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1 Introduction

The connection between P (m,n), the number of partitions of a set containing m
elements as a disjoint union of n non-empty subsets; S(m,n), the number of sur-

jections of a set of m elements onto a set of n-elements; and St(m,n), the Stirling
number of the second kind, given by1

St(m,n) =
1

n!

n∑
r=0

(−1)n−r
(
n
r

)
rm, (1.1)

has long been known (see, eg, [B, C, L, T]). Indeed, their mutual relation is given

by

1

n!
S(m,n) = P (m,n) = St(m,n), (1.2)

the first equality being very elementary and the second somewhat less immediate.

Our primary object in this paper is to provide an explicit formula for St(m,n),
and hence, by (1.2), for P (m,n) and S(m,n), in the case that m > n.

1Other definitions are given in the litterature; for example, St(m, n) is characterized by the
equation

xm =
m∑
n=0

n!St(m, n)
(
x
n

)
.
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The form our formula takes is the following. We write γk(m) = St(m,m−k), k ≥ 1;

then we represent γk(m) as a linear combination of binomial coefficients

(
m
r

)
,

k + 1 ≤ r ≤ 2k. The weight ahk attached to the binomial coefficient

(
m

k + h+ 1

)
is a positive integer independent of m, which we call the Stirling factor of type
(h, k). We do not calculate these Stirling factors explicitly, except for low values
of k (see Figure 3) and the cases h = 0, 1, 2, k − 2, k − 1 (Theorems 4.1, 4.3, 4.4).
However we give a recurrence relation expressing ahk, h ≥ 1, as a linear combination

of Stirling factors ah−1,j, h ≤ j ≤ k − 1, the weight attached to the Stirling factor

ah−1,j being the binomial coefficient

(
k + h
j + h

)
. It thus seems natural to represent

the Stirling factors in a triangle too, to illustrate the interaction with the Pascal
Triangle (see Figure 4). The recurrence relation, together with the initial condition

a0k = 1 for all k ≥ 1, of course determines ahk.

We believe that our formula, given by Theorem 4.1, should lead to useful esti-
mates of P (m,n), since the Stirling factors are always positive integers and should

be readily estimated. We believe further that the Stirling factors ahk should have
interesting number-theoretical properties and interrelations. One such relation is
displayed in Lemma 4.5. We hope to return to these aspects in a subsequent paper.

We draw attention to two further features of this paper. In Section 3 we prove a

generalized version of a simple, but attractive, combinatorial property of binomial
coefficients, often known as the Christmas Stocking Theorem; the reason for
this choice of name is made quite clear by Figure 1. The generalization (which plays
a key role in our proof of our main result, Theorem 4.1) also admits a geometric

representation, which we try to convey in Figure 2. Second, we combine Theorem
4.1 with the classical recurrence relation

P (m,n) = nP (m− 1, n) + P (m− 1, n − 1) (1.3)

to obtain certain bilinear relations connecting binomial coefficients and Stirling fac-

tors (see, for example, Theorem 5.1).

It is, we think interesting to mention that this paper arose out of the (success-
ful!) attempt to reconstruct an elementary proof of Theorem 2.6(b), a result which

had been discovered by the third-named author many years ago. Of course, this
elementary proof had to proceed without invoking (1.2), since the plan was to use
it in a proof that P (m,n) = St(m,n).

2 Classical results

All the results in this section may be found in any standard work on combina-
torics (see, eg [B, C, L, T]); we collect them here for the convenience of the reader.
Throughout this section m and n are non-negative integers.
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Definition 2.1. P (m,n) will denote the number of partitions of a set containing
m elements as a disjoint union of n non-empty subsets.

Obviously

P (m, 0) = 0, m ≥ 1;P (m,n) = 0, m < n;P (n, n) = 1, P (m, 1) = 1, m ≥ 1. (2.1)

Further, by ordering the elements of the set A, where A has m elements, and consid-
ering partitions of the first (m−1) elements of A, we readily establish the recurrence

relation
P (m,n) = nP (m− 1, n) + P (m− 1, n− 1), m > n ≥ 2. (2.2)

It is easy to see that P (m,n) is entirely determined by (2.1), (2.2).

Definition 2.2. Let the set A have m elements and the set B have n elements.
Then S(m,n) will denote the number of surjections of A onto B.

Plainly we have

Theorem 2.1. S(m,n) = n!P (m,n).

For a surjection f : A → B may be regarded as a labeled partition of A into n
non-empty subsets f−1b, b ∈ B, where the subset f−1b is labeled by b. Since there
are n! ways of assigning the labels, Theorem 2.1 follows.

Definition 2.3. St(m,n) will denote the Stirling number of the second kind

St(m,n) =
1

n!

n∑
r=0

(−1)n−r
(
n
r

)
rm. (2.3)

We then have

Theorem 2.4. St(m,n) = P (m,n).

Corollary 2.5. S(m,n) = n!St(m,n).

Theorem 2.4 may be proved using the inclusion-exclusion principle; an alterna-
tive proof simply consists of verifying that St(m,n) satisfies properties (2.1), (2.2)

adduced for P (m,n).

Since calculations of St(m,n) imply, via Theorem 2.4 and Corollary 2.5, results
on P (m,n) and S(m,n), we may henceforth state all our results for St(m,n). Clas-

sically, we have

Theorem 2.6. (a) St(m,n) = 0 if m < n; (b) St(n, n) = 1.

Remark. We need Theorem 2.6, of course, for the second proof of Theorem 2.4

referred to above.

We give a proof of Theorem 2.6 since it expoits a strategy which we adopt again
in proving our main result in Section 4. We observe first from (2.3) that

St(0, n) =

{
00 = 1 if n = 0
1
n!

(−1)n(1− 1)n = 0 if n ≥ 1
(2.4)
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Thus we may prove Theorem 2.6 by induction on n, starting with n = 0. To prove
(a) we assume that, for a given n ≥ 1, St(m,n− 1) = 0 for all m < n − 1. Thus,

expanding (r + 1)m−1 by the binomial theorem, we conclude that

n−1∑
r=0

(−1)n−1−r
(
n− 1
r

)
(r + 1)m−1 = 0, 1 ≤ m < n. (2.5)

Set s = r + 1, so that

n∑
s=1

(−1)n−s
(
n− 1
s− 1

)
sm−1 = 0, 1 ≤ m < n. (2.6)

Since

(
n

s

)
=
n

s

(
n − 1

s− 1

)
, we infer from (2.6) that

n∑
s=1

(−1)n−s
(
n
s

)
sm = 0, 1 ≤ m < n.

We may adjoin s = 0, since m ≥ 1, and replace s by r, to obtain

n∑
r=0

(−1)n−r
(
n

r

)
rm = 0, 1 ≤ m < n. (2.7)

Since we already know, by (2.4), that St(0, n) = 0, n ≥ 1, it follows that (2.7)
establishes the inductive step in the proof of (a).

The proof of (b) is now very similar. Thus we assume that, for a given n ≥ 1,
St(n− 1, n− 1) = 1. In view of (a), this implies that

n−1∑
r=0

(−1)n−1−r
(
n− 1
r

)
(r + 1)n−1 = (n− 1)!

Set s = r + 1 and exploit again the identity

(
n

s

)
=
n

s

(
n− 1

s− 1

)
to infer that

n∑
s=1

(−1)n−s
(
n
s

)
sn = n!

We may adjoin s = 0, since n ≥ 1, and thereby complete the inductive step in

the proof of (b).

One immediate consequence of Theorem 2.4 which we may include here is

Theorem 2.7. St(n+ 1, n) =

(
n+ 1

2

)
.

Proof. It is plain that P (n+ 1, n) =

(
n+ 1

2

)
, since a partition of a set containing

(n + 1) elements into n non-empty subsets is equivalent to a choice of one subset
containing 2 elements.

Of course, Theorem 2.7 could also be proved using a variant of our proof of
Theorem 2.6.
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3 A combinatorial lemma

In this section we prove a combinatorial result which may be interpreted ‘geometri-
cally’ within the Pascal Triangle. We will use this result in an essential way in the

proof of our main theorem.
We start with the familiar result

n∑
r=1

r(r + 1) . . . (r + s− 1) =
n(n+ 1) . . . (n+ s)

s+ 1
. (3.1)

Now consider A =
n∑
r=s

r(r − 1) . . . (r− s+ 1), 1 ≤ s ≤ n. By replacing the variable r

by R = r − s+ 1 (and then writing r for R) we see that

A =
n−s+1∑
r=1

(r + s− 1)(r + s− 2) . . . r =
(n − s+ 1)(n − s+ 2) . . . (n+ 1)

s+ 1
,

by (3.1). Thus

n∑
r=s

r(r−1) . . . (r−s+1) =
(n+ 1)(n) . . . (n − s+ 2)(n − s+ 1)

s+ 1
, 1 ≤ s ≤ n. (3.2)

We now enunciate the lemma

Lemma 3.1.
n∑
r=s

(
r
j

)(
r − j
s− j

)
=

(
n + 1
s+ 1

)(
s
j

)
, j ≤ s ≤ n.

Remark. If j = s, then Lemma 3.1 asserts that

n∑
r=s

(
r
s

)
=

(
n+ 1
s+ 1

)
. (3.3)

This is sometimes known as the Christmas Stocking Theorem and admits a very

elementary proof. Its name (suggested, we believe, by our late colleague Dave Logo-
thetti) is easily understood when one locates the binomial coefficients entering into
the statement in the Pascal Triangle (see Figure 1).

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

The case s = 2, n = 5 of the Christmas Stocking Theorem (3.3)
Figure 1.
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Proof of Lemma 3.1. Since the case j = s = 0 is trivial, we may assume s ≥ 1. Then

n∑
r=s

(
r
j

)(
r − j
s − j

)
=

n∑
r=s

r(r − 1) . . . (r − j + 1)(r − j) . . . (r − s+ 1)

j!(s− j)!

=
(n+ 1)(n) . . . (n − s+ 1)

(s+ 1)j!(s− j)! , by (3.2)

=
(n+ 1)(n) . . . (n − s+ 1)

(s + 1)!

s!

j!(s− j)!

=

(
n+ 1

s+ 1

)(
s

j

)
.

Figure 2 provides a geometrical picture of Lemma 3.1.

The geometrical picture (for the case j < s
2
) associated with the formula

n∑
r=s

(
r

j

)(
r − j
s− j

)
=

(
n+ 1

s+ 1

)(
s

j

)

Note : The binomial coefficient
(
n
r

)
may also be written

(
n
r,r′

)
, with r + r′ = n.

Figure 2

4 The main theorem

In this section we show how to calculate the Stirling numbers St(m,n) = P (m,n)

for m > n ≥ 1. We will change notation and consider

γk(m) = P (m,m− k), 1 ≤ k ≤ m− 1. (4.1)

We will express γk(m) as a linear combination of consecutive entries in row m of the

Pascal Triangle, the weights being certain positive integers which are independent
of m; we call these weights the Stirling factors ahk, 0 ≤ h ≤ k − 1. Precisely we
will prove
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Theorem 4.1. We may express γk(m), 1 ≤ k ≤ m− 1, as a linear combination

γk(m) =
k−1∑
h=0

ahk

(
m

k + h + 1

)

where the Stirling factors ahk are positive integers, independent of m, given induc-
tively by the rule

a0k = 1, ahk =
k−h∑
j=1

(
k + h
j

)
ah−1,k−j , 1 ≤ h ≤ k − 1. (4.2)

Proof. We find it convenient, in the proof, to work with

gk(n) = γk(n+ k) = P (n + k, n).

We first prove a lemma.

Lemma 4.2.

gk+1(n) =

(
n+ k + 1
k + 2

)
+

n∑
r=1

k∑
j=1

(
r + k
j

)
gk−j+1(r − 1).

Proof of Lemma 4.2. Let2 S =
n−1∑
r=0

(−1)n−r−1 (r + 1)n+k

r!(n− r − 1)!
. Setting s = r + 1 and

adjoining s = 0, we see that

S =
n∑
s=0

(−1)n−s
sn+k+1

s!(n− s)! = gk+1(n).

On the other hand, expanding (r+ 1)n+k by the binomial theorem, and applying
Theorem 2.6, we have

S = gk+1(n− 1) + (n + k)gk(n− 1) +

(
n+ k

2

)
gk−1(n− 1) + . . .

+

(
n+ k
k

)
g1(n− 1) +

(
n+ k
k + 1

)
.

Thus

gk+1(n)− gk+1(n− 1) =

(
n+ k
k + 1

)
+

k∑
j=1

(
n+ k
j

)
gk−j+1(n− 1). (4.3)

Adding up (4.3) for n = 1, 2, . . . , N , noting that gk(0) = 0 for all k ≥ 1, and finally
replacing N by n, we infer that

gk+1(n) =
n∑
r=1

(
r + k
k + 1

)
+

n∑
r=1

k∑
j=1

(
r + k
j

)
gk−j+1(r − 1). (4.4)

2Compare the proof of Theorem 2.6.
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But
n∑
r=1

(
r + k
k + 1

)
=

n+k∑
r=k+1

(
r

k + 1

)
=

(
n + k + 1
k + 2

)
, by (3.3), and the lemma is

proved.

We return to the proof of Theorem 4.1. We reformulate the theorem in terms of
gk(n) as asserting that, for k ≥ 1,

gk(n) =
k−1∑
h=0

ahk

(
n+ k

k + h+ 1

)
, (4.5)

where the weights ahk are given by (4.2); and we prove the theorem in this form by
induction on k.

We note first that (4.5) holds if k = 1 by Theorem 2.7. The inductive hypothesis
allows us to write

gk−j+1(r − 1) =
k−j∑
`=0

a`,k−j+1

(
r + k − j

k − j + ` + 2

)
, 1 ≤ j ≤ k,

with a`,k−j+1 independent of r, whence, by Lemma 4.2,

gk+1(n) =

(
n+ k + 1
k + 2

)
+

n∑
r=1

k∑
j=1

k−j∑
`=0

(
r + k
j

)(
r + k − j

k − j + `+ 2

)
a`,k−j+1. (4.6)

We now calculate
n∑
r=1

(
r + k
j

)(
r + k − j

k − j + `+ 2

)
, using Lemma 3.1. For

n∑
r=1

(
r + k
j

)(
r + k − j

k − j + `+ 2

)
=

n∑
r=`+2

(
r + k
j

)(
r + k − j

k − j + ` + 2

)
,

by removing zero terms

=
n+k∑

r=k+`+2

(
r
j

)(
r − j

k − j + `+ 2

)

=

(
n+ k + 1
k + ` + 3

)(
k + ` + 2

j

)
, by Lemma 3.1.

Thus, by (4.6),

gk+1(n) =

(
n+ k + 1
k + 2

)
+

k∑
j=1

k−j∑
`=0

(
n + k + 1
k + `+ 3

)(
k + `+ 2

j

)
a`,k−j+1. (4.7)

Formula (4.7) shows that, as required,

gk+1(n) =
k∑
h=0

ah,k+1

(
n+ k + 1
k + h+ 2

)
, (4.8)



On partitions, surjections, and Stirling numbers 721

where a0,k+1 = 1, and each ah,k+1 is independent of n and satisfies, for h ≥ 1,

ah,k+1 =
k∑
j=1

(
k + h+ 1

j

)
ah−1,k−j+1

=
k−h−1∑
j=1

(
k + h+ 1

j

)
ah−1,k−j+1, removing zero terms.

Thus (4.5) is established, along with the recurrence relation (4.2) for determining
the weights ahk. As already explained, this is equivalent to Theorem 4.1. A table of

values of ahk is given in Figure 3.

h 0 1 2 3 4 5 6 7 8 9

k↓

1 1

2 1 3

3 1 10 15

4 1 25 105 105

5 1 56 490 1260 945

6 1 119 1918 9450 17325 10395

7 1 246 6825 56980 190575 270270 135135

8 1 501 22935 302995 1636635 4099095 4729725 2027025

9 1 1012 74316 1487200 12122110 47507460 94594500 91891800 34459425

10 1 2035 235092 6914908 84131350 466876410 1422280860 2343240900 1964187225 654729075

Table of Stirling Factors ahk (see Theorem 4.1)
Figure 3

Notice that the recurrence relation (4.2), determining the Stirling factors ahk,
may be re-expressed in the rather more attractive form

ahk =
k−1∑
j=h

(
k + h
j + h

)
ah−1,j. (4.9)

It seems natural to display the Stirling factors ahk, 0 ≤ h ≤ k − 1, in a triangle.

If we left-justify both the Pascal Triangle and the Stirling Factor Triangle, then the
entries in the triangles stand in the following relation to each other.

First, we see from Theorem 4.1 that the Stirling number γk(n) is a linear

combination of the entries

(
n
r

)
in the nth (horizontal) row of the Pascal Triangle,

the entries in question running consecutively from r = k + 1 to r = 2k, and the

weight of the entry

(
n

k + h+ 1

)
being the Stirling factor ahk.

Second, we see from (4.2) that the Stirling factor ahk is a linear combination of
the entries ah−1,j in the (h−1)st (vertical) column of the Stirling Factor Triangle,
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the entries in question running consecutively from j = h to j = k−1, and the weight

of the entry ah−1,j being the binomial coefficient

(
k + h
j + h

)
. (See Figure 4).(

0

0

)

(
1

0

)(
1

1

)

(
2

0

)(
2

1

)(
2

2

)

...

(
n

0

)(
n

1

)(
n

2

)
. . .

(
n

k + 1

)(
n

k + 2

)
· · ·

(
n

2k

)
︸ ︷︷ ︸

Pascal Triangle

. . .

(
n

n− 1

)(
n

n

)

P (n, n− k) = St(n, n− k) = γk(n) =
k−1∑
h=0

ahk

(
n

k + h+ 1

)
, 1 ≤ k ≤ n − 1

a01

a02 a12

a03 a13 a23

...
...

...

a0h a1h a2h · · · ah−1,h

...
ah−1,k−1


a0k a1k a2k · · · ah−1,k ahk · · · ak−1,k

↑

Stirling Factor Triangle

ahk =
k−h∑
j=1

(
k + h

j

)
ah−1,k−j =

k−1∑
j=h

(
k + h

j + h

)
ah−1,j, 1 ≤ h ≤ k − 1, a0k = 1

The interaction of the Pascal Triangle and the Stirling Factor Triangle

Figure 4

In general, it does not appear profitable to seek explicit formulae for the Stir-

ling factors ahk, although there are clearly some interesting divisibility properties
underlying their definitions. However, the extreme cases h = 1, h = k− 1 are easily
calculated. Thus
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Theorem 4.3. a1k = 2k+1 − (k + 3); ak−1,k =
(2k)!

2kk!
.

Proof. By (4.2),

a1k =
k−1∑
j=1

(
k + 1
j

)
=

k+1∑
j=0

(
k + 1
j

)
− 1− (k + 1)− 1 = 2k+1 − k − 3.

Again, by (4.2), ak−1,k = (2k − 1)ak−2,k−1, k ≥ 2. Since a01 = 1, this yields

ak−1,k = (2k − 1)(2k − 3) . . . 3 =
(2k)!

2kk!
;

this formula holds, of course, also for k = 1.

We may use Theorems 4.1 and 4.3 to calculate a2k and ak−2,k. Thus

Theorem 4.4.

a2k =
1

2
3k+2 − (k + 5)2k+1 +

1

2
(k2 + 7k + 13); ak−2,k =

k − 1

3

(2k)!

2kk!
.

Proof. By (4.9), a2k =
k−1∑
j=2

(
k + 2

j + 2

)
a1j =

k−1∑
j=2

(
k + 2

j + 2

)
(2j+1− j− 3), by Theorem

4.3. We complete the calculation of a2k by an elementary argument, using the
identities

(1 + x)k+2 =
k+2∑
j=0

(
k + 2
j

)
xj, (k + 2)(1 + x)k+1 =

k+2∑
j=1

j

(
k + 2
j

)
xj−1.

To calculate ak−2,k, we exploit Lemma 4.5 below. For if
ak−2,k

ak−1,k
= k−1

3
, then Theorem

4.3 immediately yields the given value of ak−2,k.

Lemma 4.5.
ak−2,k

ak−1,k
= k−1

3
, k ≥ 2.

Proof of Lemma. We argue by induction on k. If k = 2, the result certainly holds.
Suppose that

ak−2,k

ak−1,k
= k−1

3
, for some k ≥ 2. Now by (4.9)

ak−1,k+1 =

(
2k

2

)
ak−2,k−1 + 2k ak−2,k

= k(2k − 1)ak−2,k−1 + 2k ak−2,k

= k ak−1,k +
2k(k − 1)

3
ak−1,k, using the proof of Theorem 4.3

and the inductive hypothesis

=
k

3
(2k + 1)ak−1,k

=
k

3
ak,k+1, again by the proof of Theorem 4.3.

This establishes the inductive hypothesis, the lemma, and, with it, Theorem 4.4.
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Lemma 4.5 expresses one of the many number-theoretical patterns which, we feel
sure, reside in the Stirling factor triangle. We plan to study these patterns further.

We remark that Lemma 4.5 came to light in a scrutiny of the values of ahk obtained
by the use of MathematicaTM and displayed in the table of Figure 3.

5 Supplementary results

We revert to the recurrence relation (2.2),

P (m,n) = nP (m− 1, n) + P (m− 1, n − 1).

If we again set γk(m) = P (m,m− k), then this relation reads

γk(m) = (m− k)γk−1(m− 1) + γk(m− 1). (5.1)

Applying Theorem 4.1, we deduce that

k−1∑
h=0

ahk

(
m

k + h+ 1

)
= (m− k)

k−2∑
h=0

ah,k−1

(
m− 1

k + h

)
+

k−1∑
h=0

ahk

(
m− 1

k + h+ 1

)
.

(5.2)

Theorem 5.1.
k−1∑
h=0

ahk

(
n+ k − 1
k + h

)
= n

k−2∑
h=0

ah,k−1

(
n+ k − 1
k + h

)
.

Proof. We write n = m − k and derive Theorem 5.1 from (5.2) by means of the

Pascal Identity in the form

(
n+ k

k + h + 1

)
−
(
n+ k − 1
k + h+ 1

)
=

(
n + k − 1
k + h

)
.

Remark. We regard Theorem 5.1 as providing a family of identities, indexed by

k ≥ 2, satisfied by the binomial coefficients in row (n+k−1). We may replace k−1
by k in the theorem, obtaining for each k ≥ 1, the identity

k∑
h=0

ah,k+1

(
n + k

k + h+ 1

)
= n

k−1∑
h=0

ahk

(
n+ k

k + h+ 1

)
. (5.3)

We may now re-express (5.3), using Theorem 4.3, in the following way.

Theorem 5.2.
k−1∑
h=0

(nahk − ah,k+1)

(
n+ k

k + h+ 1

)
=

(2k + 2)!

2k+1(k + 1)!

(
n+ k
2k + 1

)
.

Notice that, in applying this theorem, n and k may be chosen independently. Thus
we infer a family of linear relations in a given row of the Pascal Triangle.

Corollary 5.3. If n < k + 1, then

n−1∑
h=0

(nahk − ah,k+1)

(
n+ k

k + h + 1

)
= 0.
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