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Summary

During the design of helicopters or horizontal-axis wind turbines, simulation models are
developed for different purposes, such as to ascertain the device's performance; to
ensure aeroelastic stability; to determine the system's response to different external
perturbations; to determine fatigue characteristics as well as extreme loads in critical
components or to design control systems. One of the first questions which must be
answered before commencing the actual derivation of a simulation model, is how much
detail should be considered in terms of number and type of mechanical degrees of
freedom and level of aerodynamic modeling. For rotary wing devices this question is
not yet solved. Contradictory statcments are found in the literature when it comes to the
question of which modes have a substantial effect on the low frequency dynamic
characteristics important for helicopter piloted simulation or wind turbine structural
modeling. The aim of the present dissertation is to develop a general method which can
be used by the design-analyst to determine the necessary degrees of freedom to be
considered in a low-frequency simulation model for helicopters and horizontal-axis
wind turbines, before deriving a complete model.

A new method -the so-called "critical pole distance method"- was developed which can
be used both as a design and an evaluation tool capable of determining the significant
degrees of freedom of the simulation model. The critical pole distance method consists
in essence of representing the uncoupled modes' eigenvalues in the complex plane and
defining "critical regions" where potential couplings between different modes of motion
occur. A critical region is formed by eigenvalues which can be considered "sufficiently
close" together in the complex plane. To quantify the relative position of the
eigenvalues in the complex plane a criterion was developed to provide an estimation as
to the meaning of "sufficiently close" for the dynamic system analyzed.

Using the critical pole distance method, guidelines for the necessary model structure
were elaborated for three cases: 1) investigation of the significant rotor disc-tilt modes
in piloted simulation modeling; 2) investigation of the mechanism of instability of the
KEWT two-bladed horizontal-axis wind turbine; 3) investigation of the effects of blade
kinematic pitch-flap and pitch-lag couplings on the blade flap-lag motion in an
articulated rotor in hovering flight. Criteria and rules of thumb on how to judge whether
eigenvalues should be considered as sufficiently remote, or in close proximity, were
developed for the critical pole distance method in each of the problems analyzed.

Concerning the effects of disc-tilt dynamics on the body dynamics, studying the natural
and piloted behaviour of the articulated Puma SA-330 and semi-rigid Bolkow Bo-105
using the critical pole distance method and simulating a deceleration and a side-step
manoeuvre, two critical regions of coupling between the body and the rotor disc-tilt
motion were discovered: first, a critical region in the longitudinal plane of motion,
formed by the body short-period mode eigenvalue and the regressing flapping mode
eigenvalue; and second a critical region in the lateral plane of motion formed by the
body roll-subsidence mode eigenvalue and the regressing flapping mode eigenvalue. A
criterion to quantify the coupling between the body modes and the regressing flapping
mode was established. The body/rotor disc-tilt coupling, in the case of the articulated




Puma helicopter depends on the manoeuvre performed: for the deceleration manoeuvre
the couplings could be neglected whereas for the side-step manoeuvre they could not.
The body/rotor disc-tilt coupling in the semi-rigid Bo-105 is always strong, independent
of the manoeuvre performed.

Concerning the chassis* second bending mode/rotor lead-lag instability on the KEWT
wind turbine, according to the critical pole distance method, the prime responsible for
this instability is the coupling between the harmonic ., of the differential lead-lag
mode and the chassis second bending mode. These two modes form the main path
through which the gravity excitation is transmitted from the blade to the chassis and
back. Varying the blade and chassis characteristics, a criterion was developed for the
critical pole distance method. Using this criterion, it was found that the instability could
be eliminated either by increasing the tower damping ratio, or by softening the tower or
by stiffening the blades.

Concerning the strength of the coupling between the flap and lag motions in a rotor
blade, a quantitative criterion for the critical pole distance method was established on
the basis of different kinematic pitch-flap and pitch-lag couplings in the system.

The critical pole distance criterion needs to be quantified by investigating a multitude
of cases, before conclusions can be drawn. Therefore, this method should actually be
considered an engineering approach to the problem of simulation modeling. The validity
of the critical pole distance method was evaluated by comparing it to similar methods
(methods able to give an indication of the level of detail in a simulation model, such as
the Campbell diagram, the Milne criterion and the Vector Shift Method or methods
used to determine the mechanism of instability of a rotary wing system such as the
Force-Phasing Matrix Technique or the Energy-Flow method). The strength of the
critical pole distance method is that it may be applied before the actual derivation of
the coupled dynamic equations is undertaken.

Examining the problem of helicopter and wind turbine modeling in parallel, it appeared
that there is a misunderstanding in the definition of soft/stiff configurations in the two
communities. At first sight, it appears that modern wind turbines are becoming softer
but in terms of non-dimensional flapping and lead-lag natural frequencies, they are
actually stiffening. This observation serves as a warning to wind turbine designers to.be
aware that current wind turbine configurations are heading towards a new area of rotor
and rotor/tower aeroelastic instabilities characteristic for stiff systems, which may be
difficult to control and eliminate.

Concluding, the present dissertation may be considered a first step in developing a
general method which can be used by the design-analyst to determine the necessary
degrees of freedom for helicopters and horizontal-axis wind turbines. To obtain general
guidelines about the necessary model structure, the critical pole distance method will
have to be applied to a database of problems specific to helicopter and wind turbine
low-frequency simulation-modeling. These proposed guidelines should take into
consideration the desired accuracy and the purpose for which the dynamical model will
be used.
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constant in response of the I-dof vibration problem (equation 2.12) and in
the motion-induced load problem; constant in the wind turbine motion
defined by equation 6.5; matrix of motion derivatives in the 6-dof
helicopter model; area of the rotor disc A= ntR* [m?]
terms in the wind turbine response expressed by equation 6.7
matrix of motion derivatives in the 6-dof helicopter model in the lateral
plane (equation E.72)
matrix of motion derivatives in the 6-dof helicopter model in the
longitudinal plane (equation E.71)
coning angle; collective lead-lag mode [rad]
collective mode in Coleman transformation (equation D.1)
longitudinal disc-tilt angle; a,;>0 if the disc plane tilts backwards [rad]
cyclic modes in the Coleman transformation (equation (D.1)) [rad]
constant in response of the 1-dof vibration problem (equation 2.12) and in
the motion-induced load problem; matrix of control derivatives in the 6-
dof helicopter model; terms in the wind turbine response expressed by
equation 6.5
terms in the wind turbine response expressed by equation 6.7, 6.8, 6.9
matrix of control derivatives in the 6-dof helicopter model in the lateral
plane (equation E.72)
matrix of control derivatives in the 6-dof helicopter model in the
longitudinal plane (equation E.71)
terms in the wind turbine response in the asymptotic expansion of the
differential lead-lag mode (equation 6.3)
terms of the asymptotic expansion in «,, of the differential lead-lag mode
(equation F.28 and F.31)
lateral disc-tilt angle (b,>0 for tiltwards to the azimuth position y = 90%)
cyclic modes in the Coleman transformation (equation (D.1))
term in the wind turbine response of expression 6.6; damping matrix of
an n-dof system
constants in the 1-dof response of a mass-spring-damper system
blade profile drag coefficient C, =0.011 + 0.4, [-]

. . . . thlg
helicopter weight coefficient C; = ———— [-]

PA(QR)

rotor drag force coefficient (equation E.29) [-]

blade lift curve slope [rad™']
tailrotor lift curve slope [rad™']
vertical tail lift curve slope [rad™']

horizontal tail lift curve slope [rad™']
vertical tail roll moment coefficient (equation E.57) [rad']
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rotor torque coefficient (equation E.28) [-]

damping matrix of an n-dof system of equations in the rotating system in
the Coleman transformation

coefficient of pitch moment induced by rotor eccentricity (equation E.33)
horizontal tail pitch moment coefficient (equation E.51)

coefficient of fuselage pitch moment (equation E.41)

coefficient of fuselage yaw moment (equation E.46)

vertical tail yaw moment coefficient (equation E.58) [rad’]

damping matrix of an n-dof system of equations in the non-rotating
system in the Coleman transformation (equation D.10)

rotor lateral force coefficient (equation E.27) [-]

chassis damping coefficient

chassis critical damping coefficient C_ . =2yK M, =20.M

thrust coefficient w.r.t. disc plane in blade-element theory (equation E.25)
[-]

thrust coefficient calculated with Glauert theory (equation E.26)

tailrotor thrust coefficient in blade-element theory (equation E.35)
tailrotor thrust coefficient in Glauert theory (equation E.36)

coefficient of lateral force in sideslip flight (equation E.45)

coefficients of the flap-lag equations of motion (equation 7.2)

coefficients of the flap-lag equations of motion (equation 7.2)

blade lead-lag damping coefficient

blade critical lead-lag damping coefficient C, . = 2 Kg I, =201,
current chord length of blade section [m]; damping in the 1-dof vibration

and dynamic absorber problems [&E ]; helicopter rate of climb [m/sec]
m
damping of the motion-induced load

critical damping in the 1-dof vibration problem c_ =2ykm [N_kg ]
m

critical damping in the dynamic absorber problem [ N sec ]
m

helicopter desired rate of climb [m/sec]

equivalent blade chord [m]

term of the wind turbine response given by equation (6.6)

elementary drag force [N]

non-dimensional distance from an eigenvalue to a line of excitation in the
complex plane (equation 2.31) [-]

terms of wind turbine solution of the collective lead-lag mode (equation
6.3)

terms of asymptotic expansion in o, of collective lead-lag mode
(equation F.28 and F.31)

fuselage diameter in horizontal projection [m] (see Figure E.1)
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dF.
Fy
Fy
dF,
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z

dG

f(s)

F.
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external excitation force applied to an n-dof system [N]

matrix in Floquet method defined by equation G.11

matrices of rotation defined as in equation F.1

terms of asymptotic expansion in € of collective lead-lag mode (equation
F.32 and F.47)

flapping hinge offset measured from the hub axis of rotation {m]

lagging hinge offset measured from the hub axis in Chapter 3 and from
the flapping hinge in Chapter 7 [m]

transfer function in the critical pole distance method (equation 4.6)

matrix in Floquet method defined by equation G.12

amplitude of the sinusoidal external response (equation 2.10); parasite
drag area of the helicopter [m’]

external force applied to the mass-spring-damper system in the time
domain (equation 2.10)

helicopter blade centrifugal force in the 6-dof helicopter model (equation
E.33) [N]

centrifugal force on the blade element (equations B.28 and C.27) [N]

F., Fy terms respectively defined as T; /N, T; /N;, T, /N, and T, /N,

blade-element inertial force [N]

vector of external forces of an n-dof system in the non-rotating system in
the Coleman transformation (equation D.10)

vector of external forces of an n-dof system in the rotating system in the
Coleman transformation

resultant of blade lift and drag force tangential to the blade (equation
B.22) [N]

resultant of blade lift and drag force perpendicular to the blade (equation
B.22) |N]

gravity force on the wind turbine blade element (component in flapping
plane defined by equation B.34 and in lagging plane by C.34) [N]
tailrotor fin blockage factor (equation E.38) [-]

force component exerted by the blade lead-lag motion on the chassis
expressed in the blade rotating system (equation 6.13) [N]

force component exerted by the blade lead-lag motion on the chassis
expressed in the blade rotating system (equation 6.13) [N]

F,, expressed in the chassis non-rotating system (equation 6.14) [N]

F,, expressed in the chassis non-rotating system (equation 6.14) [N]

term defined as T/N, T/N;

position of the rotor hub on the x-axis w.r.t the helicopter body-axes
system [m]; ratio between the torsional stiffness of the blade and pitch

K
control system f = fu [-]; force exerted on the blade due to chassis

0

motion (equation 6.22) [N]

characteristic equation in flap-lag model of Chapter 7 (equation 7.11)
position of the rotor hub w.r.t the helicopter body-axes system on the y-
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axis [m]

coupling terms in an n-dof system (terms multiplying X)

terms of asymptotic expansion in & of differential lead-lag mode
(equations F.32 and F.49)

transfer function (equation 2.17 and 2.27); gravity term in the wind

g0, . gmhlrgR_

turbine lead-lag equation of motion defined as G = T

bi bl

gravity term in the flap-lag equations of motion defined as G =—§-

transfer function defined for the critical pole distance criterion T',,/ N,
matrix in Floquet method defined by equation G.13

transfer function giving the answer in pitch to a longitudinal cyclic
(equation 5.3) in the body motion

transfer function giving the answer in pitch to a longitudinal cyclic
(equation 5.8) when disc-tilt dynamics included in the body motion
gravitational acceleration

coupling terms on an n-dof system (terms multiplying %)

terms of asymptotic expansion in & of chassis second bending mode
(equation F.40)

coefficient used in chapter 7 and defined as H =m,,/ (pncl)

matrix in Floquet method defined by equation G.10

component of the rotor aerodynamic force in the horizontal plane
helicopter rotor hub position relative to z-axis [m] (see figure E.1(a)); step
integration in Floquet method; hub position w.rt z-axis in the body
system of reference [m]

helicopter altitude and desired altitude [m]

coupling terms of an n-dof system (terms multiplying x)

horizontal tail position w.r.t. body system of reference on the z-axis [m]
tailrotor position w.r.t. z-axis

vertical tail position w.r.t. body system of reference on the z-axis [m]
unit matrix

blade moment of inertia of a uniform blade (equation B.31) [kg m’]

blade moment of inertia

helicopter moment of inertia about body x-axis [kg m’]

helicopter moment of inertia about body y-axis [kg m’]

helicopter moment of inertia about body z-axis [kg m’]

helicopter product of inertia about body x and z-axes [kg m’]

R(l-€y)
moment of inertia w.r.t flapping hinge [ = '[ r“dm [kg m’]
0
spring constant of the dynamic absorber problem [N/m]; the term [Tyh

+(N/2)K; /1, in helicopter pitch equation of motion (Chapter 5, section
5.1); stiffness matrix in an n-dof model; matrix of gains in 6-dof
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helicopter model

climb velocity controller [ ] [1/m]

m/ sec
correction coefficient in the fuselage pitching moment (figure E.3)
altitude hold controller [1/m]

correction coefficient in the horizontal tail pitching moment (figure E.4)
matrix of gains in 6-dof helicopter model in lateral plane (equation E.76)
matrix of gains in 6-dof helicopter model in longitudinal plane (equation
E.75)

stiffness matrix of an n-dof system of equations in the non-rotating
system in the Coleman transformation (equation D.10)

pitch-flap coupling (K,;>0 for pitch nose up with flap up)

pitch-lag coupling (K;>0 for pitch nose up with lead)

roll rate controller

pitch rate controller

stiffness matrix of an n-dof system of equations in the rotating system in
the Coleman transformation

yaw rate hold controller [T},_]
rad / sec

K in a semi-rigid rotor
stiffness coefficient of wind turbine chassis; K in a teetering rotor
main rotor downwash factor at tailrotor K, = 1

horizontal velocity hold controller [ ; ]
m/sec

lateral velocity hold controller [ ; ]
m/sec

horizontal distance controller [1/m], [1/ (rad sec)]

lateral distance hold controller [1/m]}, [1/(m sec)]

flap hinge spring constant of a helicopter and wind turbine blade [N/m]
lagging hinge spring constant of a helicopter and wind turbine blade;
stiffness coefficient of wind turbine blade lead-lag [N/m]

coefficients of flap-lag equations of motion (equation 7.2)

coefficients of flap-lag equations of motion (equation 7.2)

pitch attitude hold controller [1/rad], [1/(rad sec)]

term for the distribution of torsional stiffness between the blade and the

: - KK,

pitch control system defined as K, = ———2-
K, *K,

roll angle hold controller | 1/rad], [1/(rad sec)]
torsion stiffness of the pitch control system
yaw angle hold controller [1/rad], [1/(rad sec)]
torsion stiffness of the blade
spring constant of the mass-spring-damper system and in dynamic
absorber model [N/m)]
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M
M, M,

Ma excit
Mbo-ﬂ’ Mﬂ-hn

Mch
M,
Mfus
M,
th]

helicopter total roll moment [Nm]

lift force on the blade element [N]

roll moment due to flap eccentricity [Nm]

lift force on the blade (component independent on the flapping excitation)
matrix of Coleman transformation coefficients in the non-rotating system
dimensional and non-dimensional derivative of L-moment w.r.t. to roll
rate [N m sec}

matrix of Coleman transformation coefficients in the rotating system
dimensional and non-dimensional derivative of L-moment w.r.t. to yaw
rate [N m sec]

horizontal tail lift force [N]

vertical tail lift force [N]

dimensional and non-dimensional derivative of L-moment w.r.t. to lateral
velocity [N sec]

dimensional and non-dimensional derivative of L-moment w.r.t. to lateral
cyclic [N m]

dimensional and non-dimensional derivative of L-moment w.r.t. to
tailrotor collective [N m]

change in lift due to flapping motion (equations B.15, B.16 for helicopter
case and equations B.17, B.18 for the wind turbine case) [N]

length of blade measured from the flapping hinge (Chapter 7) [m]

dimensional [m] and non-dimensional [-] horizontal tail position w.r.t
helicopter system of reference measured along the x-axis (see figure
E.1(a)) (measured from the centre of pressure of the horizontal tail)

dimensional [m] and non-dimensional [-] tailrotor position w.r.t helicopter
system of reference measured along the x-axis (see figure E.1(a))

dimensional [m] and non-dimensional [-] vertical tail position w.r.t
helicopter system of reference measured on the x axis (see figure E.1(a))
(measured from the centre of pressure of the vertical tail)

mass in dynamic absorber problem; helicopter total pitch moment
(equation E.19) [Nm]

maximum elements of the coupling matrices in Milne criterion and in
flap-lag problem of Chapter 7 (equation 7.17)

aerodynamic excitation in blade flapping motion (equation B.23) [Nm]
maximum of coupling terms in body-disc tilt according to Milne criterion
(equation 5.17)

chassis mass [kg]

pitch moment due to flapping eccentricity (equation E.32) [Nm]

fuselage pitch moment (equation E.40) [Nm]

horizontal tail pitch moment (equation E.48) [Nm]

helicopter mass [kg]
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MP

MC.
M°
MB
M

qero

acro init

g

dimensional and non-dimensional derivative of M-moment w.r.t. to pitch
rate in the helicopter 6-dof linear model [N m sec]

inertia matrix of an n-dof system of equations in the rotating system in
the Coleman transformation

the lead-lag moment resulting form the chassis motion when the gravity
force is neglected (equation 6.23) [Nm]

M,, calculated with the gravity force effect (equation 6.26)

sh

total mass of the wind turbine system M, = M_,+N m,, [kg]

o
dimensional [N sec] and non-dimensional [-] derivative of M-moment
w.r.t. to horizontal velocity in the helicopter 6-dof linear model
dimensional [N sec] and non-dimensional [-] derivative of M-moment
w.r.t. to vertical velocity in the helicopter 6-dof linear model

dimensional [N sec’]and non-dimensional derivative of M-moment w.r.t.
to vertical acceleration in the helicopter 6-dof linear model

aerodynamic flapping moment (equation B.21) [N m]

aerodynamic lagging moment on the blade (equation C.16) [N m]

initial aerodynamic lagging moment on the blade (equation C.15) [N m}
restraint moment on the flapping hinge (equation B.32) [N m]

restraint moment on the lagging hinge (equation C.32) [N m]

AM,l; , AM,|; aerodynamic moment induced by the blade flapping motion (equations

B.24, B.25 for the helicopter and equations B.26, B.27 for the wind
turbine) [N m]

AM||:,AM||, aerodynamic moment induced by blade lead-lag motion (for the

A
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helicopter equations C.19, C.20, C.21, C.22 and for the wind turbine
equations C.23, C.24, C.25, C.26) [N m]

dimensional and non-dimensional derivative of M-moment w.r.t. to
longitudinal cyclic in the helicopter 6-dof linear model [N m]

dimensional and non-dimensional derivative of M-moment w.r.t. to
collective in the helicopter 6-dof linear model [Nm]

mass in 1-dof vibration problem [kg]; blade mass per unit length in
Chapter 7

ratio m/M of masses in dynamic absorber problem [-]

blade element mass [kg]

blade mass {kg]

mass of k-th blade [kg]

number of blades of the rotor [-]; helicopter total yaw moment (equation
E.20) [Nm]

terms including the uncoupled system characteristics in the critical pole
distance criterion N, =5*+28 @5 +0;

critical pole distance criterion for short-period/regressing flapping modes
coupling (equation 5.24)

critical pole distance criterion for roll-subsidence/regressing flapping
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modes coupling (equation 5.32)

critical pole distance criterion for body/rotor disc-tilt dynamics coupling
(final criterion in Critical pole distance criterion)

critical pole distance criterion for chassis/differential lead-lag mode in
harmonic ®,,,,, coupling (equation 6.36)

critical pole distance criterion for chassis/differential lead-lag mode in
harmonic ®y,.,, coupling (equation 6.39)

critical pole distance criterion for flap-lag motion (equation 7.10)

vertical tail yaw moment w.r.t. body system of reference (equation E.54)
[N m]

dimensional and non-dimensional derivative of N-moment w.r.t. to roll
rate in the helicopter 6-dof linear model [N m sec]

dimensional and non-dimensional derivative of N-moment w.r.t. to yaw
rate in the helicopter 6-dof linear model [N m sec]

dimensional and non-dimensional derivative of N-moment w.r.t. to lateral
velocity in the helicopter 6-dof linear model [N sec]

dimensional and non-dimensional derivative of N-moment w.r.t. to lateral
cyclic in the helicopter 6-dof linear model [N m]

dimensional and non-dimensional derivative of N-moment w.rt. to
tailrotor collective in the helicopter 6-dof linear model [N m]

helicopter roll rate [rad/s] and its non-dimensional value [-]

helicopter roll rate in basic motion [rad/sec]

Floquet transition matrix defined by G.14 and used in equation 6.34; rotor
torque (equation E.24)

non-conservative forces in Lagrange equations of motion [N]

helicopter pitch rate [rad/sec] and its non-dimensional value [-]

helicopter pitch rate response in Laplace domain (equation 5.4)

helicopter pitch rate response in Laplace domain (equation 5.9) when the
disc-tilt dynamic is included

helicopter pitch rate in basic motion [rad/sec]

amplitude of response to an external sinusoidal force (equatlon 2.13) [m];
radius in Milne criterion equal to the minimum of the eigenvalues of
subsystem B (of higher dynamics) and of the flapping motion in the flap-
lag problem of Chapter 7; helicopter or wind turbine rotor radius
(measured from the hub) [m]

amplitude of collective lead-lag mode (equation 6.11)

radius of disc-tilt motion in the Milne criterion

fuselage resistance force (equation E.39) [N]

static response to applied load in 1-dof model

tailrotor radius [m]

amplitude of chassis response in the second bending mode (equation 6.10)

-]



Notations ix

T . SR
Shn ’ ‘shn

T . SR
Sto-fl » Sho-t1

Sca.
Spir
Shikets Spira

SNR ady
SNR reg
SNR con
SNR BN2

-l

22T nn-l

amplitude of differential lead-lag mode (equation 6.12) [-]

current blade-element coordinate along blade axis measured from the hub
[m]; radius in Milne criterion equal to the maximum of the eigenvalues of
subsystem A (of slow dynamics) and of lead-lag motion in the flap-lag
problem of Chapter 7

helicopter yaw rate [rad/s] and its non-dimensional value [-]

helicopter yaw rate in basic motion [rad/sec]

coordinate of blade in the wind turbine blade/chassis motion [m]

radius of body motion in the Milne criterion |m]

dimensional and non-dimensional coordinate of the blade centre of gravity
along the blade [m]

matrix in Floquet method defined by equation G.3

lateral rotor force defined by equation E.23 [N]

dimensional and non-dimensional vertical tail surface [m-]

dimensional and non-dimensional horizontal tail surface |m’]

fuselage surface [m’]

Laplace variable

eigenvalues of 1-dof problem (equation 2.5, 2.6 or 2.7)

the k-th eigenvalues of an n-dof system

poles of the helicopter body motion for a teetering and a semi-rigid
configuration (equation 5.5)

poles of the helicopter body motion for a teetering and a semi-rigid
configuration (equation 5.10, 5.11) when disc-tilt dynamics is included
eigenvalues of the uncoupled collective lead-lag mode

eigenvalues of the uncoupled differential lead-lag mode

eigenvalues of the uncoupled differential lead-lag mode in the harmonics
Opyieers Opie.y

poles of the uncoupled disc-tilt motion (equation 5.14)

eigenvalues of the uncoupled chassis motion (equation 6.28)

eigenvalue of the advancing flapping mode (equation D.15)

eigenvalue of the regressing flapping mode (equation D.15)

eigenvalue of coning mode (equation D.16)

eigenvalue of differential flapping mode (equation D.16)

uncoupled lead-lag blade eigenvalue (equations 6.30 and 7.6)

uncoupled flapping blade eigenvalue (equation 7.5)

coupled flap-lag eigenvalue (equation 7.13)

coupled lag-flap eigenvalue (equation 7.14)

vector change between the uncoupled and coupled poles in vector shift
method

coupling terms in an n-dof system in the critical pole distance criterion
the negative terms T,...T,

term of the external force in the critical pole distance criterion

helicopter thrust vector w.r.t. the disc plane (defined by E.21) [N]
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kinetic energy of the k-th blade [J]

total kinetic energy in the wind turbine system of equations of motion
(equation F.9) [J]

tailrotor thrust defined in equation E.34 [N]

time variable [sec]

vector of helicopter control states

dimensional [m/sec] and non-dimensional [-] wind turbine crosswind
velocity component

perturbed component of velocity perpendicular to the shaft plane
(equation B.9 and B.11) [m/sec]

initial component of velocity perpendicular to the shaft plane (equation
B.3 for helicopter case and B.6 for wind turbine case) [m/sec]

perturbed component of velocity along the blade axis due to flapping or
lagging motion of the blade (equations B.8, B.10, C.1, C.3) [m/sec]

initial component of velocity along the blade axis (equation B.1 and B.4)
[m/sec]

perturbed component of velocity tangential to the shaft plane [m/sec]
initial component of velocity tangential to the shaft plane (equation B.2
for the helicopter and B.5 for the wind turbine) [m/sec]

variation in the velocity perpendicular to the shaft plane due to the
flapping motion [m/sec]

variation in the velocity tangential to the shaft plane due to the lead-lag
motion [m/sec]

helicopter airspeed component along body x-axis [m/sec]

helicopter airspeed component along x-axis in basic motion [m/sec]
potential energy[J]; helicopter velocity [m/sec]

velocity component perpendicular to rotor disc plane (see figure B.2 for
helicopter and Figure B.3 for the wind turbine) [m/sec]

initial velocity on the blade element for helicopter and wind turbines
[m/sec]

equivalent body volume to the fuselage in the horizontal plane having
only circular sections [m’]

equivalent body volume to the fuselage in the lateral plane having only
circular sections [m’]

horizontal tail volume [m?]

helicopter velocity in the horizontal tail region (equation E.49) [m/sec]
helicopter velocity in the vertical tail region (equation E.55) [m/sec]
induced downwash velocity [m/sec]

component of airspeed along body y-axis [m/sec]

component of helicopter airspeed along y-axis in basic motion [m/sec]
component of airspeed along body z-axis [m/sec]

component of helicopter airspeed along z-axis in basic motion [m/sec]
vector of helicopter motion states; total aerodynamic force on X axis
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(equation E.15) [N]

partitioning an n-dof system in Milne criterion (equation 4.51)
dimensional and non-dimensional derivative of X-force w.r.t. to pitch rate
[N sec]

dimensional and non-dimensional derivative of X-force w.r.t. to horizontal
velocity in the helicopter 6-dof linear model [N sec]

dimensional and non-dimensional derivative of X-force w.r.t. to vertical
velocity in the helicopter 6-dot linear model [N sec/m]

dimensional and non-dimensional derivative of X-force w.r.t. to collective
in the helicopter 6-dof linear model [N]

dimensional and non-dimensional derivative of X-force w.rt. to
longitudinal cyclic in the helicopter 6-dof linear model [N]

degree of freedom of the 1-dof problem: displacement of chassis in
second bending mode; helicopter longitudinal position (see Figure E.2)
degree of freedom of an n-dof system

initial conditions in the 1-dof problem

helicopter desired longitudinal position [m]

general solution of 1-dof problem (equation 2.9) [m]

particular solution of 1-dof problem (equation 2.11) [m]

total solution of 1-dof problem (equation 2.14) [m]

total aerodynamic force on y axis (equation E.16) [N]

fuselage lateral force in sideslip flight (equation E.43) [N]

dimensional and non-dimensional derivative of Y-force w.r.t. to lateral
velocity in the helicopter 6-dof linear model [N sec/m]

dimensional and non-dimensional derivative of Y-force w.r.t. to lateral
cyclic in the helicopter 6-dof linear model [N}

dimensional and non-dimensional derivative of Y-force w.r.t. to tailrotor
collective in the helicopter 6-dof linear model [N]

helicopter lateral position and desired lateral position (see Figure E.2) [m]
total aerodynamic force on z axis (equation E.17) [N]

dimensional and non-dimensional derivative of Z-force w.r.t. to horizontal
velocity in the helicopter 6-dof linear model [N sec/m]

dimensional and non-dimensional derivative of Z-force w.r.t. to pitch rate
in the helicopter 6-dof linear model [N sec]

dimensional and non-dimensional derivative of Z-force w.r.t. to vertical
velocity in the helicopter 6-dof linear model [N sec]

dimensional and non-dimensional derivative of Z-force w.r.t. to collective
in the helicopter 6-dof linear model [N]

dimensional and non-dimensional derivative of Z-force w.rt. to
longitudinal cyclic in the helicopter 6-dof linear model [N]

zeros of an eigenvalue problem and in the body/disc-tilt motion (equation
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5.12); helicopter position along Earth Z-axis (see Figure E.2) [m]

blade incidence w.r.t. respectively disc plane, shaft plane and control
plane [rad]

perturbed blade-element angle of attack due to flapping or lead-lag motion
(equations B.12 for the flapping motion and C.8 for the lead-lag motion)
[rad]

initial blade-element angle of attack (equation B.7 in the flapping motion
and C.7 in the lead-lag motion) [rad]

fuselage angle of attack (see Figure E.la) [rad]

horizontal stabilizer incidence (equation E.50) [rad]

built-in horizontal stabilizer incidence [rad]

coefficient in the blade lead-lag/ chassis second bending modes coupled
equations in Chapter 6 (o,=2+M_/m,)

rotor incidence corresponding to zero fuselage pitching moment [rad]
inclination of lagging hinge (see Figure 3.7) (0,>0 for lag back with
pitch-nose down) [deg]

variation in blade angle of attack due to blade flapping motion (equation
B.13, B.14) [rad]

blade flapping in the helicopter 6-dof model (B =a,~a, cosy -b, siny)
steady-state flapping angle in the flap-lag motion (equation 7.4) [rad]
blade droop angle (see section H.4.2, Appendix H) [rad]

flapping degree of freedom of the k-th blade [rad]

differential flapping as defined by Coleman transformation [rad]
coordinates of flapping motion in the non-rotating system as defined by
the Coleman transformation [rad]

blade precone angle (see section H.4.1, Appendix H) [rad]

coordinates of flapping motion in the rotating system as defined by the
Coleman transformation [rad]

helicopter sideslip angle [rad]

vertical tail incidence defined in E.54 [rad]

vertical tail built-in incidence [rad]

general rotor blade degree of freedom of the k-th blade [rad]

vector of coordinates in the non-rotating system as defined by the

T
Coleman transtormation ¥, = {ao a, b, Ay bN} [rad]
differential rotor mode in the Coleman transformation [rad]
vector of coordinates in the rotating system as defined by the Coleman

transformation ={x1 X2 X3 - XN}T [rad]

determinant of characteristic equation in an n-dof linear system (equation
4.48)

minors of elements T;,... T,, in critical pole distance criterion (defined by
equation 4.34)

minors of elements N,... T,, in vector shift method (equation 4.48)



Notations xiii

A", 14"l
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magnitude of modal ratio of pole s, (equation 4.50)

phase angle in I-dof problem and in response to an external sinusoidal
force (equation 2.13); displacement of mass m in dynamic absorber
problem; angle between the blade and the centrifugal moment arm defined
in Figure C 4

inclination of lagging hinge (see Figure 7.1 and 7.2) (§,>0 for lag back
with pitch-nose down) [deg]

inclination of flapping hinge (see Figure 7.1 and 7.2) (8,>0 for flap up
with pitch-nose down) [deg]

small parameter in pendular resonances; unit step input applied to an n-
dof system in the critical pole distance criterion; gravity term in the
KEWT wind turbine motion defined as ¢ =g / R

downwash angle (g, = v,/ V)

medium downwash angle at the horizontal tail [rad]

non-dimensional value of flapping hinge offset ¢,

non-dimensional value of lagging hinge offset e,

the k-th eigenvector of the general solution of an n-dof system of
elements ¢,

helicopter roll angle in basic motion

Euler roll angle and desired roll angle [rad]

blade initial inflow angle (equation B.7)

blade perturbed inflow angle (equation B.12)

Lock number y :<pC|“ceR4)/ L,

non-dimensional wind turbine chassis displacement in the second bending
modenn =x/R

terms of the expansion of the wind turbine motion (equation 6.3)
eigenvalues of Floquet transition matrix

non-dimensional uniform induced downwash of the rotor [-]
non-dimensional uniform induced downwash of the tailrotor [-]

term A = -y +A, in the 6-dof helicopter model [-]

A, =M, *A, uniform induced downwash of the tailrotor [-]

tr
helicopter advance ratio p = V / (QR)
non-dimensional u component of helicopter velocity u =u / QR [-]
non-dimensional tailrotor velocity along x-axis (equation E.37) [-]
non-dimensional v component of helicopter velocity M, =v/ QR [-]
non-dimensional w component of helicopter velocity u, =w / QR [-]
non-dimensional tailrotor velocity along z-axis (equation E.37) [-]

€
non-dimensional rotating flapping frequency vy :J | +(I)[23 +3 5

2(1£B)



xiv Notations
. . . .2 3 €

2 non-dimensional rotating lead-lag frequency v, = |@; + 5(1; ) {-1

0.,0,. Euler pitch angle and desired pitch angle [rad] :

0, pitch angle in helicopter basic motion [rad]

6 blade pitch angle in the 6-dof model (8 = 6,+ 6, - 8, cosy - 0, siny)

6, blade pitch angle [rad]

9, blade collective pitch [rad]; steady-state blade pitch angle in flap-lag
problem (equation 7.4) [rad]

O tailrotor collective [rad]

0, lateral cyclic pitch (8,, >0 for pilot stick to the right for the counter-
clockwise helicopter, and to the left for the clockwise helicopter) [rad]

0, longitudinal cyclic pitch (8,>0 for stick forward) [rad]

O/us helicopter pitch angle (see Figure 5.1) [rad]

0. blade twist [rad]

p air density p= 1.225 [kg/m’]

Po blade displacement in the coupled blade/chassis motion seen in the chassis
system of reference [m]

Pu blade displacement in the coupled blade/chassis motion seen in the blade
system of reference [m]

c decay coefficient in the 1-dof vibrating system (¢ = -§w,); rotor solidity
(plenitude coefficient) ¢ = I::: [-]

Ol blade static moment of a uniform blade (equation B.30) [N m’]

Oco» Opr  decay coefficient of collective and differential lead-lag mode

(N decay coefficient damping ratio of transition matrix eigenvalue A, defined
in 6.27 and G.8; static moment of inertia of k-th blade

R(l=<,)
Gy blade static moment around the flapping hinge 6,= '[ rdm [N m’]
0

T time constant of response in 1-dof system (equation 2.21 or 2.22 for an
oscillatory system); time constant of disc-tilt motion (equation 5.7) [~}

Tty Too N time constants of the body motion for a teetering and a semi-rigid rotor
(equation 5.6) [-]

Three time constant of regressing flapping mode (equation 5.30) [-]

T, T time constants of the degrees of freedom x; and x; in an n-dof system [-]

Trol time constant of roll-subsidence mode (equation 5.36) [-]

Tep time constant of short-period mode (equation 5.29) {-]

1, helicopter climb angle [rad]

Too Thin time constants of respectively rotor and tailrotor induced inflow

Q rotor rotational speed [rad/sec]

Q. tailrotor rotational speed [rad/sec]

® damped frequency o =@ v 1-& [rad]
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natural frequency of the x,... x, degrees of freedom [rad/sec]

blade angular velocity in the coupled blade/chassis motion seen in blade
system of reference [rad/sec]

natural frequency of collective lead-lag mode [rad/sec]

natural frequency of differential lead-lag mode [rad/sec]

partitioning of the natural frequency of differential lead-lag mode with
Floquet method (equations 6.38 and 6.40)

frequency of excitation force [rad/sec]

natural frequency of regressing flapping mode (equation 5.28) [rad/sec]
parametric excitation in pendular instability problem [rad/sec]

frequency of eigenvalue in the Floquet transition matrix [rad/sec]

natural frequency of I-dof vibrating system ®, =y k/m [rad/sec]

pendular frequency m;c“d =go, /1, [radfsec]

natural frequency of helicopter roll-subsidence mode [rad/sec]

natural frequency of helicopter short-period mode (equations 5.26 and
5.27) [rad/sec]

natural frequency of chassis motion in the second bending mode [rad/sec]
natural frequency of mass M in dynamic absorber problem [rad/sec]
dimensional [rad/sec] and non-dimensional [-] blade flapping natural
frequency of non-rotating blade (Q2=0) (for the flap-lag problem see

equation 7.9) o, = V,KB /1, 0y =,/ Q

natural frequency of mass m in dynamic absorber problem [rad/sec]
dimensional [rad/sec] and non-dimensional [-] blade lead-lag natural
frequency of non-rotating blade (2=0) (for the flap-lag problem see

equation 7.9) o, =yK /1 0, o,/ Q

damping ratio § = c/c, in l-dof problem and & = c/c,; in dynamic
absorber problem [-]

damping ratio of the degrees of freedom x,....x, in an n-dof problem [-]
damping ratio of differential lead-lag mode [-]

damping ratios in the differential lead-lag mode solutions with Floquet
method (equations 6.38 and 6.40) [-]

damping ratio of regressing flapping mode (equation 5.28) [-]

damping ratio of helicopter roll-subsidence mode [-]

damping ratio of helicopter short-period mode (equations 5.26 and 5.27)
[-]

damping ratio of chassis motion in the second bending mode &,= C,/C
[-]

damping ratio of uncoupled flapping eigenvalue in flap-lag problem
(equation 7.9) [-]

damping ratio of blade lead-lag motion in flap-lag problem (equation 7.9)
g.; = Cg / Cg erie 7]

Terit
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Y, ¥, heading angle and desired heading angle [rad]

¥, heading angle in helicopter basic motion [rad]

v azimuth angle [rad]

Wy azimuth angle of the k-th blade (\yk =y +(k —1) 2_1\7;) [rad]

Y blade periodicity in azimuth angle y, =2x [rad]

d blade lead-lag deflection in helicopter and wind turbine blade [rad]
Co steady-state lead-lag angle in equation 7.4 [rad]

&, lead-lag deflection of the k-th blade [rad]

Cniz differential lead-lag mode [rad]
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System used in order to non-dimensionalize the equations of motion

velocity)

Measure Nondimensionalized | Examples
with:
Lengths R g =¢,/R T =f/R . b -h/R
Surfaces A = 1R’ T & _o
ht Sh(/A ’ S\l - S\I/A
Volumes AR _ S 1 _
ht . ? Vfu~ =
AR :
Velocities QR vV u v
u o= vu = : vV = —
QR QR QR
Angular velocities Q P=p/Q2;q=q/Q ;T =1/Q
Time P M, T =t/t
pPAQR
Mass _
PAR p=_" -0t
pPAR
Moments of inertia m R’ _ I _
I =2 I =...
' mR*
Forces and A, =pAQR? C.=T/A, ; C. =mg/A
. . 0 T 0 G 0
derivatives 8F/(8 x, =X /A x =
B B 0 A
angle) ' ‘ '
Derivatives 3F/(d A =pAQR X, =X /Ay, =Y IA;z-=.
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Derivatives 8F/(d A, =p AQR? x, =X /A ;2=
angular velocity) and / =1J[ /A =
SM/(8 velocity) M o s M=
Moments and A, = pAQR? C. =M_A
. . 3 Q Q 3
Derivatives dM/(d m, =M, /A, ;m=.
angle) ' b ’
Derivatives SM/(S A, =pAQR’ m/ =M_/A, ; lI/’ =L /A, ; I's
angular velocity) 4 P
Derivativ‘es SM/(3 A, = pAR? m} = M_/A,
acceleration) v
Acceleration QR B W
w =
QR

Most Common Subscripts Superscripts

sp shaft plane . derivative to time

dp disc plane ' derivative to azimuth angle d/dt=Qd/dy

cp control plane A variable in Laplace domain

bl blade - non-dimensional notation

T tower

ch chassis

B flapping

4 lead-lag




Chapter 1

Introduction

"Things should be done as simply as possible, but not simpler”.

Albert Einstein

1.1 General Background

During the design of rotary wing devices (helicopters or horizontal-axis wind turbines),
simulation models are developed in order to:

- ascertain the device's performance;

- ensure aeroelastic stability;

- determine the system's response to different external perturbations;

- determine fatigue characteristics as well as extreme loads in critical components;
- design control systems.

The simulations are based on dynamic and aerodynamic models capable of predicting
the behaviour of these machines under different conditions. Clearly, developing
simulation models for rotary wing devices is a difficult and time-consuming task. Some
of the problems the designer has to face in these models are related to the large number
of degrees of freedom* ' of the rotor and the complex interacting phenomena between
the rotating system -the rotor- and the non-rotating system -the body (fuselage or
tower)-. The models used in rotary wing design should be as simple as possible, as far
as is consistent with the required accuracy and the specific case considered.

In particular, the preparation-phase of the simulation models, when the dynamic
equations of motion are analytically derived, is a demanding and time-consuming effort.
The effort required to derive the equations of motion, as well as the computational
effort, increase exponentially with the number of degrees of freedom being modelled.
The reason for this is that every new degree of freedom added to the model gives rise
not only to an additional equation of motion, but also to an increasing number of
coupling terms in the other differential equations.

Therefore it is important that, before commencing the actual derivation of a simulation
model, the designer has some indications as to how much detail should be included in
the model, in terms of:

: The terms in italics and with an asterisk are explained in the Glossary




2 Introduction

- how many degrees of freedom are needed

- which are the significant degrees of freedom to be included

- what are the couplings between the degrees of freedom considered (aerodynamic,
gyroscopic, coriolis, structural, etc.) and which of them are relevant?

The prediction of the necessary level of detail in the model should take into
consideration:

- the configuration being analyzed;

- the kind of loading cases being considered;

- the required accuracy;

- the purpose for which the simulation results will be used.

1.2 Aim of the Dissertation

The aim of the present dissertation is to develop a general method which can be used
by the design-analyst to determine the necessary degrees of freedom to be considered in
a simulation model for helicopters and horizontal-axis wind turbines, before deriving a
complete model.

The proposed procedure, the so-called "critical pole distance method", may be
considered as an extension of the classic "Campbell diagram" ("spoke diagram"), a
frequently applied tool in rotary wing engineering (see section 4.5.1 of Chapter 4). In
the Campbell diagram, subsystems and specific deflection modes are represented by
their uncoupled eigenfrequencies as a function of rotor speed. By examining the
diagram, it is possible to detect the critical points where dynamic couplings between the
different deflection modes may occur.

The critical pole distance method may be used to determine the necessary degrees of
freedom to be included in a simulation model. In essence, this method detects the
regions of dynamic couplings between different subsystems and modes involved in the
motion. In the critical pole distance method the degrees of freedom involved in the
motion are represented in the complex plane* by their uncoupled eigenvalues.
Examining the representation in the complex plane, the significant degrees of freedom
of the simulation model can be determined by defining "critical regions". A critical
region is defined as an area of the complex plane where potential couplings between
different modes of motion occur. The critical regions are detected by comparing the
relative positions in the complex plane of different uncoupled poles and/or different
deflection modes participating in the motion. On the basis of the critical pole distance
method, the modes involved in the motion can be divided in three classes:

- modes to be discarded from the model;
- modes to be kept separately in the model (neglecting the couplings terms
between these modes and other degrees of freedom);
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- modes to be kept in the model including the essential coupling effects.

The benefit of the critical pole distance method relative to the Campbell diagram is that
whereas the Campbell diagram gives information only on the system's frequencies. the
critical pole distance method reveals both the frequencies and the damping existing in
the system. The trequency shows the harmonic character of the motion (whether or not
it is a vibration), whereas the damping gives information on the damping-type forces
(of aerodynamic, gyroscopic, structural, coriolis or other nature) involved in the system
which can have a stabilizing effect on the motion.

The crucial question to be investigated in the critical pole distance method is how the
relative distance and position of the poles correlate with the strength of the intermodal
couplings or, in other words, what is the interpretation of the relative position and
proximity of different poles and/or excitation sources. To answer this question, in
section 4.2 of Chapter 4 the so-called "critical pole distance criterion" is formulated
which can be applied to quantify the relative position of two poles found in the close
proximity. The criterion depends exclusively on the uncoupled frequencies and damping
characteristics of the modes involved in the motion, but its quantification is bascd on
the investigation of a coupled model. The quantification of this criterion will be
exemplified in Chapter 5, Chapter 6 and Chapter 7 for three types of problems from
current helicopter and wind turbine design.

The critical pole distance method can be used both as a design tool and an evaluation
tool. The main advantage is that, once this method is quantified for a certain class of
problems, it can be applied before the actual derivation of the coupled dynamic
equations of motion is undertaken.

As a design tool, the critical pole distance method may be used to investigate different
candidate configurations in the preliminary design study. The models developed in the
preliminary design phase have a limited number of variables and limited detail.
However, it is of the utmost importance in this stage to consider "all" different
disciplines involved in the design. In other words, in the preliminary design the models
should be as simple as possible, but not simpler. For example, in developing simulation
models for either helicopter flight dynamics or wind turbine structural dynamics, the
designer must not neglect the overlap between the rotary wing disciplines: handling
qualities tests are affected by elastic blade deformations and flight control design; wind
turbine structural dynamic models are influenced by control design considerations as
well (see Figure 1.1).

As an evaluation tool, the critical pole distance method can be applied to obtain insight
in already-existing extensive simulation models. Extensive models are models
developed over years of experience including all kinematic, structural, aerodynamic and
control dynamic aspects. They are usetful to be applied when one attempts to reproduce
accurately the characteristics of the system. Nevertheless, using extensive models to
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investigate a specific phenomenon is not convenient because no physical insight can be
obtained (due to the large number of terms and parameters involved in the model).
Therefore, for a certain operating condition, building a case-specific model can be of
help in order to get insight in the physics of the problem. The critical pole distance
method can be used to build case-specific models since it gives indications on the
necessary structure of the analytical model to be developed for a specific case.

As a last application, the critical pole distance method can be used in the evaluation of
flight simulation models for flight simulators. Also here, use of specific models
depending on the particular helicopter configuration, the flight condition and the fidelity
requirements is desirable.

.

/w N
/ FLIGHT \\ / WIND TURBINE
‘*‘ DYNAMICS ( STRUCTURAL \
| | DYNAMICS ;
T \\\\\\ /

CONTROL
DESIGN

Helicopter Wind Turbine
Figure 1.1 Example of interdisciplinary approach in rotary wing engineering

The present dissertation is concerned with the application of the critical pole distance
method to investigate the following problems:

- effects of rotor disc-tilt dynamics on helicopter control response and how these
can be predicted with the critical pole distance method;

- investigation of the instability of the KEWT * in wind turbine;

- prediction of the effects of blade kinematic couplings* on the flap-lag motion
studied in the case of an articulated helicopter in hovering flight. From the
multitude of kinematic couplings only the pitch-flap coupling* and pitch-lag
coupling* are considered.

Criteria and rules of thumb on how to judge whether poles should be considered as
remote, or in close proximity, will be developed in each of the problems analyzed.
These criteria can be used by the designer as guidelines on the necessary model
structure.

2 KEWT wind turbine was a two-bladed prototype developed in the 1980's, which
experienced violent vibrations during the experimental tests
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1.3 Limitations of the Dissertation
The following limitations apply to the present work:

- the level of aerodynamic modeling is kept simple. The inflow is assumed to be
uniform and no inflow dynamics are used, except in Chapter 5, section 5.5
where, in order to quantify the critical pole distance criterion for the interaction
of the rotor disc-tilt dynamics and helicopter body dynamics, a quasi-steady
dynamic inflow is assumed for both rotor and tailrotor. The importance of
aerodynamics in simulation modeling will be reviewed to a limited extent in
section 3.1 of Chapter 3. No stall effects are included:

- lumped flexibility* is assumed for the blades;

- the simulation models are linearized in the critical pole distance method;

‘ - for helicopter motion, terms in the equations of motions, resulting from forward

| flight aerodynamics that are periodic with the rotor rotation, will be neglected.

| This approximation is valid for low advance ratios and for hovering flight;

i - the simulation models described in this work consider only phenomena involving
the rigid-body modes of the helicopter fuselage (respectively wind turbine tower)
and the rotor modes. From the rotor modes, only the lower blade flap bending
mode (first and second), lag bending mode and blade torsional elastic
deflections, excluding torsional dynamics, will be included. Accordingly, the
frequency range considered in these simulation models will be between 0.1 and
5 Hz for helicopters and between 0.1 and 10 Hz for wind turbines. For
helicopters, this range corresponds to handling qualities and flight dynamics
applications (see Figure 3.1, in Chapter 3), for wind turbines the frequency
ranges of interest correspond to structural dynamic modeling in the low-
frequency range. Phenomena that involve blade torsional modes leading to
flutter* and phenomena involving higher blade bending modes and elastic
fuselage (tower) modes essential for vibration investigations are not discussed in
the dissertation. An important observation should be made here: the frequency
range of interest in which these simulation models are valid does cover the class
of low-frequency rotor and rotor/body instabilities (such as ground-resonance*
and air-resonance* or whirl-flutter*).

The listed limitations will constrain the range of applicability of the critical pole
distance method to the design of wind turbines in the normal range of operation and to
helicopter applications in the range of standard manoeuvres within the flight envelope.

1.4 Motivation of the Dissertation

Developing quantitative criteria on the necessary degrees of freedom for simulation
models is a problem not yet completely solved. This is probably due to the complex
phenomena associated with rotary wing devices. Nowadays, the development of
simulation modeling is more and more directed towards high-fidelity mathematical
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modeling. Although such models have the advantage to be applicable without
limitations, they take years of research and development and provide no insight into
specific problems. As the development of high-fidelity models continues, the danger
exists that the designer will continue to add complexity to the model, without analysing
whether or not this is really necessary. It is therefore very useful to have some
guidelines on the level of detail to be considered in the models, before actually starting
the derivation of the simulation model.

Exemplifying some of the contradictory statements which still exist in the literature
Sopher and Cassarino [1988]% compared eight different software codes from industry,
university and government in the U.S.A. used for helicopter stability and control
response analyses. Their conclusion was that "..there was considerable disagreement
among predictions and no analysis emerged as sufficiently superior and
comprehensive....There were insufficient data to isolate factors responsible for the
differences. It was unclear how representations established to be important for simple
analytical models were included. Also unclear was the extent to which improvements
beyond these features were present.”.

Also, the wind turbine community acknowledged that "because of the complex
interaction of a multitude of phenomena (wind shear*, turbulence*, tower shadow¥, up-
wind turbine wakes*, yaw angles), there is not much progress made in the
understanding of how much detail is required in modeling" (Quarton [1990]°").

1.5 Outline of the Dissertation

Following the Introduction, Chapter 2 defines the main concepts used in this
dissertation. This chapter is meant to establish an analogy between a one degree-of-
freedom vibrating system and the separate rotor blade degrees of freedom. It is
demonstrated that the rotor dynamics in different degrees of freedom can be reduced to
a one degree-of-freedom vibration problem of a mass-spring-damper system. Chapter 3
presents a literature survey on the necessary degrees of freedom for helicopters and
wind turbines. Also, an overview of the so-called "blade structural (elastic) couplings*"
in the hingeless rotors and "blade kinematic couplings” in the articulated rotors is
presented. These couplings exist both in articulated and hingeless rotor configurations
and can be used to tune the level of damping existing in the rotor blade. Rules of
thumb on choosing the blade elastic couplings in order to avoid dynamic instabilities
and improve the system characteristics are elaborated. In Chapter 4, the "critical pole
distance method" is proposed, to determine the level of detail needed in rotary wing
simulation models. The method will be compared with other design tools considering
the level of detail and couplings in a simulation model. Chapter 5 applies the critical
pole distance method, investigating the effects of rotor disc-tilt dynamics on helicopter
control response, both for an articulated and a hingeless helicopter configuration. The
predictions made in the complex plane are checked by simulating different manoeuvres
in the time-domain and using different level-of-complexity coupled body-rotor disc-tilt
models. Criteria for the designer on when to consider a body-rotor disc-tilt coupled
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model are elaborated using the critical pole distance method. Chapter 6 applies the
critical pole distance method to determine the mechanism of instability between the
blade lead-lag degree of freedom and the vertical displacement of the tower in fore-aft
bending observed in thc KEWT two-bladed horizontal axis wind turbine. Solutions
which can be used to eliminate this instability are established. Chapter 7 applies the
critical pole distance method to the rotor blade coupled flap-lag motion, allowing for
the migration of the poles with the blade kinematic couplings existing in the system.
Criteria for the design-analyst on a flap-lag coupled model for an articulated helicopter
are eclaborated. Finally, gencral conclusions, a review of the assumptions made and
future extensions to this work are discussed in Chapter 8.






Chapter 2

Mathematical Tools used in the
Dissertation and their Physical Meaning

"It is usually taken for granted that the aeroelasticians can applv Newton's second law
without error and when the results of analysis are unsatisfactorv the aerodynamic is
often faulted. There is evidence that structural dynamics analysis is not vet adequately
understood and that prediction of rotating-beam dynamics is not yet solved.”

Robert A. Ormiston [1983]

The rotor blade of a helicopter or wind turbine is free to move in space, with its
geometrical position in space with respect to a fixed system of coordinates being
defined by a multitude of degrees of freedom. One obvious motion of each blade is the
rotation around the hub. There are also less visible motions, resulting from blade
flexibility, which define the blade degrees of freedom: flapping (out-of-plane
deflection), lagging (in-plane deflection), torsion and pitch (see Figure 2.9). The present
chapter will demonstrate that the motion of the blade in these degrees of freedom can
be reduced to a vibration problem of a one degree-of-freedom mass-spring-damper
system.

2.1 One Degree-of-Freedom Vibration Problem

Consider a mass m suspended by means of a vertical spring of spring constant k,
including also a damper mechanism of damping constant ¢ (see Figure 2.1). The mass-
spring-damper system which is initially in equilibrium, is perturbed at t = 0 by applying
a force F_,. Assume as initial conditions x(0) =x,, X(0) =%,. The force F,,
produces a displacement x(t), measured positive downward. One is interested in

studying the motion of the mass after the initial perturbation.

The dynamic response of the system depends on the system properties as defined by
inertia, damping and stiffness. Applying Newton's second law, the equation of motion
of the mass-spring-damper system subject to an external (input) force F,, with
specified initial conditions is:

mi(t) = Fapm(t) - ¢x(t) - kx(t) ; x(0) =x
inertia  load damper stiffness

o » X(0) =%, 2.1




10 Mathematical Tools
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¢ AE,, =k
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Figure 2.1 One degree-of-freedom vibrating system
The following parameters are defined:
€ =clc, damping ratio where ¢, =2ykm s the critical damping in the

system. If the damping in the system is smaller than the critical
damping ¢ < ¢, (§ < 1), the response of the system is oscillatory; if
the damping in the system exceeds the critical damping ¢ 2 ¢, (§ 2
1), the response of the system is aperiodic.

o =vk/m natural frequency of the system (undamped).

n

Dividing equation (2.1) by mass m and using the above definitions, the equation of
motion of the mass-spring-damper system takes the form of the usual one degree-of-
freedom vibration problem with known initial conditions:

(1) +28@ (1) +0;x(t) =F_(H/m x(0) =x, ; x(0) =%, 2.2)

Equation (2.2) enables comparison of the dynamic behaviour of different systems
independent of their mass characteristics, by defining a vibrating system by its natural
frequency and damping. Mathematically, this equation is a linear non-homogeneous
second-order differential equation and its solution (the total response) is the sum of the
general solution x,,, corresponding to the homogeneous equation (the so-called free or
natural response*) and a particular solution x ,, corresponding to the applied load (the
so-called forced response*).

part

2.1.1 The Free Response
The free response of a dynamic system is the solution of its differential equation of

motion when the input is identical to zero. This corresponds to the general solution of
the homogenous equation:

K(t) +2E@ X (1) +o,x(t) =0 x(0) =x, ; %x(0) =%, 23
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Solving the characteristic equation of (2.3), the solutions represent the motion
eigenvalues:

s?+28m s v, =0 (2.4)

Depending on the damping in the system, the eigenvalues can be either complex
conjugate or real and correspondingly, the motion is periodic, respectively aperiodic.
Three different cases may be distinguished:

- & > | the system is overdamped:

Sl 2 T _gwn * (Dnvgl -1 ; Xﬂcn - (:]e\'l +C2e\‘ (25)

- & =1 the system is criticallv damped:

S, = -3 X, =(C, +C,t)e™ (2.6)

2 n gen

- & < 1 the system is underdamped:

= ¢ (C, cos(wt) +C,sin(0t)) = @.7)

X
. gen
S, = o tio yl -§ :

gen

=R e cos(omt —Sgen)

where 6 =Re(s ,) = -£®, is the "decay” and ® =Im(s ,) = /1 -E> is the
"damped natural frequency" (the frequency of transient oscillations).

The constants C, and C, can be determined in each case by imposing on the general
solution the initial conditions from (2.3). For the underdamped case one obtains:

c - (2.8)
O]

The amplitude of the solution is R = \/ Ci+C; = \/ Xo+(k, /@) and the phase angle

C, X
is 3, =tan"(—‘) =tan*( 0 )
& Cl

0
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The general solution then becomes:

X
Xy =€ (xocos(a)t)+z)9sin((ot)) = X0 +k,/ of e cos(wt-3 ) 2.9
In a multiple degree-of-freedom system the free response is a linear combination of a
number of characteristic motions of the system - the so-called natural modes of
motion*. Each mode of motion corresponds to an eigenvalue (pole*) of the system as
will be seen in section 2.2.

2.1.2 The Forced Response

The forced response of a dynamic system is the solution of its differential equation of
motion depending only on the input F, (t). The case of a sinusoidally applied load is a
common one in rotary wing vibration problems. Consider an external sinusoidal force
exerted on the system:

(t) =F,cos(w,,;t) (2.10)

dpp|
The particular solution of the problem (2.2) has the form:

t)+ Bsin(m

excit )

t) = Rcos(o)

excit )

X = Acos(o t-8) (2.11)

excit
The response of the system will also be sinusoidal at a single frequency: the same
frequency as the applied load frequency. The constants A and B can be found by
substituting the expressions of Kot » )'cpm ' X in equation (2.2) and collecting the

terms in A and B. By doing this it results:

__ R/moo,, o F/mfo (02 -02) 21
(01 -0L) +00.) (0 -0 +220,0,.]
and the amplitude and phase angle of the forced response are found as:
R = JATTE - Fy/m
‘/(“’ ‘”excn) +(2§wn¢°exci,)2 (2.13)

2 .
5 —tan (2] - {2505
A

w, -0

excit
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2.1.3 The total response
The total response of a linear constant coefficient differential equation is the sum of the

free (natural) response and the forced response. In case of a mass-spring-damper
harmonic free motion, the total solution is obtained combining (2.9) and (2.11) as:

, X\ . - F,/m)cos(m_ .t-d ,
%, (1) = | % (6 e*tcos(, /T E -8, )l D) ’ (2.14)
N >

2 2
((D“ Oyt ) + (2 é (Dn wcxcil )

Considering as a numerical example x(0)= 0.5 m , X(0) =0.2 m/sec, w,=2 rad/sec,
£=0.1, F,=100 N, m=2 kg, ®_ =10 rad/sec, the general, particular and total response of
the vibrating system are represented according to (2.14) in Figure 2.2.

Amplitudey
(m) )
1 gen X gen
038 ’ Rpar

A
SN, \ LY ) =

time(sec)
06 o u

o\

-1
Figure 2.2 The free, forced and the total response of a one degree-of-freedom vibrating
system
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Usually, the total response is divided into another pair of quantities: the transient
response* and the steady-state response*. The transient response is that part of the total
response which approaches zero as time approaches infinity. The steady-state response
is that part of the total response which does not approach zero as time approaches
infinity (the response of the system after the transients died out). Usually in dynamic
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systems the natural motion dies out quickly compared to the forced motion which
persists indefinitely, leading to the custom of referring to the natural motion as the

transient and the forced motion as the steady-state.
2.2 Laplace Representation of the Response

The problem of the mass-spring-damper system response in the time-domain (2.14) can
be equivalently treated in the Laplace domain. The Laplace transformation is defined in
the following manner:

Let x(t) be a real function depending on time t. Then L[x(t)] = )‘((s)dSf Ix(t) e dt is

0
called the Laplace transfonmation of x(t) where s is a complex variable independent of
time.

Applying the Laplace transformation, the vibration problem of equation (2.2) with a
sinusoidal force (2.10) can be written as:

[$28(s) -sx,-%,] + 280, [sk(s) ~x,] *+ @;%(s) =F(s) Ko s (2.15)
m g2 +qy

excit

yielding for the response in the Laplace domain:

2 .
Fy s/(s+0a) (5+250, )%, +%, (2.16)

R(s) =

m 2 2
mg+28m s+o, s*+2Em s+e,

The first term on the right-hand side in (2.16) is the forced response and the second
term is the free response of the vibrating system.

Assuming initial conditions zero, the transfer function* of the system can be defined as
the ratio of the Laplace transforms of its output and input:

G(s) = X(s) 2.17)
F(s)

In this way any dynamic system characterized by time-differential equations of motion
can be equivalently represented in the Laplace domain by its transfer function as seen
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in Figure 2.3.

F(t)

——
Input

System

| x(®),

Output

F(s)

G(s)

X(8),

Figure 2.3 Representation of a dvnamic svstem in the Laplace domain

For the vibration problem analyzed in this section, assuming zero initial conditions

x, =0, X, =0 in (2.16) yields as the transfer function:

1

G(s) = —v
s +28w s+

(2.18)

Putting the denominator polynomial of G(s) equal to zero defines the system poles*,
whereas putting the numerator polynomial of G(s) equal to zero defines the system
zeros*. For the vibration problem investigated in Figure 2.1, the system has only poles

which may be expressed as:

B

5, =-&o, tio y1-§

(2.19)

The poles and zeros can be represented in the complex plane (the s-plane). The
complex plane is defined as the plane in which the abscissa -the so-called "real axis"-
gives the damping ¢ in the system and the ordinate -the so-called "imaginary axis"- the
damped frequency . The representation of the poles and zeros in the complex plane
illustrates the dynamic system response characteristics. There is a strong correlation
between the complex plane picture of a dynamic system and the corresponding

character of the motion, as will be demonstrated in sections 2.2.1 and 2.2.2.

2.2.1 Physical interpretation of poles

The poles provide information on the nature of the free (natural) motion of the system.
There is a certain correlation between the position of the poles in the complex plane
and the dynamic behaviour of the system. Miniature pictures of the time response are
plotted in the s-plane in Figure 2.4 in order to help the reader to make a mental
correlation between the complex plane and the natural response of the dynamic system.
The case &< (complex conjugate poles) is analyzed and only the positive quadrant of
the left half-plane is represented, the representation in the negative quadrant of the
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complex poles being similar. The following conclusion can be drawn looking at these
pictures:

- if the poles are on the imaginary axis (Figure 2.4 case (a)), the response of the
system is always an undamped oscillation; the farther away from the origin, the
higher the frequency;

- if the poles are on the real axis (Figure 2.4 case (b)), the response of the system
is always pure exponential; the farther from the origin, the faster the response
decreases; in the right half-plane the motion is unstable;

- poles in the left half of the complex plane (Figure 2.4 cases (c) and (d)) are
damped oscillations; the more damping is in the system, the quicker the response
decays.

) ®(Hz)
v (C) Damped ﬂ
) frequency

-0 (Hz)
Damping

T T 3 4

Figure 2.4 The semicircle of the complex eigenvalues and its correlation to the natural

response

Observe that when the damping in the system varies, the root loci of the complex
eigenvalues move along a semicircle in the left hand side of the complex plane, centred
in the origin and with a radius equal to the natural frequency w, of equation:

S N R @2

The correlation between the position of the poles and the system natural response can
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be expressed by means of the speed of decay of the response®. The commonly used
measure of the speed of decay is the time constant*®.

The time constant of a transient motion represents the time in seconds needed for the
system to reduce that transient to e' = 0.368 of its initial value.

For £>1 (the poles are real and distinct), assuming a stable motion (s, ,<0), the transient
response is a sum of two decaying ecxponentials, each with its own time constant. For
& < 1 (the poles arc complex conjugate), the transient motion is a damped harmonic
motion of a certain time constant.

Solving e " =e¢™" in the time constant definition, the time constant of a decaying

exponential can be defined as:

| (2.21)

Solving ¢ “® =e¢ "', the time constant in the case of a harmonic motion can be
defined as:
S N (2.22)
Real(s) &o,

The pole closest to the origin (the so-called "slow pole") has the largest time constant
and takes longest to decay and is the dominating pole of the motion. To speed up the
response of the system (that is, to reduce its time constant), the pole must be moved to
the left in the complex plane. In the case of a harmonic motion, looking at (2.22), it
follows that to speed up the response of the system, either the damping ratio § or the
distance o, of the poles to the origin must be increased.

2.2.2 Physical Interpretation of Zeros

Additionally to the representation of the poles in the complex plane, a dynamic system
is characterized by zeros. The vibration problem defined by equation (2.2) in the time-
domain and by transfer function (2.18) has no zero. Zeros are characteristic to a
multiple degree-of-freedom system and appear as a consequence of the couplings in the
system.

One simple example of a system with a zero is the "dynamic absorber". Consider a
mass M suspended on a support as in the previous example of Figure 2.1 by means of
a spring of constant K, which can be displaced with x(t) from its initial equilibrium by
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applying a force F,,;. A small mass m (m « M) is attached to the mass M via a spring
of constant k and a damper ¢ (see Figure 2.5). Assume that mass M moves farther and
faster than mass m.

K
O N M
x(t)l cl - “xx
e m oo Fawl
sor 15,5

Figure 2.5 Vibrating system with zeros
Using the Newtonian approach, the equations of motion of the configuration of Figure

2.5 are:

{Mii = -Kx -k(x-8) -c(x-8) +F_ (1) 2.23)

md = k(x-8) +c(x-98)

Dividing the first equation of system (2.23) by M and the second equation by m,
rearranging the terms and using the following notations:

k c ._ I c . C (2.24)
; O = [— ;& =—; m = ;o — =28om*; — =200,
° m ¢ C.s M M 50, m s,

the equations of motion (2.23) become:

W =
X

2| =

" * L3 2 > - N S -m'@: =
{x+2m Loy X + (@, +m'®;)x -2m'E 0,0 ~m'w; 3 =Fn (D) (2.25)

-28w k-0 x+8 +28 0,8 v, 8 =0
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Applying the Laplace transformation to (2.25), the response of the system in x(t) is:

o ) * L a2
’ F () 2mEw;s -m'o;

0 § 28w, s +0]
R(s) = . _
s*+2mE s +o) rm'o; -2m'E e, s -m'o;
(2.26)
) , R
-28w,s ~w; 57 +28 @, s +w;
5 2
_ (s +28 0,3 +@5 ) F (s)
* 2 2 2 2 22
st st 28 @ (1 +m*) +57 (0] +@ +m'0;) +3-2E 0, 0, +0, ®;
The transfer function showing the effect of F,, on x is then:
> 2@ 2
x S S+ [(V ) +0)5
G(S) - ( ) = 2 b’y 2 » ] (2‘27)
Fon(8)  §t467 28, (1 +m*) +5*(0; +0] +m'®;) +5- 25 0, 0 +0, 0
and contains two zeros:
- ; 72 228
z,, =-fo,ximyl-§ (2.28)

It can be demonstrated that the small mass m is actually placed to reduce the vibrations

x(t) of M, the spring force k(x-8) and the damper force c(X -8 ) opposing the mass M
and propelling the mass m.

Consider the numerical example of @,= 10 Hz, ®;= 5 rad/sec, &= 0.2, m'= 0.05 and a
unit step input F,_,(s)= 1/s applied to the system. Figure 2.6 represents in the time-
domain the response of the system (2.26) for the following cases:

- case a presents the response x(t) to the unit step when no mass m is added to the
system (in this case the problem reduces to that of the one degree of freedom
with constant amplitude of section 2.1);

- case b presents the response x(t) of the system when a mass m is added to the
system;

- case ¢ presents the response x(t) of the system when the eigenfrequency of the
subsystem m-k-c is decreased from w;= 5 rad/sec to ®;= 1 rad/sec, keeping the
damping ratio & constant (in the complex plane this means that the system zeros
given by (2.28) move further from the origin).

Comparing cases b and c, it appears that moving the pole further from the origin results
in a decrease of the amplitude of the response.
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Figure 2.6 Effect of zero on the dynamic absorber

Concluding, whereas the poles give information on how quickly a system can react to a
perturbation by means of time constants, the system zeros express how much the
system reacts to the perturbation as compared to its steady-state position (the so-called
response overshoot*). The influence of the relative position of the system's poles and
zeros in the complex plane can be expressed according to van de Vegte [1994]'* as
follows: a zero far away from the pole has little effect on the natural response; a zero
close to a pole reduces the effect of that pole on the system's response. If a zero
coincides with a pole, the effect of that pole on the system response will be cancelled.

2.3 Resonant Excitation (Primary Resonance)

Assume that the forcing frequency . is the same as the natural frequency of the
system ®, The system can be in resonance (the so-called "primary or ordinary
resonance* ") depending on the damping existing in the system. In case of pure
resonance (no damping in the system) the equation of motion of the mass-spring
damper system is:

K(t) +@;x(t) = (F,/m)cosa,t x(0) =x, ; %x(0) =%, (2.29)
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and the solution of equation (2.29) is:

F()

x =C cosm t+C sinm t+ tsinw, t (2.30)

Because of the presence of the term t sinm,t, the motion becomes unbounded as t— oo,
regardless of the values of C, and C,. Consequently, at resonance, the solution of the
motion grows proportional to t.

Returning to (2.11), the non-dimensional response amplitude R/R ., and the phase

angle & as given by (2.13) may be represented as a function of the non-dimensional

forcing frequency o, / ®, as shown in Figure 2.7. R . represents the static (steady)

response of the system when the applied load is steady (zero excitation frequency
F,/ m

steady -

0= 0) and is defined by R
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Figure 2.7 Magnification ratio and phase angle of the vibration to a harmonic excitation

Looking at Figure 2.7, the characteristics of a one degree-of-freedom vibration in
resonance can be summarized as:

if the system is excited at its natural frequency ®., ~ ®, and no damping is
present, the system response increases to infinity in amplitude leading to
resonance; when damping is present, the response reaches a maximum close to
the resonant point. It is often not realized that for very large damping, the
response at resonance may even be smaller than the static response, although one
excites the system at the resonance frequency;

at very high excitation frequencies, all system responses attenuate;




22 Mathematical Tools

- at the resonant condition, the phase angle between the external excitation and the
resulting motion is always 90°, irrespective of the amount of damping that exists
in the system. This means that the maximum response of the system comes 90°
after the maximum excitation was applied.

Returning to the complex plane representation, and assuming the system at resonance
o, = o, the relative vertical distance of the system's eigenvalue to the line of
excitation ®,,. = ®, can be defined as (see Figure 2.8):
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Figure 2.8 Resonant condition in the complex plane

A criterion for resonance in the complex plane can be defined as:

In a resonating system, if the relative distance in the complex plane of the eigenvalue
to the excitation line is small, the amplitudes of the response will grow exponentially to
the point of structural failure:

d(o_,,0) =1-y1 -£? << 1 Structure failure in resonating system (2.32)

The acceptable value for condition (2.32) depends on the safety factor of each specific
case considered.
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2.4 Dynamic Instability. Difference between Resonant Response
and Instability

In case of primary resonance, the applied load originates from an external excitation. In
rotary wing engineering, an important component of the applied load results from
acrodynamic loading. The aerodynamic loading contains not only external excitations
(such as gusts and control inputs) but also excitations that arise from the response of
the structure (harmonic or non-harmonic). These are the so-called "motion-induced
loads" and contain components proportional to both velocity and deflection of the
response.

Assumc now the applied load in equation (2.1) as a motion-induced load proportional to
velocity:

mX +cx+kx =c¢, X (2.33)

Depending on the value of the coefficient c,, the problem is equivalent to:

- ¢, <¢ damped free vibrations where the solution x— 0 when t— oo;

=

undamped free vibrations;

o
Il
O

- c,>c¢ dynamic instability.

For ¢, > ¢ (dynamic instability) equation (2.33) can be written as:

x—zgm"(ﬁ—l) x+ox =0 (2.39)

C

with eigenvalues s , =

1 )h. The solution of equation
(2.34) is:

12 st

Be—.‘;(n"t[(c:/c—|):_(1/§)] (2.35)

X = Ae" +Be :eé(nnt(c:/r—l)[Ae;kuul[(c:/c-l) ~(I/§)]

Whether the motion is harmonic or not depends on the sign of (Cz_])z_ (1)2.
NG

So, -y . . ..
However, because of the term e (e ) the response increases exponentially in time.

Compared with the resonance case, where it was shown that the response increascs
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linearly with time t, in the case of dynamic instability the system response increases
according to e'. Bielawa [1992]°, generalizing this result, comments on the
aeromechanical problems: "Responses that grow linearly with time are typically due to
one or more applied extemal loads oscillating at the resonant frequency; Responses that
grow exponentially with time are typically due to one or more motion-induced loads
that are in phase with the response velocity such that they feed energy into the system
from some outside source. In practice, however it is difficult to clearly distinguish
between the class of resonances and dynamic instabilities because of the presence of
damping, non-linearities, time-varying dynamic parameters, etc. Typically, a clear-cut
exponential growth behaviour may only be in evidence over a short period of time
before a (nonlinear) limit cycle mechanism might begin to predominate. However, all
identified instabilities should be regarded as being capable of producing responses that
can grow exponentially to the point of structural failure”.

2.5 Parametric Excitation. Difference between Resonant and
Parametric Excitation

The rotary wing designer also has to deal with the class of pendular (parametric)
resonances*. Pendular resonances and instabilities appear in parametrically-excited
systems, i.e. systems in which the excitation depends on the system degree-of-freedom
x. If the forcing function is a periodic function and depends on the system's variable
through a small parameter €, the motion of the system is given by a differential
equation of the Mathieu type (Mathieu used this equation for the problem of vibrations
of an elliptic membrane). For the undamped case of a parametrically excited system,
the system equation of motion is:

£ +[mﬁ +g cos(mmnt)]x =0 (2.36)

A differential equation similar to Mathieu's type but where the forcing function is of
more general nature was given by Hill (who used it to study the motion of the Lunar
Perigee) in the form:

X+[mﬁ+e§;cos(mkt)]x =0 (237

Equation (2.36) is usually called a "Mathieu-Hill equation” and represents the simplest
form of a parametrically excited system, containing a natural frequency varying
harmonically in time. The solutions of Mathieu's equation are given in terms of
Mathieu's functions. The important question in pendular resonances is not what the
exact solution is, but which are the regions of instability. Assuming small €, the
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regions of parametric instability are in the vicinity of:

= ; K-=123,.n (2.38)

If K = 1, the instability is in the vicinity of o = 20, and is the principal parametric
resonance. The principal parametric resonance is generally considered as the most
dangerous and unstable region. K = 2 and o_ = ®, corresponds to the secondary
parametric resonance. In this case, if the system is excited by a resonant force as well,
the two resonances superimpose. Further, as K increases, the regions of instabilities
decreasc and become less dangerous.

Distinction should be made between the ordinary and parametric resonance, the
parametric resonance being characterized by a multitude of regions of instability where
the response amplitude increases not linearly, but exponentially with time. Parametric
resonance is not only dangerous because of its multiplicity in instability regions but
also due to the power of the instability.

2.6 A Parallel between the Rotor Dynamic Characteristics of
Helicopters and Wind Turbines

The main blade degrees of freedom are defined in Figure 2.9 as being: flapping (out-of-
plane deflection), lagging (in-plane deflection), torsion and pitch degrees of freedom.
The blade dynamic characteristics will be derived in this dissertation assuming lumped
flexibility for the blades. This is equivalent with the "rigid-blade concept" introduced by
Young [1962]'*.

Torsion

Figure 2.9 Rotor blade degrees of freedom
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In the rigid blade concept, the flexible blade is assumed to be rigid in bending and
torsion, the flexibility of the blade being concentrated in virtual hinges by means of
springs (flexible lumps). Each hinge focuses on blade motion in one of the above
mentioned degrees of freedom and is characterized by a specific offset and spring
constant (see Figure 2.9).

Assuming the blade flapping, lead-lag and torsion as being uncoupled, the next sections
will reduce the motion of the blade to that of a vibrating mass-spring-damper system.

2.6.1 Helicopter and Wind Turbine Flapping Dynamics

Consider the blade of a helicopter or wind turbine rotor, free to move only in the
flapping direction by means of a flapping hinge as shown in Figure 2.9. The equation
of motion for the flapping degree of freedom was derived in Appendix B under the
following assumptions (these assumptions are valid throughout the entire dissertation,
except Chapter 5, section 5.5 where quasi-steady dynamic inflow is considered):

- for both helicopters and wind turbines, the blade is modeled as being rigid both
in bending and torsion and having a flapping hinge at an offset e, from the
rotor hub of hinge spring Kg;

- the blade rotates at a constant rotor angular speed Q;

- the effects of the helicopter respectively tower motion on the blade motion are
neglected;

- the flapping angle and the inflow angle are both assumed to be small;

- the inflow is assumed to be uniform and no inflow dynamics are used;

- the blade tip loss factor is equal to unity;

- no pitch-flap and pitch-lag couplings are considered;

- the blade has a constant chord;

- the blade is not twisted;

- gravity is neglected in case of helicopters and considered in case of wind
turbines;

- for wind turbines, the wind comes to the rotor from axial and lateral
(crosswind*) direction. No wind-shear* effects are considered;

- the reversed flow region is ignored; no compressibility and stall effects are
considered;

- the blade elastic axis, aerodynamic axis, control axis and centre of mass
coincide.

All these assumptions were made in order to establish an analogy between the dynamic
behaviour of a helicopter and a wind turbine rotor blade. Presuming the helicopter in
forward flight with advance ratios not higher than 0.3, the final expression of the
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flapping equation of motion is obtained in Appendix B, equation (B.37) as:

" 1 & 1 . 4o \ 2
ﬁ+y(§—§+fphln\y)(|—€[§) QB+ v, +y(l—s )x
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bl

For a wind turbine with the wind attacking the blades in the axial and cross direction.
the flapping equation of motion is obtained in Appendix B, cquation (B.40) as:

B+y[ _B _IU sm\pJ(l—E )y Qf +{v +Geosy +y (1 -¢ ) x
8 8 6 (2.40)
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The flapping equations of motion as given by (2.39) and (2.40) can be regarded as the
equation of a vibrating system with damping, stiffness, and forcing terms. The dynamic
characteristics of the flapping motion as can be deduced from these equations are:

for both helicopters and wind turbines, damping is introduced in the flapping
motion by means of the aerodynamic forces (a perturbation in the flapping
velocity will be counteracted by an aerodynamic damping-term);

for both helicopters and wind turbines, the role of the spring in the vibrating
system is taken by the centrifugal force, the spring on the flapping hinge and the
aerodynamic forces;

for both helicopters and wind turbines, the flapping equation of motion contains
terms periodic with the blade azimuth. For helicopters, these periodic coefficients
seem to be important only in the region of high advance ratios (Hohenemser and
Yin [1974]*). For wind turbines, periodic coefficients are introduced by the
gravity force and crosswind. The periodic coefficients containing the gravity
force are parametric excitations for the system and can lead to parametric
resonances defined by (2.38). Usually, the values of frequencies at which the
primary resonances appear are out of the range of wind turbine operating
conditions, thus presenting no practical importance. The aerodynamic forces
affect profoundly the main and secondary parametric regions, having a
stabilizing effect and thus preventing the occurrence of parametric resonances
(Feitosa [1989]>). For the existing wind turbines, the pendular instabilities in the
flapping direction do not present practical importance (Eggleston [1987]7).
However, this situation might change in the future larger wind turbines due to
the scaling effects (see the discussion from section 3.3.2 of Chapter 3).

the natural flapping frequency depends on the rotor rotational frequency for both
helicopters and wind turbines; there is a non-rotating natural flapping frequency
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o, =\/ K, /1, and there are rotating natural flapping frequencies

leé =Qz[1 +§_ﬁ’—] +u)§,.
2(l-'eﬁ)

Consider a helicopter in hovering flight with a blade without hinge offset or hinge
restraint. In this case, the flapping equation of motion (2.39) becomes:

B+%QB +Q%B =_M_Iﬂu (241

bl

In the case of a hovering helicopter, the flapping equation of motion has constant
coefficients and the natural flapping frequency becomes equal to the angular speed of
rotation Q. Aerodynamic excitations in cosQt terms are usually encountered in practice
(for example in the shape of a vertical gust): such an excitation is called a "I-P
excitation*" because the aerodynamic force reaches its maximum once per revolution.
This means that the 1-P excitation will cause a resonant condition. The helicopter is
thus intentionally designed for such resonances to occur! Fortunately, the flapping
motion is highly damped -for helicopters the Lock number is y = 5 to 15- leading to an
aerodynamic damping even close to critical damping. When applying a 1-P disturbance
the flapping motion automatically grows so large that the aerodynamic damping
cancels the applied aerodynamic moments. Hence, the danger for resonance is
eliminated with the 1-P excitation even being beneficial to the flapping motion. For
wind turbines the Lock number y also varies between y = 5 to 15 and therefore the
flapping motion is characterized by strong aerodynamic damping as well. Note that use
of the Lock number presupposes that the blade is in the unstalled region. When the
blade approaches the stall region, the y terms in the flapping equation of motion
become small or vanish.

When a rotor blade flaps, it changes its moment of inertia about the rotational axis,
resulting in accelerating or decelerating forces appearing on its blade elements
(according to the law of conservation of angular momentum). These forces are felt as
vibrations at the blade root, with a corresponding in-plane Coriolis vibration for every
harmonic of flapping. In the early years of rotary wing engineering, the vulnerability to
fatigue of the root attachment due to Coriolis effects was the most difficult problem to
solve. To eliminate this problem, Cierva introduced the drag (lead-lag) hinge for his
autogiros (see Benett [19617%). However, this led to another destructive vibration of the
structure, the so-called "ground resonance*" phenomenon.

Cierva was also the first one who thought of the solution of inclined hinges in his
autogiros in order to control the disc-tilt motion (see section 3.4 and Benett [1961T5).

Concluding, for both helicopters and wind turbines, the flapping dynamics are
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characterized by strong aerodynamic damping characteristics. A direct consequence of

this fact is that, in rotary wing engineering, the flapping dynamics affect mainly the
control response characteristics and much less their aeroelastic stability characteristics.

2.6.2 Helicopter and Wind Turbine Lagging Dynamics

Consider the blade of a helicopter or wind turbine rotor. free to move only in the
lagging direction by means of a lagging hinge as shown in Figure 2.9. The blade
lagging equation of motion was derived in Appendix B under the following
assumptions (these assumptions are valid throughout the present work):

- for both helicopters and wind turbines, the blade is modeled as being rigid both
in bending and torsion and with a lagging hinge at an offset e, from the rotor
hub, different from e, and a hinge spring K;:

- the blade rotates at a constant rotor angular speed €;

- the effects of the helicopter respectively tower motion on the blade motion are
neglected;

- the lagging angle and inflow angle are both assumed to be small;

- the inflow is assumed to be uniform and no inflow dynamics are used;

- the blade tip loss factor is equal to unity;

- no pitch-flap and pitch-lag couplings are considered;

- the blade has a constant chord;

- the blade is not twisted;

- gravity is neglected in case of helicopters and considered in case of wind
turbines;

- for wind turbines, the wind comes in the rotor axial and lateral (crosswind*)
directions. No wind-shear* effects are considered;

- the reversed flow region is ignored; no compressibility and stall effects are
considered;

- the blade elastic axis, aerodynamic axis, control axis and centre of mass axis
coincide.

Under these assumptions, and considering as in the previous section the helicopter in
forward flight at advance ratios not higher than 0.3, the lagging equation of motion as
derived in Appendix C, equation (C.37) is:

, (1-¢) C, 1-¢, usiny
+Y(6 A = -_S(l-e 3(___*+—"l
S|, 6 c,( I\ 3

Q§+{VZ +y {Opk X
(2.42)
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For a wind turbine the lagging equation of motion (equation (C.40) of Appendix C) is:
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The lead-lag motion of both helicopters and wind turbines is equivalent to a one
degree-of-freedom vibrating system characterized by the following features:

- damping is introduced by aerodynamics. However, there are two aerodynamic
terms, opposite in sign. The lagging motion is characterized by very small values
of damping, being virtually undamped. In articulated helicopters usually
mechanical dampers are introduced. In hingeless helicopters, elastic couplings
and even mechanical dampers are used to increase the damping. In the wind
turbine industry mechanical dampers were not yet added to the system. Only for
middle-class (500-600 KW) stall regulated wind turbines, dynamic absorbers
were installed on the blades in order to eliminate the serious lead-lag vibrations
characteristic to these turbines (Anderson [1999]%);

- in helicopters the spring characteristics are introduced by the centrifugal force
(which in this case acts only through the small hinge offset), as well as elastic
spring and aerodynamic forces. In wind turbines, the spring characteristics are
introduced by the centrifugal force, elastic force and gravity force. The gravity
force splits in two terms: one term which may lead to pendular instabilities and a
periodic external excitation which can cause ordinary resonances in blade lead-
lag motion. Concerning the gravity periodic component which can lead to
parametric instabilities, Miller et. al. [1978]"' demonstrated that the danger for
lead-lag parametric instabilities appear when the ratio o, /0, > 1 where 0,
is the blade pendular frequency defined as c);m, =G =(g6bl)/lb,. Up to
present, the current wind turbine configurations have usually /0, « 1 and
thus the parametric instability in the lead-lag motion, is of no practical
importance. However, as mentioned in the case of the flapping motion, this
situation might change in the future wind turbines due to the scaling effects;

- the natural lagging frequency depends on the rotor rotational frequency; there is
a non-rotating natural lagging frequency o, = ‘[ K. /1. and there are rotating

2 €
natural lagging frequencies szi = ‘”2 + ng( ¢ )
1-¢

g

Concluding, for both helicopters and wind turbines, the lagging dynamics are
characterized by low aerodynamic damping characteristics. A direct consequence of this
fact is that, in rotary wing engineering, the lagging dynamics mainly affect the
aeroelastic stability characteristics and much less the control response characteristics, as




Mathematical Tools 31

opposed to the flapping dynamics.
2.6.3 Helicopter and Wind Turbine Torsional Dynamics

The question on the necessary degrees of freedom examined in the present dissertation
refers to simulation models in the field of helicopter flight dynamics and wind turbine
low-frequency structural dynamics. As explained in section 1.3 of Chapter 1, the
frequency range of interest for such models for helicopters lies between 0.1 to 5 Hz
(dividing by the rotor speed Q of usual configurations this corresponds to 0.01 to 1/rev)
and for wind turbines between 0.1 to 10 Hz (i.c. 0.1 to 3/rev). The natural blade torsion
frequency is usually between 3 to [0/rev in the case of a helicopter and S to 15/rev for
a wind turbine. Modern wind turbines already rcached values of the first torsional
frequency of 30/rev. It follows that phenomena involving blade torsional modes (such
as classical flutter problems) are not explored in the present work. Nevertheless. the
blade torsion degree of freedom must be represented in the simulation models by their
quasi-steady effects and by the so-called "structural bending- torsion couplings" or
shortly "structural couplings". Whereas neglecting the blade torsion dynamics is a valid
approximation for helicopter flight dynamics and wind turbine low-frequency structural
models, neglecting the structural couplings, especially in hingeless rotors, means
neglecting effects in the same order of the blade flapping and lagging dynamics, and
thus results in erroneous solutions and danger for rotor and rotor-body instabilities (see
examples in Appendix H).

One of the main assumptions on which the present dissertation is based is that of
lumped flexibility for the blades. As discussed on page 25, this is equivalent with the
rigid blade concept introduced by Young [1962]'". The rigid blade assumption is
generally true for an articulated rotor where hinges are placed at different offsets from
the rotor hub, allowing the blade to move in a flapping, lagging or pitching direction. A
hingeless rotor usually only has a pitch hinge, and in a bearingless rotor no hinges are
present at all, the blades being flexible elements bending out-of-plane, in-plane and
torsioning simultaneously. For all such rotors, the rigid blade concept can also be used
with good approximation, provided that one can find a feasible position of the sequence
of the virtual hinges that correctly represents the dynamics of the blade.

The above-mentioned structural couplings characteristic to an elastic blade of a
hingeless rotor are transformed in the rigid-blade concept in equivalent pitch-flap and
pitch-lag couplings. Hodges and Ormiston [1976]" presented analytical formula's and
graphs to determine the equivalent pitch-flap and pitch-lag couplings as a measure of
the bending-torsion couplings of an elastic blade. These equivalent couplings depend on
the blade pitch angle, torsion frequency, lead-lag frequency, flap-lag coupling and
precone*. For very high torsion frequencies, these couplings are normally small and
unimportant, but for typical values of the torsion frequency (5 to 10/rev) they cannot be
neglected.
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Considering the effect of torsional dynamics in wind turbines, two observations are
important here:

- the action of the gravity force gives a periodic term in the torsional stiffness
which is dangerous for torsional pendular instabilities. In up to the present wind
turbine configurations this term is very small compared to the torsional
frequency and therefore the torsional pendular instabilities are not a serious
problem (Eggleston [1987]%). This situation might change in the future upscaled
wind turbine configurations. It follows that careful predictions of all possible
regions of parametric instabilities should be made in the design and development
of wind turbines;

- there are special cases in which the torsion dynamics become of importance for
the simulation model, for example, in case of a failure in the pitch actuation or
pitch link system (van Holten [19871° presented such a case for the Newecs 45
wind turbine).

2.7 Approaching the Problem of Modeling for Helicopters and
Wind Turbines

Helicopters and horizontal-axis wind turbines involve essentially two structures, one
rotating -the rotor- and the other non-rotating -the airframe, respectively the tower-,
Therefore, when it comes to the problem of building a simulation model, these devices
have much in common. There are also specific features which differentiate them. Some
of the main differences in building a simulation model for helicopters and wind turbines
are included in the present section.

1. The mass and the stiffness properties of wind turbine rotors are quite different from
those of helicopter rotors. Ormiston [1973]”" compared the blade fundamental flap and
lead-lag frequencies for different rotating systems (see Figure 2.10). At that moment,
the large wind turbines were designed at non-rotating lead-lag and flap natural
frequencies in the range of respectively 2 to 2.5/rev and 1 to 1.7/rev. Concerning the
flapping frequencies, the low values belong to a teetering or coning hinge, the moderate
values belong to hingeless configurations and the relatively high values are
characteristic for stiff configurations. The relatively high value of the wind turbine lead-
lag frequency as compared to helicopters is due to the former's typical low operating
speeds and the need to stiffen large rotor blades against gravitational stresses.

The relative position between the flap and lead-lag non-rotating natural frequencies was
extended in the present work from the wind turbine configurations in the 1970's to the
nowadays wind turbines (year 2000) as used in the STABTOOL project (see van
Holten et. al. [1999]*) in Figure 2.10.

For variable speed wind turbines, the rotational speed Q used to obtain the non-

dimensional values @, , ® (l/rev) corresponds to the range of normal operating

B
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conditions. From this figure it follows that the increasing dimensions of modern wind
turbines shifted the flap and lead-lag motions to higher trequencies; for flapping in the
range 3 - 6/rev, for lead-lag in the range 4 - 9/rev. Thus, the separation in frequencies
between helicopters and wind turbines became more accentuated as time passed. This is
an important conclusion which will be further discussed in scctions 3.3.1 and 3.3.2 of
Chapter 3.

.
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Figure 2.10 Comparison between the relative position of flapping and lagging natural
frequencies in the 1970's (Ormiston[1971] } and in 2000
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2. The structural geometry of wind turbines possesses geometric parameters which do
not exist or are less important in helicopter configurations (for example blade twist,
blade form and mass unbalance). Also, the helicopter blade has specific geometric
parameters (as blade sweep and droop) which are not used in wind turbine
configurations.

3. The action of the gravity force has different importance: for helicopters, gravity
forces on the blades can be neglected; for wind turbines, this is no longer possible,
parametric resonance regions becoming a danger in the design of wind turbines.
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4. The wind turbine rotor speed is an order of magnitude less than the corresponding
rotational speed of helicopters.

5. Differences between helicopters and wind turbines relate also to the different wind
conditions characteristic to the two systems. For a wind turbine, rotational sampling* or
wind shear* must be accounted for by introducing a variable wind speed as a function
of altitude according to a standard logarithmic law.

6. Whereas in simulation models the wind energy community was concentrating mainly
on the representation of the response of the structure to different external excitation
sources (the so-called "loading problem*"), the helicopter specialists paid attention
mainly to the coupling effects between the different modes of the structure (the so-
called "dynamic instability problem*"), 1t will be demonstrated in section 3.3.2 of
Chapter 3 that nowadays, the attention of both rotary wing worlds will probably have to
converge towards both aeroelastic stability problems and response problems: there is
more and more evidence that modern wind turbines will encounter aeroelastic
instabilities and also that the new flying quality specifications must consider the
structural response of the helicopter dynamic modes.



Chapter 3

Literature Survey on Simulation
Modeling for Helicopters and Horizontal
Axis Wind Turbines

"However, I am somewhat uncentain as to where we now stand. There's no question we
have made advances, and there are many instances where verv good agreement can be
shown between theory and experiment... But, and this is where the uncertainty comes
in, there are other situations which reveal large discrepancies between various analvtical
approaches. I don't believe, however, that we have vet reached a stage where we know
which tool is the right one for a particular job.”

Alfred Gessow [1986]

The literature survey within this chapter is organized into three parts:

L. literature survey on the necessary degrees of freedom for helicopter handling
qualities modeling;

2. literature survey on the necessary degrees of freedom for wind turbine structural
dynamics modeling;

3. a general discussion on low-frequency dynamic instabilities in rotary-wing
engineering (rotorcraft and wind turbines) and structural couplings in hingeless
rotors.

3.1 Literature Survey on Necessary Degrees of Freedom for
Helicopter Piloted Simulation Models

The first model for piloted simulation was developed by Hohenemser [1939]* on the
basis of the standard equations of airplane motion for small-disturbances and steady,
symmetrical, rectilinear I-g flight as the reference flight condition. The model was a six
degree-of-freedom (6-dof) rigid-body linear model in which the contribution of the rotor
motion to the body motion was incorporated in a quasi-steady way. The quasi-steady
body modes- phugoid, short-period pitching mode and dutch roll mode- are usually
obtained using this model. The 6-dof model was used for stability and control analyses,
handling quality specifications (MIL specifications*) and design analyses of the
stability-and-control-augmentation system (SCAS*) for rotorcraft.

For an articulated rotor, a 6-dof model seems sufficient to determine natural aircraft
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behaviour. However, for a hingeless rotor helicopter, the classical 6-dof approximation
is usually no longer applicable, even if only natural helicopter behaviour -that is,
without the augmentation system- is considered. A first reason for this was given by
Curtiss [1986]*' as follows: "the dynamics of the fuselage and rotor of an articulated
helicopter can usually be seen as a 'cascade problem’, i.e. a rapid rotor plane response
followed by a slower fuselage response. For hingeless rotor configurations, the body
motion "speeds up" and the rotor dynamics enter into the body dynamics”. Further, new
requirements for tactical missions -such as Nap-of-the-Earth (NOE) flight and aerial
combar*, high-g manoeuvres- demanded the design of high-gain flight control systems
(FCSs), which require the extension of the frequency range of validity for the
simulation model to the high-frequency rotor dynamics. Discussing some of the pitfalls
in testing the new ADS-33 Flying Qualities recommendation*, Kolwey [1996]%
concluded that the flight test community can no longer afford to separate the flight test
disciplines of flying qualities, performance, dynamics and structures. In the old
qualification system all manoeuvres had to be carried out in the Operational Flight
Envelope (OFE)*. The new ADS-33 recommendation includes a new spectrum of
manoeuvres based on helicopter structural limits.

Therefore, for a hingeless rotor, models including rotor dynamics usually must be used
in piloted simulation modeling. The modes of different subsystems for a medium-size
helicopter can be divided according to their specific frequency as illustrated in
Figure 3.1.
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Figure 3.1 Modes of interest of a medium-size helicopter (Kuczynski et. al. [1980F')

Chen et. al. [1987]" presented a review of the research done during a couple of
decades on the development and validation of flight dynamics models by
NASA/USArmmy. His conclusion was that, depending on the specific application, the
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number of degrees of freedom considered in the development of helicopter
mathematical models and flight laws for handling quality purposes vary between 6-dof
fuselage + quasi-static rotor, 9-dof fuselage + rotor flap, 10-dof fuselage + rotor flap +
rpm or fuselage + rotor flap + rotor lag and 16-dof fuselage + rotor flap + rotor lag +
pitch + rpm, with linear and non-linear aerodynamics. Linear aerodynamics refers to
simplifications such as small angle of flapping and inflow, and the use of the simple
blade theory with no compressibility or stall effects included. According to Chen et. al.,
simplified linear aerodynamics models may be used for exploratory investigations
within the flight envelope: for basic aircraft, a 6-dof linear model for low frequency
manoeuvres, and a 9- or 10-dof model for high frequency manoeuvres; for SCAS
research, a 6- or 9-dof linear aerodynamics model to determine the fuselage feedback,
and a 9-, 10-, 12- or 16-dof linear aerodynamics model to determine the rotor/fuselage
feedback. For investigations involving exploration to the edge of the flight envelope,
nonlinear aerodynamics effects must be included in the simulations.

The next sections summarize some of the landmarks in understanding how helicopter
flight dynamics simulation models have to be extended. The present litcrature overview
will depict the expansion of the 6-dot model in the following areas:

1. rotor disc-tilt dynamics;
2. rotor lead-lag dynamics;
3, inflow dynamics;
4. engine dynamics.

1. Rotor Disc-Tilt Dynamics

Rotor disc-tilt dynamics (often ambiguously called "flapping dynamics" in literature) is
a key element in the selection of the gains in the design of high-gain automatic flight-
control systems. Of the disc-tilt modes, the low-frequency regressing flapping mode
usually couples with the body dynamics. The inclusion of rotor disc-tilt dynamics in the
simulation model depends first and foremost on the rotor type:

- for articulated rotors:

Miller [1950]™ and Ellis [1953]* were probably the first ones who recognized
that disc-tilt dynamics imposed limitations on the design of high-gain attitude-
stabilization systems for articulated-rotor helicopters, which otherwise were not
present.

Hall and Bryson [1973]" demonstrated analytically that applying an optimal
control system, derived on the basis of the quasi-steady rotor flapping
assumption, to a model including disc-tilt dynamics, results in instabilities that
were not predicted using the 6-dof approach.

Chen and Hindson {1985]" demonstrated that high-gain flight-control systems
cause pitch and roll oscillations in the frequency range around 5 rad/s (i.e 5/2n
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Hz = 0.8 Hz). Investigating the problem of roll oscillation for a high-gain
control system in an articulated rotor helicopter, they showed that a 9-dof model
gave good results.

- for hingeless rotors:

Hohenemser and Yin [1974]" investigated what is the least sophisticated
analytical body + rotor disc-tilt model for a hypothetical hingeless rotor
helicopter. A linearized 9-dof body + rotor disc-tilt model was developed and
applied to the development of two feedback systems: firstly, a rotor-tilting
feedback system to the longitudinal cyclic and secondly a normal-acceleration
feedback system to the collective pitch. For the former feedback system, the
results showed that a complete 9-dof body + disc-tilt coupled model was
required. For the latter feedback system, the 9-dof model seemed to be
oversophisticated, an 8-dof model using only the first-order rotor disc-tilt
dynamics being sufficient. A 6-dof model always resulted in substantial errors.
Miyajima [1979]" also developing a 9-dof model, demonstrated that neglecting
the blade regressing flap mode in a hingeless rotor actually means neglecting a
very important oscillatory mode with short period frequencies.

Fu and Kaletka [1990]** using parameter identification techniques, investigated
for the Bolkow B6-105 hingeless rotor helicopter which degrees of freedom from
rotor dynamics can be identified as important for the helicopter dynamics, on the
basis of flight test data. The first-order disc-tilt dynamics added to a 6-dof model
(resulting in an 8-dof model) transformed the aperiodic roll mode into an
oscillatory one, showing that the roll dynamics couple to the disc-tilt dynamics.
Adding also the second-order rotor disc-tilt dynamics to the model (resulting in a
9-dof model) led to good agreement between measurements and model response.
Kaletka and Gimonet [1995]* on the contrary, also using identification
techniques to compare a 6-dof rigid body model to a 9-dof body + disc-tilt
model for the same Bolkow B6-105 in hover flight, concluded that the response
of the 9-dof model is only slightly better than the 6-dof model; a 6-dof model
was sufficient to simulate the hovering B6-105.

Curtiss and Shupe [1971]* referring to the number of modes to be included in
piloted simulation models when considering blade elasticity, looked for the
minimum number of modes required to represent a hingeless rotor. They
concluded that for advance ratios, p, higher than approximatively 0.2, at least
two bending modes are necessary. The first flapping mode effects can be
simulated by using the representation given by Young [1962]'" in the equivalent
rigid blade concept (discussed in section 2.6.3 of Chapter 2). The second
flapping mode needed to be considered in the analysis as well, the effect of this
mode becoming increasingly important as the advance ratio is increased or when
geometrical twist is considered in the model. Hohenemser and Yin [1974]"
however demonstrated that the above conclusion is wrong because Curtiss and
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Shupe neglected the aerodynamic coupling between the considered bending
modes. Hohenemser and Yin showed that including only the first flapping
bending mode in the model is sufficient to obtain adequate results for hingeless
helicopter models operating in the normal range of speeds. Omitting the
aerodynamic coupling terms between the first and the second blade flapping
bending mode can induce larger errors in the models than omitting the second
mode entirely. The authors commented that this conclusion may not be
applicable to medium advance ratios, high-lift conditions or high twist blades
including stall or non-uniform inflow effects.

2. Lead-Lag Dynamics

With regard to rotor lead-lag dynamics, until relatively recently it was believed that the
blade lead-lag degree of freedom produced little change in the basic helicopter modes
of motion, neither for articulated nor for hingeless rotor helicopters. Lead-lag dynamics
are of primary importance for aeroelastic stability purposes, because of their lightly-
damped characteristics, but for flying quality investigations it was believed that lead-lag
dynamics were not important. Only during the 1980's was more attention paid to the
study of the influence of the lead-lag degree of freedom on piloted simulation models
and automatic flight-control systems. Some highlights of the research in this field are
presented below.

Curtiss [1986]"' referring to the importance of lead-lag dynamics in the
simulation model, concluded that in the high frequency band (more precisely, the
10-20 rad/sec range, ie. 1.6 Hz to 3 Hz), the regressing lead-lag mode
contributes significantly to the helicopter response and should not be ignored in
the design of automatic flight-control systems. He demonstrated that, whereas the
attitude feedback gain is primarily limited by body-flap coupling, the roll rate
feedback gain is limited by the lead-lag degree of freedom. For an articulated
rotor, in a model without a feedback system, the lead-lag degree of freedom
produces little change in the helicopter basic modes and therefore it can be
neglected.

Fletcher and Tischler [1996]" using parameter identification techniques
concluded that, although the lead-lag dynamics have negligible influence on the
rotor disc-tilt response of the UH-60 articulated rotor, they contribute
significantly to the roll-rate response for frequencies in the range of 12-100
rad/sec (i.e. 2-16 Hz). They consider that a coupled body + disc-tilt model is
adequate to model the rotor response up to 40 rad/sec (6.3 Hz), but that a lead-
lag model is required to capture the correct helicopter angular rate-response
characteristics.

Houston and Horton [1987]"' verifying a theoretical 12-dof body + disc-tilt +
rotor lead-lag model for the articulated Puma helicopter, using parameter
identification techniques, failed to predict the helicopter trend in damping ratio
and natural frequency above 100 knots, whereas at 80 knots the damping ratio
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was underestimated and the natural frequency overestimated.

On the contrary, Heimbold and Griffith [1972]®, comparing a 9-dof body + disc-
tilt with a 13-dof body + rotor flap + rotor lag + rpm analytical model for a
hingeless rotor, from hover up to flight speeds of 200 knots, concluded that the
addition of the lead-lag modes to the 9-dof model had little effect on the
helicopter flight dynamics. Also, the stability of the lead-lag modes was hardly
affected by the variations in rotor disc-tilt dynamics caused by the feedback
systems.

Diftler [1988]* searched for the cause of the strong oscillations which appeared
on the UH-60A helicopter in hovering flight when roll-rate gain was used. His
conclusion was that the lead-lag degree of freedom played an important role in
the mechanism of the oscillation investigated. Examining different helicopter
model approximations, he showed that a 6-dof body model did not predict any
oscillatory instability; adding rotor disc-tilt dynamics still did not reveal the
instability; next adding also the rotor lead-lag dynamics resulted in an instability
in the lead-lag mode but at a frequency different from the one reported by the
pilot; finally, including also the control dynamics, an instability in the regressing
flap mode resulted at the reported frequency. Further expanding the model by
including other higher-order dynamics -such as engine/fuel dynamics and inflow
dynamics- did not affect the above conclusions.

Aponso et al. [1994]' presented a relatively new example of how the lead-lag
dynamics can influence the body dynamics of the Sikorsky CH-53, 7-bladed,
articulated-rotor, heavy-lift helicopter. Using parameter identification to verify a
12-dof body + rotor flap + rotor lead-lag model to flight test data, a discrepancy
between theory and experiment was identified. To eliminate this discrepancy a
very strong artificial lead-lag spring which does not exist on the real helicopter
had to be added to the model. However, the authors could not explain why their
model could not be validated without using this artificial spring.

McKillip and Curtiss [1991]° and Curtiss [1992]7 further explored this
inconsistency between the real Sikorsky CH-53 and the 12-dof model presented
by Aponso et. al. They demonstrated that the need for the artificial lead-lag
spring was due to the non-validity of the rigid blade concept usually used in -
simulation models. The powerful damper installed on the Sikorsky CH-53
articulated helicopter, modifies the blade boundary condition in a way that
causes the first lead-lag mode to be poorly predicted by the rigid blade
approximation. Considering the blade as flexible, the inconsistency presented in
the 12-dof model disappeared without the need to add an artificial lead-lag
spring as in the model of Aponso et. al.. It turned out that the damper installed
on the real Sikorsky CH-53 converted the lowest lead-lag mode into a hybrid
between the hinged and hingeless mode shapes.

Kothmann [1996] referring to the problem of validity of the rigid-blade concept
established that this concept is valid only if the eigenvalues of the flexible blade
are complex conjugates. Any pair of flexible blade eigenvalues can be
represented by a rigid blade with some (non-physical) hinge spring and damper.
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However, for the stiffness and the damper of the Sikorsky CH-53, there was a
third negative real eigenvalue of the same magnitude as the complex pair.
Therefore, the disagreement between the rigid and flexible blade concepts is the
result of this third purely real eigenvalue.

3. Inflow Dynamics

It had already been recognized for a long time in the literature that the effects of the
dynamic inflow on helicopter stability and control characteristics are quite significant:

Carpenter and Fridovich [1953]" demonstrated that the dynamic inflow plays a
key role in the destabilization of the rotor disc-tilt dynamics in transient motions
of articulated and especially of hingeless rotors. Analysing the vertical
acceleration response to an abrupt input in the collective pitch, Carpenter and
Fridovich showed that the initial overshoot in the response originates from the
coupling between the rotor disc-tilt with the inflow dynamics. This overshoot
becomes more pronounced when either the thrust coefficient or the blade Lock
number is reduced.

Sissingh [1968]" also illustrated how, for certain motions of the rotor, such as
steady pitch rate, the dynamic inflow affected the helicopter stability and control
characteristics.

Cuntiss [1986]*' demonstrated that the time constants associated with the inflow
dynamics are of the same order as the low frequency rotor disc-tilt dynamics,
and thus, if disc-tilt dynamics are included in the model, it seems likely that the
inflow dynamics should be included as well. For hingeless rotors, Curtiss
[1971]* arrived at the conclusion that there is a variation in the moment of the
aerodynamic forces about the rotor hub which can be explained by a first
harmonic variation in the induced velocity. This modification to the airload in
hingeless rotors can be incorporated in the definition of the Lock number
resulting in a "modified Lock number".

Chen and Hindson [1985]" showed that inclusion of the inflow dynamics
resulted in reducing the predicted frequency of the regressing flap mode to that
observed in the flight test of an articulated rotor helicopter.

4. Engine Dynamics

Besides the higher-order effects caused by rotor dynamics, the engine dynamics can
also be very important for piloted simulation modeling. Kuezynski et. al. [1980]"
discussed the differences in mentality in approaching the problem of piloted simulation
modeling by an airframe and an engine specialist: on the one hand, the airframe
specialist is looking for high-fidelity models to describe as well as possible the
helicopter's behaviour; on the other hand, the engine specialist treats the rotor very
simply and concentrates only on the engine design. As a result, dynamic interface
problems may appear between the airframe and the engine dynamics. This separate

-
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approach was demonstrated by the authors to result in incompatibilities in the
development of articulated helicopters at Sikorsky. For these helicopters, the demand
for more responsiveness caused the engine manufacturer to use more responsive
engines. As a result, the airframe manufacturer had to consider how to properly include
the influence of engine/fuel control law dynamics in piloted simulation modeling. In
addition, the engine manufacturer had to investigate how to adequately model helicopter
behaviour in the engine/airframe models. The authors explained that the main
importance of the inclusion of engine dynamics in the simulation model lies in the fact
that it will allow the helicopter fuselage to see a correct variation of rotor torque and
corresponding rotor speed as caused by changing airload and engine conditions. The
coupling between the airframe rigid-body modes and the rotor/drive train torsional
system occurs primarily through a coupling of fuselage yaw with the rotor rpm. The
main deficiency of the rotor/drive system model used at Sikorsky was that it could not
account for any coupling with flight dynamic motions of the aircraft as a whole -
including airframe motions and main rotor pitch and yaw motions-.
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The models used in the literature cited in this review are summarized in Figure 3.2.
Looking at this figure it appears that only for a small number of cases did the designer
know which model was valid for use in the piloted simulation modeling.

Concluding, the present literature overview proved that helicopter piloted simulation
modeling is a complex process. It is not sufficient to blindly extend a simulation model,
one has to identity the right modes to be included in the right situations in order to
obtain a good prediction of helicopter behaviour.

3.2 Necessary Degrees of Freedom for Horizontal Axis Wind
Turbine Structural Modeling

As mentioned in section 2.7 of Chapter 2, although helicopters and wind turbines are
similar configurations, the models developed for these two configurations are based on
two different approaches: whereas for helicopters the central problem to be resolved in
a simulation model concerns the stability analysis, depending on the coupling effects
between the different modes involved in the model, the simulation models developed
for wind turbines focus on the loading analysis depending on the accurate
representation of the external excitations acting on the structure. Thus, the question of
necessary degrees of freedom for wind turbine modeling is hardly mentioned in
literature. Usually, the literature on wind turbines presents simulation softwares of
different manufactures in which a high number of modes are taken into account in
order to calculate the wind turbine dynamic loading properly. This resulted in the
course of time in advanced codes to calculate wind turbine dynamic loading (for
example PHATAS®, FLEXLAST®, ADAMS®). Current state-of-the-art models
generally include twelve to fifteen degrees of freedom (as for example in PHATAS):

- tlapping and lead-lag elastic blade deformations;

- passive or controlled pitch motion;

- blade flapping hinge inclination and teeter hub;

- drive-train torsional deflection; variable rotor speed;
- nacelle pitch and yaw;

- tower torsion and bending (fore-aft and sideways).

Environmental parameters including steady wind, wind shear, gusts, wind direction and
turbulence can be considered in these complex models. Some codes (for example
ADAMS®) that are based on the finite element method, involve a virtually unlimited
number of degrees of freedom. However, such models are extremely slow when
performing simulations involving wind turbulence inputs.

Concerning the number of modes considered in these models, there exists no guideline
on how the modal selection has to be done. The philosophy used in wind turbine
modeling is that "the simulation model must start with suitably detailed models of the
subsystems (blades, power train, support system) and then combine them in a manner
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that enables aeroelastic analysis. There is little value of dependability in modal analysis
except that of the fully-coupled system” (Doman [1994]%). It is sometimes recognized
that there are design features that may uncouple subsystem elements, reducing the
number of system modes that will present significant responses. However, the reduction
of the number of modes must be done step by step from a complex to a simplified
model, each time checking the influence of the deleted modes on the results. Such an
approach is very difficult to be followed when the designer is trying to understand the
effects of the different parameters involved in the model. This difficulty will increase,
in light of the discussion presented in section 2.7 of Chapter 2 on the evolution of the
wind turbines towards very flexible configurations.

Because of the limited amount of literature on the necessary degrees of freedom, the
present section is concerned firstly with the problem of wind turbine structural
modeling from the perspective of the main sources of excitation on the structure and
secondly with some considerations on the coupling between the degrees of freedom in
the wind turbine structure.

Referring to the first problem, the most important excitation sources on a wind turbine
structure result from:

1. Aerodynamic loading causing the following effects:

- Rotational sampling* effect, which may be explained as follows: consider a wind
turbine blade, rotating rapidly through a wind velocity field that varies over the
rotor disc but does not vary in time. As the blade rotates through such a wind
field it encounters different wind velocities. This cycle is repeated again and
again after each complete revolution, such that the wind velocity as seen by the
rotating blade will have strong fluctuations in a band of frequencies near the
integer multiples of the rotation velocity (1-P, 2-P, etc) (for more detail see
Holley et. al. [1984]*)

- Wind shear* (surface roughness), both vertical and horizontal, is an important
excitation for hingeless rotor blades. Leconte and Széchényi [1990]%
demonstrated that wind shear and yaw have a similar effect on the rotor in that
both generate a periodic variation in the angle-of-attack as seen by the blades,
influencing the unsteady bending moment;

- Tower shadow* is a severe excitation especially for a downwind wind turbine
and can be the driver in the design of the outboard shell structure of the blade
airfoil. Friedmann [1975]*° showed that a wind turbine operating in the shadow
or wake of the open lattice tower, increases the asymmetry of the airloads of the
rotor and may have a significant effect on the aeroelastic stability and response
of the combined rotor-tower system. Discussing the so-called "bow wave effect",
i.e. the acoustic noise of the blade as it enters and leaves the tower shadow,
Doman [1994]® commented that this problem may very likely lead to the
abandonment of the downwind solutions;
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- Wind Gusts and Atmospheric Turbulence To control fluctuations in the energy
added to the system by wind gusts, fluctuations in the wind turbine rotor speed
are desirable. Steadiness in the power output of the generator can much better be
achieved with a variable speed rotor than with a constant speed rotor;

- Variations in wind direction may induce large lead-lag angles in large wind
turbines (Perkins and Jones [1981]*). For a three-bladed wind turbine, Kaza and
Hammond [1976]™ investigated the effect of an abrupt change in wind direction
angle and intensity on the lag damping when no pitch-flap and pitch-lag
couplings are included in the model. While a sudden change in wind intensity
did not appreciably affect the lead-lag mode damping, a sudden change in wind
direction resulted in a significant decrease in the lead-lag damping. For a two-
bladed wind turbine, studying the same problem, Azuma etal [1984]* reported
that in both cases a small yawing motion was induced originating from the
change of the aerodynamic forces and moments. Kawamato and Sakakibara
[1988]* investigating the dynamic characteristics of a free-yawing wind turbine
subjected to a change in wind direction, noted that when the rotor was running,
there was much difference in the angular change between the rotor axis direction
and the wind direction. The yawing turbine is compared to a gyroscope because
it has three rotating axes and therefore, up and yaw direction motions interfere
with each other, just as in the case of a gyroscope.

2. Gravity load is a 1-P excitation acting on the blade lead-lag motion, but also a
source of parametric resonances. In a coned rotor, the 1-P gravity excitation can enter
the control linkage, acting on the rotor shaft as a 2-P load unless the rotor is teetered:
Using a flap-lag-feather rotor blade model (a non-conventional hinge sequence was
used of feather, flap and lead-lag) for a 3-bladed wind turbine, Chopra and Dugundji
[1979]'7 demonstrated that, whereas the blade lead-lag response is primarily influenced
by the gravity field, the flapping motion is controlled by wind shear flow. The blade
coning angle couples the flap and lead-lag degrees of freedom.

3. Mass. stiffness and aerodynamic unbalance from blade to blade can induce cyclic
loads in the wind turbine. Dugundji [1976]*° showed that while the gravity load acts
directly on the blades, the unbalance shakes the tower which in turn couples into the
blades;

4. There are special operating cases in which the control system plays an important role
in the loads acting on the structure. The loss of electrical load and the rapid application
of pitch angle control are two examples damaging to the wind turbine, leading to
overspeed and thrust reversal. Thus, the wind turbine control system must be designed
to assure a safe shutdown without structural damage and limited blade pitching rates.

All excitations sources mentioned above induce vibrations in the wind turbine structure.
From the very beginning of wind turbine development, the subject of vibrations was of
great concern. However, as discussed above, the emphasis in wind turbine simulation
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modeling has always been directed towards determining the way in which the external
loads are connected to the elastic modes of the construction and not on the coupling
effects existing between these modes.

For example, the choice for a three-bladed configuration in the early days of large wind
turbine design was motivated by the serious vibrations which were observed in a two-
bladed model during changes in wind direction. In 1931, Jacobs Wind Electric reported
that, when yawing, the two-bladed rotor experienced a series of jerks produced by
changes in gyroscopic inertia about the tower axis each time the blades passed from a
vertical to a horizontal position (Sheperd [1994]*%). This problem could be eliminated
by replacing the two-bladed solution with three blades. The three-bladed rotor
eliminated the tower shake, by providing a constant inertia. Also, adding a third blade
eliminated the need for a coupled rotor-tower analysis. Later, tower shake of two-
bladed rotors was prevented by introducing the teetering rotor* (however, this solution
was not applied in industry) and by allowing low yawing-speed of the nacelle.
Referring to the problem of coupling between the degrees of freedom in the wind
turbine, according to Smith [1985]", the key vibrational consideration for a two-bladed
wind turbine is the coupling of rotor flapping vibrational modes with the tower
translational motion. Steinhardt [1981]* searching for a minimum number of parameters
for a realistic representation of the dynamic and aeroelastic characteristics of a complete
wind turbine, developed a model for a two-bladed wind turbine including tower bending
and torsion + nacelle pitch and yaw + rotor blade bending in the flapping and lead-lag
directions. The simulations performed with this model confirmed strong rotor-tower
coupling and illustrated typical features of periodic systems. Unstationary aerodynamic
terms were found to be of minor importance. The hingeless rotor configurations
considered were better damped than the teetering rotors, but tower and blade reactions
to gravity and wind gusts were higher.

A good survey on the general problems to be considered in wind turbine design was
given by Miller etal. [1978]"" during the NASA Mod-0 program. Sullivan [1981]%
reporting further on experience from the NASA Mod-0 program, described the initial
and final design solutions of the resonance problem of the two-bladed wind turbines
Mod-0 and Mod-1 (see Figure 3.3). In the initial design, resonance points were defined
as intersections between the curves giving the variation of the excitation frequencies
and the natural system frequencies with the rotor speed, as represented in the Campbell
diagram (see section 4.5.1 of Chapter 4). Around each intersection point, a potential
resonance region could be defined which must be avoided. The width of these regions
was not precisely known. For the Mod-0 and Mod-1 wind turbines in the initial design,
they were conservatively set at +0.5/rev for the even harmonics and x0.25/rev for the
odd harmonics. However, this approach resulted in very narrow regions where the
designer was allowed to place the frequencies. Based on field experience, the initial
design was refined and the acceptable regions for the natural frequencies were enlarged.
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Figure 3.3 Initial and final resonance avoidance for a two-bladed wind turbine (Sullivan
[1981]")

The final design solutions are represented in Figure 3.3: for flapping, the regions at odd
and even harmonic excitations should be avoided; for lagging, only regions at odd
harmonic excitations should be avoided; blade/pitch change mechanisms require high
stiffness to avoid flutter; for the tower, the 1-P and even harmonic excitations should be
avoided; in the drive-train, if the rotor is perfectly balanced, only even harmonic
excitations would be expected. However, a strong 1-P excitation in the drive train was
experienced in the field, as a result of the mass, stiffness and aerodynamic unbalance
between the blades. The main excitations of the tower occurred at frequencies of 1-P
and N-P (N is the number of blades), the first excitation arising from the unbalance, the
second one from blade passage, wind shear, and yaw error.

3.3 General Discussion on Dynamic Instabilities of Helicopters
and Wind Turbines

As discussed in section 1.3 of Chapter 1, for helicopters and wind turbines the
distinction between rigid body dynamics and structural dynamics involving vibrations
and aeroelasticity phenomena is not applicable. The present section does not aim to
provide an overview of the aeroelastic instabilities of helicopters or wind turbines, since
the subject of concern of the present dissertation is related to the necessary degrees of
freedom in low-frequency simulation modeling (recommended surveys on this subject
are Hohenemser [1974]"', Ommiston [1983]”°, Johnson [1986]", Chopra [1990]'%). This
section is merely intended to stress the general framework in which the dynamic
instability problems have to be considered in simulation modeling.
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Figure 3.4 Instabilities in helicopter and wind turbine configurations (Pavel et.al.
[1999]F)

For helicopters, before 1970, using conventional articulated and teetering rotor
configurations, two classes of dynamic instabilities were of concern: flutter* and ground
resonance*. Also, in the isolated rotor, blade flapping stability problems at high
advance ratios occurred. After 1970, due to the shift of helicopter design towards
hingeless and bearingless configurations, new classes of aeroelastic instability problems
emerged. These configurations were poorly understood from the point of view of
structural dynamics. In coupled rotor-body dynamics, the hingeless rotors introduced a
new complex class of aeromechanical problems, where structural dynamics and
aerodynamics were interacting.

For wind turbines, the configurations of the 1970's did not present a great risk of
dynamic instabilities. Phenomena such as ground resonance or whirl-flutter* which
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were investigated as potential instabilities, were situated outside the operating range of
rotor rotational speed for the wind turbines of that time -exceptions were some
experimental configurations as for example the FLEXHAT [19901* or KEWT [1980]*
concepts. However, today, a new generation of large scale wind turbines is discussed
with rotor diameters as large as 60 m. In such configurations, known as well as
unknown forms of dynamic instabilities are already becoming problematic.

A comparison between the dynamic instabilities in helicopter and wind turbine
configurations is presented in Figure 3.4. The instabilities specified in this scheme are
defined in the Glossary. Both in the design of helicopter and wind turbine
configurations the key problem related to the subject of dynamic instabilities consists of
the choice of natural frequencies of both rotating and non-rotating structures. The
remainder of the present section is concerned with a misunderstanding between the
helicopter and wind turbine communities discovered during the present work about the
definition of soft and stiff configurations in relation to blade natural frequencies.

3.3.1 Definition of Soft/Stiff Rotors for Helicopters

For helicopters, hingeless rotors can be classified as either soft or stiff depending on the
natural flap and lead-lag frequency. Using as a parameter the blade flapping frequency,
Hohenemser [1974]" introduced the concept of soft- and stiff-flapwise rotors in order to
characterize helicopter's control response features:

- soft-flapwise rotors have a blade natural flap frequency (at normal rotor speed)
of between 1.05 and 1.15/rev
- stiff-flapwise have a blade flapping frequency of 1.4/rev or more.

The natural flapping frequency ®, of an articulated rotor without hinge offset is
exactly equal to the rotor angular speed Q. Usually, hingeless helicopters are soft-
flapwise configurations. The design goal, relative to the flapping frequency for
helicopter flight dynamics, as defined by Hohenemser [1974]"' is "fo reduce the
Sflapwise stiffness to the minimum value consistent with the structural requirements of
adequate margins for the severe trim, gust and manoeuvre conditions."

Using as a parameter the blade lead-lag frequency, helicopter rotors can be classified
according into soft- and stiff-inplane rotors:

- soft-inplane rotors have a blade natural lead-lag frequency smaller than 1l/rev;
- stiff-inplane rotors have a blade natural lead-lag frequency larger than l/rev.

This definition relates to the danger of ground resonance, one of the most dangerous
instabilities in early helicopter design. Ground resonance involves the frequency
coalescence between the blade lead-lag motion and the inplane motion of the rotor hub
in a weakly damped system and may appear in rotors having a natural lead-lag
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frequency below 1l/rev. It may be eliminated by introducing an adequate amount of
artificial damping in the system, both in the blade and in the hub motion. Articulated
rotors usually have @, < 0.3Q. Thus, in articulated and soft-inplane hingeless rotors
ground resonance may be a cause for concern. In soft-inplane hingeless rotors, due to
the structural (elastic) couplings in the system (see Appendix H), ground resonance
manifests itself as a much milder instability as compared to the articulated
configurations.

Nevertheless, in both stiff- and soft-inplane helicopters, coupling of the lead-lag motion
with the flapping and pitching motions -usually resulting from aerodynamics- results in
the so-called "air resonances instabilities*".

Returning to the statement that hingeless helicopter design changed in time from a stiff
to a soft rotor design, the present section will clarify the reasons for this evolution for
the helicopters. The change in this direction was actually a lesson learned by engineers
in order to avoid dynamic instabilities

Reflecting on the danger for ground resonance, (which, as mentioned above, turned out
to be of concern especially for articulated and soft-inplane hingeless configurations) in
the beginning of helicopter hingeless rotor development, stiff-inplane configurations
were preferred since this eliminated the ground resonance instability as well as the need
for lead-lag dampers (stiff-inplane rotors were developed by Bell and Lockheed). It was
soon realized however, that stiff-inplane rotors were very sensitive to new unknown
rotor instabilities involving low frequency flap, lag and torsion motions and rotor-body
instabilities, especially in high-speed and manoeuvring flight (see literature survey of
Appendix H). These new instabilities were milder than the ground resonance problem
of the articulated rotor, but they were much more complex and involved rotor
aerodynamics, and additional blade and fuselage degrees of freedom. To protect a stiff-
inplane rotor against such instability phenomena proved to be a difficult task due to the
small blade deflections. It was very hard to provide the stiff-inplane blades with
mechanical damping and to tune the elastic couplings.

As a consequence, the design of helicopter hingeless rotors focused on the development
of soft-inplane rotors. Despite the ground resonance problem, the soft-inplane rotors can
be provided with effective mechanical dampers of the elastomeric type. It was also
realized that by design, the structural couplings existing in a soft-inplane rotor can be
used to introduce damping in the lead-lag motion, sometimes even in a resonance point.
The MBB, Westland and later Aerospatiale helicopter manufactures followed this line
and developed rotor soft-inplane configurations. A difference in approach between the
different compromises while developing the soft-inplane rotors may be mentioned here:
while Westland, during the development of the WG-13 saw any structural (elastic)
coupling as a danger for dynamic instabilities and therefore tried to eliminate such
couplings as much as possible, MBB designed the rotor of the Bolkow B6-105 to take
advantage of the structural couplings existing in the system, from an aeroelastic point
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of view. Thus, whereas the Westland WG-13 had to be equipped with hydraulic lead-
lag dampers to avoid the ground and air resonance instabilities, the Bslkow B6-105 did
not require any lead-lad damper. Nowadays, in helicopter industry soft-inplane rotors
are preferred over stiff-inplane rotors.

3.3.2 Definition of Soft-/Stiff Rotors for Wind Turbines

The present dissertation discovered that a misunderstanding in the definition of soft and
stiff configurations when looking at the evolution of rotor design within the helicopter
and wind turbine communities. Investigating the relative position of the non-
dimensional natural flapping and lead-lag frequencies of modern wind turbine
configurations as compared to those of the 1970's in Figure 2.10 of Chapter 2, it was
surprisingly observed that although in dimensional values o, and . the blades of the
modern_wind turbines are softening. in terms of non-dimensional values ©,/Q and
©/Q, they are stiffening. In the 1970's, wind turbine rotors had non-rotating flap
frequencies in the range of 2 to 3/rev. Modern wind turbine configurations have non-
rotating flapping frequencies in the range of 3 to 6/rev and are therefore stiff-flapwise
according to Hohenemser's classification. In the 1970's, wind turbine rotors had non-
rotating lead-lag frequencies in the range of 2/rev to 2.5/rev. Modern wind turbine
already reached values of 9/rev and are therefore strictly stiff-inplane configurations
according to Hohenemser's classification.

The wind energy community neither uses the concept of soft- and stiff-flapwise nor
soft- and stiff-inplane rotors as defined by the helicopter community: whereas for
helicopters the soft/stiff concept refers to the non-dimensional blade frequencies wy/Q
and ©/Q (natural flap and lead-lag frequency non-dimensionalized w.r.t. rotor
rotational speed), for wind turbines, the meaning of soft and stiff refers to the
dimensional blade frequencies w; and .. This is an important observation because,
for example, although in the design the blades can be softened by decreasing Wy, if the
rotor speed Q is decreased as well and this decrease is more significant than that of
@;, the new non-dimensional flap frequency corresponds to a stiff-flapwise
configuration. Thus, although in dimensional frequencies the blade may be softened by
design, in non-dimensional frequencies it actually is of stiffer nature.

The wind energy community usually associates the term soft/stiff configuration with the
tower. The main excitations of the tower structure occur at frequencies of 1-P (due to
rotor unbalance) and at N-P (due to blade passage, wind shear and yaw error), where N
is the number of blades and 1-P is the rotational frequency of the rotor. As a function
of the value of the first tower bending frequency f,, the towers can be classified as
follows:

- stiff when f, > N-P;
- soft when 1-P < f < N-P;
- soft-soft when f, <1-P,
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This classification is not standard, the second condition sometimes being denoted as
soft-stiff and the last as very soft. As a design requirement, the tower eigenfrequencies
must stay reasonably clear (even by a margin of + 25%) of the frequencies 1-P and N-P
in order to avoid resonance. In modern wind turbines the solution of the very soft tower
is being preferred as being the lightest and most economical solution.

According to van Holten et. al. [1999]*, during the "First National Dutch Research
Program on Wind Energy" (1976-1981) much attention was paid to investigate the risk
of aeroelastic instability problems (such as flutter and rotor instabilities as known from
helicopter industry). The conclusion at that moment was that stability problems were of
no concern for the then-existing wind turbines and that, for these devices, attention
should be paid to the loading problems (the effects of wind fields, turbulence and
disturbances on the structure).

The previously discussed observation that wind turbine rotors are stiffening, together
with the discussion in section 3.3.1 on the danger of instabilities observed in stiff-
inplane rotors, justify the conclusion of this dissertation that moden wind turbine

configurations are headed towards a new area of problems where aeroelastic instabilities

and vibrations may be difficult to control and eliminate. This serves as a warning to
wind turbine designers to be aware that new instabilities may appear in modern wind

turbines, as a result of the process of rotor stiffening in the flapping and lead-lag
direction. Already, industrial wind turbine applications are presented where dynamic
instabilities appeared: on the mid-class wind turbines of 500-600 kW, lead-lag dampers
had to be mounted in order to avoid strong lead-lag vibrations of unknown origin (see
Anderson [19997°).

The present conclusion is also supported by van Holten et. al. [2000]* who showed that
due to scaling effects, new types of instabilities which are currently not encountered in
helicopters may appear in wind turbines. Using the square cube law it was
demonstrated that the mutual position of the flapping and lead-lag eigenfrequencies
does not change by upscaling. Also, the position of these eigenfrequencies with respect
to the aerodynamic excitation frequency remains unchanged. The unsteady aerodynamic
effects are unchanged as well, and therefore, the "classical flutter" problem remains
unchanged.

However, certain parameters do not quite behave according to this law. For example,
this is the case with the flapping eigenfrequency which actually, by upscaling, decreases
less rapidly than the lead-lag eigenfrequency (in dimensional values). While for present
wind turbines the ratio between the blade flapping and lead-lag eigenfrequency was
around a value of 1.5, by upscaling, this ratio approaches 1. This makes the future wind
turbines susceptible to flap-lag instabilities, especially in the stall region.

Another potential instability due to the effect of scaling explained by van Holten et. al.
[2000]* is the so-called "advancing lead-lag mode instability” (mentioned also in
y
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Figure 3.4). This instability can be qualitatively explained in Figure 3.5 using a similar
approach applied to the ground resonance diagrams from the helicopter world. Using
the Coleman transtormation (see Appendix D), the variation of the lead-lag frequency
with the rotor rotational speed can be represented in the non-rotating system by its
advancing and regressing lead-lag mode. Representing also the variation of the first and
second tower bending modes with the rotor rotational speed, the points of intersection
between the lead-lag modes and the tower bending modes represent possible
instabilities. Figure 3.5 considers two cases:

- the lead-lag non-rotating frequency was measured on a blade with an infinitely
stiff blade-hub connection O i (continuous line);

- the lead-lag non-rotating fréquency was measured on a blade with a more
flexible blade-hub connection, resulting in a lower lead-lag non-rotating

frequency @, (dotted line).

— Advancing and Regressing

()] (P)A Lead-lag modes for blade

Ad\vancing clamped in the hub with
lead-la infinite stiftness

Advancing and Regressing
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Q@)
Figure 3.5 Explanation of the "advancing lead-lag mode” instability, a new kind of
instability characteristic to wind turbines (van Holten et. al. [2000]'%)

In the first case, the first tower bending mode intersects with regressing lead-lag mode
in two points (denoted as 1 and 2). While in point 1 it can be demonstrated that the
forces which would cause the instability cancel each other out, point 2 causes the so-
called "ground resonance” instability. For present configurations, this point is out of the
normal operating range of wind turbines, and can therefore be considered not
dangerous. The second tower bending mode intersects with regressing lead-lag mode in
point 3, which is not dangerous either for instabilities.

In the second case, when the blade hub connection is more flexible, the first tower
bending mode intersects with the regressing lead-lag mode in two points (denoted as 4
and 5). Reasoning as in the previous case, point 4 is not dangerous for an instability
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due to the cancellation of the forces which would cause the instability, whereas point 5
may cause the "ground resonance" instability. The second tower bending mode
intersects with the branch of the advancing lead-lag mode in point 6. Point 6 denotes a
new kind of instability, the so-called "advancing lead-lag mode instability" which is not
known in the helicopter world.

3.4 Outline Survey on Structural Couplings in Hingeless Rotors

In the very beginning of this dissertation, in section 1.1 of Chapter 1, it was mentioned
that one of the problems the designer has to solve in order to determine the necessary
degrees of freedom in a simulation model is to adequately represent the rotor flexibility,
especially in hingeless rotor configurations. Further, section 2.6.3 of Chapter 2
introduced the definition of so-called "structural (elastic) couplings", resulting either
from the flexibility of the structure or introduced deliberately by the designer when
designing the blade geometry (see Appendix H). The structural couplings may be
advantageous in many cases, whereas in other cases their use may result in adverse
effects. Actually, it is difficult to determine the influence of these parameters over a
wide range of operating conditions. The present section defines the basic structural
couplings of a helicopter hingeless rotor. Appendix H describes the lessons learned in
designing such parameters and their influence on the couplings between the rotor and
rotor-body degrees of freedom.

Hingeless rotor systems can include three main forms of structural couplings:

1. Flap-Lag Coupling (defined by the so-called "degree-of-elastic-coupling-parameter
R") is used for hingeless rotors to characterize how much flexibility is contained
inboard and outboard of the pitch bearing. This coupling was introduced to characterize
the difference in dynamic behaviour between rotors for which virtually all bending
deflections occur outboard of the pitch hinge (pitch hinge attached to the hub) and
rotors for which part of the bending deflections occur inboard of the pitch hinge.

2. Pitch-Flap Coupling K,; may be introduced in an articulated rotor either by
inclining the flapping hinge by an angle 8, or by the control system. In the first case,
the inclination of flapping hinge induces a flap deflection in response to a small pitch
of the blade and vice-versa, Kpy= -tan &, as seen in Figure 3.6. In the second case,
since the pitch hinge in an articulated rotor is usually outboard of the flapping and
lagging hinge (B,(,8), a change in flap results in a change in pitch as well. In a
hingeless rotor, the pitch-flap coupling is in fact the coupling between blade bending in
the out-of-plane and torsional direction.

The following sign convention is introduced for the pitch-flap coupling: positive pitch-
flap coupling (negative 8;) Ky;>0 corresponds to pitch up with flap up or pitch down
with flap down.
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Appendix H will demonstrate that pitch-flap coupling affects in the first place the blade
flapping characteristics, and therefore, the helicopter's flying qualities. The designer
should bear in mind the following issues:

- in an articulated rotor, positive §, (i.e. flap up with pitch down) should be used

in order to avoid flapping divergence* (especially at low Lock numbers), albeit
at the cost of damping in the lead-lag mode:

- in_a hingeless rotor, the values of pitch-tlap coupling depend in the first placc on
the blade lead-lag frequency and in the second place on the combination of lead-
lag frequency and hub flexibility: a soft-inplane rotor is not sensitive to pitch-
flap variation, while a stiff-inplane rotor is very sensitive to it.

in_a soft-inplane rotor, a negative pitch-flap coupling (i.e. up with pitch
down) should be used, independent of the hub flexibility.

in_a stiff-inplane rotor with a soft-hub, a negative pitch-flap coupling
should be used.

in a stiff-inplane rotor with a stiff-hub, positive pitch-flap couplings are
advisable.

in a_ stiff-inplane rotor with a degree-of-elastic-coupling-parameter R
between 0.1 to 0.3, positive as well as negative pitch-flap couplings are
possible.

5,

Flapping

withd; @

\ Dt

Flapping

B
il

Pitch
Control

Figure 3.6 8, hinge for pitch-flap coupling

3. Pitch-Lag coupling K, may be introduced in an articulated rotor by inclining the
lagging hinge by an angle o, or 3, or by the control system. In the first case, inclining
the lagging hinge results in a lead-lag deflection when a pitch control input is given to
the blade and vice-versa K,.= + tan o, (see Figure 3.7). In the second case, usually
the pitch bearing in an articulated rotor is outboard of the flapping and lagging hinge
(B.£.0), which causes a change in lag to result in a change in pitch as well. In
hingeless rotors, the pitch-lag coupling represents the coupling between bending in the
lead-lag direction and torsion.
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The following sign convention is introduced for the pitch-lag coupling: positive pitch-
lag coupling K, >0 corresponds to pitch nose down with lag or pitch nose up with
lead.

In Appendix H it will be demonstrated that pitch-lag coupling is an important parameter
affecting mainly the damping of the blade lead-lag motion and thus the rotor and rotor-
body instabilities. As a general criterion:

- in an articulated rotor, negative o, should be used (i.e. pitch up with lag) in
order to increase the damping of the lead-lag mode, without forgetting that by
doing this, the damping in flapping is decreased;

- in_a hingeless rotor,

- in_a soft-inplane rotor the damping in lead-lag still seems to be favoured
by a negative pitch-lag coupling (i.e. pitch up with lag).

- in_a stiff-inplane rotor, different trends are noticed depending on the
elastic coupling used:

- in_a stiff-inplane rotor with a soft hub a negative pitch-lag coupling
should be used,

- in a stiff-inplane rotor with a stiff hub a positive pitch-lag coupling
should be used.

1

Figure 3.7 o, and &, hinges for pitch-lag coupling

Once instabilities are avoided by using pitch-lag coupling, the effect on the flying
qualities is usually not substantial. In contrast, pitch-flap coupling always affects the
flying qualities significantly.

The pitch-flap and pitch-lag couplings of a hingeless rotor may be influenced by several
design parameters (see Figure 3.8) which will be analyzed in detail in the literature
survey of Appendix H. These are:
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- blade geometric parameters, built-in blade deflections such as precone, droop,
sweep (see Figure 3.8); .

- torque offset and pitch control flexibility (the distribution of torsion stiffness);

- chordwise offsets between the aerodynamic centre, mass centre and elastic axis
used to reduce steady-state blade-bending stiffness.
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Figure 3.8 Blade geometrical parameters (Hodges and Ormiston [1976]°)
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The importance of the division of hingeless rotors in soft and stiff configurations
discussed in section 3.3 of the present chapter can best be appreciated by looking at the
effects that structural couplings have on the coupling between the rotor and rotor/body
modes. Figure 3.9 presents some of the effects of structural couplings on the blade
flapping and lead-lag dynamics depending on whether the blade design is stiff or soft.
Looking at this figure, one may conclude that blade flapping and lead-lag frequency
and damping characteristics are strongly dependent on both the structural couplings and
the soft/stiff choice in the design of rotary wing devices. According to this, it also
follows that the answer to the question on how many degrees of freedom are necessary
in simulation modeling will strongly depend on the structural couplings and the soft-
stiff characteristics of the configuration analyzed.






Chapter 4

Critical Pole Distance Method

"Engineers are often more comfortable with requirements than philosophies, but,
nevertheless, the end product of their work is alwavs a record of their design
philosophy.”

Glidden S. Doman [1994]

The aim of the present dissertation is to extend and improve existing procedures used to
predict which degrees of freedom are neccssary in dynamic simulation modeling of
helicopters and horizontal-axis wind turbines. In this context, the present chapter
proposes a general procedure - the so-called "critical pole distance method" which may
be used by an analyst to determine the necessary structure of simulation models. The
proposed procedure is then compared with other existing procedures to predict the level
of detail in simulation models.

4.1 Critical Pole Distance Method

The critical pole distance method may be applied in the preparation-phase of simulation
models of helicopters or horizontal-axis wind turbines (the phase where the dynamic
equations of motion are analytically derived) to determine how much detail should be
considered in the models. The critical pole distance method contains the following
steps:

1. First, assuming the system (helicopter or horizontal-axis wind turbine) as a
summation of mutually uncoupled subsystems -blades, hub, (air)frame etc.-, the
equations of motion for every uncoupled detlection mode are derived.

2. Subsequently, for each subsystem, the formulated equations of motion are
solved. The solutions represent the uncoupled mode eigenvalues. These solutions
are usually complex values, so that they can be represented in the complex plane
(see section 2.2 of Chapter 2). The eigenvalue representation in the complex
plane has the advantage of providing information on structural mode behaviour
in frequency as well as in damping. The frequency shows whether or not the
mode under consideration is a vibration, the damping gives information on the
damping forces involved in the system which can have a stabilizing effect on the
motion. In order to identify all potential coupling effects, the equations of
motion associated with the rotating subsystems are transformed to a non-rotating
system through the so-called "Coleman transformation" (Multiblade Coordinate
Transformation MCT" (see Appendix D).
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3. Next, using the representation in the complex plane, "critical regions" are
defined. A "critical region" is an area of the complex plane where potential
couplings between different modes occur -both within and between subsystems.
The criterion for a critical region is the relative position of the poles in the
complex plane, i.e.: if in the complex plane the poles associated with the
uncoupled motion of different modes are "close" together, one may expect that
these modes will couple. The crucial point to be judged here is what actually
means "poles close to each other” and "poles sufficiently separated” in order to
allow for their mutual coupling effects in the simulation model or not. In other
words, a criterion must be developed to quantify the mutual distance between
poles and the distance between poles and excitation sources. This is done by
analysing a wide variety of test-cases, for a well defined class of systems and
unit of measure, by deriving the full set of coupled equations.

4. Finally, conclusions concerning the degrees of freedom to be used in the
structural model can be drawn. The modes involved in the structural model will
be divided into three classes:

- modes to be discarded from the model,

- modes to be kept separately in the model (neglecting the coupling terms
between these modes and other degrees of freedom),

- modes to be kept in the model including the coupling effects that are
essential for the model.

4.2 Formulation of a Criterion for the Critical Pole Distance
Method

4.2.1 Critical Pole Distance Criterion for a Two Degree-of-Freedom Linearly
Coupled System

Consider a two degree-of-freedom linearly coupled system of equations of motion of a
dynamic system in the form:

{ jil +2§lmlxl +m?xl +fl2x2 +g|2)'(2 +h|2x2 = 0 (4 l)

%, +28,0,%, +@)X, +f, X, +g, X, +h, x, =E(t)

21 2171

where the terms f., g.. h,, f,,, g,, h,, represent the coupling terms and E(t) an
external excitation force applied only to the degree of freedom x,. The present section
investigates the conditions under which the degrees of freedom x, and x, can be
assumed as weakly coupled in the model. In the Laplace domain the system of
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equations (4.1) can be written as:

{ (s- +28, o8 +a)}) %,(s) +<fns~ +g,,8 +h,2) X,(8) =0 @2)
(£, v, +hy, ) & () + [ 428,0,5+01)R,(5) =E(s)
Introducing the following notations:
N, =sz+2§1(ols+(oz . T, =f,8+g,s+h, 4.3)
N, =s*+28, 05+, . T, =f,s'+g,s+h,
the equations of motion (4.2) can equivalently be written as:
N, X (s)+T,%,(s) =0
{ 27 (4.4)
T, %,(s) +N,&,(s) =E(s)

Next, define each degree of frecdom as an excitation for the other degree of freedom.
In the equations of motion (4.4) this is equivalent with separating on the right-hand side
of the equation the degrees of freedom involved in the couplings and on the lefi-hand
side the degrees of freedom containing the uncoupled characteristics of the system. The
system of equations (4.4) can then be expressed as:

. N
Nl XI(S) T, XI(S) (4.5)

{Nzgm)=ﬂlxm)+ﬁu)

where T',, T, are the coefficients T, T, passed to the right-hand side of the

12°

equations with a minus sign. The reason for this is that by doing so the equations of
motion can be transformed from an open-loop control system into a closed-loop control
system, involving in the forward loop a specific degree of freedom to be investigated
and in the backward loop the degrees of freedom which may couple to the degree of
freedom analyzed. Note that while the uncoupled eigenvalues are contained in the
denominators N, and N, of the transfer functions, the coupling terms are contained only
in the numerator terms T, and T,,. Equations of motion (4.4) can be treated as block
diagrams involving transfer functions in an open-loop control system; equations (4.5)
can be treated as transfer functions in a closed-loop control.

Defining a transfer function F(s) in the feedforward loop and a transfer function G(s) in
the feedback loop as:
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l Tl =G(s)

X, N, (s) @.6)
/ A

f}:TZ'(S)=F(S) , §= 1 “H(s)

Xl N,(b) E N'_’(S)

the equations of motion (4.5) may be represented as in Figure 4.1.

E(s) + X X,
—» H(s) | — F(s) >
+

G(s) fe—

Figure 4.1 Block diagram for a linear positive feedback system

The following relations may be applied to the block diagrams represented in this figure:

R.(s) =G(s)&, (s

{ X %) @7
%,(s) =F(s)%, +H(s)E(s)

Eliminating X, in (4.7) leads to the following closed-loop transfer function:

%,() ___ H() (4.8)

E(s) 1-F(s)G(s)

Returning to the initial question of the present section of whether the degrees of
freedom x, and x, are weakly coupled or not, this question is equivalent to that of

whether the closed-loop transfer function R,(s)/ E (s) differs from ()“(2 (s)/ E (s ))0 .

where the index zero indicates that the feedback G = 0. Substituting G = 0 in (4.8)
leads to:

%,(s)

E(s)

G(s) =0 =T, =0 = ( ) = H(s) 4.9)
0

Thus, the degrees of freedom x, and x, are weakly coupled when the relative difference
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between the transfer function of the coupled system (iz(s)/ E(S)) and that the

uncoupled system (iz(s)/fi(s))” is approximately zero in any point s of the complex

plane, that is:

(B2
E(S)A E(s)l = F(s)-G(s) = I = 0 =x, X, decoupled (4.10)
(xl(s)) 1 -F(s)G(s) N, (sIN,(s) 1
E(s)l T).(s)Th ()

Equation (4.10) gives the condition of weak (loose) coupling between the degrees of
freedom x, and x, in a two degree-of-freedom linear coupled system. This condition is
N (s)N.(s) ) Ti.(s) Tay(s) )
/_'_./‘# —e or equivalently — = """ 50 that is, either
Ti.(s) Ty () N, (s)N,(s)

fulfilled when

when:

T(5) Th(s) =0 (it N (5)Ny(s) # 0) & Tip(s)Th(s) « N,(9)-Ny(s) 41D
or when:

N (8)-Ny(5) o0 [ifT/o(5)- T4 (5) # o0 ) e N (8)-Ny(s) « Tip(s) Thy(s) 412

Condition (4.11) states that two degrees of freedom x, and x, are weakly coupled when
the product of their coupled characteristics is small with respect to that of the
uncoupled characteristics. Equivalently, condition (4.12) states that if the product
containing the uncoupled characteristics is sufficiently large compared to that containing
the coupled characteristics, the degrees of freedom x, and x, may also be considered
weakly coupled. Condition (4.11) is quite often referred to in literature and requires the
investigation of the couplings in the system. Condition (4.12) refers in the first place to
the uncoupled characteristics of the system and contains the information to be
investigated in the critical pole distance criterion.

One may observe that conditions (4.11) and (4.12) may be applied only to certain

\ L TH(8) T () o
classes of problems. Indeed, the limit ——_~~ —0 cannot be determined in the
N, (s)N,(s)

0 . _ oo
extreme cases of o (zero cross-coupling and zero characteristics) and — (very large
(=)

cross-coupling and system characteristics). Also the cases
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9_ -0 ; % —e and (_); — oo should not be investigated because these are not relevant

oo

for the designer (for example, in case of zero cross-coupling, one is not interested in
how large the product of the uncoupled characteristics is, because the two degrees of
freedom will not interfere with each other anyway). The class of problems that is
relevant to criterion (4.10) is that for which the system is not on the edge of its
operating envelope and the coupling and uncoupling terms are in the same order.

Since s is the Laplace operator and thus generally a complex variable s =a+ib, it

follows that N, (s); N,(s); T{Z(s); T;,(s) are also complex variables. Using the
representation of the complex numbers in the complex plane by their radius and
argument, it can be demonstrated that conditions (4.11) and (4.12) may be satisfied if
and only if their modulus satisfies the following conditions as well:

- IT),- Ty! 50 = IT),- Tyl « IN,-N,| (4.13)
- or:
- IN,'N,I »oo = IN;N,J » 1T}, Tyl 4.14)

The next paragraph concentrates on condition (4.14) by demonstrating that a criterion in
the critical pole distance method may be derived from this condition and used as an
engineering approach in the preparation-phase of simulation models (when the
couplings in the system are unknown) in order to determine how much detail should be
used in the model.

Returning to the expression of the uncoupled characteristics of the degrees of freedom
x, and x, in the equations of motion (4.1):

N (s) =5*+28, 0,5+ 0, 4.15)
N,(s) =5*+2§,0,s + s

one may observe that putting these terms equal to zero, the system poles are obtained
(assuming an oscillatory motion for the system):

s, =-Eotioyl -&] (4.16)
5,, = -&,0,xi0, \/1 —§§

Substituting s =a+ib in its general form as a complex variable into (4.15) one
obtains:
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N,(s) =a’-b*+28 @ a+w, +2i(ab+& w,b) =a, +ib,

! .17
N,(s) =a’-b*+2§,0,a+, +2i(ab+§,0,b) =a,+ib,

The product IN,N,| of the two uncoupled degrees of freedom can then be calculated as:

‘NlNzl =‘N‘|-|N1| = \/ﬁ(a2 -b*)+o, (o, +2a§l)]2+4b3(a +§;‘°|)2}' @4.18)

’ ‘/{[(a: ~b2)+0)3((1)1 +23§z)]: +4b2(a +<‘,1(1)2)} = f(a'b’gl’gz’ml .0,)

which is a function depending on the coordinates of the complex variable (a,b) and on
the system characteristics (§,, &, ®,, ®,).

Condition (4.14) states that the product IN,N,! has to be much larger than the product of
the coupling terms IT',,T',} in order to be able to neglect the couplings in the system.
This condition should be investigated in every point in the complex plane s € C, except
the points s,,, s,, where IN,N,l is always zero and the condition can never be fulfilled.

The question is what are the critical values for s that can reveal valuable information to
the designer on the system characteristics as defined by the frequency and damping and
by the coupling terms. One should in this context realise that a value s far away from
the region of the poles of the system will always lead to a very large value of the
product IN\N,| and that the information on the system characteristics in damping and
frequencies will be lost. Therefore, such points do not contribute to the understanding
of the quantification of the product IN,N,}, unless the couplings are also investigated.

In the other hand, assuming s in the region of the poles s,,, s,, (the "critical region" as
defined on page 60) the designer can obtain useful information on the system
characteristics by analysing condition (4.14). A large value for the product IN|N.I in this
region will show that the system poles are situated sufficiently far from each other to
neglect the couplings in the systems (assuming the case of non-zero couplings
IT,.T",,1=0).

On basis of the above discussion, considering a point s — &, +i®, (beware that this
point is not the pole of the motion because it is taken at the coordinate of the
undamped frequency of the degree of freedom x,), and recalling equations (4.18),
condition (4.14) will become;

|N1Nz

-5, {(95101 1160} )£l 0} +28] 0 (0] *2E}0] <)) <48, 0,8,0,x
(0} +Ei0} <0} aitiol (oi-o] |}

(4.19)

T:E(gl +iml) Tél(gl +i0),)l
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Condition (4.19) requires the determination of the coupling terms which, incidentally
are not known prior to developing a complete coupled model. However, this condition
represents a necessary condition in order to consider two degrees of freedom as weakly
coupled, that is:

lNI Nll =t o, {( 983 @w; +160; )[&Tmf +28] o) (@] +2E 0, +3) +4E 0, &, 0, (4.20)

172
x (o) +Ej 0] +03) +40, &, 03 +{w3 -0 }} is large

Of course, the interpretation of the term "large" is subjective and has to be defined for
a certain dynamic system, a specified unit of measure and a certain class of problems.
In the present dissertation the systems investigated are helicopters and horizontal-axis
wind turbines. The unit of measure, the frequencies ®, and ®,, are non-dimensionalized
by means of the rotor rotational velocity Q in order to transform the value for IN|N,|
into a non-dimensional value. Finally, the class of problems for which the condition
(4.20) is applied is that of low-frequency mode modeling in which the limitations
presented in section 1.3 are valid. For helicopter and wind turbine systems, the
interpretation of the term "large" in condition (4.20) may be quantified only by
investigating different case-problems, both with a coupled and an uncoupled model.

Returning to the initial restrictions under which condition (4.20) was derived, it should
be remembered that this condition cannot be applied to a system with zero-cross
couplings. In such systems it does not matter how large the quantity IN\N,! is, the
system is always uncoupled.

Condition (4.20) will be considered as a criterion in the critical pole distance method to
investigate the critical regions of couplings (defined on page 60). This condition is a
necessary condition, but in general it is not sufficient. There are applications in which
this condition is also sufficient (such an application for example may be a system that
is only coupled through stiffness and in which the inertial couplings are absent). For
future work, it would be interesting to determine which are these applications for
helicopter and wind turbine systems.

The present dissertation will investigate how the term "large" in the critical pole
distance criterion (4.20) may be quantified for the following cases:

- in Chapter 5 for piloted simulation modeling, in order to examine the couplings
between the helicopter body modes and rotor disc-tilt modes belonging to critical
regions;

- in Chapter 6, to determine the couplings responsible for the instability of the
KEWT two-bladed horizontal-axis wind turbine;

- in Chapter 7 to investigate the conditions under which the blade flapping degree
of freedom decouples from the lead-lag motion in a two degree-of-freedom flap-
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lag model.

Once the meaning of large for the expression IN,N,l is quantified on basis of the
analysis of the coupled models, the designer has at its disposition a tool to decide
whether to include those couplings without the need to derive them. Next, two
particular cases of the critical pole distance criterion (4.20) will be derived.

Poles_situated near the imaginary axis

When the poles of the motion are near the imaginary axis, the "critical region" is close

to the imaginary axis and thus one may assume s as a purely imaginary value s =ib.
The product IN,N,| as given by (4.18) can then be calculated as:

N, = o ) 165 g0 4o @2

+4§§m§b3(m]’ —b3)3]]/: is large

Choosing s close to the pole of the degree of freedom x,, s — i®,, in order to obtain
information mainly on the system's uncoupled characteristics, condition (4.20) in the
critical pole distance criterion becomes:

4.22)

]NlNz :\/16&&(‘)70);+4§T®?((D§-(Df)2 is large

Condition (4.22) may be considered the critical pole distance criterion for two poles
situated near the imaginary axis. Observe that condition (4.22) may be satisfied either
if:

- the difference between the uncoupled natural frequencies of the degrees of
freedom x, and x, is sufficiently large:

(mi—mf) is large 4.23)

- or, in case the uncoupled frequencies are almost equal (®,~®.,), if the product of
the damping ratios is large:

5

&f &5 is large (4.24)

In other words, two degrees of freedom with poles situated near the imaginary axis may
be considered weakly coupled if their uncoupled eigenvalues are either sufficiently
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separated in frequency, or both sufficiently damped. According to (4.24) which refers to
the product of damping ratios, two modes both need to be sufficiently damped in order
to be considered weakly coupled (or, in other words, it is not sufficient that only one
mode be well damped; if the other mode is not sufficiently damped, the two modes
remain coupled). This conclusion corresponds to the ground resonance analysis of
helicopters, where Deutsch [1946)” derived a criterion to avoid ground resonance
phenomena based on the product of the blade and hub damping, which is more
significant than the damping in blades and hub individually. The designer is thus left
with the choice of how to distribute the damping between two modes as long as their
product in damping adds up to a certain value.

Poles situated near the real axis

When the poles of the motion are near the real axis, the "critical region" is close to the

real axis and one may assume s as a real value s =a. The product IN|N,| as given by
(4.18) can then be calculated as:

IN‘N2| =\/a“+a2(mf +@;)+22°(0,&, +0,,) +0, 0,(0, +2at )(0, +2a,) is large (4.25)

Choosing s close to the pole of the degree of freedom x,, s — -§,w,, condition (4.20) in
the critical pole distance criterion becomes:

‘Nl Nzl = {'0);7;; +0)§§§(0)? +(’)g)“‘)lmz((’)l(’)z +40)§§;§1)—20);§;(m|§1 +(1)2§2) -

_2(‘)1 ‘Di E-V_’(él +§2)

(4.26)

172
} is large

Criterion (4.26) may be considered as the critical pole distance criterion of two poles of
motion situated near the real axis.

4.2.2 Generalization of the Critical Pole Distance Criterion for an n Degree-of-
Freedom Linearly Coupled System

The two degree-of-freedom system (4.1) can be generalized into an n degree-of-freedom
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system of form:

. 2 . . - . .
xl +2§I(D1X| +(l)‘X] +f12x2 +g12xl +hllx2 teo +f]nxn +g|nxn +h, X, =0

In"n

o . ¢ .9 . 2 . .
f2| X +g21 X, +h:| X, +x: +"‘é:(’)2x2 +0; X, o +fzn X, +g.‘n X, +h, X 0

207

(4.27)
..................................... X 428,00 % +o)x +.+f X g x +ho X o= E(0)

non

b
- . c on ool L
£LX +E X X Fo +X +28 @ X +ox =0

nin nnn ntn 0

where the terms f,,, ... £, |, g5 - Zan1s Nia - b, represent the coupling terms and
E(t) an external excitation force applied only to the degree of freedom x;. The present
section will generalize the critical pole distance criterion (4.20) to a criterion giving the
condition for which the degree of freedom x; decouples from the remaining degrees of
freedom x,,... X, ;
Following the same reasoning as in the case of a two degree-of-freedom system,
applying the Laplace transformation to the system of equations (4.27) and assuming
each degree of freedom as an excitation for the remaining n- degrees of freedom, after

applying a sudden input £ to the system (E(s) = eT (s)), the system of equations
(4.27) can be equivalently written as:

. . O T, e T, | %
N‘f(l ! 1 Al 0
Ty 0 T, 1 |4 0
N.%, 0
T, ... RS T ' 0
NiAI " il i2 in ) 1 L =g \ (4.28)
0 NX.
i T, T, oo Oreorre T ||% T,
J I~ Jn ]
Nnin
Pl T, T, s 0| \%, 0
L ]
where:

N, :sz+2§kwks+mi ;. T, =f,s"+gs+h; k=1.n,l=1lLn, k=l (4.29)
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Note that also in the generalized case, the system contains its uncoupled characteristics
in N, to N, whereas its coupled characteristics are contained in the terms T,, ... T, ..
The response of the x-th degree of freedom to the input ¢ is:

N, w T, oo 0 T,
Tll * Ni 0 Tin
........... (4.30)
le T, .. B .. T,
A, T . T ..0 . N . A
)’i. = _d = nl ni n = _l)sz s _£
iy A ( ( )A
where:
N, . T, T]) T, N T T T
1 1j4 1j+ In
T, w N Ty W T, T """"" N T T
A=l o ’Aj; _| i i jHid t Tjdn 4.31)
T T N - ij Tj+|H Njﬂ Tjﬂn
0 w Ty o N T
"""""" T w T.. T.. .. N
T, wo Ty Ty o N ' o

The condition under which the degree of freedom x; decouples from the remaining nd
degrees of freedom is equivalent in the generalized case to the question of when the

transfer function )‘(j / ¢ differs from the transfer function (ﬁj/ c)o. The transfer function

(f(j/e)o in the generalized case is the transfer function X;/€ in which all the coupling
terms T,,...T, are zero, i.e.:

in

)o :(—j) T, T 50 "< (4.32)

Thus, the degree of freedom x; decouples from the remaining nd degrees of freedom of
system (4.27) when in any point of the complex plane the relative difference between

the transfer function of the coupled system (ij/ e) and the transfer function of the
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system with the degree of freedom x; weakly coupled ()‘(J./e )n is approximately zero,
that is:

x, decouples

ol J Ty 2 1 =0 (4.33)

%, A T A T A, from x,..x_
- -1yt e -y R
€o N A” N A
Ll ii
\
where A", .. A, are the minors of the elements T, ... T, and are the determinants

n in

obtained by deleting the line j and respectively the columns lton inA:

TIZ Tln Nl """ Tl.n—l
T., .. T T, ... T.
- .2 it.n - A jlnd / 3
A = CeL AL = (4.34)
j4.2 jH.on G T_i+|.n—l
T, ... N T

Observe that in the generalized case, the critical pole distance criterion (4.33) contains
both the uncoupled and the coupled terms of the degree of freedom x; investigated. For
example, in a 3 degree-of-freedom system, assuming that the input € is applied to x,,
the critical pole distance criterion (4.33) becomes:

iz ) T§3T§3+T:3T§,_T:3T§3T§| _ngTngf.z

e N.N. NN, NNN, NN.N

€ - 243 12 1+ %243 K] ~0= from X, (4.35)
TuTh TLTh THT, TLTaTy TLTy T
- - - + +

0 N,N, NN, NN, NNN, NNN,

x,decouples

and x,

where T/, T/, T',, ..., T',are the coefficients T, T, T, ... T,passed to the
right-hand side of the equations (4.28) with a minus sign. Concluding, in an n = 3
degree-of-freedom linearly coupled system, determining whether one_degree of freedom
decouples from all the other degrees of freedom requires the computing of the coupling
terms in the critical pole distance criterion.

However, the critical pole distance method presented in section 4.1 of this chapter only
involves the analysis of those poles situated in critical regions of the complex plane.
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Poles situated in such regions signify that the corresponding modes of motion are
potentially coupling. It follows that, although n degrees of freedom are involved, in the
critical pole distance method one is primarily interested in the degrees of freedom
corresponding to critical regions in the complex plane defined on the basis of the
relative position of the poles. In these regions one has to decide whether poles are
sufficiently separated or whether they are sufficiently close in order to allow for their
coupling effects in the model or not. The critical pole distance criterion (4.33) should
not be therefore applied to all couplings between one degree of freedom and the
remaining degrees of freedom of the system, but to specific couplings as identified by
the critical regions.

4.2.3 Critical Pole Distance Criterion Applied for a Critical Region of Two Poles

The present section will demonstrate that the critical pole distance criterion (4.20)
derived for a two degree-of-freedom system, can also be used to quantify the coupling
effects in a critical region formed by two degrees of freedom x; and x; of an n degree-
of freedom system. Assume therefore that when representing the uncoupled system
eigenvalues in the complex plane by means of the critical pole distance method, the
eigenvalue of degree of freedom x; is "close" to the eigenvalue of degree of freedom x;,
thus forming a critical region. The transfer functions defining the influence of x; on x;
and vice-versa are (observe that the second transfer function is not defined in the real
sense of the word because it contains the input €):

& T. = / n R

5.0,y Th gLy gk (4.36)
X N, i N X ke 5

R T/ T n T/ s n a

Hode ey RS T 3 F, (4.37)
% NN & Ry N ! Xokdme R

Substituting (4.36) into (4.37), one obtains:

(1-FF)% =¢F,+F, ¥ F,x+ ¥ F,% (4.38)

jooji jk Tk
k=l.k=i k=l.k=j

The response of the x;-th degree of freedom to the input & is:
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n i n ﬁ
5 F. F_*+ F, X
ﬁ - Fe + Jlk=§¢i * € k:lz.l;v‘j * € (439)
> 1-F.F. 1-F.F.

non yn

The question of when the degrees of freedom x; and x; are directly uncoupled (x; and x;
can still couple indirectly via X, X,,..., X,) i$ equivalent to the question of when the
transfer function x/ ¢ differs from (x/ £),,» where the index 0 indicates that the
teedback F;, = 0. Subsututmg F; = 0 into (4.39) leads to:

(ﬁ) :F‘+Fii Z Fy Xk+ E Fikﬁ (4.40)
el T k=lk#i € k-rkz; €

It follows that the degrees of freedom x; and x; are uncoupled when in any point s of
(k./e)-(x/¢),

1 1

the complex plane the ratio is approximately zero, that is:

(&/¢),
Xy X
AL e
&l ek 40 L -0 = x decouples from x, (441
% L-Fy B NN J
! T

Equation (4.41) gives the condition for weak coupling between two degrees of freedom
of an n degree-of-freedom system which form a critical region in the complex plane.
This criterion is identical to condition (4.10) except that the index 1 is replaced by i
and 2 is replaced by j. It follows that the discussion of section 4.2.1 on the coupling
between two degrees of freedom can be extended to analysis of the coupling between
two degrees of freedom x; and x; of an n degree-of-freedom system in a critical region
of the complex plane. The critical pole distance criterion (4.20) to quantify the coupling
between x; and x; in the critical region thus becomes:

NN =g (9870} 160} [Elal +28 wl{0] <28 0] o) +at 08 0)x 442)

R 12
x (o) +& 0] +0]) +40 B o +(o] -0 ]} is large

Expression (4.42) may be considered the critical pole distance criterion providing a
necessary condition under which the coupling between two degrees of freedom x; and x;
belonging to a critical region may be neglected. The particular cases of this crlterxon
are by analogy with the discussion of section 4.2.1:
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- when the poles of the degrees of freedom x; and x; are lying near the imaginary axis:

|NiNJ, = \/16&&5@, o +4E o/ (0 -0]) s large (4.43)

Again, as in the two degree-of-freedom case, this criterion may be satisfied either when
the uncoupled eigenvalues of x; and x; are sufficiently separated in frequency, ie

(wjl —mf) is large or when they are both sufficiently damped &; - éf is large.

- when the poles of the degrees of freedom x; and x; are lying near the real axis:

INi le = { '(ngj +(DJ2§JZ((‘012 +°°j2) o, mj(wiwj +4mj2§;§i) —szgf(miéi +0‘)j‘t’j) B

. 4.44)
20,078 (g, +§j)|} is large

The critical pole distance criterion as given by (4.43) and (4.44) will first be applied in
Chapter 5 in piloted simulation modeling, in Chapter 6, to investigate the couplings
responsible for the instability of a two-bladed horizontal-axis wind turbine and in
Chapter 7 to study the coupling between the blade flapping and lead-lag motion. As
discussed in the two degree-of-freedom case, only analysing the differences in
behaviour of a dynamic system when using a coupled and an uncoupled model in
different case-problems may give a feeling as to the interpretation of large in (4.42),
(4.43) or (4.44) for the dynamic system analyzed.

The critical pole distance criterion as derived in this section assumes that there are only
two modes in the critical region. If the critical region contains more than two modes,
the critical pole distance criterion must be considered in its general formulation (4.33)
and therefore the coupling terms between the degrees of freedom belonging to the
critical region must also be determined. A way to avoid calculating these terms may be
to consider the degrees of freedom in the critical region in pairs and apply the critical
pole distance criterion to each pair. In this way only the uncoupled eigenvalues need to
be determined.

4.3 Discussion on the Time Constants of Two Uncoupled
Degrees of Freedom

The main idea in the critical pole distance method is that two degrees of freedom can
be considered weak coupled if their poles in the complex plane are sufficiently
separated. Section 2.2.1 of Chapter 2 showed that the position of the poles in the
complex plane can be expressed in the time-domain by their time constant. Consider
the time constants t; and 1; (defined according to (2.21) or (2.22)) of two uncoupled
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degrecs of freedom x; and x; of an n degree-of-freedom system. Heuristically, the
condition "poles far enough from each other” from the critical pole distance method is
equivalent in the time domain with the condition "time constants of different order".
Assuming that the pole x; belongs to the slow mode, this can be written as:

T, « ‘Ei 4.45)

Condition (4.45) will be verified in the case-problems studied in Chapter S in the
present dissertation.

4.4 Discussion on the Effect of System's Zeros

As demonstrated in section 4.2.1, equation (4.23), wide frequency separation between
two poles is commonly associated with weak coupling, whereas pole proximity is
associated with strong coupling. However, this is not invariably true. The zeros can
play an important function in the coupling. Pass et. al. [1963]*? demonstrated that the
relative spacing of poles and zeros are important in determining whether the coupling
will be weak or strong.

Consider the generalized n degree-of-freedom system (4.28) in the Laplace domain to
which a unit impulse input to the first degree of freedom was applied (T, = 1):

N, X +T,%,+ D R TR WX, =€
T31x|+N:xl+TDx3+ ................ +T, X =0
) (446)
T X +T X, +T X, +..NX +....... +T. X =0
it 272 3773 in"n
T & T LR+, +T X tN & =0

The response of the system in each degree of freedom to the unit step is:

%, (s) :Aﬁ(s) ~%,(8) :Al*z(s) R () :A;n(s) (4.47)
£ A(s) ¢ Ay T e A(s)

where A(s) is the determinant of the characteristic equation of the system (4.46) and
A,/(s) ...A,,'(s) are the minors of the elements N,, T,, ...T

In®
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Nl TIZ " Tln
N, .. T,
A(S) - 21 2 2
T, T, .. N, (4.48)
N, .. T, T, N, .. T,,
A} (s) = CIPN, ... v AL () =D T e
Tnz Nn Tn) Tn2 Tnn-l

The ratio of the modal response between the first and the second degree of freedom is
defined by:

£,(s) _ A%,(5) (4.49)
ﬁ2(S) A'|2(S)

Considering any pole s, belonging to the multitude {s, ... s,} of poles of the
characteristic equation A = 0, the magnitude of the modal response ratio (4.49) of the
pole s, € {s, ...s,} was defined by Pass et. al. [1963]* as:

%, (s)
%,(s)

_ 1Al (4.50)
1A%, ()1

This magnitude of modal response ratio (4.50) can be correlated with the pole-zero
pattern of x, and X, and thus with the interpretation with respect to the couplings
between these degrees of freedom. Figure 4.2 from Pass et. al. [1963]% presented three
cases which can appear in the complex plane:

- case 1 corresponds to the situation where poles are closely spaced with no
nearby zeros;

- case 2 corresponds to a very large modal response ratio

- case 3 corresponds to a very small modal response ratio.

According to the authors and based probably on their experience, case | may be
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associated with strong coupling whereas cases 2 and 3 with weak coupling.

A;
20 9 Tg s, Poles
Z2*,Root of A"
z*, Root of A’
L) z djo
5;X 2,0 S,X
oA
s
» *x —
Case 1 N Case2 ° Case3 °
X)) ! X(8:) |, X,(s)) ~5 X,(s,) | . x,(s) lz075 X(s) ‘
’%Z(Sl) ,\“:(S:) ! j:(sl) -Ez(sg) ’ il:(sl) "“’2(52)

Figure 4.2 Relative position between the poles and zeros (Pass et.al [1963]7)

4.5 Comparison between the Critical Pole Distance Method and
Other Prediction Tools

4.5.1 Campbell Diagram (Spoke-Diagram)

As discussed in Chapter 1, the "critical pole distance method" may be considered as an
extension and refinement of the so-called "Campbell diagram" ("spoke-diagram”,
"Southwell diagram", "fan plot"). The classical Campbell diagram defines the resonance
points of a rotating dynamic system. The diagram represents the uncoupled natural
(eigen)frequencies of subsystems and specific deflection modes as a function of rotor
speed. Examining the diagram, the resonance points are defined as intersection points
either between two different curves of natural frequencies or between a curve of a
natural frequency and a curve of an excitation frequency. The resonance points indicate
that in the range of frequencies around these points dynamic couplings may occur in
the system (either between two or more subsystems, or between a subsystem and
important excitation sources). However, the resonance points may or may not be critical
points for the system, depending on the damping in the system.

Just as in the spoke diagram, the critical pole distance method also deals with the
uncoupled modes. However, the critical pole distance method analyses not only the
frequency of the uncoupled modes but also the damping of these modes. Therefore, the
critical pole distance method can be seen as a more general method because it provides
complete information on a system's structural characteristics in frequency as well as in
damping. The information in damping mainly represents the aerodynamic damping
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forces in the system and may either have a stabilizing or a destabilizing effect on the
periodic motion. The Campbell diagram knows two kinds of resonance points defined
as:

I. an intersection between an excitation force and a natural frequency;
2. an intersection between two natural frequencies.

1. Resonance between an Excitation Force and a Natural Mode

Consider a point P(w;, Q,) in the Campbell diagram defined as the intersection
between the curve of blade flap frequency variation and the 2-P excitation line as seen
in the left-hand side of Figure 4.3. For the designer, such a point will represent a
dangerous point in which the structure may resonate with the 2-P excitation.

A O
| Natural Freq. -P

Q
Koum

freq.
2'P PQl &=0 2P

2-P
Qlg
— = o S

£ inci 4

i
1
/ I ' l-P
1-P fromOto 1 ,, :
i
Yo Ja 5 2% 2
Rotor Da:r:ﬂ?ig 2 S gQ

Speed

Figure 4.3 Resonance points between natural and excitation frequencies as seen in the
Campbell diagram and in the complex plane

In the critical pole distance method point Pl; is situated on the semicircle of radius 2
the so-called "circle of 2-P excitation"- Its position on this semicircle is determined by

the damping &, existing in the system, as seen in the right-hand side of Figure 4.3.
Representing also the excitation line 2-P, it is clear that point P is on the excitation line
only if the damping in the system equals zero. Otherwise, point P is found in the
complex plane at a certain distance from the excitation line 2-P at a point Pl; (it was
presumed that the response of the system is harmonic, therefore the damping ratio can
take a value between 0 and 1). As discussed in Chapter 2, depending on the distance
between the excitation line and point P, point P may or may not represent a critical
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point for the system. In the Campbell diagram, there are similar intersections between
natural frequencies and excitation forces (see for example point Q representing the
intersection between the curve of natural lead-lag frequency variation with the rotational
speed and the 2-P line). In the critical pole distance method, point Q is also situated on
the circle of 2-P excitation, albeit with a different damping ratio than P. In order to
determine whether these points form a critical region for the system, their relative
positions in the complex plane should be investigated.

2. Interference between Two Natural Modes

Consider next a point R in the Campbell diagram as an intersection between the flap
and lead-lag frequencics (see left-hand side of Figure 4.4). This point represents a
dangerous point where the condition leading to an instability is created. However. in the
Campbell diagram two modes may intersect or come very close to each other (the so-
called "curve veering") without leading to instability.

e
Damped

freq.

“ Q

, R, oWp/52s5
Roy=0r/0;) — = 212

R ¢
B 2iTE;
&increases/
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-
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Dampi =
Speed amping w0 /Q,

Figure 4.4 The intersection between two natural frequencies as seen in the Campbell
diagram and in the complex plane

For the critical pole distance method this point has to be transposed in the complex
plane. Point R from the Campbell diagram transposes in the complex plane as two
points, one corresponding to the flapping eigenvalue R; and the other corresponding to
the lagging eigenvalue R.. These points are both located on a circle of radius wy/Q, =
©/Q;. Usually the point corresponding to the lead-lag motion R, corresponds to a
lower damping ratio than point Ry. Depending on the relative position between R, and
R, the poles may be considered sufficiently close or sufficiently separated in order to
allow for their coupling effects in the simulation model or not. Therefore, also in this
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case, the relative position in the complex plane between the two poles should be
investigated in order to determine whether these points form a critical region for the
system.

4.5.2 Milne Criterion

Milne [1965]7 derived a general criterion which allows dividing a multiple degrees of
freedom system into a series of weakly coupled sub-systems. The Milne criterion (also
called Weakly Coupled Systems Criterion) is actually a criterion used to separate the
slow-motion from the fast-motion dynamics. Consider an n-dimensional homogeneous
system that may be partitioned into two levels of sub-systems A and B:

X, | |la-a 1 AB|X,
B N @51

% ||B-a 1 B-B|X,

B

Assume also that system A is of slower dynamics than system B (or system B of faster
dynamics than A); in the complex plane this means that the eigenvalues of smaller
modulus belong to system A. Defining two circles, one of radius r as the maximum of

the eigenvalues of the sub-system A, r = max(|sA|), and R as the minimum of the

eigenvalues of the sub-system B, R =min(|s3|), the Milne criterion states that the
systems A and B are weakly coupled if and only if the following two conditions are
satisfied (see Figure 4.5):

x AJO

\j

R=min(Sg) r=max(S,)

Figure 4.5 Milne criterion in the complex plane Milne [1965]°
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1. the eigenvalues in the complex plane are well separated, i.e.:

H << (4.52)
R

o

the coupling terms are small. Denoting with M, and M, the maximum elements
of the coupling matrices A-B and B-A then:

dim(A)-M,-M,

N el (4.53)
RZ

Under these conditions, the coupled modes may be approximated by weakly coupled
modes, given in the fast motion by the uncoupled eigenvalues ot subsystem B, but in
the slow motion both by the uncoupled eigenvalues of subsystem A and an
approximation of the fast motion at steady-state values. Therefore, while the fast motion
may be approximated by its uncoupled eigenvalues, the slow motion is strongly
affected by the fast motion. "The motion in the slow modes does not develop enough to
daffect the overall motion, while in the longer term, the faster modes have reached their
steady-state values and can be represented by quasi-steady effects.” (Padfield [1996]"")

Padfield [1980]" applied the Milne criterion to study the characteristics of the
longitudinal motions of both an articulated and a hingeless helicopter in forward flight.
While the classical low modulus phugoid and high modulus short period modes are
well separated in magnitude, for the articulated helicopter r/R= 0(0.2), for the stiff rotor
helicopter this classical form of the two longitudinal modes breaks down. The higher
the forward speed, the more the helicopter phugoid resembles the fixed-wing phugoid

where the approximation works very well for aircraft with strong positive manoeuvre
margins.
4.5.3 Vector Shift Method
The question of necessary degrees of freedom to be considered in the simulation
models was posed also for fixed-wing aircraft. In this case, the influence of the elastic
modes on the rigid body modes had to be investigated during the development of the
aircraft. Pass etal. [1963]* tried to resolve the topic of rigid-elastic coupling that
occurs during control-fixed flight of an aircraft by using the so-called "Vector Shift
Method" between the uncoupled and coupled roots. The eigenvalues of the coupled

equations of motion for an elastic aircraft can be determined by solving the equation of
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motion of form:

Rigid-body | Coupling-terms o (4.54)

Couplingterms | Elastic-modes

If s, is a root of the characteristic equation of system (4.54), the coupling may be
characterized by the vector change between the uncoupled and coupled root in the
complex plane As; (see Figure 4.6):

A, = \/(02 <, | +(0,-0,) 4.55)

Actual
root 4 j(x)
Vector change

|As] \‘ 1

\

1

1

Uncoupled +

1

root

\]

o, o o

Figure 4.6 Vector shift from the uncoupled to the coupled root (Pass et. al [1963] )

Table 4.1 Degree of Coupling Quantitative Criteria (Pass et. al. [1963] %)

Degree of Coupling | As/s; |
Very lightly coupled 0-0.05
Lightly coupled 0.05 - 0.10
Moderately coupled 0.10 - 0.20
Heavily coupled 0.20 - 0.30
Very Heavily Coupled 0.30 - 1.0
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The degree of elastic coupling can be defined as the ratio between the vector shift As,
and the modulus of s, that is | As/s; |. Pass et. al. quantified the degree of clastic
coupling from their judgement and experience as presented in Table 4.1.

4.5.4 Root Locus Method

The vector shift method is an appropriate form for servo analysis via root locus. The
root locus method is a classical design mecthod in control theory, showing in the
complex plane how the system poles move when the gain is changed. Therefore, the
root loci can be used to design a control law, giving a graphical picture of the effect of
selected parameters on the system poles and suggesting what values should be chosen
for the gain to obtain a specified damping ratio or time constant. In system design, the
shape of the loci can be changed in a desirable direction by:

- adding a pole or a zero. As a general rule, adding a pole pushes the loci away
tfrom the pole, and adding a zero pulls the loci in toward that zero;

- pole-zero cancellations. If a dominant pole is in an undesirable location and it
cannot easily be changed by feedback alone, the effect of that pole may be
minimized by choosing a zero at the same location or in the near vicinity of the
dominating pole. For example a "slow" pole (close to the imaginary axis, that is
with a large time constant) or a high oscillatory pair (small damping ratio) may
be acceptable if nearby zeros are added to these poles.

4.5.5 Force-Phasing Matrix Technique

The force-phasing matrix technique (also called Energy Flow-Diagram Method)
(Bielawa [1992]%) may be used to determine the mechanism of instability of any linear
multiple-degree-of-freedom system. The theoretical development of this method follows
from three simple principles governing any unstable motion:

- the cause of any instability can be found in the fact that any unstable system has
destabilizing forces acting on it that have components in phase with the
system's velocity. These forces produce work on the system.

- each degree of freedom of an unstable system has so-called "drivers" -
destabilizing forces acting on that degree of freedom which are in phase with the
velocity of the corresponding degree of freedom.

- any instability involving two or more degrees of freedom possesses so-called
"multiplicity of energy flow paths" (vicious circles) - paths involving two or
more degrees of freedom in which energy is alternately transferred from one
degree of freedom to the other.

Consider the eigenvalue problem of a second-order linear differential equation of
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motion:

(oo fel k) (o)

where [M], [C], and [K] are, respectively, the inertia, damping and stiffness matrices
which are assumed to be constant. The general solution to the homogeneous differential
equation (4.56) is:

K

(x} =T {on)e @4.57)

k=1

where s, = 6, = i, denotes the k-th eigenvalue which in general is a complex value
and {®"“} denotes the corresponding k-th eigenvector. Inserting the general solution
(4.57) into (4.56), each equation can be rewritten as the sum of mass, damper, and
spring forces of the i-th diagonal element along with the coupling terms gathered as a
combined excitation force f; of all off-diagonal terms :

n

2 4 (k) () (k) 2 0 _
m;; Sy & * s 0 + ko ) (mn Sk +Cy Sy "'kn) v =0
[ (4.58)
inertia damper spring f. excitation

Equation (4.58) represents the equilibrium of forces acting on the i-th degree of
freedom and can be represented in the complex plane. For an unstable oscillatory mode
(o, > 0) the vector f, contains both individual terms that have a positive real part and
are the drivers for the i-th degree of freedom, and individual terms that have a negative
real part and are guenchers for that degree of freedom. Identifying the relatively large
positive values in the force terms in the equations of motion (4.58) defines the critical
drivers of the instability. The lines on which the critical drivers are located show the
critical degrees of freedom involved in the instability. The principal function of the
FPM technique is to identify these critical drivers and the degrees of freedom involved
in the instability. Once they are determined, a matrix can be defined containing the
degrees of freedom involved in the instability containing as elements the critical drivers
corresponding to each degree of freedom, the so-called force-phasing matrix. In the
force-phasing matrix, energy-flow paths can now be defined as different closed-loop
combinations between the different critical drivers via the main diagonal of the force-
phasing matrix (see Figure 4.7). The energy-flow paths show how energy is exchanged
between the different degrees of freedom involved in the instability and therefore define
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the mechanism of the instability.

i-th degree-of- j-th degree-of-
- freedom freedom
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Figure 4.7 Energy-flow paths representing the flow of energy between the i-th and j-th
degrees of freedom involved in instability (Bielawa [1992])

For an application of the force-phasing matrix technique, the reader may consult
Bielawa [1992}° where the energy-flow paths characteristic for helicopter ground and
air resonance are defined.

4.5.6 Energy-Flow Method

A more qualitative description of the force-phasing matrix technique in the sense that
the designer does not need to determine the complete solutions of eigenvectors in order
to define the vicious circles of instability, and providing more physical insight, was
elaborated by van Holten [2000]* in the so-called "Energy-Flow method". The energy-
flow method determines the mechanism of instabilities using the principle that the
motion is likely to become unstable when several vibration modes mutually transfer
energy into each other.






Chapter 5

Criteria for the Inclusion of the Rotor
Disc-Tilt Dynamics in Helicopter Piloted
Simulation Modeling®

How good a model is... is like asking what the weather is like on Earth? ... The answer
is quite simple- it depends!... it depends on where you are and the time of the year,
etc., etc...."

Gareth Padfield [1996]

The outline survey of Chapter 3 illustrated that the rotor disc-tilt dynamics should be
included in piloted simulation as an extension of the conventional six degree-of-
freedom model, especially in the design analysis of a SCAS system or for certain types
of rotor systems. The present chapter applies the critical pole distance method in order
to determine when the rotor disc-tilt dynamics should be included in the helicopter
piloted simulation modeling.

5.1 A Simple Manoeuvre Analyzed in the Complex Plane

To get some insight in the coupling between the body motion and the disc-tilt motion
of the rotor, the present section investigates a simple helicopter manoeuvre, that is, the
first few instants during the transition from hover to forward flight, after a step input of
longitudinal cyclic pitch. One may assume that, at the very beginning of this
manoeuvre, before forward speed builds up and becomes important, the helicopter just
rotates in the pitch direction as seen in Figure 5.1. The equation of motion describing
the helicopter pitch in the shaft plane is (see Figure 5.1):

—poh(eh—al)—gKB(Gls—al) L4 o ¢=-K{o, -a (5.1)

where K = [ T,h +(N/ 2)KB ]/ I, is the moment exerted on the body per radian of rotor
disc-tilt, due to the thrust vector T,, offset w.r.t. the centre of gravity (T, = M, g), as
well as due to direct spring moments of constant K, whereas N is the number of
blades, L is the helicopter moment of inertia, h is the distance to the rotor hub, 6, is
the longitudinal tilt of the swashplate, a, is the longitudinal disc tilt, and q is the

& This chapter is a revised version of paper no. 39 by Pavel and van Holten, van [1997]% "On the
Prediction of the Necessary Rotor Dynamics for Helicopter Flight Simulation” and paper no. FM.03
by Pavel [1998]% "Effects of Rotor Disc-Tilt on Helicopter Piloted Simulation"
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pitching velocity of the body.

WY
Figure 5.1 Helicopter pitch motion after a step input of longitudinal cyclic

Equation (5.1) includes the flapping motion through the steady-state longitudinal rotor
disctilt a |, neglecting the transient disc-tilt dynamics. This assumption is generally true,
because the transient disc-tilt indeed damps out very quickly after a disturbance.
Therefore, in the classical treatment of the subject, the rotor disc tilt is often assumed to
respond instantaneously to a pitching motion:

a =- (52)

Ole

16
Y

where v is the Lock number, and Q is the rotor angular speed. Together, equations
(5.1) and (5.2) represent the equations of motion for a pitching helicopter. These
equations characterize the body pitch dynamics, the disc-tilt being included in a steady-
state form.

The influence of different rotor systems on helicopter pitch behaviour will be
investigated in this section by considering different characteristic values of the hinge
spring stiffness K. The blade is assumed to be hinged at the hub. Zero spring stiffness
corresponds to a teetering rotor, a relatively large stiffness represents the semi-rigid
system, whereas the articulated rotor with hinge-offset is an intermediate case. Two
cases will be examined, namely the case of a teeter rotor with K;= 0 Nm and the case
of a semi-rigid rotor of Ky;= 460000 Nm, both applied to a middle-size helicopter of
characteristics presented in Table 5.1.

Consider an input in the longitudinal cyclic (for example 6,= -1°). Applying the
Laplace transformation to the system of equations (5.1) and (5.2) with zero initial
conditions, leads to the transfer function:
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q,,(s) -K 1
Gh“(s) = Ah = 16 1 = Q (53)
0.(8)  s+k2> 2 X4
Yy Q 16K
Table 5.1 Helicopter Data
} y Lock M, Q h I, Inertia Case 1 Case 2 K
| number Body mass Rotor speed moment K Teeter Semi-rigid
|
6 2200 kg 260 mpm I'm 10625kgm” 0 Nm 460000Nm

The response in pitch of the helicopter for a step input 6, =-1° (é]\ =-1/s) becomes:

qhﬁ(s) :Gl\u(s).éls I —— (54)

The body motion as given by (5.3) may be represented in the complex plane for both
the teetering and semi-rigid helicopter. The system has one real eigenvalue (pole) which
includes the influence of the rotor system via the K value (which depends on Ky):

. 16 . 16
Sy = _KTE ;s = ‘KSRY—Q CR))

jo
(nondim.)

0.4

/ bo T\ 0.2

s 756 5 4 3 2 a1 o
(nondim.) 0.2

Poles of the Uncoupled Body Motion
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X sT, Pole of the teetering rotor
X sSR Pole of the semi-rigid rotor
Figure 5.2 Poles of the Uncoupled Body Pitch Motion as seen in the Complex Plane

Looking at Figure 5.2 one may see that the poles are situated in the left-hand half of
the s-plane and therefore the motion is stable for both the teetering and semi-rigid
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rotors. However, the closer the pole is to the origin, the slower the motion becomes.
Accordingly, the teetering rotor will respond much slower to the longitudinal cyclic
than the semi-rigid rotor. This conclusion can also be verified by defining the body
time constant which, according to (2.21), is:

N

T, = @
® 16 K,

Y Qe (5.6)
bo 16 KT

For the example considered here, one obtains for the teetering rotor a time constant
t',,= 5.044 sec whereas for the semi-rigid rotor t°%, = 0.153 sec. Thus, the teetering
rotor is much slower that the semi-rigid rotor (or, equivalently, the semi-rigid rotor is
much faster than the teetering rotor). According to section 2.2.1 of Chapter 2, to speed
up the response of the teetering body, its pole has to be moved to the left-hand side of
the complex plane.

02 v T v
Semi-rigid rotor (Kﬁ = 46000 Nm)

0.18

0.16 (
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rotor (Klfl] Nm)

q (rad/sec)
Ix]

008
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0
a 5 10 18 20
time(sec)

Figure 5.3 Pitch response of a semi-ngid and a teetering rotor

Figure 5.3 confirms the previous results in the time domain. The teetered rotor shows a
response typical for acceleration control, whereas the semi-rigid case is more
characteristic for velocity-control (since the response reaches a constant value of pitch
rate already within 1 sec), the latter requiring much less anticipation from the pilot.

The assumption given by equation (5.2), of instantaneous response of the rotor to
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control inputs, will now be removed and some dynamics of rotor disc tilting will be
introduced by means of a time constant 7 :

16

Ta +a, = - — (5.7)
Y

Ole

Equations (5.1) and (5.7) are the equations of motion for the pitching helicopter
including rotor disc-tilt dynamics. Appendix D, section D.4 will demonstrate that this
corresponds to taking into account the (low frequency) regressing flap mode, on top of
the steady solution. Combining (5.1) and (5.7), and applying the Laplace
transformation, the transfer tfunction representing the motion of the helicopter in this
case becomes:

A ~K{ts+1
Gy y(s) =3 = | 1)6 N (5.8)
O, s(rs+1)+K2 =
Y Q
The helicopter response in pitch to a step input 6,= - 1 (é;. = -1/s) becomes in this
case:
N A K{ts+1
qhoﬂ(s) :Gbo—ﬂ(s).els(s) = ( ) (59)
16 1
s{s(ts+1)+K-— —
Y Q

The poles of the body + disc-tilt motion as given by (5.8) are either real or complex

values, depending on the sign of the term 1 —411(1—?2. For the numerical examples

considered, the teetering rotor has real poles, whereas the semi-rigid rotor has complex
poles:

1-4tK -{16/(y Q) 5.10
Soia = —Lt ‘/ i ( Y ) e R Teetering rotor ( )
. 21 27
\/41:K -{16/(y Q))-1 5.1
S o2 = —2—1—1 i R (2 v ) e C Semi -rigid rotor .11
-~ T T

From equation (5.9) one may observe that introducing rotor disc-tilt dynamics in the
simulation model introduces a zero in the system:
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z=-1/1 (.12)

Figure 5.4 and Figure 5.5 present the pole-zero pattern as obtained for the teetering and
the semi-rigid rotor for time constants 1 varying between 0.05 and 0.3.

Poles and Zeros of the Coupled A jo
Body / Disc-Tilt Motion for the Teetering Rotor (nondim.)
SThot11
0.4
$Thofi2 T increasing
\ — 4{0.2
T, T, Ty Ty T i“
-o /20 -15 -10 -5
(nondim.) 4 0.2
X Pole sT, 1, (T varies)
@ Pole sT, 4, (1 varies) 104

O Zero (1 varies)
Figure 5.4 Representation of the Coupled Body/ Disc-Tilt Motion for a Teetering Rotor

Table 5.2 Poles and Zeros of the Coupled Body / Disc-Tilt Motion for a Teetering
Rotor

7 (sec) 7, = 0.05 7,=0.1 7,=0.15 7,=02 7= 0.25 7,=03
ot -.2003 -2023 -0.2045 -.2068 -.2092 -2117

SToon2 -19.7997 9.7977 -6.4621 -4.7932 -3.7908 -3.1216
z -20.00 -10.00 -6.6667 -5.00 -4.00 -3.3333

For the teetering rotor (see Figure 5.4) the motion has two real poles: one pole very
close to the origin - which corresponds mainly to the body motion -and another pole far
away from the origin - corresponding mainly to the disc-tilt motion-. By increasing the
time constant T, the far pole moves rapidly towards the origin. Since the poles are real
and distinct, as demonstrated in chapter 2, the motion is a sum of two decaying
exponentials. For each pole, a time constant may be defined which, according to (2.21),

are of form -1/s"  _ . Calculating these two time constants for different 7, it appears
that the teetering rotor is characterized by a large time constant, corresponding to the
pole close to the origin and a smaller one corresponding to the pole far away from the
origin. The pole close to the origin is the dominating one and the motion characteristics
are mainly determined by this pole. For the case analyzed here, this pole is situated
between [- 0.2003; - 0.2117] (see Table 5.2) and corresponds mainly to the body
motion. To speed up the motion, the dominating pole has to be moved to the left.
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However, looking at Figure 5.4 it becomes clear that as the disc-tilt time constant t
increases (the disc-tilt motion slows down), the flap-body pole approaches the body-flap
pole, increasing its influence on the general motion.

The motion has a zero located very close to the fast pole for all analyzed cases. As
stated in Chapter 2, if a zero is far away from a pole, it does not influence the transient
motion and therefore it can be neglected, whereas a zero situated close to a pole
neutralizes the effect of that pole on the motion. For the teetering rotor, the pole is
situated near the flap-body mode and therefore it eliminates the effect of the disc-tilt
motion on the total pitch motion.

For the semi-rigid rotor, the pole-zero pattern of the coupled body / disc-tilt motion is
illustrated in Figure 5.5.
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Figure 5.5 Representation of the Coupled Body / Disc-Tilt Motion. Semi-Rigid Rotor

Table 5.3 Poles and Zeros for the Coupled Body / Disc-Tilt Motion. Semi-rigid Rotor

T (sec) 7, = 0.05 7,=0.1 7;=0.15 7, =02 7, = 0.25 7, =03

sReon 100 i -5.00 +1i <3333 i 251 2001 -1.66 £ i
5.5435 6.3534 5.6979 5.1413 4.706 436

z -20.00 -10.00 -6.6667 -5.00 -4.00 -3.3333

In this case, the poles are complex values representing an oscillatory motion. The
motion is stable, as the poles are situated in the left-hand side of the complex plane. As
the time constant T increases (as the disc-tilt motion gets slower), the poles approach
the origin, thus increasing the response overshoot, and deteriorating the relative stability
characteristics of the motion. A time constant of the body + disc-tilt motion may be

defined according to (2.22) as ™R =1 /(g; ('l)n) =2 1. The body/disc-tilt time constant

is reduced (i.e. the speed of decay of the response is increased) by reducing the time
constant of the disc-tilt motion (i.e. speeding up the disc-tilt motion) which also results
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in increasing the real part of the poles (damping) and improving the stability
characteristics. The system's speed of response is increased by increasing the distance
of the poles to the origin, in this case by increasing K. Therefore, compared to the
teetering rotor, the motion speeds up for the semi-rigid rotor.

Concerning the zero's position, as the zeros are approaching the origin, the response
overshoot is increasing (negative effect) while the peak time is decreasing (positive
effect). For the design, the position of a zero is a trade-off between the overshoot and
the speed of response. For the semi-rigid rotor, one may observe that as the disc-tilt
time constant increases, the poles approach the origin (i..e. the disc-tilt motion slows
down).
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Figure 5.6 Effects of rotor disc-tilt dynamics on the helicopter pitch response

The pitch response represented in the time domain with rotor disc-tilt dynamics was
included is illustrated in Figure 5.6.

The previous discussion confirmed that the addition of the first-order term da,/dt does
influence the response of the semi-rigid system rather profoundly, in such a way that it
will probably be noticeable to the pilot. On the other hand, in the case of the teetering
system, the additional dynamics due to da,/dt is hardly noticeable.
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5.2 Critical Pole Distance Method Applied to the Simple
Manoeuvre Analyzed

One question arises at this point of the analysis: would it be possible for the designer to
predict the cffect of the disc-tilt dynamics on the body motion before having developed
the coupled body/disc-tilt equations of motion? At a first look the designer may usc the
principles presented in the critical pole distance method to try and determine the
importance of the disc-tilt dynamics for the teetering and the semi-rigid rotors in the
case of the longitudinal cyclic pitch manoeuvre. To this end, the uncoupled body/disc-
tilt motion and the uncoupled disc-tilt motion have to be determined. The poles of the
uncoupled pitch motion are as given in Figure 5.2. The poles of the uncoupled disc-tilt
motion may be simply determined by writing the uncoupled disc-tilt equation of
motion:

ta +a =0 (5.13)

The uncoupled poles of the disc-tilt motion corresponding to the eigenvalue are:

s, = -1/t (5.14)

For different values of the disc-tilt time constant T, the poles of the uncoupled disc-tilt
motion are represented in Figure 5.7. As expected, increasing the time constant slows
down the disc-tilt motion.
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Figure 5.7 Poles of the uncoupled disc-tilt motion

In the present section the critical pole distance method will be applied to the teetering
and semi-rigid rotor. Figure 5.8 and Figure 5.9 present the relative position of between
the body-flap poles for different values of the disc-tilt time constant t.

For the teetering rotor it is obvious that for any value of t, the body and disc-tilt
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eigenvalues are relatively far from each other and therefore, the rotor disc-tilt dynamics
does not influence the pitch dynamics. For the semi-rigid rotor, as the uncoupled disc-
tilt motion slows down (time constant 1 increases) it interacts with the region of the
uncoupled body pole. For a time constant T > 0.1 sec, the body and rotor disc-tilt
motion couple together. This result agrees with the conclusions obtained in the time
domain. Essentially, for a semi-rigid rotor the disc-tilt motion slows down and the body
motion speeds up, thus coupling with each other. This is the fundamental explanation of
the body/disc-tilt coupling characteristic to semi-rigid rotors.

Poles of the Uncoupled Body and ]
Disc-Tilt Motion for the Teetering Rotor @ (nondim.)

04
T increasing 0.2

—_— -

< z T, Ts T
— —A——A——hAA—x0
-15 -10 -5

(nondim.) 0.2

X PolesT, of the body motion
A Polesg of the disc-tilt motion

Figure 5.8 Critical Pole Distance Method Applied to the Teetering Rotor
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Figure 5.9 Critical Pole Distance Method Applied to the Semi-Rigid Rotor

5.3 Milne Criterion Applied to the Simple Manoeuvre Analyzed

Separating the body and rotor disc-tilt motion, the disc-tilt motion is weakly coupled to
the body motion for the simple case considered, if and only if:

<< 1 (5.15)
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M,
bo -1 tl-ho\<< 1 (516)

Defining the radius of the body motion as r, = Is, | and the radius of the disc-tilt motion
R,= | s,/ and observing that the coupling terms in the equations of motion (5.1) and
(5.7) are:

M,,=-K + M = l—g (5.17)
Y T

the second condition (5.16) reduces to the first condition (5.15). Consequently, the rotor
disc-tilt and body motion can be considered weakly coupled during the first few
instants during the transition from hover to forward flight if and only if:

S _
|_h“ << 1 (5.18)
Sﬂ

For the teetering rotor, for a variation of the disc-tilt time constant

1[0.05;0.1;0.2;0.25;0.3] (sec) the Milne criterion is illustrated in Figure 5.10 and is
equivalent to:

Shu

e [0.00991:0.01982:0.0297:0.0396:0.05946] = |_| <<1 (5.19)

n s i

Shn

Thus, the body motion may be separated from the rotor disc-tilt motion.

For the semi-rigid rotor, as the disc-tilt time constant varies, the Milne criterion is
equivalent to (see Figure 5.11):

sho

e [0.3268;0.6537;0.9805; 1.3073; 1.6341; 1.9610 ] (5.20)

5 fi

Thus, the body motion may not be separated from the rotor disc-tilt motion for any of
the cases analyzed.

One may observe, that for this simple example, the Milne criterion is equivalent to the
critical pole distance method, with the second condition of the Milne criterion
depending only on the uncoupled characteristics of the motion.
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Milne Criterion for the Teetering Rotor
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Figure 5.10 Milne criterion applied to the teetering helicopter
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Figure 5.11 Milne criterion applied to the semi-rigid helicopter
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5.4 Vector Shift Method Applied to the Simple Manoeuvre
Analyzed

According to section 4.5.3 of Chapter 4, for the vector shift method, the distance
between the eigenvalues corresponding to uncoupled body motion and the body/disc-tilt
motion has to be calculated. For the teetering rotor, the coupled poles are real values.
Considering the pole closest to the origin as the body-flap pole and varying the time
constant T € [0.05;0.1;0.2;0.25;0.3] one obtains:

As
S

L
_ Sbo 78 e

€ [0.0100;0.0202;0.0307;0.0414;0.0523:0.0635 ] (5.21)

T
5 ba -1l

which corresponds to the case of very-light to light coupling according to Table 4.1.

For the semi-rigid rotor, the coupled poles are imaginary values and the vector shift
between the body and body-flap mode with the variation of the time constant T is:

|

All these cases correspond to very heavily coupled body / disc-tilt motion according to
Table 4.1.

As 3 (SSRhO _ﬂ)z _( S:?dy -R (SThn —ﬂ)2)

S

€ [0.5717:0.8085;0.9902;1.1434:1.2783;1.4]

(5.22)

5.5 General Investigation on the Inclusion of the Disc-Tilt
Dynamics in Piloted Simulation Modeling

The present section gives a global approach of the phenomena discussed in section 5.1.
Primarily, the present section addresses the rotor disc-tilt dynamics associated with a
rigid blade model.

The blade flapping motion, as seen from a frame of reference rotating with the blade,
can be divided in three distinct time scales:

fast motions, corresponding to transients associated with the eigenfrequency of
the blade (angular frequency in the order of the rotor rotational frequency);
intermediate motions, corresponding to the steady state response of the blade to
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control inputs and body rotations;
- slow motions, corresponding to the steady state response of the blade to
variations in helicopter speed.

In the so-called six degree-of-freedom (6-dof) helicopter models, one concentrates on
the intermediate and slow time-scales. This would seem to be obvious at first sight,
since these time-scales are clearly relevant for flight dynamics. The fast time-scale
blade motions are more relevant for vibration, aero-elastic stability, etc. Accordingly,
the fast blade motions are neglected in a 6-dof model and the blade is assumed to
respond instantaneously to control inputs, pitching motion and helicopter velocity. This
is actually an asymptotic approximation to the complete dynamics of the flapping
motion. However, such an approximation may be misleading. Actually, what is
important for flight dynamics is the body motion. The blade flapping behaviour should
therefore not be considered in the rotating frame of reference, but rather in the non-
rotating frame of reference fixed to the body. It is therefore essential to first transform
the blade flapping equations to the body frame. This may be done by applying the so-
called "Coleman transformation" (see Appendix D, section D.1). The Coleman
transformation is a multiblade transformation which also takes into account the
summation or cancelling effects due to different blades of the rotor. When the
Coleman-transformation is applied, it appears that in general, the transient blade motion
splits into three levels: a relatively low-frequency "regressing mode", an intermediate
"coning" mode, and a high-frequency "advancing mode".

Under certain circumstances it is therefore conceivable that the regressing mode indeed
becomes relevant for flight dynamics, despite the fact that it originates from the fast
time-scale motions in the rotating frame. If this happens to be the case, the regressing
flapping mode will probably couple to the body motion of the intermediate time scale.
For certain types of rotor system this phenomenon of coupling has indeed been
observed (see the literature survey on the disc-tilt dynamics of Chapter 3). Recall, that
similar couplings might become relevant in the case of higher disc-tilt modes, lead-lag
or torsion modes, where they may even be coupled to higher-order body modes.

There are now two questions, to which the remainder of this chapter is devoted:

1 Under what circumstances will it be essential to derive "coupled" body/disc-tilt
helicopter models?
2 Is it possible to predict whether blade disc-tilt dynamics should be included in

the piloted simulation model using the critical pole distance method?

Concerning the first question, time-domain simulations will be performed in the present
section, with fully coupled non-linear body and body/disc-tilt models. First, a general
6dof non-linear piloted simulation model is developed in Appendix E and used to fly
two mission tasks -a deceleration and a side-step manoeuvre- with two helicopters- the
Puma SA-330 articulated rotor helicopter and the Bolkow Bo-105 semi-rigid rotor
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helicopter of numeric data as given in Appendix E, section E.6. In a typical 6-dof
model the helicopter motion is represented by three translations {u, v, w} and three
rotations {p,q,,r} around the body axis-system (see Figure E.1 in Appendix E).

The following assumptions are made:

- the helicopter body is modeled by subdividing it into its main components -rotor,
fuselage, tailrotor, horizontal stabilizer, vertical fin- and adding the contribution
of each part to the general system of forces and moments;

- aerodynamic forces and moments are calculated using the blade element theory;

- the tailrotor is modeled as an actuator disc;

- the fuselage, horizontal tail and vertical tails are modeled with linear
aerodynamics;

- rotor disc-tilt dynamics is neglected, and only steady-state rotor disc-tilt motion
{a,, a,, b} is considered;

- the dynamic inflow of both rotor and tailrotor are included in the model as state
variables and can be described as a "quasi-steady dynamic inflow" by means of
the time constants T,, and T,, of a value between 0.1 to 0.5 sec. (in the
simulations a value of 0.1 was used for both time constants);

- the rotor is modeled with a flapping hinge situated at a distance ¢; from the
rotor hub;

- the lead-lag motion of the blades is neglected;

- the blades are rectangular;

- there is no pitch-flap or pitch-lag couplings

- there are no tip losses;

- the rotor is placed at the coordinates {f, f, h} from the helicopter centre of
mass;

- gravitational forces are small compared to aerodynamic, inertial and centrifugal
forces;

- a linear twist 0, is applied;

- the helicopter body system of reference {x,y,z} is assumed parallel to the rotor
shaft plane;

- the flapping and flow angles are small;

- the rotor angular velocity is constant Q = const. and is anticlockwise in the case
of Bolkow B6-105 and clockwise in the case of Puma SA-330. Figure E.1 in
Appendix E presented the forces and moments on the helicopter components in
the case of a anticlockwise rotor. For a clockwise rotor, the tailrotor thrust T,
and lateral force S, are in the opposite direction

- the longitudindl rotor disc-tilt a, is assumed positive when the rotor disc plane
tilts backwards;

- the lateral rotor disc-tilt b, is assumed positive when the rotor disc plane tilts to
the azimuth =90, this is to the right for an anticlockwise rotor and to the left
for a clockwise rotor;



102 Criteria for Inclusion of the Rotor Disc-Tilt Dynamics in Helicopter Piloted Simulation Modeling

- the longitudinal cyclic 0, is assumed positive when the pilot moves the stick
forward;

- the lateral cyclic 0,, is assumed positive when the pilot moves the stick to the
right for an anticlockwise rotor and to the left for a clockwise rotor;

- no reverse flow regions are considered;

- the flow is incompressible;

- the blades have a uniform mass distribution with the mass centre and
aerodynamic centre located on the quarter chord line

The free motion of the helicopter in an inertial system of reference is given by the
equations of motion (E.1) to (E.14) in Appendix E. To fly the helicopter in the 6-dof
model developed, a pilot model had to be implemented by developing four stabilization
functions for each helicopter control:

- the collective controls the vertical speed via an "altitude hold controller", feeding
back the height to the vertical speed (see (E.59), (E.60));

- the longitudinal cyclic controls the pitch attitude via a "longitudinal position hold
controller", feeding back the helicopter's longitudinal position to the pitch
angular velocity (see (E.61), (E.62));

- the lateral cyclic controls the roll attitude via a "lateral position hold controller",
feeding back the helicopter's lateral position to the roll angular velocity (see
(E.63), (E.64));

- the tailrotor collective controls the heading angle (see (E.65)).

The piloted 6-dof simulation model will first be used to fly the two mentioned
manoeuvres for both mentioned helicopter types. The 6-dof model will subsequently be
extended to the so-called "eight degree-of-freedom model" (8-dof) by including the low
frequency regressing flapping mode in the model. In the 6-dof model one takes into
account the body motion and of the disc-tilt motion only the steady-state solution.
Section D.4 of Appendix D demonstrated that in the 8-dof model, adding the regressing
flapping mode to the model is equivalent with considering of the disc-tilt dynamics,
only the first-order rotor disc-tilt dynamics added to the body motion. The final
equations of motion in an 8-dof model are presented in Appendix E. The two mission
tasks are flown again with both helicopters and the effects of first order rotor disc-tilt
dynamics on the pilot controls are investigated.

Concerning the second question, the critical pole distance method will be applied using
the representation in the complex plane of the body natural modes of motion and the
uncoupled disc-tilt dynamics as represented in the non-rotating system by the Coleman
transformation. To represent the body natural modes, the non-linear 6-dof model was
linearized by assuming as a basic motion a uniform forward flight on a trajectory
contained in the longitudinal plane of symmetry and decoupling the longitudinal from
the lateral motion. The linearized 6-dof model is presented in Appendix E, section E.4.
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5.5.1 Description of the Deceleration and Side-Step Manoeuvres

Description of the Deceleration Manoeuvre The deceleration-to-stop manoeuvre

basically has two phases: from horizontal cruising flight at 50 m/s the helicopter has to
be slowed down to hover within a distance of 2 km from the starting point over a given
point situated on the ground (see Figure 5.12).

Figure 5.12 Deceleration-to-stop manoeuvre

Description of the Side-Step Manoeuvre The side-step manoeuvre is performed in the
lateral plane, as opposed to the deceleration which is executed in the longitudinal plane.
The side-step manoeuvre consists of the following stages: starting from hover, an initial
abrupt side-step acceleration is carried out. After reaching the maximum allowable
lateral speed, an abrupt deceleration back to hover is carried out. After hovering for 5
sec, the manoeuvre is repeated in the opposite direction (see Figure 5.13).

Figure 5.13 Side-step manoeuvre

5.5.2 Deceleration Manoeuvre with the Puma Helicopter in a Six and Eight
Degree-of-Freedom Model

The deceleration manoeuvre was simulated with the Puma helicopter, first using the 6-
dof non-linear piloted simulation model described in section 5.1 and developed in
Appendix E. Figure 5.14 presents the pilot inputs in collective, pedal, longitudinal
cyclic and lateral cyclic in this manoeuvre. The deceleration manoeuvre is performed in
three phases:




104 Criteria for Inclusion of the Rotor Disc-Tilt Dynamics in Helicopter Piloted Simulation Modeling

1) forward flight for approximately 2 minutes (110 sec);

2) abrupt deceleration;
3) recovering and transient flight till hover.
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Figure 5.14 Pilot controls in deceleration manoeuvre with Puma SA -330, 6-dof model

The values used for the gains to simulate the deceleration manoeuvre with the Puma in

the 6-dof are presented in Table 5.4.

Table 5.4 Gains used in flying the deceleration manoeuvre with Puma, 6-dof model

Ko =25 K,=10
Ko =075 K, =-057
Ky=15 K, =-057
K.=0.05

K,=-0.0005  K,=005
K,=0.06 K,=-01
Kh = 0-5

Kore=04
Kcorrd>= 05
Kmrr‘l’ =125
KJOI’TC = 0'05

The following pilot inputs can be read from the graphs:

- With respect to the longitudinal cyclic: 1) the pilot flies straight for the first 110
seconds and 2) then gradually pulls back the stick in order to decelerate to the
hover. 3) The rotor disc tilts back, resulting in a tendency of the helicopter to
climb. The longitudinal stick variation is closely related to the helicopter pitch

attitude;
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- With respect to the collective, 2) in the 110th second, the collective is lowered
from 7.2 degrees to 3.6 degrees (this is in fact a reaction to the helicopter's
climb tendency). 3) After this, the collective is gradually increased to the hover
trim position of 8 degrees;

- With respect to the lateral cyclic, 2) some action can be observed after 110
seconds when the stick is moved to the left -this action is simultaneous with a
change to the left in the roll angle;

- With respect to the pedal position, 2) lowering the collective in the 110th second
requires an input in the right pedal in order to correct the yaw motion. 3) Then,
as collective is increased in order to transit to the hover, left pedal is applied.

Subsequently, the deceleration manoeuvre was performed with the 8-dof model. The
differences obtained between the results when simulating the Puma with a 6- and 8-dof
model are hardly visible. The main differences with the §-dof model are present in the
collective and longitudinal cyclic and are given in Figure 5.15 (the doted line gives the
controls in the 6-dof model, the continuous line gives the controls in the 8-dof model).
The control gains were not changed in order to simulate this manoeuvre with the
extended model, being those given in Table 5.4. This leads to the conclusion that the
first order disc-tilt dynamics applied to the Puma helicopter in the deceleration
manoeuvre does not influence the pilot's behaviour.
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Figure 5.15 Pilot controls in deceleration manoeuvre with Puma SA-330, 8-dof model

5.5.3 Deceleration Manoeuvre with the B6-105 Helicopter in a Six and Eight
Degree-of-Freedom Model

Next, the deceleration manoeuvre was simulated with the Bo-105 hingeless rotor
helicopter using the 6-dof non-linear model. The pilot inputs when flying the B6-105 in
the 6-dof model are plotted in Figure 5.16. Generally, the pilot again follows the three
phases described in section 5.5.2 for the Puma helicopter. Table 5.5 presents the values
used for the control gains in this manoeuvre for the Bo-105.
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Table 5.5 Gains used in flying the deceleration manoeuvre with the Bo-105, 6-dof

Ko =02 K,=05 Keomo=05
K, =-05 K, =-0.05 Komo=-05
Ky=1.25 K, =075 Keorrw =125
K.=0.08 Koy =0.1
K,=-00075  K,=0.065

K, = 0.06 K,=-01

Kh =07

200 250

o 0 [ = 200 250 0 50 100 150
time zsec) time (soc)

Figure 5.16 Pilot controls in deceleration manoeuvre with Bolkow Bd-105, 6-dof model

From Figure 5.16 one may see that the pilot basically carries out the same actions as in
the case of the Puma, of course using corresponding gains. Because the B6-105 rotor
rotates anticlockwise, the lateral cyclic is applied opposite to that of the Puma.
Therefore, when flying the deceleration manoeuvre with the Bo-105, the lateral cyclic is
applied first to the right and then to the left. The 6-dof model was replaced by the 8-
dof model and the deceleration manoeuvre was simulated again. Performing .the
manoeuvre with the gains as derived in the 6-dof model (Table 5.5) gave different
results in pilot actions (as an example, the pilot actions in collective and longitudinal
cyclic are presented in the left-hand side of Figure 5.17 for the manoeuvre with an 8-
dof model using the gains from the 6-dof model. The dotted lines in this figure are the
inputs in the 6-dof model, the continuous lines are the inputs in the 8-dof). The gains
were adjusted such as to approach the pilot actions described in the 6-dof model. For
this, new gains were chosen in the 8-dof model as presented in Table 5.6. The pilot
actions simulated in the 8-dof model using the new gains may be seen for the collective
and longitudinal cyclic in the right-hand side of Figure 5.17. Figure 5.18 presents the
variation of different flight parameters when simulating the deceleration manoeuvre
with three different models: 1) a 6-dof model (dotted lines) 2) an 8-dof model using the
gains as in the 6-dof model (continuous lines on the left-hand side of the figure) and 3)
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an 8-dof model using the new gains of Table 5.6 (continuous lines on the right-hand

side of the figure).

Table 5.6 Gains used in flving the deceleration manoeuvre with Bolkow Bo-105, 8-dof

K, =038 K, = 08 K. yo=05
Ky,=15 K,=-05 Kiopo=-05
Ky=14 K,=-05 oy =14
K, = 0.06 core= 0.1
K, =-0.06 K, =0.09
K, =0.06 K, =0.022
K, = 0.015
14 T T T 1¢ r T
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Figure 5.17 Pilot controls in deceleration manoeuvre with Bolkow Bo-105, 8-dof model

with original gains and new gains
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Figure 5.18 Variation of the on-axis response parameters in the deceleration manoeuvre
in a 6-dof model, 8-dof with initial gains and 8-dof with new gains

Since the pilot gives inputs with different amplitude when using a 6-dof and an 8-dof
model, the conclusion is justified that the rotor disc-tilt dynamics influences the piloted
simulation model of the B6-105 when flying the deceleration manoeuvre. One may
expect that a model including the first disc-tilt dynamics is needed in this case, as
opposed to the Puma, where disc-tilt dynamics did not influence the pilot gains used in
the deceleration manoeuvre.

5.5.4 Side-Step Manoeuvre with the B§-105 Helicopter in a Six and Eight
Degree-of-Freedom Model

The side-step manoeuvre is first performed with the 6-dof model developed in
Appendix E for the B6-105 helicopter. The side-step manoeuvre can be divided in
seven phases:

1) hover flight;

2) start of a first abrupt acceleration to the left from hover;

3) after reaching the maximum allowable lateral speed, an abrupt deceleration back
to hover;

4) hovering for 5 seconds;

5) a second abrupt acceleration to the right from hover;

6) after reaching the maximum allowable lateral speed, an abrupt deceleration back
to hover;

7 hover flight.
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Figure 5.19 Pilot controls in side-step manoeuvre with Bo-1035, 6-dof model

Table 5.7 Gains used in side-step manoeuvre with Bo-105, 6-dof model

Ko =172
Ko=172
Ky=172
K, =0.06
K.=-0.06
K,=0.015
K, =0.015

I(q =+03
K,=-057

K,=-057

K, = 0.09
K, =0.0225

Kcorr o= 143
Kcorr o= 143

Kcorr v= 143
Kcorr = 0.05

Flying the B06-105 helicopter, the pilot performs the manoeuvre as follows (see
Figure 5.19):

With respect to lateral control, 2) the lateral acceleration is initiated by moving
the stick to the left. 3) The acceleration is followed by a deceleration when the
pilot moves the stick to the left. 4) After hovering for 5 sec the manoeuvre is
repeated in the opposite direction. The amount of lateral stick can be correlated
with the roll angle;
With respect to longitudinal control, 2) the acceleration is initiated by firmly
pushing the stick forward and then 4) back in order to hover. 5) In the
deceleration phase, the stick is pulled back and then slightly pushed forward for
the final hover;
With respect to the collective: in order to keep the altitude constant, the
collective has to be increased first and then constantly adjusted;
With respect to the pedal: each movement in the collective results in a yawing
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motion which is corrected with the pedal.
The gains used to fly this manoeuvre with the 6-dof model are given in Table 5.7.

Next, simulating the side-step manoeuvre with the B5-105 using the 8-dof model, the
gains had to be changed to new values. As an example, the pilot inputs in collective,
using new values for the gains, are presented in Figure 5.20 compared to those used in
the 6-dof model (the dotted line is the collective in the 6-dof model, the continuous line
is the collective in the 8-dof model). The new gains are presented in Table 5.8.
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Figure 5.20 Pilot collective in side-step manoeuvre with Bo-105, 8-dof model

Table 5.8 Gains used in side-step manoeuvre with Bi-105, 8-dof model

Ko =23 K,=+1 Komo= 143
Ky =-0.5 K,=-057 K..o=143
Ke=123 K, =- 057 Kooy =143
K.=0.1 K,y o= 0.05
K, =-0.06 K,=0.09

K,=0.06 K, =0.0225

Ka=0.08

Again, the conclusion is justified that the first order disc-tilt dynamics influences the
pilot model for the B6-105 helicopter, both in the side-step manoeuvre as well as in the
deceleration manoeuvre.

5.5.5 Side-Step Manoeuvre with the Puma in a Six and Eight Degree-of-
Freedom Model

The side-step manoeuvre is next performed with the Puma helicopter, first using the 6-
dof model. The pilot inputs in the 6-dof model with the corresponding pilot model can
be seen in Figure 5.21 and the gains used to simulate the side-step manoeuvre with the
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Puma are given in Table 5.9.
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Figure 5.21 Pilot contmls in side-step manoeuvre with Puma SA-330, 6-dof model
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Table 5.9 Gains used in side-step manoeuvre with Puma SA-330, 6-dof model

Ko =172 K, = +0.57 Koo o=1.43
Ko =172 K, =-057 K.ppo=143
Ky=1.72 K, =-057 Ky = 143
K. =0.06 Koo = 0.05
K,=-0.06 K,=0.09

K, = 0.015 K, = 0.0225

K, = 0.015

The side-step manoeuvre is now simulated using the 8-dof model presented in
Appendix E. Keeping the gains equal to that of the 6-dof model, the pilot inputs could
not be kept smooth. New values for gains in the 8-dof model were tried. In this
context, the pitch controller K, was changed from the value of +0.57 in the 6-dof
model to a value of +0.8 in the 8-dof model. Accordingly, one may conclude that the
first-order disc-tilt dynamics influence the way a pilot flies the side-step manoeuvre
with the Puma helicopter, in contrast to the deceleration manoeuvre which could be
flown using the original gains of the 6-dof model.

Summarizing, the effects of the first-order disc-tilt dynamics on the piloted simulation
model in the time-domain were investigated by comparing the pilot inputs in a 6-dof
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model and an 8-dof model for two different rotor type helicopters given in Appendix E.
The conclusions drawn from the time-domain simulations are:

- flying the deceleration manoeuvre with the B6-105 semi-rigid rotor helicopter,
the regressing flapping mode does influence the pilot simulation model;

- flying the deceleration manoeuvre with the Puma articulated rotor helicopter, the
regressing flapping mode does not influence the pilot simulation model;

- flying the side-step manoeuvre with the B6-105 semi-rigid rotor helicopter, the
regressing flapping mode does influence the pilot simulation model;

- flying the side-step manoeuvre with the Puma articulated rotor helicopter, the
regressing flapping mode does influence the pilot simulation model.

These results suggest that the low frequency regressing flapping mode should be
included in the piloted simulation model when analysing a semi-rigid rotor
configuration. When analysing an articulated rotor helicopter, the inclusion of the low
frequency regressing flapping mode depends on the manoeuvre analyzed. Therefore, the
effects of the disc-tilt dynamics on the piloted simulation depends both on the rotor
configuration and on the manoeuvre performed.

5.6 Critical Pole Distance Method Applied to Investigate the
Coupling between the Natural Helicopter Motion and the Disc-
Tilt Motion

The present section will apply the critical pole distance method in order to investigate if
it would have been possible to predict the necessity of the first order disc-tilt dynamics
on both helicopter configurations before actually developing the 8-dof model. First, the
critical pole distance method will be applied to analyze the natural behaviour of the
helicopter, without any pilot model included. Next, the critical pole distance method
will be applied to the Puma and the B6-105 helicopters with the piloted model as
described in section 5.1 added to the simulation model.

In order to apply the critical pole distance method, the uncoupled helicopter body and
disc-tilt motions have to represented in the complex plane. The representation in the
complex plane of the natural motion of the helicopter without any kind of augmentation
can be obtained by linearizing the 6-dof non-linear model about a suitable trim
condition. Under the assumptions of Appendix E, the common form of the linear 6-dof
equations of motion is obtained as:

X =A-X+B-U (5.23)

where A is the matrix of motion derivatives, B is the matrix of control derivatives, X

T
the vector of metion states X ={u,v,w,p,q, ,r,@),d).‘l’} and U the vector of control
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states U = {60,9|h,8m, 0, }I. The eigenvalues of matrix A, defining the natural
eigenvalues of the body corresponding to the natural modes of motion, can be seen in
Figure 5.22 and Figure 5.23 for the articulated Puma SA-330 respectively the semi-rigid
Bolkow B06-105 (in these figures the root locus of the body eigenfrequencies as a
function of the advance ratio was represented by going from hover to forward flight at
advance ratio p = 0.35),

Looking at these figures, one should realize that an articulated configuration behaves
differently from a semi-rigid rotor. The eigenvalues of the Puma articulated helicopter
are more classical in the sense that they are very similar to a fixed-wing aircraft: the
longitudinal eigenvalues consist of two complex roots corresponding to the unstable
phugoid and the stable oscillatory pitch short period mode; the lateral eigenvalues
consist of five roots, of which one is always zero, two are real negative and two form a
complex conjugate pair corresponding to the stable Dutch roll mode. In comparison to
this, the short period mode of the B6-105 is not oscillatory. The longitudinal
eigenvalues of the Bo-105 consist of two complex eigenvalues corresponding to the
unstable phugoid mode and two real negative roots (only at high advance ratios are the
roots are complex conjugate); the lateral eigenvalues have the same character as those
of the Puma: one zero root, two real negative roots and the complex pair of the Dutch
roll mode. The non-oscillatory nature of the short period mode is in general a
characteristic of hingeless rotors and arises from the positive contribution of the hub
moment to the M,, derivative (derivative of pitch moment w.r.t a perturbation in the
vertical velocity w) which always results in a positive value for M,, changing this mode
from an oscillatory one into a real one.

The uncoupled blade flapping equation of motion as seen in a frame of reference
rotating with the blade, was derived in Appendix B assuming the blade as rigid and
modeling the flexibility by an offset flapping hinge with spring restraint. The equation
of motion can be transformed to the non-rotating system using the Coleman
transformation as presented in Appendix D. The equations of the rotor disc-tilt
dynamics are given by (D.24). These equations contain the advancing and the
regressing flapping modes and can be represented in the complex plane.

With these preparations, the relative position in the complex plane of the uncoupled
body and disc-tilt eigenvalues can be compared. Figure 5.22 and Figure 5.23 represent
the variation of the relative position of the uncoupled disc-tilt and body poles when the
advance ratio varies between hover and p= 0.35 forward flight. Looking at these figures
one may see that the closest distance between the disc-tilt and body modes is between:

1 the short-period mode and the regressing flapping mode;
2 the roll-subsidence and the regressing flapping mode.

The advancing flapping mode is located far from the body modes, whereas the coning
and differential mode do not enter into the discussion, being highly damped modes.
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5.6.1 Investigations on the Body Short-Period Mode and Regressing Flapping
Mode Coupling

Concerning the position between the short-period and regressing flapping modes,
comparing Figure 5.22 and Figure 5.23, it seems that in the case of the B6-105, the
regressing flapping mode is much closer to the short-period mode than in the case of
the Puma. Therefore, it is likely that the regressive tlapping mode couples to the short-
period mode in the case of semi-rigid rotor systems, but it cannot be excluded that this
coupling is of importance also for the articulated configuration.

Next consider the critical pole distance criterion (4.43) deduced in Chapter 4, with
respect to the condition of coupling between two degrees of freedom which are "close"
as represented in the complex plane. The critical pole distance criterion will first be
applied to investigate the short-period mode and regressing flapping mode coupling.
The critical pole distance criterion (4.43) can be written in this case as:

2 g2 6 2 3 3 2 2 N2 . (5.24)
|NFreg Nsp = Jl 6 gFrﬂg éSP O‘)Frug (DSP +4 &Frcg O‘)Frcg ( (‘OSP - O‘)Frcg ) 1S large

The eigenvalues of the body short-period mode were calculated using the 6-dof linear
model and are indicated by sg,.. It can be verified that these eigenvalues may be well
approximated by solving the equation (Padfield [1996]%):

sz—(zw+mq)s+zw m -pm, =0 (5.25)

where z,, m, and m, are non-dimensional derivatives of the helicopter forces and
moments w.r.t the body velocities. Expressing sg, as (2.7), the short-period damping
ratio and the natural frequency of this mode can be obtained as:

IRe(sgp)!

Is,!

Og =lsgls &g =

; Isgl = \/Re(ssp)2+lm(ssp)2 (5.26)

or equivalently using (5.25), (5.35):

(in = Z\\' mq _P m\\ > E~‘SP = (Zw +mq ) (527)

2oy,

Considering different advance ratios, these characteristics were calculated both for the
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Puma and the B6-105 helicopters. The results are summarized in Table 5.10.

Table 5.10 Body shon-period characteristics for Puma SA-330 and Bé-105

Helicopter velocity 0 m/s 14.85 m/s 29.7 m/s 52 m/s 74 m/s
forward flight Puma

w,p (nondim.) Puma 0.105128 0.178 0.28574 0.371057 0.497419
&.p (nondim.)Puma 1.06194 0.80226 0.5648923 0.5115577 0.4112079
Helicopter velocity 0 m/s 10.25 m/s 30.75 m/s 51 m/s 74 m/s

forward flight B6-105

gy (nondim.) Bo-105 0.1247056 0.1362865 0.1877294 0.2036588 0.230878

Eyp (nondim.) Bo-105 1.129565 1.1730278 1.00088534 0.99194742 0.972619

The regressing flapping mode can usually be approximated by (D.26) as demonstrated
in Appendix D. From (D.26) the regressive flapping mode characteristics are deduced

as:
2 4
(1-v;) + L -1 i ev;)
2 64 4 . 1 4
mFreg - 2 ’ §Fmg = 2 (528)
[+ %] o (o]
64 64

and for different advance ratios their values are summarized in Table 5.11.

Table 5.11 Regressing flapping mode characteristics for Puma SA-330 and Bo-105

Helicopter velocity 0 m/s 14.85 m/s 29.7 m/s 52 m/s 74 m/s
o Sforward flight Puma

Wy, (nondim.) Puma 0.5074 0.5074 0.5074 0.5072 0.5065
&1y (nondim.) Puma 0.9037 0.9036 0.9036 0.904 0.9053
Helicopter velocity 0 m/s 10.25 m/s 30.75 m/s 51 m/s 74 m/s
forward flight Bo-105

Oy, (nondim.) Bo-105 0.3856 0.3856 0.3856 0.3856 0.3856
&Epg (nondim) Bo-105 0.9362 0.9362 0.9362 0.9362 0.9362

The values of the critical pole distance criterion (5.24) were calculated for different
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advance ratios and are summarized in Table 5.12.

Table 5.12 Cntical pole distance criterion applied to body short-period/regressing
Sflapping modes for Puma SA-330 and Bé-105

Helicopter velocity 0 m/s 10.25 m/s 30.75 m/s 51 m/s 74 m/s
forward flight Puma

I Ny Ngp | Puma 0.1262 0.1248 0.1118 0.1054 0.0963
Helicopter velocity 0 m/s 10.25 m/s 30.75 m/s 51 m/s 74 m/s
forward flight Bo-105

I Ny Noo | B6-105 0.0478 0.0499 0.0512 0.0527 0.0551

Looking at the values of the product INy,, Nyl (non-dimensional) it can be seen that
whereas the Puma helicopter is characterized by values in excess of 0.1, the B6-105 is
characterized by values smaller than 0.1. Based on the results of the simulations with a
coupled model the critical pole distance criterion for the coupling between the short-
period and regressing flapping mode may be stated as: for values of IN,, Ngpl > 0.1 the
body short-period mode decouples from the regressing flapping mode.

5.6.2 Discussion on the Time Constants of Body Short-Period and Regressing
Flapping Modes

The time constant of the short-period answer is, according to (2.21):

T, =-t/Real(sg,,,) (sec) (5.29)

N

where sg, |, are the non-dimensional real or complex conjugate roots of the stable short-

period mode and t is used to non-dimensionalize the time variable in the 6 degree of

_ M,, . .
freedom model and is defined as t = _I_(\—:_;'i The short-period time constant was
P

calculated using the non-dimensional eigenvalues of the short period mode as resulted
from the 6-dof body model. When the eigenvalues of the short period mode are real
values, the time constant of the dominating pole, i.e.. the pole closest to the origin are
considered. The results are presented in Table 5.13.

For the uncoupled disc-tilt motion, the time constant of the regressing flapping mode
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can be calculated looking at (D.15) and (2.22):

T, =- | /Real( (5.30)

Freg

/Q =(16/7)/Q (sec)

SFrcg 1,2 )

where s, ,, are the eigenvalues of regressing flapping mode. One may observe that
using (D.26) the time constant does not depend on the advance ratio and is determined
only by the Lock number. The time constant of the uncoupled disc-tilt motion

according to (5.30) is:

Three =0.06 sec Puma (5.31)

T =0.07 sec B6 -105

Freg

Table 5.13 Short-period mode characteristics for Puma SA -330 and Bé-105

Helicopter velocity 0 m/s 14.85 m/s 29.7 m/s 52 m/s 74 m/s
forward flight Puma

Short Period Root - 0.0741 -0.1428 + -0.16141 x | - 0.1898 x -0.20454 +
Puma (nondim. ) 0.1062 i 0.2357 i 0.31883 i 04534 i
Time constant Puma 1.707 0.885 0.784 0.665 0.617
(sec)

Tireg / Tsp Puma 0.035 0.067 0.0765 0.09 0.097
Helicopter velocity 0 m/s 1025 m/s 30.75 m/s 51 m/s 74 m/s
forward flight Bé-105

Shont period root - 0.0753 - 0.0763 - 0.1801 -0.2020 = -0.2245 +
Bg-105 (nondim.) 0.0258 i 0.05365 i
Time constant Bs-105 1.375 1.357 0.575 0513 0.461
(sec)

Tpng / Tsp BO-105 0.0515 0.052 0.123 0.138 0.153

Comparing the ratio T, /Tsp of the time constants of the regressing flapping mode and
the body short-period mode as given in Table 5.13 one can see that whereas for the
Puma helicopter T,,,/ts«1 throughout the entire advance ratio envelope. for the B6-105
helicopter, the disc-tilt and body short period time constants stay much closer to each
other, especially at high advance ratios. This may indicate that the regressing flapping
mode couples to the short-period mode in case of the semi-rigid Bo-105 helicopter.
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5.6.3 Investigations on the Roll-Subsidence and Regressing Flapping Modes
Coupling

The critical pole distance criterion will next be applied to the roll-subsidence and
regressing flapping modes coupling. The roll-subsidence is a real root and according to
(4.44) the critical pole distance criterion becomes:

4 gl T L2 g2 2 42 g3
|Nr;mg NRU"{ = ( |(0R011§Roll +(DR\)|I€R\)I|((DFI‘C_Q +(DR0I|) + (ol-‘.-pgmkgll(w}-‘mgmk“" +4 mRnlléRoll&pmg) -
(5.32)

12
a3 gl " " _ > c .
2 O G <“)r-‘rcg Sires T Opan Sk“n) 2 Oy, o Orat iRoll( gyrcg * Sgan )I ] is large

One needs to determine the damping ratio &, , and the natural frequency g, in order
to apply the criterion (5.32). For this, observe that the characteristic equation of body
lateral motion is an equation of fourth order. Solving this equation two real roots are
obtained corresponding to the roll-subsidence and spiral-subsidence modes and two
complex roots corresponding to the Dutch roll mode. It follows that by grouping the
roll-subsidence eigenvalue sg., and the spiral-subsidence eigenvalue s, together in the
characteristic equation, a second order equation is obtained which can express the
uncoupled characteristics N, (4.3) in the critical pole distance criterion:

(S_SROII).(S—SSpi) =0 (533)

From (5.33), the expressions of the damping ratio &g, and the natural frequency g,
needed in the critical pole distance criterion (5.32) may be expressed as:

Sroit * Sspi

5 &Rou =- SR(—‘“ +S‘S“pi (5.34)

Rll:
© 2m

Roll

The eigenvalues of the body roll-subsidence mode s, and spiral-subsidence mode s,
were calculated as a function of advance ratio using the 6-dof linear model from
Appendix E, section E.4 and are presented in Table 5.14.

These eigenvalues are good approximated according to Padfield [1996]*' by the
following expressions:

Seant =1, 3 Sgu = (5.35)

where 1 1, I, n,, and n, are non-dimensional derivatives of the helicopter forces and
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moments w.r.t the body velocities and angular rates and C; is the helicopter weight

- Mg
coefficient defined as C, = ———.
pA(QRY)

Table 5.14 Body roll- and spiral-subsidence eigenvalues for Puma SA-330 and Bo-105
Helicopter velocity 0 m/s 14.85 m/s 29.7 m/s 52 m/s 74 m/s
forward flight Puma
Sqoy (nondim.) Puma - 0.317805 - 0.3201009 -0.3312707 | - 0.3228592 | - 0.2741088
Sy (nondim.) Puma - 0.088029 - 0.0203606 - 0.0057172 | - 0.0005374 | + 0.004389
Helicopter velocity 0 m/s 15.26 m/s 30.5 m/s 54.5 m/s 76.3 m/s
forward flight B6-105
Sgoy (nOndim.)Bé-105 | - 0.1498359 - 0.127955 - 0.1354727 | -0.1037327 | +0.031756
Ss,; (nondim.)Bo-105 - 0.01757877 § - 0.0025361 - 0.0003763 | + 0.005921 - 0.020055

Using the values of Table 5.14, the characteristics of the roll-subsidence mode as given
by (5.34) for the Puma SA-330 and B6-105 helicopters were calculated and are
summarized in Table 5.15.

Table 5.15 Body roll-subsidence characteristics for Puma SA-330 and Bd-105

Helicopter velocity 0 m/s 14.85 m/s 29.7 m/s 52 m/s 74 m/s
forward flight Puma

g,y (nondim.) Puma 0.16726 0.0807307 0.043519 0.0132 unstable
Eroy (nondim.) Puma 1213178 2.1086239 3.8717064 12.2499 unstable
Helicopter velocity 0 m/s 15.26 m/s 30.5 m/s 54.5 m/s 76.3 m/s
forwanrd flight B6-105

Wg,, (nondim.)Bo-105 | 0.05132185 0.0180144 0.00712 unstable unstable
Epoy (nondim.)Bao-105 | 1.6310276 3.62185446 9.5331 unstable unstable

The values of the product INg,Ng,l in the critical pole distance criterion (5.32) applied
to the two helicopters, for different advance ratios, are presented in Table 5.16.

Analysing the product INg,,Ng,l (non-dimensional) from these tables on the basis of
the simulations with a coupled model one can conclude that as was the case for the
short-period and regressing flapping modes coupling, the roll-subsidence and regressing
flapping modes coupling is also characterized by values in excess of 0.1 for the Puma
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SA-330 helicopter and values much smaller than 0.1 for the B5-105 helicopter.

Table 5.16 Critical pole distance criterion for body roll-subsidence and regressing

flapping modes coupling applied to Puma SA-330 and Bo-105

Ing

Helicopter velocity 0 m/s 14.85 m/s 29.7 m/s 52 m/s 74 m/s
forward flight Puma

I Ny Ngoy | Puma 0.2191 0.1703 0.1553 0.1361

Helicopter velocity 0 m/s 15.26 m/s 30.5 m/s 54.5 m/s 76.3 mi/s
fonvard flight B6-105

I Ny Npow | Bo-105 0.08173 0.0572 0.0548 -

The critical pole distance criterion in this case can be stated as INp., Nggyl > 0.1 is
sufficiently large to consider the roll-subsidence mode decoupled from the regressing
flapping mode. Note that this conclusion is valid only when the natural behaviour of the
helicopters is investigated.

5.6.4 Discussion on the Time constants associated with the Roll-Subsidence
and Regressing Flapping Mode

Regarding the relative position between the roll-subsidence and regressing flapping
modes, the time constants associated with the roll subsidence for the eigenvalues

obtained from the 6-dof model can be calculated from (2.21) as:

T, =- t/Real(

Roll

sRoll 1.2 )

(5.36)

where s, are the non-dimensional roll subsidence eigenvalues as obtained from the 6-

dof linear model (the eigenvalues are negative real roots) and t is used to non-
dimensionalize the time variable in the 6 degree of freedom model and is defined as

hel

" PAQR

ratios and is presented in Table 5.17.

. The roll-subsidence time constant was calculated for different advance

Comparing the ratio 1, /Ts, of the time constants of the regressing flapping mode and
the body roll-subsidence mode as given in Table 5.17 one may see that for the Puma
helicopter throughout the entire advance ratio envelope the disc-tilt and body roll
subsidence time constants stay closer to each other than in the case of B¢-105
helicopter. This may indicate that the regressing flapping mode couples to the roll
subsidence mode in case of the semi-rigid Puma helicopter.
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Table 5.17 Roll-subsidence characteristics for Puma SA-330 and Bo-105

Helicopter velocity 0 m/s 14.85 m/s 29.7 m/s 52 m/s 74 m/s
forward flight Puma

Roll Subsidence - 03178 -0.3201 - 033127 - 0.32286 - 0.2741
Puma (nondim.)

Time constant Puma 0.397 0.395 0.38 0.39 0.46
(sec)

Trg / Toon PUMa 0.15 0.15 0.157 0.153 0.13
Helicopter velocity 0 m/s 15.26 m/s 30.5 m/s 54.5 m/s 76.3 m/s
forward flight Bo-105

Roll Subsidence - 0.1498 - 0.12795 -0.13547 -0.10373 +0.03175
Time constant 6.674 7.815 7.38 9.64 -

B-105 (sec)

Trg / Trou BO-105 0.102 0.087 0.093 0.071 -

5.7 Critical Pole Distance Method Applied to the Helicopter with
Pilot Model

When the pilot model described in section 5.1 is used, the matrix U of controls in
(5.23) can be written as:

U=K-X (5.37)

where K is the matrix containing the gains used in the pilot model to stabilize the
motion in the longitudinal and lateral plane. Substituting (5.37) into (5.23), the 6-dof
linear piloted simulation model becomes:

X =(A+BK)- X (5.38)
The short-period mode can be approximated in this case as:

sz—( K

+ _4 - +_ 4 -
z,+m +—m, )s+zwmq pm, +— (mehzW m,z,

) =0 (5.39)
t ’ t ’

It

It may be observed that the short-period eigenvalues are influenced by the K, gain. The
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characteristics in frequency and damping of the short period mode become:

. K 1 K
Oy =z, m -pm+ Tt-“ (meh z -m, Zeh) I F( z,+m + ?“ meh) (5.40)
N4

The critical pole distance criterion expressed by (5.24) in this case has to consider
relations (5.40) for the short period-mode, whereas the regressing flapping
characteristics are unchanged and given by (5.28).

The critical pole distance criterion will be applied to investigate the way in which the
body short-period motion couples to the regressing flapping mode when simulating the
deceleration and side-step manoeuvres using the gains as obtained in sections 5.5.2 to
5.5.5. To this end, the uncoupled body and disc-tilt motion need to be represented in
the complex plane, this time including the pilot model.

5.7.1 Investigations on the Body Short-Period Mode and Regressing Flapping
Mode Coupling in the Deceleration Manoeuvre

In section 5.5.2 it was shown that the decelerating manoecuvre with the Puma does not
require a change in the gains when extending a 6-dof model to a 8-dof model. In
contrast, section 5.5.3 concluded that the decelerating manoeuvre performed with the
Bo-105 does require such a change in the gains.

Figure 5.24 gives the representation in the complex plane for the Puma helicopter in the
region of the short-period and regressing flapping mode coupling using a gain K, = 1
as in the deceleration. The poles are represented for different advance ratios, the case of
velocity 50 m/s (point 4) corresponding to the deceleration manoeuvre. The short-period
mode without pilot model was also represented in order to observe how this mode
changes when the pilot model is included. It may be seen that using a pilot model
which stabilizes the longitudinal motion around the pitch axis, transforms the oscillatory
short-period mode into two real roots.

Figure 5.25 gives the representation in the complex plane for the Bo-105 in the region
of the short-period mode and regressing flapping mode coupling using a gain K, = 0.5
as in the 6-dof model and K, = 0.8 as in the 8-dof model. Again, the case of velocity
50 m/s (point 4) corresponds to the deceleration manoeuvre. In this case, the oscillatory
short-period mode is represented by two real roots at velocities up to 30 m/s (point 3),
while being oscillatory at higher velocities. In the 8-dof model. changing the value of
K, increases the damping in flapping.
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Figure 5.24 Shont period and regressing flapping for deceleration manoeuvre: Puma
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Figure 5.25 Short period and regressing flapping for deceleration manoeuvre: Bé-105

The critical pole distance criterion (5.24) was applied using the gains characteristic to
the deceleration manoeuvre. The results for the two analyzed helicopters are presented
in Table 5.18.
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Table 5.18 Critical pole distance criterion for bodv/disc-tilt coupling for Puma SA -330
and B3-105 in 6- and 8-dof piloted simulation models. Deceleration Manoeuvre

Freg

Helicopter velocity Puma 0 m/s 14.85 m/s 29.7 m/s 52 m/s 74 m/s
(K, =1)

I Ny Nop | (6-and 8-dof) 0.15048 0.258278 0.34473 0.40358 0.46029
Helicopter velocity Bo-105 0 m/s 10.25 m/s 30.75 m/s 51 m/s 74 m/s
(K, =0.5 6-dof and

K, = 0.8 8-dof)

IN,,, Ny | (6-dof) 0.041932 0.05982 0.111509 0.071918 0.03890
I Nppe Nop 1 (8-dof) 0.06502 0.09555 0.174552 0.10802 0.0747

Analysing the values of the product IN N, (non-dimensional) from these tables it
may be scen that the B6-105 hardly passes the value of 0.1 in both the 6-dof and 8-dof
models, whereas the Puma SA-330 is characterized by values situated between 0.25 and
0.45. On the basis of the simulations with a coupled model it may be concluded that
the interpretation of "large" in the critical pole distance criterion for the body short-
period and regressing flapping mode coupling in this case is in excess of the value 0.3.
For values smaller than 0.1, as in the case of the B§-105, the two investigated modes

are coupling.

5.7.2 Investigations on the Body Short-Period Mode and Regressing Flapping
Mode Coupling in the Side-Step Manoeuvre

The side-step manoeuvre for both the Puma and the B&-105 required different gains
when using the 6- and the 8-dof models. For the Puma these new values were not
calculated, but it seems that they must be changed when performing the deceleration in

the 8-dof model as demonstrated in section 5.5.4.

Figure 5.26 gives the representation in the complex plane for the Puma in the region of
the short-period mode and regressing flapping mode coupling using first a gain K, =
0.57 in the 6-dof model and subsequently changing the gain to K, = 0.8 in the 8-dof
model with increased damping in the short period mode.

Figure 5.27 gives the representation in the complex plane for the B6-105 in the region
of the short-period mode and regressing flapping mode coupling using first a gain K, =
0.3 in the 6-dof model and subsequently changing the gain to K, = 1 in the 8-dof

model.
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Figure 5.27 Short-period and regressing flapping for side-step manoeuvre: Bo-105
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The critical pole distance criterion (5.24) was subsequently applied and using the gains
as calculated for the side-step manoeuvre. The results are presented in Table 5.19.

Table 5.19 Crtical pole distance criterion for body/disc-tilt coupling for Puma SA-330
and Ba-105 in 6- and 8-dof piloted simulation models. Side-step Manoeuvre

Helicopter velocity Puma 0 m/s 14.85 m/s 29.7 m/s 52 m/s 74 m/s
(Kq = 0.57 6-dof and

K, =0.8 8-dof)

I e Nyp | (6-dof) 0.097353 0.177524 0.25648 0.318048 0.39192
I Ny Ngp L (8-dof) 0.126557 0.22272 0.306738 0.367691 043301
Helicopter velocity Bo-105 0 m/s 10.25 m/s 30.75 m/s 51 m/s 74 m/s
(K, = 0.3 6-dof and

K, = 1 &-dof)

I Ny Nop 1 (6-dof) 0.0419324 0.05982 0.11151 0.0719 0.0389
I Npoe Nop L (8-dof) 0.055954 0.08163 0.15043 0.09258 0.05725

Analysing the product IN . Ng,l (non-dimensional) when the pilot model is included it
can be seen that at low advance ratios, the Puma helicopter is characterized by
relatively small values of this product, which increase as the advance ratio is increasing.
Therefore, for small advance ratios, the short-period mode of the Puma helicopter
couples to the regressing flapping mode, a conclusion also supported by the time-
domain simulations performed in section 5.5.4. The product Ny, Ngl for the B6-105
helicopter is relatively small for all advance ratios considered and therefore, the two
modes must be considered as coupled, independent of the advance ratio.

5.8 Conclusion on the Critical Pole Distance Criterion Applied to
the Body / Rotor Disc-Tilt Interaction on Basis of the
Examples Analyzed

The coupling between the body and disc-tilt dynamics using the critical pole distance
criterion was investigated in the previous sections, using as an example two helicopters
which differ by their rotor system, first looking at their natural behaviour and
subsequently including a piloted model. The critical pole distance criterion was applied
to investigate firstly the coupling between the short-period mode and regressing
flapping mode with and without the pilot model, and secondly the roll-subsidence and
regressing flapping mode without pilot model, using 6-dof and  8-dof models.
Analysing the values of the product INg,, Ngl and INg, Ng,l from Table 5.12,
Table 5.16, Table 5.18, Table 5.19 and the preliminary conclusions following these
tables of sections 5.6.1, 5.6.3, 5.7.1 and 5.7.2 the critical pole distance criterion was
quantified for the body-rotor disc-tilt coupling as:
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For piloted simulation modeling, the strength of the coupling between the body modes
and the regressing flapping mode can be quantified as follows according to the critical
pole distance criterion:

INyogy Niwd > 0.3 Very Lightly Coupled;
0.1 < N, N\ > 0.3 Moderately to Lightly Coupled;

W ot Nii! < 0.1 Heavily Coupled.
The articulated Puma SA-330 helicopter is in this sense characterized by very light to
moderate couplings but the semi-rigid B6-105 helicopter is characterized by strong
coupling between the body short-period and regressing flapping and also between the
roll-subsidence and regressing flapping modes. This conclusion was supported amongst
others by Miyajima [1979]” who demonstrated that for a semi-rigid helicopter, the
blade regressing flapping mode should be included in the piloted simulation because
this mode couples with the fuselage motion and results in an oscillatory mode with
short period frequencies which otherwise is not present in a 6-dof model. Also other
references enumerated in the literature survey of Chapter 3 support this conclusion. The
present chapter attempted to quantify this known conclusion into a designer criterion for
general applications.




Chapter 6

Investigation of a Wind Turbine Rotor-
Tower Instability Using the Critical Pole
Distance Method*

The present chapter applies the critical pole distance method to investigate a case of
dynamic instability observed on a horizontal axis wind turbine. It will be demonstrated
how, using this method, the dangerous modes which couple together leading to
instability can be identified. The instability which will be investigated was encountered
on the KEWT wind turbine prototype, a two-bladed wind turbine designed in the
1980's. During the tests, two regions of violent vibrations were measured as the rotor
angular velocity increased: a first vibration involved large deformations in the torsion of
the tower and blade lead-lag modes whereas a second vibration was mainly concerned
with the vertical displacement of the chassis (tower+nacelle system) in the tower second
bending mode fore-aft and blade first lead-lag mode. By the vertical displacement of
the chassis is meant the vertical motion of the chassis as a result of the inclination
angle of the nacelle when the tower bends fore and aft in the second bending mode (see
Figure F.1). This motion of the chassis will be shortly named during this chapter as the
chassis second bending mode. Investigating these instabilities, van Holten [1980]*
concluded that the strong vibrations were resonances of the rotor-tower coupled system,
wherein the combination of the gravity force and the constant rotor angular velocity
forms a continuous energy input condition for the vibration, the energy being supplied
by the generator. Analysing the experimental data, some similarities in both oscillations
were observed:

- in both cases, large displacements of the rotor centre were observed: the tower
torsion resulted in a large horizontal motion of the rotor centre, whereas the
chassis second bending mode resulted in a large vertical translation of the rotor
centre;

- in both cases, the oscillations appeared at an angular velocity equal to half that
of the involved tower mode frequency;

- in both cases, the oscillations of the tower + nacelle system increased
dramatically in comparison to the lead-lag motion, which showed a more
moderate increase in amplitude.

Figure 6.1 presents the mechanism of the instability as explained at that time by van
Holten {1980]*. Gravity acts as a 1-P excitation to the lead-lag motion, giving rise to a

This chapter is a revised version of paper AIAA-2000-0068 by Pavel and Holten, van [2000]™ "A
Rotor-Tower Instability Associated with the Advancing Lead-Lag Mode"
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forced 1-P blade response in the lead-lag direction. The lead-lag blade oscillation is felt
as a 2-P excitation by the non-rotating system, that is, the tower. When a tower
eigenfrequency lies in the vicinity of the 2-P excitation, a large amplitude tower
oscillation will appear. This tower oscillation, in turn, will be transmitted back to the
blades first as a 1-P excitation reinforcing the initial blade 1-P lead-lag oscillations and
secondly as a 3-P excitation for the lead-lag motion of the blades. The forced 1-P and
3-P blade lead-lag oscillations are transmitted back again to the tower as a 2-P
excitation, with the tower in return reinforcing the rotor oscillation, and so forth in a
vicious circle.

Gravity Force
Excitation
of Lead—Lag: I‘P\ Transferring to the
Blade Lead- La; Tower: 2-P
—#1 Response: 1-P {’
o Tower
~ 7| Response: 2-P
Blade Lead- La, |
Response: 3-P |7 7 ransferring to the
Rotor: 1-P and 3-P

Figure 6.1 : Mechanism of Rotor-Tower Induced Oscillations (van Holten [1980]°)

The following sections will focus on the instability of the blade lead-lag and chassis
second bending mode since most experimental data were available for this case. It will
be demonstrated that the chassis is not actually reinforcing the rotor lead-lag
oscillations, but on the contrary, is acting as a vibration absorber for the rotor motion
and because of this oscillates heavily. Criteria for coupling in the complex plane for the
KEWT wind turbine will be developed based on the critical pole distance method.

6.1 Investigations of the KEWT Instability with a Coupled Rotor-
Chassis Model

In Appendix F a two degree-of-freedom coupled blade lead-lag + chassis second
bending model is developed, first in the rotor rotating system of reference and next
transposed to the non-rotating system using the Coleman Transformation. The final
non-dimensional equations of motion for the rotor-chassis motion of a 2-bladed wind
turbine, in the rotating system of reference of the blade, were developed in Appendix F,
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section 7.1, equation (F.17) assuming that the blades are uniform and the angles small:

n’+2§& Co,n’+(]),2rn +i bt d (Q siny ) =0
TT = 2 dwl N k (6])

5
[N

n”sin\yk+§{/+22§:_Co;(;[+((1)«;—ecosq/k)ck sesiny, W, =y, Y, =y+n

where n represents the tower displacement in the sccond bending mode and (, the
lead-lag degree of freedom of the k-blade. The blade lead-lag motion is characterized

by a natural frequency ®. and a damping ratio & and the chassis fore-aft bending
motion in the second mode by a natural frequency ®, and a damping ratio of &,.
Parameter o, was defined as o =1/ (2 +M_ / mM) and the gravity force is contained

in the term ¢ =go, /1, = g/R, contributing to the motion both as an external and a
parametric excitation.

The equations of motion (6.1) were transformed to the non-rotating system of reference
of the chassis in Appendix F, section F.3 by means of the Coleman transformation
(F.18) for a 2-bladed rotor. The final equations of motion of the rotor-chassis system in
the non-rotating system are obtained as (equations (F.24)):

l~am+am 2 //+2 P /+_2 + 2 - . - . / +l+_2 . i
—-*—5cos2yn Eom’ +orm +o, |26, @ siny -cosy) Gy, +(1 +@;sinyl

m

e, . . .
+§ a,sin2y | = —4—( -1 +cos2y —sm2\|f)

1 (x'm am 2 /" 2 .l am am 2 /=2 1 am a’m 2
-+ _"cos + —_mym +@71 N+ +
) ( 7 2 w) % E“Cmg( 2 28 W)% m*( 2 2 V) (6.2)
(1 a‘m) " o, 3 C 8(1 3am) p + 3( 1 o o8 . 3
+ €COS ~——]*+——CO0S 0y — =1 ——— |81 — -1+ __kosy + SINAY —

a’m € 3 1 a’m 0'm ) 1" — . / ~2 0’m
-—8—cos y ( By +Tcos_1y) Ean +(2E_,§w§ -(xmsmz\y) Cnn +[(o; +7( I~

siny +cosy

—cos2\y)}?;m +28 @ sinyn’ +arsinym +ecosya, = ——g

According to (6.2), the coupled rotor-chassis motion in the non-rotating system of
reference may be represented by the degrees of freedom n of the tower second bending
mode, a, of the collective lead-lag mode and ,, of the differential lead-lag mode. The
system of equations (6.2) contains the angular position of the blade y in periodic terms
proportional to siny, cosy, sin 2y, cos 2wy, sin 3y and cos 3y. These terms cannot be
neglected, the Coleman transformation for a 2-bladed rotor retaining the periodicity of
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the blade in the coupled rotor-chassis equations of motion in the non-rotating system.
The stability of the linear system of equations (6.2) with periodic coefficients may be
determined by applying the Floquet method as presented in Appendix G. However,
system (6.2) can be solved approximatively assuming solutions in an asymptotic
expansion. Presume solutions in the form:

=N, o,

a, =d, +ad +.. (6.3)

Cun &b, v b +...

Appendix F, section F.3 demonstrated that the response of the rotor-chassis system in
the first order approximation of the solution O(on,,l ,&') is obtained as (equation (F.53)
in Appendix F):

n= > Zame2 (CcoSZ\V +Dsin2w)
[(ﬁ)c -1)2+4§§6)c] [(G)T —4) +1 6{‘”@1_]
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x [B;cosw +A:simy] +
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where the terms A, B, C, D, A,*, B,*, A*, By* A* B,* A/* B* were derived in
Appendix F, section F.3 as being:

A = [(c‘og—l)+2§§(‘o§] . B - [(C";‘l)_zéc@c] (6.5)
2 2
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3 - 3_1 3 =2 - =2 - =2 -
C = (—5§; L +Z)(DT +(3+68 @, -30; )6, @, + 307 +6§,®, -3 66)
3, . .3 2 3, _ 2\ - _ 2 _ ‘
D = -SE®, 0 —Z)wvr +(3-68, 0, -30.)5, @, -3, +65,®, +3
. - N 2A - 2 2
A =B ) eee 20T By =32 g o1)e2e 0 2B
8 = 8 8 = 8 (6.7)
* 2 - * 2 - 2
A} = —2B8”(m -9)+6&,@, HAS)I . B;=- AS oz -9)-65.0, 238”

t]

+1650;]+(2,,C - ?D)] @

M

Al = [—A (@3 -4y +16%707] +-28,0,D —%%C) ] (@2 -9)+ 62, [—B [@}-4) + 16833+

5

+ ( -2 ®,D + %TC)}

Looking at (6.4) the following conclusions may be drawn:

there are two resonance frequencies for the blade at frequencies

@ =1 = Q=0 and & =9 = Q=0/3;

the chassis also has a resonance region situated at ®; =4 = Q =w,/2 which
corresponds to the instability encountered during the experimental tests.
Therefore, the model developed in this chapter is capable to predict the KEWT
instability;

the lead-lag motion is strongly "contaminated" with 3-P terms, conclusion which
corresponds also to the experimental tests;
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R

analysing the chassis-rotor coupling in the non-rotating system of reference, the
chassis motion couples to the lead-lag motion in the differential lead-lag mode
(see equation (6.2));

the gravity excitation is contained as an external and a parametric excitation. It
will be demonstrated next that the parametric excitation is contained only in the
high order terms of the solution in the asymptotic expansion.

Demonstration: the gravity excitation is contained as a parametric excitation for
the blade lead-lag mode in the term - £{,cosy, in the blade rotating system of
reference (see equation (6.1)) which transposes in the chassis non-rotating system
of reference into the terms 1/2ea.,a,sin2y in the chassis equation, £{y,cosy,

-1/4ea, Cyocosy, 1/4ea, Cy,cos3y in the collective lead-lag equation and
ca,cosy in the differential lead-lag equation (see equation (6.2)). Using the
solution in the asymptotic expansion (6.3), (F.28), (F.30), (F.39), (F.44), (F.45),
the parametric excitation in the chassis equation may be written as

g0, d,, +e’o d +.
2

Thus, the parametric excitation is contained in the solution in the approximation
of order higher than o, &

Equivalently, the parametric excitations from the collective and differential lead-
lag mode may be expressed as:

o O ed £, )sin2y = “sin2y.

& {y,cosy =(e’by, +a_e’b, *.)cosy,
Aldea_L,cosy = -14(a e?b +al e’b +.)cosy,
14e a L ,cos3y = 1/4(a_e*b,, +02 €2b, +..)cos 3y

- 2 2
gacosy =(e*d +o e’d . )cosy.
Again, one can see that the parametric excitation is contained in the solution in
the approximation higher than ¢°.

The lead-lag and chassis amplitudes of the response (6.4) may be calculated as:

2 DZ
o, eVC (6.10)
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e 1) vz [, 1) vagel] [@} 4 +168i03] 6.12)

Next consider the KEWT data of the experimental tests (case | of Table 6.1) and cases
2 to 6 as modifications to the initial parameters in an effort to eliminate the instability.

Table 6.1 KEWT Numerical Cases

Cuase 1 2 3 4 5 6
A ctual More lag More tower | Stiffening Softening Stiffening
Experiment | damping damping the rower the tower the blades
@, nondint. 2 2 2 2 2 2
w, nondint. 1.635 1.635 1.635 1.05 3.68 2.666
&, 0.02 0.02 0.05 0.02 0.02 0.02
& 0.05 0.07 0.05 0.05 0.05 0.05
e=g/(R¢Y) 0.0245 0.0245 0.0245 0.0101 0.1242 0.0245
a, 0.05 0.05 0.05 0.05 0.05 0.05
Q =w/2(Hz) | 1.125 1.125 1125 1.75 0.5 1.125

Figure 6.2 to Figure 6.7 present the variation with the rotor speed of the amplitudes of
the chassis, lead-lag collective and lead-lag differential modes. Figure 6.2,
corresponding to the experimental test, shows that there exist two critical angular
velocities where the amplitudes of the chassis and lead-lag motion increase abruptly:

- a first peak corresponds to a rotor rotational speed Q=(1/2)w=1.125 Hz;
- a second peak corresponds to a rotor rotational speed Q=0,=1.84 Hz.

These peaks were also predicted by the analytical formula's (6.4) and they correspond
to the solution in the expansion O(c,', €'). This chapter will focus on studying the
instability region of the experimental test at a rotor rotational speed Q=(1/2)w,
{absolute value). In an attempt to remove this instability, different system characteristics

were varied (cases 2 to 6 of Table 6.1):

case 2 analyses an increase of the lead-lag damping ratio from £.=0.05 to 0.07:
case 3 analyses an increase of the tower damping ratio from £;=0.02 to 0.05;



138 Investigation of a Wind Turbine Rotor-Tower Instability Using the Critical Pole Distance Method

- case 4 corresponds to stiffening of the tower from w,= 2.25 Hz to 3.5 Hz;
- case 5 corresponds to softening of the tower from w= 2.25 Hz to 1 Hz;
- case 6 considers the stiffening of the blades from o= 1.84 Hz to 3 Hz.

The following conclusions can be drawn w.r.t. the region of the instability investigated:

- increasing the lead-lag damping ratio (case 2) does not influence the instability
(it mainly decreases the pure resonance of the lead-lag mode situated at
Q=m§=l.84 Hz);

- increasing the tower damping ratio (case 3) almost removes the instability;

- stiffening the tower (case 4) worsens the instability, in this case the instability
superimposes on the pure lead-lag resonance;

- softening the tower (case 5) almost removes the instability;

- stiffening the blades (case 6) almost removes the instability.

Therefore, increasing the tower damping ratio as in case 3, softening the tower as in
case 5 or stiffening the blades as in case 6 may be used as valid solutions to eliminate
the investigated instability. Note that the chassis resonances at frequencies
Q=(1/4)w;=0.56 Hz, Q=(1/6)w,=0.375 Hz, etc., (as predicted by the rotor-chassis
coupled model when high-order terms are used in the expansion, see section F.4 of
Appendix F) are not considered when calculating the amplitudes of the response (6.10),
(6.11) or (6.12). However, these instabilities are much smaller than the instability in the
first region Q=(1/4)w,=1.125 Hz.
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6.2 The Mechanism of KEWT Instability

The present section will explain the cause of the KEWT instability as revealed in the
experimental tests.

Consider first that the lead-lag motion is an external excitation on the chassis system.
According to (6.1), in the blade rotating system of reference, each blade excites the

chassis with forces proportional to —ﬁksin\yk ; —Qikcoswk ; QC siny, (the minus sign
results from the separation of the excitation in the right-hand side of the chassis
equation) which respectively correspond to the inertial, Coriolis and centrifugal forces
of each blade lead-lag motion. In the rotating system of reference (x,.y,.z,) of Figure F.1
the components of these forces exerted on the chassis in the direction of the blade lead-
lag motion {, are:

F. Z(_§k+gzck)mblR
F_=-20f{mR

yr

(6.13)

In the fixed system of reference (x,¥,z, these forces become (after applying the
rotation matrix [ y, ] defined in equation (F.1)):

F , =F  cosy- Fyr siny (6.14)
F,, =F, siny +F cosy

Recalling the system response in the differential lead-lag mode (6.4) and observing that
in the numerical cases of Table 6.1 the coefficients A>0, B>0, B, >0, A,"<0, one may
write:

Cn = Cnpocosy =L, siny (6.15)

where {,, . and C,, , are the initial differential lead-lag mode displacements at t = 0.
The blade lead-lag oscillation in the rotating system of reference will be also assumed
in the same harmonics as the differential lead-lag mode:

§, =& cosy - siny (6.16)

where {. and {, are the initial blade lead-lag displacements at t = 0. Differentiating
(6.16) with respect to y gives the blade velocity and acceleration as:
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ik =Q (- siny -§_cosy) 6.17)

C, =Q*( - cosy +{ siny)

Substituting (6.16) and (6.17) into (6.13) the forces on the chassis due to the lead-lag
motion in the rotating system are obtained as:

F ., =2Q°({ cosy~{ siny)m R

X

F,, =2Q%(, siny +{ cosy)myR

v

(6.18)

where R and m, are respectively the blade radius and mass. Equations (6.18)
transposed in the non-rotating frame (6.14) yield the components:

F, =2Q7({ cos2y - sin2y )m R

: ' (6.19)
Fy() =2Q°( QC sin2y + Cs cos2y ) m,R

Recalling now the chassis response n as given by (6.4) and observing that in the
numerical cases of Table 6.1 the coefficients C > 0 (except case 4 where C=0) and
D<0, one may write:

n =n_ cos2y -n_sin2y (6.20)

Thus, the chassis velocity and acceleration are:

= -2Q(n_sin2y -n _sin2y ) 6.21)

n
H = 4Q7(n cos2y +1 sin2y )

It is known that a harmonic force acting on a vibrating system of the same frequency
produces work on the system if the force is in phase with the velocity of the vibration.
Comparing (6.21) to (6.19) it follows that the component F, ; of the lead-lag excitation
contains the harmonic sin2y in phase with the chassis velocity. Thus the blade motion
produces work on the system, with energy being transferred from the blades to the
chassis.

Next, consider that the chassis acts as an external excitation on the blades. The chassis
oscillates in the harmonics cos2y and sin2y as represented in (6.20). The force on the
blade due to the chassis motion is using D'Alembert principle:

f = -f cos2y +f sin2y (6.22)
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The extra lead-lag moment resulting from the chassis motion can then be calculated as:

M, =fRsin(y +{) = fR (siny +{cosy) (6.23)

Substituting (6.22) and (6.16) into (6.23) after some trigonometric computations one
obtains:

(8. +.8 f8 LS

= 22 e gy e
1 v

4 f f fL.

—-f 2 cos2y + S siny + -* cosy - ==
€2 v 2 v 2 v 4

f f
“ * cosdy - EC sin3y - 5‘ cos3y + f‘%sinZ\y -

(6.24)

It follows that the components in siny and cosy of the shaft moment (6.24) are not in
phase with the blade lead-lag velocity as given by (6.17) and thus no energy is
transferred from the chassis to the blade.

However, the previous case did not consider the gravity force in the system. With
gravity, the D'Alembert force on the blade due to the chassis motion (6.22) is:

f = -f cos2y +f sin2y-m, g (6.25)

The shaft moment (6.24) in this case becomes:

m, g
2

m, gg (6.26)

M =M, + (€, sin2y - cos2y)-m, g siny - 5

Comparing the shaft moment (6.26) to the blade lead-lag velocity (6.17), it is obvious
that the components in siny of the blade lead-lag velocity are in phase with a
component of the shaft moment originating from the action of the gravity force.
Therefore, in this case, energy is added from the chassis to the blade.

Concluding, the differential lead-lag mode feeds energy to the chassis via the gravity
force action. In the KEWT case, the control system enforces a constant rpm. The tower
acts as a dynamic absorber (Frahm damper) whenever alternating forces start to be
induced in the rotor, stoping any tendency of the rotor to oscillate. The oscillations of
the rotor-chassis system would tend to slow down, but because of the interaction of the
gravity with the constant rpm control system, energy is continuously fed into the
system. As a result, the rotor oscillations amplify. In response, the tower oscillations
increase with the effort to stop the rotor oscillations. This explanation agrees with the
experimental test observations that the oscillations of the chassis increased dramatically
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compared to the lead-lag oscillations. Thus. the gravity force action, the system
constant rpm and the tower behaviour as a dynamic absorber are three important factors
in the KEWT instability.

6.3 Critical Pole Distance Method Applied to the KEWT Instability
Next, the critical pole distance method will be applied to determine the regions of
dynamic couplings for the investigated KEWT instability. To apply the critical pole
distance method, the equations of motion of the uncoupled chassis bending motion and
the blade lead-lag motion first have to be derived.

6.3.1 Uncoupled Tower Second-Bending Motion

The uncoupled equation of motion for the second bending mode of the chassis system
is obtained by putting the blade lead-lag { = 0 in (6.1):

n’ +28@m +@m =0 (6.27)

which gives the eigenvalues of the chassis vertical displacement in fore and aft bending
motion as:

sp = -®.5,x i@y -&; (6.28)

6.3.2 Uncoupled Blade Lead-Lag Motion in the Non-Rotating System

In the rotating system, the lead-lag equation of motion of one blade is obtained by
neglecting the chassis motion in (6.1) as:

o+ zgca);z;’ +ﬁ)§(1 - £ cosw)t; = gsiny (6.29)
[N

12

o

which contains the gravity force both as parametric and external coefficients. When the
gravity force is neglected, i.e. € = 0, the eigenvalues of (6.29) are:

o . 3 (6.30)
S.a = —(J);E,,c + 10, 1 -&;

With the gravity force, equation (6.29) contains the gravity force as a parametric
excitation. However, the lead-lag motion (6.29) is written in the blade rotating system
and therefore has to be transformed to the non-rotating system in order to compare it
with the chassis motion. For the 2-bladed KEWT wind turbine, the motion can be
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transposed into the non-rotating system by means of Coleman transformation (equation
(F.18) of Appendix F). The motion of the blades in the rotating system in the lead-lag
degree of freedom is obtained by writing equation (6.29) for each blade:

{gl JL”+ {C, }/+ {C, } :{ esiny } ©.31)
g, g, g, esin(y +m)

Applying the Coleman transformation (F.18) to the system of equations (6.31) as
presented in Appendix F, section F.3, the lead-lag motion in the non-rotating system is
equivalent to the motion of the collective a, and the differential lead-lag modes &y,

4,1 a, )/
{CNIZ } {CNIZ }

Equations (6.32) are coupled via parameter e. Neglecting this parameter, the collective
lead-lag decouples from the differential lead-lag mode and the eigenvalues of the two
non-rotating modes coincide with the eigenvalues (6.30) from the rotating system. With
gravity effect, that is with €, the Floquet transition matrix has to be computed as
presented in Appendix G. To facilitate this, the system of equations (6.32) has first to
be written in its canonical form:

2§cﬁ); 0 mg -€Cosy 0

0 250,

0 (“ng -ecos(y #t)

2%, 0
0 280,

=2
®; ecosy
bl

ecosy @

C N72

{ a, } ={((elz) (sinw -cosw))} (6.32)

6/2) (—sin\v -cosy

! r

a, 0 0 1 R NEN
N2 0 0 0 l gN/2
ay } —c‘og -gcosy -2 @, 0 ay (6.33)
C;:/z “ecosy _6)2 0 _2§C(0€_ grlm
S(y)

The Floquet transition matrix can now be calculated with (G.14) in a single integration
pass. Assuming a step h= n/2 and the period y.= 2r it follows that:

[ Q1 =[H()] [H(x/2)]-[H(x)]-[H(3r/2)] (6.34)

where the matrices [H(y;=0)], ... ,[H(y;=3n/2)] are simply calculated by applying
(G.10), (G.11), (G.12) and (G.13). Once the Floquet transition matrix is determined, its
eigenvalues A, can be used to calculate the eigenvalues of the system (6.32) according
to (G.8):
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1 A |
o, =§W_Tln(9ﬁ(Ak)+S(Ak)) HENON —-W—Tatan(

3 (Ak)) ‘K (6.35)

— K=0+1,+2,..
9\(Ak)

Characteristic for equations with periodic coefficients, as stated in Appendix G. is a
multiplicity of frequencies in the solutions (the so-called "aliasing" of the frequencies).
Due to the presence of the atan function in the solution, the motion as given by (6.29)
is not even periodic, each mode of motion consisting of a fundamental frequency ®,

plus harmonics of frequency ®, +K where K=0, +1, +2, ... is an integer.

For the KEWT numerical cases presented in Table 6.1, the tower eigenvalues s, as
calculated with (6.28), the blade lead-lag eigenvalues in the rotating system s, as
calculated with (6.30) and, in the non-rotating system, the collective lead-lag
eigenvalues s + iw., and the differential

lead-lag  eigenvalues

cor. ~ Ocal
oir = Ope = 10, computed with the Floquet algorithm, are summarized in Table 6.2.
Observe that for the system of equations (6.33), the basic eigenvalues of the collective
and differential lead-lag modes superimpose, scq = Spp. and they are very close to the
eigenvalues of the rotating system s.. Nevertheless, the fundamental frequency for both
modes splits into an infinite number of harmonics, which, as said before, is
characteristic for the solutions of equations with periodic coefficients.

S

The relative position of the eigenvalues of Table 6.2 can now be represented in the
complex plane using the critical pole distance method. Note that for the uncoupled case,
the eigenvalues of the collective and lead-differential modes coincide.

Table 6.2 The eigenvalues of the motion for the KEWT numerical cases

Cases 1 2 3 4 5 6
Actual More lag More tower Stiffening Softening Stiffening
Experiment damping damping the tower the tower the blades
Sr -0.04 £ -0.04 & -0.04 £ -0.04 £ -0.04 £ -004 ¢
1.9995 i 1.9995 i 1.9995 i 1.9995 i 1.9995 i 1.9995 |
s, -0.0818 ¢ -0.1145 = -0.08175 + -0525 ¢ -0.184 £ -0.1333 ¢
1.633 i 1.631i 1.63295 i 1.0487 i 3.6754 i 2.6627 i
Scor -0.083 + -0.117 & -0.089 + -0504 = -0.178 + -0.1558 +
1645 1.65i 1647 i 1.0892 i 3.6811i 2.743 i
Spir -0.083 x -0.117 & -0.089 + -0504 £ -0.178 = -0.1558 +
1.645 i 1651 1.647 i 1.0892 i 3.681 i 2.743 1

Figure 6.8 to Figure 6.13 present the relative position between the chassis eigenvalues
and the collective and differential lead-lag mode eigenvalues in cases 1 to 6 (only the
positive imaginary part is used throughout) in the instability region at Q=(1/2)w,.
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Generally, as demonstrated in section 2.2.1 of Chapter 2, the eigenvalues s; of the
chassis bending mode and the rotating lead-lag eigenvalues s, move along a semicircle
of radius @, respectively o, as the damping varies. These eigenvalues in frequency
shift upwards, respectively downwards with +1P, +2P, .... from their basic values s¢,
and Sy

In the critical pole distance method, regions have to be identified where potential
couplings between different modes occur. A critical region is defined as an area in the
complex plane where different deflection modes are located close together. Looking at
Figure 6.8 including the line of gravity excitation, one may see that a critical region
may be defined which includes the gravity excitation, the differential mode in the

harmonic of frequency o, (indicated by sy, ) and the chassis eigenvalue s; (the
collective mode is not a dangerous one as being enough damped). Analysing Figure 6.9

through Figure 6.13, the evolution of this critical region can be followed:

- Figure 6.9 presents the position of the uncoupled pole corresponding to case 2
where the lead-lag damping was increased to 7%. The critical region as defined
in case 1 remains unchanged.

- Figure 6.10 represents the situation of case 3 where the tower damping was
increased to 5%. The chassis eigenvalue moves to the left, but the critical region
as defined in case 1 does not change.

- Figure 6.11 corresponds to case 4 where the tower was stiffened. This case
brings the differential lead-lag mode, chassis mode and gravity excitation very
close to each other.

- Figure 6.12 represents the case 5 when the tower was softened. The modes
situated in the critical region of case 1 move away from each other.

- Finally, Figure 6.13 presents case 6 when blades were stiffened. Also in this
case, the modes situated in the critical region of case 1 move away from each
other.
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However, sometimes (as in cases 5 and 6) it seems that the chassis eigenvalue
approaches the eigenvalue sy, representing a harmonic of frequency 1. How may
one know whether this situation is not a dangerous one for the KEWT instability? To
answer this, the critical pole distance criterion as derived in section 4.2.2 of Chapter 4
has to be applied to the poles presumed to be involved in the instability.

6.4 Application of the Critical Pole Distance Criterion to the
KEWT Instability

The critical pole distance criterion developed in section 4.2.2 of Chapter 4 will be
applied to the critical region as defined above, formed by the differential lead-lag mode
+ chassis + gravity excitation. There are three couplings to be investigated in the
critical region revealed by the complex plane pictures:

1) a coupling between the first harmonic of the differential lead-lag mode of eigenvalue
Spir.; and the chassis bending mode of eigenvalues s;. In the critical pole distance
criterion (4.43), this is equivalent with analysing the following relation:

_6 2 _2\2 (6.36)
IN; - Nl = ‘/1652‘&"!“1 (0? (912>|F+| * 4&1'5)%'( Coéum '(‘)i)

The values of damping ratio &, and frequency ®p,, may be determined from:

. L - ; 6.37)
Spira = Opipt l(leF +l) = =0 Sppat 10p, Y1 —(gl)llul) (

Equating the real and imaginary parts in (6.37), the equivalent frequency o, and
damping &;.,, characteristics of the harmonic s, may be obtained as:

€. .
DIF+) (mI)IF +1)Z A S = (6.38)

@ +1)Z + 02

(0}

DiF

2) a coupling between the second harmonic of the differential lead-lag mode of
eigenvalue sy, and the chassis bending of eigenvalues s;, which seems to play a role
in the KEWT instability in cases 5 and 6. The critical pole distance criterion can be
expressed in this case as:

(6.39)

2_2 2

IN7 - Npyit = ‘/16§%‘§12)IF—1 @7 By * 4E7 6)'}<(_");))F-l -or )_

in which the frequency and damping corresponding to the s, mode can be calculated
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- - 2 B} a :
Opyey = (’*)an_l) 00 Gy = (6.40)

(@, -1 +o°

3) the gravity excitation is situated close to the first and second harmonic of the
differential lead-lag mode. According to criterion (2.32) of Chapter 2. the distances
2-®,,.,,! and 12-@. | should therefore be investigated.

Table 6.3 summarizes the numerical results of the critical pole distance criterion (6.36)
and (6.39) and the values for the distances of interest for cases | to 6 investigated in

this chapter.

Table 6.3 Critical Pole Distance Criterion Applied to the KEWT Instability

Cases 1 2 3 4 5 6
Actual More lag More Stiffening Softening Stiffening
Experiment. damping tower the tower the tower the
damping blades
INpsr o 1 Nyt 0.2409 0.246 0.6022 0.0372 1.4363 0.7598
INper . Nl 0.2921 0.2963 0.7303 0.3214 0.2812 0.1294
12 - @p, 0.6342 0.6335 0.6342 0.0494 2.679 1.6657
12 - @y, 1.3618 1.3587 1.3618 1.9284 0.6817 0.3314

How to interpret the magnitude of the values in Table 6.3 with respect to the KEWT
instability? Recalling the simulations performed in section 6.1 of this chapter with a
coupled model, it should be observed that cases 5 and 6, in which the instability was
eliminated, show in the coupling between the harmonic ., of the differential lead-lag
mode and the chassis bending mode, a value almost equal to that of case 1,
representing the case of the instability. Therefore, the harmonic ®,y,., of the differential
lead-lag mode does not participate in the KEWT instability. This is not the case for the
harmonic @y, of the differential lead-lag mode, which shows an increase of the value
INpipra N4l in the critical pole distance criterion. Concerning the distance between the
gravity excitation and the harmonic o, of the differential lead-lag mode, in case 1
this distance may be considered sufficiently small, such that the gravity excitation is
transmitted to this harmonic, this distance has become 4 times larger for the case 5 and
6 where the instability was eliminated. The gravity excitation in case | is far from the
harmonic @,.,-

The interpretations of the dangerous pole distances in the critical pole distance method



154 Investigation of a Wind Turbine Rotor-Tower Instability Using the Critical Pole Distance Method

are based on the conclusions obtained using a coupled model. Without this model, one
would not be able to consider the harmonic of frequency my, as being harmless for
the KEWT instability. In the preliminary design when no coupled model is developed,
the energy flow method described in Chapter 4 may be of help in the interpretation of
the critical pole distance method. However, the present section demonstrated that the
results obtained in critical pole distance method are consistent to the posed problem.

Concluding, the harmonic ®,,,., of the differential lead-lag mode is not involved in the
instability of the KEWT wind turbine. From the differential lead-lag mode harmonics
involved in the instability, the prime responsible for this instability is the harmonic
®pie- The main path of coupling through which the gravity excitation is transmitted to
the chassis and back is via the harmonic ®,, of the differential lead-lag mode. A
quantification of the critical pole distance criterion on the basis of the data in Table 6.3
may be specified as follows:

If the quantity WNpr,,'N,| > 0.75, the instability of the KEWT wind turbine at a
rotational speed Q2=1/2w; can be eliminated. A value N, ,-N{| < 0.3 leads to a strong
instability in this operating regime.

Recalling the fact that in a 2-bladed wind turbine, the differential lead-lag mode
replaces the cyclic modes, it follows that the KEWT instability is a special case
involving an interaction between low-frequency chassis second bending mode and the
high-frequencies of the differential lead-lag mode (actually corresponding to the cyclic
lead-lag modes of a 3- or more-bladed rotor).

Concluding, the critical pole distance method applied to investigate the instability of the
KEWT two-bladed wind turbine revealed new insight into the mechanism of this
instability. The quantity [N, ,-N;l in the critical pole distance criterion proved to be
consistent with the physical insight into the problem and can be applied as a valid
criterion in this instability.
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Chapter 7

Quantification of the Flap-Lag Coupling
in the Critical Pole Distance Method

The present chapter will derive quantitative criteria for the critical pole distance method
concerning the coupling between the flapping and lead-lag motion in an articulated
rotor when structural couplings (called kinematic couplings in articulated
configurations) are included in the design of the rotor.

As described in section 3.4 of Chapter 3, structural couplings are introduced in
articulated and hingeless rotors in order to improve the stability and response
characteristics of helicopters and wind turbines. Although in most of the operating
conditions these couplings may be advantageous, there are also cases when their effect
is adverse. Appendix H described the most important structural couplings present in a
rotor and their effect on helicopter behaviour. This chapter endeavours to verify
whether the critical pole distance method is able to determine the effects that structural
couplings have on helicopter modeling. From the structural couplings described in
Appendix H only the influence of pitch-flap and pitch-lag couplings on helicopter rotor
modeling will be investigated.

7.1 Derivation of a Coupled Flap-Lag Linear Model
Consider the rotor of an articulated helicopter as represented in Figure 7.1:

- the flapping hinge axis is assumed to be in the horizontal (x,, y,) plane, and is
considered to be offset from the axis of rotation by a distance e, (non-
dimensional g;). A pitch-flap coupling K;, is introduced in the system by
inclining the flapping hinge axis at an angle 3, to a line paraliel to the yg-axis
(see Figure 7.2 (b));

- the lagging hinge axis is assumed to be in the vertical (xg, 7y) plane, and is
considered to be offset from the flapping hinge axis by a distance e, (non-
dimensional ;). A pitch-lag coupling K, is introduced in the system by
inclining the lagging hinge axis at an angle 3, to a line parallel to the z; -axis
(see Figure 7.2 (a)).

Observe that in a rotor with the lagging axis inclined, the lagging degree of freedom
is not the blade rotation about the lagging hinge axis but the projection of this rotation
(noted as ;) on the lagging plane (xz, yg) as seen in Figure 7.2 (a); similarly the
flapping degree of freedom P represents the projection of the blade rotation about the
flapping hinge axis B; on the flapping plane (xg. z) as seen in Figure 7.2 (b).
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Figure 7.2 Flapping and lagging degrees of freedom in a rotor with inclined hinges

The sign conventions used for the pitch-flap and pitch-lag couplings are:

- the pitch-flap coupling (equivalent in this case with the so-called "8, hinge") is
positive (8,>0) for flap up with pitch nose-down or flap down with pitch nose-
up;

- the pitch-lag coupling (equivalent in this case with the so-called "6, hinge") is
positive for lag back with pitch down or blade lead with pitch up.

Morduchow [1950]™ derived the linear flap-lag equations of motion for an articulated
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rotor helicopter in hovering flight under the following assumptions:

- the rotor angular speed is constant:
- no twist is included in the blade:
- the induced downwash is constant throughout the rotor disc v, = const.

Assuming also that the blade has a constant chord ¢ = const. and that the blade mass
per unit chord is constant m = const, the taper integrals used in the equations of motion
derived by Morduchow [1950]7* on page 12 can be analytically solved, hence the non-
dimensional equations of motion of the coupled flap-lag motion of a helicopter blade in
hovering flight become:

{MB B// +CBB/ +KﬁB + +C[S;€/ +KB;§ =) (71)
Cof’ KB +M L7 +CL+KL =0

where the coefficients M[s Cy KB* M., C, K. are calculated neglecting the terms
of order higher than t:p eD e;’ e.“. etc. The final expressions of the

[ <

coefficients of the flap-lag cquatlons (7.1) are:

MB =H(eﬁ+e;)(l +e§-eﬁ)
M; H(eﬁ +e, ’
3e ¢
Cﬁ =<eﬂ+e teyE 5 )
C, —%(eﬁﬂzc—eﬁ e\_el};e )
K, ={H(eﬁ+e€)[[30G( )+1+85] L (e, +e;>z+(en+e;+2t:ﬁ &+
o +3g] 7.2
+SD+ “)(tan& I;sec383)} 7.2

~

5 :(eﬂ +€;){H (eﬁ +€;)+Vi<tan81 —Boseczﬁ“}
5 = (e, «Le;)[(&:;3 “1) (v, +H) +8,(2 +e, -¢, )]

o = H(e, +e ){(1‘89)(H+2Va)+90(1*SB;Q)}

_ 2 ) 8123 +3 eé S 26
K¢ _{Bo(% vey) +(e”+89 +heﬁ€§+—§_—)(tan | Bysec ‘)}
K., =(e,+eJv,(tand -( sec’ )

@)
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The following notations are used in (7.2): H = where m is the blade mass per

{plmc)
unit length, ¢ the blade chord, p the air density, 1 the blade length measured from the
lagging hinge; €, is the non-dimensional flapping hinge offset and ¢, the offset of
the lagging hinge axis to the flapping hinge (see Figure 7.1); C,, is the profile-drag

coefficient of the blade section, and G the gravity term defined as G = Ll’ Bo» &
QZ

and 6, respectively are the steady-state flapping, lead-lag and pitch angles and v, is the
induced downwash. The constant induced downwash v; throughout the rotor disc is
calculated according to the simple momentum theory:

v= M, g (1.3)
"N 2nR*p QP

The steady-state flapping B, lagging (, and pitch angles 6, may be determined by
solving the following system:

€

HB, (e, +e )1 +e,;)+HG(t:B +ec)(1 +

; 2 )+BoLo ey e, (1 +5g) +

Wi Co -3¢l
+m(l+§~nyeﬂ+e§)(1+8€)_e°(eﬂ+e§+2% e+ ) =0

C
HE 2 (e, ve)(Lve, +o,) (2, —e.) -~ e; +e, )(2 +e, +e,)-

04 \"B B
]2 an (7.4)
Vi Vi 21
Qi By (e, e )r m) 5(2_% ~e;)(1veg+e ) =0
1 Mcg v, C
A e i e LU
0 - 0

2 2
€ &

e+e+zee+1+
8 §3BC

The next section will determine the strength of the coupling between the flapping and
the lagging degrees of freedom by applying the critical pole distance method to the
blade motion as described by (7.1). Subsequently, the predictions on the flap-lag
coupling as obtained from the critical pole distance method will be compared to the
results obtained when applying the vector shift method and the Milne criterion. Finally,
based on the application of the critical pole distance method, criteria on the flap-lag
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coupling will be established as a function of the kinematic pitch-flap and pitch-lag
couplings.

7.2 Application of the Critical Pole Distance Method to the Flap-
Lag Coupling

In order to apply the critical pole distance method one first has to represent the
uncoupled flapping and lagging eigenvalues in the complex plane. The uncoupled
flapping s; and lagging s. eigenvalues can be obtained by solving the equations (7.1)
after putting the lead-lag, respectively flapping to zero in the first and second equation
of motion. One obtains:

Gt g [ _(fn j (7.5)
2Mﬁ Mﬁ =p

S-Sty ﬁ_(cc)z (76)

CoaM, . M,

The uncoupled flapping and lead-lag eigenvalues depend on the pitch-flap and pitch-lag
couplings through the coefficients M, Cg, Kg, My, M, M, of equations (7.1).

The critical pole distance criterion (4.43) derived in section (4.26) of Chapter 4 can be
applied to investigate the conditions under which the blade flapping decouples from the
lead-lag degree of freedom. For the flap-lag coupling, the critical pole distance criterion
(4.43) gives that the flap-lag motion of a hovering helicopter may be assumed as being
uncoupled when the quantity:

lNB'N;| =‘/l6§; &g o +4E; o (o —(1);)2 is large 7.7

The uncoupled flapping and lagging eigenvalues as given by (7.5) and (7.6) have to be
transformed into the form used in the critical pole distance method, i.e.:

S =—&Bmﬂiimﬁ\/1—§;} ;oS =—§chtiw§ l—?’;§ (7.8)

Equating the real and imaginary coefficients of the expressions s; and s in (7.5) and
(7.6) to the expressions of (7.8), the uncoupled flapping and lead-lag characteristics are
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obtained as:

Ky G 1
TR, % T2 MK
) N ™ (7.9)
e K,— C, 1
(DE = N &; el
Mc 2 N MQK§
Substituting (7.9) into (7.7), the critical pole distance criterion becomes:
C. K C. K K K.Y
INB N, P Px| 2" +[_§ - _B] is large (7.10)
M; Mg MB Mg MB

in which the coefficients M,, C;, Ky, M, M, M, are given as in (7.2).

The meaning of "large" in the critical pole distance criterion (7.10) may be quantified
by considering different pitch-flap and pitch-lag couplings in the articulated helicopter
rotor. The following cases will be investigated:

no pitch-flap coupling and different pitch-lag couplings: 8, = 0, 8, # 0;

no pitch-lag coupling and different pitch-flap couplings: 8, = 0, 8, # 0;
positive pitch-lag coupling and negative pitch-flap coupling and 18,1 = 13,];
negative pitch-lag coupling and positive pitch-flap coupling and 18, | = 13, |;
negative pitch-lag coupling and negative pitch-lag coupling and 15, | = 13, |;
positive pitch-lag coupling and positive pitch-flap coupling and 15, | = 15, 1.

A e ol M

Consider the numerical example of a 3-bladed helicopter rotor as given in Table 7.1
(the same numerical data used by Morduchow [1950]™).

The relative position in the complex plane of the uncoupled flapping and lead-lag
eigenvalues for different combinations of pitch-flap and pitch-lag coupling is presented
in Figure 7.3 to Figure 7.8 and the corresponding values of the critical pole distance
criterion (7.10) for each combination are calculated in Table 7.2 to Table 7.7.

On the one hand, looking at Figure 7.3 to Figure 7.8, it may be concluded that,
according to the critical pole distance method, the flap-lag motion in Figure 7.3,
Figure 7.6 and Figure 7.8 can be assumed as uncoupled, whereas in Figure 7.4,
Figure 7.5 and Figure 7.7 it should be considered as coupled. Varying the pitch-lag
coupling mainly affects the blade lead-lag frequency of the uncoupled lead-lag motion:
a positive 8, inclination (negative pitch-lag coupling) increases the lead-lag frequency,
a negative §, inclination (positive pitch-lag coupling) decreases the lead-lag frequency
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(see Figure 7.3). Varying the pitch-flap coupling primarily affects the blade uncoupled
flapping characteristics. Decreasing the 3, angle to negative values (positive pitch-flap
coupling) leads to an abrupt decrease of the flapping frequency and even instability (see
Figurc 7.4). This instability is a pure flapping divergence and can be explained as
follows: usually, an upward flapping perturbation  results in a component of the
aerodynamic moment on the blade, trying to counteract the motion, as demonstrated in
Appendix B on page 204. Using a negative §, transforms this moment into onc
reinforcing the blade flapping motion, thus leading to divergence.

Table 7.1 Numerical example of a 3-bladed helicopter

Helicopter weight M, g = 3000 pounds
Number of blades N=3

Rotor speed £2 =25 rad/sec

Tip radius of the rotor R =215 feet

Length of the Blade =20 feet
Eccentricity e;=1 feet
Eccentricity e.= 0.5 feet

Blade Mass per unit length at root m =5.5347 kg/m
Blade Chord c=1 foot

Profile drag coefficient C,,=001

On the other hand, one may observe from the values of the critical pole distance
criterion of Table 7.2 to Table 7.7 that IN,N.I varies between 0 and 3.13. The
question that arises is: how to quantify the term "large" for IN;N.| in order to consider
the flapping and lead-lag degrees of freedom uncoupled? The investigation of the
magnitude of IN,N.| in the critical pole distance criterion will be analyzed in the next
sections by comparing the results of the critical pole distance criterion with two other
prediction methods presented in chapter 4: the vector shift method and the Milne
criterion. To apply these last two methods, the coupling terms in the flap-lag equations
of motion (7.1) have to be known as well.
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Table 7.2: Chritical Pole Distance
Criterion: Case 1

8,(deg) IN N .|
45 0.9129
30 0.9399

o 0.9768
.30 1.0137
45 1.0408

Table 7.4: Critical Pole Distance
Criterion: Case 3

8,(deg) d,(deg) IN,N.I
0’ o 09768
15" -15° 0.5291
20° -20° 0.3896
25° -25° 0.2559
30° -3¢° 0.1318
32° -32° 0.0868

Table 7.6: Critical Pole Distance
Criterion: Case 5

Table 7.3: Critical Pole Distance
Criterion: Case 2

& (deg) IN N |
45° 3.0398
30° 2.1039
0" 0.9768
-30° 0.1532
-43° instability

Table 7.5: Critical Pole Distance
Criterion: Case 4

8,(deg) S(deg) IN,N.I

0’ o 0.9768
-15" 0.5577
-20° 0.4253
-25° 0.2967
-30° 0.1747

-35° 0.0664

d.(deg) 8.(deg) IN, NI
o 0’ 0.9768
-157 157 1.4923
-25¢ 25° 1.9078
-35° 357 2.4276
-45° 45° 3.1314

Table 7.7. Critical Pole Distance
Criterion: Case 6

Sfdeg) | 8i(deg) | IN NI
o 0 0.9768
15° 15° 14533
25" 25" 1.8347
35° 35¢ 23092
45¢ 45° 2.9482
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7.3 Application of the Vector Shift Method to the Investigation of
Flap-Lag Coupling

The main idea in the vector shift method is that if the uncoupled poles are close to the
corresponding coupled poles, the poles may be assumed as uncoupled, whereas if the
uncoupled and the coupled poles are separated from each other, the poles may be
considered coupled. According to Table 4.1, in the vector shift method the vector IAs/s|
has to be computed. For the flap-lag case this means that two distances have to be
determined: that between the uncoupled flap pole s; and the coupled flap-lag pole
spc» and that between the uncoupled lag pole s, and the coupled lag-flap pole s,

The coupled flap-lag s, and lag-flap s, eigenvalues can be obtained by solving the
coupled equations of motion (7.1). A good approximation of the solution of system
(7.1) may be obtained using the Ferrari method (see Morduchow [1950}™). According

to this method, the solution of an equation f(x) = 0 is x,-f(x,)/ gf(xo) where x, is
X

considered a first approximation of the sought solution.

Assuming as first approximation for the flap-lag problem (7.1) the uncoupled flap
eigenvalue sy as given by (7.5) and the uncoupled lag eigenvalue s, as given by (7.6),
and defining the function f(s) as the characteristic equation of system (7.1):

M s2+Cas+KB Cyes + Ky,

f(s) = p 2“ =0 (7.11)
Cps +Ky M, s* +C s +K,

the coupled eigenvalues may be obtained using the Ferrari method as:
f(s, ) f(s,)

= - B = — 4

Spc =S df( : S TS T gp (7.12)
— (s — s
ds'? ds( <)

Performing the calculation in (7.12), the following expressions of the coupled flap-lag
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eigenvalues are obtained:

4 3 2
MM, s, +(MﬁC; +M;Cu)sn +(MBK; MK, +C,C, —CH;C;B)Slj +

+ (CpK, rCKy ~CpoKy -Cy Ky sy + KK K K (713)

] B 3 2 ;
AMMsy +3M,C + MCyJsy +2(CC » MK, MK, -C, Cys, +
+CK + CK MK -Gy K -CK,
4 3 2
MMgs; + (M€ +MCyls + (MK +MK +C,C, -C Cys; +
b - *(CK +CK, -Gy K, -C Ky, + KK KK, (7.14)

R} 2
AMMs! +3(M,C, + MC) +2(C,C. +MK_+MK -C,.C,,)s. +
+GK, + CKy +M K -Cy K -C K,

The relative positions of the coupled and uncoupled poles in the vector shift method for
cases | to 6 are represented in Figure 7.10 to Figure 7.15. As can be seen in
Figure 7.10 in case 1 where only pitch-lag coupling is used in the model, varying the
pitch-lag coupling &, affects both the coupled flapping and lagging damping and
frequency characteristics. When only pitch-flap coupling is used (Figure 7.11), varying
the pitch-flap coupling 8, affects primarily the flapping eigenvalues and secondly the
lagging characteristics (the large variation of flapping characteristics is caused by the
flapping divergence described in the previous section).

Mechanism of lag to flap coupling Mechanism of flap to lag coupling
kinematic : . .
coupling 8, aerodynamic kinematic aerodynamic

coupling

- coupling coupling 8;

coriolis coupling (Cy ;) coriolis coupling (C,

Figure 7.9 Mechanism of flap-lag coupling

The mechanism of coupling between the flap and lead-lag degrees of freedom can be
described as seen in Figure 7.9: a lag aft or a flap up of the blade induces a pitch down
deflection via the kinematic pitch-lag and pitch-flap couplings respectively. Via the
aerodynamic coupling this pitch deflection is transmitted further as a flap and lag
deflection respectively, coupling the motion of the lag to the flap and vice versa. For
example, the mechanism of lag to flap coupling can be explained as follows: as the
blade moves aft in the lead-lag plane (decreasing lag angle) the pitch angle decreases.
This decrease in pitch produces a decrease in lift force and the blade flaps down. This



168 Quantification of the Flap-Lag Coupling in the Critical Pole Distance Method

downward flapping in turn produces a backward Coriolis force which tends to push the
blade further backward.

On the basis of the coupled eigenvalue representation of Figure 7.10 and Figure 7.11,
the following design criterion in choosing the kinematic couplings may be derived:

- for the pitch-lag coupling: a negative 8, (pitch down with lead) should be used
in order to increase the damping in the lagging motion and avoid the instability
in lagging, without forgetting that by doing so, the damping and frequency in
flapping both decrease.

- for the pitch-flap coupling: a positive 3, (flap up with pitch-nose down) should
be used in order to avoid the flapping divergence, without forgetting that by
doing so, the damping in lagging is decreased.

Figure 7.12 to Figure 7.15 show the relative position of the coupled and uncoupled
poles as both the pitch-flap and pitch-lag couplings vary. One may observe that using
inclination both for the flapping and lagging hinges, the position of the flapping pole is
mainly determined by the pitch-flap angle, whereas the position of the lead-lag pole is
mainly determined by the pitch-lag coupling. Cases 3 and 5 show strong coupling
between the flapping and lagging degrees of freedom. This is due to the fact that in
these cases an unfavourable coupling is used (in case 3 the pitch-flap coupling is
adverse, whereas in case 5 both the pitch-flap and pitch-lag coupling are adverse).

As described above, two distances have to be calculated when using the vector shift
method for the flap-lag coupling analysis: one is between the uncoupled flap pole and
the coupled flap-lag pole (sg-sg)/s; and an other between the uncoupled lag pole
and the coupled lag-flap pole (sy-s;)/s.. Table 7.8 to Table 7.13 summarize the
values of these distances and their interpretation in the vector shift method for cases 1
to 6. Since there are two distances to be interpreted, for clarity the strength of the flap-
lag coupling is underlined in Table 7.10 to Table 7.13.

Looking at Table 7.8 it is obvious that, for example, for a pitch-lag coupling &, = -45°
(lead-lag retreating with pitch up) the results are contradictory: the distance in flap
should be interpreted as very lightly coupled whereas the distance in lag should be
considered as very heavily coupled. Since the pitch-lag coupling mainly influences the
lead-lag motion, it is therefore considered that only the distance in lag is of importance.
Accordingly, for a 8§, = -45° one should consider the motion as heavily coupled. This
result is correct, the motion is heavily coupled in a useful way in this case, since a
negative pitch-lag coupling of 45 increases the damping in the lead-lag motion four
times as much as compared to a 0° pitch-lag coupling.

Also, the results presented in Table 7.9 relative to the distance between the flap and
flap-lag poles and lag and lag-flap poles are contradictory. For example, in the case of
pitch-flap coupling 8,= -45° (flap up with pitch up), the motion should be considered
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either heavily or moderately coupled. However, since the pitch-flap coupling mainly
affects the flap motion, the strength of the tlap-lag coupling should be judged only by
the distance between the flap and flap-lag poles. It follows that a pitch-flap coupling
8,= -45" is heavily coupled motion, which is correct since the flapping motion is
unstable for this valuc of the pitch-flap coupling.

When both pitch-flap and pitch-lag couplings are used. one should interpret the flap-lag
coupling according to the strongest indication of coupling between the flap and flap-lag
poles respectively lag and lag-flap poles.

Before comparing the results of the vector shift method to the critical pole distance
method. the next section will apply the Milne criterion to the flap-lag problem as well.
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Table 7.8: Vector Shift Method when only Table 7.9: Vector Shift Method when only
Pitch-Lag Coupling is used: Case 1

Pitch-Flap coupling is used: Case 2

5, Flap Lag S, Flap Lag

45 0.1160 | MC 0.1790 MC 45 0.0039 VLC 0.0l61 VLC
30° 0.0424 VLC 0.0979 LC 30 0.0043 VLC 0.0137 VLC
o0 00119 | LC 0.0142 YLC [ 0.0119 VLC 0.0142 VLC
-30° | 00568 | LC 0.1669 MC -30 | 0.1729 MC 0.0843 LC
-45" 0.0425 VLC 0.3514 VYHC -43 0.2356 HC 0.1910 MC

Table 7.10: Vector Shift Method for the
Pitch-Flap and Pitch-Lag Variation Case 3 flap and Pitch-Lag Variation: Case 4

Table 7.11: Vector Shift Method for Pitch-

8, 6, Flap Lag 8, 8, Flap Lag

oo 0.0089 VLC | 0.0146 | VLC o 0.0089 VLC | 0.0i46 YLC
15°,-15" | 0.0307 VLC | 0.0611 | LC -15°,15" 0.0195 VLC | 0.0636 LC
200,200 | 0.0654 LC 0.1025 | LC -25¢,25° | 0.0232 VLC | 0.1047 MC
25°-25" | 0.1396 MC 0.1594 | MC -35¢, 35" | 0.0258 VLC | 0.1719 MC
30°,-30° | 0.3734 HC 0.2372 | HC -45°, 45" | 0.0279 VLC | 0.3068 MC
32¢,-32° | 1.0224 VHC | 0.2749 | HC

Table 7.12:Vector Shift Method for Pitch- Table 7.13: Vector Shift Method for Pitch-
Flap and Pitch-Lag Variation: Case 6

Flap and Pitch-Lag Variation: Case 5

8, 8, Flap Lag 8, 6; Flap Lag

0.0 0.0089 VLC 0.0146 VLC oo 0.0089 VLC 0.0146 VLC
-15 <15 | 0.0644 LC 0.1292 MC 1515 0.0096 VLC 0.0331 VLC
220 -20 | 0.1194 MC 0.2284 | MC 25", 25° 0.0150 VLC 0.0584 LC
225 -25 | 0.2569 HC 0.4259 | HC 35° 35¢ 0.0185 VLC 0.0857 LC
-30 -30 | 0.9303 VHC 0.8197 VHC 45, 45° 0.0209 VLC 0.1186 MC
-35-35 2.5411 VHC 1.1091 VHC

VLC- Very Lightly Coupled; LC- Very Lightly Coupled; MC- Moderately Coupled;
HC- Heavily Coupled; VHC- Very Heavily Coupled
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7.4 Application of Miine Criterion to the Investigation of Flap-Lag
Coupling

Assume that the blade flapping and lead-lag dynamics are well separated and that the
lead-lag motion is the slower one, compared to the flapping motion. In order to apply
the Milne criterion, the equations of motion (7.1) have to be written in the semi-
canonical form:

/
B/ -C,/M, K, /M, -C, /M, -K; /M| (p’ 0
¢/ -C, /M, K /M, -C./M, -K /M || 0
¢ 0 0 1 0 g 0

The following parameters can be defined:

- radius of the slow motion r = max (| St DR

- radius of the fast motion R = min (! Sp 1);

- maximum of the coupling terms in first and third equations of system (7.15):
M, =max( 1-Cy /ML, 1=K /M )
M =max( 1=Cp /M1, 1=K, /M| )

2

The Milne criterion described in section 4.5.2 of Chapter 4 (equations (4.52) and
(4.53)) for the flap-lag (7.15) states that the flap and lead-lag motion can be considered
weakly coupled if and only if:

1. [%] << 1 (7.16)

MM

t 2

R2

(1.17)

2. max(FL) = <<1

These two conditions were computed for all pitch-flap and pitch-lag combinations
investigated in this chapter. The results are summarized in Table 7.14 to Table 7.19.
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Table 7.14 Milne Criteria when only
Pitch-Lag Coupling Varies: Case |

8,(deg) 1 /R | max(FL)
45° 0.4061 0092
300 0.3743 005

o 0.3258 000063
30 0.2688 0063
-45° 0.2178 0105

Table 7.16 Milne Criteria when Pitch-Flap

and Pitch-Lag Couplings Vary: Case 3

Table 7.15 Milne Criteria when only
Pitch-Flap Coupling Varies: Case 2

d.(deg) IW/R max(FL)
45 0.2231 0.000655
30’ 0.2544 0.000539
o 0.3258 0.000638
=30 0.5531 0.0025
45" 2.3211 0.0709

Table 7.17 Milne Criteria when Pitch-
Flap and Pitch-Lag Couplings Vary:

| Case 4

d,(deg) d,(deg) 1 7/R | max(FL) S,(deg) ddeg) I w/R | max(FL)
o o 0.3258 0.000638 o o 0.3258 0.000638
15 - 15 0.4169 0.0028 - 15 15° 0.2641 0.0026
2 -2 0.4639 0.0048 - 25 25" 0.2276 0.0036
25 - 25 0.5302 0.0081 - 35 35 0.1899 0.0045
3 - 30 0.6364 0.0141 - 45" 45° 0.1453 0.0055
320 - 32¢ 0.702 0.0183

Table 7.18 Milne Criteria when Pitch-Flap

and Pitch-Lag Couplings Vary: Case 5

Table 7.19 Milne Criteria when Pitch-
Flap and Pitch-Lag Couplings Vary:

Case 6

S,(deg) &(deg) I /R 1 max(FL) 8)(deg) S(deg) VwR | max(FL)
/4 o 0.3258 0.000638 o o 0.3258 0.00063
- 15 - 15° 0.3589 0.0048 15° 15° 0.3068 0.0015

- 20 - 200 0.3778 0.0073 25° 25° 0.2971 0.0025

- 250 - 25 0.4062 0.0114 35¢ 35° 0.2884 0.0034

- 30 - 3 0.4548 0.0192 45 45° 0.2801 0.0042

- 35 - 35 1.0205 0.1303
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Analysing the numerical values of Table 7.14 to Table 7.19 the Milne criterion was
quantified in the following statement:

The flapping and lagging motions decouple if and only if:

- lr/R1<0.35
- | max(FL) | < 0.005

For /R! > 0.35 the flapping and lagging motions couple. Observe that the second
condition concerning the coupling terms has also to be fulfilled in order to decouple the
flapping and lead-lag degrees of freedom. For example, see Table 7.14, where, although
for negative pitch-lag couplings the ratio I/RI is smaller than 0.35, the motion must still
be regarded as coupled so as to acquire the useful increase in damping in the lead-lag
motion induced by the flapping motion in the rotor model.

7.5 The Critical Pole Distance Criterion for the Flap-Lag Coupling

On the basis of the results of the vector shift method and the Milne criterion and of the
described characteristics of the pitch-flap and pitch-lag couplings and their physical
interpretation, returning to the critical pole distance criterion (7.10), the following
quantification of the flap-lag coupling was established:

The strength of the coupling between the flap-lag motion in a rotor blade can be judged
as follows in the critical pole distance criterion:

INg N, | <0.05 Very Heavily Coupled
005 < INg N, | <03 Heavily Coupled
03 < I Ny N | <2 Moderately Coupled
2 < INgN, 1 <3 Lightly Coupled

INy N, | >3 Very Lightly Coupled.

This critical pole distance criterion may be used to judge whether the blade flapping
and lead-lag motions may be decoupled when pitch-flap and pitch-lag couplings are
included in the rotor blade model.



Chapter 8

Conclusions

"But, to make this dream come true, first we engineers have to strive harder to achieve
simplicity. Our technical community is too easily lulled into complacency. In truth, it is
much easier to make something more complicated than to make it simpler”

Bartram Kelley [1982]
8.1 Review of the Goals and Limitations

The goal of the present dissertation was to develop a general method which can be used
by the design-analyst to pre-determine the necessary degrees of freedom required by a
helicopter or a horizontal-axis wind turbine simulation model. To this end, the so-called
"critical pole distance method" was developed. The main advantage of this method is
that the designer can obtain some indication in advance as to the level of model detail
required, before starting the tedious effort of deriving the large system of equations of
motion characteristic to rotary wing problems. The critical pole distance method can be
used both as a design tool in the preliminary design when different candidate
configurations have to be compared, and as an evaluation tool to obtain insight into
already-existing simulation models.

As discussed in the present dissertation, the problem of modeling in rotary wing
engineering must be seen in a broad context: on the onc hand the adequate
representation of rotor flexibility and adequate mathematical and aerodynamic modeling
and on the other hand the scope, the required accuracy and the case considered, are all
important factors in the process determining which degrees of freedom are necessary to
be included in simulation models.

The critical pole distance method developed in this work is actually a formalization of
the intuitive fact that, in the complex plane representation, regions of agglomeration of
eigenvalues represent critical regions in which the corresponding modes couple (in the
time-domain this would mean that their time constants are comparable). Specific for
this method is that the critical regions are determined by the uncoupled modes of
motion. As described in section 4.1, Chapter 4, the critical pole distance method
contains the following steps:

Assuming the system (helicopter and horizontal axis wind turbine) as a
summation of mutually uncoupled subsystems -blades, hub, (air)frame etc.-, the

equations of motion for every uncoupled deflection mode are derived.

For each subsystem, the thus formulated equations of motion are solved. The
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equations of motion associated with the non-rotating subsystems can be directly
solved, their solutions represent the eigenvalues (poles) of the modes of motion.
The equations of motion associated with the rotating subsystems are first
transformed to the non-rotating system through the so called "Coleman
transformation" (multiblade coordinate transformation MCT) and then solved in
order to obtain the eigenvalues of the modes of the rotating system in the non-
rotating system.

3. Using the representation in the complex plane, "critical regions" are defined. A
"critical region" is an area of the complex plane where potential couplings
between different modes occur- within and between subsystems. The criterion for
a critical region is the relative position of the poles in the complex plane, i.e., if
the poles in the complex plane associated with the uncoupled motion of different
modes of motion are "close" together, one may account for the coupling effects
between these modes in the simulation model; if the poles are sufficiently
separated, they may be assumed as uncoupled in the simulation model. The
crucial point in the critical pole distance method is therefore how to quantify the
relative distance of the poles in order to decide which coupling effects are
important in the simulation model and which are not.

4, Finally, conclusions concerning the degrees of freedom to be used in the
simulation model are drawn, dividing the modes of motion into three classes:

- modes to be discarded from the model,

- modes to be kept separate in the model (neglecting the coupling terms
between these modes and other degrees of freedom),

- modes to be kept in the model including the coupling effects that are
essential for the model.

As to step 3 of in the critical pole distance method, a criterion was developed in section
4.2 of Chapter 4 able to quantify whether or not two degrees of freedom of an n
degree-of-freedom dynamic system which form a critical region in the complex plane
may be considered as being uncoupled. Representing by w, respectively @; the natural
frequency of degrees of freedom x; and x;, and by &; and §; their critical damping ratio,
the critical pole distance criterion can be generally formulated as following:

Two degrees of freedom x; and x; of an n degree-of-freedom linearly coupled system
may be assumed as uncoupled if the quantity (8.1) may be considered sufficiently large.

|Ni Nj| = &imi{(9§fmf+l6mf )[é’;fcuf 28] o (0] +28] 0] +@]) +4E, 0, © x .

1

2 2 2 2 2p2 2 SRR | LA
x (0] +E; @; +o)) +40; & o) +{o; ~o;) ” is large
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Criterion (8.1) was particularized for two cases:

- the degrees of freedom x; and x; are situated near or on the imaginary axis:

T2 A ) k) 242 . 82)
'Ni . Nj‘ = \/16&{@}(0?(0} +4§;(oi4(u)j' - ) is large (
- the degrees of freedom x; and x; are situated near or on the real axis:
_ dgd o 2pdgo 22 1.3
’Ni : N_‘] —{ @ & + 0 & (0] r0; )+ 0,0 (0,0 +40;sxi g ) 53)
3.3 2 1 ( B
-20, & (0, +u)jE_,j)~2(:J,(1)J“§i(E,i +&, )|} is large

Criterion (8.2) is equivalent to the affirmation that two degrees of freedom decouple
either if their uncoupled eigenvalues are sufticiently separated in frequency such that

the term (0),3-(01) is sufficiently large or, if they are close in frequency, they are both

sufficiently damped so that their product of critical damping ratio F,f-f;f is sufficiently
large.

The term "large" in the critical pole distance criterion (8.1), (8.2) or (8.3) must be
quantified by analysing different case-problems which may provide a "feeling" as to the
meaning of large and small, for the dynamic system analyzed.

Next, addressing the limitations of the critical pole distance method and its criterion,
one should bear in mind that the critical pole distance criterion is actually an
engineering approach to the problem and a multitude of case-problems have to be
investigated before being able to draw conclusions. Further, the criterion depends on the
uncoupled characteristics of the system only for a coupling between two degrees of
freedom. If more than two modes of motion seem to couple in the critical region, the
critical pole distance criterion must be considered in its general formulation (equation
(4.33) in Chapter 4) and some coupling terms must be computed as well. A way to
avoid calculating these terms may be to consider the degrees of freedom in the critical
region in pairs and apply the critical pole distance criterion to each pair. In this way,
only the uncoupled eigenvalues need to be determined. However, if the coupling terms
are not difficult to determine, the designer is advised to use the general criterion (4.33)
involving both the coupled and uncoupled characteristics of the system. For example, in
a 3 degree-of-freedom system, according to criterion (4.35), the ratios

TI’T“I TuTw Tnsz TI’THTH T°1T27Tn .
-, =, -, ==, —_~=_~should be examined, where T,, ....T,
NN, NN, NN  NNN, NNN

i 3
are the coupled system's characteristics and N,, ... N, are the uncoupled system's
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characteristics, in order to decide whether the degree of freedom x, decouples from x,
and x,. Finally, it should not be disregarded that investigating eigenvalues in a dynamic
system implies working in a linearized system and one is therefore able to investigate
linear couplings only. Often, the non-linear terms are the malicious ones in rotary-wing
problems. To the above-discussed limitations of the present dissertation, the
assumptions listed in section 1.3 of Chapter 1 should be added.

8.2 Specific Cases and Results

The critical pole distance method was applied to the following rotary wing modeling
problems:

- in Chapter 5 for a piloted simulation model in order to examine the couplings
between the helicopter body modes and rotor disc-tilt modes;

- in Chapter 6 for the investigation of an instability of a two-bladed
horizontalaxis wind turbine;

- in Chapter 7 to investigate the conditions under which the blade flapping degree
of freedom decouples from the lead-lag motion when pitch-flap and pitch-lag
couplings were included in the model.

In each of the problems investigated a large amount of simulations with a coupled
model were performed in order to obtain some understanding on how to quantify the
term "large” in the critical pole distance criterion. Additionally, the predictions made
were compared to those obtained when by the Milne criterion and the Vector Shift
Method presented in Chapter 4.

Concerning the effects of disc-tilt dynamics on body dynamics in piloted simulation
modeling, the following conclusions were drawn:

- Starting with the simple case of a hypothetical helicopter equipped first with a
teetering rotor and then with a semi-rigid rotor, performing a pitch manoeuvre
representing the transition from hover to forward flight, it was demonstrated that
while the addition of the disc-tilt dynamics to the body dynamics is hardly
noticeable in performing the manoeuvre with the teetering rotor, for the
semirigid rotor, the disc-tilt dynamics does influence the helicopter response
rather profoundly. Essentially, using the critical pole distance method, it was
observed that for a semi-rigid rotor, the body motion speeds up and the rotor
disc-tilt motion slows down, thus coupling with each other.

- Studying the natural behaviour of two helicopters differing through their rotor
configurations, the articulated Puma SA-330 and the semi-rigid Bolkow Bg-105,
using the critical pole distance method, it was demonstrated that there were two
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critical regions of coupling between the body and the rotor disc-tilt motion: first,
a critical region in the longitudinal plane of motion, formed by the body short-
period mode eigenvalue and the regressing flapping mode eigenvalue, and a
second critical region in the lateral plane of motion formed by the body roll-
subsidence mode eigenvalue and the regressing flapping mode eigenvalue. In the
first critical region, representing the variation of the quantity (8.2) with the
helicopter advance ratio, it was found as a rule of thumb that the quantity
INgNgpt (as expressed in (5.24)) had to be larger than 0.1, in order to consider
the regressing flapping mode decoupled from the body short-period mode. This
was the case with the articulated Puma, but not with the semi-rigid B6-105. In
the second critical region, representing the variation of the quantity (8.3) with
the helicopter advance ratio, it was found as a rule of thumb that the quantity
NNl (as expressed in (5.32)) had to be larger than 0.1, in order to consider
the regressing flapping mode decoupled from the body roll-subsidence mode.
Again, this was the case for the articulated Puma, but not for the semi-rigid Bo-
105.

- Studying the piloted behaviour of the articulated Puma SA-330 and the semi-
rigid Bolkow B6-105 and using the values of the gains as required to fly these
two helicopters in a simulated deceleration and side-step manoeuvre, it was
found that, in the above-mentioned first critical region, the quantity IN,. Nl had
to be larger than 0.3 in order to consider the regressing flapping mode decoupled
from the body short-period mode. For the articulated Puma helicopter this
depended on the manoeuvre performed: for the deceleration manoeuvre the
criterion was met, whereas for the side-step manoeuvre it was not. The
semirigid B6-105 was characterized by a IN Nl value always much smaller
than 0.3, thus implying coupling of the bovdy short-period mode and the
regressing flapping mode.

The critical pole distance criterion for the body-rotor disc-tilt coupling was formulated
as follows:

In helicopter piloted simulation modeling, the strength of the coupling between the
body modes and the regressing flapping mode can be quantified as follows:

N iy Niwed < 0.1 Heavily Coupled;

0.1 < N, Np,l <03  Moderately to Lightly Coupled;
0.3 < Ny Nl Very Lightly Coupled.

The articulated Puma SA-330 helicopter in this sense was characterized by very light to
moderate couplings, whereas the semi-rigid Bo-105 helicopter was characterized by
strong couplings between both the body short-period/regressing flapping modes and
roll-subsidence/regressing flapping modes.
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Concerning the KEWT instability in the chassis second bending mode and rotor lead-
lag modes as given by the Coleman transformation for a two-bladed horizontalaxis
wind turbine investigated in Chapter 6, the following conclusions were drawn:

According to the critical pole distance method, the prime factor responsible for
this instability is the coupling between the harmonic ., of the differential
lead-lag mode and the chassis second bending mode. Through this harmonic the
differential lead-lag mode feeds energy to the chassis These two modes form
the main path through which the gravity excitation is transmitted from the blade
to the chassis and back. The quantity Ny, -N;l (as expressed in 6.4) in the
critical pole distance criterion was formulated as follows:

If the quantity N, .,,-N;l > 0.75, the instability of the KEWT wind turbine at a
rotational speed Q=1/20; can be eliminated. A value N ,,,-N,| < 0.3 leads to a
strong instability in the operating regime considered.

Concerning the mechanism of instability, it was observed that the tower acts as a
dynamic absorber (Frahm damper) whenever alternating forces start to be
induced in the rotor, stoping any tendency of the rotor to oscillate. The
oscillations of the rotor-chassis system would tend to slow down, but because of
the gravity-constant rpm combination, energy is continuously fed into the
system. As a result, the rotor oscillations amplify. In response, the tower
oscillations increase with the effort to stop the rotor oscillations. Thus, the
gravity force action, the system constant rpm and the tower behaviour as a
dynamic absorber are three important elements in the KEWT instability.

It was found that the instability could be eliminated by increasing the tower
damping ratio as in case 3, softening the tower as in case 5 or stiffening the
blades as in case 6.

Concerning the criteria on the blade flapping/lead-lag coupling of a rotor system
including pitch-flap and pitch-lag couplings investigated in Chapter 7, the following
conclusions were drawn: .

The strength of the coupling between the flap-lag motion in a rotor blade can be
categorized as follows in the critical pole distance criterion:

0.05
0.3
2

3

INy N, | < 0.05 Very Heavily Coupled
< INg N | <0.3 Heavilv Coupled
< IN,N_ | <2 Moderately Coupled
< [Ny N | <3 Lightly Coupled
< INg N | Very Lightly Coupled.

where | ND N, | was expressed by (7.10).
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The above-reviewed results on the necessary degrees of freedom to be considered in
simulation models developed for the three problems investigated in this dissertation
were collected in Figure 8.1.

0-55 91 03 05 0751 2 3
O— ©—t —O— »

0 NN

[IEE =p Helicopter Body+Disc-Tilt
‘ i IR |e=> Flap+

esp> Wind Turbine Chassis + Lag
Rotor Lead-lag

- Very Heavily Coupled
‘ Heavily Coupled
Moderately Coupled

D Lightly Coupled
Figure 8.1 Quantification of the Critical Pole Distance Criterion for the Analvzed
Problems

Legend:

It should be underlined that all the cases investigated in the present dissertation in the
critical pole distance method needed a pre-knowledge of the coupled system behaviour
(this was obtained either from time-domain simulations, either applying the Milne
criterion of Vector Shift method). This pre-knowledge is necessary in this stadium of
the work because the criteria in critical pole distance method have to be substantiated
for different cases. Ones obtained, these criteria can be applied to a class of similar
problems without having available information on the behaviour of the coupled system.
The criteria derived in this dissertation are consistent with the physics of the case-
problems analyzed.

Another important conclusion of the present dissertation was discussed in section 2.7 in
Chapter 2 and later in section 3.3.2 of Chapter 3 and refers to the interpretation of
Figure 2.10. According to this figure, it appears that modern wind turbines are
stiffening in terms of non-dimensional flapping and lead-lag natural frequencies w,/Q
and ®,/Q. This renders them vulnerable to the very complicated dynamic instabilities
characteristic for such stiff systems, as known from experiences with early helicopter
design. This very problem caused helicopter configurations to evolve towards softer
solutions. This observation serves as a warning to wind turbine designers to be aware
that the current tendency toward higher power generating designs, with its associated
scale increase, may introduce the problem of dynamic instabilities to the wind turbine
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community.

Finally, it should be mentioned that the present work attempted to draw a parallel
between the problem of helicopter and wind turbine modeling. These two systems are
characterized by common and specific parameters. Some of these parameters were
reviewed in the present dissertation (see section 2.7 of Chapter 2). In Appendix H
special attention was paid to the structural couplings existing in the blade which have a
great impact on the level of detail considered in the simulation model. It was
underlined that although helicopters and horizontal-axis wind turbines both involve a
rotating and a non-rotating structure, the frequency range for which the models are built
is different, a difference which it seems will become more accentuated in the future.
This may lead to a diverging approach in simulation modeling. The custom of applying
helicopter modeling philosophy for wind turbine design, as was practised in the past,
may not be feasible in the future.

8.3 Future Work

The present dissertation endeavoured to provide the designer with a new tool to assess
the necessary amount of detail needed in a simulation model. As seen in Figure 8.1, all
conclusions drawn in this dissertation refer to interactions between specific degrees of
freedom for specific problems applied to helicopters and wind turbines. The quantities
in the critical pole distance criterion in all cases analyzed were non-dimensionalized in
order to give a general form to the problem.

However, to transform the critical pole distance method into a general design tool, the
database of problems analyzed must be extended. In this context, one should for
example investigate for piloted simulation modeling, the effects of the rotor lead-lag
modes on the body modes for a number of different simulated manoeuvres. For wind
turbine modeling, the database should be extended with cases of modern wind turbines
e.g. such as the STABTOOL-project (see van Holten et. al. [1999]*). Finally, the
effects of structural couplings listed in Appendix H involved in a simulation model
should be quantified in the critical pole distance criterion (one example of
quantification in this sense was given in Chapter 7. An extension of this chapter would
be the analysis of hingeless helicopters in forward flight). Also, it would be interesting
to determine for which applications the critical pole distance criterion presented in
Chapter 4, section 4.2 is both necessary and sufficient in order to decouple system's
degrees of freedom.

Concluding, the present dissertation may be considered as a first step in developing a
general method which can be used by the design-analyst to determine the necessary
degrees of freedom for helicopters and horizontal-axis wind turbines. The method
developed in the present dissertation may be used as a simple intuitive tool before
deriving a complete model, being an engineering approach to the simulation modeling
problem. The validity of the critical pole distance method was evaluated by comparing
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it to similar methods. The strength of the critical pole distance method is that it may be
used as a simple engineering approach, before a comprehensive model is developed. A
condition for the method to become a useful tool is to enhance the fidelity of the
quantification of the employed criteria, by means of an elaborate data collection, based
on a large quantity of base-studies.






Bibliography 187

Bibliography

Aponso, B.L., et.al., "Identification of Higher Order Helicopter Dvnamics Using
Linear Modeling Methods", J. of the American Helicopter Society, Vol.39, No.4,
July 1994, pp.3-11

Anderson, W.D., "Investigation of Reactionless Mode Stability Characteristics of
a Stiff Inplane Hingeless Rotor System”, 29th Forum of the American Helicopter
Society, May 1973, Paper No.734

Anderson, C., etal.,, "The Use of Blade Mounted Dampers to Eliminate
Edgewise Stall Vibration”. European Wind Energy Conference, Nice, March 1-53,
1999

Azuma, A., Saito, S., Nakamura, F.. "Dvnamic Response of Wind turbine to
Yawed Wind", 10th European Rotorcraft Forum, The Hague, Netherlands, Aug.
28-31, 1984, paper no. 55

Bennett, J.AL, "The Era of the Autogiro", The First Cierva Memorial Lecture, J.
of the Royal Aeronautical Society, Vol. 65, No. 610, October 1961, pp. 649-660

Biclawa, R.L., "Rotary Wing Structural Dynamics_and A eroelasticity", AIAA
Education Series, Copyright by the American Institute of Aeronautics and
Astronautics Inc., Washington, D.C., 1992

Bir, G.S., Wright, A.D., Butterfield, C.P., "Stability Analysis of a Variable-
Speed Wind Turbine", AIAA-97-0965, 35th Aerospace Sciences Meeting and
Exhibit, Jan. 6-10, 1997, Reno, N.V.

Blake, R.B., Burkam, J.E., Loewy, R.G., "Recent Studies of the Pitch-Lag
Instabilities of Anticulated Rotors", J. of the American Helicopter Society, Vol.
6. No. 3, July 1961, pp.13-21

Bousman, W.G., Sharpe, D.L., Ormiston, R.A., "An Experimental Study of
Techniques for Increasing the Lead-Lag Damping of Soft-Inplane Hingeless
Rotors”, 32nd Annual National V/STOL Forum of the American Helicopter
Society, May, 1976, Washington, D.C.

Bousman, W.G., "An Experimental Investigation of the Effects of Aeroelastic
Couplings on Aeromechanical Stabilitv of a Hingeless Rotor Helicopter'. 1. of
the American Helicopter Society, Vol.26, No.1, Jan 1981, pp. 46-54

Burkam, J.E., Miao W.-L., "Exploration of Aeroelastic Stabilitv Boundaries with
a Soft-in-Plane Hingeless-Rotor Model". J. of the American Helicopter Society,
Vol. 17, No. 4, October 1972, pp.27-35

Cannon, Robert H., Jr.. "Dynamics of Physical Systems", Published by McGraw-
Hill, Inc.. 1967



188

Bibliography

13

15

16

17

18

19

20

21

22

23

24

25

26

Carpenter, P.J., Fridovich, B., "Effect of Rapid Blade Pitch Increase on the
Thrust and Induced Velocity Response of a Full Scale Helicopter Rotor’, NACA
TN-3044, Nov. 1953

Chen, R.T.N,, Lebacqz, J.V., Aiken, E.W., Tischler, M.B., "Helicopter
Mathematical Models and Control Law Development for Handling Qualities
Research", NASA CP-2496, Proceedings of a Conference held at Ames Research
Centre, Moffett Field, March 17-19, 1987

Chen, R.T.N,, and Hindson, W.S., "Influence of High-Order Dynamics on the
Helicopter Flight-Control System Bandwidth”, 11th European Rotorcraft Forum,
London, England, Sept.10-13, 1985, paper no. 83

Chopra, 1., "Perspectives in Aeromechanical Stability of Helicopter Rotors",
Vertica Vol. 4, No.4, 1990, pp. 457-508

Chopra, 1., Dugundji, J., "Non-linear Dynamic Response of a Wind Turbine
Blade", J. of Sound and Vibration, Vol 63, No. 2, 1979, pp. 265-286

Chou, Pei Chi, "Pitch-Lag Instability of Helicopter Rotors", J. of the American
Helicopter Society, Vol. 3, No. 3, July 1958, pp. 30-39

Coleman, R.P. and Feingold, AM., "Theory of Self-Excited Mechanical
Oscillation of Helicopter Rotors with Hinged Blades", NACA TR-1351, 1956

Curtiss, H.C. Jr., and Shupe, NK., "A Stability and Control Theory for
Hingeless Rotors”, 27th American Helicopter Society Annual Forum,
Washington D.C., August 1971

Curtiss, H.C. Jr., "Stability and Control Modelling", 12th European Rotorcraft
Forum, Garmisch-Partenkirchen, Germany, Sept. 22-25, 1986, paper no. 41

Curtiss, H.C. Jr., "On the Calculation of the Response of Helicopters to Control
Inputs”, 18th European Rotorcraft Forum, Avignon, France, Sept. 14-17, 1992,
paper no. FO7

Deutsch, M.L., "Ground Vibrations of Helicopters”, ]J. of the Aeronautical
Sciences, Vol.13. No. 5, May 1946, pp. 223-228

Diftler, M.A., "UH-60A Helicopter Stability Augmentation Study”, 14th
European Rotorcraft Forum, Milano, Italy, Sept. 20-23, 1988, paper no. 74

Doman, Spera, David A., "Wind Turbine Technology-Fundamental Concepts of
Wind Turbine Engineering", Copyright by The American Society of Mechanical
Engineering, New York

Dugundji, J., "Some Dynamic Problems of Rotating Windmill Systems”, NASA
CP-2001, 13th Annual Meeting Society of Engineering Science, Hampton V.A,,



Bibliography 189

27

29

30

31

32

33

34

35

37

38

39

Nov. 1-3, 1976, pp. 439-447

Eggleston, D.M. and Stoddard, F.S. "Wind Turbine Engineering Design”,
Copyright Van Nostrand Reinhold, New York, 1987

Ellis, C.W., "Effects of Aniculated Rotor Dynamics on Helicopter Control
System Requirements”, Aeronautical Engineering Review, July 1953, pp. 30-38

Feitosa, E.A.N., "Parametric Resonance in Horizontal Axis Wind Turbines",
Ph.D. Dissertation. University of Southampton, England, 1989

Fletcher, J.W., Tischler, M.B., "Improving Helicopter Flight Mechanics Models
with Laser Measurements of Blade Flapping", 53rd American Helicopter Society
Annual Forum, Virginia Beach. B.A., April 29-May 1, 1997, pp.1467-1494

Friedmann, P.P., "Recent Developments in Rotarv-Wing Aeroelasticity”, J. of
Aircraft, Vol.14, No. 11, Nov. 1977, pp. 1027-1041

Friedmann, P., "Influence of Modeling and Blade Parameters on the Aeroelastic
Stability of a Cantilevered Rotor”, AIAA Journal, Vol. 15, No.2, February 1977,
pp-149-158

Friedmann, P.P., "Aeroelastic Modeling of Large Wind Turbines", J. of the
American Helicopter Society, Vol.21, No.4, Oct. 1976, pp. 17-27

Fu, K.H., Kaletka, J., "Frequencv-Domain ldentification of Bo 105 Derivative
Models with Rotor Degrees of Freedom", 16th European Rotorcraft Forum,
Glasgow, England, Sept., 1990, paper no. II1.10.3

Gaffey, T.M., "The Effect of Positive Pitch-Flap Coupling (Negative 8;) on
Rotor Blade Motion Stability and Flapping", J. of the American Helicopter
Society, Vol. 14, No. 2, April 1969, pp.49-67

Gallot, J., "Effects Aeroelastique sur les Qualités de Vol dun Rotor Rigide",
AGARD 34th Flight Mechanics Panel Meeting, Marseille, France, April 1969,
ATAA Paper 69-204

Hall, W.E. Jr., Bryson, A.E. Jr., "Inclusion of Rotor Dynamics in Controller
Design for Helicopters”, J. of Aircraft, Vol.10, No.4, Apr.1973, pp.200-206

Heimbold, R.C., and Griffith, D.C., "Synthesis of an Electromechanical Control
Svstem for a Compound Hingeless Rotor Helicopter", J. of American Helicopter
Society, Vol.17, No.2, April 1972, pp.55-65

Hodges, D.H., Ormiston, R.A., "Stability of Elastic Bending and Torsion of
Uniform Cantilevered Rotor Blades in Hover with Variable Structural
Couplings", NASA TN D-8192, April 1976

Hodges, D.H., Ormiston, R.A., "Stability of Hingeless Rotor Blades in Hover



190

Bibliography

41

42

43

44

45

46

47

48

49

50

51

52

53

with Pitch-Link Flexibility", AIAA Journal, Vol. 15, No. 4, 1977

Hohenemser, K., "Hingeless Rotorcraft Flight Dynamics", AGARD-AG-197,
1974

Hohenemser, K, "Dynamic Stability of a Helicopter with Hinged Rotor Blades",
NACA TM-907, September, 1939

Hohenemser, K.H., Yin, SK., "On the Use of First Order Rotor Dynamics in
Multiblade Coordinates", 30th American Helicopter Society Annual Forum,
Washington D.C., May 1974, paper no. 831

Hohenemser, K.H., Perischo, C.H., "Analysis of the Vertical Flight Dynamic
Characteristics of the Lifting Rotor with Floating Hub and Off-set Coning
Hinges", J. of the American Helicopter Society, Vol.3 No.4, Oct. 1958, pp.20-33

Holley, W.E., Thresher, R.W., Lin, S-R., "Atmospheric Turbulence Inputs for
Horizontal Axis Wind Turbines”, European Wind Energy Conference, Hamburg,
Germany, Oct, 22-26, 1984

Holten, Th. van, "KEWT Wind Turbine", Stork Product Engineering Report,
Delft University of Technology, Sept. 1980

Holten, Th. van, "Energy Flow Considerations, an Educational Tool to Clarify
Aeroelastic Phenomena", paper no. 66, 26th European Rotorcraft Forum, The
Hague, The Netherlands, Sept. 26-29, 2000

Holten, Th. van, et. al. "Aercelastic Stability of Modem Wind Turbines",
Memorandum M-880, Delft University of Technology, Sept. 1999, work done
within the frame of STABTOOL-project

Holten, Th. van, Pavel M.D., Smits, G.N., "The Influence of Scales Effects on
the Aeroelastic Stability of Large Wind Turbines", paper no. 71, 26th European
Rotorcraft Forum, The Hague, The Netherlands, Sept. 26-29, 2000

Holten, Th. van, "Hamiltonian Mechanics as a Possible Altemative for Deniving
Aero-elastic Equations"", paper no. 6-8, 13th European Rotorcraft Forum, Arles,
France, Sept. 1987

Houston, S.S., Horton, R.L, "The ldentification of Reduced Order Models of
Helicopter Behaviour for Handling Qualities Studies", 13th European Rotorcraft
Forum, Arles, France, Sept. 8-11, 1987, paper no.7.9

Huber, H.B., "Effect of Torsion-Flap-Lag Coupling on Hingeless Rotor
Stability”, 29th Annual National Forum of the American Helicopter Society,
Washington D.C., May 1973, Paper no. 731

Johnson, W., "Recent Developments in the Dynamics of Advanced Rotor
Systems- I, II", Vertica Vol. 10, No.1, pp. 73-107, and No.2, pp. 109-150, 1986



Bibliography 191

55

56

57

58

59

60

61

64

65

Johnston, J.F. and Cook, I.R., "AH-56A Vehicle Development", 27th American
Helicopter Society Forum, May 1971, Preprint 574

Kaletka, J., Gimonet, B., "Identification of Extended Models from BQ 105 Flight
Test Data for Hover Flight Condition", 21st European Rotorcraft Forum, St
Petersburg, Russia, Aug. 30-Sept. 1, 1995, paper no. VII-7

Kaza, K.R.V., Hammond, C.E., "An Investigation of Flap-Lag Stability of Wind
Turbine Rotors in the Presence of Velocitv Gradients and Helicopter Rotors in
Forward Flight", AIAA/JASME/SAE 17th Structures, Structural Dynamics. and
Materials Conference, Pennsylvania, May 5-7, 1976, pp. 421-431 or AIAA CP-
76-02, pp.421-431

Kaza, K.R.V., Kvaternik, R.G., "Examination of the Flap-Lag Stability of Rigid
Articulated Rotor Blades", J. of Aircraft. Vol.16, No.I12. December 1979, pp.
876-884

Kawamato, T., Sakakibara, T., "Dynamic Responses of an Upside Y awing Wind
Turbine to Wind Direction Changes", European Community Wind Energy
Conference, June, 6-10, 1988, Denmark. pp. 314-319

Kolwey, H.G., The new ADS-33 Process: Caution for Implementation Technical
Note", J. of the American Helicopter Society, Vol. 41, No. 1, Jan. 1996,
Technical Note, pp.3-6

Kothmann, B.D., "Understanding the Effects of Blade Flexibilitv on Helicopter
Control Response”, 52nd American Helicopter Society Annual Forum,
Washington, DC, June 1996

Kuczynski, W.A., etal., "The Influence of Engine/Fuel Control Design on
Helicopter Dynamics and Handling Quadlities”, J. of the American Helicopter
Society, Vol.25, No.2, Apr. 1980, pp.26-34

Kuik, G.A.M. van, Dekker, J.W.M.. "The Development of Advanced Rotor
Svstems- A survev of the Flexhat program, Including Full Scale Results”,
European Community Wind Energy Conference, 10-14 September, 1990

Loewy. R.G.. "Review of Rotarv-Wing V/STOL Dynamic and Aeroelastic
Problems"”, Journal of the American Helicopter Society, Vol. 14, No 3, July,
1969, pp. 3-23

Leconte, P.. Széchényi, E.. "Aeroelastic Tailoring of Blades: Prospects for
Reducing Unsteady Loads and Enhancing Performance”, Proceedings of the
European Wind Energy Conference EWEC '91, Amsterdam, The Netherlands,
Oct. 14-18, 1991

Lindenburg, C., Snel. H., "Parameterstudie naar het Gedrag van een Rotor met
Pendelnaaf met behulp van Phatas-II". 5th Dutch National Wind Energy



192

Bibliography

66

67

68

69

70

71

72

73

74

75

76

77

78

Conference, 1990, in Dutch

Lobitz, D.W., Veers, P.S., "Aeroelastic Behaviour of Twist-Coupled HAWT
Blades", AIAA-98-0029

Malcolm, D.J., Wright, A.D., "The Use of ADAMS to Model the AWT-26
Prototype”, SED-Vol.15, Wind Energy -1994, ASME 1994

Marinescu, A., Anghel, V., "Aerodinamica si Dinamica Elicopterului”, Academy
Press, 1992, in Romanian

McKillip, R.M., Jr.,, and Curtiss, H.C. Jr., "Approximations for Inclusion of
Rotor Lag Dynamics in Helicopter Dynamic Models", 17th European Rotorcraft
Forum, Berlin, Germany, September 1991

Miller, RH., "A Method for Improving the Inherent Stability and Control
Characteristics of Helicopters”, J. of Aeronautical Sciences, June 1950, pp. 363-
374

Miller, R.H. et. al., "Methods for Design Analysis of Horizontal Axis Wind
Turbine”, ASRL-TR-184-7 to ASRL-TR-184-16, volume 1 to 10 , MIT, Sept.
1978

Milne, R.D., "The Analysis of Weakly Coupled Dynamical Systems",
International J. of Control, Vol.2, No.2, 1965, pp.171- 199

Miyajima, K, "Analytical Design of a High Performance Stability and Control
Augmentation System for a Hingeless Rotor Helicopter', J. of American
Helicopter Society, Vol. 24, No. 4 , 1979, pp. 29-36

Morduchow, M., Hinchey, F.G., "Theoretical Analysis of Oscillations in
Hovering of Helicopter Blades with Inclined and Offset Flapping and Lagging
Hinge Axes", NACA TN-2226, Dec. 1950

Ormiston, R.A., "Investigations of Hingeless Rotor Stability”, Vertica, Vol. 7,
No.2, pp. 143-181, 1983, pp. 143-181

Ormiston, R.A., Warmbrodt, W.G., Hodges, D.H., Peters, D.A., "Rotorcraft
Aeroelastic Stability”, NASA CP-2495, Proceedings of NASA/Army Technology
Conference, March, 1987

Ormiston, Robert A., "Rotor Dynamic Considerations for Large Wind Power
Generator Systems”, Wind Energy Conversion Systems Workshop Proceedings,
National Science Foundation, NSF/RA/W-73-006, Dec 1973

Ormiston, R.A., Hodges D.H., "Linear Flap-Lag Dynamics of Hingeless
Helicopter Rotor Blades in Hover', J. of the American Helicopter Society, 17(2),
April 1972, pp.2-14



Bibliography 193

79

80

81

84

85

86

87

88

89

90

91

92

Ormiston, R.A., "Aeromechanical Stability of Soft-Inplane Hingeless Rotor
Helicopters”, 3rd European Rotorcraft Forum, Sept. 7-9, 1977, Aix-En-Provence,
France, Paper No. 25

Padfield, G.D., "On the Use of Approximative Models in Helicopter Flight
Mechanics", 6th European Rotorcraft and Powered Aircraft Forum, Bristol,
England, Sept. 16-19, 1980, paper no. 57

Padfield, G.D., "Helicopter Flight Dynamics -The Theory and Application of
Flving Qualities and Simulation Modeling”, Blackwell Science LTD, 1996

Pass, H.B., Pearce, B.F., and Wolkovitch J.. "Topics On Flexible Airplane
Dyvnamics”, Part 11I: Coupling of the Rigid and Elastic Degrees of Freedom of
an Airframe, ASD-TDR-63-334, July 1963

Pavel, M.D., Schoones, M.M.J.,, Winkelaar, D. "Literature Survey on
Aeromechanical Instabilities for Helicopters and Wind Turbines", Mem. M-877,
TU Delft, July 1999

Pavel, M.D., "Six Degrees of Freedom Linear Model for Helicopter Trim and
Stability Calculations", Mem. M-756, TU Delft, Dec. 1996

Pavel, M.D., "Prediction of the Necessary Flapping Dynamics for Helicopter
Flight Simulation", Mem. M-757, TU Delft, Dec. 1996

Pavel, M.D. and Holten, van. Th., "On the Prediction of the Necessary Rotor
Dynamics for Helicopter Flight Simulation", 23rd European Rotorcraft Forum,
Dresden, Germany, Sept., 16-18, 1997, paper no. 39

Pavel, M.D., "Effects of Rotor Disc-Tilt on Helicopter Piloted Simulation", 24th
European Rotorcraft Forum, Marseilles, France, Sept. 15-17, 1998, paper no.
FM.03

Pavel, M.D. and Holten, van Th., "An Rotor-Tower Instability Associated with
the Advancing Lead-Lag Mode", ATAA-2000-0068, Reno, 2000

Perkins, F.W., Johnes, R., "The Effect of 8, on a Yawing HAWT Blade and on
Yaw Dynamics”, NASA CP-2185, 1981

Peters, D.A., "Flap-Lag Stability of Helicopter Rotor Blades in Forward Flight",
J.of the American Helicopter Society, Vol.l, No.3, Oct. 1975, pp.2-13

Quarton, D.C., et. al. "Wind Turbine Design Calculations. The State of the Art",
Proceedings of the European Wind Energy Conference EWEC '91, Amsterdam,
The Netherlands, Oct. 14-18, 1991

Reichert, G. and Huber, H., "Influence of Elastic Coupling Effects on the
Handling Quadlities of a Hingeless Rotor Helicopter’, 39th AGARD Flight



194

Bibliography

93

94

95

96

97

98

99

100

101

102

103

104

Mechanics Panel Meeting, Hampton, Va., Sept. 1971, AGARD-CP-121

Shapiro, J., "Principles of Helicopter Engineering”, Published by Loxley Brothers
Limited, Letchworth, 1955

Sharpe, D.L., "An Experimental Investigation of the Flap-Lag-Torsion
Aeroelastic Stability of a Small-Scale Hingeless Rotor in Hover', NASA TP-
2546, 1986

Sissingh, G.J., "Dynamics of Rotors Operating at High Advance Ratios", J. of
the American Helicopter Society, Vol 13, No.3, July 1968, pp.56-63

Sopher, R., Cassarino, S.J., "Effects of Analytical Modeling A ssumptions on the
Predicted Stability of a Model Hingeless Rotor”, J. of the American Helicopter
Society, Vol. 33, No.4, Oct.1988, pp. 15-27

Smith, C.E., etal., "A Rigid Body Model for Analysis of Aerogenerator Rotor
Dynamics", 31st Annual National Forum of the American Helicopter Society,
May, 1975, preprint 991

Steinhardt, E., "Dynamic and Aeroelastic Characteristics of a Complete Wind
Turbine Systems", Tth European Rotorcraft Forum, Paper No. 10, Sept. 1981,
Garmisch-Partenkirchen/Germany

Sullivan, T.L., "A review of Resonance Response in Large, Horizontal-Axis
Wind Turbines", NASA CP-2185, 1981

Vegte, J. van de, "Feedback Control Systems", Published by Prentice-Hall, Inc.,
1994

Wright, A.D., Kelley, N.D., Osgood, R.M., "Vadlidation of A Model for a Two-
Bladed Flexible Rotor System:Progress to Date", AIAA-99-0060

Wright, G.P., Lappos, N., Sikorsky 76 Handling Quadlities Design and
Development”, 35th Annual National Forum of the American Helicopter Society,

‘May, 1979

Yeager, W. T. Jr., Hamouda, M.H., Mantay, W.R., "A eromechanical Stability of
a Hingeless Rotor in Hover and Forward Flight: analysis and Wind Tunnel
Tests", NASA TM-85683, 1983

Young, ML, "A Simplified Theory of Hingeless Rotors with Application to
Tandem Helicopters”, 8th American Helicopter Society Annual Forum, May
1962, Washington D.C.



Appendix A

Correlation between the Complex Plane
and the Time-Domain Response

(15) {14} (18) {12) (Hyf

i o (1

Figure A.1 Correlation between the natural response and complex plane (Cannon
[196717)
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Figure A.1 (Cannon [1967]") presents the correlation between the s-plane picture of
eigenvalues and the corresponding time-response pictures:

- if the eigenvalues are on the real axis, the response of the system is always pure
exponential; the farther from the origin in the left half-plane, the faster the
response decreases (see (1), (2), (3). (4)); in the right half-plane the motion is
unstable (see (5));

- if the eigenvalues are on the imaginary axis, the response of the system is
always an undamped oscillation; the farther up and down from the origin, the
higher the frequency (see (1), (6)=(6), (7)=(7), (12));

- the eigenvalues on a constant frequency line are damped oscillations (in the left
half-plane) and unstable oscillations (in the right half-plane); the farther from the
origin in the left half-plane, the quicker they decay time (see (15), (14), (13));
the farther from the origin in the right half-plane, the quicker they grow in time
(see 11));

- the eigenvalues on a constant damping have a constant decay time, but variable
frequency.

- the eigenvalues on a constant { line have the number of cycles to damp
constant; the farther from the origin, the faster the whole response (see (8), (14)).
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Helicopter and Horizontal-Axis Wind
Turbine Blade Flapping Dynamics

Using the assumptions introduced in section 2.6.1, Chapter 2, the present appendix
derives the equations of motion of a flapping blade for both helicopter and wind turbine
configurations. Consider the blade initially in equilibrium and perturb the blade with a
flapping angle B. The dominant forces acting on a blade element dm, at a radius r from
the tlapping hinge in the tlapping plane arc the aerodynamic forces and the centrifugal
forces (see Figure B.1). The following section determines the moments of each force
acting on the blade with respect to the flapping hinge.

chl"
dL '
-
dG B
shaft \dL MB
: Flapping
axis - hinge
dF €
B of shaft g
axis
e My
Flapping hinge
Helicopter Flapping plane Wind Turbine Flapping plane

Figure B.1 Forces on the blade in the flapping motion for a helicopter and a wind
turbine

Aerodynamic Flapping Moment

The aerodynamic moment of the flapping blade element is a direct function of the
components of the blade velocity. The initial components of the blade velocity in the
rotating system for respectively helicopters and wind turbines, before the blade has been
perturbed, are presented in Figure B.2 and Figure B.3.
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* A ‘ QRp Helicopter Initial Motion
y=180°
Qlipsinw QRicosy

=270 =900 Vo
M =" QRucosy E
Yr e —

dm

Figure B.2 Initial velocity components on the helicopter blade

Zrpy=180° Wind Turbine Initial Motion

y=0°
Figure B.3 Initially velocity components on the wind turbine blade

For a helicopter, the initial components (before the blade was perturbed) of the blade
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velocity are (see Figure B.2):
- 1 direction (radial to the blade)

U,. . =Vcoso-cosy =QRp-cosy (B.1)

R init
- j direction (tangential to the shaft plane)

‘ U

| T init

=Qr+Vcososiny =Qr+QRyu-siny (B.2)

‘ - (-k) direction (perpendicular to the shaft plane)

=V,-v, =QR(V,-1 ] =QR2 (B.3)

‘ UP init

For a wind turbine, the initial components of the blade velocity are (see Figure B.3):

- i direction (radial to the blade):

Ui = -U,siny = -QRT, siny B4

Rinit

- (-k) direction (tangential to the shaft plane):

U, ., =Qr+U cosy = Qr+QRU, cosy (B.5)

T init

- (-j) direction (perpendicular to the shaft plane):

Up e =Vo—V, =QR(V,-2) =QRA (B.6)

P init

The initial blade angle of attack can be written as:

~ 0 + Us i (B.7)

acf inie ep + ¢inil p

T init

Consider next the blade being perturbed with a flapping angle B (B>0 for blade up).
The perturbation will be felt by the blade as a change in the components Uy radial to
the blade and U, perpendicular to the shaft plane as illustrated in Figure B.4 and
Figure B.5 for respectively the helicopter and the wind turbine.
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Helicopter Perturbed Motion
Vo in the Flapping Direction

Zy
Figure B.4 Perturbed velocity components on the helicopter blade

Wind Turbine Perturbed Motion
in the Flapping Direction

UPinil

Figure B.5 Perturbed velocity components on the wind turbine blade

Assuming small flapping angles, the perturbed velocity components may be expressed
in case of a helicopter as (see Figure B.4):

U, =QRp-cosycosp +V sin ~ QRu-cosy +V, B (B.8)
U, =V,cosf -v, -rp -QRpcosy sinp = (B.9)
= U, -rp -Q Rpcosy B =U, . +AU Iy +AU

where AU, = -rp and AU, =- QRp cosy B.

In the case of a wind turbine, the perturbed velocity components are (see Figure B.5):
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U, = -QRU,_sinycosp +V sinp = -QRU siny +V B (B.10)

R =

U, =QRU, sinysinp +V cosp -v,-1f = QRU sinyp +V v - = (B.11)
= U, *AUl + AU,

P it

where AU, = -rp and AU, :QRU“sin\vB. The change in the U, component is
felt as a change in the blade angle of attack o, which can be expressed for both
configurations as:

AU,,I‘-S AUl
o, =0+6=0+— =0  +-—"+ =0
¢ P " U <t mat U U ot ol

1 1 1

+Aa|l.\ +Aa|ﬂ (B.12)

Thus, the angle of attack of a flapping blade changes due to the flapping velocity p
and due to the displacement of the blade (resulting from the change of the initial radial
velocity) and can be expressed as:

- in the helicopter case:

p ]

Aol =_rU_B . pal = -S2RuPcosy (B.13)
A

- in the wind turbine case:

Ao, = -TB ; Aal :QRUOsin\in (B.14)

T T

The change in angle of attack gives rise to a change of the lift of the blade element
which is:

-for the helicopter:

_P 2 __P -
adily =Pe,C, Ut {aal, Jar = -2ec uprh (B.15)

AdLI, :gcc C Ui (Aall})drz—%ce C,U,-QRupBcosy (B.16)
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- for the wind turbine:

AdLI, = %%Qﬂ Ui (Aol )dr = —gccC,uUTrB (B.17)

AdLI = %cc Cy U3 { Aal, Jdr = % c,C*U, - QRU,B siny (B.18)

where the aerodynamic forces are derived using the classical blade-element theory
approach (i.e. by isolating the blade element dm at radius r and assuming Up<<U; and
using linear aerodynamics).

Concerning the elementary drag force, perturbing the blade in the flapping direction
will not change the drag component of the aerodynamic force in a first order
approximation:

dD =Pc C vVidr= Pc C Uidr (B.19)
2 ¢ d 2 e —d T

The lift on the flapping blade element therefore consists of components dependent as
well as independent on the flapping angle. The independent components may be
considered external excitations for the flapping blade:

+Aaly +Aol, Jdr = dL, +AdLl;+AdL},  (B.20)

ef init

aL = 8cC o =8, U3 o

Finally, the aerodynamic flapping moment of the entire blade about the flapping hinge
may be calculated as an integral of the elementary aerodynamic forces acting on the
blade element dm (the integration starting from the hinge):

R(1-g,) R(1-¢,)

= f rdF, = j rdL (B.21)

] 0

M

aero

where dF, is the resultant of the lift and drag force perpendicular to the blade and dF,
the resultant tangential to the blade (Figure B.6):
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dF, =dL cos¢ +dD sin¢g = dL.+¢ dD = dL

(B.22)
dF, =dLsing -dD cos¢ = ¢ dL -dD

Substituting (B.20) into (B.21), the aerodynamic flapping moment can be divided into
three components:

- one component that may be interpreted as an aerodynamic excitation:
Rl -g)) Rt -e, Rl -e )
- - - P. 2 B.23
Mu excit J‘ dF/ v\rilr - f chxcit r= E ('c C]" f ( epUT +UP init UT rdr ( )

0 O 0

- two components resulting from the change in lift induced by the flapping motion,
which are:

- in case of the helicopter:

|
R(I—rB) R(l—eu) e
l AMJy = [ AdElr~ [ AdLigr - —pC,accR*(l—Eﬁ)"[%——;—’féusiﬂ\v}gﬁ (B.24)
0 0
! R(1 ’Eﬁ) R(1 -€,)
AM|, = f AdF ], r= f AdLlr = -pC ¢ R¥(1 —ea)z[lpcosw—
0 0 ‘ 6 (B.25)
5 pcosy + ! pzsin2\|l}QJB
‘ 6 8
- in case of the wind turbine:
Ril-e ) R(l-sp) [ e 1
o - o sce [ 8,15 o log  (B.26)
AMJ, '[ AdF ;T I AdL;x = ~pC, ¢, R*(1-¢,) [8 2+ Upsiny [0

R(l—su) R(l-sp)
[ 1= .
AMl; = [ AdF | 1 = f AdLlr = —pClu ¢, RY(1 —‘C:B)*[—E’U0 sinys +

0 [¢]

EB = . -2 . 2
+€U0 sm\p—gU0 sin2y | Q° B

(B.27)

Summarizing, an upward flapping perturbation f, will be experienced by the

aerodynamic moment as a damping-term (B.24) induced by the flapping velocity f,
and a spring-term (B.25) induced by the flapping displacement, with both components
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counteracting the motion.

Figure B.6 Elementary éerodynamic forces dF. and dF, on the blade element

Centrifugal Moment

The centrifugal force acting on the blade element dm at radius r may be expressed both
for helicopter and wind turbine configurations as:

dF, = Q*(rcosP +eg)dm = Qz(r+e )dm (B.28)

B

Comparing (B.15) and (B.16) (respectively (B.17) and (B.18)) to (B.28), one may
observe that while the aerodynamic excitation tends to move the blade away from the
shaft plane, the centrifugal force has an opposite tendency, driving the blade back to the
shaft plane. The moment due to the centrifugal force on the whole blade may be
determined by integrating along the blade:

R-e,

M, =- '[ dF_-rsinf =- Q*(I;+e;0,) sinf ~ - Q*(I, +e, 0, ) B (B.29)
0

The following definitions are introduced in (B.29):
R(l-eﬂ)
- the blade static moment around the flapping hinge o, = f rdmwhich for a
Y
uniform blade mass becomes:

R(I—E”) s
oy = | r(ibdr) =Mbl;(1—e‘3 J =M (e =MTR(1-¢) ~ MR (830
0

- the blade moment of inertia around the flapping hinge (sometimes ambiguously called
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R -

polar moment of inertia)l; = f rdm which for a uniform blade mass becomes:
0

Rl -£))
"M R? 2 2
L, = rz(—"dr) =M, - (1-g)" =M, TRr,(1-¢)" = M7, R (1-¢;)
I R 3 30 3000 (B.31)

3

[VSHN =1
o]

M, T,

Concluding, the centrifugal moment for both helicopters and wind turbines is a spring-
term, which tends to decrcase the flapping angle.

Restraint Moment

For helicopter and wind turbine hingeless rotors, using the rigid-blade concept (defined
in section 2.6 in Chapter 2), the bending of the elastic blade in the flapping direction
may substituted by the flapping of a rigid blade around a flapping hinge with a hinge
offset and a hinge spring of constant K. The restraint moment acting on the flapping
hinge is then:

M, =- K, B (B.32)

Inertial Moment

The moment due to blade inertia may be expressed for both helicopters and wind
turbines as:
R -¢

23 R -,

M =- J dF, 1 = - [ rfdm-r =-L B (B.33)

i
0 [

Gravity Moment
In case of the helicopter, the gravity force can be neglected. For the horizontal axis

wind turbine however, the gravity force cannot be neglected. The component of this
force on the blade element in the flapping plane is:

dG =gcosy dm (B.34)
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and its moment on the flapping hinge is:

R(1 —EB)

M, =- J' dG rsinf =-go, cosy sinf} = -gcﬁﬁcosw (B.35)
0

Helicopter Flapping Equation of Motion

Combining (B.23), (B.24), (B.25), (B.29), (B.32), (B.33) and (B.35) and assuming an
uniform mass for the blade I, = I, the dynamic motion of a flapping blade can be
written as:

M, ~PC,c.R'(1-¢,) [é - *%psin\]l]ﬂ B -pC e R (1€, x

. ; (B.36)
_E e 2 2 _1 @
x[gpcosw gpcosw +§sm2\y]ﬂ B‘(Ip +eﬂcﬂ)Q B-K,B =L,B

Further, the following definitions are introduced: Lock number defined as
Y = (p C ceR‘)/ I,,; blade flapping non-rotating natural frequency (dimensional as well

as non-dimensional) o, =\/Ka“p s &B = mﬂ/Q; non-dimensional offset term
€% _3
1

€y

~£ tin

B

3
A =J 1+d; 3 5 Dividing equation (B.36) by the moment of inertia I,

2(1-¢,)
B
rearranging the terms, and using the above definitions, the blade flapping equation of

motion is obtained as:

e .
B +Y(1 -k +.é u sin\|!)(1 -€,)° QB +[V; Y (1 & )zx
s (B.37)

aexcit

I

x (lpcosw —E_Bp cosy +"l_2 sin2w”QZB =
6 6 8

bl

Usually, a change of variable to the azimuth angle is made B =Q (_;E = Q B'resulting
v

in an equivalent form of the flapping equation (B.37):
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B//'PY(% —_8E+ u sin\y)(l —EB)Bﬁ/ +[V|:3 Y (1 g, )2X
(B.38)

m0\|v—-

Mu exeit
o -

1
x{ — Hcosy - COS\y + sm2
(6 H 34 3 H 14 v

Horizontal Axis Wind Turbine Flapping Equation
Combining the moments as expressed in (B.23), (B.26), (B.27), (B.29). (B.32), (B.33)

and (B.35) and assuming a uniform mass for the blade I; = I,,, the flapping equation
of motion for the wind turbine is obtained as:

_ 1l e V3 p
pCl"ccR (1 e.B) [ 2 +5U siny

Qp -pC, cR*(l -g,)’ 6U siny +

acxent

(B.39)
8 - =2
+FBU0simy—éU;sin2\v S233-93< +e,C )[3 -go, B cosy - K, B =1,
. . . _go, gm TR .
A gravity term is defined as G = =__" % Dividing equation (B.39) by the

bl Ibl
blade moment of inertia I,, and using the definition of the Lock number vy, the
non-rotating natural flapping frequency @;, the rotating natural flapping frequency v
and the non-dimensional gravity term G as above, after some algebraic manipulation
the flapping equation of motion for a wind turbine becomes:

1 & 1

B+y [g —gﬁ e U, siny | (1 -¢,)’ QP +|vy +Geosy +y (1 -g,) x
M (B.40)
1= aexci
— U, siny + l3U sin ——U sin2 ]Qz = o
(= Dusiny + 5 Uysiny - g Ursindy ) jop. - =
or expressed as a derivative relative to the azimuth angle:
1 813 ] /ol 2 )
B +y U, siny |(1 -¢ B) B+ B+Gc05\|1+y(l—x~:ﬁ)'><
8 8 6 (B.41)

rl M‘ICX"I
YU, 1n2\|1)][5 ==

‘—U sin +—U siny -
( 6 v 6 v L,

1
8






Appendix C

Helicopter and Horizontal-Axis Wind
Turbine Blade Lead-Lag Dynamics

Using the assumptions introduced in section 2.6.2, Chapter 2, the present appendix
derives the equation of motion of a lead-lagging blade for both helicopter and wind
turbine configurations. It is assumed that the blade is initially in equilibrium, and
subsequently perturbed with a lagging angle { at time t = 0. The dominant forces
acting on a blade element dm, at a radius r from the lagging hinge are the aerodynamic
forces and the centrifugal forces (see Figure C.1).

dL

shaft

Lagging
4" hings

e,
shaft >
axis

Lagging hinge
Helicopter Lagging plane Wind Turbine Lagging plane

Figure C.1 Forces on the lagging blade for a helicopter and a wind turbine

Aerodynamic Moment

For_a_belicopter, the initial components of the velocity are given by (B.1), (B.2), and
(B.3) in Appendix B. For a wind turbine, the initial components of the velocity are
expressed in (B.4), (B.5) and (B.6). Consider the blade perturbed in the lagging plane
with a lagging angle { ({>0 blade back). The blade will feel the perturbation as a
change of velocity in the components U, radial and U; perpendicular to the shaft plane
as illustrated in Figure C.2 for the helicopter and in Figure C.3 for the wind turbine.
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Helicopter Perturbed Motion

Xg A i QRp in the Lagging Direction

Figure C.2 Velocities on the helicopter blade perturbed in the lagging direction

Wind Turbine Perturbed Motion
in the Lagging Direction

Figure C.3 Velocities on the wind turbine blade perturbed in the lagging direction

For the helicopter, these components can be expressed as (see Figure C.2):
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U, =QRpsinysing +QRucosycosl, ~ QRp(cosy +L siny ) (C.1)

U, =Qr+QRp siny cos{ -1 -QRpcosy sinf ~ (Qr+QRpsiny )~

; (C.2)
-8 ~QRpcosy § = U, +AUL +AUL
where AUTIé = -r{ and AUTlg =-QRyucosy(l.
For the wind turbine, the change in the velocity components is (see Figure C.3):
Uy =-U,cosy sin{ - U, siny cos§ = - QR U, ({ cosy +siny ) (C.3)
U, =Qr-r{ +U, cos:\v cos - U siny sin{ = (C.4)
= Qr+U cosy -r{- U Csiny =U +AUl, +AU L
where AU,l; =- ) (- AUl =- U, Csiny.
The change in the tangential velocity U; will cause a change in the inflow angle:
u.. . .
q) - UP . T init - q) UTuul (CS)
UTinil +AI'IT UTinil " UTinit +AU']’
On the other hand ¢ =¢, . +A ¢, whence it follows that:
AU
Ad =-¢ T (C.6)
UTinil +AUT

The initial angle of attack is:
Ao =0 +0pn €7
and after the initial lagging perturbation:
acf = 6[) +¢ = 60 +q>init * A¢ aefinil +A¢ (CS)

It follows that the change in angle of attack after the initial lagging perturbation can be
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written as:

AU,
Aa =AY =@, —0 - (C.9)
U, AU

T init

and therefore, the change in the angle of attack is due to the change in the tangential
component of the velocity. The initial lift and drag forces on the blade element are:

dL. . =

mt

¢, C, Uiy 01, dr —%c C, (6, U +U, Uy, Jar (C.10)

¢ init

NI

T init

dD =Z~¢,C, Vi
2

init

dr = %cc C, Us  dr (C.11)

and after the blade is perturbed in the lagging direction, the lift and drag forces are:

AdL =8¢ C Uladr =8¢ C (6,U7+U,U, )r -
2 2 (C.12)

init init + ep A UT + UP] dr

-L +g c.C, AU, [26,U,

AdD =~ %ce C, (U, *AU,J dr (C.13)

where the classical blade-element approach was used in order to express the
aerodynamic forces on the blade.

The aerodynamic lagging moment on the whole blade can now be calculated. Referring
to Figure B.6 of Appendix B, the general expression for the lagging moment -after
integrating along the blade (starting from the lagging hinge)- is:

R(l*e;) R[l-t[) R(l*t:;)
M, = [ rdf = [ r(edL-dD) =%ccc1" [ r(8,U,U;+U; )dr -
! R(1 -2 (; ‘ (C.14)
C ; ]
_ g ¢, Cl" ETd f rUsdr

0

The initial aerodynamic lagging moment is then:
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Ryl -t ) R¢1 1;)
o _P Ul _P d 2 "
Cacroinit 5 Cc Cl" J< (6 U UTlnn 4 )dr E Cc CI ‘ J‘ rU 1 mudr (C 15)
0 I, 0
and after the blade was perturbed in the lagging direction:
Rl -e,)
: HeTO = % Cg Cl“ _I r(ep UF’ ( UTmu + AUT) * U; ) dr B
“Ru -t (C.16)
p d AP TR g
- 3 € CI” C’f f r ( UTinil +AU T ) dr =M= +AM",

oo

Looking at (C.16), the elementary aerodynamic moment may be divided in two
components: one independent of the lagging, which will be considered as an external
excitation M%_,. and an other representing the change in the aerodynamic lagging
moment denoted AMS ;

R(I—e) R(l‘l )
C C,
M =Pec | r(0,U, U U )dr-Pec 2 [ r U dr (C.17)
exci 9 ek ) ini 5 Cl J
Rl-e) C R(1-r)
AME = % c, CI“ j r6 U, AU, dr—%cc Clu C—d [ r(2UTinil AUT+AUi)dr (C.18)

0 | T

The first component in (C.18) results from the change in the lift force and the second
from the change in the damping force. Neglecting AU;? in the expression of AM®,,
after some rewriting, one obtains for the helicopter:

R(1-¢.) 3
: l-¢e.) .
aM|. =2¢ ¢ 10 U AU L dr = -pC, c.R*® x(__s)gc (C.19)
a g 2 1, e p P g 1, e p 6
[}
R(I'E;) (l P )2
AM,), :gCI“ c, f r6,U, AUl dr =-pc,C, R'6 A 1 £ pcosy Q¢ (C.20)
(V]
C R(1-¢,)
amJ, =-Pcc @ [ 2ru,, AU dr
sy 2 e e J init T
Lo (C.21)

C
=GR e (% . “‘;“"’)szg
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R(1 -e)

C C
am), =-2cc =t [ 2rU,, AUl dr =pc,C R* (1€, )
2° G g B CY (C.22)

-€
S u cosy +‘_11 u? sin2y ] Q¢

Summarizing, the change in the aerodynamic moment due to a lagging perturbation is
induced by:

- the lagging velocity { leading to a positive damping-term resulting from the
change in the lift force (C.19) and a negative damping-term resulting from the
change in the drag force (C.21);

- the lagging displacement { leading to a positive spring-term resulting from the
change in lift (C.20) and a negative spring-term resulting from the change in
drag (C.22).

For the wind turbine, the change in the aerodynamic moment about the lagging hinge
due to the lagging motion is, according to (C.18):

R(l*s;)

3
~€
AMJ, =2Cyc. [ 16,U AU dr =-pC, c R0, 3 - J ot (C.23)

0
R(1-¢)

2
AM || =%C c, J r0 U,AUl dr =-pC, c R*6, 7\.( n )U siny @2 (C:24)

R{!l-¢.)
c, C
aMy, =-8¢c ¢ 2rU, AUl dr =pc CIR* 4 (1-¢,)*
o2, ! e c - (€.25)
‘ ( l—e; . Uocosw)gc
4 3
C R(l-¢.) C
am), =-Bec =0 [ 2rU,, AU dr =-pc,C R ! (1-¢,x
2 ¢ ) - C, (C.26)
1 —8§ = . 1= 2
x [ 3 U, siny + 7 OsnnZ\y]Q ¢

Again, as in the helicopter case, the lagging motion is sensed by the wind turbine blade
as having two components: one of a damping nature and the other of a spring nature,

resulting from the changes in lift and drag due to the lagging velocity { and
displacement .
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Centrifugal Moment

The centrifugal force acting on the blade element can be expressed for both the
helicopter and the wind turbine as:

dF

cof

=Q? (ez; +1)dm (C.27)

The centrifugal component that produces a moment about the lagging hinge can be
expressed as:

/

dF, = Q7 (r re, )sind dm (C.28)

N}

where & is the angle between the blade and the centrifugal moment arm (see
Figure C.4).

Ce,Ac

&

Figure C.4 Definition of 6 angle
In AABC, using the sine theory, it follows that:

sind _ siny _ sin({-3)

(C.29)
e, r r
S
From (C.29), using small angle approximations, the angle & can be determined:
e .
sind = _° sin{ (C.30)

+
I'CC

Assuming also a blade of uniform mass, the moment due to the centrifugal force on the
whole blade may now be calculated by integrating along the blade:

R-e, R-c;
M, =- f dFl, -t =- [ Qe sin{dm r =- Q¢ o, sin§ = - Q¢ o, (C.3D)

0 ]

The centrifugal moment attempts to drive the blade back to the initial condition, acting
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as a spring-term.
Restraint Moment

The restraint moment on the lagging hinge for both the helicopter and the wind turbine
is:

M, =-K,§ (C.32)

Inertia Moment
The moment due to the blade inertia is for both the helicopter and the wind turbine:

R -e. R -c,

M =- J dF,-r =- J.‘rtdm-r=—I<C (C.33)

0 0

Gravity Moment

As explained in Appendix B, for a wind turbine the gravity force on the blade element
cannot be neglected. The component of this force in the lagging plane is:

dG =gsin(y-{)dm (C.34)

so that its moment around the lagging hinge becomes:

R(1-¢,)

M, = J' dG-r =go, sin(y -§) = goc(sin\y - cosw) (C.35)
0

In the lagging plane, the influence of the gravity is equivalent to a restraint-moment as
well as an external excitation for the lagging motion.

Helicopter Lagging Equation of Motion

Combining (C.17), (C.19), (C.20), (C.21), (C.22), (C.31), (C.32), and (C.33) and
assuming a uniform blade mass I, = I, the lagging dynamics of a helicopter rotor




Appendix C 217

blade can be obtained as:

(1-¢,) . C 1 -¢. i ,
_ 4 4 4 Td et _a g3 ; , psiny _
acaet pCl“CcR ep)\’ —T Qg +pCcC]“R CT(I EE) (T * -3—)9 S
1 -¢g.) , C Jl-e.
-pC, cCR49pl( ———peosy Q' +pc C R C"(l €, )‘[ 2 = cosy + (C.36)

1

+L_11plsin2\|l} Q’-Q'eo0,(-K L = L&

Dividing (C.36) by the moment of inertia 1, using the Lock number definition and
defining the blade non-rotating lead-lag natural frequency . (dimensional and non-

dimensional) aso, = | —= O, = and the blade rotating lead-lag natural

frequency (non-dimensional) v, the lagging equation of motion

(C.36) becomes:

C+y - (1-g)’

1, =

6 A
p

(I-g)* C ( 1-¢ L Hsiny
4

Qf;+{v§ +y [GPXx

] ta_, _ Muexcit
|

bl

(C.37)
y (1 —e,;)“ 1 €,

3

U cosy +% p? sin2y

pcosw—&(l—e ) (
C, ¢

Usually, a transformation of variable to the azimuth angle is made ¢t =Q S_C resulting
v

in an equivalent form of the lead-lag equation (C.37):

(l —8,)} C l -£€. Sin
"y |0 A - 31 -¢ “( : MY
Ly |6, < (-2 — 3

WO

‘Iu

(C.38)

(1-¢.)

c 1-¢

C . 1
cosy ——2(1-¢ 2( Sy cosy +— p?sin2 )] =
M cosy C( 0 3 cosy +opsin2y 4

1
«

a excit

I

X

bl

Wind Turbine Lagging Equation of Motion

Adding all the moments acting on the lagging hinge as given by (C.17), (C.23), (C.24),
(C.25), (C.26), (C.31), (C.32), (C.33) and (C.35) the lead-lag equation of motion is
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obtained:

1-g, +U(,cosw
4 3

ey C
M I-pclnccwepx%Qppccclnwc_“(l—sgr(

]0
_ C 1-¢g, _
U, siny Q% - pc, C, R* Ed (1 —8;)2[75 U, siny +

'n

Rele

(C.39)

4 (1-¢)
-pC, c R0 A 2
1 -2 . 2 2 - ¥
+4_1 U,sin2y | Q°L- Qe 6, L +go, (siny -Lcosy)-K § =1, S
Approximating I, and o, by I, and o, respectively, dividing (C.39) by I, and using
the definition of Lock number, non-rotating natural lead-lag frequency «,, non-
dimensional rotating natural lead-lag frequency v, and the definition of the gravity
80, _8 m, T, R
I 1

bl bl
motion is obtained in the blade rotating system:

term G = , the horizontal axis wind turbine lead-lag equation of

1€, C 1-¢, U,cos . 1-¢, )
g +y ep}.( ) -—d(1-£§)3(_._§+ 0 W)}(.§+{V§+Gcosw +y[9pk( o x
6 C, 4 3 (C.40)
L PR O S ey Mo . o
x U siny +_——(1- ac)z( Uosmw+_U0sm2w)] Q¥ = 22 4+ Gsiny
C 3 4 L,
or expressed as a derivative relative to the azimuth angle:
. (1-e)* C, 1-e, Ugcosy 5 (1-¢,f
g"+y 0 - __(l—£§)3( + ) ¢+ ;+Gcosw+y[epk ARSIV
C, 4 3 (C.41)
U : Cd(l )2(1- 8§U : 1 UZ in2 )] C Macxcil Gsi
x U siny + —(1 - ¢ siny += U_ sin2y )¢ = —== + Gsin
o SIN¥ C, STz oSV T T smaY I, v
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Coleman Transformation and Its
Interpretation

D.1 Definition of Coleman Transformation

Usually, the degrees of freedom associated with rotating subsystems can be transformed
into the non-rotating system by means of the "Coleman transformation" (multiblade
coordinate transformation (MCT), Fourier transformation). This transformation was first
used by Coleman [1958]" in order to investigate the ground resonance phenomenon for
a hinged blade helicopter. In multiblade coordinates, the individual flap motion (or
lead-lag motion or any other degree of freedom of the blade, which will be noted as )
is seen as the motion of the rotor disc.

In general, the motion of the rotor blades may be observed either in the blade rotating
system_of reference, as N degrees of freedom representing the motion of each blade
deflected in a certain direction %, or in the hub non-rotating system of reference as N
degrees of freedom representing the multiblade effect of the motion of all blades
deflected in direction y. The degrees of freedom in the non-rotating system are obtained
by means of the Coleman transformation. The Coleman transformation represents a
linear transformation between the non-rotating degrees of freedom (denoted a,, a,,...,a,,
b,.....b,) and the blade rotating degrees of freedom ¥, defined as:

K
Rotating: XD =a, () + (D 2, (D + Y (a (t)cos ny, +b (O)sinny,) <
;N n=|1 N
Non-rotating: a(t) = — Y %, ; X0 = = Z (%,
N i3 N i3 (D.1)
N
a(t) = 2 Y x.(cosny, ; n =1.K
N i3

N
b (1) =§ Y x(sinny, ; n=1.K
k=

where:

W, :\y+(k—l)%E ;k=1.N;N23; K =%, N odd ; K =¥, N even (D.2)

The new degrees of freedom of the rotor in the non-rotating frame as obtained via the
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Coleman transformation consist of the so-called "collective" mode a,, "cyclic" modes a,
.. a,and b, ... b, and, for an even-bladed rotor, the "differential or reactionless" mode
Yo Sections D.2 and D.5 of the present appendix explain the physical meaning of
these new rotor degrees of freedom for the blade flap and lead-lag motions. Observe
that the Coleman transformation is defined for a rotor with a number of blades N>3.
For a two-bladed rotor, the non-rotating degrees of freedom are only the coning a, and
the differential modes y,,. Because of the absence of the cyclic modes, two-bladed
rotor dynamics are fundamentally different from the dynamics of rotors with three or
more blades. Section F.2 of Appendix F presents the Coleman transformation applied to
the lead-lag motion of a two-bladed rotor and Chapter 6 the corresponding dynamics of
the motion of such a rotor in the case a two-bladed wind turbine.

Defining the rotating coordinates as ¥, ={X1 Xy Ay o Xn }T and the corresponding

non-rotating coordinates as X, = {ao a, b, Xyp 2y by }T, the Coleman transformation
(D.1) can be written as:

Rotating: Az = [LR ]{ y 4o } < Non-rotating: Y = [LNR ]{ Xr } (D3)

where Ly is the matrix of coefficients in the non-rotating frame and L is the matrix of
coefficients in the rotating frame. Looking at (D.1), the expression of Ly is:

1

1/N /N 1/N
(2/N)cosy, (2/N)cosy, .. .. (2/N)cosy,
(2/N)siny,  (2/N)siny, .. .. (2/N)siny,,
[Lye ] =0Lg 1 = s s (D.4)
(2/N)cosKy, (2/N)cosKy, ... ... (2/N)cosKy,,
(2/N)sinKy, (2/N)sinKy, ... .. (2/N)sinKy
-(1/N) (1/N) . DN1/N) ]

From (D.4), the expression of L, is obtained as the inverse of matrix Lyg:

LR
writing this equation for each blade (defined by a specific azimuth position), one
obtains the system of equations giving the motion of each blade in the rotating system.
Chapter 2 demonstrated that for a rotor blade, the motion of each blade in y, usually
corresponds to a one degree-of-freedom vibrating system. The best way is to conduct

= inv( L ) Knowing the blade equation of motion in the y, degree of freedom and
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the calculation in the matrix form. For N blades this can be formally written as:

[ M e Vo [ e F o e [ {e ) ={ e} (D.5)

where Mg, C,, K, and F, are respectively the mass matrix, damping matrix, spring
(stiffness) matrix and the vector of external forces. Equation (D.5) is usually brought to
the form:

{ Ar }N +[ M, CR]{ A }/ +[ M, K, H Xe } :{ M, F, } (D.6)

The derivatives x and ¥, can formally be also expressed by deriving (D.5) w.r.t. W as:

{XR}/ :(LR {XNR})/ :[LR]/ e [L] {XNR}/ (D.7)

Substituting (D.7) into (D.6), after multiplying with the inverse matrix L' one obtains:

) +[LNR](2[L‘/‘]+[M:CRLR]) Pl # [Loe] (D.8)
X ([LR]// +[My CLi] + M KRLR]) Poe} =[ L M&J{F}

The formal form of the equations of motion (D.5) in the non-rotating frame is therefore:

{ NR}U +[CNR]{ NR}/ +[KNR] {XNR} = {FNR} (D.9)

with respectively Cyg, Kyg, and Fy, as the damping, spring and external forces matrices
as expressed in the non-rotating system of reference as:

Cop =Ly [2La*M{C Ly ) Ky =L (LU +MRC Ly *MJK, L, )

(D.10)
Fue =[ LM ){Fe}

The present appendix exemplifies how the Coleman transformation can be applied to
the flapping and lagging motion and what the physical interpretation of the new degrees
of freedom obtained in the non-rotating system is.
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D.2 The Flapping Motion in the Non-rotating System

Assuming the y, degree of freedom as the blade flapping B,, the above process of
transforming the equations of motion from the rotating to the non-rotating system may
be applied to a 4-bladed rotor of equation (B.38) (in case of a helicopter blade) or
(B.41) (in case of a wind turbine blade). Assuming a 4-bladed helicopter rotor, the

flapping coordinates are respectively P R={[3l B,B,B 4}| and P, :{ao a b BNH}T in
the rotating and non-rotating system. Assuming that the blade has no hinge offset (e,=
0), the helicopter flapping equations of motion (B.38) were transformed into the non-
rotating shaft system, resulting in the following equations:

[y n 1
Y 0 L 0
8 LET)
0 1 2 -y Hsin2y
" 8 6 /
Bt u Y " Bt
= -2 L Zcos2
e 8 YooY
0 -yMsin2 H cos2 Y
[T YRtV YooY g (D.11)
2 -
v 0 0 —y%sinZw
| vi-1+ E.Z.Sin4 Y, u_z— ﬁcos4 - EcosZ
s BT gV e Tet Y Vgt
' Yo 0 2 pe n P ={FR}
0 -4y -y _cosd v; -1 -y Z_sind -y Zsin2
g 176 116 Y Ve i TYSMY Tvgsmay
e M Y 2
-y _sin2 -Y —cos2 -21sin2 v
| -Y 2 Sin2y Y goos2y £ Sin2y B

For a detailed derivation of this equation one may also consult Pavel [1996]*.

As introduced, the Coleman transformation seems to be more of a purely mathematical
skill that enables the designer to handle both rotating and non-rotating coordinates.
However, it can be demonstrated that the new coordinates of the flap motion in the
non-rotating system correspond to the rotor disc-tilt coordinates.

In the rotor disc-tilt approximation, the flapping motion is expressed by the coning
angle, and the longitudinal and lateral disc-tilt angles. The coning angle shows that all
blades are coning from a reference plane to the rotor disc plane. The longitudinal disc-
tilt angle corresponds to a tilting of the rotor disc in the longitudinal plane whereas the
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lateral disc-tilt angle corresponds to a tilting of the rotor disc in the lateral plane (see
Figure D.1 and Figure D.2).

Conttol 1 ipjse Control Jy, Disc
s 'riﬁ/ axis axis ;,.? axis
~— )
m
iy _
g=90"
a, >0 tilting b, >0 tilting ta @=90°
1 1
backward ) (to the right)
= View from aft
Figure D.1 Longitudinal disc-tilt angle Figure D.2 Lateral disc-tilt angle

By means of the Coleman transformation, the first flapping mode of the rotating blade
of a frequency equal to the rotor rotational speed, splits in four rotor modes (for a 4-
bladed rotor):

- a "coning" mode where all blades are moving simultaneously in the same
direction;

- a "progressive (nutation) tilting" mode corresponding to a high-frequency
wobbling of the rotor disc in the same direction as the rotor rotation (the
frequency is approximative 1-P higher than the isolated blade flapping
frequency);

- a '"regressive (precession) tilting" mode corresponding to a low-frequency
wobbling of the rotor disc in the same or opposite direction of the rotor rotation,
depending on the correlation between the isolated blade flapping frequency w,
and the rotor speed Q: when ©; < Q ((T)B< l/rev), i.e. the rotor is soft flapwise
according to the definition of section 3.3, the disc plane tilts in the same
direction as the rotor direction; when W, > Q (83>l;'rev), i.e the rotor is stiff
flapwise, the disc plane tilts in the opposite direction. In general, articulated
rotors have an isolated flapping frequency smaller than 1/rev, so the wobble is in
the direction of the rotor rotation, but hingeless rotors have a flapping frequency
larger than l/rev, so that the low-frequency mode is truly a regressive one, the
disc plane wobbling opposite to the direction of the rotor rotation.

- a "differential (reactionless) tilting" mode introduced only in an even-bladed
rotor in which blades 1 and 3 move up while blades 2 and 4 move down (highly
damped).
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A five-bladed rotor instead of a differential mode, has a "progressive warping mode”
and a "regressive warping mode" which are reactionless.

D.3 Interpretation of the Non-rotating Flapping Characteristics in
the Complex Plane

Some characteristics of the flapping eigenvalues in the non-rotating frame can be
obtained by analysing the helicopter motion in hover. Equations (D.11) for the case of
hovering flight, neglecting the terms varying with the blade azimuth (this is allowed in
the domain of normal manoeuvres according to Hohenemser and Yin [1974]") become:

a(’)/+%a{,+ao =0 ; ﬁg/z"%ﬂx/wz*BN/z =0

a, | a, v [vg-1 v/8](a,
R NS MR
b, b ) |-y vi-1) b,

According to (D.14), in hovering flight, the coning and differential flapping modes
decouple from the progressing and regressing tilting mode equations. For the rotor disc
plane equations, the corresponding advancing and regressing poles are:

D.
N ) (D.14)

-2 y/8

2 2 2
S =-l+i vz—l +1+2 vz—l =—l+i vz—l +1
NR adv ] B B
16 16 16 16 16 (D.15)

2 > R
L K I L
A\

and the coning and the reactionless mode coincide:

(san )y, ={swe)y =~ ge ‘vﬁ—(.l.%)l (D.16)

Recalling the flapping equation in the rotating system (B.38), particularised it for the
case of hovering flight (u=0), it is equivalent to a damped oscillation of equation

d? dp. R 2
P +1 ﬂ +v* B, =0 with eigenvalues s, = . \ -(l) . It follows that in
dy? 8 dy 16 16

the non-rotating system the advancing mode shifts frequency as compared to the
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rotating frame by a value +1/rev, whereas the regressing mode shifts frequency in the
rotating frame by a value -1/rev, with damping remaining the same as in the rotating
system (see Figure D.3):

S =s. +1 =5, -1 (D.17)

NR adv R N SNR reg R

The eigenvalues of the coning and the reactionless mode coincide with the rotating
flapping eigenvalues.

= | (articulated
rotor) t v
Y=84 ’

Advancingmode | 9

1

Coning mode
Rotating mode

1

Regressing mode ’

Figure D.3 Interpretation of the Coleman transformation in the complex plane

D.4 Interpretation of the First-Order Flapping Dynamics

In hovering flight, neglecting the flapping accelerations in (D.14), yields for the system

of equations:
2
rolvy -1 8
YR 2 {a|}+ B T {31}20 (D.18)
“2 8] Ab |-y v -1) U

of eigenvalues:
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2 2
]+Vﬂ (l)2+1—VB
Y 2 . 16
SI’ Tz 2 1 2

” 16 1+(y/16)° 1+(y/16)°

(D.19)

1-v;

L I_VB’ which is allowed since the
isolated blade flap frequency varies between 1 and 1.15 for helicopters, solution (D.19)
becomes:

In vacuum (y = 0) and approximating

SI.Z

=+xiQ —vB) (D.20)

This solution corresponds exactly to the regressing flap mode solution (D.15) in
vacuum:

Sraw SEI(14V) 5 Sgp =xi(1-vg) (D.21)

Therefore, the eigenvalues obtained by solving the first order differential flapping
equations correspond exactly to the regressing flapping mode .

With aerodynamics included (y # 0), returning to (D.19), one may write:

()12 (_ v ii[ 1+(y/16)2_1” (D.22)
(

Y Tenep | 160 ({1evi)i2

The eigenvalues (D.22) in this case have to be compared with the regressing flapping
mode as given by (D.15):

_ - > (D.23
sNRreg——lY_():l[ v;—(lY—ﬁ)—l] )
1+{y/16)

1+v2)/2 2
( +VB) to 1 and to

It follows that one has to be able to approximate _— >
1+(y/16) (1+vg)/2

2

v3-(-L] in order to demonstrate that the first order flapping dynamics solution is
* 16

close to the regressing flapping solution. For helicopters, the Lock number vy, as
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discussed in section 2.6.1 of Chapter 2, varies between 5 and 15 and thus these
approximations can be made with an error of maximum 25%. It follows that the
solution of the first order differential flapping equation may be approximated by the
regressing flapping mode .

In forward flight, the eigenvalue problem of the equations in a; and b, of (D.11), with
the terms periodic in the blade azimuth neglected, is equivalent to the following
problem:

a 'Y/S 2
+
{bI 2 y/8

Neglecting the flapping accelerations in (D.24) results in solving the system:

a y/ v, -1 /8 +yuY16| (a
NE PG NEIE
b, Y8 +yp16  vi-| b

1

2 2
v/i8 2 a, y/ vy -1 Y8 +yui/16 | (a, (D.25
+ =0 .25)
)
-2 y/8] (b, ~y/8+yp¥16 vy -1 b,
of characteristic equation:
2 5 2 4
3 I 2
(4+Y_)52+l(1+vé)s+(1—v[‘3) + ¥ (I—E__):O (D.26)
64 4 64 4
2 T over 2 f . o H

18 « 0 Hover 18 Advancing mode over X
o Ad:/;ncing mode x Advance ratio=0.35 o x Advance ratio=0.35
ERK] %16
g g
é 1.4 é 1.4
212 12
g e Coning mode
E Coning mods ) E 1} & Differential mode

0.8 Ditterential mode 0l

0.6 0.6‘

0.4 Simpilified flap . 0.4

Regressing mode f— Simplified flap
0.2 N w kg 0.2. Regressing mode .
B . . N — -
~865 -0.6 -0.55 -0.5 -0.45 -0.4 ~8.33 -0.32 -0.31 -0.3 -0.29 -0.28
Real(eigenvalue) Real(eigenvalue)

Figure D.4 Puma flapping eigenvalues Figure D.5 Bo-105 flapping eigenvalues

Calculating the eigenvalues of the flapping motion represented first by the system of
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equations (D.24) and subsequently by the simplified system of equations (D.25), their
variation with the advance ratio was represented for two normal helicopter
configurations in Figure D.4 and Figure D.5 -one for the Puma SA-330, the other for
the Bolkov B6-105 helicopter-. From these figures it may be observed that the
simplified flapping solution corresponding to (D.26) may be approximated by the low
frequency regressing mode.

D.5 The Lead-Lag Motion in the Non-rotating System

Assuming the y, degree of freedom as the blade lead-lag ,, the lead-lag motion of the
blades may also be regarded in the non-rotating system by means of Coleman
coordinates. The lead-lag equation of motion as given by Figure C.4 (for a helicopter
blade) or Figure C.4 (for a wind turbine blade) can be transposed into the non-rotating
system following the above-described procedure. The lead-lag equation first has to be
written for each blade (defined by a specific azimuth position) in order to define the
damping Cg, spring K; and external forces F; matrices in the rotating coordinates

Ce = {gl ¢, ¢, 8, }T. Next, using (D.10), the same matrices can be calculated, this time

in the non-rotating lead-lag coordinates . ={a0 a b (y, }T. The equations of
motion for the lead-lag motion in the non-rotating system are thus obtained. As in the
flapping case, the lagging coordinates in the non-rotating system have a physical
interpretation. The lead-lag mode transposes from the rotating system to the non-
rotating system in (see Figure D.6):

- a "collective (drive train) lead-lag" mode where all the blades move
simultaneously in the lead-lag direction;

- a "progressive lead-lag" mode corresponding to a high-frequency whirling of the
rotor centre of gravity in the same direction as the rotor rotation (the frequency
is approximatively 1-P higher than the isolated blade lead-lag frequency);

- a "regressing lead-lag" mode corresponding to a low-frequency whirling of the
rotor centre of gravity in the same or opposite direction as the rotor rotation,
depending on the rotor speed: when Q < @, i.e. the rotor is stiff-inplane
according to the definition of section 3.3 of Chapter 3, the rotor centre of gravity
whirls opposite to the rotor rotation and at a frequency 1-P lower than the
isolated blade lag frequency. As the rotor speed approaches Q = o, the rotor
centre of gravity whirl speed reduces and becomes zero at the point Q = @,
when the centre of gravity is offset from the hub centre and does not rotate with
the rotor transition speed; when Q > @, i.e. the rotor is soft-inplane, the rotor
centre of gravity whirls in the same direction as the rotor and picks up speed as
the rotor speed increases (that is why this mode is also called "degenerate
regressive lead-lag mode"). This whirl speed, however always stays below the
rotor speed.

- a "reactionless" (scissors) lead-lag mode" where blades 1 and 3 move in one
direction and blades 2 and 4 in the opposite direction.
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Collective lag Differential lag

Regressive lag

Rotor C.G. moves clockwise (¥

Advancing lag

Rotor C.G. moves anticlockwise

Time=0orT

Figure D.6 Lead-lag motion in the non-rotating system [Bir et. al. [1998])
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Six and Eight Degree-of-Freedom
Helicopter Flight Dynamics Models

E.1 Six Degree-of-Freedom Non-linear Helicopter Model

The free motion of the helicopter can be described in an inertial system x,y,z, by using
a rigid-body dynamic model with six degree-of-freedom {u, v, w, p, q. r} and fourtcen
state variables {u, v, w, p, q, 1, ©, @, ¥, X, y, z, A, A,,, } where u is the horizontal
velocity, v the lateral velocity, w the ratc of descent, p the roll rate, q the pitch rate, r
the yaw rate, © the helicopter attitude, ¥ the helicopter yaw, @ the helicopter lateral
inclination, A; the main rotor dynamic inflow and 2, the tailrotor dynamic inflow as
seen in Figure E.2. The forces and moments exerted on each helicopter component are
illustrated in Figure E.1(a) to (c).

Disc
plane

. Shaft
“— plane

Figure E.l (a) Helicopter model: Lateral view



232 Appendix E

Figure E.1(b) Helicopter model: Top view

Figure E.I(c) Helicopter model: Aft View
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Figure E.2 Helicopter position with respect to a fixed system

Using the assumptions introduced on page 101 of Chapter 5, the helicopter equations of
motion in a fixed system of reference {x,y,z,} may be expressed as:

E.2 Equations of Motion for the 6-dof Body Model

i = -gsin@+ X +rv-qw (E.1)
m
. . Y
v =gcosOsin®d +— -ru+pw (E.2)
m
. Z
W =gcos@cos®d+ = -pv+qu (E.3)
m
I I 11 -I-L, Ll -1 +1
LS TV P R L S (E.4)
I1-,  II-L, 1L -1, 1L -L,
1 -1 L .
q :M+(" X)pr-fﬁ(r-—p*) (E.5)
Iy ly l),
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I 1 L-11 +L I (1 -1 +I
= x ’N+ u’L_'_ x Xy7x£pq_ u(x yj Z)rq (E'ﬁ)
LI -1, LI -T, Il -L, I1-I,
& =p+(qsin® +rcosd ) tan® (E7)
O = qcos® -rsind (E.8)
y -4 sin?¥ +r cos® (E.9)
cos®
X = [u cos® +(v sin® +w cos® )sin@) cos¥ —(v cos® -w sin<I>) sin¥ (E.10)
y =[ucos®+(vsin® +w cos®)sin®)|sin¥ +(v cos® - w sin®)cos¥ (E.1D
Z = -usin® +(vsin® +w cos®)cos® (E.12)
T, & =C7" -C7 (E.13)
Toiw My =Cre = Cae (E.14)

As assumed on page 101, observe that the dynamic inflow of both the rotor and the
tailrotor system are included in the model as state variables by means of the time
constants T, ; and 1, -

In equations (E.13) and (E.14) C;°*" represents the thrust coefficient calculated with the
blade element theory and C,“" represents the thrust coefficient calculated with the
Glauert theory. The forces and moments on the helicopter can be calculated as:

X =-T, sin (a, -0, )cos(b, +61c)—Hdpcos(a, -0, )+ E.15)

+S, sin(a, -0, )sm(bl +6, )-R, coso,

<
1}

T, sin(b, +8, )+S, cos(b, +6, )+ T, F, -Lift +Y, (E.16)
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Z =-T,cos(a -0 Jcos(b +0, )+H, sin(a -0, )+

ap (E.17)
+S,, cos(a -8, )sin (b +8, ) -R, sino, -Lift,
L = po[h sin(b| +6|C)+f1 cos (aI —Bls)cos (bl +61L_)]-HL|p f, sin(a] —6“)+ (E.18)
+ Sdp[hcos<b] +6,.)-f, cos(a, -6, )sin (b, +0,. ) |+T h F, ~Lift b, +L,

M =T, [hsm(a -0 )cos(b +0, )+fcos(a|—615)cos(bl+91L_)]+Hdp[hcos(al—615)—
—fco%(a -0 )}—Sdp[hsm(al - I»\_)sin(b] +0,, )+fcos<al —6)|\)sin(bl +9,C)]+ (E-19)
+M, +M +M[Z

N =Q-T, [f sin(a, -0, )cos(b, +0, ) +fsin(b, +6, )] -H, f (cos{a -0, )+ (E.20)

ot

+8,,|f,sin(a, -6, )sin(b, +6,)- fcos(bl+elc)] “T,F,1_+Lift 1 +N,_

The main rotor action can be expressed by the thrust T, horizontal force H,,
(equivalent to a drag force), lateral force S, and a torque Q, all expressed in the disc
plane:

dp?

T, =p(nR*)(QRC™ (E21)
H, =p(zR?)(QR)C, (E.22)
S4 =p(nR?)(QRYC (E.23)
Q =p(nR*)(QRYRC, (E.24)

All these forces are calculated by using the blade-element theory, resulting in the
following coefficients:
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o 2 2 2 . -
- 1 . h
C;‘fcxll - GCI [(1 2i'+l‘lx;py_uxhq)e +[ ﬂl;*ll)_ f*llx q 0 +

2 3 tw
+[(1—‘r)uy+(1--r)hr)+£>+ a.MXQ-b.uJ)]e o (E.25)
2 2 3 8 ¢
+[(1-‘r)ux_(1—-r)hp+a_(,'q+a,qu—b,uyf>]e }+uxi>+u_vﬁ_(1—-r)x_a.u;r+bluy‘r
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Jafgapnen) gl )] b (T ) =paa, (- o,
3 1 1 1 L1
r+ piA, -1 )J+b [_ 7+ Lap - )+ 3 pab, +
[ [ 2 “)] 32lLl 32q( ‘)] 243"1)(l Te 0 gt (E27)
L1
— —)\,_ -1 +_‘ +34 6 i [ +
5 1 1 .3 1
A)- ab, + ]e +
e r] [32q( ) 8” 3 ] 32(qll “PH ) 60 48q

1 _ 1 1 -
§ q( ) 16 x b 4 0 1( X “ ) Ea()al(l r) 16 (p p_pxq)+
1

[ p1 ( —*)]*b[lz(u Q+u,p)+ 2T, *A) }




Appendix E 237
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o€ 2)0- h&mwﬁ%mv+wumw%%%@wﬂ+
+1_12‘r(pb pxa])]e [ [( A )-p

*%Oa(aq*b‘f’) 22N f]" [ A A P(l—'f)] a(- %6““ (E.28)
ﬁpq) b[;zuy 3'2 16( 1+r)]+3l b+ﬁq( 1+r) Xu} Hllz (w,~A)+
+é”’( b (16“ ”y_ﬁ_q a0 32 32 R ()55 3P +1_6"(_“?)+
+%ux(—uﬁ7~i)] I 112 ayla- up)+a[1 1, )2 ]+b[ Hyn ?»)—1F1]+

8
1 1
+§pz7\'0+ 12 0

] [ (-2 ) r]+—(pu g, )+

a2, uxb,)}

|

\

|

. —oc (4D (1ad (na-ppla, (- up+3uq)b q

} Cw 7G| 6 16 ] C{[a"[ (o)

151 1 e
+—4 l+r)]+a[ 7t ~u] % .pq——ux(>~~—u)+—p(1—r)]9 +
_ 1
MEMﬂhwwﬂﬁwﬁﬂ pab, +- {1 1) (A, )0, +
1 . 3 L1 1 _
*[b [‘ﬁl‘ “3—2 T ]*a [ﬁ ”;2-1)(“ - i)]+ﬂa0pq—l_6paobl_4_8qa0al+ (E.29)

R NI

1 3
-A. + —_‘ alg +
"33t ] [32 N ] 33 P, A qa‘" g0 ‘] te

1 1 1 - 1 . 1_ -
+ Pl A kD, A (v )+—aob( L) by (1@ -,p)raga( -147)

iu -2 ] [16 pp+Ra)*+ 8!( u+7t)]}



238 Appendix E

The steady-state disc-tilt angles can be calculated as:

- - 48 2
-21)a, =§{1 +px-2r)eo-%pye,u—%pxe,f;(s Sresh! )e

Y( -+ )+—u p+Lp g

127
- l‘\ N 23
%(l_r_7+'21)al ='Yg“‘ 0 ( -1- Z'I)bl+%px9“—‘y§pxpy9k—%(l —2r+§pi)9“+
4 (E.30)

Y Y Y=_95
+ 0 - -u +A)+1p-2
gt O Z“x( M, ) gb <4

1—1+r—“;+“;b =—lpa+v2—l—2T Ype -1 2‘r+_; —lupe +

3 7?1 6x0l5 Iy08 2]08xyls

+_Y_py e ( -H, +7\,)+2p+18_q

Due to the blade hinge eccentricity, the centrifugal force induces a supplementary roll
and pitch moment on the rotor (see Figure E.1a and ¢) :

L, =2¢,sin(b,+8, )F, =p(nR?)(QR ' Rsin(b,+8, )C (E31)

mE
M, =2¢,sin(a -8, )F =p(nR*)(QR[Rsin(a, -0, )C,, (E.32)
where the C, coefficient is defined as:

- 2¢,F, _2¢R(m, Q1) _ &m, (E.33)

p(nR?)Q’R’ p(rR?)Q2R? p(nR?)R

The tailrotor is represented by its thrust force T, and may be calculated using the
blade-element or the Glauert theory. The tail rotor thrust force is defined as:

T, =p(nR)(Q,R, ] C €39

tr Ttr

The tailrotor thrust coefficient may be calculated with the blade element theory or with
the Glauert theory:
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c C _
C;IT:.“ o lr, [( l + l 'JZ". ) eo - H,, + Xilr ] (E35)
2 3 2 ! 2
Cgllr = 2}\ill’\/“3lr+( “Ill'+}\‘|ll )‘ (E.36)
where the advance ratio u,, and p,, are defined as:
" :\/U”(W*KWQR%W‘J - __v-rl+ph, (E.37)
" Qtr R(r “ er er

K, is main rotor downwash factor at tailrotor and is assumed that K =1

The tailrotor thrust introduced in the component Y of the helicopter total force,
equation (E.16) by a fin blockage factor which can be taken according to Padfield
[1996]" as:

F,=1-3S /{4nR;) (E.38)

[¢

The fuselage is represented by the force R, and a pitch moment M, which are
calculated according to linear aerodynamics:

fus 0

R = % VIF (E.39)

M, =pA(QR)'C (E-40)

fus m lus

where F, is the parasite drag area and for helicopters in current production represents
1.1 to 1.4 from the maximum fuselage frontal surface S;, or 0.01 to 0.015 from rotor
area A. Statistically, F, depends on the helicopter mass and angle of attack (see
Marinescu and Anghel [1992]%). The angle of attack of the fuselage is denoted as o,
and is represented in Figure E.1 (a).

The fuselage pitch moment coefficient can be calculated as:

Cm fus = IJ leus(V()]fus)m(asp o € ) (E4 ! )

sp IM =0 0
where K, is a correction coefficient and can be determined from Figure E.3 as a
function of the ratio between the fuselage length 1 and the equivalent diameter of the
fuselage D,,, defined as the diameter of a circle of area equal to the area of the

lus
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maximum fuselage front view.

1
K, T
08 -
0.6
0.4 —+
0.2 /
1
 fus
0 2 4 6 8 10’5*‘
fus

Figure E.3 Correction coefficient K, (Marinescu and Anghel [1992 )

(Vol,,),, is the volume of a body equivalent to the fuselage having only circular
I[

sections of diameter d,,, (s) (Vol ) = %tj.dfusz(x) dX, Ogy o 1S the rotor incidence
0

corresponding to zero fuselage pitching moment and €, is the average downwash angle
which at high velocities can be approximated as:

e, =v,/ V=2 /p (E.42)

In sideslip flight under an angle B, (B, =v/V) the fuselage introduces a lateral force
Y;, and a yaw moment N, defined as:

Y, =p(nR?)(@R)C (E.43)

fus Y fus

N, =pA(QR)C (E.44)

fus n fus

The coefficient Cy,, may be defined as:

C

Y fus

-, sinp, = C, 2 (E.45)
‘ n

The fuselage yaw moment coefficient can be calculated as:

Cn fus = pz Kfus ( VO]fus )n Bs (E'46)

where (Vol,,), is the volume of a body equivalent to the fuselage, with the same form

lus
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l\
in lateral view and having only circular sections (Vol, ) = gjhmf(x) dx.
0

The horizontal tail will be considered only by its lift force Lift, and pitch moment
produced by the lift force on the horizontal tail M, relative to the centre of gravity:

Lifthl - g Shl Vil Clhl uln (E47)
Mhl = p (T[ Rz )(S2 R )z R CIll ht (E'48)
with the local velocity given by the components u, w and q of the helicopter:

Vi =’ +(w +ql,J (E-49)
The horizontal tail incidence o, is defined as:

ql, 1 R de
Oy =0+ 0 8y * q_m o a, . (E.50)
ki u V. Fde

in which a,, represents the built-in horizontal stabilizer incidence, g, is the medium
downwash angle calculated in the area of horizontal tail and can be approximated as ¢,
=¢,K,, according to Marinescu and Anghel [1992]% where g, is the medium
downwash angle approximated as (E.42) and K,, is a correction coetfficient determined

graphically as a function of f, and T, =[T,(A,/p -0, )-(h, -h)| and can be seen in
Figure E4.

f,,=107 K K
3 f,,=2.07 ht
HENED LT
1 1 . 1 i »

03 02010 010203 (, -03 02-010 010203 (,
Figure E.4 Correction coefficient K,, (Marinescu and Anghel [1992]°)

Relation (E.50) includes the effects of pitch rate and the variation of blade angle of




242 Appendix E

attack & .
The horizontal tail pitch coefficient C,,,, is defined as follows:

1 -
C,. = —E(Volm)pzclmu o, (E.51)

m ht

where (Vol),, is defined as (Vol), = (5,10

The vertical tail will be considered by its lift force Lift, and its roll L, and yaw N,
moments produced by the lift force Lift,, relative to the centre of gravity:

Lift,, = g S, ViC,,, B, (E-52)
L, =-p(nR*)(QRYRC (E.53)
N, =p(xR?)(QRFRC,, (E54)

The local velocity is given by the components u and v combined with a yaw and roll
rate component:

Vi =w+(v -rl, +ph ) (E.55)
and the angle of attack of the vertical tail is:

Bvl = 13(Jvl +<v_r1vl+phvt)/u (E.56)

with f,,, the built-in incidence of vertical tail. The roll and yaw vertical tail coefficients
are defined as:

1 s k] I
Ciw =5 Suk Gy Boih, (E.57)

le .o -
Cuw =58, H7C BT, (E.58)
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E.3 Pilot Model

The control variables used by the pilot to control the helicopter are the collective pitch
0,, longitudinal cyclic pitch 9, lateral cyclic pitch 6,. and tailrotor collective 6,,. To
fly the helicopter, four stabilization functions are developed, one for each control:

Collective controls vertical speed

corre ’.( Cdcs - ) dT (E59)
)

The desired vertical speed is controlled by an "altitude hold" controller, feeding back

the height to the vertical speed:

6, =96, *K.(c, —c)+K

Q 0 gen 5 de

¢, =K, (h, -h) (E.60)

des

Longitudinal cyclic controls pitch attitude

t

s :K(-)(G)_edcs)+Kx|q+K®corr [(e_edcs)dt (E61)

1s

]

0
The desired pitch attitude is controlled by a "longitudinal position hold" controller:

t

0 s = K\ ( xdcs X ) +I(uu +Kxc0rr [ ( xdcs X ) d't (E62)

des
0

Lateral cyclic controls roll attitude

6lc = Kd) ( d)dcs -® ) * KP p * KCDcorrJ' (q)des - ) dt (E63)
0
The desired roll angle is controlled by a "lateral position hold" controller:

q)des = Ky ( ydes —y ) +Kv v K)’cnrfj ( ydcs -y ) dt (E64)
0

Tailrotor collective controls heading angle

0

Ot

= K‘*‘ ( \Pdcs _LP) +Krr +K‘Pcorr J. ( \Pdcs _lll ) dt (E65)
0

The desired yaw angle is controlled fast and smooth and does not need any
proportional-integration-differentiation (PID) controller.




SERENT—

244 Appendix E

Initial Parameters - helicopter M,;, I, I, I, I,

- fuselage F()’ Sfus’ Kfus (V()lfus)m

-rotor My, N, 6, C,, C,, Q, R, ¢, A=nR’, CG (h, f, f, ), ¥, I, 5, 6,., KpV, Ty
b, ? Klr’ Tkm CG(l“,, ftr)' a‘ﬂm TAin-

- horizontal tail Vol,,, S, C,,, , K, CG(l,, h)

CG(,, h,)

- tailrotor R, Q , ¢, . N,.. ., C

L1nd

- vertical tail S, B,,. C

)
(A2

Initial Trim Controls 8, , 8,, 8,. 6,

Flight condition u, v, w, p, q, 1, ©, ¥, @

VvV = (u2 +v? +w2) o, = —arctan%+9]s o, =0 +a,

po= uo= y =Y

* QR Y QR ' QR

A = -p, +A,

w+w+K QRA +ql v-rl_+ph
Tailrotor T =\/ (w+K, QR 1, ] Py =~ Pl
Q\IRII‘ QH‘RII‘
}'lr = _p'ztr"-)'i!r

w+ql
Horizontal tail V, =y Hw+q Wi o, =0, +arctan( d "')
u

v-rl +ph, )
u

Vertical tail V= ‘/ w+(v-rl +ph, )2 B, =By +arctan(

Calculate main rotor inflow
A, using the expressions of
Cc™™ (E25) and C.%
(E.26)

Calculate tailrotor inflow
A, using the expressions of

Cpl" (E35) and C,°
(E.36)

Known are now for main rotor A, A, a5 a, b, Cp, A, ,» A, Cyyy

Calculate CH CS CQ’ Cl) fus? Cm fus® ahv Cm ht» Cl vt Cn vt

Evaluate all parameters and let integration routine operate on the system of the
equations of motion (E.1) to (E.14)
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E.4 Six Degree-of-Freedom Linear Helicopter Model

To be able to determine the body modes, the nonlinear six degree-of-freedom model
developed above has to be linearized about a suitable trim condition. Assuming as a
basic motion a uniform forward flight:

=V :Wo:po:qo:fn:()
v, =p, =4, =1, =0

Y, =0.0, =1, +a

. . . Y P

6() :(D() :Lll() :0

(E.66)

Substituting (E.66) into (E.1) to (E.9), the parameters in the basic motion can be
derived. As in the case of the airplane, assume that the longitudinal helicopter motion
decouples from the lateral motion. The longitudinal motion is characterized by the state
variables {u, w, q, ©} and the control variables 6, and 6. The lateral motion is
described by the state variables {v, p, r, ®, ¥} and the control variables 6,, and 6.
Perturbing the longitudinal motion around the trim condition and linearizing, the
longitudinal perturbed equations of motion can be written as:

u = —gsin®+i

hel

Xu u +Xw w +Xq q +XB Is Aels +X8 0 Ae()jl

W = -gcos@+Vq+

Zu u ‘*‘ZW w +Zq q +Z(-) ts Aels +ZG 0 Aeo ] (E 67)

hel
e =

q:

| o

I:Mu u+M w+M, w +Mq q+Mg, A8, +M, Aen]

where X, . Xy, Zy gy, M,,...Myq, are defined as the derivatives of the X-force,

Z-force and pitch moment M with respect to u, w, .... 0,
x =X x 3% .M, -M (E.68)
du ow 30,

In the lateral motion, the helicopter equations of motion are (neglecting Y, and Y, as
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being very small):

V=gd+g¥-rV+ 1

601

[va +Y9]c Ae]c +Y Ae()tr]

hel

b =p
. I,
p - ll _12 [LVv+Lpp+er+L9chelc+L(~)01rAe(llr]
Ixz
3 +II Iz [Nv v +Npp +er' +N8|c Aelc +Ne()1rA9():r] (E69)
¥ =1

1
I = : [va+Npp+Nrr+Ne|cAelc+N Al |+

2 80tr
Ll -,

I
M - 2 [Lvv+Lpp+er+L01cAelc+L00uAeotr]
II -1

X z Xz

The force derivatives can be calculated by deriving the helicopter forces and moments
with respect to the state and control variables. Using the matrix notation, the linearized
equations in the longitudinal and lateral plane can be formally written as:

X =A-X+B-U (E.70)

where A is the matrix of motion derivatives, B is the matrix of control derivatives, X
the motion states and U the control states. In the 6-dof linear model the equations
(E.67) and (E.69) are non-dimensionalized according to the table presented in the
beginning of the dissertation in the chapter Notations. By doing so, in the longitudinal
plane, the matrices A and B are:

X X -C_.cost X
u w G u q
- z, z, -Csint, H+Z,
Ane = 0 0 0 1

. (E.71)
m+zm, m_+zm, -m.C.sint m +m_ (p+z )
L™ u uw w woW WG u q W q

T

- Xels ZSIS O m615+m\fvz(-)ls

long

| %00 Zeo 0 mg,+mz,
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T T
and the states are X ={u,w,q,®} and U = {(—)0,9“} . G4 is the helicopter weight

thl g

pAQR
lateral plane, the matrices A and B are:

coetficient defined as C_ = and 1, is the helicopter climb angle. In the

Y, C, cost, 0 C, sint -u
0 0 1 0 0
1+ n 1 +I,n 1 +1 n
v v p il 0 T [
Alul = l“ IU l”
0 0 0 0 1
n «:I_,\ L 0 n, tl3 1p o n, ilx 1 (E.72)
I() I() l()
ryalc 0 lelc +_Il n(-)lc 0 ne]ctlﬁ lelc
E _ 0 IO
at - -
»ye o 0 le 0‘r+-Il ne()(r 0 ne Otr jl% le O
IO IO
- . 1, . 1] N
where I, =1-_2", 1 =2, 1, == The helicopter states in helicopter lateral plane
11 I I

T T
are X ={v,<1>,p,‘~l‘,r} and the corresponding control states U ={Glc,6mr}. The

complete derivation of the all listed helicopter derivatives and the final linear equations
of motion is done in Marinescu and Anghel [1992]% and Pavel [1996]1%.

Considering the developed pilot model as presented in the previous section, the matrix
U of controls can be written as (assuming no l-action):

U =K-X (E.73)

where K is the matrix containing the gains used to stabilize the motion in the
longitudinal and lateral plane. Substituting (E.73) into (E.70), the linear equations of
motion describing the helicopter motion become:

X =(A+B-K)- X (E.74)
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In the longitudinal plane, matrix K can be written as:

0 0 K K“
_ S (E.75)
Tong t
00 0 O
K
0K, =* 0 0
- t
K, = (E.76)
K,
00 0K 2

E.5 Eight Degree-of-Freedom Nonlinear Model

In order to investigate the importance of modeling the rotor degrees of freedom for
flight dynamics purposes, the 6-dof non-linear model presented in section E.1 was
extended to an 8-dof model including the first order disc-tilt dynamics of the rotor

a,, 4, ISI. The degrees of freedom of the extended model are {u, v, w, p, ¢, 1, a,, b}
and there are seventeen state variables {u, v, w, p, ¢, 1, ©, @, ¥, x, y, 2, Ay AynQy G,

b,}. Appendix D demonstrated that neglecting the disc-tilt accelerations
i, =4 =5, =0 and retaining only the first-order rotor disc-tilt dynamics in the
helicopter piloted simulation model is equivalent to retaining the low frequency

regressing flapping mode in the model on top of the steady-state disc-tilt solution. The
extended 6-dof model can be formally represented as the following system:

u u
Body-Body | Body-Rotor
I BodyRotor'| || | o0 o0 [ POYTEOR )
_ (E.77)
a() a

Rotor' Body | Rotor'-Rotor**

Rotor' Body | Rotor' Rotor'

where index I is for the first order rotor disc-tilt dynamics and s.s for the steady-state
disc-tilt. Relation (E.77) shows that the 8-dof model includes a body-to-rotor first-order
disc-tilt dynamics coupling as well as a rotor-to-body first-order disc-tilt dynamics
coupling. The simulations performed in Chapter 5 contain only a partially extended 6-
dof model, in the sense that the body-to-rotor first-order disc-tilt dynamics (matrix
Body-Rotor' of system (E.77)) was assumed to be zero. With this, the 6-dof model
given by the system of equations from (E.1) to (E.14) was extended to a 8-dof model
by adding three more equations representing the first order disc-tilt dynamics:
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AT ST VNI - X{1pi-2v)o,-Lu0,Luo,
8( )Q lszQ 12”\9 (B )0 8 H\ 0 6”‘ 1e 6”‘ I
Y 4_8 2 N Y
+§(§ ra gu )6 (-u, 7»0)+ HP*5 KT
Yo by, b by R
—_(l—)_+_p‘f—2—+_p\ao+<1 -vi+2T1 (—l+r )bI =
) Q 6 °'Q Q 6 B 2 2 (E.78)
1 _om oy
= %p\ 60;%(1 _2r+?)elc_18_“\ “) el\‘+%py el\»‘_%p) ( _p/ +A'())+2p+:;—q
p\é Y bl Y Y _—._pf “\2 o — ) = _
(o Q 8( )§+gu)ao §(1 i 7"7)‘11 (1 v +2r)bl =
=3 -
*—%u\eo zu H8, +§( 2T Eux)eh—l—:uﬁ.\\ SR O, HA ) - % +2q

The 8-dof nonlinear model is represented by equations (E.1) to (E.14) plus equations
(E.78).

E.6 Data for Puma SA-330 and Bo6-105

Parameter Puma Sa-330 Bolkow Bi-105
M,, 5805 kg 2096 kg
m, 68 kg 27.3 kg
0.015 -0.00155
0.25 0.1924
0 0.0061
4 4
7.5 m 4.91 m
0.5401 m 0.27 m
03m Om
5.73 rad ! 573 rad '
270 rot/min 424 rot/min
9638 kg m’ 1803 kg m’
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1, 33240 kg m* 4892 kg m’
I 25889 kg m’ 4428 kg m’
1. 2226 kg m’ 0 kg m’
1, 1280 kg m’ 219.5 kg m’
N, 5 2
R, 1.5m 0.95m
C, 018 m 0.18 m
Lf 9m 6. 01726 m
h,-h 1.2m 0.1095 m

- 5.7 rad * 57 rad !
Q, 1350 rot/min 1350 rot/min
S 14m 0.809 m’
Ci 4 rad "’ 4rad”!
O by 3 deg 0 deg
Lif 7m 4.556 m
hy-h 1.5m 0.898144 m
F, 1.8 m? 13 m?
K, 15 L5
K, 0.83 0.83
S F,/702 F,702
bis 14.82 m 8.509 m
(Vol,, ), (r/4)x45.29 (AR) (r/4)x25 (AR)
(Voly ) (r/4)x22 (AR) (n/4)x6 (AR)
S, 0 0
T 0.1 0.1
Ty w 0.1 0.1

0.12645 0.103625
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Modeling the Coupled Rotor-Chassis
Motion for the KEWT Two-Bladed Wind
Turbine

Consider a 2-bladed wind turbine, modelled as in Figure F.1 in which the blades can
lead-lag with an angle ¢, and the tower can bend fore and aft in the second bending
mode. By the vertical displacement of the chassis x is meant the vertical motion of the
chassis as a result of the inclination of the nacelle when the tower bends fore and aft in
the second bending mode (this motion will be shortly called during this work the
chassis second bending mode). Assume that the chassis cannot yaw and that the rotor
blades are connected to the hub with a zero offset. The present appendix will derive the
equations of the coupled rotor-chassis system in the degrees of freedom mentioned
above.

ANSNNANSN
e

Figure F.1 Rotor-Chassis System
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F.1 Rotor-Chassis Equations of Motion in the Rotating System
Figure F.1 defines the systems of reference {x,,y,.z,} (rotor head system of reference),

{x,.y.z,} (rotating system of reference), and {x,,y,.z,} (blade system of reference)
related through the following transformations:

\Vk(zll) gk (Zr)

XoYoZo - Oxy.z, = OxyYyiZy
cosy, siny, 0 cos, sinf, O
{Er} =|-siny, cosy, 0 {EO} =[\|1k]{_ 0} ; {" bl} =|-sin{, cosf, 0 {_ r} =[§k]{Er} (E.1)
0 0 1 0 0 1

where y, =Qt+2n(k-1)/N. The blade system of reference can thus be characterized
by the vector { E,, } expressed in the chassis system of reference as:

cos(y, +§,) sin(y, +L,) 0

B} (o ][w]{B} = [-sinew L) costw 60 0l {B,} F2)
0 0 1

Consider a point P on blade k situated at a distance r from the hub. The position of the
blade w.r.t. the rotor head is:

b =r(1.0.0){E,} =r(1.0.0)[t, Jw.]{E,} - (F.3)
~ (rcos(w, +¢,)rsin(w, +¢, ). 0){E, }

and the angular velocity of the blade is:
@, =(0,0,Q +§k){}'3bl} (F.4)

Consider a displacement of the chassis in the vertical direction:

P =(x.0.0){E,} (F5)
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The displacement of point P of the k-th blade w.r.t. the chassis will be:

T, =P, *Pu =(x +rcos(\uk+§L),rsin(\yk+§k),()){}'30} (F.6)

and the corresponding velocity:

i =X(l.0,()){l_30}+r(1,0,()){EM} ={()’(.0,0)+r(1,0,0)[&)1\][2;]‘][\yk]}{fio} “ E7
= (-r(@+8, )sinCy, ) r(Q +L, )eosty, +¢,).0){E, |
The kinetic energy T, of the k-th blade is:

[m [} +5; ar = %mkxhélk(sz+ék)2+ok>z(g+§k)sin(wk+§k) (F.8)

B

,
| —

where m, = [m dr, o, = (mrdr L =Imr2 dr.
B B B
The kinetic energy of the entire system is then:

T _lM .3 (1 s\ . : ( ) (F.9)
o =5 Mk +§{§IR(Q+CR) *ka(9+ck)5‘ﬂ v, +C, }

where the total mass of the rotor+tower system is M, =M, +Nm,. The potential
energy of the system is:

N N
\Y =%K,-x3+2;KcCi+2jmg(x+rcos(\|1k+gk))dr (F.10)
k=1 k=i g

The Lagrange equations are:

d ( aT )_ aT + ﬂ — QEunc(ms : er(mncuns - 0 (F.l 1)

ac\aq, /| dq, 9q,

where Q™™™ is the sum of generalized forces acting on the system. Substituting (F.9),
(F.10) into (F.11) N+1 equations are obtained. Linearizing and assuming the lead-lag
angle of the blade small so that cos{,= 1 and sin y,= vy, and adding artificial damping
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to the chassis and lead-lag motion through damping coefficients C; and C,, the final
rotor-tower equations of motion in the rotating system are:

N N N
. , d? . 2
M X+CX+Kx+ Z o d'ti( £, siny, ) =-Q Z G, CosY, - E m g (F.12)
k=1 k=1 k=1
cszinwk+Ika+C§ ﬁk+KC C, =gck(sinwk+§kcoswk) k =1..N

™

where %( g, sin\uk) =, siny, +2Q{ cosy, -Q?{, siny,.
t

Small Perturbation Equations

Assuming solutions in the form:

{x =X, *AX (F.13)
€ =Ag

representing small perturbations about large static positions, the static solution x, (to not
be confounded with the axis x,) can be obtained by substituting (F.13) into equations

(F.12) and imposing Ax = A{ =0. By doing so, the static solution becomes:
N N

KT XU = _Qz Z Gk coswk - E mk g (F.14) i
k< k=1

The coupled tower bending-blade lead-lag small perturbation equations of motion in the
rotating system can be obtained by substituting the static solution (F.14) into (F.12):

N
&, .
M X+Cx+K x+) o —({siny, | =0
XrExek, §kdt2(k k) (F.15)

o, % siny, +18, +C.E, +(Kc - g0, cosy, )Ck =g o, siny, k=1..N

where, to simplify the expression, the perturbations were denoted as
Ax =x ; AL =(. Equations (F.15) are a set of N+1 coupled, linear second-order
differential equations with periodic coefficients, representing the tower-blade motion in
the rotating system of reference of the blade. Assuming that the mass, inertia and static
blade properties are identical I, =1, =1, ; o, =6, =6, ; m, =m, =m,,, these
equations are non-dimensionalized by dividing the first equation in (F.15) by MR and
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the second equation by I,.. Using the non-dimensional notation for the tower

the blade

displacement 1 = % and defining the chassis damping ratio £ =C,/C_ .,

damping ratio ﬁg =C./C, - the chassis natural frequency . =K, /M = and the

blade lead-lag natural frequency o, = \/K;/lm it results:

N 5

2 ¢} .
i +2&, 00 +on +Z L dq(gksin\uk) =0
k-1 MluR de
! (F.16)
c R , . N c (4]
S | sin\yk+§k+2§§m;§k+(mg—? cos%)ck = gl “siny,; k =1..N
bl bt bt

For a 2-bladed rotor, additionally presuming that the blades are uniform, the blade static
moment and the moment of inertia equal 6, =m, R/2 ; I =m_ RY3. A parameter
1

o, =————, such that the ratios
2‘*.Mch/rnbl

o, may be defined as

o,/M.R) : (o6 ,R)/I, : (go,)/1, respectively may be approximated as
o /2 ; 1 and g/R. Notating go,, /I, =g/R =¢ and with the transformation to

the azimuth angle d% = Q;— =Q( ), the equations of motion (F.16) for a 2-bladed
v

rotor become:

% dzq(Cksin\vk) =0 (F.17)

n”+2§ (gn/+ﬁ)2n+ _m
T ! ka1 2 dy?

n”sin\yk+§,’(’+2§§ﬁ)ggﬁ+((‘o§—e coswk)t_,k =esiny, sk =1,2 y, =y ,y, =y+=n

In the coupled rotor-chassis equations of motion (F.17) the gravity force contributes
both as an external and as a parametric excitation to the lead-lag motion.

F.2 Rotor-Chassis Equations of Motion in Non-rotating System

The periodic coefficients in (F.17) arise because the tower motion is written with
respect to a fixed reference system while the blade equations are in the rotating system.
For an N3 bladed rotor, the Coleman transformation from Appendix D can be used in
order to eliminate the periodic coefficients. For a two-bladed rotor, the Coleman
transformation does not eliminate the periodicity. As discussed in this appendix, for this
type of rotor, the non-rotating degrees of freedom are only the coning and differential
modes and the rotor has no cyclic modes. For the blade lead-lag motion, the non-
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rotating coordinates are:

N
q, “‘z‘(cz CI) F18)

N
CN/Z _5((:2 gl)

Actually, the differential mode {y,, replaces the cyclic modes a, and b, as defined by
(D.1) and therefore couples to the fixed system. The Coleman transformation as defined
by (F.18) will be applied to the coupled rotor-chassis equations of motion (F.17). The
calculation is best way conducted in matrix form. The vector of coordinates in the
rotating and the non-rotating system can be defined as:

N M
{XR} =15 ; {xNR} =1 & (F.19)
CZ CNIZ

According to (D.5) and looking at (F.17), the matrices defining the rotor-chassis
equations of motion in the rotating system can be written as:

| 0‘2m siny - 223 siny 26 @, 0 _cosy - COsY
[MR] B siny 1 0 : [CR] =0 20, go
0 0 28,0
—qi [9aed
siny 1 0 (F.20)
=2 am . am .
®; > siny - siny 0
[KR] 1o (‘ogvecosw 0 ; {FR} T esmy
X - ¢ siny
0 @;+ecosy 0

The matrices characteristic to the Coleman transformation for the coupled rotor-chassis
system are according to (D.3) and looking at (F.18):

1 0 0 10 O
[Lgo1={0 12 12]; [Lgl=[L 1" ={01 -1 (F.21)
0 -12 12 01 1

The Coleman transformation applied to the system of equations (F.17) can now be
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performed according to the algorithm given in section D.l1 of Appendix D. The new
matrices, expressing the rotor-chassis matrices in the non-rotating system of reference
of the chassis, were calculated according to equation D.1 and their final expressions
are:

28,0, 0 —Zocm(cosw—égc‘ocsinw)
o«
[CNRJ = TTIX— 0 2{',\(70\(1 —TI“+—7"1C032\}I) 0
1-—2+_"cos2y -
2 2 | 28, @ siny 0 28.®, -a, sin2y
o; —esin2y o, (1+@;)siny
1 _ 2 a’m am ar]] Q.mf!
Kyl B a— 0 m;(l—7+-2—c052\y) c(]-T)cosuH T cos3y
1-—2+_cos2y
22 , , o
| ysiny gcosy o; +_2T(l ~cos2y)
(xlll M
—4—8(—1 +c0s2\|/-sm2\y)
_ 1 € 3am . € am ame : ame
{FNR} BT I— 5(1—7)51n\|/+§(—1+7)c0sw+ 3 Sln3\|l—TCOS3\|J
1-2+_Zcos2y
e, .
‘E(SIH\V*‘COS\V) ( 22)

The equations of motion of the rotor-chassis system are given by:

noy noy n
3 b o[ ld a b kRe ] B =R (F.23)
C-’N/Z C1‘\1/2 t-'N/Z

with the matrices expressed as in (F.22).

F.3 Solutions of the Rotor-Chassis Equations of Motion in an
Asymptotic Expansion

Although the equations of motion (F.17) of the rotor-chassis system were transformed
to the non-rotating system using the Coleman transformation, the new equations (F.23)
still contain the sine and cosine functions periodic in the blade azimuth y. The stability
of a linear system of equations with periodic coefficients may be investigated by
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applying the Floquet theory as presented in Appendix G. Nevertheless, the response of
the system (F.23) can also be determined assuming solutions in an asymptotic
expansion, The present section will determine the response of the system in the
asymptotic expansion. Consider the equations of motion (F.23) in the expanded form:

a a 2
(1—_23+__c0s2\v),1//+2§ ®.n' +om +o, [(‘égm‘: siny —cosy) {y + (1 + @) x

£
x siny{ ,+ gaosinmy =_T (—1 +cos2y - sin2\|1)

120, Fn ooyl + 28 @ [1-Zm s Imeogn Oy Oncos2
_t N S —_t
( 2 “cos \|1)a17 +28 ")c( D4 cos \|t)av ( ) oS \v)ao (F.24)
+|& cos -_Z)+ cos , = {1l -——Zsiny + Z{ -1+_"jcosy +——sin
V)t 0V = ol T PV | T oSy T sV

oe o, o " _ ) P
—TCOS3\|I(1 _7+7 cos2y )sz + (2{;c0)§ -a, sin2y )CNQ +[ o+

( 1- cos2\|1) Cpp +26, 00, sinym’ +0)Tsm\|m +ecosy a, =

( siny +cosy )

Mlm

7
and assume solutions for the system (F.24) in the form:

=M, *o,m, *

=d, + od +.. (F.25)

a,

Cnp =b, +O, b+

Solutions in the Approximation of order O(am‘l)

Substituting (F.25) into (F.24), the equations of motion (F.24) in the approximation
0O(a.,") become:
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n(/l/+2§T(_DTn(/)+G):}n() =0

dy +28.@.dy +@d, + ecosyb, = ( siny - cosy ) (F.26)

o »

" . _ _2 . _ . N
b, +28 @b, + @b, + 28, ®sinyn  + @ysingm, + ecosyd, = - = | siny +cosy )

€
2

In system (F.26), the chassis motion decouples from the collective lead-lag but is still
coupled to the differential lead-lag mode. Solving the first equation of system (F.26),
the tower steady-state solution is:

n, =0 (F.27)

The rotor collective and differential lead-lag response in d, and b, remain coupled via
parameter € containing the gravity force. Also assume the solution of the rotor motion
as an asymptotic expansion in &, that is:

{ d, =d,, +ed, +.. (F.28)

b, =b,+eb, +..

0 00

Substituting (F.28) into (F.26) and taking into account (F.27) leads to the following
equations of motion for the lead-lag modes in a first approximation:

_ _2 _ _2 1/ .
dl+ zéémcd(m +@d,+e [d{)’I + 2§;(1)€d(/” +®:d,, +cosyb,, - E(sm\y - cosw)] =0

(F.29)
" IV, " 2 I/ .
bog +28, @, by, + O;by, + € [bm + 2§;meOl +@m;b,, +cosyd  + 5(sm\y + cosw)] =0
The solutions of system (F.29) in the approximation of order O(e’) are therefore:
d =0
{ 00 (F30)
b, =0

The solutions d,, and by, in the approximation of order O(e') are according to (F.29) of
form:
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d

{ = €,,Co8y + e siny
b,, =f cosy +f siny

]

(F.31)

Substituting (F.31) into (F.29) and equating to zero, the coefficients e, e, and f,, f
are obtained as:

A B
[(m - 1)Z+4§§a)§] [(Cot - l)l +4E®
B A

[(o-1) - azzas (o.-1] +45c0]

] (F.32)

FRXN

where A and B are notations for the following expressions:

a o lloct)ae] o [(o-1)-2t0] €33)
2 2

The solution of the chassis-rotor motion in the approximation of order O(a.,’) is now
completely determined by looking at (F.32), (F.31), (F.30) (F.28) and (F.27):

[

n, =0
d, = __%___ (- Acosy +Bsiny
1 lo-1] s (734
b, = + (B cosy —Asinw)
" (-1 +ag0)

with A and B given by (F.33).

Solution in the Approximation of order O(c.")

The solution of the chassis-rotor motion in the approximation of order O(a,') are
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derived by substituting (F.25) into (F.24) and considering only the terms in o,

ny+28@m +oum, + < l«:osZ\y)n“ (2§;(‘o;sin\y—cosw)bf,+(l @é)sinw b, +

+ % d,sin2y = 3 (— 1 +cos2y -sin?_\y)

T VN UV VR WV TR
[ 4 +250, 0 r0idy 5t condy)a ot vconz)dy Sl dveoduld e

+ecosyb, - Zlcosw b,+ cos?\y b, = - %ﬂsin\u + gCOS\V + gsin3\y - %cos.%\y

1
b, +2E oX b, +(1) b +;( -1 +cos7w) b() - sin2y by + 2( 1 -cos’\u)b

+28, @, siny N, + @7 siny n, +ecosy d, =

Substituting the solutions (F.34) of b, and d, into the first equation of system (F.35),
the chassis equation becomes:

_ _2 1 A_>» . . A AL 21
nf/+2<§T(o.I,n rom, = e[_Z+Em§_§€ms }+e[§ ®. B—7—7< mg) 4}cos2\|l + 36)
+elE.D.A+ B.B (1 +G)1) l}stw e’ - B cosy + A siny + B cos3y + A sin3\|/} .
2 2 o4 4

Again, assuming the solution in 1, as an asymptotic expansion in €:

T]l :nl() "‘ST]”"'.... (F37)

and substituting this into (F.36), one obtains:

n, =0 (F.38)

For i, one may assume for the chassis a solution in the form:

N, =g, cos2y +g sin2y (F.39)

Substituting (F.39) into (F.36) and equating to zero the terms in sin2y and cos2y, it
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results:

(F.40)

—
i
Fagt]
|
—_—
—
o
J
Pl
e
PRy
-
—
|
=1
|
-
~——
)
+
[
=)}
A
-t
e
— 1o
[S—

where A and B are of form (F.33) and C, D are the following expressions:

3, . 3.2 .3\ ~ ~ ~ _2 ~
C =(-25.& —Zmé +Z)mi +(3 +65, @, ~300; )&, @, +3®7 +65,0, -3
(F.41)

3. 2 3\ 2 _ _2\p . _2 _
ZEo, o o _Z)(DT +(3-68, &, -3, )&, @, - 30, +65,®; +3

The solution of the chassis motion in the approximation of order O(,,") is thus:

n, = € (C cos2y +D sin2\[t) (F.42)

[ (®% - 1) + 4€if] (0% - 4f + 168505

Looking at the second and third equations of motion of system (F.35) it follows that the
chassis motion does not contribute to the collective lead-lag motion but it does to the
differential lead-lag mode. Substituting (F.34) and (F.40) into these equations one
obtains:

df’+ 2§C(‘n§df + (?L)édl +gcosyb, = € [2B8+ 1 2A-1

cosy+3 2 siny +

-

4[(6)é - 1)2 + 4&(9&]
sin3 ]- ¢! [Bcosz\,; + Asin2y - Beosdy - Asin4\11]
v 8[(6)2— 1)2+4§§(—,,§]

e[Bcosw + Asiny - Beos3y - ASiH3\|’] (F.43)

C2A-1

2B+1
+ cos3y

<

by +2E @ bj+ @b, + ecosyd, = —

[(®3- 1] +45i0]

- € [ (— 28 @ C+ %;D) cosy +

(@3 - 1)2+4§§c-o§] (@} -4y + 168507]

2 2 2

H(-280D+ %Tc) siny+(28,®,C - %TD) cos3y +(28,@,D+ %T C)sin3y]
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Assuming the solution as an asymptotic expansion in €, that is:

{dl =d, +ed, +.. (F.44)
b, =b,+eb, +..

and neglecting the terms in £ and substituting this into (F.43) yields:

d()l
{ (F.45)

l and respectively:

d\ +2.®_ d), +@cd,, =

2B +1 2A-1 .
+ cos3y -

Ib)) +2§§(_0;bf, +C02b,l = [B cosy + A siny - B cos3y -

(535 B 1)2 +4§§C—03 (F.46)
(DZ
-A sinB\V]— L [(— 28,0,C+ TTD) cosy +
[((og -1y +4§gmg“(m; -4y + 16&,.?,(0;]
(_DZ 6)2 6)2
+(— 28 @ D+ _2~TC) sinyf + (2&.1.6)TC - TTD) cos3y + (ZE,TG)TD + _2_TC) sin3y ]
The solution in d,, and b, can now be determined assuming modes of form:
{ d, =e, cosy +e siny +e,cos3y +e, sindy (F.4T)

b, =1 cosy +f siny +f cosdy +f_ sindy

Substituting (F.47) into (F.46) and equating to zero the terms in siny, cosy, sin 3y and
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cos 3y, the coefficients e, e, e., 4, f.;, £, f;, f; are obtained as:

Al(ﬁ)z - l) +28 @B,
o, - 1] +4e2ai] (F.48)
A®:-9)+68.0.B,

e, = B, (ﬁ)z‘lz)'zggﬁ);’f‘z e, =
o-1] e
e. = B}((_Dg—g)—6§§ﬁ);/\3 ce. =

o, - 1 +48%0] [[o, =i + 3660 ) o, - 1) +4520¢] [fo, = +36500;]

B0 -1)-260.A, Afoi-1)+26 0B,

- [(6)s -1)2 +4E 0] [((oi -4) +165101] b [(r,) c_1)2 +48%07  |(@7 -4 +16E501]

fo- Bf@; -9)-65,0.A, (F.49)
" o) e o3 -4y 16503 -9 +305iei]

- A[©29)+65 @B,

(@, 1) +4507) [0} -4 +1650% o, ~of +36530]

where:

2A-1 _2B+1 | _ _2A-1 _2B+1 (F.50)

B, =B [(a)i —4) + 16&%6‘0»?] +{2t,0,C - G);D)
A, = Al(@}-4) + 16607+ 28, 0,D + %C)z (F.51)
B, =-B [((_D? - 4>2 + 16};%6)21] +<' 28,0,D + %TC)

A, = -A[@} -4 + 1650} ]+(-28,0,D - %%C)

Adding the solutions for the first approximation of order O(«.,,') (F.47), (F.45), (F.44),
(F.39) one obtains:
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n, = ¢ (C cos2y +D sinZ\y)
(@2 -1) + 40l (@} -4F +165101]

d, = 8 {[BJ(('oé - l)—Z@l(o:Al]cosw +[A3((‘o§ - l)+2§:(o:Bz]sinw}+
o1 +azi0]] h -

, A {B,’-g-g - 65,®,.A,|cos3
R T ool .
+[a (0] -9)+65.0.B)| sin3\|1}

b, = : ¢ {B @ - 1)-25.0.A |cosy +|A @] - 1
H (o~ 1] -agi] [ -4f + 1687057 [Blo:-1) 2204 Jcosy +[Afo-1)+
+2§:(0:B4] sin\y} + . € - x

a o, - 1) +a220?] (@3 -4 + 16830} [[0, 9] +3650]

x { [ BS(('oé - 9) - 6E_,:_G)LA5] cos3y + [Ai(ﬁ): - 9) + 68_,;6);B5] sin3w}

Recalling the solution (F.34) for the O(a, ") solution, the final solution for the equations
of motion (F.24) using the asymptotic expansion (F.52) are:

o €
m

(@ -1)+42507) (@3 -4)+ 166 70]]

C cos2y +D sin2y )

- W ( A+ ocmA;)cosw + (B +a, B} )Sin\v .
o, - 1) +48;®;
“.HS[A; cos3y +B; sin3y
' ’ E (F.53)
o1 oo sl
€ . o€
y T ———— [Bcosw -Asiny |+ m y

[(m 1) ey [(ao 4 El0]| [l ) +16810}]

o, e [B;cos3y +A;S sindy

x [Bicosw + A:sin\p] + - -
[(a) 1) + 4§§®§] [(c‘oi -4)+ 16§$<‘né] [(Cog K 36&_,2(02]
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260 A [0} 4] + 162307]+ (28,0 D*—C” (F.55)

Al =[A[( 4f + 166707+ (2§TmTD+_21C)](m§—1)+

Or

+250 c[ [( af +16§%‘_”%] ( gT(DTC_?D)]

B; = [—B [@3 4y + 165307+ (-28,0,D+ G);C)]("”é -9)- 680, x

x| -A (@} -4f 165207+ + 2§Tmp-§c)]

(F.56)

Al =[—A (@3 -4 +165507)« -2 D—ﬁc)] (02-9)+62,, x

[ B [(; 4f +16§TcoTJ +(-28,0.D +.§_Ic)]

and the coefficients A and B are given by (F.33) and C and D by (F.41).

F.4 Effects of Higher-Order Terms in the Expansion

The question arises what the effect of higher-order terms than O(a.,') of the expansion
is on the system response. Considering the expansion (F.25) in higher-order terms it
follows that:

N =M, +o, M, tonm, +

a, (F.57)

_ 2
gN/z B bo o, bl Oy bz MR

_ 2
=d, +a_ d, +o,d, +..
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The chassis equation will contain terms proportional to o,’ b', cosy, @, b', siny and
am2 b, siny (see (F.35)) resulting from the differential mode, Since the differential
lead-lag response b, contains the harmonics cosy, siny, cos3y, sin3y, it follows that
these terms will contain the harmonics cos2y, sin2y, cosdy, sindy. By analogy with
the chassis response in the order O(w,') investigated above (F.53), it can be
demonstrated that the response of the chassis in the approximation up to O(e,”) will

contain a term proportional (~) to:

~ afnecos4w ! . ! - ! -

(@217 +42%0] (@7 -4] +165107) [ -9F +368%0]
1

(@316 64570

(F.58)

and respectively the same term in sindy. Therefore, the chassis response further
contains a resonance region situated in the vicinity of the frequency

@, =4 = Q =w./4. Additionally, in the approximation O, ), there will be a term
proportional (~) to:

1 1 1
[(Gaé -1y +4§§c‘o§] [(Coi -4f+ 16&}(0%] [(6)2 -9y +36§§6)§]
. 1 1 1

[(a)i -16) +64§i@3§] [(mg ~25) + 1002‘;2632] [(Coi -36)+1 44@%@%]

3
~ O, ECOS6Y

(F.59)

and also a similar term in sin6y which reveals a resonance of the chassis nearby
o, =6 s Q=0./6.

Finally, the question arises to the effect of higher-order terms in the expansions to &.
Assuming for example an expansion for the lead-lag modes of form:

{ d, =d, +ed, +eid, +.. (F.60)
b, =b,, +eb, +e’b, +..

in the approximation O(x,’) instead of the expansion (F.28), it can be demonstrated
that the lead-lag equations of motion (F.26) extended to include the terms d,, and b, in
the approximation O(e?) respectively contain the terms e’coswyb,, and e’cosyd,,. Since
the response in b,, and d,, include the harmonics cosy and siny, the above mentioned
terms will comprise the harmonics cos2y and sin2y. Thus the lead-lag response (F.26)
in the approximation O(¢?) in b, and d, will contain terms proportional to g’cos2y and
e’sin2y. These harmonics will be transmitted to the chassis equation of motion in the
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expansion of order O(c., ') via the differential lead-lag mode in terms proportional to
o, b'siny, -a b\cosy, -0, bsiny and via the collective in a term proportional to
o,ed,sin2y as seen in equation (F.35). It follows that the chassis equation of motion
will contain terms in o, g’cosy, o, e’siny, o,e’cosdy, o, e’sin3y and, also
considering the terms in €” in the chassis equation (F.36), it can be demonstrated that
the chassis response m, will also contain the harmonics cosy, siny, cos3y and sin3y.
Therefore, the approximation O(g®) introduces the harmonics cosy, siny, cos3y and
sin3y in the chassis response (F.53):

N~ ae’sing , ~ aglcosy , ~ ae’sindy, -~ oe’cosly (F.61)

Concluding, extending the expansion in ¢, introduces higher even harmonics cos4y,
sindy, cos6by, siny, cos8y, ... and resonances in the vicinity of rotational velocities
Q=w/4; Q= /6...in the chassis response (F.53). Extending the expansion in €
introduces odd harmonics cosy, siny, cos3y, sin3y, ... in the chassis response (F.53)
but it does not introduce new resonance regions.
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Floquet Transition Matrix Method

The stability of a system of ordinary lincar differential equations having periodic
cocfficients may be determined by applying the theory of Floquet [1923]. The technique
consists basically of finding the eigenvalues of the so-called "Floquet transition matrix".
The Floquet transition matrix relates the values of the state variables at the beginning
and the end of the period.

Consider the system of linear equations with periodic cocfficicnts:

[ M [{x }+[com [{x o[ xew [{x} -{Few } G.1)

where the coefficient matrices M(y), C(y), K(y) and F(y) are periodic with period
y,=2 r (this is the most general case for helicopter and wind turbine rotor dynamics).
To find the general solutions, one needs first to transform the system (G.1) into the
equivalent homogenous system:

( -[s0 ] {x) o
in which:

o) ~ [0] [ 1] (G.3)
{x} ‘{X/} ’ [S(w)]_[—[M]‘[K] S[M1C]

The Floquet transition matrix [ Q ] of system (G.2) is defined by the matrix equation:

{xap} <[ @ [{ x©} (G4)
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Relation (G.4) can be extended to the form:

QII QIZ QlN
(XD} =1 o (K@ +] o [ X0+ #7 o [ X,(0) (G.5)
QNI QNZ QNN

The column {x(y;)} corresponding to the initial conditions

k4
k#i

1
x,(0) = { . (G.6)

is identical to the i-th column of [ Q ]. By numerically integrating the equations of
motion (G.2) through one period for N sets of initial conditions defined by (G.6) for
i=1..N, it is possible to generate the N columns of the transition matrix . Then, the
eigenvalues A, of the [ Q ] matrix can be found (they are usually complex
eigenvalues). These eigenvalues are related to the eigenvalues of matrix S(y) in the
various modes, through the equation:

A, =eldriT (G.7)

Thus, the real and imaginary components of the system eigenvalues may be determined
from:

6, = =—I[R(A)+S(A)) : @ =iatan(S(Ak)) (G8)

2w, v \R(A)

Since atan is a multivalued function, each frequency w, may only be determined for a
basic frequency plus or minus an integer multiple of Q.

Concluding, the main task in the Floquet theory is to determine the transition matrix
[Q]. This is not an easy task, realizing that for N equations, N integration passes are
required and for large systems this may require excessive computing time. To overcome
this inefficiency, Kaza and Hammond [1976]°® developed an algorithm which allows to
determine the Floquet transition matrix with a single integration pass only. The
algorithm makes use of the Runge-Kutta method and gives the response as:

(n} =[] )
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The matrix H(y;) can be determined as:

1

[Hw) | :[1}—2[5(%)]—2(1—\/__) [E(wl)]—g(l +—1)[F(Wi>]‘t—6l[0(‘vi)] (G.10)

2 V2

[ty ] -[sto 3] {125 )

o ]<[stece {150 Selsn (-2

o [Ew) ]|

[ ] [sfe Y1)+ Lol - Ll

The Floquet transition matrix can be then easily determined by writing:

[Q ] =[u-w][HT-2m)] ... [H®) | [H©O)]

(G.11)

(G.12)

(G.13)

(G.14)






Appendix H

An Outline Survey on Helicopter Rotor
Blade Structural Couplings

The present appendix presents the effects of structural couplings as defined in section
3.4 of chapter 3 on the couplings between the rotor and rotor-body degrees of freedom.

H.1 Flap-Lag Coupling (Elastic Coupling)

Omniston and Hodges [1972]"" defined for a rigid blade a so-called "degree of clastic
coupling paramcter R" by dividing the flap and lead-lag hinge springs into two separate
spring systems, one inboard and one outboard from the pitch-axis:

- R = 0 corresponds to a soft hub with all the bending flexibility concentrated in
the hub (bending inboard the pitch);

- R = 1 corresponds to a stiff hub with all the bending flexibility distributed in the
blade (bending outboard the pitch);

- combinations of a soft hub and flexible blades are characterized by values of
flap-lag coupling between 0 and 1.

They observed that according to the value of R, there are essential dynamic differences
between rotors with the feathering hinge attached to the hub and rotors for which part
of the bending deflections occur inboard of the feathering hinge. For example, in
helicopter design, Westland, Bell and Lockheed generally choose for a soft flapwise
hub, whereas Bolkow/Vertol choose for a stift flapwise hub in soft flapwise rotors. The
effects of the elastic coupling on the stability characteristics depend on the blade natural
lagging frequency. In this respect, Ormiston and Hodges demonstrated that in hovering
flight the soft- and stiff-inplane rotors show a different behaviour as to elastic coupling:
while for the soft-inplane configurations distinction between a soft or a stiff hub is of
little concern, for stiff-inplane configurations flap-lag coupling effects are larger and
more varied. A small flap-lag coupling may produce lead-lag mode instabilities while a
large elastic coupling is usually highly stabilizing (see Figure H.l). Looking at this
figure it appears that the stiff-inplane rotors are very sensitive to flapiag _coupling
variation, and therefore, in these systems, the designer must carefully choose the flap-
lag coupling.

Peters [1975]™ extended the previous analysis from hovering to forward flight showing
that as the advance ratio is increasing, the inflow decreases, and hence, both the soft-
and stiff-inplane rotors with low flap-lag coupling are destabilized. Although the
advance ratio introduces periodic coefficients in the flap and lag equations of motion,
no parametric instabilities were found.
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Figure H.1 Effect of Flap-Lag Coupling in a Soft- and Stiff-Inplane Rotor (Ormiston
and Hodges [1972]°)

Burkam and Miao [1972]" extended the previous analysis from an isolated rotor to
coupled rotor-body air resonance characteristics in a soft-inplane hingeless rotor model.
The placement of the pitch hinge is a critical parameter for the stability characteristics:
with the pitch hinge inboard of the flap flexure (stiff hub), a favourable pitch-flap
coupling (see section H.2) occurred, which increased the stability with collective pitch
until the steady induced-drag term became dominant at high collective; with the pitch
bearing outboard of the flap flexure (soft hub), the favourable couplings available
within the practical helicopter manoeuvre range were eliminated. Therefore, from a
design trade-off standpoint, inboard pitch hinge placement is favoured over the outboard
position for a soft-inplane case. The authors only investigated thrusts of lg, but
underlined that thrusts other than 1g should be examined because, with thrust changes,
the collective pitch and coning angles change, leading to important changes in the
structural couplings, particularly with the hinge sequence of feathering-flap-lag.

H.2 Pitch-Flap Coupling

Section 3.4 of Chapter 3 defined the way in which the pitch-flap coupling may be
introduced in an articulated and a hingeless rotor. In hingeless rotors, the pitch-flap
coupling is characterized by a pitch-flap coupling parameter K, defined as the slope

of pitch versus flap curve K, 86’ in articulated rotors the pitch-flap coupling is

d
introduced by an inclination of the %’lapping hinge with an angle §; (see Figure 3.6)
from where the name of "8, hinge" for the pitch-flap coupling in articulated rotors and
is defined as Ky, = -tan §,. The present section reveals the way in which the pitch-flap
coupling affects the rotor and rotor/body characteristics. Remember that a positive
pitch-flap coupling (negative 8,) in this dissertation corresponds to flap up with pitch
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up or flap down with pitch down. This sign convention is not standard used in the
literature and therefore can result in ambiguous interpretations.

Morduchow and Hinchey [1950]™ presented for an articulated rotor helicopter early
design criteria on the pitch-flap coupling for a hovering helicopter. The effects of the
pitch-flap coupling on the flapping and lagging degrees of freedom concern primarily
the blade tlapping frequency, and secondarily the damping of the lead-lag mode: as 3,
decreases to negative values (i.e. flap down with pitch down), the flapping frequency
decreases and the damping in lagging increases. For very small negative values of §,.
the flapping motion diverges. Therefore, the designer, is advised to adjust 8, to positive
values (flap up with pitch down) in order to avoid flapping divergence but, to not forget
that by doing this, the damping in lead-lag decreases.

While the criteria of Morduchow and Hinchey were derived in a steady-state flying
condition, Shapiro [1955]" investigated the effect of pitch-flap coupling in two transient
helicopter conditions: a sudden application of the collective pitch and a power failure.
During the transient response to a sudden application of collective pitch, due to the
increasing lift on the blades, the blades coned upwards and transmitted an increased
thrust force to the rotor. The presence of a pitch-flap coupling reduced the transient
increase of lift because upward coning is associated with an automatic reduction in
pitch. The pitch-flap coupling therefore acted as a "lift equaliser". With regard to the
design criteria on pitch-flap coupling, Shapiro recommended to use a negative but small
pitch-flap coupling (for instance 0.4 corresponding to pitch up with flap down). Large
pitch-flap coupling prevent the application of transient thrust and, therefore reduce the
manoeuvrability of the helicopter. In the case of a power failure, Shapiro demonstrated
that the pitch-flap coupling had a favourable influence as well. The transient behaviour
of the rotor in the first two to three seconds after the power failure are of great
importance. To continue in autorotational flight, the collective pitch of the rotor had to
be adjusted to the requirements of such flight, and in most helicopter rotors a
considerable reduction was required. Before this reduction takes place, the rotor slowed
down and the resultant diminished coning caused an automatic reduction of pitch.

Because pitch-flap coupling affects primarily the flapping characteristics, it follows that
the flying qualities will also be strongly affected by this parameter. Some of the
positive effects on the helicopter's flying qualities introduced by a well-chosen
pitchflap coupling are: control and gust sensitivity* are reduced, the rotor angle-
ofattack instability* is diminished, the control cross-coupling* is changed. Wright and
Lappos [1979]'" reported that the integration of a positive 8, in the design of the
articulated Sikorsky S-76, was of great importance. The use of the pitch-flap coupling
suppressed the gust response (with a minimum horizontal stabilizer area) and reduced
the pitch-to-roll coupling, improving the helicopter's control response and stability.

For a hingeless rotor, one of the first investigations on the effects of pitch-flap coupling
was given by Ommiston and Hodges [1972]". Looking for favourable pitch-flap
couplings in soft- and stiff-inplane hingeless configurations in hover, they concluded
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that while soft-inplane configurations are almost insensitive to the variation of the
pitch-flap coupling, stiff-inplane rotors are very sensitive to this parameter. For a soft-

inplane rotor, a negative pitch-flap coupling is desirable (i.e. flap up with pitch down);

for a stiff-inplane rotor, a variety of different kinds of behaviour exists, depending on
the flap-lag coupling R (see Figure H.2). The most critical configurations are the

combinations of a stiff-inplane rotor with a soft hub (for R = 0.2, positive and negative
pitch-flap couplings should be used). For these rotors, care should be taken to prevent
the flap and lag blade frequencies from becoming too close, leading to resonance. For
elastic couplings R = 0.4 (configurations of stiff-inplane rotor and stiff hub
combinations), positive pitch-flap couplings (i.e. pitch down with flap up) are
stabilizing.
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Figure H.2 Flap-lag Stability Boundaries Dependence on the Pitch-Flap Coupling for a
Stiff-Inplane Rotor (Ormiston [1977]°)
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Peters [1975]"° extended Ormiston's conclusions for a stiff-inplane rotor, investigating
the effect of advance ratio on pitch-flap coupling. When in hover, the effect of pitch-
flap coupling on the flapping and lagging modes is strongly dependent on the elastic
coupling; in forward flight, negative pitch-flap coupling (i.e flap up with pitch down) is
generally destabilizing. At advance ratios of around 0.4, an instability appeared (this
was demonstrated even for an articulated rotor), but, this instability was mild and a
moderate amount of lead-lag damping was still sufficient to stabilize the motion.

The combination of pitch-flap coupling and hub flexibility not only reflects in the
isolated rotor characteristics, but it also has consequences for the coupled rotor-body
motion. This is especially the case with stiff-inplane rotors, where the pitch-flap
coupling is very sensitive to the variation of other parameters in the system. Two
examples from the literature will be mentioned, one reporting a lead-lag blade
instability, the other a coupled rotor-body instability, both in stiff-inplane/soft hub
configurations:

Johnston [1971]* described the "half-P-hop" lead-lag blade instability of the stiff-
inplane/soft hub Lockheed AH-56A Cheyenne that occurred during high-speed forward
flight. The adverse positive pitch-flap coupling used in the beginning of the design
contributed to the intensity of the instability. The instability was partly eliminated by
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changing the positive pitch-flap coupling of 0.22 to about zero.

The second example, described by Anderson [1973]%, refers to the rotor-body instability
of the reactionless lead-lag mode in the stiff-inplane/soft hub rotor of the Lockheed
AH-56A encountered at low speed and high lift. This instability was actually caused by
the incrcased adverse pitch-lag coupling, but, the pitch-flap coupling was also
contributing to the instability. In this case, changing the pitch-flap coupling from zero
to negative values had a destabilizing effect.

For stiff-inplane/stiff hub configurations, positive pitch-flap coupling (i.e. flap up with
pitch down) should be used to stabilize the motion. But, one should not forget that, by
doing this, there is a danger that the flap and lead-lag blade frequencies become too
close to each other, leading to resonance. This was the case reported by Gaffey [19631%
for a proprotor in axial flight. Proprotors are stitf-inplane/stiff hub configurations and
therefore, at first, a positive pitch-flap coupling (flap up with pitch down) was
incorporated in the design, in the belief that this was favourable for this type of system.
The result obtained was opposite. This instability could only be explained by realizing
that the amount of positive pitch-flap used was too high, inducing static flap
divergence. The proprotor requires large pitch settings in axial flight, and this led to a
strong reduction of the blade lead-lag frequency to a value which nearly coincided with
the flap frequency.

Pitch-flap coupling in a hingeless rotor may be adjusted by modifying the blade
geometry. In practice, the designer may use so-called "geometric parameters' which,
although small in magnitude, have a strong influence on the degree of coupling
between the blade flap-lag-and-torsion degrees of freedom. As to pitch-flap coupling,
Huber [1973]” described how this coupling may be adjusted by two geometric
parameters: sweep and precone (see also sections H.4.1 and H.4.3) . This practical
technique was used for the Bélkow Bo-105 in order to change the dynamic flight
behaviour. It was demonstrated that even as small a change as 15° in equivalent 6,
angle for the Bo6-105 helicopter flying at 100 knots reduced the angle-of-attack
instability by 40%. This technique is very important, because by properly combining
the structural couplings via the design parameters, the design may be adapted exactly to
the customer's requirements and more freedom can be gained in the design process.
Also, although the selection of the flap frequency is normally subject to certain
limitations and is often impractical beyond a certain point, a higher margin may be
gained by using the aeroelastic coupling effects.

H.3 Pitch-Lag Coupling (Pitch-Lead Coupling)

Section 3.4 of Chapter 3 defined the way in which the pitch-lag coupling may be
introduced in an articulated and a hingeless rotor. In hingeless rotors, the pitch-lag
coupling is characterized by the pitch-lag coupling parameter K, defined as defined as

the slope of pitch versus lag curve K, = ?; in articulated rotor the pitch-lag coupling
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is introduced by an inclination of the lagging hinge with an angle a, or 8, (see
Figure 3.7) from where the name of "o, hinge" or "3, hinge" for the pitch-lag coupling
in articulated rotors and is defined as K, = + tana, or K. = + tand, . It is assumed
that a positive pitch-lag coupling (i.e. positive o, or 8, hinge) corresponds to a pitch
down with lag or pitch up with lead. The effects of the pitch-lag coupling on the
aeroelastic and flight mechanics helicopter stability characteristics are summarized
below.

For an articulated rotor, Morduchow and Hinchey [1950]™, investigating the influence
of pitch-lag coupling on the flapping and lagging characteristics of an articulated rotor
in hover, showed that pitch-lag coupling primarily affects the blade lead-lag damping
and secondly the flapping damping: by decreasing 8, to negative values (i.e pitch up
with lag), the damping in lead-lag increases, but the damping in flap decreases. In
answer to the question on how the designer should use the pitch-lag coupling, their
recommendation was to adjust §, to negative values (i.e lag back with pitch up) but not
to forget that by doing this, the damping in lead-lag is increased and the damping in
flap is decreased.

The lead-lag mode is characterized by small damping and therefore, in case of an
instability, this mode very quickly becomes unstable. Probably the first reported case of
instability caused by the adverse pitch-lag coupling was a flap-lag instability reported
by Chou [1958]" for an articulated rotor. The instability was due to the adverse
control-linkage mechanism which induced an adverse pitch-lag coupling in the system
(the flap-lag instability is also called pitch-lag instability because it appears due to the
adverse pitch-lag coupling in the system). Chou [1958]' developed a stability criterion
with respect to the minimum lead-lag damping required for stability. The lead-lag
damping was derived as a function of pitch-lag coupling and coning angle. It was
demonstrated that the damping in lagging decreases as the coning angle increases and
that negative pitch-lag coupling is stabilizing (i.e pitch up with lag). Blake et. al.
[1961]® demonstrated that Chou's stability criterion is unconservative if - besides the
pitch-lag coupling - negative pitch-flap coupling is included in the model.

Note that pitch-lag coupling mainly affects the damping in lead-lag motion, thus being
important for the helicopter's aeroelastic stability. Once such instabilities are avoided,
the effect of pitch-lag coupling on the flying qualities is usually not substantial. In
contrast, pitch-flap coupling always affects significantly the flying qualities.
Commenting on the influence of the pitch-lag instability on the flying characteristics,
Blake et al. [1961]F considered that it takes a reasonable amount of time before the
pilot reacts to a flap-lag instability and, therefore, this instability is not likely to cause
flight failures (in fully articulated rotors). The strong dependency of this instability on
the coning angle suggests that, once he recognizes the situation, the pilot could get into
a stable regime by quickly dropping collective pitch. The authors also drew attention to
the fact that the lead-lag dampers frequently have non-linear characteristics (with
regards to the damping force for a given lagging velocity) and therefore, a prior
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knowledge of the steady or transient lagging velocity should be available in order to
predict the instability in forward flight.

Hohenemser and Perisho [1958]" presented a test case of an articulated rotor in which
the use of a positive pitch-lag coupling was destabilizing. This behaviour opposite to
the previous cases resulted from the different value of the blade lead-lag frequency.
Usually, an articulated rotor is soft-inplane, but the test rotor used in this paper was a
stiff-inplane rotor. Also in this case, Chou's criterion was unconservative. Kaza and
Kwatemik [1979]"7 demonstrated that the pitch-lag coupling depends not only on the
lead-lag trequency, pitch-flap coupling or coning angle, but the order in which the flap
and lag hinge are situated is a critical parameter as well.

For a hingeless rotor, Onmiston and Hodges [1972]"" and later Hodges and Ormiston
[1976]" developed criteria concerning the pitch-lag coupling Ky, to be applied in a
hingeless rotor in hover. As with articulated rotors, pitch-lag coupling in the first place
affects the blade lead-lag damping and in the second place, the flapping damping (see
Figure H.3). However, compared to an articulated configuration, a hingeless rotor
presents a variety of behaviours, depending primarily on the lead-lag frequency
(soft/stiff distinction) and secondly on the elastic coupling (soft/stiff hub). For soft-
inplane rotors, negative pitch-lag coupling (lag back with pitch up) stabilizes the
motion. For stiff-inplane rotors, depending on the flap-lag coupling parameter, a variet
in behaviour is observed, as seen in Figure H.3: in a stiff-inplane/soft hub rotor,
positive pitch-lag coupling should be used, in a stiff-inplane/stiff hub rotor, negative
pitch-lag coupling should be used, in a stiff-inplane rotor with elastic coupling between
[0.1; 0.3] either positive or negative pitch-lag coupling may be used.
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Figure H.3 Flap-Lag Stability Dependence on the Pitch-Lag Coupling for Soft and
Stiff-Inplane Parameters (Ormiston and Hodges [1972]°)

Peters [1975]" extended the conclusions of Ormiston and Hodges [1972] from
hovering to forward flight. For a stiff-inplane rotor, the qualitative trends in pitch-lag




pes - e

280 Appendix H

coupling are not affected by the advance ratio, but, for a soft-inplane rotor, the effects
of pitch-lag coupling can be reversed from hover to forward flight. Hence, for a soft-
inplane rotor, the criterion on the pitch-lag coupling should not be generalized from
hovering to forward flight, neither for the isolated rotor nor for the coupled rotor-body
motion. At advance ratios of 0.4 instabilities were encountered for negative pitch-lag
coupling. The level of lead-lag damping for a soft or stiff-inplane hingeless helicopter
may be augmented by using the pitch-flap and pitch-lag couplings. In turn, the pitch-
flap and pitch-lag couplings may be augmented by adjusting the different geometrical
parameters, as witnessed for the pitch-flap coupling. It has already been shown in this
literature survey that stiff-inplane rotors are very sensitive to the different structural
couplings which may lead to different rotor instabilities in these rotors. The soft-inplane
rotors, although not so much exposed to structural couplings variation, are dangerously
sensitive to rotor-body instabilities such as ground and air resonance. Therefore,
adjusting the flap-lag, pitch-flap and pitch-flap couplings in the system through the
blade geometric parameters is a valuable technique for the designer. As a result, the
rotor and rotor-body instabilities are counteracted and helicopter flying qualities may be
improved.

Huber (1973}°2 and Hodges and Ormiston [1977]* used this technique for the isolated
rotor, adjusting the pitch-lag coupling by using droop, precone and pre-sweep (see
section H.4). Bousman et al [1976]° used the pitch-lag and elastic coupling to augment
the low level of lead-lag damping for a soft-inplane rotor, first for an isolated blade and
next for the rotor-body motion. Ommiston [1977]” used the same technique to
counteract the air resonance of a soft-inplane rotor. He demonstrated that - although
some couplings were very effective at zero-pitch-angle for the isolated blade - for the
rotor-body case, they were destabilizing. These conflicting trends in the pitch-flap and
pitch-lag couplings were also reported by Bousman [1981]'° who simulated the air
resonance condition for low and high pitch angles (0° and 9°): at zero-pitch-angle,
pitch-lag coupling was actually destabilizing; at high pitch angle, the combination pitch-
lag and pitch-flap coupling was stabilizing, although not sufficient to eliminate the roll
mode instability.

Hence, the designer should bear in mind that the effects of structural couplings on the
isolated rotor are not necessarily a valid indication on how they will affect the coupled
rotor-body motion. This was the problem with the stiff-inplane/soft hub rotor of the
Lockheed AH-56A. Anderson [1973]° reported a rotor-body instability of the scissors
mode (inplane reactionless mode) caused by the increased adverse pitch-lag coupling
due to the large coning angle at the high lift condition. For the isolated blade, a positive
pitch-lag coupling was used in order to stabilize the motion caused by the negative
droop, but in the coupled rotor-body motion, this pitch-lag coupling became
overcompensated by a high coning angle at high lift. As a general recommendation for
a soft-inplane rotor, one should always use some degree of negative pitch-lag coupling
to avoid ground and air resonance.
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Hodges and Omiston [1977]" derived an analytical expression for the blade pitch-lag
coupling including precone B, droop B, blade pitch-link flexibility f and blade
torsional stiffness K, distribution of torsion stiffness between the blade K, and the
pitch control system K,:
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where K, is the rigid blade torsional spring stiffness, K,, is the rigid blade pitch-link

® s the rigid blade total torsion equivalent spring stiffness, f = —=
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is the pitch-link flexibility defined as the ratio of pitch-link stiffness to blade elastic

torsion stiffness, K. the lead-lag bending stiffness, K the flapping bending stiffness,

9, blade root pitch angle , ¢, rigid blade induced inflow angle, v, the flapping

frequency, B,, the precone angle , B, the droop angle.

spring stiffness, K =

H.4 Geometric Parameters of Hingeless Rotor Blade

The main geometric parameters in a hingeless rotor through which the blade frequency
and damping characteristics may be varied may be seen in Figure 3.8 of Chapter 3.

H.4.1 Precone angle

In a hingeless configuration, the precone angle is a fixed angle built into the blade roots
of hingeless rotor blades to place them in a fixed coning position independent of lift or
centrifugal forces. Introducing precone, the values of blade coning angle will change.
Since the precone influences the equilibrium blade coning angle, it strongly affects the
structural couplings in the system, especially the pitch-lag coupling. In practice,
precone angle has been used to reduce blade stress. In general, precone controls:

- pitch-lag coupling According to (H.1), the effect of precone on the pitch-lag coupling
1 KK
¢} Vé
that the effect of pitch and precone on the pitch-lag coupling are of opposite sign. At
low pitch angles, a high precone angle thus causes a positive pitch-lag coupling which
is usually adverse, favouring instability as demonstrated above. These instabilities
appearing at low pitch angles and caused by precone is called "precone instability”. In
contrast, low precone angle causes a negative pitch-lag coupling, thus favourable for the
blade which increases the blade inplane stability and air resonance characteristics. For
example, for the B6-105, a 5° precone is less stable than a 2.5° precone configuration
and the 0° precone case is even better. For different manoeuvre levels, high precone

are given by a term K | = . Also, from (H.1) one should observe
y PC'p,

pe
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degrades the favourable pitch-flap coupling. For the B6-105, for example, a 0° precone
rotor adds about 5% damping ratio as compared to a 2.5° precone. For matched
stiffness blade configurations* (K.=Kj), looking at (H.1), neither pitch nor precone
generate pitch-lag coupling. This explains the virtual absence of instabilities for
matched hingeless rotors.

- pitch-flap_coupling Burkam and Miao [1972]"' demonstrated that precone controls
directly the Coriolis coupling of the blade (that is if a flapping-up velocity produces a
nose-up or nose-down pitch moment) by controlling the aerodynamic coning angle. In a
soft-inplane configuration, precone less than the total cone angle relieves the blade root
from the flapping moment and gives a positive aerodynamic coning angle which
consequently produces a favourable pitch-flap coupling (flap-up pitch-down moment).
Using a too high precone (built-in pitch axis above equilibrium coning angle) in a soft-
inplane configuration results in an adverse pitch-flap coupling (this is because with
overprecone, the aerodynamic coning angle resulted is negative producing consequently
an adverse pitch-flap coupling (see section H.2).

Hence, too high precone (built-in pitch axis above equilibrium coning angle) introduces
both unfavourable pitch-flap and pitch-lag coupling. Low or negative precone (built-in

itch axis w_equilibri nin is in gen commended for improv ir
resonance stability. This conclusion was also confirmed during the beginning of
hingeless rotor design at Aerospatiale. Gallot [1969]* reported that the use of excessive
precone in Aerospatiale soft-inplane hingeless rotor experiments created a lot of
difficulties for the designer. Accordingly, he recommended the designer to use precone
in soft-inplane rotors with caution.

Huber [1973]”, searching for changing the pitch-flap coupling in the soft-inplane
Bolkow Bo-105, demonstrated that precone and pre-sweep have equal effect on the
pitch-flap coupling (called 8,-change). However, blade precone is not as 8,- active as
blade pre-sweep. For the B5-105 a 8,-change of 12° per degree sweep angle was
equivalent to a 8;- change of only 6° per degree precone angle. Since the total coning
angle (given by summing precone and aerodynamic coning) is fixed for a certain thrust
condition, the influences of precone and thrust are supplementary: low precone acts like
high thrust and vice versa. Hodges and Ommiston [1977]* this time compared the
effects of precone to the droop and found that, depending on pitch-link flexibility,
precone and droop had either identical or very different effects on the flap-lag-torsion
stability boundaries. Sharpe [1986] also illustrated both theoretically and
experimentally how combining the precone and droop parameters may be used to
augment the level of lead-lag damping in a stiff-inplane/stiff hub rotor. Yeager et. al.
[1983]'” conducted a wind-tunnel test of a soft-inplane hingeless rotor with body and
pitch motion. The measurements showed the favourable influence of either precone or
negative droop on the stability. Peters [1975]*° demonstrated that, qualitatively, precone
has the same effect in forward flight as in hover.
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H.4.2 Droop (Pre-flap) Angle

Droop angle can be defined as a constant built-in angle in the same plane as the
precone angle (see Figure 3.8). The effect of droop angle on the general stability
characteristics was investigated by Hodges and Ommiston [1977]" in a stiff-inplane
configuration. Droop, just as precone may be used to control the pitch-lag coupling.
Looking at (H.1), the effect of precone on the pitch-lag coupling is given by a term

| =1 ,(K;—KB_ K,
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more complex that the effect of pitch or precone. There arc two droop terms, one
similar to the precone term and one depending only on the lead-lag bending stiffness
K. and the pitch-control flexibility f (see also section H.5). Droop angle alone is not as

effective as precone:

- )Bd. The effect of droop on the pitch-lag coupling is

V[; l+f

- when the pitch-link is rigid (f = o0), the effect of droop is similar to negative
precone;

- as pitch-link flexibility is introduced, the contribution of droop to pitch-lag
coupling depends strongly on the pitch-link flexibility: the effect of droop
decreases with increasing pitch-link flexibility. For very low values of f, the sign
of the pitch-lag coupling due to droop will change and result in instability at
negative blade pitch angles. In the case of the stiff-inplane rotor used by Hodges
and Ormiston, negative droop generated a destabilizing positive pitch-lag
coupling.

Even for matched stiffness configurations*, the blade droop generates a pitch-lag
coupling and therefore according to section H.3, a lead-lag instability can result for a
positive droop angle.

H.4.3 Sweep (Prelag) Angle (forward sweep=pre-sweep)

Sweep angle can be defined as a fixed built-in angle in the disc plane (see Figure 3.8).
Investigating the effect of blade pre-sweep on a soft-inplane rotor, Huber [1973]%
represented the effect of blade sweep on elastic pitch-flap-lag coupling as seen in
Figure H.4. The sweep angle can be used to control:

- pitch-flap coupling. Using forward blade sweep, the pitch is increased when the
blade flaps up (see Figure H.4) which is equivalent to a positive pitch-flap
coupling (according to the sign convention of section H.2). Using rearward
blade sweep, due to the relief of the centrifugal force moment, the mean lead-lag
moment is nearly nullified and the total coupling is influenced by the alternating
flap and lead-lag terms. As both blade motions are 180" out of phase, the
pitching motion is in phase with flapping motion, as opposed to the previous
case, indicating a negative pitch-flap coupling (positive 3,-effect). Therefore,
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forward sweep results in negative §, angles, rearward sweep in positive 3§,
angle. The author demonstrated that pre-sweep angle had a great impact on flight
dynamics behaviour: only small rearward blade sweep is sufficient to make the
aircraft stable at a speed of 100 knots.

- pitch-lag coupling. In the case of a forward swept blade, the pitch is reduced
when the blade lags back and increased when the blade moves forward. This
type of pitch-lag coupling is unfavourable and has a destabilizing influence on
the blade lead-lag motion. In contrast, the aft swept blade shows an elastic pitch
increase when the blade lags back and a pitch decrease when the blade moves
forward. This is a favourable pitch-lag coupling.
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Figure H.4 Effect of Blade Sweep on Elastic Pitch-Flap-Lag Coupling (Huber [1973]7)

The effect of blade pre-sweep on air resonance for a soft-inplane rotor was investigated
by Burkam and Miao [1972]"'. Blade sweep both forward and rearward on the critical
4° precone hub had a significant effect on the high collective instability: forward 5°
sweep raised the stability region, but lowered the high collective instability boundary;
aft 5 degree sweep lowered the stability region but raised and almost eliminated the
high collective or fast roll instability. Roll damping was increased by the sweptback
blades, giving a 8, effect when pitch link flexibility .

H.4.4 Twist Angle

Hodges and Ommiston [1977]* demonstrated that the twist angle introduces an
increment in flap-lag coupling (see section H.1) that varies along the blade and is
independent of the blade pitch angle. Pre-twist also influences the distribution of
aerodynamic forces along the blade. When blade pre-twist is included in the
configuration, the use of structural coupling parameter R becomes ambiguous. (for
example R=0 implies that the bending flexibility of the blade outboard pitch bearing is
zero, in which case the twist could have no significance in a structural sense).
Therefore, it is advisable to eliminate R from the equations by putting R=1. For a stiff-




Appendix H 285

inplane rotor, blade pre-twist increases flap-lag structural coupling in the region of the
blade where most of the bending takes place (because it increases the inclination of the
principal flexible axes of the blade cross section at the blade root). Increasing flap-lag
coupling significantly increases the lead-lag damping. especially at low blade pitch
angles. For a soft- inplane rotor. the effect of pre-twist is less important since the
difference between flap and lead-lag mode bending stiffness is smailer.

H.5 Control-System Flexibility

Control-system flexibility increases the couplings in the rotor, and creates the possibility
to use the flexibility of the blade to counteract the instabilities. On the isolated blade,
the adverse control-system flexibility was responsible for the instability reported by
Hohenemser and Perisho [1958]" in the case of an articulated rotor. The adverse
control-sysiem flexibility resulted in their casc in a pitch-lag instability. Gaffey {1969]"
also reported in the case of a tilting prop-rotor, that, when control system flexibility
was introduced, the phasing between the flapping and inplane motion changed such that
the Coriolis force from the blade flapping tended to increase the inplane motion.

On the coupled rotor-body, the effect of control-system flexibility on air resonance was
investigated by Huber [1973]™ for the soft-inplane rotor of the B&-105. The typical
influence of control flexibility must be seen in conmection with rotor thrust and the
resulting aerodynamic coning angle. At low thrust, the blade experiences slightly
unfavourable pitch-lag coupling, which results in reduced damping. An extremely soft
control system could introduce an instability into this region. Conversely, pitch-lag
coupling acts stabilizing in the normal and high thrust region, which results in a
considerable damping increase with reduced stiffness. Therefore, a completely rigid
control system - even if it would be achievable- is not optimal. It is advisable to
introduce some control-system flexibility within the practical helicopter manoeuvre g-
range. The effects of control-system flexibility are even more outstanding when other
parameters have been optimized: a zero precone rotor, for instance, will take advantage
from control-system flexibility. Burkam and Miao [1972]"" also investigated the effects
of control-system flexibility on the air resonance characteristics, concluding that a stiff
control-system minimizes the blade pitch response and improves overall stability. They
explained the mechanism of deterioration of air resonance stability at high collective
pitch: a steady aerodynamic drag force acting through the blade perturbation flap
displacement above the feathering axis produces a destabilizing nose-up pitch moment.
An increase in collective pitch increases the steady aerodynamic drag force,
consequently increasing the unfavourable coupling. This unfavourable aerodynamic
coupling may be minimized by increasing control stiffness. making the blade less
responsive in pitch; conversely, a soft control system would degrade stability.

To characterize the distribution of torsion flexibility between the pitch link and the
blade the so-called "pitch-link flexibility” f is defined yielding the ratio between blade
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pitch-link stiffness and blade torsional stiffness:

f = kR (H.2)

where k, is the pitch-link stiffness, GJ blade elastic torsion rigidity, R blade radius. f =
0 corresponds to pure root torsion (torsionally rigid blade) and f = < to pure elastic
torsion (configurations without pitch-link flexibility).

The effects of adding pitch-link flexibility on a stiff-inplane rotor were investigated by
Hodges and Omniston [1977]* . From equation (H.1) it follows that effects of pitch-link
flexibility on the rotor characteristics depend firstly on the droop angle and secondly on
the torsional stiffness:

- when no droop angle is present, in a blade with torsional frequency w,=8, the effect
of adding pitch-link flexibility (f decreasing from o to 0) is to reduce the pitch angle at
which the lead-lag instability occurred (slightly destabilizing the stiff inplane
instability); in a blade with torsional frequency ®,=5, similar results are observed,
except that, for configurations with large pitch-link flexibility (small f), the lead-lag
mode instability is eliminated at high pitch angles and a flap divergence* occurs.

- when droop is present, the effect of pitch-link flexibility is quantitatively different
from that of elastic blade torsional flexibility. Blade droop and pitch-link flexibility
together can strongly influence blade stability. Without pitch-link flexibility, the effect
of negative droop is equivalent to precone. With pitch-link flexibility, droop produces
additional effects that can generate instability in matched-stiffness blade
configurations*.

H.6 Chordwise Blade Balance

Miller 19501 demonstrated how the designer may tune the rotorcraft's flight dynamics
by modifying the chordwise blade balance for an articulated rotor in conjunction with
control flexibility. The main parameter that influences elastic blade torsion is the offset
between the aerodynamic centre of the blade and its centre of gravity. If the centre of
gravity is ahead of the aerodynamic centre, an elastic feathering feedback is introduced
which tends to alleviate aerodynamic disturbances- for example, an increase in rotor
angle of attack normally increases the lift on the advancing blade and decreases the lift
on the retreating blade, resulting in aft tilt of the tip-path-plane. The reaction to the lift
increase is mainly observed in the inertial forces centred in the blade centre of gravity.
Thus, the advancing blade, because of flexibility, is elastically feathered with the
leading edge down and the retreating blade is feathered with the leading edge up, which
introduces an elastic forward cyclic pitch that alleviates the aft lift of the tip- path-
plane. This process is the same for both articulated and hingeless rotors, but for a
hingeless rotor - because of its flap stiffness - the hub moment caused by elastic




Appendix H 287

feathering is much greater.

Reichert and Huber [1971]% showed for example that a 3% forward shift of the centre
of gravity of the B6-105 blade would reduce the rotor angle-of-attack instability by
30% at 100 knots and would increase the time to double the amplitude of the phugoid
mode from 6 to 40 sec. The Bo-105 blade is relatively soft with a blade torsional
frequency 3.4Q. For blades that are torsionally stiffer (such as those of Lynx) the
effects of elastic cyclic pitch feedback are smaller. For soft-flapwise blades, the lift is
transferred to the hub mainly via centrifugal forces centred in the centre of gravity; for
stiff flapwise blades. this transfer is mainly elastic and centred in the shear axis of the
blade cross section. For stiff flapwisc blades, the location of the shear axis is more
important than that of the chordwise centre of gravity. Chordwise overbalance:

- destabilizes the flap motion and should be used with caution at high advance
ratio (because it is a proportional tilting feedback with a phase angle near zero-
see feedback systems)

- provides an elastic negative pitch-flap coupling that is beneficial for all aspects
of flight dynamics.

Friedmann [1977]" studied also the effect of aerodynamic centre offset for an elastic
blade. The coupled flap-lag-torsional blade stability seems to be insensitive to small
amounts of offset (1-2% of the chord) between the aerodynamic centre and the elastic
axis. However values of 5% of the chord or more may lead to severe deterioration of
both flutter and divergence boundaries. "Chordwise overbalance is a means of reducing
angle of attack instability. To be effective, the control system must be relatively soft.
This may introduce other problems in the reversed-flow region at high advance ratio,
such as blade flutter or blade torsional divergence, quite apart from the blade weight
penalty."(Friedmann [1977]°).
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Glossary of Helicopter and Wind Turbine-Related Terms

ADS-33 specifications = Aeronautical-Design-Standard handling quality specifications
of helicopters elaborated in 1980's

Air resonance = instability caused by the interaction of low-frequency blade flapping
and lead-lag modes and rigid-body modes of the airframe ( generally the body pitch
and roll modes).

Angle-of-attack instability = instability characterized by an increase of the rotor angle-
of-attack of major concern in hingeless rotors. To minimize the angle-of-attack
instability it is desirable to kecp the flap-bending stiffness of the blades, particularly in
the root section, as low as possible.

Advancing lead-lag mode instability = instability involving the coupling of the rotating
and fixed structure of the wind turbine in the advancing lead-lag mode and the chassis
bending modes

Blade kinematic couplings = Couplings between the blade degrees of frecdom resulting
from the blade kinematics, usually encountered in articulated rotors

Blade structural (elastic) couplings = Couplings between the blade degrees of freedom
resulting from the blade flexibility

Chassis = the tower + nacelle system in a wind turbine

Complex plane (s-plane) = The plane in which the abscissa gives the damping in the
system and the ordinate the damped frequency

Crosswind = a superimposed wind component that appears in the plane of the rotor (it
can be seen as a gust that causes a change in the relative wind direction and magnitude
or yaw misalignment)

Control cross-coupling effects = There are three types of cross-coupling: 1) direct
control cross coupling effects where a longitudinal control input also produces a rolling
moment, and a lateral control input also produces a pitch moment 2) indirect control
couplings where changes in angle of attack produce both pitching and rolling moments
and 3) a pitch rate produces not only pitch damping but also a pitching moment. All
three types of cross coupling depend on the blade flapping frequency and advance ratio

Control sensitivity = the asymptotic pitch or roll rate per unit step control input (values
of 14 to 20 deg/sec/inch are specific for helicopters)

Degree of freedom = a mechanical system is said to have one degree of freedom if its
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geometrical position can be expressed at any instant by one variable only. Generally if
it takes n variables to specify the position in space of a mechanical system, that system
is said to have n degrees of freedom.

Divergence = a blade static instability in the pitch direction depending on the distance
between the section's centre of gravity and aerodynamic centre, in which the dynamic
forces do not play any role

Downwind / Upwind = wind turbine with the rotor placed behind respectively in front
of the tower as seen from the main wind direction

Droop = constant built-in angle in the blade flapping plane (see Figure 3.8)

Dynamic instability = a system which possesses a multiplicity of vicious circles through
which two or more degrees of freedom mutually "pump" energy into each other. These
vicious circles are created by destabilizing forces acting on the system that have
components in phase with velocity. In a dynamic instability problem the mechanism of
couplings between the system's degrees of freedom is important.

Free (natural) response = the free response of a differential equation is the solution of
the equation for an input identical to zero (also called natural response)

Forced response = the forced response of a differential equation is the part of the
solution of the differential equation depending on the input only

Flutter = blade instability primarily caused by the coupling of the blade bending and
torsion degrees of freedom. For helicopters it can be avoided by mass balancing the
blade such that the chordwise position of the centre of gravity is forward of the
acrodynamic centre

Flapwise instability = instability of the transient flapping motion of the blade sometimes
appearing in helicopters at hight advance ratios and frequently in wind turbines in stall
conditions

Flapping divergence = instability of the blade flapping motion in which the dynamic
aerodynamic forces play no role: a deflection in the flapping angle always results in
large deflections in the flapping direction

Flap-lag instability = rotor instability of a weakly damped lead-lag mode caused
primarily by coupling of the blade flapping and lead-lag degrees of freedom

Ground resonance = for helicopters this instability is caused by the coupling between
the blade lead-lag motion and the in-plane hub motion. It can be eliminated by placing
mechanical lag dampers on the blade. For wind turbines this instability is caused by a
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coupling between the asymmetric lead-lag mode and the lateral bending of the tower
Gust sensitivity = the asymptotic pitch or roll rate per unit gust input

Loading problem = problem in which the designer concentrates on the response of the
system to different external excitation sources

Lumped flexibility = Assumption in which the flexibility of the blade is assumed as
being concentrated in flexible lumps (virtual hinges characterized by a specific offset
and spring constant), with the rest of the blade being considered as rigid. This
assumption is also called rigid-blade concept.

MIL specifications = handling quality specifications of helicopters elaborated in 1950's

Matched stiffness = blade configuration in which the bending-torsion couplings are
minimized as much as possible (torsional deflections resulting from the combined flap
and lead-lag bending are minimal). This is achieved by designing a blade with a
flapping stiffness equal to the lead-lag stiffness K=K,

Natural modes of motion (Eigenmotions) = characteristic motions of the system which
change in time but stay directed along their corresponding eigenvectors (the motion
variables change but their mutual relation does not change during the motion)

Nap-of-the-Earth (NOE) flight = flight using the terrain to the maximum extent
possible to avoid detection. In NOE-flight speed requirement is subordinate to the
visual cues.

Operational flight envelope = refers to any envelope within which care-free operation is
guaranteed (e.g. n-V diagram)

Pitch-flap coupling = coupling of the blade (of kinematic or structural nature) in which
the flapping motion of the blade produces a change in pitch. In an articulated rotor,
pitch-flap coupling is introduced by inclining the flapping hinge by a 8, angle (from
whence originates the name of 3,-hinge)

Pitch-lag coupling = coupling of the blade (of kinematic or structural nature) in which
the lead-lag motion of the blade produces a change in pitch. In an articulated rotor,
pitch-lag coupling is introduced by inclining the hinge with an o, or 8, angle (from
whence originates the name of «,-hinge or §,-hinge)

Pitch-flap-lag instability = a coupling between blade flapping, lead-lag and pitch
degrees of freedom characteristic to hingeless and bearingless rotors (also called flap-
edgewise-torsional flutter)
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Poles of motion = solutions of the system characteristic equation (which is equivalent
with putting the denominator of the transfer function equal to zero)

Primary (ordinary) resonance = resonance of a dynamic system appearing when the
frequency of the external excitation is the same as one of the system's natural
frequencies

Pendular (parametric) resonance = resonance of a dynamic system in which the external
excitation is acting on the system through the coefficients of the system differential
equation

1-P excitation = excitation reaching its maximum once per rotor revolution

Precone angle = constant angle built into the blade roots of a hingeless rotor blade to
place the blades in a fixed coning position independent of lift or centrifugal forces (see
Figure 3.8)

Twist = difference between root and tip angle of incidence

Rotational sampling = fluctuations of the wind excitation frequencies as seen by a
rotating blade caused by the cyclically passing of the blade throughout a wind velocity
field that varies over the rotor disc

Speed of decay = the speed at which a transient motion of the system dies out

SAS system = Stability-Augmentation-System

SCAS system = Stability-and-Control Augmentation-System

Sweep = built-in angle in the rotor lagging plane (see Figure 3.8)

Stall flutter = in the classical form, stall flutter only involves torsional oscillations of
the blade appearing at large blade angles of attack and non-linear, unsteady

aerodynamic

Steady-state response = the response of the system after the transient response has died
out

Torsional oscillations = Torsional oscillations of the rotor disc and shaft system as
observed in wind turbines, which may occur if the shaft system is sufficiently soft

Transient response = the response of the system which approaches zero as time
approaches infinity
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Teetering rotor = two-bladed rotor mounted on a single horizontal hinge (the so-called
teetering hinge) that allows flapping that is always equal and opposite on the two
blades. The teetering hinge is a rigid interconnection between the two blades in the hub,
allowing a free teeter of the rotor with respect to the shaft

Time constant = the time constant of a transient motion represents the time in seconds
needed for the system to reduce that transient to ¢”' = 0.368 of its initial value

Transfer function = the ratio of the Laplace transtormation of the output and input of a
dynamic system with initial condition zero

Tower shadow = the wake created by the tower of a wind turbine

Unsymmetrical rotor instability = instability in unsymmetrical rotors (rotors with non-
uniform properties around the rotor disc) caused by the gyroscopic coupling between
the rotor and the elastic support of the rotor

Wind shear = the variation with height of the undisturbed wind velocity

Whin flutter = self-sustained or divergent precessional motion or "whirl" of the
propeller about its unperturbed position. This may occur in a flexibly mounted
propeller/nacelle installation in which the nacelle degrees of freedom allow the
propeller plane to precess in response to the gyroscopic moments associated with the
rotating propeller

Weaving = instability of semi-rigid and teetering rotors primarily described as a rotation
of the entire rotor about the universal joint hinge. It is caused by the coupling between

the pitching motion and the blade flapping dynamics

Zero of motion = solution of the transfer function numerator put equal to zero







Samenvatting

Tijdens het ontwerp van helikopters of horizontale-as windturbines, worden
simulatiemodellen ontwikkeld voor verschillende doeleinden, zoals het bepalen van de
prestaties, het zorgen voor aéro-elastische stabiliteit, het bepalen van de responsie van
het systeem op verschillende externe excitaties, het bepalen van de
vermoeiingseigenschappen en extreme belastingen van kritische componenten alsmede
het ontwerp van besturingssystemen. Een van de primaire vragen die beantwoord
moeten worden voordat begonnen wordt met het daadwerkelijk afleiden van een
simulatiemodel, is hoeveel detail moet worden meegenomen in termen van het aantal en
type mechanische vrijheidsgraden en het niveau van aérodynamische modellering. Voor
toestellen met roterende bladen is deze vraag nog niet beantwoord. In de literatuur vindt
men tcgenstrijdige opmerkingen ten aanzien van de vraag welke eigenbewegingen een
aanzienlijk invloed hebben op de laag-frequentie karakteristieken dic belangrijk zijn
voor besturingsmodellen van  helikopters en het constructief modelleren van
windturbines. Het doel van dit proefschrift is het ontwikkelen van cen algemene
methode die door de ontwerper-analist kan worden gebruikt voor het bepalen van de
noodzakelijke vrijheidsgraden die in aanmerking moeten worden genomen in een lage-
frequentie simulatiemodel voor helikopters en horizontale-as windturbines, voordat een
compleet model wordt afgeleid.

Een nicuwe methode -de zogenaamde kritieke pool afstands methode- werd afgeleid,
die zowel als een ontwerp als een evaluatie tool kan worden gebruikt, en die in staat is
de significante vrijheidsgraden in het simulatiemodel te bepalen. De kriticke pool
afstands methode bestaat er in principe uit dat de eigenwaarden behorend bij de
ongekoppelde eigenbewegingen in het complexe vlak worden gerepresenteerd, waarna
"kriticke gebieden" worden gedefinieerd waar potentiéle koppelingen tussen
verschillende eigenbewegingen zouden kunnen optreden. Een kritieck gebied wordt
gevormd door eigenwaarden die als "voldoende dicht bij elkaar” kunnen worden
beschouwd in het complexe vlak. Teneinde de onderlinge afstand tussen de
eigenwaarden in het complexe vlak te kunnen kwantificeren, is een criterium
ontwikkeld dat in staat is voor het geanalyseerde systeem een schatting te geven van
wat moet worden verstaan onder "voldoende dicht bij elkaar".

Gebruik makend van de kritieke pool afstands methode werden in drie gevallen
richtlijnen uitgewerkt voor de noodzakelijk modelstruktuur: 1) een onderzoek naar de
significante rotor disc-tilt modes in een besturingssimulatiemodel; 2) een onderzoek
naar het instabiliteitsmechanisme van de KEWT tweebladige horizontale-as
windturbine; 3) een onderzoek naar de effecten van kinematische pitch-flap en pitch-lag
koppelingen van het blad op diens flap-lag bewegingen voor een scharnierende rotor in
hover. Voor elk geanalyseerd probleem werden criteria en vuistregels voor de kritieke
pool afstands methode ontwikkeld om te kunnen beoordelen of eigenwaarden voldoende
ver van elkaar verwijderd zijn, dan wel dicht bij elkaar liggen.

Wat betreft de effecten van de disc-filt dynamica op de rompdynamica werden, bij het
bestuderen van het natuurlijke zowel als het bestuurde gedrag van de met volledig
gescharnierde Puma SA-330 en de semi-stijve Bélkow Bo-105, met behulp van de




kritieke pool afstands methode tijdens het simuleren van een deceleratie manoeuvre en
een side-step manoeuvre, twee kritieke gebieden ontdekt waar de romp en de disc-tilt
beweging koppelen: ten eerste een kritick gebied in het longitudinale bewegingsvlak,
gevormd door de eigenwaarde van de korte-periode rompbeweging en die van de
regressing flapping mode en een tweede kritiek gebied in het laterale bewegingsvlak
gevormd door de eigenwaarde van de roll-subsidence mode van de romp en die van de
regressing flapping mode. Een criterium om de koppeling tussen de romp
eigenbewegingen en de regressing flapping mode te kwantificeren werd vastgesteld. De
romp/rotor disc-tilt koppeling hangt in het geval van de gescharnierde Puma helikopter
af van de uitgevoerde manoeuvre: voor de deceleratiemanoeuvre konden de koppelingen
worden verwaarloosd terwijl dit voor de side-step manoeuvre niet het geval was. Voor
de semi-stijve B6-105 is de romp/rotor koppeling altijd sterk, onafthankelijk van de
vitgevoerde manoeuvre.

Wat betreft de instabiliteit van de tweede buiging-eigenbeweging van het chassis met de
lead-lag van de rotor in het geval van de KEWT windturbine, is volgens de kritieke
pool afstands methode de hoofdoorzaak de koppeling tussen de harmonische ®p,, van
de differential lead-lag mode en de tweede buiging-eigenbeweging van het chassis.
Deze twee eigenbewegingen vormen het voornaamste traject waarlangs de excitatie van
de zwaartekracht wordt doorgegeven van het blad naar het chassis en omgekeerd. Door
de eigenschappen van het blad en het chassis te variéren, werd een criterium
ontwikkeld voor de kritieke pool afstands methode. Door dit criterium toe te passen
werd ontdekt dat de instabiliteit kon worden opgeheven door hetzij de
dempingsverhouding van de toren te verhogen, hetzij de toren flexibeler of de bladen
stijver te maken.

Met betrekking tot de sterkte van de koppeling tussen de flap en lag beweging in een
rotor werd een kwantitatief criterium voor de kritieke pool afstands methode afgeleid op
basis van verschillende kinematische pitch-flap en pitch-lag koppelingen in het systeem.

Het kritieke pool afstands criterium moet worden gekwantificeerd door een veelvoud
aan cases te bestuderen, voordat conclusies kunnen worden getrokken. In die zin moet
de methode worden beschouwd als een ingenieursbenadering van het
simulatiemodelleringsprobleem. De geldigheid van de methode werd geévalueerd door
vergelijking met soortgelijke methodes (methodes die in staat zijn een indicatie te geven
van het detailniveau van het simulatiemodel, zoals het Campbell diagram, het Milne
criterium en de Vector Shift methode of methodes die worden gebruikt om het
mechanisme achter de instabiliteit in een roterend systeem te bepalen, zoals de Force-
Phasing Matrix techniek of de Energy-Flow methode). De kracht van de kritieke pool
afstands methode ligt erin dat deze kan worden toegepast voordat met de
daadwerkelijke afleiding van de gekoppelde dynamische bewegingsvergelijkingen wordt
begonnen.

Tijdens het parallel onderzoeken van de problematiek van helikopter en windturbine
modellering, bleek er een misverstand tussen de beide gemeenschappen te bestaan met
betrekking tot de definitie van flexibele/stijve configuraties. Het blijkt dat moderne
windturbines flexibeler worden in termen van de dimensionale flapping en lead-lag



frequenties, maar dat zij in termen van de niet-dimensionale frequenties stijver worden.
Deze waarneming dient als een waarschuwing aan windturbine ontwerpers om zich
bewust te zijn van het feit dat moderne windturbine configuraties een nieuw gebied
betreden van rotor- en rotor/toren aéro-elastische instabiliteiten die karakteristiek zijn
voor stijve systemen en die mogelijk moeilijk onder controle te houden of te elimineren
zijn.

Afsluitend kan dit proefschrift worden beschouwd als een eerste stap in de ontwikkeling
van een algemene methode die door de ontwerper-analist kan worden gebruikt om de
noodzakelijke vrijheidsgraden voor helikopters en windturbines te kunnen bepalen. Om
algemene richtlijnen met betrekking tot de noodzakelijke modelstructuur te verkrijgen,
moet de kritieke pool afstands methode worden toegepast op cen database van
problemen specifiek voor lage-frequentie simulatie modellering van helikopters en
windturbines. De genoemde richtlijnen dienen rekening te houden met de gewenste
nauwkeurigheid en het toepassingsgebied van het dynamische model.






Sumar

in proiectarea elicopterelor §i a turbinelor eoliene cu ax orizontal, modele dinamice de
simulare sunt dezvoltate in diferite scopuri cum ar fi: pentru a asigura performanta
acestor sisteme; pentru a asigura echilibrul aeroelastic: pentru a determina raspunsul
sistemului la diferite perturbatii externe: pentru a determina caractersticile de oboseala
sau sarcinile extreme in componentele critice sau pentru a proiecta sisteme de control.
Una din primele intrebari ce trebuiesc rezolvate inainte de a incepe derivarea efectiva a
unui model de simulatie este legatd de nivelul de detaliu ce trebuie considerat in model
(mai exact numdru} gi tipul gradelor de libertate ce trebuiesc considerate in model
precum si nivelul de aproximare al modelarii aeroelastice). Afirmatii contradictorii sunt
intilnite in literatura de specialitate referitor la iIntrebarea cite moduri au un efect
substantial asupra caracteristicilor dinamice In domeniul de joasa frecventa important
pentru simularea comportarii pilotate a elicopterelor sau a modeldrii structurale a
turbinelor eoliene. Scopul acestei dizertatii este de a elabora o metoda generald care sa
poate fi folosita de proiectantul analist, Tnainte de inceperea derivdrii unui model
complet, in determinarea gradelor necesare de libertate ce trebuiesc luate in considerare
in modelarea dinamicii elicopterelor si a turbinelor eoliene cu ax orizontal in domeniul
frecventelor joase.

O noua metodd -asa numita "metoda distantelor polilor critici"- a fost dezvoltatd
capabild sid determine gradele de libertate importante in modelul de simulatie Acesti
metodd poate fi folositd ca instrument de proiectare si evaluare. Metoda distantelor
polilor critici constd in principiu in reprezentarea in planul complex a valorilor proprii
ale modurilor decuplate ale sistemului si definirea "regiunilor critice” unde potentiale
cuplaje intre diferite moduri de miscare sunt posibile. O regiune critica este formatd din
valori proprii ce pot fi considerate “suficient de apropiate" una de alta in planul
complex. Pentru a cuantifica pozitia relativi a valorilor proprii in planul complex, un
criteriu capabil si estimeze sensul termenului "suficient de aproape" a fost dezvoltat
pentru sistemul dinamic analizat.

Folosind metoda distantelor polilor critici, directii referitoare la structura modelului
necesar au fost elaborate in trei cazuri: 1) investigarea modurilor semnificative ale
migcdrii de bataie a rotorului in modelele de dinamica zborului; 2) investigarea
mecanismului de instabilitate a turbinei eoliene KEWT cu doud pale; 3) investigarea
efectelor cuplajelor cinematice de pas-bitaie si pas-baleiaj asupra migcirii simultane de
bataie-baliaj a rotorului articulat de elicopter in zborul la punct fix. Criterii si reguli
practice referitoare la cum trebuiesc interpretate valorilor proprii aflate in apropiere au
fost dezvoltate in metoda distantelor polilor critici in fiecare din problemele analizate.

Referitor la efectele dinamicii migcarii de bitaie a rotorului asupra dinamicii corpului
elicopterului, studiind comportarea naturala si pilotatd a elicopterului articulat Puma
SA-330 si a elicopterului semi-rigid Bolkow B54105 in metoda distan telor polilor critici
si simuland o manevrd de deceleratic si una de pas-lateral, doua regiuni critice de
cuplaj intre migcarea corpului elicopterului i miscarca de bitaie a rotorului au fost
descoperite: in primul rand, o regiune critica in planul longitudinal de miscare, regiune
formatd din valoarea proprie a modului de scurtd-perioadd §i modul regresiv de bataie;



in al doilea rind o regiune criticd in planul lateral de miscare format din valoarea
proprie a modului de ruliu §i modul regresiv de bataie. Un criteriu de cuantificare a
cuplajului dintre modurile de miscare ale elicopterului gi modul regresiv de bataie a fost
stabilit. Cuplajul dintre modurile de migcare ale elicopterului si miscarea discului
rotorului in cazul elicopterului articulat Puma depinde de manevra executata, si anume:
pe cand in manevra de deceleratic acest cuplaj poate fi neglijat, in manevra de pas-
lateral acest cuplaj trebuie considerat. Cuplajul dintre corpul rigid de elicopter si
migcarea discului rotorului in cazul elicopterului semi-rigid B6105 este intotdeauna
puternic, independent de manevra executata.

Relativ la instabilitatea tubinei eoliene KEWT, instabilitate intre modul secundar de
incovoiere a sagiului i baleiajul rotorului, conform metodei distantelor polilor critici,
factorul primar responsabil de aceastd instabilitate este cuplajul dintre armonica ®,;,, a
modului diferential de baleiaj si modul secundar de Incovoiere a sagiului. Aceste doud
moduri formeazi calea principald prin care forfa de excitatie gravitationald se transmite
de la pala rotorului la sagiu si inapoi. Variind caracteristicile dinamice de frecventi si
amortizare ale palelor turbinei eoliene §i ale sagiului, un criteriu in metoda distantelor
polilor critici a fost dezvoltat. Folosind acest criteriu, a fost descoperit ca instabilitatea
turbinei eoline analizate a putut fi eliminatd prin mérirea raportului critic de amortizare

Referitor la gradul de cuplaj dintre migcarea de bitaie si de baleiaj al palei rotorului, un
criterin cantitativ a fost stabilit pe baza a diferite cuplaje cinematice de pas-bitaie §i
pas-baleiaj considerate in sistemul dinamic.

Criteriul distantelor polilor critici trebuie sd fie cuantificat prin investigarea a unei
multitudini de cazuri practice. De aceea, aceasta metodd trebuie sa fie considerati de
fapt ca o solutie inginereascd in rezolvarea problemei modeldrii unui system dinamic.
Validitatea metodei distantelor polilor critici a fost evaluatd prin compararea acesteia cu
metode similare (metode capabile sd ofere o indicatie asupra nivelului de detaliu in
modelul de simulare cum ar Diagrama Campbell, Criteriul lui Milne §i Metoda
Deplasarii Vectoriale sau metode folosite pentru determinarea mecanismului de
instabilitate intr-un sistem rotativ cum ar fi Tehnica Matricei de Defazaj al Fortelor sau
Metoda Diagramei de Energie). Capacitatea metodei distantelor polilor critici constd in
faptul de a putea fi aplicatd inainte de inceperea derivdrii complete a ecuatiilor de
migcare cuplate ale sistemului.

Examinind simultan problema modelirii elicopterului si a turbinei eoliene a fost
constatat ca existd un dezacord intre cele doua comunititi referitor la definirea notiunii
de flexibil/rigid. S-a constatat ca turbinele eoliene moderne devin mai flexibile vorbind
in termeni dimensionali de frecvente naturale ale modurilor de bitaie si baleiaj, dar in
termeni de frecvente adimensionale (adimensionalizate in raport cu viteza unghiulara a
rotorului), aceste configuratii devin din ce in ce mai rigide. Acestd observatie este
facutd pentru a atentiona proiectantii de turbine eoliene de a deveni congtienti asupra
faptului c@ evolutia turbinelor eoliene actuale se indreaptd in viitor spre un nou regim
unde instabilititi ale rotorului si ale rotorului/turnului sunt posibile, instabilitati atat de
caracteristice sistemelor rigide care sunt greu de controlat si eliminat.




In concluzie, lucrarea de fati poate fi considerati ca un prim pas in dezvoltarea unei
metode generale ce poate fi folositd de analistul proiectant pentru a determina gradele
necesare de libertate in modelarea comportirii dinamice a elicopterelor §i a turbinelor
eoliene cu ax orizontal. Pentru a obtine criterii generale relativ la structura necesard a
modelului de simulatie, metoda distantelor polilor critici va trebui aplicatd pe o baza de
date continiand probleme specifice pentru modelarea simulatorie in domeniul modurilor
de joasa frecventd a clicopterelor si a turbinclor eoliene. Criteriile mentionate vor
trebui si ia in considerare gradul de aproximare si scopul in care modelul dinamic va fi
folosit.
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