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A B S T R A C T

In the Condition-Based Maintenance (CBM) context, the definition of optimal maintenance plans for an aircraft
fleet depends on an efficient integration of : (i) the probabilistic predictions of the health condition of the
components and (ii) the stochastic arrival of the corrective maintenance tasks, together with consideration
of the preventive maintenance tasks as defined in the Maintenance Planning Document (MPD) . To this end,
in this paper, we present a two-stage dynamic scheduling framework to solve the aircraft fleet maintenance
scheduling problem under a CBM strategy in a disruptive environment. In the first stage of the framework,
we address the uncertainty in the predicted health state of the monitored components by planning the
optimal maintenance policy based upon the belief state-space of the health of the components. The decision-
making process is formulated as a Partially Observable Markov Decision Process (POMDP) and is solved
using the Partially Observable Monte Carlo Planning (POMCP) algorithm, considering the aircraft maintenance
scheduling problem requirements. In the second stage, a Deep Q-Network (DQN) is developed, that integrates
the defined maintenance policy of the monitored components within the scheduling of the aircraft fleet’s
preventive and corrective maintenance tasks. Our model, through a rolling horizon approach, continuously
creates and adjusts the maintenance schedule, reacting to new updated task information, where the availability
of maintenance resources constraints the execution of each task. The proposed framework was tested on a case
study from a large airline and the performance was evaluated against the current state practice of the airline.
The results show that our model can schedule 96.4% of monitored components on-time. As a consequence of
this, a 46.2% maintenance cost reduction is achieved for the considered monitored components relative to a
corrective maintenance approach.
1. Introduction

Maintenance, Repair and Overhaul(MRO) activities represent
around 10%–15% of an airline’s operational costs, while at the same
time they account for 80% of the ground time [1]. Hence, optimization
of the maintenance schedule is of high interest both for the scientific
community and the aviation industry.

Nowadays, aircraft maintenance is either following the preventive
or the corrective approach. The preventive approach is the most fre-
quently applied methodology in the aviation and imposes maintenance
interventions on fixed intervals, e.g., Flight Hours (FHs), Flight Cycles
(FCs) or Calendar Days (DYs). These intervals do not take the current
health status of the components into consideration. Thus, parts may
be replaced without necessity leading to waste of resources (labor
hours/spare parts) and improved operational costs. This strategy is
implemented through the preventive maintenance tasks provided in
the Maintenance Planning Document (MPD) and included in scheduled
maintenance checks, also referred as letter checks.
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All the other tasks not falling under the category of letter checks are
referred as corrective maintenance tasks. According to the corrective
strategy, a system is replaced/repaired only when it fails, thus the
lifetime of the component is fully exploited. However, the stochastic
nature of the corrective maintenance tasks creates disruptions to the
maintenance schedule, inducing high related maintenance costs.

In order to overcome the limitations of the former strategies, air-
craft maintenance providers are shifting towards a Condition-Based
Maintenance (CBM) logic. This is reflected in the constantly growing
number of condition-monitoring technologies, which are mostly based
on automatic sensor-based collection data, that have been developed
over the years for different systems of the aircraft (hydraulic systems,
engines, structures). Using these technologies, the CBM approach aims
to provide the maintenance planner with a constant insight into the
health state of the monitored system and, subsequently, project fail-
ure events, hence decreasing the amount of unnecessary maintenance
actions and at the same time, avoiding unforeseen failures.
vailable online 25 August 2023
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Fig. 1. Evolution of CBM with respect to data analytics level (based in [3]).
In the CBM context, different levels of data analytics can be em-
ployed: descriptive, diagnostic, predictive, and prescriptive [2]. In-
spired by the analysis performed in [3], the evolution of the CBM
approach with respect to the analytics level is summarized in Fig. 1.

Prescriptive analytics offers the highest degree of complexity and
maturity within the CBM context. They utilize the knowledge (usually
in the format of components’ Remaining Useful Life (RUL) predictions,
i.e., the estimated amount of usage that the component has until it
becomes non-operational) from predictive analytics and integrate it
with other information such:

• required resources (spare parts, workhours, machinery) and their
availability

• required ground time for the execution of the corresponding
maintenance task

• available maintenance opportunities

to derive the maintenance schedule that optimizes a target function,
which is shaped by the planning objectives of the maintenance planner.
In this paper, we use the term CBM to capture this last and prescriptive
step of scheduling maintenance activities denominated by prescriptive
analytics.

The conventional aircraft maintenance scheduling problem, which
refers to the optimal allocation of the preventive and corrective main-
tenance tasks to the best maintenance opportunities, is a very challeng-
ing problem because of its combinatorial nature. However, schedul-
ing within the CBM context becomes even more challenging for the
following reasons:

1. First and foremost, there is a specific degree of uncertainty
included in the RUL predictions of the prognostics algorithms.
The range in the predicted RULs creates great ambiguity for
the maintenance planner with respect to when to schedule the
component for maintenance.

2. Secondly, it will not be possible nor relevant to perform mainte-
nance in all aircraft components according to a CBM approach.
Therefore the scheduling of the prognostics-driven tasks has to
be combined with the scheduling of the existing preventive and
corrective maintenance tasks.
2

3. Following this, the continuous update of the RUL predictions to-
gether with the unexpected arrival of the corrective maintenance
tasks may create disruptions that compromise the feasibility and
the efficiency of the previously generated maintenance schedule.
For this reason, in a practical context, the maintenance schedule
needs to be continuously adjusted, whereas at the same time,
the operational availability of the fleet must be ensured and
last-minute schedule changes must be prevented.

As it has become evident, it is very difficult for a human main-
tenance planner to consider and translate all these different types of
inputs and constraints into an optimal maintenance schedule for the
aircraft fleet. Therefore, this research paper aims to build a prescriptive
two-stage maintenance scheduling framework that addresses the former
challenges in order to support decision-making for the maintenance
planner in a ‘‘hybrid’’ CBM context, where each aircraft is having
multiple components that are maintained through the preventive, the
corrective or the prognostics-driven approach, resulting to a mixture
of preventive, corrective or prognostics-driven maintenance tasks. The
maintenance date for the relevant components is determined by allo-
cating an aircraft to a maintenance slot, as determined by the output
of the framework. Moreover, since the model is supposed to serve as a
decision tool in a quasi-real time environment, it should be computa-
tionally efficient. It is noted that although the model is shown here in an
airline environment, we believe that its applicability extends to other
fields of maintenance planning, like the rail or the maritime industry.

In the first stage of scheduling, we acknowledge and address the
imprecision and uncertainty from prognostics, by adopting a Partially
Observable Markov Decision Process (POMDP) framework. Contrary to
Markov Decision Processes (MPDs), where the true state of the equip-
ment is known with certainty and the decision-maker chooses an action
based on that state, in POMDPs the maintenance policies are conditions
on beliefs over the state of the equipment. The POMDP is solved using
the Partially Observable Monte Carlo Planning algorithm, developed
by Silver and Veness [4], favorably tailored to the requirements of the
aircraft maintenance scheduling problem.

In the second stage, we utilize a Deep Reinforcement Learning
(DRL) algorithm to find the most suitable maintenance opportunity
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in the airline schedule for the allocation of all the different types of
tasks (prognostics-driven, preventive, corrective). A Deep Q Network
is developed that considers a hierarchy of scheduling objectives and
is constrained by the availability of material, machinery, method, and
manpower (4M). The final output of the framework is a dynamic sched-
ule for the prognostics-driven, preventive and corrective maintenance
tasks of each aircraft within the fleet.

To illustrate our approach a real case study, with a fleet of 34
wide-body aircraft, each equipped with multiple components that are
maintained through the preventive, corrective or the prognostics-driven
approach, is considered. The evaluation includes a comparison of the
efficiency of the proposed framework against the actual airline mainte-
nance schedule, a sensitivity analysis of the effect of uncertainty on the
number of tasks going due and the last-minute schedule changes, and
an assessment of cost reduction due to the introduction of prognostics-
driven tasks.

The remainder of this paper is organized as follows: In Section 2, the
relevant literature pertaining to fleet maintenance scheduling problem
with partial information is presented along with the identified re-
search contribution. The aircraft maintenance requirements, objectives,
and the general problem formulation are described in Section 3. The
POMDP problem formulation and the related POMCP based-scheduling
algorithm are discussed in detail in Section 4. The DRL scheduling
model for the aircraft fleet is described in Section 5. In Section 6,
a case study is performed for a fleet of 34 wide-body aircraft, each
of which has a list of open maintenance tasks that are updated on
a continuous basis. Finally, Section 7 summarizes the research with
concluding remarks and recommendations for future work.

2. Literature review

Maintenance optimization for a fleet of assets is a challenging prob-
lem to solve. Moreover, it is inevitably faced with multiple constraints
such as the manpower, material, machinery, and maintenance slot
capacity and availability. During the recent years, maintenance has
been studied from various perspectives [5]. As discussed previously, we
distinguish two broader categories of approaches pertaining to mainte-
nance scheduling: the condition-based, and the ‘‘traditional’’ preventive
and corrective approach. Individually they are widely discussed in the
literature.

Focusing on maintenance optimization problems of an aircraft
fleet considering the preventive and/or the corrective maintenance
approach, Deng et al. [6] proposed a Dynamic Programming (DP)
approach that optimizes the A and C-checks schedule for a heteroge-
neous fleet of 40 aircraft for a period of four years. Their objective
is to minimize the wasted interval between checks. The same case
study with a similar objective was studied by Andrande et al. [7], who
developed a DRL algorithm to schedule letter checks. Lagos et al. [8]
formulated the combination of aircraft maintenance scheduling and tail
assignment problem as an MDP. The problem is solved using Approx-
imate Dynamic Programming (ADP), where the estimation of future
costs is provided by means of rolling horizon techniques and value
function approximation. Most recently, van Kessel et al. [9] developed a
MILP framework for the dynamic scheduling of maintenance tasks in a
disruptive environment, where the execution of each task is constrained
by the availability of resources.

However, during the recent years CBM has gained increased atten-
tion as a preferred alternative approach to preventive and corrective
maintenance. As such it has been studied for various assets of various
degradation models [10]. The derived maintenance policy is based on
the knowledge about the system state. Observation data, such as sensor
measurements or RUL predictions provide information about the state
of the system. However, in the vast majority of cases, observation data
provide only partial information about the system state. For this reason,
maintenance policy optimization for a system under partial observabil-
ity as formulated as a Partially Observable Markov Decision Process
3

(POMDP). We refer the interested readers to the book by Powell and
Ryzhov [11] for a comprehensive analysis of different decision-making
methods under partial information.

Among some indicative examples, Nguyen et al. [12] developed a
dynamic condition-based maintenance and inspection framework using
a POMDP model for a system subject to continuous degradation and
imperfect inspections. Liu et al. [13] addressed a multi-type inspection
and online monitoring problem for gas turbines within a POMDP
framework, and they solved it using a combination of the value it-
eration technique and the 𝜆-minimization algorithm. Song et al. [14]
integrated Value of Information analysis within a POMDP framework
that uses multiple transition models for different deterioration rates
to derive the optimal maintenance policy for a corroding beam. Zhao
and Smidts [15] proposed a reinforcement learning approach consisting
of a learning and a planning component to improve the knowledge
of system degradation and compute the optimal maintenance policy
respectively. Most of the existing studies correspond to low dimensional
domains as they are calculating the optimal maintenance policy for a
single-component system. What is more, in all but a few studies [15],
it is assumed that the decision-maker has knowledge of the parameters
of the system degradation model.

However, in the aircraft maintenance scheduling problem, the num-
ber of states and actions can scale exponentially depending on the
number of considered aircraft and the different types of tasks, which
could take significant computational time and memory usage when
solved by any conventional solution scheme. This relates to the so-
called curse of dimensionality. An approach towards addressing the curse
of dimensionality as well as the less-known curse of history, where
the number of belief-contingent maintenance plans grows exponen-
tially with the planning horizon is proposed by Silver and Veness [4].
They develop a Partially Observable Monte Carlo Planning (POMCP)
algorithm for online planning for large POMDPs. Papakonstantinou
and Shinozuka [16] resort to a point-based value iteration solver to
derive the optimal maintenance policy for a concrete structure of a
considerably large state-space of 332 states.

Furthermore, recent studies have proposed the use of DRL for
maintenance planning within a high-dimensional CBM context, as
it has showcased unparalleled ability of learning and solving high-
dimensional and complex environments which are described by con-
tinuous state features, in a computationally efficient manner. Andri-
otis and Papakonstantinou [17] proposed a Deep Centralized Multi-
Agent Actor-Critic model to solve POMDPs for optimal decision-making
in complex, non-stationary, partially observable engineering environ-
ments with large state and action spaces. Building on this, Andriotis
and Papakonstantinou [18], developed a multi-agent DRL framework
to derive the optimal maintenance policy for multiple components
having a degradation represented by 4 states. Zhang and Si [19]
proposed a customized DRL model to optimize the maintenance of
multi-component systems having a degradation that follows a com-
pound Poisson and Gamma process. Mohammadi and He [20] applied a
DRL-based approach on maintenance and renewal planning of railways,
where they consider both preventive and condition-based maintenance,
along with budget constraints. However, in an airline environment,
the maintenance planner is faced with more complex operational
constraints and also with the frequent arrival of multiple unexpected
corrective maintenance tasks that, if they are not timely and efficiently
planned, might create disruptions to the busy flight schedule.

Focusing on CBM planning on the commercial aviation sector, De
Pater and Mitici [21] formulated a rolling horizon maintenance plan-
ning approach for multiple multi-component systems. Their model
integrates the RUL prognostics with the management of a limited
stock of repairable components, while also considering the availability
of maintenance slots. Their approach was illustrated on a fleet of
13 aircraft, each equipped with a Cooling System consisting of four
Cooling Units. In a similar fashion, De Pater et al. [22] proposed an

alarm-based dynamic maintenance framework for a fleet of 20 aircraft,
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Table 1
Defined sets for the two-stage scheduling model.
Set Description

𝑢 ∈ 𝑈 Set of monitored components
𝑔 ∈ 𝐺 Set of open maintenance tasks 𝐺 = 𝐺𝑝𝑟𝑒𝑣 ∪ 𝐺𝑐𝑜𝑟𝑟 ∪ 𝐺𝑝𝑟𝑜𝑔𝑛
𝑔 ∈ 𝐺𝑝𝑟𝑒𝑣 Subset of preventive maintenance tasks
𝑔 ∈ 𝐺𝑐𝑜𝑟𝑟 Subset of corrective maintenance tasks
𝑔 ∈ 𝐺𝑝𝑟𝑜𝑔𝑛 Subset of prognostics-driven maintenance tasks corresponding to monitored components 𝑈
𝑟 ∈ 𝑅 Set of aircraft registrations
𝑢 ∈ 𝑈𝑟 Subset of monitored components belonging in aircraft registration 𝑟 (𝑈𝑟 ⊂ 𝑈 )
𝑚 ∈ 𝑀 Set of maintenance slots
𝑚 ∈ 𝑀𝐹 𝑖𝑥𝑒𝑑 Subset of fixed maintenance slots
𝑚 ∈ 𝑀𝐹 𝑙𝑒𝑥𝑖𝑏𝑙𝑒 Subset of flexible maintenance slots
𝑤 ∈ 𝑊 Set of workforce skills
c

i
p
T

each equipped with 2 engines. Lee and Mitici [23] addressed the
predictive maintenance planning problem of turbofan engines using a
DRL approach. However, all the previous works focus only on main-
tenance planning of the monitored components (CBM tasks) without
considering the maintenance planning for the rest of the aircraft com-
ponents that are still addressed through the preventive and corrective
maintenance approach. Moreover, including in a CBM planning con-
text the full spectrum of constraints and planning objectives that are
encountered in a real commercial airline environment has not been
studied yet.

To sum up, maintenance optimization for a fleet of assets has been
studied from several angles. However, a dynamic framework, jointly
optimizing the allocation of preventive and corrective maintenance
tasks from multiple aircraft while considering the uncertainty of RUL
predictions driving the allocation of the CBM tasks under real 4M
constraints, has not been reported to the literature up to date. More
specifically, the main contributions of our research are summarized in
the following:

1. For the first time, a novel dynamic scheduling framework that
considers all the different types of tasks (preventive, correc-
tive and prognostics-driven) and 4M constraints encountered in
a real CBM airline environment, is developed. The proposed
framework performs well according to multiple Key Performance
Indicators (KPIs) and, more importantly, is computationally ef-
ficient and fast for real-time implementation in an airline envi-
ronment.

2. Second, an innovative approach, for deriving the optimal main-
tenance policy for monitored components having RUL predic-
tions with uncertainty, is proposed, based on a modified version
of the POMCP algorithm. It is also considered that the decision-
maker has no knowledge over the components’ degradation
model. At each time step of the decision-making, the algorithm
uses real-time RUL predictions to improve the decision-makers’
knowledge of the degradation process.

3. Third, a novel Deep Reinforcement Learning (DRL) approach,
with a set of elaborately-designed state features capturing the
planning objectives and the full spectrum of 4M constraints of
the aircraft fleet maintenance scheduling problem, is developed.

3. Problem formulation

3.1. Problem definition and scope

The problem we are addressing can be summarized as follows: Let us
consider an aircraft fleet, where each aircraft is having multiple com-
ponents. Some of these components are maintained according to the
preventive or the corrective approach — generating the corresponding
preventive and corrective maintenance tasks.

Moreover, some aircraft from the fleet are having components that
are monitored through sensors. We assume that the monitored com-
ponents of these aircraft are subject to deterioration according to a
4

t

Table 2
Defined parameters for the two-stage scheduling model.

Parameter Unit Description

𝑡 Date Current date of scheduling

𝛿𝑟 FCs Average flight daily usage of aircraft
𝑟, 𝑟 ∈ 𝑅

𝐶𝑃 Days Schedule change prevention days

𝐷𝑢𝑒𝑔 Date Due date of task 𝑔, 𝑔 ∈ 𝐺𝑝𝑟𝑒𝑣 ∪ 𝐺𝑐𝑜𝑟𝑟

𝐺𝑅𝑤
𝑚 Hours Amount of available labor hours of

skill type 𝑤 f maintenance slot 𝑚

𝐺𝑅𝑤
𝑔 Hours Amount of required labor hours of

skill type 𝑡𝑠 to perform task 𝑔

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑚 Hours Duration of maintenance slot s

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑔 Hours Duration of maintenance task 𝑔

𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑔 Date Creation date of maintenance task 𝑔

𝐶𝑐𝑜𝑟𝑟
𝑢𝑟

Euros Corrective maintenance cost for
component 𝑢 installed in aircraft 𝑟

𝐶𝑝𝑟𝑒𝑣
𝑢𝑟 Euros Preventive maintenance cost for

component 𝑢 installed in aircraft 𝑟

𝐷𝐷𝑔,𝑚 [–] 1 if the start date of maintenance
slot 𝑚 is before the due date of task
𝑔

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑔,𝑚 [–] 1 if the required material for the
execution of maintenance task 𝑔 is
available before the start date of
maintenance slot 𝑚

𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦𝑔,𝑚 [–] 1 if the required equipment for the
execution of maintenance task 𝑔 is
available before the start date of
maintenance slot 𝑚

𝐴𝐶𝑡𝑦𝑝𝑒𝑟,𝑚 [–] 1 if the aircraft type of maintenance
slot 𝑚 matches the type of aircraft
registration 𝑟

Table 3
Defined decision variables for the two-stage scheduling model.
Decision variable Description

𝑇𝑔,𝑚 Binary, 1 if task 𝑔 is assigned to slot 𝑚
𝐴𝐶𝑟,𝑚 Binary, 1 if aircraft 𝑟 is assigned to slot 𝑚

continuous-time discrete-state Markov chain. However, there is no spe-
cific degradation model that describes the deterioration of these com-
ponents. Instead, for every monitored component, after every flight,
a prognostics model produces a RUL prediction that follows the nor-
mal distribution ∼ 𝑁(𝜇, 𝜎2). Based on these RUL predictions, the
orresponding prognostics-driven tasks are generated.

This complete set of tasks is continuously updated, either due to
rregular arrival of corrective tasks, such as faults reported by the
ilots, or due to new RUL predictions obtained from the prognostics.
he overarching goal is to allocate these tasks to the available main-
enance opportunities, such that the airline operator’s objectives and
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the corresponding KPIs are satisfied. According to [3], the operator’s
objective can be summarized in the realization of high asset availabil-
ity for revenue generation through the assurance of reliable aircraft
operations.

Due to the different nature and requirements of the considered
tasks, we solve the aircraft fleet maintenance scheduling problem in
two stages. In the first stage, we derive the optimal maintenance policy
for the monitored components, by developing a POMDP formulation
that captures the stochastic relation between the component’s true
health state and the observed RUL prediction. In the second stage,
through a DRL approach, we incorporate the defined maintenance
policy of the monitored components within the scheduling of the
preventive and corrective maintenance tasks in order to devise a main-
tenance schedule for the aircraft fleet. The defined sets, parameters and
decision variables are described in Tables 1–3.

3.2. Scheduling framework

The proposed two-stage scheduling framework is summarized in
Fig. 2. The modeling blocks are represented with a gray background.

In the first stage, we solve the scheduling problem of the prognostics-
driven tasks, i.e., we seek to define the optimal maintenance policy
and corresponding date for each monitored component. Decisions
about maintenance intervention are made at discrete time points of
the planning horizon, referred to as decision epochs. These decision
epochs could be pre-defined, e.g. according to fixed intervals of 1
day, or just triggered by the arrival of new information from the
sensors. The sequence of events is as follows: At the beginning of
every decision epoch, a new RUL probabilistic prediction for every
monitored component is obtained from the prognostics model. Follow-
ing this new prediction/observation, the belief regarding the health
state of the component is updated. Based on the updated belief state,
the availability of maintenance slots and resources, and the related
maintenance costs, the prognostics-driven tasks scheduling algorithm
determines the optimal point in time to perform maintenance. The
former decision-making process is solved by a modified version of the
POMCP algorithm, discussed in Section 4. The output of the algorithm
is the optimal maintenance date for every monitored component.

In the second stage, we consider for scheduling the prognostics-
driven tasks that are defined from the optimal maintenance dates of
the monitored components, together with the current list of corrective
and preventive maintenance tasks for the aircraft fleet. We use a
DRL approach to solve the aircraft fleet maintenance scheduling prob-
lem. The DRL algorithm, taking into account the current maintenance
schedule, the set of different types of open maintenance tasks, the
available maintenance slots, and the available resources, produces an
updated maintenance schedule for the aircraft fleet for a time horizon
of multiple weeks. This updated maintenance schedule will form the
starting solution when new information for the maintenance tasks is
obtained.

3.3. Inputs of the scheduling framework

3.3.1. Inputs for the prognostics-driven tasks maintenance scheduling model
• Predicted RUL distributions: A distribution that captures the

amount of time left until the end-of-life of the component. For
every monitored component, the prognostics model produces a
predicted RUL distribution, based on the information it receives
from the sensors.

• Maintenance slots: The maintenance slots are time slots intervals
which are reserved to execute maintenance. Each slot has a start
date, an end date, and a designated aircraft type. Maintenance
slots can be further subdivided into two categories:

– Fixed slots: For the fixed slots, the assigned aircraft tail
number is predefined. Fixed maintenance slots are usually
scheduled several weeks in advance and consist of more
extensive maintenance operations such as letter checks.
5

– Flexible slots: For flexible maintenance slots, the aircraft
registration is variable and a maintenance scheduler is free
to decide which aircraft to allocate to the slot, as long as the
considered aircraft type matches the slot designated aircraft
type.

• Maintenance costs: For every monitored component, there is
a related preventive and corrective maintenance cost. The cor-
rective maintenance cost is always higher than the preventive
maintenance cost.

• Resources: The execution of a maintenance task requires the
availability of specific resources, referenced as 4M requirements.
Below an explanation of the 4M requirements that are going to
be considered in this research is provided:

– Method: Each maintenance task requires a specific amount
of ground time to be executed. This means that a mainte-
nance task can only be allocated to maintenance slots with
a duration equal to or higher than the required ground time.

– Machinery : Some maintenance tasks require the availability
of specific types of equipment and/or tools to be executed.
For each task, the date after which the required machinery
would be available, is provided.

– Material: Similar to machinery, some tasks require the avail-
ability of specific parts/consumables. For each task, the date
of material availability is provided.

– Manpower : Each maintenance task is associated with spe-
cific manpower requirements. The manpower is divided by
skill type. There is a daily workforce schedule, organized
in shifts, where the available workhours per skill are de-
scribed. A task can be allocated to a maintenance slot, only
if the corresponding required workhours per skill of the task
are satisfied, in means of the available workforce in this
specific slot.

3.3.2. Inputs for the aircraft fleet maintenance scheduling model
• Current maintenance schedule: A feasible and updated sched-

ule considering past information regarding the prognostics-driven,
preventive and corrective tasks. The maintenance schedule details
the allocation of maintenance tasks before their due date to the
available maintenance slots, based on the available resources. In
case a maintenance schedule does not exist, the proposed schedul-
ing framework can be used to generate an initial maintenance
schedule.

• Maintenance slots: An explanation of the maintenance slots is
provided in Section 3.3.1.

• Open maintenance tasks: In the aircraft maintenance context,
each aircraft has a backlog of open tasks. These tasks correspond
to jobs required to be executed within a specified time interval to
ensure aircraft airworthiness. Moreover, each task comes with the
4M requirements, namely the required execution time (Method),
workforce (Manpower), Material, and Machinery. In order for the
airline to be able to schedule a task, all 4M requirements need
to be satisfied. The different types of tasks that are going to be
considered in the context of this research are described below:

– Preventive maintenance tasks: The preventive maintenance
tasks are prescribed in the Maintenance Planning Document
(MPD) provided by the aircraft manufacturer. This type of
tasks is performed in fixed periodic inspection intervals that
come in the form of FHs, FCs or DYs. Once the task is
performed, the corresponding interval is reset.

– Corrective maintenance tasks: The corrective maintenance
tasks are non-scheduled tasks that can be a result of a fault
reported by the pilots or of a finding during the execu-
tion of a preventive maintenance task. In case a corrective
task corresponds to a component included in the Minimum
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Fig. 2. Overview of the two-stage scheduling framework, with the algorithms used in both stages highlighted in gray.
Equipment List (MEL), then the aircraft is allowed to be
airworthy with the corrective task unresolved, as long as
the due date of the task, as specified in the MEL, is not
exceeded. Moreover, a corrective maintenance task can also
correspond to Non-Safety Related Equipment (NSRE), and
as such the aircraft remains airworthy even after the due
date of the task is exceeded. Finally, there are corrective
maintenance tasks created as a result of modifications rec-
ommended by the manufacturer (Service Bulletins -SBs) or
by the aviation authorities (Airworthiness Directives - ADs).
The former type of tasks needs to be executed only once.

– Prognostics-driven tasks: The prognostics-driven tasks refer to
the maintenance of systems or components that are mon-
itored through sensors permanently. The collected infor-
mation is passed to prognostics models that predict the
RUL. Maintenance actions are triggered only when there is
strong evidence of failure risk, hence decreasing the num-
ber of unnecessary maintenance actions and, at the same
time, avoiding unforeseen failures (and corresponding un-
scheduled maintenance events). For the purposes of the
study, the prognostics-driven tasks correspond to compo-
nents that are not critical for the safe operation of the
aircraft, i.e., the component can fail without the flight safety
being jeopardized.

• Resources: An explanation of resources is provided in
Section 3.3.1

3.4. Maintenance planning objectives

Within commercial airlines, maintenance planners have to generate
maintenance schedules that are both efficient and stable. Increased
schedule efficiency leads to increased aircraft availability for opera-
tions, which subsequently increases the revenue for the airline. Main-
tenance schedule stability is reflected in flight schedule stability, hence
minimizing disruptions or delays in passenger itineraries. Following
this mindset of a maintenance planner within a real airline environ-
ment, and the analysis performed in [9], we consider the following four
planning objectives:
6

1. Task execution: The first objective is to execute tasks ahead of
their due date. When the due date of a task is exceeded, the
aircraft is no longer airworthy and it has to be grounded until
the corresponding task is performed. This induces major costs
for the airline, as the aircraft is not available for operations.

2. Aircraft operational availability: This is a two-fold objective:
The aircraft visits to the hangar for maintenance should be
minimized and, at the same time, the ground time associated
with these visits when they occur should be minimized. This
means that as many open tasks as possible should be addressed
at the fixed maintenance slots, since during these dates the
aircraft will visit the hangar for maintenance anyway, as part of
a letter check. Furthermore, the remaining tasks that cannot be
allocated at the fixed slots, should be assigned to as few flexible
slots as possible. At the same time, these flexible slots have to
be efficiently used, reducing the associated ground time wasted.
For example, a task with a required duration of execution of 5 h,
it is more efficient to be assigned to a maintenance slot with a
duration of 6 h rather than a slot with a duration of 10 h.

3. Schedule stability: The third objective is to guarantee schedule
stability by minimizing schedule changes due to the continuous
update of the maintenance tasks. A schedule change is defined
as a change in the aircraft registration assigned to a flexible
maintenance slot, when compared with the existing schedule.
Minimizing schedule changes contributes towards increased re-
liability of the established flight schedule, reducing the chance
of network disruptions such as flight delays or cancelations. It is
noted that reallocating tasks between maintenance slots of the
same aircraft registration is not considered a schedule change,
since it does not have an impact on the operational availability
of the aircraft. However, in case a schedule change cannot be
prevented, then the number of days of notice is important,
i.e., an aircraft allocation change one day before the day of
operations will have more severe effects on the flight schedule
than a change 10 days ahead.

4. Task interval utilization: The last objective is to plan tasks at
the optimal moment in time. A metric used in the airlines to
quantify the efficiency of task scheduling is the task interval
utilization, which can be defined as the ratio of the scheduled
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day of the task to the due day of the task. The preventive
maintenance tasks are executed in fixed intervals, meaning that
the objective is to schedule them as close as possible to the
end of the respective interval, as this would minimize the rep-
etition of maintenance interventions in the long run. For the
prognostics-driven tasks, the objective is to schedule them as
close as possible to the end of the RUL of the monitored com-
ponent. So, for both the preventive and the prognostics-driven
maintenance tasks, the objective is to achieve a high task interval
utilization. On the contrary, the corrective maintenance tasks
have to be executed as soon as possible for quality reasons. So
the objective for these tasks is to achieve a low task interval
utilization.

3.5. Constraints

∑

𝑟∈𝑅
𝐴𝐶𝑟,𝑚 ≤ 1 ∀𝑚 ∈ 𝑀 (1)

∑

𝑚∈𝑀
𝐷𝐷𝑔,𝑚 ⋅ 𝑇𝑔,𝑚 = 1 ∀𝑔 ∈ 𝐺 (2)

∑

𝑚∈𝑀
(1 −𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑔,𝑚) ⋅ 𝑇𝑔,𝑚 = 0 ∀𝑔 ∈ 𝐺 (3)

∑

𝑚∈𝑀
(1 −𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦𝑔,𝑚) ⋅ 𝑇𝑔,𝑚 = 0 ∀𝑔 ∈ 𝐺 (4)

∑

𝑔∈𝐺
𝐺𝑅𝑤

𝑔 ⋅ 𝑇𝑔,𝑚 ≤ 𝐺𝑅𝑤
𝑚 ∀𝑤 ∈ 𝑊 ,𝑚 ∈ 𝑀 (5)

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑔 ⋅ 𝑇𝑔,𝑚 ≤ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑚 ∀𝑚 ∈ 𝑀,𝑔 ∈ 𝐺 (6)
∑

𝑚∈𝑀
(1 − 𝐴𝐶𝑡𝑦𝑝𝑒𝑟,𝑚) ⋅ 𝐴𝐶𝑟,𝑚 = 0 ∀𝑟 ∈ 𝑅 (7)

𝑇𝑔,𝑚, 𝐴𝐶𝑟,𝑚 ∈ {0, 1} (8)

The set of constraints (1) imposes that only one aircraft can be
assigned to a maintenance slot. According to the set of constraints
(2), a task can only be assigned to a maintenance slot with a start
date earlier than its due date. The set of constraints (3)–(6) guarantees
the satisfaction of the 4M requirements when a task is allocated to
a maintenance slot. The set of constraints (7) ensures that aircraft of
a specific type can only be scheduled to slots of a matching aircraft
type, while the set of constraints (8) defines the type of the decision
variables.

4. Prognostics-driven tasks scheduling

In this section, we provide an analysis of the methodology and
the algorithm used to derive the optimal maintenance policy over the
intended planning horizon for the monitored components considered in
the aircraft fleet.

4.1. Problem formulation

4.1.1. State, observation and action modeling
Let 𝑅 denote the set of the considered aircraft registrations in

the aircraft fleet. Each aircraft has a set of different and independent
monitored components 𝑈𝑟, 𝑟 ∈ 𝑅, which correspond to a set of
prognostics-driven tasks 𝐺𝑟

𝑝𝑟𝑜𝑔𝑛. Moreover, each aircraft has a constant
average daily utilization rate 𝛿𝑟.

We formulate the decision-making process for the maintenance of
each monitored component as a POMDP. POMDPs have been widely
used in the scientific literature for asset management under uncertainty
(see [16] and the references therein). We assume that the deterioration
process {𝑋 } for every component is a continuous-time discrete-state
7

𝑡 𝑡≥0
Markov Chain. It is assumed that each of the components has two un-
observable (hidden) working states, 𝑆𝑋 = {0, 1}, where 0 corresponds
to the healthy state and 1 corresponds to the degrading state. The
observable failure state is defined as state 2, such that the component
state space is 𝑆𝑋 ∪ 2. It is noted that a problem with more than 2
working states might be considered. However, this will increase the
dimensionality of the problem accordingly. Moreover, from a practical
point of view, having two discrete working states makes easier the
interpretation of results from the decision-maker and the application
of the model in practice [12].

The component is classified as either being in the healthy or de-
grading state based on a predefined threshold 𝛥 of its true RUL, 𝐿𝑢.
The component is classified as healthy and degrading when 𝐿𝑢 > 𝛥 and
𝐿𝑢 ≤ 𝛥 respectively. Finally, the component has failed when 𝐿𝑢 = 0.

The sensor information for every monitored component is passed to
the prognostics model and at every decision epoch 𝑛 and time 𝑡 = 𝑇𝑛,
the corresponding RUL predictions, 𝐿𝑢(𝑇𝑛), are obtained. However, the
rue state of the component cannot be directly inferred from the 𝐿𝑢(𝑇𝑛),
ecause of the uncertainty included in the prediction. To capture the
ncertainty of the predictions, the predicted RUL, 𝐿𝑢(𝑇𝑛), is represented
y the Gaussian distribution, i.e., 𝐿𝑢(𝑇𝑛) ∼ 𝑁(𝜇𝑢, 𝜎𝑢). Based on the
ean value 𝜇𝑢 and the predefined threshold 𝛥, we obtain the observed

tate 𝑂𝑇𝑛 . The observed deterioration process 𝑂𝑇𝑛 ∈ 𝑆𝑂 = {0, 1, 2}
s then a discrete-time discrete-state stochastic process. After running
he prognostics model at time 𝑡 = 𝑇𝑛, given that the true state of the
omponent 𝑋𝑇𝑛 = 𝑘, 𝑘 ∈ 𝑆𝑋 , if 𝑂𝑇𝑛 = 𝑘, then the state of the system is
orrectly detected. Otherwise, i.e. if 𝑂𝑇𝑛 ≠ 𝑘, the detection is incorrect.

As it is evident, the observed state relates stochastically to the
rue underlying, but hidden working state of the component, which is
ither healthy or degrading. This relationship is captured by the state
bservation matrix  = (𝑞𝑖𝑧)2×2, where 𝑞𝑖𝑧 = 𝑃 (𝑂𝑇𝑛 = 𝑧|𝑋𝑇𝑛 = 𝑖), 𝑖 ∈ 𝑆𝑋 ,
∈ 𝑆𝑂, is the probability that the decision-maker observes that the

omponent is in state j while the component is in true unobservable
tate 𝑖. We calculate the state observation matrix by using historical
ata of 𝐿𝑢 and 𝐿𝑢.

Based on the observation 𝑂𝑇𝑛 that is received at every decision
epoch 𝑛, the maintenance planner may choose to perform a mainte-
nance intervention or not, subject to constraints (2)–(7). It is noted that
these constraints need to be satisfied for each component individually.
Following this, at the first stage of the scheduling model, the set of
constraints (1) does not have to be verified, since the computed optimal
dates are used as a reference in the second stage of the scheduling
framework, when the set of the constraints (1) are considered and
specific maintenance dates are allocated to aircraft. The possible main-
tenance actions are thus defined as 𝑎𝑇𝑛 = {0 ∶ 𝐷𝑜 − 𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 1 ∶
𝑃𝑒𝑟𝑓𝑜𝑟𝑚 − 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒}.

.1.2. Update of the state transition law at each decision epoch
The state transition law, 𝑃 (𝑋𝑇𝑛+1 = 𝑗|𝑋𝑇𝑛 = 𝑖), defines the con-

itional probability that the component is in the discrete state 𝑗 at
ime 𝑡 = 𝑇𝑛+1, given that it was at discrete state 𝑖 at time 𝑡 = 𝑇𝑛,
here 𝑖, 𝑗 ∈ 𝑆𝑋 ∪ 2 and 𝑗 ≥ 𝑖. Since at every decision epoch new RUL

predictions are obtained, we can use these predictions/observations
to update the decision-maker’s knowledge about the transition rates,
and subsequently update his/her knowledge of the degradation process.
Recalling that 𝛷(⋅) corresponds to the cdf of normal distribution, we
derive the following five expressions:

• if 𝑖 = 𝑗 = 0:

𝑃0,0 = 𝑃 (𝑋𝑇𝑛+1 = 0|𝑋𝑇𝑛 = 0) =
𝛷(𝑚𝑎𝑥(𝐿𝑢(𝑇𝑛))−𝜇𝑢

𝜎𝑢
) −𝛷( 𝛥+𝛿𝑟−𝜇𝑢𝜎𝑢

)

𝛷(𝑚𝑎𝑥(𝐿𝑢(𝑇𝑛))−𝜇𝑢
𝜎𝑢

) −𝛷( 𝛥−𝜇𝑢𝜎𝑢
)

(9)

• if 𝑖 = 𝑗 = 1:

𝑃1,1 = 𝑃 (𝑋𝑇𝑛+1 = 1|𝑋𝑇𝑛 = 1) =
𝛷( 𝛥−𝜇𝑢𝜎𝑢

) −𝛷( 𝛿𝑟−𝜇𝑢𝜎𝑢
)

𝛷( 𝛥−𝜇𝑢 )
(10)
𝜎𝑢
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• if 𝑖 = 0 and 𝑗 = 1:

𝑃0,1 = 𝑃 (𝑋𝑇𝑛+1 = 1|𝑋𝑇𝑛 = 0) =
𝛷( 𝛥+𝛿𝑟−𝜇𝑢𝜎𝑢

) −𝛷( 𝛥−𝜇𝑢𝜎𝑢
)

𝛷(𝑚𝑎𝑥𝐿𝑢(𝑇𝑛)−𝜇𝑢
𝜎𝑢

) −𝛷( 𝛥−𝜇𝑢𝜎𝑢
)

(11)

• if 𝑖 = 1 and 𝑗 = 2:

𝑃1,2 = 𝑃 (𝑋𝑇𝑛+1 = 2|𝑋𝑇𝑛 = 1) =
𝛷( 𝛿𝑟−𝜇𝑢𝜎𝑢

)

𝛷( 𝛥−𝜇𝑢𝜎𝑢
)

(12)

• if 𝑖 = 2 and 𝑗 = 2:

𝑃2,2 = 𝑃 (𝑋𝑇𝑛+1 = 2|𝑋𝑇𝑛 = 2) = 1 (13)

These expressions formulate the state transition matrix  = (𝑝𝑖𝑗 )3×3,
, 𝑗 ∈ 𝑆𝑋 ∪ 2.

.1.3. Belief function
Since the true working state of the component cannot be directly

etermined by the output of the prognostics model, the state of knowl-
dge of the maintenance planner can be represented by a vector of
robabilities called belief state 𝑏𝑇𝑛 = (𝑏0𝑇𝑛 , 𝑏

1
𝑇𝑛
), which is the decision’s

aker perceived probability of the component being at state 0 and 1
espectively, at time 𝑡 = 𝑇𝑛. According to POMDP theory [24], it can be
roven that the whole sequence, or history, of observations and actions
ntil time 𝑡 = 𝑇𝑛, ℎ𝑇𝑛 = {𝑎𝑇1 , 𝑂𝑇1 ,… .𝑂𝑇𝑛−1 , 𝑎𝑇𝑛 , 𝑂𝑇𝑛}, can be summarized
y 𝑏𝑇𝑛 . Thus, in order to calculate 𝑏𝑇𝑛+1 , it is sufficient to know 𝑏𝑇𝑛 .
herefore, after receiving a new observation 𝑂𝑇𝑛+1 = 𝑧 at the next
ecision epoch 𝑛+1, we can calculate, by means of the Bayes rule, the
osterior probability vector (or the updated belief), 𝑏𝑇𝑛+1 , whose each
lement is given by:

𝑗
𝑇𝑛+1

=

∑

𝑖∈𝑆𝑋
𝑏𝑖𝑇𝑛𝑝𝑖𝑗𝑞𝑖𝑧

∑

𝑖∈𝑆𝑋

∑

𝑙∈𝑆𝑋
𝑏𝑖𝑇𝑛𝑝𝑖𝑙𝑞𝑙𝑧

, 𝑗 ∈ 𝑆𝑋 (14)

4.1.4. Policy and value function
In a fully observable MDP, a policy is a mapping from states to

actions. In a POMDP, a policy 𝜋 is a mapping from belief states
to actions. Each policy induces an expected accumulated discounted
return. For the current work, the objective of the maintenance planner
is to work out a maintenance policy that minimizes the expected long-
term maintenance cost of the component over the intended planning
horizon [𝑇𝑛, 𝑇𝑒𝑛𝑑 ].

The maintenance cost of the component at time 𝑡 = 𝑇𝑛, 𝑇𝑛 ≤ 𝑇𝑒𝑛𝑑 , is
defined as follows:

𝐶(𝑇𝑛) = 𝐶𝑐𝑜𝑟𝑟
𝑢 × (1 −(𝑇𝑛)) + 𝐶𝑝𝑟𝑒𝑣

𝑢

× [(𝑇𝑛) +
E[𝐿𝑢(𝑇𝑛)|𝑇𝑆𝐼𝑢(𝑇𝑛)] − 𝑇𝑆𝐼𝑢(𝑇𝑛)

𝑀𝑇𝐵𝐹𝑢
] (15)

here 𝑇𝑆𝐼𝑢(𝑇𝑛) = 𝑛 ⋅ 𝛿𝑟 corresponds to the elapsed time from the
nstallation of the component until 𝑡 = 𝑇𝑛, 𝑀𝑇𝐵𝐹𝑢 is the Mean
ime Between Failures (estimated from historical data) for the specific
omponent, Finally, (𝑇𝑛) is the component’s reliability at time 𝑡 = 𝑇𝑛
nd may be interpreted as the probability that the component will not
ail until the next decision epoch 𝑛 + 1, i.e., (𝑇𝑛) = 1 − 𝑃 𝑓𝑎𝑖𝑙

𝑢 (𝑇𝑛+1),
here the probability of failure at the next decision epoch, 𝑃 𝑓𝑎𝑖𝑙

𝑢 (𝑇𝑛+1),
s calculated as follows:

𝑓𝑎𝑖𝑙
𝑢 (𝑇𝑛+1) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑋𝑇𝑛 = 0

𝑃 (𝐿𝑢(𝑇𝑛) < 𝛿𝑟) = 𝛷( 𝛿𝑟−𝜇𝑢𝜎𝑢
) if 𝑋𝑇𝑛 = 1

(16)

As a result of the chosen action, the maintenance planner receives a
total discounted accumulated return:

𝑅𝑢
𝑇𝑛

=
𝑇𝑒𝑛𝑑
∑

𝛾𝑟𝑢𝑡 (17)
8

𝑡=𝑇𝑛
b

where 𝛾 is a discount factor and 𝑟𝑢𝑡 is the difference of maintenance
cost between two consecutive decision epochs and can be formulated
as follows:

𝑟𝑢𝑡 = 𝐶(𝑡 − 1) − 𝐶(𝑡) (18)

This formulation of the reward function is intended to capture the
additional maintenance cost savings or losses that can be incurred
because of the decision of the maintenance planner to postpone the
maintenance of the component for one additional day. Then, the value
function, which can be used to assess the quality of policy 𝜋 can be
written as:

𝑉 𝑢
𝜋 (𝑏𝑇𝑛 ) = E𝜋 [𝑅𝑢

𝑇𝑛
|𝑏𝑇𝑛 ] (19)

nd corresponds to the expected return that will be earned over the
lanning horizon [𝑇𝑛, 𝑇𝑒𝑛𝑑 ], starting from belief state 𝑏𝑇𝑛 . Among all
andidate policies, the one that yields the maximum value function is
alled the optimal policy, 𝜋⋆:
⋆(𝑏𝑇𝑛 ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑉

𝑢
𝜋 (𝑏𝑇𝑛 ) (20)

The optimal policy 𝜋⋆ specifies the optimal action to execute at the
urrent decision epoch, assuming that the planner will act optimally in
he future. In any POMDP, there is at least one optimal policy 𝜋∗ that
chieves the optimal value function [4].

.2. Prognostics-driven tasks scheduling algorithm

The scheduling algorithm generates a maintenance policy/schedule
or each considered component for the intended planning horizon
𝑇0, 𝑇𝑒𝑛𝑑 ]. It uses a modified version of the POMCP algorithm developed
y Silver and Veness [4] to obtain the optimal value function for the
aintenance of each component, and thus, define the corresponding

ptimal maintenance policy for every day of the planning horizon. It
hould be noted that the term ‘‘optimal maintenance policy’’ that is
sed in the current study corresponds to the optimal policy defined
t each decision epoch based on the received RUL predictions and the
pdate of the knowledge of the state transition rates as calculated in
ection 4.1.2. As such, it might not correspond to optimality for the
hole maintenance process for the entire life cycle of the monitored

omponent.
For each component, a Monte Carlo Search Tree is built. An example

f such tree is visualized in Fig. 3. We assume that the predictions from
he prognostics model are available every day, so the decision epoch
corresponds to day 𝑛 of the planning horizon. Accordingly, the tree

s organized in 𝑛 alternating layers of belief and action nodes, where
ach layer corresponds to a day of the planning horizon. Each node
s characterized by the number of visits 𝑁 , which counts the number
f times this node has been visited, and a value 𝑉 , which captures
he average estimated return of all simulations when starting from this
ode.

The root node of the tree represents the current updated belief,
𝑇0 , based on the ‘‘real’’ observation 𝑂𝑇0 , received by the prognostics
odel. Instead of updating the belief using Eq. (14), the algorithm uses
particle filter, where each particle corresponds to a sample state.
ore specifically, to update the belief state, a Monte Carlo procedure is

erformed, that samples a state from the previous belief state, 𝑏𝑡−1, and
asses it to a sample generative model. The sample generative model, for
he given state 𝑋𝑡 and for the chosen action 𝑎̂, provides the successor
tate 𝑋′

𝑡 , observation 𝑂′
𝑡 and reward 𝑟𝑡 :

(𝑋𝑡−1, 𝑎̂) = (𝑋′
𝑡 , 𝑂

′
𝑡 , 𝑟𝑡) (21)

he dynamics of the sample generative model are captured by the
OMDP developed in Section 4.1: the successor state 𝑋′

𝑡 is given by
he state transition matrix  (Section 4.1.2), the sample observation
′
𝑡 by the state observation matrix  (Section 4.1.1) and the reward 𝑟𝑡

′
y Eqs. (18) & (15). If the sampled observation 𝑂𝑡 matches the real
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Fig. 3. Monte Carlo component tree.
observation 𝑂𝑡, then state 𝑋′
𝑡 is added to the set of particles. This

procedure is repeated until  particles have been added to the belief
state 𝑏𝑡.

The algorithm starts from the root node of the tree. For 𝑛𝑆𝑖𝑚
episodes a particle is randomly sampled from the belief node 𝑏𝑡 and the
related sampled state 𝑋𝑡 is used as the initial state of the simulation.
The available child action nodes depend on whether: (i) there is an
available maintenance slot on that specific day of the planning horizon,
and (ii) the set of constraints (2)–(7) is verified. If both maintenance
actions are available, then an action 𝑎̂ is selected according to Upper
Confidence Bound for Trees (UCT) search strategy([25]), defined as
follows:

𝑎̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑡 (𝑉 (𝑏𝑡𝑎𝑡) + 𝑐

√

log(𝑁(𝑏𝑡))
𝑁(𝑏𝑡𝑎𝑡)

) (22)

where the constant 𝑐 determines the exploration-to-exploitation ratio.
This action is then passed to the sample generative model that deter-
mines the successor state 𝑋′

𝑡+1, observation 𝑂′
𝑡+1, and reward 𝑟𝑡+1. At the

succeeding belief nodes, the observation 𝑂𝑡+1 determines which branch
of the tree the algorithm needs to follow. The same procedure repeats
until the desired planning horizon or a terminal state is reached (the
component has failed or the component is scheduled for maintenance),
or an unexplored belief node is encountered.

In the latter case, the tree is expanded by precisely one node,
corresponding to the new belief state encountered during that simu-
lation. Then a random simulation is run, where actions are selected
according to a rollout policy, like uniform random action selection. This
process is repeated until the terminal state or the end of the desired
planning horizon has been reached. The rewards obtained through
this simulation step are backpropagated through the internal nodes
upwards in the tree, defining for each action of the root node an
approximated expected discounted reward. When all the simulations
are complete, the algorithm selects the action node with the greatest
value of the value function. Following the formulation of the value
function in accordance with Eqs. (15)–(19), the algorithm chooses the
action that minimizes the expected long-run maintenance cost. When
a real prediction/observation from the prognostics has been received,
we prune the tree at the belief node determined by the received
observation. This specific belief node becomes the new root node of
the tree and, as such, all the other belief nodes are now impossible.

Moreover, it is reminded that our goal is to derive a maintenance
policy for the whole intended planning horizon. However, up to this
point, the algorithm has only chosen the optimal action at the root
node, which corresponds to the present day. To plan for the rest of
the days of the planning horizon, without having to wait for a new
prediction/real observation from the prognostics, we prune the tree
9

at the most probable observation expected to be received on the next
day of the planning horizon, i.e., at the succeeding belief node with
the highest amount of visits 𝑁 . For example, in Fig. 3, in order to
plan for 𝑇1, we prune the tree at 𝑂𝑇1 = 1 as it has more visits than
𝑂𝑇1 = 0 and 𝑂𝑇1 = 2. This belief node becomes then the new root
node of the tree and the algorithm is run again to generate the optimal
action for this specific day of the planning horizon. The same process
repeats until we reach the end of the planning horizon. The pseudocode
for the prognostics-driven tasks scheduling algorithm can be found in
Appendix A. Readers are kindly referred to [4] for a more detailed
explanation of the POMCP algorithm.

The final output of the algorithm is a sequence of the optimal main-
tenance actions corresponding to each day of the planning horizon,
which constitutes the maintenance schedule for the specific component.
The day the component is scheduled for maintenance corresponds to
the optimal maintenance date for this specific component individually
and defines the due date of the corresponding prognostics-driven task.
The defined prognostics-driven tasks will be passed to the Deep Rein-
forcement Learning algorithm, in order to be considered for scheduling,
together with the preventive and corrective maintenance tasks, at the
aircraft level.

5. Aircraft fleet maintenance scheduling

The aircraft fleet maintenance scheduling algorithm presented in
this paper outputs a maintenance schedule which details the allocation
of the tasks and the corresponding aircraft to the available maintenance
slots over the desired planning horizon. We formulate the aircraft
fleet maintenance scheduling problem as a sequential decision-making
process that can be modeled through a Markov Decision Process (MDP).
An MDP is defined on the basis of a state space, action space, and
reward function. However, constructing a state and action space by
considering all the aircraft in the fleet and solving the resulting MDP,
even with a DRL approach, can require too much computational time
to be suitable for operational use.

Inspired by real airline practice, we reduce the problem size by
constructing an MDP only for the tasks and the corresponding aircraft
that is not possible to be allocated to the fixed maintenance slots. In
order to know these tasks, we have to solve the task allocation problem
for the fixed slots. Solving this type of problem is fairly simple, as in
fixed maintenance slots the aircraft registrations are pre-defined and
the aircraft will be grounded for maintenance anyway as part of a
major letter check, meaning that the maintenance planner does not
have to worry either about matching the duration of the task with the
duration of the slot or about causing potential schedule changes, as in
the case of flexible maintenance slots. We use a Greedy algorithm to
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Fig. 4. Aircraft fleet scheduling model overview.
assign the considered aircraft maintenance tasks to the available fixed
maintenance slots, subject to the set of constraints (2)–(7). The tasks
that could not be allocated to the fixed maintenance slots, together with
(i) the preventive and prognostics-driven tasks and (ii) the corrective
tasks, that have been scheduled at the fixed slots but have a task
interval utilization rate below and above a set threshold, 𝑡ℎ𝑝𝑟𝑒𝑣 and
𝑡ℎ𝑐𝑜𝑟𝑟 respectively, are then passed to the Deep Reinforcement Learning
algorithm, which assigns these tasks to the flexible maintenance slots,
satisfying the four objectives described in Section 3.4 and subject to
the set of constraints (1)–(7). The fixed and flexible slots’ maintenance
schedule are then combined to generate the final maintenance schedule
for the aircraft fleet.

An overview of the aircraft fleet maintenance scheduling algorithm
is presented in Fig. 4. In the next sections, a detailed description of the
developed algorithms is provided.

5.1. Greedy algorithm

The objective of the greedy algorithm is to allocate as many tasks
as possible to the fixed maintenance slots, while achieving an efficient
task interval utilization. First, the maintenance tasks of each aircraft
are sorted in ascending order according to the number of maintenance
opportunities/fixed slots left for the execution of each task, that verify
the set of constraints (2)–(7). The tasks that have no remaining main-
tenance opportunities, i.e., it is not possible to be assigned to the fixed
slots, are removed from the list and added to the pool of tasks that will
be considered for scheduling by the DRL algorithm.

The algorithm then selects the first element from the list, that
corresponds to the most urgent task. If the task is either prognostics-
driven or preventive, it is assigned to the latest possible fixed slot. In
case it corresponds to a corrective task, it is assigned in the earliest
possible fixed slot. After the task is assigned, the available workhours
per skill in the used maintenance slot are reduced by the amount of
workhours per skill required for the execution of the task. The tasks
are then sorted again in ascending order according to the number of
the updated remaining fixed slots, and the same process repeats until
all aircraft tasks have been considered.

The final output of the algorithm consists of a maintenance sched-
ule, detailing the allocation of tasks to the fixed maintenance slots, and
a list of tasks to be considered for scheduling in the flexible slots by the
DRL algorithm. The pseudocode for the greedy algorithm can be found
in Appendix B.
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5.2. Deep Reinforcement Learning (DRL) algorithm

In the Reinforcement Learning context, an agent learns how to
interact with the surrounding environment by following a specific
policy. In the basic representation, at every decision point 𝑡, an agent
observes a state 𝑠𝑡 ∈ , chooses an action 𝑎𝑡 ∈  according to the policy
𝜋( → ), and receives an immediate reward 𝑟𝑡 ∈ . The objective
of the agent is to determine the optimal policy 𝜋⋆ that maximizes the
expected sum of long-term discounted rewards. In the next sections, a
detailed formulation of the state and action space, the reward function,
as well as the DRL algorithm is provided.

5.2.1. State space
The decision-making process occurs in a sequential manner, i.e., at

each flexible maintenance slot 𝑚, 𝑚 ∈ 𝑀𝐹 𝑙𝑒𝑥𝑖𝑏𝑙𝑒, the DRL agent has to
decide which aircraft to schedule. The state of the environment in every
maintenance slot that influences this decision, is captured by the state
vector:

𝑠𝑚 = ⟨𝑠𝑟, 𝑁𝐷𝑚, 𝐷𝑇𝑚, 𝑆𝐶𝑚, 𝑆𝑇𝑁𝑚⟩ (23)

where 𝑠𝑟 is defined as follows:

𝑠𝑟 = {𝑂𝑇𝑟, 𝑇 𝑇𝑟, 𝑆𝑈𝑟, 𝐹𝑆𝑟, 𝑅𝑈𝑟, 𝑁𝑅𝑈𝑟, 𝐷𝑅𝑟, 𝐹𝑁𝑆𝑟,

𝑀𝑈𝑅𝑟,𝑀𝐷𝑅𝑟, 𝑅𝐹𝑆𝑟, 𝑅𝑂𝑟, 𝑇𝑁𝑟}
(24)

Each feature of the state vector 𝑠𝑟 contains indicators about the consid-
ered tasks of aircraft 𝑟, 𝑟 ∈ 𝑅, with respect to the current considered
flexible maintenance slot 𝑚. Also, these features are designed, through
trial-and-error experimentation, in a way such that the planning objec-
tives described in Section 3.4 are captured, as part of the environment.
Before presenting the details of the features, some notations should be
given in advance. We define the task interval utilization rate, 𝑈𝑅𝑔 ,
as the moment in time a task is executed relative to the length of its
interval. The length of the task interval refers to the due date of the
task, 𝐷𝑢𝑒𝑔 , in the case of corrective and preventive maintenance tasks,
or the optimal maintenance date defined by the POMCP scheduling
algorithm, 𝑂𝐷𝑔 , in the case of prognostics-driven tasks. Then, the task
interval utilization rate can be calculated as follows:

𝑈𝑅𝑔 =

⎧

⎪

⎨

⎪

⎩

𝑆𝑡𝑎𝑟𝑡𝑚−𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑔
𝐷𝑢𝑒𝑔−𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑔

, if 𝑔 ∈ 𝐺𝑐𝑜𝑟𝑟 ∪ 𝐺𝑝𝑟𝑒𝑣

𝑆𝑡𝑎𝑟𝑡𝑚−𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑔
𝑂𝐷𝑔−𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑔

, if 𝑔 ∈ 𝐺𝑝𝑟𝑜𝑔𝑛

(25)

Based on the notations above, the state features are defined as
follows:
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• 𝐎𝐓𝐫 : The open tasks of aircraft 𝑟 when considering slot 𝑚. If there
are no open tasks, the corresponding aircraft features are removed
from the state vector.

• 𝐓𝐓𝐫 : A binary variable that indicates the type of the open tasks
of aircraft 𝑟. Unitary if only corrective maintenance tasks are
considered, zero if either preventive or prognostics-driven tasks
are considered as well.

• 𝐒𝐔𝐫 : A binary variable that indicates whether aircraft 𝑟 can be as-
signed in slot 𝑚, based on the verification of the set of constraints
(2)–(7). Unitary if aircraft 𝑟 can be assigned in slot 𝑚.

• 𝐅𝐒𝐫 : A binary variable that indicates whether all open tasks of
aircraft 𝑟 can be assigned in the current maintenance slot 𝑚.
Unitary if all open tasks can be assigned to this maintenance slot,
verifying the set of constraints (2)–(7).

• 𝐑𝐔𝐫 : The achieved average utilization rate of the prognostics-
driven and preventive maintenance tasks, if aircraft 𝑟 is assigned
in the maintenance slot 𝑚. Based on Eq. (32), the average utiliza-
tion rate for aircraft 𝑟 can be defined as follows:

𝑅𝑈𝑟 =

∑𝐾
𝑔=1 𝑈𝑅𝑔

𝐾
, 𝑔 ∈ 𝐺𝑟

𝑝𝑟𝑒𝑣∪𝐺
𝑟
𝑝𝑟𝑜𝑔𝑛, 𝐾 = |𝐺𝑟

𝑝𝑟𝑒𝑣|+|𝐺
𝑟
𝑝𝑟𝑜𝑔𝑛| (26)

• 𝐍𝐑𝐔𝐫 : The achieved average utilization rate of the corrective
maintenance tasks, if aircraft 𝑟 is assigned in the maintenance slot
𝑚. Based on Eq. (32), the average utilization rate for aircraft 𝑟 can
be defined as follows:

𝑁𝑅𝑈𝑟 =

∑𝐾
𝑔=1 𝑈𝑅𝑔

𝐾
, 𝑔 ∈ 𝐺𝑟

𝑐𝑜𝑟𝑟, 𝐾 = |𝐺𝑟
𝑐𝑜𝑟𝑟| (27)

• 𝐃𝐑𝐫 : The ratio of the task with the highest duration to the
duration of the maintenance slot:

𝐷𝑅𝑟 =
𝑚𝑎𝑥(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑔)

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑚
, 𝑔 ∈ 𝐺𝑟. (28)

• 𝐅𝐍𝐒𝐫 : A binary variable indicating whether there is any flexible
maintenance slot in the future where all the open tasks can be
addressed, subject to the set of constraints (2)–(7). Unitary if such
a slot exists.

• 𝐌𝐔𝐫 : The maximum average utilization rate, 𝑅𝑈𝑟, that can be
achieved for the preventive and prognostics-driven maintenance
tasks, if they are assigned to the forthcoming available flexible
maintenance slots, subject to the set of constraints (2)–(7).

• 𝐌𝐃𝐑𝐫 : The maximum 𝐷𝑅𝑟 that can be achieved if the open tasks
of aircraft 𝑟 are assigned to the forthcoming available flexible
maintenance slots, subject to the set of constraints (2)–(7)

• 𝐑𝐅𝐒𝐫 : The total number of flexible maintenance slots, where all
the open tasks of aircraft 𝑟 can be addressed, subject to the set of
constraints (2)–(7).

• 𝐑𝐎𝐫 : The number of remaining maintenance opportunities/
available flexible maintenance slots for aircraft 𝑟, before the first
task goes due, subject to the set of constraints (2)–(7).

• 𝐓𝐍𝐫 : The aircraft registration number.
• 𝐍𝐃𝐦: The difference, captured in days, between the start date of

the slot and the start date of the planning horizon.
• 𝐃𝐓𝐦: The total number of due tasks across the aircraft fleet until

flexible maintenance slot 𝑚.
• 𝐒𝐂𝐦: The total number of changes performed in the maintenance

schedule until flexible maintenance slot 𝑚.
• 𝐒𝐓𝐍: The aircraft registration number that was assigned for main-

tenance in flexible maintenance slot 𝑚 in the existing maintenance
schedule.

5.2.2. Action space
At each maintenance opportunity 𝑚, the maintenance planner needs

to decide which aircraft to schedule for maintenance. The action space
at maintenance slot 𝑚 can be defined as follows:

 (𝑠 ) = (𝑟 ∈ 𝑅,𝑆𝑇𝑁,𝑁𝑈𝐿𝐿) (29)
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𝑚 𝑚
Action 𝑟 ∈ 𝑅 refers to allocating the corresponding aircraft for
aintenance in maintenance slot 𝑚. The 𝑆𝑇𝑁 action corresponds to

electing for maintenance the aircraft that was originally allocated in
aintenance slot 𝑚 in the existing schedule, meaning that no schedule

hange is observed if this action is chosen. The 𝑁𝑈𝐿𝐿 action corre-
ponds to not scheduling any of the considered aircraft in maintenance
lot 𝑚.

When the agent selects an aircraft for maintenance, it sorts the
ircraft open maintenance tasks in ascending order, according to the
emaining maintenance opportunities of each task. Then it starts al-
ocating tasks to the maintenance slot by considering them in the
rder they are referenced in the sorted list, as long as the set of
onstraints (1)–(7) is verified. After all the open maintenance tasks
re considered for scheduling, the agent then tries to reschedule the
reventive and prognostics-driven tasks, and the corrective tasks, that
ave been allocated to fixed maintenance slots, but have a task interval
tilization rate below and above a set threshold respectively. These
asks are sorted in ascending order, according to the task interval
tilization rate. Afterward, the agent starts assigning these tasks to the
aintenance slot by considering them in the order they are referenced

n the sorted list, as long as the set of constraints (1)–(7) is verified.
The 𝑁𝑈𝐿𝐿 action corresponds to not scheduling any of the consid-

red aircraft on maintenance slot 𝑚.

.2.3. Reward function
The reward function is of paramount importance, as it quantifies the

erformance of each chosen action with respect to the environment.
ince each action should be chosen according to the objectives of the
aintenance planner as defined in Section 3.4, the reward function

s formulated as a weighted combination of critical state features at
tate 𝑠𝑚, including the number of due the tasks, 𝐷𝑇𝑚, the ratio of
round time, 𝐷𝑅𝑟, the schedule changes, 𝑆𝐶𝑚, and task utilization,
𝑈𝑟 and 𝑁𝑅𝑈𝑟. The procedure for calculating the reward function 𝑟𝑚

is explained in details in Appendix C.

5.2.4. Deep Q learning network
A widely used Reinforcement Learning algorithm is Deep Q Network

(DQN). This concept uses a multi-layered neural network with weights
𝜃 to approximate the 𝑄 value function. The inputs to the neural network
are the state features, while the output consists of the 𝑄 function value
for each state–action pair. By making use of the neural network, the
algorithm can handle more complicated decision problems with large
state–action spaces.

The DQN used in this paper is a deep neural network consisting of
five fully connected layers with one input layer, three hidden layers
and one output layer. The structure of the DQN is illustrated in Fig. 5.
In order to prevent having a varying input and output layer size due
to the different number of aircraft with open tasks at every decision
point, we choose to always consider at every decision point the 10
most critical aircraft in terms of 𝑅𝑂𝑟. That is, we sort all the aircraft
in ascending order according to the remaining opportunities (available
flexible maintenance slots) until their first task goes due and we select
the first 10 aircraft from this sorted list. The reason lies in the fact
that is very unlike that the optimal aircraft to be allocated in the
maintenance slot 𝑚 is not within this 10 most critical aircraft list. This
results in a number of 134 nodes for the input layer and 12 nodes for
the output layer. Also, each hidden layer consists of 64 neurons. We
use the ReLu activation function for the input and the hidden layers
and the linear activation function for the output layer.

6. Computational experiments

6.1. Case study

To verify and demonstrate the proposed two-stage scheduling frame-
work, we perform a case study for a fleet of 34 wide-body aircraft of
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Fig. 5. DQN structure.
different types from a major European airline. Each aircraft has a set
of open preventive and corrective maintenance tasks according to the
MPD and MEL, which are updated on a daily basis. In total, we consider
1517 open corrective and preventive maintenance tasks, spreading over
a period of 4 months of the airline operations.

Moreover, we assume that 10 aircraft from the fleet are equipped
with sensors that monitor 25 non-safety critical components from each
aircraft on a permanent basis. For every monitored component, we
simulate RUL predictions which are updated on a daily basis and
are assumed to follow the normal distribution. The working state of
the components included in the 10 aircraft is different, i.e., every
component has a different true RUL.

All the former tasks can be addressed in dedicated maintenance
opportunities, for which the availability and the resources change
over time. The workforce is divided into multiple skills with specific
availability and is organized into three shifts per day. Data about the
corrective and preventive maintenance tasks, the maintenance slots
schedule, and the available resources were provided by the airline.

The analysis of the case study is divided into five parts: First, the
simulation setup and approach are described. Secondly, the results
of the prognostics-driven tasks scheduling algorithm are presented, in
order to evaluate the efficiency of the 1st stage of the framework with
respect to scheduling the maintenance of the monitored components.
This is followed by a sensitivity analysis of the preventive-to-corrective
maintenance cost ratio, to analyze its impact on the number of tasks
going due and the RUL exploitation of the monitored components.
Third, a stand-alone performance evaluation of the 2nd stage of the
scheduling framework, i.e. the DRL algorithm, including only the pre-
ventive and the corrective maintenance tasks, is performed against the
executed maintenance schedule of our partner airline. In the fourth
part, the results obtained after running the full version of the two-
stage scheduling framework, i.e., including the prognostics-driven, the
preventive, and the corrective tasks, are presented. The last part of the
case study focuses on a cost–benefit analysis of a Corrective vs a CBM
approach.

6.1.1. Simulation of RUL predictions
We simulate the RUL predictions by applying the Support Vec-

tor Regression (SVR) prognostics model developed in [26] on the
C-MAPSS dataset [27] for turbo-fan engines. We further assume that
the time cycles used in the C-MAPPS dataset correspond to Flight
Cycles (FCs). Following the approach described in [28], we organize
the obtained predictions in 4 clusters based on the prediction accuracy
and uncertainty, described by MAE and standard deviation 𝜎 in FCs
respectively:
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Table 4
State observation matrix for components belonging
in Cluster # 1.

X
O 0 (Healthy) 1 (Degrading)

0 (Healthy) 0.99 0.01
1 (Degrading) 0.14 0.86

Table 5
State observation matrix for components belonging
in Cluster # 2.

X
O 0 (Healthy) 1 (Degrading)

0 (Healthy) 1 0
1 (Degrading) 0.22 0.78

Table 6
State observation matrix for components belonging
in Cluster # 3.

X
O 0 (Healthy) 1 (Degrading)

0 (Healthy) 0.99 0.01
1 (Degrading) 0.31 0.69

Table 7
State observation matrix for components belonging
in Cluster # 4.

X
O 0 (Healthy) 1 (Degrading)

0 (Healthy) 0.96 0.04
1 (Degrading) 0.39 0.61

• Cluster #1: 𝑀𝐴𝐸 ∼ 8.32 and 𝜎 ∼ 12.24
• Cluster #2: 𝑀𝐴𝐸 ∼ 13.89 and 𝜎 ∼ 19.69
• Cluster #3: 𝑀𝐴𝐸 ∼ 23.52 and 𝜎 ∼ 27.35
• Cluster #4: 𝑀𝐴𝐸 ∼ 37.28 and 𝜎 ∼ 40.93

We then assume that for the 25% of the components (7 components
in total) the computed daily RUL predictions belong to Cluster 1, for
25% to Cluster 2 (6 components in total), for 25% to Cluster 3 (6
components in total) and for 25% to Cluster 4 (6 components in total).
Furthermore, we set the threshold 𝛥 = 40 FCs to differentiate between
the healthy and the degrading state. We chose this value for 𝛥 on
the basis that, according to a daily flight utilization of 𝛿𝑟 = 4 FCs, it

provides the maintenance planner with at least 10 days to schedule the
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Fig. 6. Rolling horizon approach [9].
maintenance of the component, without inducing unnecessary changes
to the maintenance schedule. The calculated state observation matrices
that describe the stochastic relationship between the true, 𝑋 ∈ 𝑆𝑋 , and
the observed, 𝑂 ∈ 𝑆𝑂, working state of the component for each cluster
are as follows (see Tables 4–7).

6.1.2. Simulation of new task information arrival
In order to simulate the dynamic process of the arrival of new

corrective and preventive tasks, and also the update of RUL predic-
tions for the monitored components, we implement a rolling horizon
approach (see Fig. 6). A maintenance schedule is generated for a
fixed time window. Afterwards, the planning horizon shifts one day
ahead, where new tasks may arrive and/or new RUL predictions are
obtained. However, the new information about the maintenance tasks
may compromise the feasibility of the existing schedule. Our framework
takes rescheduling actions to produce a new and feasible schedule
for the intended time window, while also minimizing the number of
schedule changes in the next 3 days (highlighted gray area in Fig. 6),
i.e., 𝐶𝑃 = 3. This value was chosen on the basis that in our partner
airline, aircraft registrations are assigned to flights 3 days upfront. The
same process repeats until the end of the planning horizon is reached.
It is noted that no scheduling opportunities beyond the end of the
planning horizon are considered.

6.1.3. Assumptions
• Aircraft utilization is known and constant. The daily aircraft

utilization 𝛿𝑟, 𝑟 ∈ 𝑅 is set to 15 FHs - 4 FCs, according to historical
aircraft utilization values of an airline.

• There are no component-wise dependencies. The potential
economic, stochastic and structural dependencies of the compo-
nents are not considered.

• RUL predictions are obtained on a daily basis. The SVR prog-
nostics model produces every day one RUL prediction for every
monitored component.

• RUL predictions follow a normal distribution.
• The monitored components are not critical for the safe and

reliable operation of the aircraft.
• The impact of the environment on the deterioration of the

components is not considered.

6.2. Results analysis of the prognostics-driven tasks maintenance scheduling
model

In this section, we evaluate the performance of the first stage of
the framework, i.e., we assess the scheduling of the 250 prognostics-
driven tasks individually, not considering the preventive and corrective
maintenance tasks of the aircraft fleet. The parameters of the POMCP
algorithm are defined through experimentation in the following Ta-
ble 8:

Moreover, the corrective and preventive replacement cost of every
𝐶𝑜𝑟𝑟 𝑃 𝑟𝑒𝑣
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monitored component is set to 𝐶𝑢 = 25,000 and 𝐶𝑢 = 10,000
Table 8
Parameters of the POMCP algorithm.
Parameter Value

exploration constant 𝑐 100
# belief particles 1200
# episodes 500

Table 9
Results of the prognostics-driven tasks scheduling model for different values of discount
factor 𝛾.

Discount factor 𝛾 Due tasks Average RUL exploitation Computational time (s)
of the components per task

0.3 40 90.1% 3.4
0.5 33 89.6% 5.1
0.7 30 84.2% 15.7
0.9 28 79.4% 31.3

respectively. The magnitude of the cost values was driven by Free-
man et al. [29], where average historical values of true preventive
and corrective repair costs were used. Based on the daily updated
RUL predictions simulated according to Section 6.1.1, the prognostics-
driven tasks scheduling model generates at each day the maintenance
schedule of each monitored component for the next 30 days of the
planning horizon. It is noted that at this stage we are only interested
in scheduling efficiently the prognostics-driven tasks, which means that
up to this point no decisions at aircraft level are taken. As such, we are
only interested in executing maintenance in the monitored component
on-time, while at the same time, achieving the highest possible RUL
exploitation, in a computational efficient manner. Following this, we do
not consider the effect of the chosen maintenance action with respect
to the aircraft operational availability and potential schedule changes.
The proposed scheduling model is implemented in Python 3.7.6, on a
laptop computer with Intel Core i5 processor 9300, 16 GB RAM, and
NVIDIA 1660Ti GPU. The results for different values of the discount
factor 𝛾 are summarized in Table 9.

It can be observed that increasing the discount factor 𝛾 leads to a
decrease in the number of prognostics-driven tasks going due, while at
the same time, there is also a decreasing trend in the RUL exploitation
of the components. This happens because a higher discount factor
places a larger emphasis on the future long-term rewards, and as such a
more conservative scheduling approach is followed. The computational
time also increases with the increase of the discount factor, as the
POMCP algorithm is encouraged to explore actions and observations
that are further into the future, leading to longer branches within the
POMCP search tree. Since in this research, we are interested in achiev-
ing good results both in terms of timely task scheduling and high RUL
exploitation, but also in a computationally efficient manner, we decided
to adopt a value of 0.5 for the discount factor for use by the two-
stage scheduling framework evaluated in the next section. However,
if computational efficiency is not a requirement or more emphasis is
placed on preventing tasks from going due than exploiting the RUL of
the components, then adopting a higher value is recommended.
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Fig. 7. Due prognostics-driven tasks and RUL exploitation for different ratios of 𝐶𝑝𝑟𝑒𝑣
𝑢 ∶ 𝐶𝑐𝑜𝑟𝑟

𝑢 .
Fig. 8. Due tasks per cluster of components.
6.2.1. Sensitivity analysis of the preventive to corrective maintenance cost
ratio

We also performed a sensitivity analysis of the scheduling perfor-
mance of the prognostics-driven tasks scheduling model by changing
the ratio of the preventive to corrective maintenance cost, 𝐶𝑝𝑟𝑒𝑣

𝑢 ∶ 𝐶𝑐𝑜𝑟𝑟
𝑢 .

As noted before, we have assumed a discount factor 𝛾 = 0.5. Hence, we
run the first stage of the proposed framework for different scenarios of
preventive and corrective maintenance cost ratios. In Fig. 7, the number
of the due tasks and RUL exploitation are presented for a range of
preventive to corrective maintenance cost ratios.

As expected, in the extreme scenario when the 𝐶𝑝𝑟𝑒𝑣
𝑢 ∶ 𝐶𝑐𝑜𝑟𝑟

𝑢 = 1 ∶ 1,
the model does not schedule any component for maintenance, since
there is no cost benefit for preventively maintaining the component.
Across the other tested scenarios, it can be seen that increasing the
preventive to corrective cost ratio causes a decrease in the number
of the due prognostic-driven tasks, while at the same time, average
RUL exploitation decreases. This observed trade-off between timely
component maintenance execution and RUL exploitation is expected,
since a higher corrective maintenance cost relates to a more conser-
vative scheduling approach. In other words, aiming for a higher RUL
exploitation becomes less attractive, as the risk of exceeding the RUL
and repairing the component induces very high corrective maintenance
costs.

Finally, in Fig. 8, we present an analysis of the number of com-
ponents from each cluster that were not scheduled on time in every
scenario. Once more, it can be observed that the majority of the
components across all scenarios that were not scheduled on-time, come
from Clusters #3 and #4.

6.3. Results analysis of the aircraft fleet maintenance scheduling model

In this section, we evaluate the performance of the aircraft fleet
scheduling model. As explained in Section 5.2, the DRL algorithm
14
Table 10
Parameters of the DQN.
Parameter Value

𝑊𝑓𝑎𝑖𝑙 −106

𝑊𝑟𝑒𝑠𝑐ℎ −2 × 105

𝑊𝑔𝑟𝑜𝑢𝑛𝑑 105

𝑊𝑢𝑡𝑖𝑙 5 × 104

Initial exploration rate (𝜖0) 1.0
Exploration rate decay ( 𝑑𝜖

𝑑𝑡
) 0.995

Final exploration rate (𝜖𝑇 ) 0.001
Batch size 64
Hidden Layers 3
Dense size (neurons) 64
Training episodes 10000

requires a set of input parameters. These input parameters, which
were defined through trial-and-error experimentation, are presented in
Table 10:

The proposed DQN is implemented on the same laptop described
above. It is trained on 10 days of historical maintenance data provided
by the airline and it makes use of a schedule window of 120 days.
The training curve for 10,000 episodes is visualized in Fig. 9. It can
be seen that the sum of rewards increases with the increase of training
steps, which indicates that the proposed DQN has learned the proper
maintenance decisions for different situations in an efficient way.

In order to benchmark the performance of the DRL scheduling
algorithm, a comparison between the actual airline maintenance sched-
ule for the considered planning period and the schedule produced by
the DRL algorithm is performed. However, for a fair comparison, the
prognostics-driven tasks are excluded, since the airline has not yet in-
cluded such type of tasks in its maintenance practice. The model would
be evaluated on the basis of the four planning objectives described in
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Fig. 9. Sum of rewards during agent training.
Table 11
Number of due tasks and ground time for the airline and the DRL algorithm.
Schedule method Due tasks Scheduled tasks Used slots Total ground time (hrs)

Airline Schedule 0 1517 248 4,345.43
DRL algorithm 0 1517 243 4,170.39
Table 12
Number of schedule changes and task interval utilization for the airline and the DRL algorithm.
Schedule method Schedule changes Preventive tasks utilization Corrective tasks utilization

Airline Schedule 43 74.86% 53.26%
DRL algorithm 22 75.11% 52.03%
Section 3.4. The thresholds, 𝑡ℎ𝑝𝑟𝑒𝑣 and 𝑡ℎ𝑐𝑜𝑟𝑟, that define the preventive
and corrective tasks to be considered for rescheduling by the DRL
algorithm, are set to 0.8 and 0.5 respectively.

Table 11 summarizes the results in terms of due tasks and total
ground time used, which correspond to the planning objectives of task
execution and aircraft operational availability. In both cases, no tasks
went due. Additionally, in the maintenance schedule produced by the
DRL algorithm, 5 less maintenance slots are used compared to the
airline schedule. Moreover, the DRL algorithm saves 175.04 h or 7.29
days of ground time with respect to the actual airline schedule. Whereas
the airline schedule makes use of slots with an average duration of
17.5 h, the DRL algorithm makes use of slots with an average duration
of 17.1 h. All the former indicate that the DRL algorithm is able to
schedule tasks more effectively than the airline.

In Table 12 the results with respect the two remaining planning
objectives, i.e., schedule stability and task interval utilization, are pre-
sented. DRL algorithm requires significantly fewer last-notice changes,
which indicates that the model can produce more stable schedules in
comparison with the airline. Moreover, the DRL model achieves better
task interval utilization for both the corrective and the preventive
maintenance tasks. In other words, the model is able to schedule
corrective tasks as further away as possible from their due date and
preventive tasks as close as possible to their due date.

Finally, the average computational time needed for every day of
the planning horizon was ∼ 5.9 s, which makes the DRL scheduling
model suitable for ad-hoc decision-making in a real airline maintenance
environment.

6.4. Results analysis of the two-stage scheduling framework

In this section, we run the full version of the two-stage scheduling
framework, i.e., we consider the 250 prognostics-driven tasks, together
15
with the 1517 corrective and preventive maintenance tasks. We use
the results of the prognostics-driven tasks scheduling model from Sec-
tion 6.2, to simulate the updated recommended maintenance dates for
the monitored components for every day of the planning horizon.

The results are summarized in Table 13. The proposed framework
schedules all corrective and preventive maintenance tasks on-time,
while it also manages to schedule 241 out of 250 prognostics-driven
tasks. It is observed that the framework manages to schedule on-
time more prognostics-driven tasks than the prognostics-driven tasks
scheduling algorithm by itself (241 vs 217-see Section 6.2). This is
due to the fact that the prognostics-driven tasks are now considered
together with the preventive and corrective maintenance tasks. The
algorithm tries to bundle all these types of tasks together and schedule
them in the minimum possible amount of maintenance slots, while
also minimizing the schedule changes. As a result, it follows a more
conservative approach with respect to the allocation of the prognostics-
driven tasks, which is reflected in the achieved prognostics-driven task
utilization (70.5%). This value is lower than the one achieved by the
prognostics-tasks scheduling algorithm when run in isolation from the
framework (89.6% - see Section 6.2), verifying the more conservative
scheduling of the prognostics-driven tasks in exchange for fewer tasks
going due.

Moreover, we perform an analysis of the components that cor-
respond to the prognostics-driven tasks that went due with respect
to their cluster category (Fig. 10). We observe that the majority of
the components belong to cluster #4, which is characterized by RUL
predictions with the higher MAE and standard deviation.

Also, an increase in the number of used slots and total ground time
is observed in comparison to the results achieved when no prognostics-
driven tasks were considered, but this is due to the additional ground
time requirements of the introduced prognostics-driven tasks. Finally,
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Table 13
Results of the two-stage scheduling framework.

Planning objectives Performance indicators Model Airlinea

Task execution
Due tasks (prognostics-driven) 9 N/A
Due tasks (corrective and preventive) 0 0
Scheduled tasks 1758 1517

Aircraft operational availability Used slots 274 248
Total ground time (hrs) 4,449.3 4345.4

Schedule stability Schedule Changes 44 43

Task interval utilization
Corrective task utilization 49.53% 53.26%
Preventive task utilization 75.62% 74.86%
Prognostics-driven task utilization 70.51% N/A

aAirline results without the 250 prognostics-driven tasks.
Fig. 10. Due tasks per cluster of components.

due to the introduced uncertainty in the RUL predictions, an increase
in the number of schedule changes is observed. The schedule changes
caused by the prognostics-driven tasks account for 54% of the total
schedule changes. An analysis of the number of the components from
each cluster that contributed to the schedule changes is visualized in
Fig. 11. The majority (58%) of the prognostics-driven tasks related
schedule changes are once more due to components belonging to
cluster #4, which is characterized by RUL predictions with the highest
degree of uncertainty. In practice, this means that an airline, having
components with historical values of RUL predictions falling within
these levels of accuracy and uncertainty, should consider incorporating
additional slot flexibility.

The average computational time of running the two-stage schedul-
ing framework, i.e., the POMCP and the DRL algorithm, for every day
of the planning horizon is approximately ∼ 10.9 sec, which highlights
the suitability of the framework for application in a real airline envi-
ronment. This computation time was obtained using the same laptop
described before.

Finally, readers are referred to [30] for a detailed comparison of the
efficacy of the DRL algorithm against a MILP algorithm, that is used
instead in the second stage of the scheduling framework. The perfor-
mance of both algorithms is evaluated against three real maintenance
scenarios in a CBM context for different aircraft fleet sizes with data
provided by our partner airline, but also enriched (in a similar fash-
ion with this study) with simulated data for prognostics-driven tasks
from the C-MAPSS dataset. The study results highlight that the DRL
approach can produce both efficient and stable maintenance schedules.
At the same time, it demonstrates an increased computational efficiency
which stays relatively unaffected by the problem size and the number
of considered variables.

6.4.1. Cost–benefit analysis of CBM vs corrective maintenance
In this section, a cost–benefit analysis of the CBM concept is per-

formed, assuming that the 250 introduced prognostics-driven tasks
replace tasks that were addressed through the Corrective Maintenance
16
approach. According to the Corrective Maintenance approach, the com-
ponent is replaced only after it fails and thus the total maintenance cost,
𝐶𝐶𝑀 , is calculated as follows:

𝐶𝐶𝑀 =
∑

𝑟∈𝑅

∑

𝑢∈𝑈
𝐶𝑐𝑜𝑟𝑟
𝑢 (30)

where 𝐶𝑐𝑜𝑟𝑟
𝑢 = 25,000, as defined in Section 6.2. According to the CBM

approach, the maintenance cost, 𝐶𝐶𝐵𝑀 , is formulated as follows:

𝐶𝐶𝐵𝑀 =
∑

𝑟∈𝑅

∑

𝑢∈𝑈
𝐶𝐶𝐵𝑀
𝑢 (31)

where:

𝐶𝐶𝐵𝑀
𝑢 =

⎧

⎪

⎨

⎪

⎩

𝐶𝑐𝑜𝑟𝑟
𝑢 , if 𝑆𝐷𝑢 > 𝐸𝑜𝐿𝑢

𝐶𝑝𝑟𝑒𝑣
𝑢 ⋅ (1 + 𝐸𝑜𝐿𝑢−𝑆𝐷𝑢

𝐸𝑜𝐿𝑢
) if 𝑆𝐷𝑢 ≤ 𝐸𝑜𝐿𝑢

(32)

𝑆𝐷𝑢 is the scheduled maintenance date and the for component 𝑢,
𝐸𝑜𝐿𝑢 is the date that corresponds to the end of life of the component
and 𝐶𝑝𝑟𝑒𝑣

𝑢 = 10,000, as defined in Section 6. The comparison of the
maintenance costs induced when following the Corrective Maintenance
approach and when implementing the CBM approach as defined by
the two-stage scheduling framework is visualized in Fig. 12. The re-
sults demonstrate that the CBM two-stage scheduling framework is
beneficial, as it can lead to a reduction of maintenance costs as high
as 46.2% compared to a Corrective Maintenance approach. However,
this cost–benefit analysis does not include the costs of sensor installa-
tion and certification, or the costs related to the development of the
prognostics-driven models.

7. Conclusions

In this paper, we presented a novel two-stage CBM scheduling
framework for a fleet of aircraft in a disruptive environment. The RUL
prognostics, are updated on a daily basis with new sensor measure-
ments and are characterized by uncertainty which follows the normal
distribution. On top of that, also the list of preventive and corrective
maintenance tasks is continuously updated. The maintenance planning
model takes into account the list of different types of maintenance
tasks, along with available maintenance slots, the available resources,
and the existing maintenance schedule, to produce the maintenance
schedule of the aircraft fleet using a rolling horizon approach. The
overarching goal is to prevent tasks from going due, while at the same
time, ensuring high fleet availability, schedule stability, and efficient
task interval utilization.

The proposed methodology follows a POMDP approach, incorpo-
rating two scheduling blocks. The first scheduling block is based on
a modified version of the POMCP algorithm to derive the optimal
maintenance policy at component level. The second scheduling block
uses a DRL approach to produce a maintenance schedule at the aircraft
fleet level.

The performance of the proposed model was evaluated on a real
case study from our partner airline for a fleet of 34 wide-body aircraft
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Fig. 11. Schedule changes per cluster of components.
Fig. 12. Costs per maintenance approach.
having a total of 250 prognostics-driven tasks and 1517 preventive
and corrective maintenance tasks. The results show that 96.4% of the
considered monitored components were maintained on time. Moreover,
the introduction of the prognostics-driven tasks can lead approximately
to 46% reduction in maintenance costs. Besides that, the results show
that the final output of our model reduces the used maintenance
slots and the last-minute schedule changes. Overall, our approach
produces stable and efficient maintenance schedules and is computa-
tionally efficient for quasi-real-time, while operating in an uncertain
environment.

We believe this model to be the first of its kind in the context of
aircraft CBM planning. As such it can be improved in many ways. In
17
particular, future work should focus on evaluating the output of the
model when using different types of prognostics models and distribu-
tions for capturing the RUL prognostics uncertainty. Moreover, addi-
tional maintenance actions, like inspections, can be incorporated into
the formulation of the scheduling block for the prognostics-driven tasks.
The additional actions can be assessed using metrics like the Value
of Information (VoI). Finally, this research included only tasks that
required execution in the hangar. However, in airline practice, many
maintenance tasks are resolved in line maintenance. Extending the
framework to include line maintenance capabilities can significantly
increase schedule efficiency.
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ppendix A. Algorithm for the derivation of maintenance policy
or each monitored component for the intended planning horizon

Algorithm 1 Derivation of maintenance policy for each monitored
component for the intended planning horizon
1: Set desired planning horizon
2: if new prediction/observation is received then
3: Prune tree at the received observation/corresponding belief

node 𝑏𝑡
4: Discard all the other belief nodes
5: Run POMCP algorithm as defined in [4]
6: Select action 𝑎̂ with the highest value function
7: Append action 𝑎̂ to the list of selected maintenance actions
8: repeat()
9: Prune tree at the belief node 𝑏𝑡 with the highest amount of

visits 𝑁
10: Discard all other belief nodes
11: Run POMCP algorithm as defined in [4]
12: Select action 𝑎̂ with the highest value function
13: Append action to the list of selected maintenance actions
14: until Terminal state or end of planning horizon
15: else
16: repeat()
17: Prune tree at the belief node 𝑏𝑡 with the highest amount of

visits 𝑁
18: Discard all other belief nodes
19: Run POMCP algorithm as defined in [4]
20: Select action 𝑎̂ with the highest value function
21: Append action 𝑎̂ to the list of maintenance actions
22: until Terminal state or end of planning horizon
23: end if
18
Appendix B. Greedy algorithm-allocation of aircraft tasks to main-
tenance slots

Algorithm 2 Greedy algorithm-allocation of aircraft tasks to fixed
maintenance slots
1: INPUT 𝑅, 𝐺, 𝑀𝑓𝑖𝑥𝑒𝑑
2: for 𝑟 ∈ 𝑅 do
3: repeat()
4: Sort the aircraft tasks, 𝑔 ∈ 𝐺𝑟, in ascending order accord-

ing to the number of remaining maintenance opportunities 𝑚𝑟 ∈
𝑀𝑓𝑖𝑥𝑒𝑑 , verifying by the set of constraints (2)–(7).

5: Add the aircraft tasks that have no remaining maintenance
opportunities to the list of tasks to be considered for scheduling by
the DRL algorithm.

6: Select the first element from the sorted list, i.e., the most
urgent task 𝑔𝑢𝑟𝑔𝑒𝑛𝑡

7: if 𝑔𝑢𝑟𝑔𝑒𝑛𝑡 ∈ 𝐺𝑝𝑟𝑒𝑣 ∪ 𝐺𝑝𝑟𝑜𝑔𝑛 then
8: Assign 𝑔𝑢𝑟𝑔𝑒𝑛𝑡 to the latest possible fixed maintenance

slot.
9: else if 𝑔𝑢𝑟𝑔𝑒𝑛𝑡 ∈ 𝐺𝑐𝑜𝑟𝑟 then

10: Assign 𝑔𝑢𝑟𝑔𝑒𝑛𝑡 to the earliest possible fixed maintenance
slot.

11: end if
12: Update the available workhours of the used maintenance

slot
13: until all aircraft tasks, 𝑔 ∈ 𝐺𝑟, have been considered
14: end for

Appendix C. Definition of the reward function 𝒓𝒎

The first and most important objective is to keep the aircraft safe
and airworthy, i.e., to prevent maintenance tasks from going due.
For this reason, in lines 3–4, a large negative penalty, 𝑊𝑓𝑎𝑖𝑙 ≪ 0,
is returned when the number of due tasks increases between two
successive maintenance slots. Also, one of the objectives is to improve
maintenance schedule stability and subsequently, increase the flight
schedule reliability. To account for this, in lines 5–6, a negative penalty
𝑊𝑓𝑎𝑖𝑙 ≪ 𝑊𝑟𝑒𝑠𝑐 ≪ 0 is introduced when a schedule change is observed
within the period defined by the airline that schedule changes should
be prevented. Moreover, as we move closer to the day of operations,
the impact of a schedule change is higher, and therefore the introduced
penalty increases linearly.

In lines 8–9 a positive reward, set equal to 𝑊𝑔𝑟𝑜𝑢𝑛𝑑 , is returned when
the agent decides not to schedule any aircraft for maintenance, as in
this case, the aircraft is available for operations.

Lines 11–12 ensure that the agent prefers to assign the aircraft
to maintenance slots (if they exist) where all the open tasks can be
addressed at once, hence minimizing the use of maintenance slots.
In case only the current considered slot can accommodate all open
maintenance tasks (𝐹𝑆𝑟 = 1) and there are no forthcoming maintenance
lots where all tasks can be addressed (𝐹𝑁𝑆𝑟 = 0), the highest possible
eward is returned when the agent allocates the aircraft to this slot. In
he opposite case, i.e., when 𝐹𝑆𝑟 = 0 and 𝐹𝑁𝑆𝑟 = 1, a zero reward is
eturned when the agent assigns the aircraft to the current slot.

Finally, lines 14–18 guide the selection of the algorithm when
ither there are multiple maintenance slots that can accommodate all
he aircraft open tasks, or there are no slots where all tasks can be
ddressed at once. In this case, the first objective that needs to be
atisfied is to allocate the tasks to maintenance slots that have a similar
uration to the duration of the considered tasks, i.e., a high 𝐷𝑅𝑟 is
chieved. This is accomplished by the first term in the reward function,
𝑚, in lines 16 & 18, where the highest reward is returned when 𝐷𝑅𝑟 =

𝑀𝐷𝑅 , i.e., when the algorithm selects the maintenance slot which, in
𝑟
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Algorithm 3 Definition of the reward 𝑅𝑚 for every state-action pair (𝑠𝑚, 𝑎𝑚) at every maintenance slot 𝑚
1: 𝑊𝑓𝑎𝑖𝑙 << 𝑊𝑟𝑒𝑠𝑐ℎ << 0
2: 𝑊𝑔𝑟𝑜𝑢𝑛𝑑 > 𝑊𝑢𝑡𝑖𝑙 >> 0

3: if 𝐷𝑇𝑚+1 > 𝐷𝑇𝑚 then ⊳ Case where task(s) go due
4: 𝐫𝐦 = 𝑊𝑓𝑎𝑖𝑙 × (𝐷𝑇𝑚+1 −𝐷𝑇𝑚)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Task execution

5: else if 𝑆𝐶𝑚+1 > 𝑆𝐶𝑚 then ⊳ Case where a schedule change is performed
6: 𝐫𝐦 = 𝑊𝑟𝑒𝑠𝑐ℎ × 𝑚𝑎𝑥(𝐶𝑃 −𝑁𝐷𝑚, 0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Schedule stability

7: else
8: if 𝑎𝑚 = 𝑁𝑈𝐿𝐿 then ⊳ Case where no aircraft is scheduled for maintenance
9: 𝐫𝐦 = 𝑊𝑔𝑟𝑜𝑢𝑛𝑑
0: else ⊳ Case where an aircraft is allocated to a maintenance slot
1: if 𝐹𝑆𝑟 ≠ 𝐹𝑁𝑆𝑟 then
2: 𝐫𝐦 = (𝑊𝑔𝑟𝑜𝑢𝑛𝑑 +𝑊𝑢𝑡𝑖𝑙) × 𝐹𝑆𝑟

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Aircraft operational availability

3: else
4: if 𝐹𝑆𝑟 = 𝐹𝑁𝑆𝑟 then
5: if 𝑇𝑇𝑟 = 0 then
6: 𝐫𝐦 = 𝑊𝑔𝑟𝑜𝑢𝑛𝑑 × (1 − (𝑀𝐷𝑅𝑟 −𝐷𝑅𝑟))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Aircraft operational availability

+𝑊𝑢𝑡𝑖𝑙 × (1 − (𝑀𝑅𝑈𝑟 − 𝑅𝑈𝑟))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Task interval utilization
7: else
8: 𝐫𝐦 = 𝑊𝑔𝑟𝑜𝑢𝑛𝑑 × (1 − (𝑀𝐷𝑅𝑟 −𝐷𝑅𝑟))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Aircraft operational availability

+𝑊𝑢𝑡𝑖𝑙 × (1 −𝑁𝑅𝑈𝑟)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Task interval utilization

9: end if
0: end if
1: end if
2: end if
3: end if
terms of duration, is the best possible fit for the considered tasks. The
last objective in terms of importance is the task interval utilization.
In case there are preventive and prognostics-driven tasks (𝑇𝑇𝑟 = 0),
the second term in the reward function, 𝑅𝑚, in line 16, returns the
highest reward when 𝑀𝑅𝑈𝑟 = 𝑅𝑈𝑟, i.e., when the algorithm selects the
maintenance slot that provides the highest possible interval utilization
rate. When there are only corrective maintenance tasks (𝑇𝑇𝑟 = 1), the
objective is to schedule them as soon as possible, which is achieved
by the second term of the reward function, 𝑅𝑚, in line 18. This term
returns a high reward when a low 𝑁𝑅𝑈𝑟 is achieved, i.e. when the
algorithm schedules the considered tasks as soon as possible. Because
in the airline practice the objective of increased aircraft operational
availability has a higher priority than the objective of task interval
utilization, we set 𝑊𝑔𝑟𝑜𝑢𝑛𝑑 > 𝑊𝑢𝑡𝑖𝑙.
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