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Semisupervised Human Activity Recognition
With Radar Micro-Doppler Signatures

Xinyu Li , Student Member, IEEE, Yuan He , Member, IEEE,

Francesco Fioranelli , Senior Member, IEEE, and Xiaojun Jing , Member, IEEE

Abstract— Human activity recognition (HAR) plays a vital role
in many applications, such as surveillance, in-home monitoring,
and health care. Portable radar sensor has been increasingly
used in HAR systems in combination with deep learning (DL).
However, it is both difficult and time-consuming to obtain a
large-scale radar dataset with reliable labels. Insufficient labeled
data often limit the generalization of DL models. As a result,
the performance of DL models will drop when being applied
to a new scenario. In this sense, only labeling a small portion
of data in the large-scale radar dataset is more feasible. In this
article, we propose a semisupervised transfer learning (TL) algo-
rithm, “joint domain and semantic transfer learning (JDS-TL),”
for radar-based HAR, which is composed of two modules:
unsupervised domain adaptation (DA) and supervised semantic
transfer. By employing a sparsely labeled dataset to train the
HAR model, the proposed method alleviates the need of labeling
a significantly large number of radar signals. We adopt a
public radar micro-Doppler spectrogram dataset including six
human activities to evaluate JDS-TL. Experiments show that
the proposed JDS-TL is able to recognize the six activities
with an average accuracy of 87.6% when there are only 10%
instances labeled in the training dataset. Ablation analysis also
demonstrates the efficiency of the DA and the semantic transfer
modules.

Index Terms— Human activity recognition (HAR), radar
micro-Doppler (MD) effect, semisupervised learning, transfer
learning (TL).

I. INTRODUCTION

W ITH aging population worldwide, eldercare and health-
care by monitoring inhabitants and their daily activ-

ities are more and more necessary [1]–[4]. Human activity
recognition (HAR), which can help smart systems take further
actions quickly to improve the well-being of people in terms
of comfort and health, has been a vital underpinning for
numerous applications, such as surveillance, assisted living
and smart homes [5]–[8].

Manuscript received December 30, 2020; revised May 4, 2021; accepted
June 15, 2021. This work was supported in part by the National Nature
Science Foundation of China under Grant 61901049 and in part by the Beijing
University of Posts and Telecommunications (BUPT) Excellent Ph.D. Students
Foundation under Grant CX2020208. (Corresponding author: Yuan He.)

Xinyu Li, Yuan He, and Xiaojun Jing are with the Key Laboratory
of Trustworthy Distributed Computing and Service (BUPT), Beijing Uni-
versity of Posts and Telecommunications, Beijing 100876, China (e-mail:
lixinyu@bupt.edu.cn; yuanhe@bupt.edu.cn; jxiaojun@bupt.edu.cn).

Francesco Fioranelli is with the Department of Microelectronics,
Delft University of Technology, 2628 Delft, The Netherlands (e-mail:
f.fioranelli@tudelft.nl).

Digital Object Identifier 10.1109/TGRS.2021.3090106

Transfer learning (TL) is often adopted for classification
when there is little or no labeled data in the training dataset.
By introducing a preexisting dataset that has different but
related data distribution from the target training dataset,
TL can address the problem that the target dataset cannot
provide sufficient label information. In this case, prior knowl-
edge in the source dataset is extracted and transferred to
classify data in the target dataset. Currently, depending on
whether the target datasets are labeling or not, two kinds
of TL methods, i.e., the supervised and unsupervised TL
methods, are proposed for HAR. The supervised TL [9]–[12]
utilizes labeled radar data in the target dataset to transfer
the source prior knowledge. Such an approach can achieve
good performance when sufficient labeled data are available
for each class. On the contrary, the unsupervised TL [13], [14],
based on domain adaptation (DA) with unlabeled target data,
is employed to learn domain-invariant feature representation.
However, due to the lack of label information, the performance
of the unsupervised methods is generally not as good as the
supervised ones.

On the other hand, compared with labeled radar datasets,
using sparsely labeled datasets, where only a small number of
instances are labeled, is generally more applicable for practical
applications. It is because labeling a vast amount of instances,
especially radar signals, is time-consuming and expensive due
to the much human effort required. It is also difficult to get
and reliably label a lot of radar data. Furthermore, in sparsely
labeled datasets, it is not required that the number of labeled
instances in each class be roughly the same.

In this article, we propose a semisupervised TL algorithm,
“joint domain and semantic transfer learning (JDS-TL),” to
train a HAR model using a sparsely labeled radar dataset. The
proposed JDS-TL is composed of two modules: unsupervised
adversarial domain adaptation (ADA) and supervised semantic
transfer. Specifically, we utilize the unsupervised ADA [15]
to transfer the source knowledge from a preexisting labeled
dataset (source domain) to the sparsely labeled dataset (target
domain). ADA can mitigate the detrimental effects of the
domain shift and the dataset bias by mapping the source and
target data into a common feature space.

Furthermore, a supervised semantic transfer method is pro-
posed. Knowledge distillation via soft labels [16] is adopted
in the semantic transfer to learn interclass and intraclass
information from the source domain. Since there are suffi-
cient interclass correlations in the soft labels, more useful
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information can be learned under the supervision of soft
labels.

The contributions of this article are summarized as follows.
1) We propose a semisupervised TL method, JDS-TL, for

radar-based HAR. The method can recognize human
activities under realistic situations where the only avail-
able dataset is sparsely labeled.

2) There are two modules in JDS-TL, i.e., the unsuper-
vised ADA module and the supervised semantic trans-
fer module. We propose the multilayer ADA to learn
domain-invariant feature representation in an unsuper-
vised manner and develop the semantic transfer via
knowledge distillation to transfer the interclass and
intraclass semantic information.

3) To evaluate the performance of JDS-TL algorithm,
we perform experiments on a public radar-based HAR
dataset [17] including six daily human activities. Exper-
imental results show that JDS-TL achieves a recognition
accuracy of 87.6% for HAR, even when there are merely
10% spectrograms labeled in the target dataset. Ablation
analysis also demonstrates the efficiency of JDS-TL for
training a HAR model with the sparsely labeled dataset.

The remainder of this article is organized as follows.
Section II reviews the recent research on HAR, unsupervised
domain adaptation (UDA), and supervised semantic trans-
fer. In Section III, the proposed JDS-TL algorithm is pre-
sented in detail. The datasets used to evaluate JDS-TL
are described, and experiment implementation is given in
Section IV. Section V presents the experimental results
and some discussions. Finally, a conclusion is drawn
in Section VI.

II. RELATED WORKS

A. Human Activity Recognition

Gurbuz and Amin [18] introduced deep learning (DL)-
based data-driven approach for motion classification in indoor
monitoring areas. Le Kernec et al. [19] proposed radar signal
processing approaches for assisted living through three typical
applications, i.e., human daily activity recognition, respiratory
disorders, and sleep stages classification. Singh et al. [20]
investigated the performance of several sensors, such as
accelerometer, pressure sensor, radar, camera, and infusion,
for fall detection in daily life. Chaccour et al. [21] sum-
marized the existing fall-related systems and divided them
into three categories, i.e., the wearable method, the non-
wearable method, and the fusion method, according to the
sensor deployment. However, almost all these methods, either
supervised or unsupervised, do not make full use of sparsely
labeled radar datasets, which are realistically available. In this
article, we propose the semisupervised TL method especially
for sparsely labeled datasets.

B. Unsupervised Deep DA

It is common that there is a distribution shift between the
data for training a DL model and the data for testing the model.
Such distribution shift, typically referred to as the domain shift
or the dataset bias [15], can degrade the performance of a

trained classifier at the test stage. In radar data for HAR, due
to the environmental factors (e.g., different rooms, furniture)
and human individuals’ differences, the distribution shift often
occurs, degrading the performance of a trained classifier when
being applied to a new radar dataset.

UDA is an unsupervised TL method that mitigates domain
shifts. Since the unlabeled data are much easier to acquire
on radar, UDA is more suitable for radar-based HAR with
unlabeled data. Several UDA methods have been proposed for
radar-based HAR. By utilizing the motion capture database as
the source dataset for knowledge transferring, Lang et al. [14]
proposed a UDA method to learn the domain-invariant features
to classify the unlabeled measured radar data. Du et al. [13]
utilized an unsupervised adversarial domain adaption method
to reduce the domain discrepancy between the simulated radar
spectrogram dataset and the measured spectrogram dataset.
Chen et al. [22] proposed two adaptation networks that utilized
DA to eliminate the impact of aspect angle on HAR with
micro-Doppler (MD) spectrograms.

In this article, to take advantage of the unlabeled data in
the sparsely labeled dataset, we adopt UDA as a component
of JDS-TL and propose a multilayer discriminator model. The
proposed discriminator is different from the general domain
discriminator that distinguishes the fake vs real images with
the output from a single layer of the generator. At each layer of
the proposed discriminator, information is accumulated from
both the output by a previous layer of the discriminator and
from the output by a specific layer of the generator. The
proposed discriminator allows deeper alignment of feature
representations and thus can achieve stable adversarial learning
of UDA.

C. Knowledge Distillation via Soft Labels

Hinton et al. [16] introduced knowledge distillation by
transferring the rich knowledge of a task-related well-trained
model to other deep models. In deep discriminative networks,
there is more information in logits than that in hard labels [23].
For example, for a classification task, the intraclass correlation
cannot be indicated in hard labels, which are often represented
as one-hot codes. However, there is sufficient similarity infor-
mation between classes in the logits. Hence, soft label [24] is
proposed as a knowledge distillation approach by processing
the logits and retaining more interclass information. Note
that though more interclass similarity information is retained,
the soft label is still class-discriminative.

Romero et al. [25] utilized soft output labels and interme-
diate representations learned by the teacher network as hints
to supervise the training of a student network. Yim et al. [26]
proposed that the feature flow between layers can be distilled
and transferred to another deep network. Yang et al. [27]
presented an extra loss term to train the student network,
which is able to make the teacher provide a milder supervision
signal and transfer more interclass similarity information to the
student network.

Knowledge distillation is often utilized to train a
smaller model to meet limited resource environment via
a teacher–student structure. In this article, we integrate
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Fig. 1. Pipeline of the proposed semisupervised JDS-TL method. The proposed JDS-TL method is composed of two modules: the adversarial domain transfer
module and the semantic transfer module. The adversarial domain module is able to extract domain-invariant feature representation in an unsupervised way,
while the semantic transfer module transfers both the intraclass information and the interclass information from the source domain. The overall training loss
Loverall is the sum of the adversarial training loss and the semantic transfer loss. By alternatively minimizing the losses L Et

overall and L D
overall, the target feature

extractor Et and the discriminator D are optimized. Note that the parameters of the parts that are marked with a lock are not updated during optimization.

knowledge distillation to the semisupervised JDS-TL and
transfer both class-discriminative information and the inter-
class similarity from the source data for the target HAR task.
Furthermore, the distilled interclass similarity knowledge can
potentially lower the risk of overfitting.

III. JOINT DOMAIN AND SEMANTIC TRANSFER

In this section, we propose the JDS-TL method and describe
its components in detail.

A. Problem Definition

Considering a sparsely labeled radar spectrogram dataset
X t for the HAR task. The dataset consists of two parts: a
small labeled subset X lt = {(x j

lt , y j
lt ), j = 1, . . . , k} (where

y j
t denotes the jth label corresponding to the jth instance

x j
t ) and an unlabeled subset Xut = {x p

ut , p = 1, . . . , m}.
Our aim is to train a DL model to classify the spectro-
grams and recognize the corresponding activities in X t . Since
only a small portion of data is labeled, it generally cannot
achieve satisfactory performance if the DL model is trained
with the limited labeled data from scratch. In this circum-
stance, we employ TL to extract useful features from the
sparsely labeled dataset. Specifically, we introduce the source
domain Ds , which has a set of labeled source instances X s =
{(xi

s , yi
s), i = 1, 2, . . . , n}, as an auxiliary, where yi

s is the
label of the ith instance xi

s . The sparsely labeled dataset is then
used as the target domain Dt . Although the source dataset X s

and the target dataset X t have the same set of activities to
classify, their distributions, i.e., P s(Xs) P t (X t ), are different.

Fig. 2. Structure of the feature extractor E. The layer “Conv_BN_n”
represents the nth layer where there is a convolutional operation with a
3 × 3 kernel and a batch normalization operation.

In this article, a target classification network Nt , including
a feature extractor Et and a classifier Ct , is trained to classify
radar spectrograms in the target domain. Fig. 1 shows the
flowchart of the proposed JDS-TL method. The two modules
in JDS-TL, i.e., multilayer adversarial domain transfer and
semantic transfer, are discussed in the following.

B. Multilayer Adversarial Domain Transfer

1) Source/Target Feature Extractor: The source feature
extractor Es and the target feature extractor Et share the
same architecture E , as shown in Fig. 2. A residual mech-
anism is adopted in this architecture due to its efficiency and
competitiveness. With the proposed architecture, the feature
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Fig. 3. Illustration of the proposed multilayer adversarial domain transfer
method. To show the proposed domain transfer mechanism clearly and omit
irrelevant parts, the convolution structure in the feature extractors is not
presented in detail but represented by a block. The source feature extractor
Es is pretrained with the source dataset, and its parameters are frozen during
the adversarial TL. The target feature extractor Et shares the same structure
as Es , and is initialized by Es . It is noted that the structures of the first two
layers of the discriminator D are the same as those of the last two layers of
Et , so that the element-wise summation can be performed.

extractor transforms the original radar spectrogram into a
feature embedding vector v ∈ R

1×N . The source feature
extractor Es is pretrained with the source dataset, and its
parameters are frozen during the adversarial TL.

2) Multilayer Discriminator: In adversarial domain transfer,
a multilayer discriminator D is proposed, whose structure is
shown in Fig. 3. The multilayer discriminator D is composed
of two dense layers followed by a sigmoid layer. At each layer
of the proposed D, information is accumulated from both the
output by the previous layer of D, and from the output by a
specific layer of the feature extractor. Thus, the output of each
discriminator layer can be written as

dm = Dm

(
σ
(
γ dm−1

⊕
vm(x)

))
(1)

where Dm is the structure of layer m of the discriminator
D; σ (·) represents the activation function; γ ≤ 1 is the
decay factor;

⊕
is element-wise summation of the feature

maps; vm is the output feature representation of layer m of
E ; and x is the input instance from either source domain
or target domain. The multilayer discriminator allows for
deeper alignment of the source and target representations. This
alignment is able to improve target classification performance
as well as achieve more stable adversarial learning, which will
be further demonstrated in the experiment.

Furthermore, since the general adversarial loss has issues of
instability [28], we adopt the Wasserstein adversarial training
loss [29], which utilizes Wasserstein distance instead of the
Jensen–Shannon divergence to measure the similarity between
the source representation and the target representation. In par-
ticular, there are two changes compared to the conventional
adversarial losses.

We first change the general adversarial losses by dropping
the log function. The general adversarial loss function Lad is

min
θ D

L D
ad

(
X s, Xut , θ Es , θ Et

)

= −Exs∼X s

[
log(D(Es(xs)))

]

− Exut ∼Xut

[
log(1−D(Et(xut)))

]; (2)

min
θ Et

L Et
ad (X s, Xut , θ D)

= −Exut ∼Xut

[
log(D(Et (xut )))

]
. (3)

With the first change, the improved loss function Lad is
expressed as

min
θ D

L D
ad

(
X s, Xut , θ Es , θ Et

) = −Exs∼X s [D(Es(xs))]

− Exut ∼Xut [1 − D(Et (xut))];
(4)

min
θ Et

L Et
ad (X s, Xut , θ D) = −Exut ∼X ut [D(Et (xut))]. (5)

Another change is that the weights of D are clipped and
constrained within a bounded range to make the training
process converge faster.

During training, the target feature extractor (generator)
Et and the discriminator D are optimized alternatively by
minimizing L Et

ad and L D
ad, respectively. Et is used to output

target representations that confuse D, while D is employed to
discriminate the output target representations from the source
representations.

C. Semantic Transfer via Soft Labels

The second module of JDS-TL is the supervised semantic
transfer, which can learn effective feature representation with
labeled target data.

For a classification model, the output of Softmax is a
K-dimensional vector, where K is the number of classes.
The value of the kth dimension indicates the probability of
the input instance belonging to the kth class. Furthermore,
for a trained model, the intraclass similarity can also be
learned from the output probability [24]. If there are two
classes similar to each other, there is often similar seman-
tic information between them. However, according to [24],
when a classification model is trained with the supervision
of hard labels, the Softmax layer will output a very “peaked”
distribution, which hides semantic information about interclass
similarity. To address this issue, soft labels are adopted to
obtain more interclass semantic information.

The proposed semantic transfer algorithm is illustrated
in Fig. 4. Specifically, we first define the soft label lk as
the average output of Softmax activations when the source
instances that belong to class k are input. As shown in Fig. 5,
the soft label lk can be expressed as

lk = 1

n

n∑
i=1

lk
i (6)

where lk
i denotes the Softmax output of the trained Ns corre-

sponding to the ith source instance x i
k in Class k.
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Fig. 4. Illustration of the proposed semantic transfer scheme. When a target
labeled instance xk belonging to Class k is input to the target classification
network Nt , the semantic transfer loss Lst is obtained by calculating the
information entropy E between the target soft activation p and the soft label
lk . lk is calculated with the output of the trained source network Ns . Then,
the target classification network is optimized via gradient back propagation.

Fig. 5. Algorithm to obtain the soft label lk for Class k. Specifically, taking
the prototypical label l2 for the second class for example, it is calculated by
averaging the Softmax outputs of all the source instances {x2

1 , x2
2 , x2

3 , . . . , x2
n }

that belong to Class 2. The source classification network Ns , which is
composed of the source feature extractor Es and the source classifier Cs ,
is pretrained with the labeled source dataset.

It is noted that before the calculation, the source classi-
fication network Ns , as shown in Fig. 1, is pretrained with
the labeled source dataset in a supervised manner. Then, the
quantities lk are generated by the trained Ns . In this way,
the soft labels of the labeled target instances [24], [25] can
be obtained with the source dataset. Then, the soft labels
are used to learn class-discriminative semantic information for
each class in the target domain.

When a labeled target instance xk belonging to Class k is
input to Nt , the target soft activation of xk , which is output
by Nt , is given by

p = Softmax
(
θC

t Et

(
xk

)
/τ

)
(7)

where θC
t denotes the parameters of Ct and τ is the tempera-

ture parameter.
As illustrated in Fig. 6, with diverse values of τ , the amount

of the retained intraclass semantic information varies. When
the same probability distribution is output, most intraclass
semantic information is retained in the input distribution when
τ equals 0.5. However, the input distribution in (a) is less
discriminative than the distributions in (b) and (c), which

would increase the difficulty of classifying the corresponding
instance. Therefore, setting an appropriate value of τ can make
the classification task easy while retaining sufficient intraclass
semantic information. In this article, τ is set to 0.8.

With the target soft activation p and the soft label lk ,
the semantic transfer loss Lst can be obtained by calculating
the information entropy E between lk and p, as given by

min
θ Et

Lst(X lt , Y lt ) = −
l∑

i=1

Ei = −
l∑

i=1

l yt
i log

(
pi

)
(8)

where Ei denotes the information entropy between the target
soft activation pi and the corresponding soft label l yt

i .
By minimizing Lst, pi will approach l yt

i , and the target
classification network can be optimized via gradient backprop-
agation. It is noted that τ is set to 0.8 only during the training
process. When the trained model Et is applied for testing,
the value of τ in Nt is 1.0.

In the proposed semantic transfer process, the source knowl-
edge is transferred to the target domain by using soft labels
obtained from Ns . In this way, discriminative information and
intraclass correlations are extracted.

Algorithm 1 Training Process of JDS-TL
Input: A sparsely labeled dataset Xt , a labeled dataset

Xs

Output: θ Es = [ws1,ws2,…,wsn,bs1,bs2,…,bsn],
θ Et = [wt1,wt2,…,wtn ,bt1,bt2,…,btn],
θ D = [wd1,wd2,…,wdn ,bd1,bd2,…,bdn]

1 Train the source feature extractor Es and the source
classifier Cs by minimizing Lsc in 9;

2 Initialize the target feature extractor Et with the
optimized parameters of Es ;

3 while not converge do
4 Update the parameters θ Et = [wt1,wt2,…,wtn ,bt1,bt2,

…,btn] of Es by minimizing the loss function
L Et

overall = L Et
ad + αLst in 13, while θ Es and θ D are

fixed;
5 Update the parameters

θ D = [wd1,wd2,…,wdn ,bd1,bd2,…,bdn] of D by
minimizing the loss function L D

overall = L D
ad + αLst

in 12, while θ Es and θ Et are fixed;
6 end

D. Training Process of JDS-TL

1) Training Source Classification Network Ns: The source
classification network Ns (plotted as blue blocks in Fig. 1),
which consists of a source feature extractor Es and a source
classifier Cs , is first pretrained in a standard supervised manner
with the labeled source dataset. The employed cross-entropy
loss function Lsc is expressed as

min
θ Es

Lsc(Xs, X s) = −
∑

k

I
[

ys = k
]
log(pk) (9)

pk = Softmax
(

f k
s (xs)

)
(10)
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Fig. 6. (a)–(c) Three distributions that are input to the Softmax layers with diverse values of τ (τ = 0.5, 0.8, 2) when the same probability distribution is
output. (d) Output distribution. For better illustration, the three input distributions are shown after Softmax (τ = 1). With the same probability distribution
output, it can be seen that most intraclass semantic information is retained in the input distribution when τ equals 0.5. However, the input distribution in (a) is
less discriminative than the distributions in (b) and (c), which is often hard to be classified as a result. Therefore, setting an appropriate value of τ can make
the classification task easy and retain sufficient intraclass semantic information.

where I[·] denotes the one-hot label of the kth instance;
f k

s is the source classifier activation of this instance; and
θ Es = [ws1,ws2,…,wsn,bs1,bs2,…,bsn] denotes parameters of
Es . Then, we initialize the target classification network Nt

(plotted as green blocks in Fig. 1) with the parameters of the
optimized Ns .

2) Training Target Feature Extractor Et : The semantic
transfer and the domain adversarial learning are both used to
train Et . When optimizing Et , the parameters of the source
feature extractor Es are fixed.

Specifically, the parameters of Et are optimized with the
overall loss Loverall composed of two parts: supervised adver-
sarial domain loss Lst and unsupervised semantic transfer loss
Lad. Hence, the overall loss Loverall of the JDS-TL method can
be written as

Loverall = Lad + αLst (11)

where the hyperparameter α determines how strongly
the semantic transfer loss influences the optimization.
In this article, α is set to 0.3 by using greedy
search.

Due to the characteristic of the adversarial training mech-
anism, an additional network D is trained alternatively with
Et . As a result, the loss Loverall, like Lad, is composed of two
functions, as given by

min
θ D

L D
overall

(
Xs, Xut , θ Es , θ Et

)

= min
θ D

L D
ad

(
X s, Xut , θ Es , θ Et

); (12)

min
θ Et

L Et
overall(X s, Xut , X lt , Y lt , θ D)

= min
θ Et

(
L Et

ad (X s, Xut , θ D) + αLst
(
θ Et , X lt , Y lt

))
. (13)

By minimizing the two functions alternatively, the parame-
ters of D and Et are optimized, respectively.

During training, the root mean square prop (RMSProp)
optimizer is adopted. The learning rate is set to 0.00005. The
batch size is set to 32. The pseudocode of the training process
of JDS-TL is depicted in Algorithm 1.

Fig. 7. T-SNE result of the radar data in “Radar signatures of human
activities.” Green marks represent the data of younger persons (age below
50 years old). Red marks represent the data of elder persons (age above
50 years old). The two black marks represent the centroids of the two clusters,
respectively.

IV. IMPLEMENTATION DETAILS

A. Dataset Description

To evaluate the performance of the proposed JDS-TL
method, we use the University of Glasgow experimental open
dataset “Radar signatures of human activities” [17]. There are
six indoor human activities, including drinking from a cup or
glass (A1), standing up (A2), bending to pick up an object
(A3), sitting down on a chair (A4), falling down (A5), and
walking back and forth (A6)), which are performed by volun-
teers whose ages range from 20 to 100. The volunteers younger
than 50 perform all six activities. For health considerations,
the volunteers who are older than 50 perform all activities
apart from “falling down.” All volunteers performed each type
of activity thrice.

The data are collected by using an frequency modulated
continuous wave (FMCW) radar operating at 5.8 GHz with
a bandwidth of 400 MHz and a chirp duration of 1 ms.
The collected backscattering signal is a complex time series.
The amplitude and phase of the signal are impacted by the
electromagnetic characteristics and kinematics of the observed
target [18].

B. Dataset Segmentation

In this dataset, there is limited experimental activity data
for old participants. Generally, the young and the elder move
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Fig. 8. Several typical radar spectrograms. (a) Drinking from a cup or glass (A1). (b) Standing up (A2). (c) Bending to pick up an object (A3). (d) Sitting
down on a chair (A4). (e) Falling down (A5). (f) Walking back and forth (A6).

differently. As a result, there are some differences between the
data of the young persons and that of old persons. When a DL
model trained with the data of young people is directly used to
classify old people’s data, the classification performance may
drop.

To validate this assumption, we first split the data into
two groups, i.e., the data of the volunteers younger than
50 (younger persons) and the data of the volunteers older than
50 (elder persons). Then, we perform t-Distributed Stochastic
Neighbor Embedding (t-SNE) visualization on the two groups
of data to highlight differences in the data. The t-SNE result
is illustrated in Fig. 7. It can be seen that the red cluster and
the green cluster have only a little overlap, showing that the
data of younger persons and the data of the elder persons have
obvious differences. Furthermore, the data of younger persons
are not clustered tightly. Some data of younger persons, such
as that in the black dotted circle, is away from the centroid of
the green cluster.

Then, we choose 70% of the younger persons’ data, which
is closer to the green cluster centroid, to train a DL classi-
fication model. When the trained model is utilized to clas-
sify the remaining data, including the data of elder persons
and some data of younger persons, its classification perfor-
mance degrades. This indicates that there are some differences
between the data of younger persons and the data of elder
persons. Furthermore, there are also some differences within
the data of younger persons, due to different experimental
environments and motion styles.

Therefore, based on data differences, the dataset is divided
into two subsets: the source dataset X s and the target dataset
X t . Xs consists of 70% of the younger persons’ data that is
closer to the green cluster centroid in Fig. 7. X t consists of
the remaining younger persons’ data and all the elder persons’
data.

Then, to construct a sparsely labeled target dataset, we ran-
domly select 10% instances in X t and label them. As for the
other instances, the labels are discarded. To get a well-trained
DL model for the target domain with limited labeled target
instances, we use the source dataset in the proposed JDS-TL
method for knowledge transfer, as described in Section III.

C. Radar Data Preprocessing

Radar MD signatures [30] are adopted in this article.
An infinite impulse response (IIR) filter is first utilized to
remove the static background clutter. Next, the 800-point short
time Fourier transform (STFT) with a 0.2 s Hamming window

is performed on the raw radar data to transform the data
into a series of 2-D MD spectrograms. Several typical radar
spectrograms are shown in Fig. 8. After being resized into
128 × 128 pixels, the spectrograms are input to the proposed
JDS-TL network. The HAR problem is then solved as an image
classification task.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Classification Results

Since the labeled target instances are selected randomly,
the classification performance fluctuates with the variation
of the distribution of the selected labeled instances. Thus,
we adopt independent repeated experiments to obtain an
average accuracy. Specifically, we randomly select 10% target
instances from the target dataset Xt as the labeled subset Xlt

for supervised semantic transfer and perform the experiments.
The random selection process is repeated 50 times.

1) Overall Performance of JDS-TL: With the 50 trials,
an average classification accuracy of 87.6% is achieved by
using the proposed JDS-TL. For comparison, we classify the
target instances directly with the source classification model
Ns that is trained with the source dataset (baseline 1). The
classification results are shown in Fig. 9 with red marks.
The average accuracy of recognizing the six activities is
approximately 79.4%. Furthermore, when the proposed adver-
sarial domain transfer is applied for DA but the semantic
transfer is not used in JDS-TL (baseline 2), an average
accuracy of 84.1% is obtained, as shown in Fig. 9 with yellow
marks.

2) Correlation Between Classification Performance and
Distribution of Labeled Target Instances: To show how the
distribution of the labeled target instances affects the clas-
sification performance of JDS-TL, the correlation between
the classification accuracy and the distribution of labeled
target instances is shown in Fig. 10. When the normalized
variance is between 0.1 and 0.3, JDS-TL yields relatively high
classification accuracies. This shows that when the labeled data
is approximately uniformly distributed, the proposed method
can learn sufficient information about every class and obtain
good classification performance. When the variance increases,
the accuracy declines, showing that uneven data distribution
leads to less robust classification performance. However, it is
noted that when the normalized variance is between 0.6 and
0.8, the classification exceeded the average again. This is
because in this case, though the data distribution is quite
uneven, more interclass information can be learned from the
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Fig. 9. Classification accuracies of JDS-TL with various distributions of labeled target instances. Four typical distributions and the corresponding classification
results are shown in the subfigures. The red crosses denote the classification accuracies of directly using Ns that is trained with Xs (baseline 1). The yellow
triangles denote the accuracies of only using the proposed multilayer ADA for DA, and the semantic transfer is not applied (baseline 2). (a) Classification
result with Distribution 1. (b) Classification result with Distribution 2. (c) Classification result with Distribution 3. (d) Classification result with Distribution 4.

Fig. 10. Correlation between the classification accuracy of JDS-TL and the
distribution of labeled target instances.

classes that have sufficient samples by using the semantic
transfer mechanism.

3) Typical Cases With Various Target Labeled Data Distrib-
utions: The results of several typical cases with various target
data distributions are shown in Fig. 9. It can be seen from
Fig. 9 that the proposed JDS-TL can bring more improvement
on classifying A1, A2, and A3, whose classification results
on baseline 1 are relatively weaker than those of A5 and A6.
Specifically, as shown in Fig. 9(a), when the selected instances
are approximately evenly distributed, the performance of the
proposed method on every type of activity is better than that
of baseline 1 and baseline 2. Average accuracy of 87.5%
for classifying the six activities is achieved by the proposed
method. As shown in Fig. 9(b) and (c), when the distribution
is not uniform, the classification performance of JDS-TL keeps
better than that of the two baselines. Average accuracies
of 87.6% and 87.3% are achieved under the two distributions
(D2 and D3). In particular, for the class with scarce labeled

Fig. 11. Loss curves of Et and D when the proposed JDS-TL is training.
It can be seen that after 100 epochs, the losses of Et and D fluctuate less
and tend to stabilize. After approximately 320 epochs, both the losses of Et
and D keep stable.

target instances (A4 in D2 and A3 in D3), the classification
accuracies do not decrease. As shown in Fig. 9(d), when
there are more labeled target instances in A2, A3, and A4,
the proposed JDS-TL method yields an average accuracy
of 87.2%, outperforming baseline 1 with 7.8% and baseline 2
with 3.1%. This is because increasing the number of labeled
instances can improve classification accuracy. Furthermore,
with only 3 instances for A1, an accuracy of 83.6% for
classifying A1 is achieved, higher than the accuracies of base-
line 1 and baseline 2. This mainly benefits from the extracted
interclass information by using the proposed semantic transfer
scheme.

4) Training Loss Curves: To show the convergence process
of the proposed JDS-TL during training, the loss curves of the
target feature extractor Et and the multilayer discriminator D
are illustrated in Fig. 11. It can be seen that after 100 epochs,
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TABLE I

PERFORMANCE COMPARISON IN AVERAGE ACCURACY

the losses of Et and D fluctuate less and tend to stabilize.
After approximately 320 epochs, both the losses of Et and D
keep stable.

B. Comparison With the State-of-The-Art Methods

To demonstrate the effectiveness of the proposed JDS-TL
method for HAR with a sparsely labeled dataset, we compare
JDS-TL with the following state-of-the-art methods.

1) Gradient reversal layer (GRL) [31] is an unsupervised
TL method. A GRL is proposed to alleviate the domain
discrepancy between the source and the target domain.

2) Adversarial discriminative domain adaptation
(ADDA) [15] is an unsupervised TL method that
utilizes the generative adversarial training scheme
for DA.

3) Pretrain+Finetune [32] is a typical fine-tuning-based
supervised TL method. A DL model is first pretrained
with the labeled source data, and then the labeled target
instances are adopted to fine-tune the pretrained model.

4) Selective joint fine-tuning (SJFT) [33] is a supervised
TL method that uses the labeled source and target
data to optimize a DL model. A source data selection
mechanism is proposed to select partial source instances
to fine-tune the DL model, together with the target data.

5) Pseudo-labels [34] is a semisupervised method. The
pseudo-labels of the unlabeled target data are obtained
with a model trained with the source data. Then,
the pseudo and labeled datasets are employed to retrain
the model together.

6) Manifold regularization [35] is a semisupervised method
that utilizes manifold regularization [36] to train a DL
model. Both the labeled and unlabeled target instances
are utilized.

We adopt the same 50 target distributions as in Section IV-A
to perform the comparison experiments and obtain the average
accuracies of the 6 methods under those distributions. The
comparison results are shown in Table I. It can be seen
that the proposed JDS-TL achieves the best performance
among these methods, with an average accuracy of 87.6%.
In detail, the UDA methods, GRL and ADDA, obtain average
accuracies of 81.1% and 83.0%, respectively. Compared with
the unsupervised methods, the supervised TL approaches,
Pretrain+Finetune and SJFT, are more effective for the clas-
sification task, with average accuracies of 83.3% and 83.7%,
respectively. Regarding the two semisupervised approaches,
pseudo-labels cannot achieve the expected performance. It is

Fig. 12. Variations on average accuracy of JDS-TL with diverse values
of τ . It can be seen that when the value of τ is set between 0.7 and 0.8,
the proposed JDS-TL achieves the best performance, with an accuracy of
approximately 85.2%.

due to the fact that the semantic information of the target
domain cannot be learned sufficiently when only a small
number of labeled target instances are provided. As a result,
the assigned pseudo labels differ greatly from the groundtruth.

C. Ablation Study on JDS-TL

1) Effect of Semantic Transfer: We first perform the sensi-
tivity analysis of the hyperparameter τ in the semantic transfer
loss Lst in (8). The performance of JDS-TL with diverse values
of τ is shown in Fig. 12. From Fig. 12, we can see that
when the value of τ is set between 0.7 and 0.8, the proposed
JDS-TL achieves the best performance with an average accu-
racy of approximately 85.2%. When the value of τ is lower
than 0.7, the average accuracy is more sensitive to the varia-
tion of τ . When τ is larger than 0.8, the average accuracy
of JDS-TL continues to decline and tends to stabilize at
about 84.0%.

We proceed to explore the impact of the number of
labeled instances on the soft-label-based semantic transfer.
The variation of average accuracies of JDS-TL and the two
semisupervised methods, Pseudo-labels [34] and Manifold
regularization [35], is illustrated in Fig. 13. Independent repeat
experiments are performed under different parameter settings
to obtain the average accuracy. For example, in the setting
of Percentage = 10%, 10% instances are randomly selected
from the target dataset Xt for supervised semantic transfer.
The process is repeated 10 times. It is shown that with
more labeled target data, the classification accuracies of all
three methods increase. JDS-TL achieves the highest accuracy
when there are no more than 25% target instances labeled,
followed by Manifold regularization. When there are more
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Fig. 13. Variations on average accuracy of JDS-TL with the number of
labeled target instances. x-axis represents the percentage of target labeled
instances used for supervised semantic transfer, while y-axis represents the
average accuracy of JDS-TL.

TABLE II

PERFORMANCE COMPARISON IN AVERAGE ACCURACY (%)
OF DIFFERENT ADA METHODS

than 30% labeled instances, even if the performance of the
three methods is similar, our model consistently yields the
best performance. When there are over 50% target instances
labeled, the classification accuracy of JDS-TL tends to be
stable. It is because the proposed method can learn sufficient
semantic information for each class from the 50% instances,
and new semantic information is extracted less and less.

2) Effect of Adversarial Domain Transfer: We evaluate the
unsupervised classification performance of the proposed DA
method, and compare it with the other two state-of-the-art
DA methods, GRL [31] and ADDA [15]. All these methods
are configured the same as the references cited, and evaluated
on the dataset described in Section IV-A. To remove possible
biases, the three methods are repeated 5 times to obtain the
average accuracies. Table II shows the average accuracies of
the three models under two circumstances: 1) classified with
Ns (w/o DA), 2) classified with Nt after DA (w/ DA). We see
that GRL and ADDA achieve average accuracies of 81.1% and
83.0%, respectively, while our proposed DA method achieves
a higher accuracy of 84.1%. By comparing the differences
between the accuracy of w/ DA and the accuracy of w/o
DA, it is shown that the proposed method provides the
best classification performance on the target dataset, with an
accuracy difference of 4.7%.

Furthermore, we perform the sensitivity analysis on the
hyperparameter γ in (1). The average accuracies of the pro-
posed multilayer DA with diverse values of γ are shown
in Fig. 14.1 It can be seen that when γ is lower than 0.4,
the performance of the proposed DA method keeps continually

1When γ is set to a quite small value, the model cannot converge. Hence,
γ starts at 0.2.

Fig. 14. Variations on average accuracy of JDS-TL with diverse values
of γ . When γ is lower than 0.4, the performance of the proposed adversarial
domain transfer keeps continually improving and achieves the highest average
accuracy of approximately 87.6%. When γ is larger than 0.4, the average
accuracy decreases.

TABLE III

AVERAGE ACCURACY OF JDS-TL WITH DIFFERENT OF SNR

improving, and the highest average accuracy of approximately
87.6% is obtained. When γ is larger than 0.4, the average
accuracy decreases. As a result, with the heuristic searches,
we set γ to 0.4 for experiments.

D. Influence of SNR

To evaluate the robustness of the proposed JDS-TL method,
we add additive white Gaussian noise (AWGN) with diverse
signal-to-noise (SNR) levels (0, 5, 10, 15, 20, 25 dB) to
the raw radar echo to simulate the noisy MD spectrograms.
Then, the proposed JDS-TL model is employed to classify
those spectrograms. The experiments for each SNR setting
are repeated 10 times to obtain an average accuracy. The
classification results are listed in Table III. We can see that the
proposed method can hardly classify the spectrograms under
0 dB because of the intense noise. When SNR increases to
10 dB, an average accuracy of 75.5% is achieved. Furthermore,
the classification performance improves continuously with
SNR increasing. When SNR grows to over 20 dB, since the
quality of MD spectrograms is good enough, the accuracy
increases to over 87.0%.

VI. CONCLUSION

In this article, we have proposed a new JDS-TL method to
recognize human activities in a semisupervised manner. The
proposed JDS-TL is composed of the unsupervised adversarial
domain transfer module and the supervised semantic transfer
module. The former can mitigate the harmful effects of domain
shift and learn domain alignment feature representation. The
latter can transfer the intraclass correlation from the source
domain to the target domain by utilizing a small amount
of labeled target data. A public radar-based HAR dataset
including six daily human activities was employed to evaluate
the proposed method. Experimental results have proved the
efficacy of the JDS-TL method, which can achieve an aver-
age accuracy of 87.6% when there are merely 10% labeled
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instances in the target dataset. Additionally, compared with
the fine-tuning-based TL methods, JDS-TL is more suitable
to classify sparsely labeled data. Further analysis has demon-
strated the efficiency of the proposed adversarial domain trans-
fer module and the semantic transfer module. Furthermore,
the influence of SNR of radar data on the performance of
JDS-TL has been explored.
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