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Abstract
Data types and pattern matching are fundamental
concepts in programming. Data types define the
structure of data, while pattern matching allows
efficient manipulation and extraction of the same
data. This text provides an overview of differ-
ent implementation techniques for type systems re-
garding data types and pattern matching in the ex-
isting literature. Data types considered include in-
ductive, coinductive, and mutually inductive, while
the main pattern-matching methods considered are
decision trees, backtracking finite state automata,
and term decomposition. Though approaches for
implementation techniques of data types can be
compared more objectively, separate approaches
for pattern matching have different benefits and
drawbacks, thus, a one-fits-all technique does not
exist.

1 Introduction
Type systems serve as an essential tool for programmers to
identify various errors during the compilation process. They
also provide additional advantages, such as facilitating refac-
toring operations and making the code self-documenting, en-
abling understanding through reading alone.

Literature regarding how practical type systems for com-
monly used languages work often contradicts one another, es-
pecially on the topic of pattern matching and data types. Ad-
ditionally, there is a shortage of up-to-date, relevant sources
on the topic. This adds a level of complexity for prospective
research to be done in the area, as more time is needed to re-
search these discrepancies. This becomes even more complex
for languages with many features that data types in a language
support, as this can rapidly complicate the type-checking step
of compiling a program. Thus, investigating this subject and
documenting the most important points of existing literature
would simplify subsequent research into the area. As such,
this paper would serve as a basis for relevant knowledge in
the area, so that language implementers or researchers can
base their further work on it.

Some of the most relevant existing work includes Compil-
ing pattern matching [4], which is one of the foundational
publications in the field and served as a basis for subsequent
research. Many subsequent papers have drawn on the insights
presented in this paper to provide extensions, including Com-
piling pattern matching to good decision trees [14], A Term
Pattern-Match Compiler Inspired by Finite Automata The-
ory [18] and Compiling Pattern Matching by Term Decom-
position [19].

The main research question that will be focused on in this
paper is What are the different implementation techniques
for type systems regarding inductive data types and pattern
matching that have been proposed in the literature? In order
to know how to approach this question, a small set of sub-
questions has been posed, which, when all are considered,
should give a good basis for a concrete answer for the main
focus of the paper. The sub-questions can be seen below:

• Along which dimensions can existing implementation
techniques be grouped and compared with each other?
What are the advantages and disadvantages of these
techniques?

• What criteria can we establish for implementers of new
languages or prospective researchers to consider when
adding support for inductive data types and pattern
matching?

The structure of the paper is as follows. Section 2 presents
the method that was used to conduct the research and an
overview of how strategies were categorized. Following
this, section 3 reflects on ethical considerations that were
taken into account throughout the process. In section 4, the
implementation techniques and optimizations for both data
types and pattern matching are explained. Section 5 fo-
cuses on comparing the aforementioned approaches, as well
as presenting some advice for future researchers and lan-
guage implementers. Finally, section 6 provides a summary
of the most important findings, accompanied by concluding
remarks and future work to be done in the field.

2 Methodology
In order to achieve the goals outlined in the introduction, the
research process was broken down into smaller, manageable
tasks that are easily measurable and provide guidance for oth-
ers can conduct the research and obtain similar findings.

The first step was finding a small number of relevant re-
search papers on the topic, namely inductive data types and
pattern matching. These were found through a round of pre-
liminary research that did not intend to delve deep into the
topic but rather to provide an overview of what research in
the area looked like. As these sources were cited and were
cited by a large number of other sources, it facilitated the dis-
covery of additional relevant papers.

Often, papers that discuss implementation techniques in-
clude a Related work section, which explores similar papers
consisting of other techniques, providing more background
and a theoretical perspective on important elements of the
technique, or presenting extensions of the discussed tech-
niques. Additionally, the References or Bibliography sec-
tion of papers offers a useful resource for exploring further
sources. Additionally, systems such as ConnectedPapers 1,
ResearchGate 2 and Google Scholar 3 can be valuable to iden-
tify related papers based on citation patterns.

After discovering and understanding a large collection of
papers that discuss implementation techniques for inductive
data types and pattern matching, the next step involved find-
ing a way to group these papers so that the results can be dis-
cussed in a meaningful way. One natural approach consisted
of grouping the techniques by their code generation strategy.
The major strategies for pattern matching in non-dependently
typed languages are decision tree approaches, and backtrack-
ing finite state automata. Additionally, there are hybrid tech-
niques combining both approaches and further techniques for

1https://www.connectedpapers.com/
2https://www.researchgate.net/search
3https://scholar.google.com/



languages with specific evaluation methods (e.g. term decom-
position for lazy languages).

Once strategies have been organized into the major groups
discussed above, it is important to have a method for com-
paring these. A logical approach would be to consider the
features that the type system using this technique would sup-
port. For example, whether decision tree approaches support
inductive data types in the language. Other considerations in-
clude the way the language is typed (strongly vs. weakly and
statically vs. dynamically), and other features that the lan-
guage may have that can affect how pattern matching func-
tions, such as lazy evaluation vs. eager evaluation.

3 Responsible Research
It is essential to study the ethical implications that a study
may have, while also ensuring that the steps taken are prop-
erly documented to ensure reproducibility.

The ethical considerations of this paper have been con-
sidered extensively throughout the research process. Even
though this paper focuses on conducting an extensive survey
of existing literature in the field and does not involve humans
or personal data, it is important to acknowledge the steps
through which papers were sourced, how information was ex-
tracted, and to provide correct acknowledgments through ci-
tations. Furthermore, potential conflicts of interest and biases
were carefully recognized and reduced through appropriate
steps (such as adopting a systematic approach to source and
analyze publications, as outlined in the Methodology, avoid-
ing cherry-picking of studies and choosing a wide variety of
sources, as well as reviewing by peers and supervisors) to en-
sure the research remains as objective as possible.

Additionally, reproducibility is necessary for responsible
research. To ensure that the results discussed in the paper
can be reproduced by other researchers, all sources used in
the survey have been appropriately documented in the Refer-
ences section. This was done with the aim of simplifying the
process of verifying the findings presented in the paper, as
well as facilitating further research in the field. The Method-
ology section discusses in depth the steps that were taken to
conduct the research and how the results were found, which is
especially helpful for other researchers aiming to verify these
findings or to expand on those presented in the paper.

4 Implementation Techniques
As most interesting use-cases of pattern matching consist of
being applied to data types, the first topic that will be dis-
cussed will be how data types can be represented by the com-
piler, in subsection 4.1. After having an understanding of
how a data type is represented by a programming environ-
ment, pattern matching is discussed in subsection 4.2.

4.1 Data Types
Inductive Data Types
An inductive data type is a data type that is defined in terms
of itself, allowing recursive structures such as lists and trees.
These types are essential tools in functional programming

languages, and they also allow programmers to think of recur-
sion in a more natural way. They also allow inductive math-
ematical proofs to be reasoned about through code (as can be
seen in the programming languages of Coq [1], Agda [3], and
Lean [5], among many others).

Fundamentally, an inductive data type consists of zero or
more base cases, and zero or more inductive cases that refer
to a smaller instance of the same type, each of which is rep-
resented through a constructor in a programming language.

data InductiveType a =
Base
| Rec ...
...
| RecN ...

Listing 1: Basic representation of an inductive type in Haskell

As can be seen in Listing 1, an inductive data type con-
sists of at least one base case, representing the most simple
form of the data type, as well as multiple recursive construc-
tors, where the ellipsis should represent the structure of the
recursion.

Though the code is specific to Haskell [2], the idea remains
the same for other programming languages that support defin-
ing data types recursively, bearing syntax differences.

data List a =
Nil
| Cons a (List a)

Listing 2: Inductive data type representing a list defined in Haskell

A concrete example of a simple inductive data type can be
seen in Listing 2, which describes a singly linked list in the
language of Haskell. The most simple form of a list is an
empty list, represented by the Nil constructor which serves
as the base case. Making use of the base case is the Cons
constructor, which is defined as having a value of type a (a
value of the list), as well as a List (the tail of the singly linked
list), making use of its own definition.

Though the examples above have described how inductive
data types can be used by a programmer, it is essential to
understand how these types are represented by a compiler and
how they are optimized.

Naively, every inductive data type (e.g. List in Listing 2)
can be represented as a tagged pointer, in which case the tag
is used to differentiate between the cases (in this case Nil or
Cons). For base cases that don’t store any data, their pointer
will be null, usually represented by ‘0’. On the other hand,
the pointer of inductive cases points to an n-tuple, where n
is the number of arguments that the constructor takes (in the
case of Cons it is 2, one for a and one for List a) [6].

Though this approach works for representing data types,
it can be inefficient, as it would be preferred if rather than
storing two pointers for each constructor, we could only store
one (‘0’ in the base case, and the n-tuple in the recursive
case).

Programming languages use the terms boxed and unboxed
to describe how values are represented in memory. Unboxed



types refer to values that are directly stored in memory (such
as the stack frame or registers). These types allow for im-
proved performance as it skips one layer of memory indirec-
tion by not having to first find the corresponding data in the
heap, however, the compiler must know the size and repre-
sentation of these types at compile-time, so these are usu-
ally used for small primitive types. On the other hand, boxed
structures refer to a pointer that points to a place in memory
where the data is stored (i.e. in the heap). Boxed types al-
low for more flexibility in terms of copying these values (as
only the pointer is copied), however, it can also lead to per-
formance problems. These types are typically used when the
value can have varying sizes, such as is the case for induc-
tive data types [6]. The terms unboxed and boxed are com-
monly used in Java (and many other programming languages
including C#), where unboxed types refer to primitive values
directly, while boxed types are primitive values wrapped in
an object type.

Compilers make use of a property always-boxed, for fur-
ther optimizing data types, which is true if all cases of a type
are boxed. To give some examples, primitive types such as
booleans and characters are not always-boxed (since they are
unboxed). The List described in Listing 2 is not always-
boxed, as the base case Nil is represented by null (in many
languages, such as C, this is represented as a pointer to 0).

Certain optimizations can be made to how data types are
represented given the always-boxed property is computed for
all cases. Constants (such as Nil in Listing 2) can be repre-
sented by an unboxed integer, where different numbers are
needed in case there are multiple base cases, which is an im-
provement over having a tag and a null pointer. For con-
structors that contain always-boxed data, the tag can be re-
moved and the n-tuple can be represented immediately. How-
ever, there are some cases in which this can introduce uncer-
tainty, such as when multiple recursive constructors have the
same arguments, in which case, the previous representation of
tagged types can be used. This is a standard optimization in
the compilers of many commonly used functional languages
(including Haskell and ML), which can remove many cases
of memory indirection and is not overly complicated.

Coinductive Data Types
Coinductive data types add support to non-terminating, infi-
nite data structures, which can be useful for modeling infinite
lists when lazy evaluation is supported.

An example of a coinductive data type is shown in List-
ing 3, which together with a function that recursively calls
itself to add new elements to the stream, could result in a
non-terminating list of items of type ‘a’.

data Stream a = Cons a (Stream a)

Listing 3: Coinductive data type representing an infinite stream in
Haskell

The largest difference between coinductive data types and
inductive data types is that the former can have infinite paths,
whereas simple inductive data types are always finite. Many
functional languages (such as Standard ML) represent con-
structors as functions that construct values of the correspond-

ing data types. As such, this approach does not directly sup-
port infinite structures or coinductive data types, unless the
language uses lazy evaluation, like in the case of Haskell [10].
Nonetheless, there are some techniques for simulating the in-
tended behavior, such as through recursive functions. Regard-
less, this might not be as straightforward, or flexible as a so-
lution that more modern functional languages use. In OCaml,
constructors are not directly represented as functions, rather,
the constructors can specify different cases or states of a po-
tentially infinite process [12].

Because of the many similarities between inductive and
coinductive data types, it makes sense for them to have a
shared framework that supports using constructors and de-
structors and allows for the use of pattern matching. Jeannin
et al. give a thorough explanation of how this can be achieved,
while also giving a pseudo-implementation for further aid in
their paper [11].

This is a good place to consider the differences between
languages that use lazy evaluation compared to eager tech-
niques. In eager evaluation, expressions are computed as
soon as they are encountered, and function arguments are
evaluated before the function is applied. This has the ben-
efit of being more predictable, however, it can also lead to
inefficiencies due to unnecessary computation (e.g. comput-
ing all arguments when only one is used, or evaluating an
entire list when only the first element of the list is needed).
Conversely, in lazy evaluation, expressions are not evaluated
until a step of evaluation has been reached that needs a value
from the expression. Some benefits of this technique include
avoiding unnecessary computation and handling potentially
infinite structures, such as coinductive data types. On the
other hand, drawbacks include the introduction of overhead
from storing the memoized values, as well as less predictable
performance as the evaluation of an expression might not be
where one expects it to take place.

It is important to note that coinductive data types make
sense to be used in combination with lazy evaluation, as this is
the most natural and efficient approach, but coinductive data
types can still be used in languages that feature eager evalu-
ation. An example of this is OCaml [13], which is an eager
language with support for lazy evaluation either through ex-
plicit use of memoization and delayed evaluation or by using
the lazy module [17].

Mutually Inductive Data Types
Mutually inductive data types are data types that depend on
each other’s definitions. This can be understood as having
a circular dependency between the data types and is widely
supported by functional languages such as Haskell, Coq,
Standard ML, and OCaml.

An example of two mutually inductive data types can be
seen in Listing 4. It introduces a pair of types for even and
odd numbers, where each definition refers to its counterpart.

data Even = EvenZero | EvenSucc Odd
data Odd = OddSucc Even

Listing 4: Mutually inductive data types representing odds and evens
in Haskell



Despite this seeming relatively simple, and not largely dif-
ferent than normal inductive data types, there are some impor-
tant considerations when considering mutual data types in a
programming language. Firstly, the compiler must run an al-
gorithm that analyzes the dependencies of the types to deter-
mine the order in which the types should be processed, as oth-
erwise, it might be impossible due to mutual dependencies.
Following this, depending on how the programming language
handles scope and forward declaration, forward declarations
or type annotations might be necessary for the compiler to
know the basic structure of types before their definitions are
reached.

Many functional languages make use of specific keywords
to distinguish between mutually inductive data types and sim-
ply inductive data types to aid these considerations. For ex-
ample, in Standard ML, the and keyword is used.

datatype ’a tree = Empty
| Node of ’a * ’a forest

and ’a forest = None
| Tree of ’a tree * ’a forest

Listing 5: Mutually inductive data type representing trees and forests
in Standard ML

The example in Listing 5 comes from Harper (2011) and
describes the definition of trees and forests in a mutually re-
cursive manner [9].

On the other hand, Haskell natively supports mutually in-
ductive data types through the data keyword, due to the fact
that Haskell’s type inference system is powerful enough to
not require forward declarations, thus eliminating the need
for explicit keywords for defining mutually inductive types.

4.2 Pattern Matching
Pattern matching is a technique, mostly used in functional
programming languages, that allow the programmer to match
the structure of a value against a pattern (also known as de-
structing a value), and based on which patterns match the
value at hand, a different block of code can be executed.

Patterns can take many forms, but the subset that will be
explored in this paper, and that can be used for most applica-
tions consist of:

• Literal values (e.g. integers, booleans)
• Identifiers, which act as placeholders by capturing any

value and binding it to the identifier
• Wildcards, which also capture any value but don’t bind

it to any identifier
• Constructors, which are used to destructure and identify

the case of the data type that matches the value
Listing 6 gives examples for each of these patterns in

pseudo-code.

0 | 1 | "hello" | true := Literals

identifier := Variable capture

_ := Wildcard

(Cons head tail) := Constructor

Listing 6: Basic Pattern Examples

Many programming languages also add additional fea-
tures to pattern matching, including or-patterns and boolean
guards. Or-patterns provide a way for multiple patterns and
corresponding blocks of code to be grouped into a single pat-
tern, reducing repetitive code. Boolean guards are additional
conditions that must hold true in addition to the pattern for
this match to be successful.

There are two main approaches for how a compiler can rep-
resent pattern matching based on the code generation strat-
egy. These techniques are decision trees and backtracking fi-
nite state automata, which will be discussed in the following
two subsections. Following this will be a discussion of other
techniques that can be used for compiling pattern-matching,
including approaches that build off on top of decision trees
and backtracking finite state automata.

Decision Trees
A decision tree is a data structure that represents a sequence
of decisions (represented by the path to take at a specified
node), and their possible consequences (represented by their
leaves). These structures are a good fit for evaluating pat-
tern matching, as they provide an efficient way to test con-
ditions (e.g. constructors or literal values) against an input
value. This structure is a natural approach for compiling
pattern-matching as it follows the branching nature of pattern-
matching expressions.

The root node of the decision tree corresponds to the start-
ing point in the execution of the pattern-matching expres-
sion. It will then have the first pattern/condition to be checked
against. Internal nodes in the tree represent further patterns or
conditions to check against the input value. These tests can
take many forms, including checking against a literal value,
checking that constructors match, and that boolean guards are
satisfied. Based on the results of these tests, different child
nodes will be followed. Finally, leaf nodes represent the end
of pattern matching, and, when the entire input value has been
matched correctly, indicates the associated block of code to
continue execution from.

Figure 1: Decision tree example representing pattern: Cons 1 tail

Figure 1 shows a basic example of a pattern (‘Cons 1 tail’)



being represented by a decision tree, as described by the ap-
proach above. Though this is a simple pattern where the order
of the tests doesn’t have a large impact, the illustration can
help clarify how the order matters, as an adequate ordering
can reduce the number of tests that must be executed for a
majority of cases.

It is important to note that although using decision trees is
a simple strategy to represent pattern-matching, there is a ma-
jor limitation in that the order of the tests is essential for the
performance. Baudinet and MacQueen (1985) proposed the
goal that compilers should have when it comes to choosing
the order of pattern matching tests, named the Dispatching
problem. It is described as follows: “Given a sequence of
patterns p1, ..., pn of type τ , find out in which order the sub-
terms of any possible subterm t of type τ ′(τ ′ ≤ τ) have to
be examined to determine with the minimum number of tests
on the subterm s of t, which pattern pi(1 ≤ i ≤ n) is the
solution to the matching problem defined by p1, ..., pn and
t.” [16]. A proof resulting from reduction from the pruned
O-trie space minimization problem described in Comer’s and
Sethi’s papers [7, 8] shows that this problem is NP-complete.
To create the most optimal decision tree, at each stage of
constructing the data structure, the best test node must be
selected. The best test node is one that created a balanced
split, meaning that the test node divides the results into ap-
proximately equally-sized subsets. This search corresponds
to an exponential explosion, so some heuristics for building
“good” decision trees must be considered. The original pa-
per by MacQueen and Baudinet (1985) that describes how to
construct decision trees for pattern matching considers three
heuristics: relevance, branching factor, and arity factor. The
relevance heuristic is based on prioritizing the most infor-
mative attributes, determined by selecting the patterns with
the highest predictive power distinguishing between differ-
ent patterns. The branching factor heuristic attempts to mini-
mize the number of branches at each decision point, striving
to result in shallower trees that require fewer comparisons.
Finally, the arity factor heuristic is based on prioritizing con-
structors with a low arity, as they might require fewer com-
parisons for arguments. There are many other heuristics that
are used in other papers and that are used in practice by com-
pilers, many of which are explained in Scott and Ramsey’s
report [20].

Though these heuristics worked well enough to be incorpo-
rated into an ML compiler at the time, further work has been
done in this field to improve the heuristics, as well as to sup-
port newer features, such as lazy pattern-matching. Le Fes-
sant and Maranget (2001) discuss new heuristics using max-
imal sharing (a technique to minimize redundant storage and
sharing common substructures among branches of the deci-
sion tree) and column heuristics, as well as their performance,
which matches the performance of an optimizing compiler to
backtracking automata, while being able to perform better in
some specific cases [14].

Other optimizations that can be used on decision trees in-
clude redundancy elimination, which is the process of discov-
ering operations and statements that are redundant. For exam-
ple, there might be two patterns that represent the exact same
values (imagine one having a variable captured vs. one with

an anonymous variable), in which case one can be removed,
reducing the tree size and simplifying its structure. There are
also cases where patterns can be eliminated due to them be-
ing unreachable, either because a similar pattern already ex-
ists, or because the information from the type system can be
used to find that certain patterns can never match. For exam-
ple, we know that if a value ‘x’ is of type List as described
in Listing 2, we know that ‘x’ can never match against ‘1’,
so this case could be removed. Similar optimizations can be
incorporated depending on how the language is typed, with
statistically, strongly typed languages supporting more due
to knowing more about the types of values at compile-time
than dynamically, weakly typed languages. Similarly, depen-
dently typed languages can be useful in further eliminating
redundant or unreachable patterns from the case tree.

Backtracking Finite State Automata
A Finite State Automaton (FSA) is a basic computational
model which consists of states and transitions and can be
used to model how patterns are evaluated while evaluating a
pattern-matching expression. Though there are multiple ways
in which a pattern-matching expression is transformed into
FSAs, the most basic approach consists of transforming each
pattern into its own FSA, and then traversing these automata
in order in order to see when an accepting state is reached.
Once an accepting state is reached, this would correspond to
a pattern being a match and would allow the compiler to con-
tinue executing the code in the corresponding block. Other
approaches include composing multiple FSAs representing
multiple patterns into a larger individual FSA that can be used
for more patterns. This has the added benefits of not having
to keep track of as many FSAs, as well as being able to have
shared states and transitions, optimizing the runtime perfor-
mance [4].

Patterns are transformed into FSAs in a very similar man-
ner to how patterns were transformed into decision trees, as
discussed in the previous section. This technique treats pat-
terns as a regular expression of atomic values, constructors,
and variables.

Pettersson (1992) describes the algorithm to generate the
automata corresponding to a pattern-matching expression,
consisting of four steps. The first consists of renaming pat-
terns to include the path going through the pattern, which is
necessary for the third step. After this, the patterns and finite
states must be mapped to a Deterministic Finite Automaton
(DFA), which corresponds to each state representing a test
(such as checking the equality of a literal value, and construc-
tors matching), while the transitions represent the outcomes
that the test can have. If the set of constructors and liter-
als is exhaustive (assuming the type system can determine
this), the DFA is completed. Otherwise, a default state rep-
resenting failure is added. Following this, the third step is
optimizing the automaton, by merging equivalent states. Fi-
nal states are considered to be equivalent if they correspond
to the same block of code, while test states are equivalent if
the same path variable is being tested, and the same outgoing
edges exist. The fourth and final step corresponds to creat-
ing intermediate code representing the automaton so that the
compiler can efficiently traverse the automaton and find the



correct next block of evaluation [18].

Figure 2: FSA example representing pattern: Cons 1 tail

Figure 2 shows a basic example of how a pattern (‘Cons 1
tail’) can be represented by a finite state automaton following
the approach described above. It is clear that the FSA will
be traversed starting at the initial state (Cons), represented
by having an incoming “Start” transition. Final states are
represented by having a dashed border, namely “Error” and
“Bind tail”, representing a failure at matching and a success-
ful matching respectively. The example also demonstrates
how patterns are renamed to be augmented with their path
variable, which can provide additional information about the
path taken to reach a state.

This technique can be extended to consider other features
previously discussed, such as boolean guards and or-patterns
without much complication. Boolean guards can be consid-
ered new states with the corresponding outgoing edges (fail-
ure, success). Since in FSAs, transitions are triggered only
through the input value, and in this case, patterns are being
treated as a regular expression of atomic values, constructors,
and variables, boolean guards can be appended to this rep-
resentation of a pattern through a regular expression, corre-
sponding to the final input symbol.

Other Strategies
There are other code-generation strategies that can be used for
compiling pattern-matching, though they are not standalone
techniques, and instead are built on top of the techniques de-
scribed previously.

One of these strategies is term decomposition, which is
particularly suited for languages that employ lazy evalua-
tion, while also providing support for handling complex data
structures (such as coinductive data types). Rather than be-
ing a standalone technique, it is integrated into other pattern-
matching techniques. This technique involves recursively de-
composing the term that is pattern-matched against, as well
as the patterns, comparing their sub-structures, and ensur-
ing they match. In the case that the outermost layer of the
term being matched against is a constant, the technique veri-
fies whether this constant and the corresponding sub-pattern

are equal. If this is the case, the remaining sub-terms are
checked. On the other hand, if the outermost layer of a term
is a constructor, a check is made to ensure that this construc-
tor matches the constructors in the sub-patterns, which is usu-
ally done by comparing the constructor names and the num-
ber of arguments they have. If the constructors match, all of
the arguments are recursively checked through this approach.
The most noteworthy benefit of employing term decomposi-
tion in a lazy language is that the value being pattern-matched
against might not have to be evaluated fully. Instead, it can be
partially evaluated to avoid unnecessary computation while
still accurately determining which patterns match [19].

term_decomposition (Cons 1 tail) = A
term_decomposition _ = ...

Listing 7: Compiling Pattern Matching through Term
Decomposition in Haskell

Listing 7 demonstrates an example function in Haskell with
a simple pattern ‘Cons 1 tail’. If this function was called with
a variable with a value of ‘(Cons 1 (Cons 2 (Cons 3 Nil)))’ in a
language with lazy evaluation, first, the outermost layer of the
term and the pattern would be checked to match. Since both
the constructor names (‘Cons’) and the number of arguments
match, term decomposition would be applied recursively to
each argument. The first argument of the term would then
be evaluated, resulting in ‘1’, which would match the sub-
pattern. As for the second argument, since it is a variable
capture (‘tail’), the term does not need to be evaluated fur-
ther, and hence the compiler can get away without needing to
evaluate the term fully. Even though this example presented
an example with three elements, it is easy to see how this
might lead to significantly better performance for especially
large lists (and is necessary for infinite lists).

Many other techniques exist (e.g. compiling constant pat-
terns with hash tables [15]), however, they are mainly in-
corporated by compilers for specific optimizations based on
heuristics, and as such won’t be discussed further in the paper.

5 Discussion and Advice
Before discussing specific advice regarding the implemen-
tation techniques discussed in the previous section, it is es-
sential that programming language implementers have con-
sidered and thoroughly analyzed the contexts in which their
languages should be used. Some programming languages
must be incredibly performant at run-time due to being used
in latency-critical systems, while in others, run-time perfor-
mance does not matter much, but instead, the speed of com-
pilation is essential (for example to allow programmers to it-
erate quickly). For some other languages, avoiding failures at
run-time is essential (e.g. medical equipment, airplane con-
trollers), while other systems can get away with this due to
not causing any real, large consequences. The platforms in
which programming languages can be used (and whether they
are platform-independent or not) can also influence decisions
when it comes to designing a language, as the programming
language used to write the compiler must also fit these char-
acteristics.



Once a clear idea of the use cases that a programming lan-
guage should be developed for, it is important to consider
which features the language should contain originally, and
how the language might grow in the future. The latter is es-
pecially crucial to avoid having to make unnecessary large
changes to the compiler and surrounding environment. As a
rule of thumb, it is not always better to incorporate more fea-
tures because “they might be useful for a few users”, as this
can further complicate adding more relevant features subse-
quently, might lead to performance issues, or might make the
language more confusing to users.

5.1 Data Types
There are many considerations that programming language
implementers should be familiar with when it comes to the
technical details of implementing complex data types.

Knowing the difference between boxed and unboxed types
is essential when it comes to implementing efficient data
types. It is essential to also understand when the language
should use boxed vs. unboxed types. Even though unboxed
types should fit in the stack memory, the specific maximum
size a value can have in the stack depends on the operating
system and hardware of the target user, unless the code is al-
ways executed through a virtual machine (such as Java and
Scala). Unboxed types offer better performance as the asso-
ciated value won’t need to be fetched from the heap memory,
however, boxed types use pointers to the data stored in the
heap. This has the benefit of being able to create more effi-
cient copies, which might be an important consideration for
the language. Thus, it is essential to create a clear distinction
between which types should be boxed vs. unboxed, consider-
ing size and variability.

The most basic representation for data types, tagged point-
ers is a valid implementation that can be easily extended even
for more complex types, however, it can also be inefficient
due to storing a tag and an additional pointer for each con-
structor. A commonly used optimization includes leveraging
the “always-boxed” property, which can decrease memory in-
direction and usage, with the drawback being additional com-
plexity in the compiler. This is another case where it is not
always better to make the compiler more efficient blindly, as
this should be dependent on the requirements of the language.
If run-time performance is important, it is a good idea to ap-
ply the optimizations that are discussed in detail in subsection
4.1: Inductive data types.

Though basic inductive data types are an essential feature
that multi-purpose functional programming languages should
support, more complex inductive data types, such as coinduc-
tive data types and mutually inductive data types might not be
applicable to the language being designed, so worrying about
their implementation might be unnecessary.

Coinductive data types support infinite paths and can be
used to model cyclic recursion, and are especially useful
when talking in the context of languages with lazy evaluation.
Choosing the best evaluation strategy for a language should
mainly be depending on the requirements, however, other dif-
ferences include that eager evaluation computes expressions
whenever they are encountered, while lazy evaluation defers
computation until the value is needed. Eager evaluation can

be more predictable, however, lazy evaluation can be more
efficient in run-time if an efficient implementation of memo-
ization is considered and some variables are never used. If the
language supports lazy evaluation and should support coin-
ductive data types, the paper by Jeannin et al. provides a
detailed explanation and pseudo-implementation that can be
helpful for incorporating a shared framework for inductive
and coinductive data types [12]. In the case that eager evalua-
tion is used but coinductive data types are still a useful feature
in the language, inspiration from OCaml, which incorporates
it through explicit memoization or dedicated modules can be
a good starting point.

Introducing mutually inductive data types can be relatively
simple if the language features a powerful type inference
system, as it may allow dependencies to be analyzed with-
out needing forward declarations. This is how Haskell han-
dles mutually inductive data types, which consequently al-
low them to be defined like standard data definitions. On
the other hand, functional languages with less expressive type
systems need to consider the order of dependencies and pro-
cessing order for these data types, as well as a specified syn-
tax for the compiler to understand the basic structure of the
mutual types.

5.2 Pattern Matching
The two main techniques that programming languages use
to compile pattern matching, decision trees and backtracking
finite state automata, can both deal with basic patterns that
were described in subsection 4.2, however, there are certain
advantages and disadvantages to each of these approaches,
which can be minimized with further optimizations.

For patterns with a small number of tests and a small num-
ber of possible branches at each test node, decision trees are
the best solution. They excel when patterns follow a clear hi-
erarchical structure as they never test a subterm more than
once, whereas backtracking finite state automata are more
suitable for patterns that have non-linear and complex con-
ditions, as they provide more expressive power due to their
backtracking nature.

Regarding performance, decision trees can provide more
efficient run-time performance when the order of tests is care-
fully optimized, however, as this is an NP-Complete prob-
lem, heuristics, such as those provided by Baudinet and Mac-
Queen (1985) [16] and Maranget (2001) [14], are the best
way to create a good order of tests. This makes decision
trees (with these optimization heuristics) a better approach
for cases when run-time performance is critical. Backtrack-
ing FSAs can have slower performance due to the overhead
corresponding to keeping track of the state of the automaton.

It is also noteworthy to point out that if the optimization
heuristics for decision trees are not applied, there is a possibil-
ity of code size explosion (in an exponential form), whereas
backtracking FSAs guarantee code that grows in size linearly
with respect to the patterns. Code size explosion can lead
to many drawbacks, including longer compilation times, and
limitations in resource-limited environments (such as in em-
bedded systems, where typically not much storage and mem-
ory is available).



Furthermore, some extensions of basic patterns (such as or-
patterns and boolean guards) can be implemented more nat-
urally through FSAs, so they may be more appropriate when
performance is not the primary consideration, but rather be-
ing able to deal with complex patterns without considerable
modifications.

As can be seen, different techniques are better for some
cases, so, despite using only one of these techniques is suffi-
cient for a working compiler, many programming languages
add further optimizations for speeding up compilation and
runtime performance. A large number of these optimiza-
tions are based on other techniques not discussed in this pa-
per (such as using hash tables when all patterns are strings,
as done in OCaml, for example [15]). There is also the pos-
sibility of using hybrid approaches (both decision trees and
backtracking finite state automata) depending on the patterns
at hand. This way, the benefits of both techniques may be ap-
preciated, with the significant drawbacks being an overhead
for choosing which technique to use, as well as a much more
involved codebase to allow this flexibility. As such, unless
there is a clear reason for the programming language to need
one of the advantages, or to avoid one of the disadvantages,
combining approaches might not be the best choice.

Another strategy that is based on either of the two tech-
niques previously described is term decomposition, which is
particularly useful in languages that use lazy evaluation. This
is due to the ability to allow only portions of terms that are
necessary to be evaluated, meaning that if some sub-patterns
are not needed to determine a match, they don’t need to be
evaluated, potentially saving computation time and resources.
Term decomposition is also especially helpful in the context
of coinductive data types, as it allows for pattern matching on
infinite data structures without needing to fully evaluate the
term first.

6 Conclusions and Future Work
To conclude, the question that was treated throughout the
paper was What are the different implementation techniques
for type systems regarding inductive data types and pattern
matching that have been proposed in the literature?, with
sub-questions dealing with finding advantages and disadvan-
tages of these implementation techniques, as well as criteria
that can be established for implementers of new languages to
consider when considering adding these features. Throughout
the investigation of inductive data types, certain optimizations
were discovered to reduce memory indirection when consid-
ering tagged pointers. Coinductive data types and mutually
inductive data types were introduced, as well as approaches
for their compilation. In terms of pattern matching, a ba-
sic framework describing basic patterns was first introduced,
before discussing concrete implementation techniques. The
two major techniques discussed are decision trees, which can
be crafted simply but requires further optimizations to aid
the run-time and compile-time performance, as well as back-
tracking finite state automata, which is a more involved ap-
proach but also provides more flexibility regarding the pat-
terns and complex types that are supported. Following this
is a short discussion into term decomposition, a strategy that

builds off on top of other pattern-matching techniques to ex-
ploit optimizations possible in languages that use lazy evalu-
ation.

Future work in this area includes a deep dive into com-
monly used programming languages in order to understand
exactly how a modern language makes use of the techniques
discussed in this paper for a mass-use, production-ready lan-
guage. It can also be relevant to discuss how multiple of the
techniques described in the paper can be combined to boast
the most benefits while minimizing the drawbacks. Further-
more, investigating how pattern matching can be extended to
handle more complex data types (such as dependent types and
polymorphic types) can be an interesting area of further re-
search.
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