGS 184 32 12 5 4

The topology for different cases is as follows:

The 2A-IEGS is composed of two exactly same 6-bus-6-node integrated energy systems connected by
one tie line and one tie pipe as shown in Figure 4-1a.

Tie-line
— — —  Tie-pipe
Tie-line
IEGS IEGS
AREAA AREAB
Tie-pipe

(a) Example 2A-IEGS topology

Tie-line
Power
System
_ ) ) o | NG
- - ] | : System
—————————————— - Tie-pipe *—- ——————————————~

(b) Detailed 2A-IEGS configuration [5]

Figure 4-1: 2A-1EGS topology and configuration
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A detailed configuration of the 2A-TEGS is shown in Figure 4-1b, where it shows the locations of power
generators, loads, gas wells. The dashed lines show connections within the same area while the bold
line shows the interconnection between Area A and Area B (referred to as tie lines and tie pipes).

Similarly, for a 3A-IEGS is composed of the integrated energy systems connected by 5 tie lines and
3 tie pipes as summarized in Table 4-1 and other system parameters are given in data set provided
above. Topology of 3A-IEGS is shown in Figure 4-2.

Tie-line
Tie-pipe

Tie-line

IEGS Tie-line IEGS
) Tie-line (
AREAB AREAC
T T T T T T T T T T T T T T Hepipe T T T T T T T T

Figure 4-2: Example 3A-IEGS topology

Extending to a lager multi-area integrated system, the 4A-TEGS is composed of 472-bus-40-node IEGS
and consists of 4 tie lines and 4 tie pipes as summarized in Table 4-1. Other system parameters are
given in the data set provided above. The system topology is shown in Figure 4-3.

Tie-line
— — — Tie-pipe

Tie-lines
Tie-pipes

Tie-line

Tie-pipe

Figure 4-3: Example 4A-1EGS topology
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4-2 Necessity of Iterative Alternating Direction Multiplier Method
(I-ADMM) algorithm

Before moving on to the results for each method, this section explains why I-ADMM algorithm is
used by presenting the plots of maximum residual values of Standard Alternating Direction Multiplier
Method (ADMM) and I-ADMM when Second Order Cone (SOC) relaxation method is used to replace
the nonlinear constraints.

4-2-1 SOC relaxation; Standard ADMM algorithm

As the relaxed optimization problem is solved by using standard ADMM algorithm, for 2A-IEGS,
evolution of maximum residuals is presented in Figure 4-4. The iterative solution process shows the
nature of standard ADMM algorithm. It is evident that the maximum residuals do not converge but
keeps oscillating around the same value even after 100’s of iterations. This shows that the standard
ADMM method is not capable of providing an optimal solution for this optimization problem. The
computation time required is too high. Similarly, the test cases for 3A-IEGS and 4A-TEGS also do not
give an optimal solution. It has a similar nature as shown for 2A-IEGS. Hence it can be referred as a
non-convergent as defined in the performance metrics.

Nature of max-residual for standard ADMM

10" [ Standard ADMM ||
L Tolerance gap

W\NM\AAW IV,

Maximum residual of ADMM

107! L L L T —Y | L L L e e e L L
10° 10° 102 10°
Iterations

Figure 4-4: Nature of standard ADMM for 2 area network

Summary of the parameters used for the algorithm is presented below in Table 4-2.

Table 4-2: Parameters used for ADMM algorithm

ADMM Pe Py el el
1.5e+5 15 0.1 0.1

SCP wO pmax Vv 5Z 55
0.1 1000 2 1 0.1
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4-2-2 SOC relaxation; I-ADMM algorithm

Following Figure 4-5 shows the nature of max-residuals for -ADMM implemented on the 2A-IEGS.
It can be clearly seen that the blue line converges not once but twice. For this 2A-IEGS, during the
initialization of I-ADMM, the standard ADMM takes about 31 iterations to converge. Further the
integer variables are calculated by using the fixed variables which were passed on to each subsystem.
There is a sharp jump after 32 iterations and again a decrease in the value of the solution as number
of iterations increases. The jump is around the same moment as the fixed binary variables problem
begins. This takes around 36 iterations to converge and the whole algorithm stops after that. This
can be seen from the nature of the blue line Figure 4-5. Finally, the LADMM algorithm converges
after 68 iterations. This algorithm is referred as a convergent algorithm. Iterative method provides a
better result as compared to the previously described standard ADMM method.

Nature of max-residual for I-ADMM

[ u
107 1-ADMM ]
F Tolerance gap |

Maximum residual of ADMM

Iterations

Figure 4-5: Nature of FADMM for 2 area network

Similarly tests were conducted on 3A-IEGS and 4A-TEGS data sets. Results for optimal cost are
discussed in the following sections. Convergence is obtained in those cases as well and only 1 iteration
in L-ADMM is needed, which reduces the communication as compared to centralized algorithm. The
3A-IEGS has 74-bus-30-nodes and 5 tie-lines and 3 tie-pipes. The ADMM tolerance is 0.1 for these
cases. The 4A-TEGS is a large 4 area network with 472-bus-40-nodes connected by 4 tie-lines and 4
tie-pipes. The computational time is very high, hence the tolerance of ADMM is set at 0.5 for faster
convergence. As the connecting lines provide energy sharing between areas, uniform distribution of
energy flow can be achieved if natural gas network is congested.
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4-3 Result for 1 Area IEGS

The result of employing different relaxation methods SOC relaxation and Extended convex hull (ECH)
relaxation implemented on a small data set (1 area) with 6 nodes and 6 buses is presented here.

4-3-1 Cost versus iterations

The optimization problem is solved centrally and nature of the cost versus iterations is shown in Figure
4-6. Both the relaxed optimization problems converge to a solution. The red line representing the
ECH relaxation method is faster than the SOC relaxation method. This is possible because ECH
relaxation gives convex constraints while SOC relaxation needs more iterations to solve the mixed
integer problem. The optimal cost is mentioned in Table 4-3.

x10* Centralized algorithm: 1 Area IEGS

soc| |
ECH |

5.5

\
\ / \ /
\ / \ \
\ / / V\
/ \
\
L \ ]
\ ey |
— - R
35 L L —— L h ==

10° 10
Iterations

Figure 4-6: Result for 1A-IEGS

Table 4-3: Solution for 1 Area IEGS

’ Sr.No. ‘ Metric ‘ SOC; Centralized ‘ ECH; Centralized
1. Optimal cost ($) 3.50 - 10* 3.49 - 10%
2. No. of iterations 10 8

A feasible solution for relaxed optimization problem is obtained for this test case. Optimal cost is in
the same range for the relaxed optimization problem.

4-3-2 Cost versus CPU time

Here, the optimization problem is solved centrally and nature of the cost versus CPU time is shown
below in Figure 4-7. The red line representing the ECH relaxation method takes less time compared
to the SOC relaxation method. The reason is same as described before, where ECH relaxation gives
convex constraints while SOC relaxation needs more time to solve the mixed integer problem. The
CPU time (computational time) is mentioned in Table 4-4.

Convex optimization gives faster convergence as compared to Mixed Integer Second Order Cone
(MISOC) optimization.
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x10* Centralized algorithm: 1 Area IEGS
; | SR

= soc| |
[ ECH |

5.5
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\\ A
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CPU time (s)

Figure 4-7: Result for 1A-IEGS CPU time

Table 4-4: Solution for 1 Area IEGS CPU time

’ Sr.No. ‘ Metric ‘ SOC; Centralized ‘ ECH; Centralized
1. Optimal cost ($) 3.50 - 104 3.49 - 10
2. CPU time (s) 0.276 0.26

4-4 Result for 2 Area IEGS

As multiple areas are included, the comparison of centralized algorithm and decentralized algorithm
can be seen here along with different relaxation methods SOC relaxation and ECH relaxation. The
optimization problem is solved centrally for SOC relaxation method, ECH relaxation method and
decentralized I-ADMM algorithm with SOC relaxation. The results for cost versus iterations are for
centralized method only, while CPU time comparison is made for decentralized method.

4-4-1 Cost versus iterations

The relaxed problem is solved centrally and optimal solution is obtained for test case with 2 Area
IEGS. The nature of cost versus iterations is shown in Figure 4-8. The number of iterations required
for each method is different. The blue and the black lines for SOC relaxation with centralized algorithm
and ECH relaxation with centralized method show similar nature as that for 1 Area. The black line
reaches the solution is less number of iterations. The numerical results are shown in Table 4-5.

Table 4-5: Solution for 2 Area IEGS

’ Sr.No. ‘ Metric ‘ SOC; Centralized ‘ ECH; Centralized
1. Optimal cost ($) 6.90 - 10* 6.90 - 10*
2. No. of iterations 12 11

Feasible solution obtained for both the relaxation methods. Optimal cost is in similar range for the
relaxed optimization problem.
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x10* Result for 2 Area IEGS

SOC, centralized | |
ECH, centralized | 1

Iterations

Figure 4-8: Result for 2A-IEGS

4-4-2 Cost versus CPU time

The Figure 4-9 shows the time required for each method to find a solution is different. The blue and
the black lines for SOC relaxation with centralized algorithm and ECH relaxation with centralized
method show similar nature as that for 1 Area. The red line represents the - ADMM algorithm, which
has dependency on binary variables, adds complexity but provides an accurate solution. The numerical
results are shown in Table 4-6.

x10* Result for 2 Area IEGS

SOC, centralized | -
ECH, centralized | .|
I-ADMM

Cost

CPU time (s)

Figure 4-9: Result for 2A-IEGS CPU time

The ECH based relaxed optimization problem converges faster than SOC relaxation but slightly slower
than L ADMM.
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Table 4-6: Solution for 2 Area IEGS CPU time

’ Sr.No. ‘ Metric

‘ SOC; Centralized ‘ ECH; Centralized ‘ SOC; I-ADMM

1.

Optimal cost ($)

6.90 - 10*

6.90 - 10*

6.98 - 10*

2.

CPU time (s) 2.6

2.15 2.01

4-5 Result for 3 Area IEGS

Similar to the 2 Area system, the results for employing different relaxation methods, SOC relaxation
and ECH relaxation in centralized and decentralized method for cost versus iterations and cost versus
CPU time are discussed here. It is expected that the result would be similar to that of 2 Area IEGS.

4-5-1 Cost versus iterations

For the centralized relaxation problem for 3 Area IEGS, optimal solution is obtained and result is
shown in Figure 4-10. The nature of the plot is quite similar as expected, the only difference being
the number of iterations required for convergence. Since the network is bigger, more time is required
for the algorithm. The numerical results are shown in Table 4-7.

Cost

Result for 3 Area IEGS

OC, centralized | |

ECH, centralized | |

v

10°

Iterations

10’

Figure 4-10: Result for 3A-IEGS

Table 4-7: Solution for 3 Area IEGS

’ Sr.No. ‘ Metric

\ SOC; Centralized \ ECH; Centralized

1.

Optimal cost ($)

8.75 - 10%

8.75 - 10%

2.

No. of iterations

25

23

Feasible solution obtained for 3 Area IEGS. Optimal cost is in the same range for the relaxed opti-

mization problem.
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4-5-2 Cost versus CPU time

Similarly, the results for employing different relaxation methods SOC relaxation and ECH relaxation
in centralized and decentralized method is shown in Figure 4-11. As the system is bigger, more time
is required for the algorithm. The numerical results are shown in Table 4-8.

x10* Result for 3 Area IEGS
T T T T T T

T
—— S0C, centralized |
ECH, centralized

1-ADMM 1

Cost

T, D PN
N\ O IAN N
10

CPU time (s)

Figure 4-11: Result for 3A-IEGS CPU time

Table 4-8: Solution for 3 Area IEGS CPU time

’ Sr.No. ‘ Metric ‘ SOC; Centralized ‘ ECH; Centralized ‘ SOC; - ADMM
1. Optimal cost ($) 8.75 - 10% 8.75 - 10* 8.75 - 10*
2. CPU time (s) 26.51 24.7 23.12

Optimal cost is in the same range for the relaxed optimization problem using centralized as well as
decentralized methods. CPU time for decentralized method is smaller as compared to centralized
method for the relaxed problem.

4-6 Result for 4 Area IEGS

Extending the data set to a 4 Area system, the results after SOC relaxation and ECH relaxation in
centralized and decentralized manner here.

4-6-1 Cost versus iterations

Figure 4-12 shows the nature of the plot of cost versus iterations for each method. As expected, the
nature of the plots is similar to that of other areas. This means that the algorithm works in a similar
way for lager network and hence can be called as scalable. For a bigger network, more time and energy
is utilized in finding the optimal solution. The numerical results are shown in Table 4-9.

It can be seen that feasible solution obtained. Optimal cost for centrally solving the problem is in the
same range for both relaxation methods.

Akshada Anand Palnitkar (5235170) Master of Science Thesis



4-6 Result for 4 Area IEGS 59

Result for 4 Area IEGS
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Figure 4-12: Result for 4A-1EGS

Table 4-9: Solution for 4 Area IEGS

’ Sr.No. ‘ Metric \ SOC; Centralized \ ECH; Centralized
1. Optimal cost ($) 9.50 - 10* 9.50 - 10%
2. No. of iterations 57 53

4-6-2 Cost versus CPU time

Similarly, a plot for cost versus CPU time can be seen in Figure 4-13. As expected, the nature of the
plots is similar to that of other areas. More time and energy is utilized in finding the optimal solution
for larger network. The numerical results are shown in Table 4-10.

Table 4-10: Solution for 4 Area IEGS CPU time

’ Sr.No. ‘ Metric ‘ SOC; Centralized ‘ ECH; Centralized ‘ SOC; - ADMM
1. Optimal cost ($) 9.50 - 10* 9.50 - 10* 9.65 - 10*
2. CPU time (s) 81.1 75.6 200.9

It can be seen that feasible solution obtained. Optimal cost for centrally solving the larger system is in
the same range. Higher optimal cost when decentralized optimization method was implemented, more

like sub-optimal solution. Time required for decentralized method is larger than centralized method
in this case.
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x10° Result for 4 Area IEGS
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Figure 4-13: Result for 4A-IEGS CPU time

4-7 ECH relaxation; Jacobi Proximal Alternating Direction Multi-
plier Method (J-ADMM) algorithm

This section, the results obtained from the J-ADMM algorithm were suppossed to be summarized.
Compared to other ADMM based methods, the J-ADMM algorithm allows for parallel computing.
Since IEGS consists of multiple areas, it can be considered as multiple blocks and solving this with
J-ADMM is supposed to be more efficient due to parallel computing. During the course of par-
allel computing, the J-ADMM would update all the blocks simultaneously, in parallel. The paral-
lel computing does not incorporate the updates of Lagrangian multiplier A\. The method proposed
in paper [6] promises that the optimal solution is unique because of the additional proximal term,
(1/2) - ||x" — x| ;,,,, which ensures the mathematical formulation is strictly convex.

The application of same algorithm to different data sets, namely 2A-IEGS, 3A-IEGS and 4A-IEGS
that are considered for this study. However, it is difficult to obtain a feasible solution for the defined
optimization problem since the constraints are not exactly satisfied. The problem gives an infeasible
solution and the reason could be that the solution falls outside the extended convex hull for this specific
problem. The solution obtained in paper [6], has a different objective function and a different data
set But for this study, it is crucial to use the same optimization problem and data set as that used for
the FADMM method, for the sake of comparison.
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4-8 Discussion

All the results provided in this chapter show that the methods provide approximately the same optimal
solution for the reformulated optimization problem. The number of iterations required for each method
are different. The decentralized method of LADMM is definitely better because it solves the problem in
a single iteration and is computationally more efficient. It reduces the computational load as compared
to the centralized algorithm because individual Area Operator (AO) make decisions and the central
controller is not loaded.

It can also be seen that all of the methods show convergence towards an optimal solution and hence they
are all called convergent. All the methods that provide feasible solutions for the defined constraints
are discussed. Scalability is also checked since the methods have been checked on test cases of different
sizes from small to large.

By considering factors such as CPU time, solution feasibility, and scalability, the aim is to identify the
most promising approaches for solving this complex optimization problem. Following list of observa-
tions is summarized from analysing the results discussed above:

o Complexity varies based on the type of constraints: SOC (MISOC) > ECH (Convex) reformu-
lated problem.

¢ Optimal cost is in similar range for different relaxation methods in case of all test cases.
e SOC and ECH relaxed problems are scalable and adaptable to changing network.

e Centralized method provides optimal cost with both SOC relaxation, ECH relaxation.

e Decentralized optimization method is more efficient as it reduces the computational load.

e Decentralized method helps solve the issue of single point of failure caused by centralized con-
troller.

o Data privacy is respected in decentralized method since only the necessary information is passed
to the neighboring area.

e The solutions obtained in the chapter are for the relaxed optimization problem. The original
nonlinear, non-convex problem may or may not have the same feasible solution.
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Chapter 5

Conclusion and future work

The main objective of this thesis is to study the different optimization methods used
for solving the optimal energy flow problem of Integrated Electricity and Natural Gas
System (IEGS). Since the natural gas flow equations add to the complexity in solving
the mathematical problem, relaxation methods are used to reformulate the non-convex
constraints. The multi area optimization problem is solved in two ways: centralized and
decentralized methods. The results of these methods have been seen in Chapter 4. This
chapter presents the conclusion and few recommendations for future work related to this
project.

5-1 Conclusion

A comprehensive study of performance metrics has been conducted as part of this thesis. In order
to compare different optimization methods, it was necessary to first study how each method works
and then find which method leads to better performance results. It would consist of solving an
optimization problem for multi-area IEGS with constraints for both electricity and natural gas networks
and corresponding coupling constraints. This would comprise of the crucial part of implementing the
methods to relax the non-convexity due to gas flow equations and then implementation of different
algorithms used for solving the Optimal Energy Flow (OEF) problem for multi-area IEGS. The results
of this work should provide sort of a benchmark for the optimization methods used for solving the
OEF problem for multi-area IEGS.

Here is a summary of the answers to the sub-questions which aid in answering the main research
question defined in chapter 1.

1. Why is it important to study different optimization methods for IEGSs?
The most important reason for studying optimization methods for any system begins from
the goal of minimizing the cost or maximizing the output. Similarly, the goal of studying
optimization methods for IEGS stems from the idea of minimizing the operational cost of the
integrated network. It is important to reduce the cost for the producers as well as the consumers.
It is also important because it fulfils the supply-demand gap. Since the storage of natural gas is
a challenge, integrating it with an electricity networks reduces wastage of excess energy which
could be very beneficial. Studying optimization methods for IEGS is also crucial for efficient
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energy usage. Hence, before implementing the integrated networks in the field, it is necessary
to study the feasibility using different mathematical problem formulations and finding the best
performing behavior.

. What are the technical and operational challenges posed by IEGS? Is it possible to overcome

these challenges? If so, how?

As discussed in chapter 1, the challenges posed by IEGS have been described in great detail. This
makes it necessary for us to consider not only technical but also the operational challenges which
can be mitigated by proper use of optimization methods. Some of the ways (atleast theoretical),
have also been presented which can be useful. The importance of studying optimization methods
for integrated electricity and natural gas systems also paves the way for including more and
more resources and driving the network towards sustainability. This will be beneficial for all the
involved entities like producers, consumers, policy makers, etc.

. How to find which method has better performance?

First an optimization problem has been defined in chapter 2. Then an extensive explanation
of relaxation methods to linearize the nonlinear natural gas flow equation has been provided.
Further different optimization methods has been provided and the algorithms have been pro-
vided. To find which method performs better, there should be comparative parameters and
these quantitative parameters are referred to as performance metrics. Multiple performance
metrics have been described but the methods are compared based only on selected few metrics
like optimal cost, number of iterations, CPU time.

. What is the result when each method is implemented?

The results obtained after implementation of the methods discussed in the previous chapter
have been presented in chapter 4. The centralized algorithm provides almost similar results for
both types of relaxation methods. The decentralized method Iterative Alternating Direction
Multiplier Method (I-ADMM) is better than the centralized algorithm as it is computationally
fast. However, it may provide suboptimal solution as seen in the larger test case where the
centralized solution is better. The Jacobi Proximal Alternating Direction Multiplier Method
(J-ADMM) algorithm should have been better as it is capable of parallel computing. However
it is a bit difficult to find a feasible solution and the reason could be that the local optimal
solution falls outside the extended convex hull.

. What is the result of comparison of these methods with respect to each performance metric?

As discussed in the final section of chapter 4, all the results obtained for each method have
been presented. The goal of this study was to compare the performance of different methods
and hence it is important to solve the same optimization problem and test it on same data sets.
From the results, it seems obvious that the better performing method as of now seems to be
the decentralized L ADMM algorithm. It converges in less number of iterations and CPU time
required is less than that of the other methods with one exception of 4 Area IEGS.

. What are the limitations of this work?

Optimization methods for IEGS studied in this thesis have certain limitations. First and fore-
most, the relaxed solution might not be the best solution for the original nonlinear, non-convex
problem. It is difficult to determine a solution for such a problem when solvers are not available.
The complexity of networks is another main point to be considered since multiple interconnected
components including power grids, natural gas networks, other sources maybe involved. Here,
noise is not considered but considering uncertainties and noise could also pose a different issue
in the actual field applications. The dimensions of variables and constraints in the optimiza-
tion problem also makes it complex. Another limitation could be balancing the cost, reliability
and efficiency while reducing the environmental impact. Additionally modelling inaccuracy is a
major drawback. It is crucial to have an accurate model of IEGS including all the components.
Excessively simplified problems may lead to suboptimal solutions. Furthermore the obvious
limitation is the computational efficiency while solving large-scale optimization problems and
decentralized or distributed algorithms are definitely a possible solution to this issue.
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5-2 Future work

Some recommendations for future work are presented here after having reflected on the results of this
thesis.

¢ Including different kinds of resources like heat, thermal, renewable energy sources into the inte-
grated network could be a logical next step to study different optimization problem formulations
and methodologies used. There is quite some work in the energy domain and there are definitely
opportunities to integrate different energy sources.

¢ Developing enhanced models with more accuracy and detailed models of IEGS components. It
should be close to the real-time systems used in the industry and simulation should be able to
consider dynamic behavior, transient effects, etc.

¢ Uncertainty management is a good starting point for future work. It would be interesting to in-
vestigate robust approaches which can handle uncertainties due to renewable energy generation,
demand and fuel prices.

e Cybersecurity related challenges are of utmost priority in every field not just the energy mar-
kets. Addressing the cybersecurity related challenges by identifying potential vulnerabilities and
threats and trying to protect the IEGS from these threats is very important. It is necessary to
develop protocols and regulations to safeguard these integrated infrastructure.

o Integrating the demand side management strategies into IEGS could be a possibility. This could
be dne by shifting loads, demand responses,etc. to enhance the efficiency of the system. It could
also be beneficial to implement predictive analytics and adaptive control to improve the overall
performance.
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Glossary

List of Acronyms

IEGS
NGU
EDP
OPF
OEF

LR

ALD
ADMM
SOC
SOCP
SCP
MILP
MINLP
MISOC
MISOCP
PWA
ECH
RLT

AO
I-ADMM
J-ADMM

Integrated Electricity and Natural Gas System
Natural Gas-fired Unit

Economic Dispatch Problem

Optimal Power Flow

Optimal Energy Flow

Lagrangian Relaxation

Augmented Lagrangian Decomposition
Alternating Direction Multiplier Method

Second Order Cone

Second Order Cone Programming

Sequential Cone Programming

Mixed Integer Linear Programming

Mixed Integer Non Linear Programming

Mixed Integer Second Order Cone

Mixed Integer Second Order Cone Programming
Piecewise Affine

Extended convex hull
Reformulation-Linearization Technique

Area Operator

Iterative Alternating Direction Multiplier Method
Jacobi Proximal Alternating Direction Multiplier Method

List of Symbols

(i, )
Of?’,a 5i7 Vi
&
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Represents gas pipeline in which the first and last node is i and j respectively.
Fuel coefficients of natural gas-fired unit .
Shutdown cost.
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B® Set of boundary buses.

on Phase angle of boundary bus h.

0 Phase angle of boundary bus j.

1N Auxiliary variable for Second Order Cone (SOC) relaxation.

L ,U 1L .U
a;,a;,br, b

B/CL

@) L)

L,
L;
N¢
Nie

Constant for left and right bounds of Extended convex hull (ECH).
Index of reference electric bus.

Natural gas price.

Pressure of natural gas nodes.

The pressure of initial node.

Nodal pressures.

The pressure of end node.

Set of areas connected to boundary bus j.

Set of areas connected to tie-pipe mn.

Maximum value of squared nodal pressure of node 1.

Minimum value of squared nodal pressure of node 1.
Subsystems that electricity bus h belongs to adjacent area.
Subsystems that electricity bus j belongs to in area a.

Penalty parameter.

Phase angle of inner bus h.

Bus phase angles.

Phase angle of inner bus j.

Subsystems such that natural gas nodes, i from area a and j from adjacent area belong
to respectively.

Startup cost.

Subsystem considered for analysis, where a=1, ---, N.

Set of buses with load shedding.

Set of inner buses.

Set of natural gas-fired units connected to node 3.

The Weymouth constant which depends on the characteristics of the pipeline.
Residential natural gas demand at node 1.

Electricity demand at bus j.

Set of all gas flow between nodes (4, j)

Objective function, comprising the total cost of the network.
Natural gas consumption of gas fired unit 3.

Cost function of non-natural gas unit.

Set of natural gas pipelines to node <.

Set of natural gas pipelines from node i.

Natural gas flows on tie-pipes.

Set of all units connected to bus j.

Equality constraint which correspond to coupling constraints.
Inequality constraint represent local constraints depending on electricity and gas net-
work.

Indices of natural gas nodes or electricity buses.

Set of inner pipes.

Binary indicators of natural gas flow direction on pipeline (i,j).
Passive gas pipeline.

Load shedding.

Load shedding at bus j.

Set of gas fired units.

Set of non-gas fired units.
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Ne, Nie
P

I
P g
PW
Pa,i
P;
Pimin’ Bmax
Qi
r
sP
TP
VP

Lq
Tg1,Tg2,2g
y7 Z’ u

z

Qa

Master of Science Thesis

Number of equality and inequality constraints, respectively.

Generation dispatch of units.
Power flow on transmission line (i, ).

Forecast of renewable energy units.
Real power generation.

Generator outputs.

Lower and upper limits on the power generated.
Nodal natural gas demand.
Renewable energy units.

Index of natural gas well.

Set of tie-pipes.

Penalty price for load shedding.
Natural gas production of well W.
Natural gas well outputs.

Set of natural gas production wells.

The parameter vector used to optimize the objective function f (decision variable).

Auxiliary variables.
Decision variables.
Indicator for shutdown of thermal units.

The feasible operation region of area a, described by the electricity and natural gas

network constraints.
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