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Abstract. Cybercriminals have been exploiting cryptocurrencies to
commit various unique financial frauds. Covert cryptomining - which
is defined as an unauthorized harnessing of victims’ computational
resources to mine cryptocurrencies - is one of the prevalent ways nowa-
days used by cybercriminals to earn financial benefits. Such exploitation
of resources causes financial losses to the victims.

In this paper, we present our efficient approach to detect covert crypto-
mining on users’ machine. Our solution is a generic solution that, unlike
currently available solutions to detect covert cryptomining, is not tai-
lored to a specific cryptocurrency or a particular form of cryptomining. In
particular, we focus on the core mining algorithms and utilize Hardware
Performance Counters (HPC) to create clean signatures that grasp the
execution pattern of these algorithms on a processor. We built a complete
implementation of our solution employing advanced machine learning
techniques. We evaluated our methodology on two different processors
through an exhaustive set of experiments. In our experiments, we con-
sidered all the cryptocurrencies mined by the top-10 mining pools, which
collectively represent the largest share of the cryptomining market. Our
results show that our classifier can achieve a near-perfect classification
with samples of length as low as five seconds. Due to its robust and prac-
tical design, our solution can even adapt to zero-day cryptocurrencies.
Finally, we believe our solution is scalable and can be deployed to tackle
the uprising problem of covert cryptomining.

Keywords: Cryptocurrency · Machine learning · Mining · Profiling

1 Introduction

Cryptomining, or simply mining, is a process of validating and adding new trans-
action in the blockchain digital ledger for various cryptocurrency. It is an essen-
tial process to keep most of the cryptocurrencies running. Typically, mining is a
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resource-intensive process that continuously performs heavy computations. Upon
successful mining, miners receive newly generated cryptocoins as their remu-
neration. Usually, newer cryptocurrencies tend to pay a higher reward. Some
cryptocurrencies, such as Monero, make mining feasible on the web-browsers
that enable even layman users to participate in mining.

After the success of Bitcoin [40], many alternative cryptocurrencies (altcoins)
have been introduced to the market. At the time of writing, there are over 2000
active cryptocurrencies [2]. The massive number of cryptocurrencies raises an
enormous demand for mining. This demand continues to remain huge because
mining, as mentioned before, is an inevitable operation to keep these virtual cur-
rency systems running. Such an immense demand for mining has attracted cyber-
criminals [7,18] to earn financial gains, who have already been exploiting crypto-
currencies to perform several types of financial crimes, e.g., ransomware [29].

Motivation: A genuine miner has to make an investment in hardware and bear
the significant cost of electricity to run the mining hardware as well as cool-
ing facilities [14]. Nevertheless, mining is not beneficial on personal expenditure
(mainly, on electricity) unless mining is performed with specialized hardware [16].
However, mining can be very profitable if it is performed with “stolen” resources,
e.g., through covert cryptomining, or simply cryptojacking. Cryptojacking is
defined as an unauthorized use of the computing resources on a computer, tablet,
mobile phone, or connected home device to mine cryptocurrencies.

Cybercriminals have made several ingenious attempts to spread cryptojackers
in the form of malware [20], malicious browser extensions [12], etc.. by exploiting
vulnerability [17], compromising third-party plug-ins [19], maneuvering miscon-
figurations [11], taking advantage of web-based hosting service [13], and so on.
To evade intrinsic detection techniques (e.g., processor’s usage), some crypto-
jackers suspend their execution when the victim is using the computer [31], use
“pop-under” windows to keep mining for a comparatively longer duration [8],
and utilize legitimate processes of the operating system to mine [28]. Moreover,
merely monitoring CPU load, etc.. is an ineffective strategy because of both false
positives and false negatives [37].

To further aggravate the situation, cryptocurrency mining service (e.g., Coin-
hive [1], Crypto-Loot [3]) easily integrate into websites to monetize the compu-
tational power of their visitors. In fact, cryptojacking attacks exceeded ran-
somware attacks in 2018 and affected five times more systems as compared to
ransomware [25]. According to Symantec’s report [10], almost double cryptomin-
ers were detected on consumer machines as compared to enterprise machines
between October 2017 and February 2018 while the same volume of cryptomin-
ers was detected on consumer and enterprise machines between March 2018 and
July 2018. Kaspersky’s report [15] shows that the total number of internet users
who encountered cryptominers rose from 1.9 million in 2016–2017 to 2.7 million
in 2017–2018. IBM X-Force Threat Intelligence Index 2019 [23] estimates that
cryptojacking attacks increased by more than 4-times (∼450%) from Q1 2018 to
Q4 2018. SonicWall researchers [24] reported that cryptojacking attackers made
52.7 million cryptojacking hits during the first half of 2019. Such exploitation of
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the computational resources causes financial damage - primarily in the form of
increased1 electricity bills - to the victims, who often discover the misuse when
the damage has already been done.

On another side, the current state of cryptomining has been consuming a
vast amount of energy. As a representative example, Bitcoin Energy Consump-
tion Index was created to provide insight into this amount with respect to Bit-
coin, Bitcoin network consumes electricity close to the total demand by Iraq,
and a single Bitcoin transaction requires nearly 2.7 times the electrical energy
consumed by 100,000 transactions on the VISA network [9]. Moreover, a recent
study [39] has suggested that “Bitcoin usage could alone produce enough CO2

emissions to push warming above 2 ◦C within less than three decades.” The
current situation would further worsen with illegal/unauthorized/covert crypto-
mining. Finally, the abundance of the active cryptocurrencies raises the demand
for a generic solution to detect covert cryptomining that does not focus on a
particular cryptocurrency.

Contribution: In this paper, we focus on detecting covert cryptomining on users’
machine. The major contributions of this paper are as follows:

1. We propose an efficient approach to detect covert cryptomining. In particular,
our approach uses HPC to profile the core of the mining process, i.e., the
mining algorithms, on a given processor to accurately identify cryptomining
in real-time. We designed our solution to be a generic one, i.e., it is not
tailored to a particular cryptocurrency or a specific form of cryptomining.

2. We exhaustively assess the quality of our proposed approach. To this end,
we designed six different experiments: (1) binary classification; (2) currency
classification; (3) nested classification; (4) sample length; (5) feature relevance;
and (6) unseen miner programs. For a thorough evaluation, we considered
eleven distinct cryptocurrencies in our experiments. Our results show that
our classifier can accurately classify cryptomining activities.

3. In the spirit of reproducible research, we make our collected datasets and the
code publicly available2.

Organization: The remainder of this paper is organized as follows. Section 2
presents a summary of the related works. We explain our system’s architecture
in Sect. 3 and discuss its evaluation in Sect. 4. Section 5 addresses the potential
limitations of our solution. Finally, Sect. 6 concludes the paper.

2 Related Works

HPC are special-purpose registers in modern microprocessors that count and
store hardware-related activities. These activities are commonly referred to as

1 A machine consistently performs heavy computations while it does cryptomining,
which, in turn, continuously draws electricity.

2 spritz.math.unipd.it/projects/cryptojackers/.

https://spritz.math.unipd.it/projects/cryptojackers/
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hardware events3. HPC are often used to conduct low-level performance analysis
and tuning. HPC-based monitoring has very low-performance overhead, which
makes it suitable even for latency-sensitive systems. Several works have shown
the effectiveness of using HPC to detect generic malware [32,46,48], kernel-
level rootkits [47], side-channel attacks [27], unauthorized firmware modifica-
tions [45], etc.

A general-purpose process classification may distinguish a browser applica-
tion from a media player or one browser application from another browser appli-
cation. In the former case, the nature of the applications is different while both
the applications in the latter case have the same nature and perform the same
operation of rendering pages. Cryptominers have the same nature (of mining),
but they essentially perform very different underlying operations due to differ-
ent proof-of-works, and they also require different compute resources (e.g., BTC4

mining is processor-oriented while XMR mining is memory-oriented). Hence, a
comparison of our work with the general-purpose process classification methods
falls out of the scope of this paper.

On another side, there are limited number of works on detecting crypto-
mining. Bonneau et al. [26] discuss open research challenges of various crypto-
currencies and their mining. Huang et al. [36] present a systematic study of
Bitcoin mining malware and have shown that modern botnets tend to do illegal
cryptomining. Gangwal et al. [33] use magnetic side-channel to detect crypto-
mining. Other works [37,38,41,42,44] focus particularly on browser-based min-
ing. However, only a limited number of cryptocurrencies can be mined in the
web-browsers. MineGuard [43] focuses on detecting cryptomining operations in
the cloud infrastructure.

Our work is different from the state-of-the-art on the following dimensions:
(1) our proposed solution is a generic solution that is not tailored to a particular
cryptocurrency or a specific form (e.g., browser-based) of cryptomining on com-
puters; and (2) we tested our solution against all the cryptocurrencies mined by
the top-10 mining pools, which collectively represent the largest portion of the
cryptomining business.

3 System Architecture

We elucidate the key concept behind our approach in Sect. 3.1, our data col-
lection phase in Sect. 3.2, selection of cryptocurrencies in Sect. 3.3, and our
classifier’s design in Sect. 3.4.

3.1 Fundamental Intuition of Our Approach

The task of cryptomining requires a miner to run the core Proof-of-Work (PoW5)
algorithm repetitively to solve the cryptographic puzzle. At a coarse-grained
3 An event is defined as a countable activity, action, or occurrence on a device.
4 To refer to different cryptocurrencies, we use their standard ticker symbol. See

Table 3 for acronyms and their corresponding cryptocurrencies.
5 We use the term “PoW” to represent different consensus algorithms.
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level, some PoW algorithms are processor-oriented (e.g., BTC) while some are
memory-oriented (e.g., XMR) due to their underlying design. At a fine-grained
level, each PoW algorithm has its own unique mathematical/logical computa-
tions (or, in other words, the sequence of operations). Thus, each algorithm
upon execution affects some specific events more as compared to other events
on the processor. Consequently, when an algorithm is executed several times
repetitively, the “more” affected events outnumber the other - relatively under
affected - events. It means that a discernible signature can be built using the rele-
vant events for a PoW algorithm. As a representative example, Fig. 1 depicts the
variation in events while mining different cryptocurrencies and performing some
common user-tasks. LTC, for instance, shows a more erratic pattern in cache-
misses as compared to the other events that are affected during LTC mining.
On the other hand, a Skype video call has more disparity in context-switches.

Fig. 1. A representative example of variation in events while mining different crypto-
currencies and performing some common user-tasks. HPC were polled every 100 ms.
The line-points in the graphs do not represent data points and are merely used to make
lines distinguishable.
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In practice, there is a finite number of PoW algorithms upon which crypto-
currencies are established. So, we concentrate on the mining algorithms instead
of individual currency in our solution. To this end, we use supervised machine
learning (cf. Sect. 3.4) to construct signatures and build our classifier.

On another side, an adversary may attempt to circumvent such signature-
based detection in the following ways: (1) by controlling/limiting the mining;
or (2) by neutralizing the signatures. Limiting the mining would reduce the
hashing rate, which would indeed make the mining less profitable. Whereas, to
neutralize the signatures, the adversary has to succeed in two main hurdles.
First, the adversary must have to find those computation(s) that only changes
those events that are unrelated to the PoW algorithm. Second, the adversary
must have to run these computation(s) in parallel to the PoW algorithm, which
would again hamper the hashing rate, and thus the profit. In this work, we make
a practical assumption that the attacker wants to maximize the profit and does
not want to lose the computation cycles (hashing rate).

3.2 Data Collection

To better explain our work, we first describe what data we collect and how we
collect it. We used the perf [5] tool to profile the processor’s events using HPC. In
particular, we focus on hardware6 events (e.g., branch-misses), software7 events
(e.g., page-faults), and hardware cache8 events (e.g., cache-misses) on CPU as
the mining processes - depending on their design - require different type of
resources. We profiled each program of both positive (mining) and negative (non-
mining) class individually and collected a total 50 samples per program. Each
sample consists of recordings of 28 events (described in Table 1) for 30 s with
a sampling rate 10 Hz, which means that each sample comprises 300 readings
of 28 events, i.e., 8400 readings. To obtain clean signatures: (1) we profiled
each program in its stable stage, i.e., omitting the bootstrapping phase; and (2)
restarted the system to remove any trace of the previous sample.

For the positive class, we profiled a total of 11 cryptocurrencies discussed
in Sect. 3.3. As the representatives of negative class, we chose: 3D rendering;
7z archive extraction of tar.gz files; H.264 video encoding of raw video; solving
mqueens problem; Nanoscale Molecular Dynamics (NAMD) simulation; Netflix
movie playback; execution of Random Forest (RF) machine learning algorithm;
Skype video calls; stress-ng [6] stress test with CPU, memory, I/O, and disk
workers together; playing Team Fortress 2 game; and Visual Molecular Dynam-
ics (VMD) modeling and visualization. It is worth mentioning that these user-
tasks represent medium to high resource-intensive tasks.

We used two different systems to build our dataset for the experiments. The
configuration of these systems are as follows: (1) S1, a laptop with an Intel
Core i7-7500U @ 2.70 GHz (1 socket × 2 cores × 2 threads = 4 logical compute

6 Basic events, measured by Performance Monitoring Units (PMU).
7 Measurable by kernel counters.
8 Data- and instruction-cache hardware events.
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Table 1. The events that we monitor using HPC. Here, HW = hardware, SW =
software, and HC = hardware cache event.

Event Type Description Event Type Description

branch-instructions HW N. of retired branch instructions. iTLB-load-misses HC
N. of instruction fetches that

missed instruction TLB.

branch-load-misses HW N. of Branch load misses. iTLB-loads HC
N. of instruction fetches that

queried instruction TLB.

branch-loads HW N. of Branch load accesses. L1-dcache-load-misses HC
N. of load misses at L1 data

cache.

branch-misses HW
N. of mispredicted branch

instructions.
L1-dcache-loads HC N. of loads at L1 data cache.

bus-cycles HW
N. of bus cycles, which can be

different from total cycles.
L1-dcache-stores HC N. of stores at L1 data cache.

cache-misses HC N. of cache misses. LLC-load-misses HC
N. of load misses at the last

level cache.

cache-references HC N. of cache accesses. LLC-loads HC
N. of loads at the last level

cache.

context-switches SW N. of context switches. LLC-store-misses HC
N. of store misses at the last

level cache.

cpu-migrations SW
N. of times the process has

migrated.
LLC-stores HC

N. of stores at the last level

cache.

dTLB-load-misses HC N. of load misses at data TLB. mem-loads HC N. of memory loads.

dTLB-loads HC N. of load hits at data TLB. mem-stores HC N. of memory stores.

dTLB-store-misses HC N. of store misses at data TLB. page-faults SW N. of page faults.

dTLB-stores HC N. of store hits at data TLB. ref-cycles HW
N. of total cycles; not affected by

CPU frequency scaling.

instructions HW N. of retired instructions. task-clock SW
The clock count specific to the

task that is running.

resources) processor, 8 GB memory, 512 GB SSD storage, NVIDIA GeForce
940MX 2 GB dedicated graphic card, Linux kernel 4.14 and (2) S2, a laptop
with an Intel Core i7-8550U @ 1.80 GHz (1 socket × 2 cores × 4 threads =
8 logical compute resources) processor, 16 GB memory, 512 GB SSD storage,
Linux kernel 4.14.

All miner programs and the perf tool were launched in user -mode. Even
though we did not use any system-level privileges, we believe that using root
permissions for defense against cryptojacking is reasonable. The perf tool allows
us to create per-process profile using PID. It is worth emphasizing that even
though the dataset has been accumulated in a controlled setup, our experiments
(discussed in Sect. 4) well simulate real-world scenario, where samples are col-
lected in the real-time.

3.3 Cryptocurrencies and Miners

The probability of solving the cryptographic puzzle during mining is directly
proportional to the miner’s computational power/resources. Consequently, the
miners pool their resources to combine their hashing power with an aim to con-
sistently earn a portion of the block reward by solving blocks quickly. Typically,
the mining pools are characterized by their hashing power. Table 2 shows the
top-10 mining pools [21] and the cryptocurrencies mined by them. These ten
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mining pools collectively constitutes the biggest share (84% during Q1 2019) of
the cryptomining business.

Table 2. Cryptocurrencies mined by the top-10 mining pools

N. Mining pool
Cryptocurrency

BCD BCH BTC BTM DASH DCR ETC ETH LTC SBTC SC UBTC XMC XMR XZC ZEC

1 BTC.com ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

2 AntPool ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

3 ViaBTC ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

4 SlushPool ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

5 F2Pool ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

6 BTC.top ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

7 Bitclub.network ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

8 BTCC ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

9 BitFury ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

10 BW.com ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

We considered all the cryptocurrencies mentioned in the Table 2 in our exper-
iments. We used open-source miner programs to mine these cryptocurrencies.
Each miner program was configured to mine with public mining pools and to
utilize all available the CPUs present on the system. At the time of our exper-
iments, the miner program for SC was not able to mine using only the CPU.
Hence, we excluded SC from our experiments. To compensate SC, we included
QRK whose mining algorithm - in contrast to other cryptocurrencies - uses
multiple hashing algorithms. Table 3 shows the mining algorithm of different
cryptocurrencies and the CPU miners that we used.

Table 3. Mining algorithm and CPU miner for different cryptocurrencies

Cryptocurrency Mining algorithm CPU miner

Bitcoin Diamond (BCD) X13 cpuminer-opt 3.8.8.1

Bitcoin Cash (BCH), Bitcoin

(BTC), SuperBitcoin

(SBTC), UnitedBitcoin

(UBTC)

SHA-256 cpuminer-multi 1.3.4

Bytom (BTM) Tensority bytom-wallet-desktop 1.0.2

Dash (DASH) X11 cpuminer-multi 1.3.4

Decred (DCR) Blake256-r14 cpuminer-multi 1.3.4

Ethereum Classic (ETC),

Ethereum (ETH)

Ethash (Modified

Dagger-Hashimoto)

geth 1.7.3

Litecoin (LTC) scrypt cpuminer-multi 1.3.4

Quark (QRK) BLAKE + Grφstl + Blue

Midnight Wish + JH +

Keccak (SHA-3) + Skein

cpuminer-multi 1.3.4

Siacoin (SC) BLAKE2b gominer 0.6

Monero-Classic (XMC),

Monero (XMR)

CryptoNight cpuminer-multi 1.3.4

Zcoin (XZC) Lyra2z cpuminer-opt 3.8.8.1

Zcash (ZEC) Equihash Nicehash nheqminer 0.3a
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Since our approach focuses on the underlying core PoW algorithm, we consid-
ered one currency for every mining algorithm mentioned in Table 3 and excluded
BCH, SBTC, UBTC, ETC, and XMC in our study. As the proof-of-concept
implementation, we considered only CPU-based miner programs because each
computer has at least one CPU, which cryptojackers can harness to mine.

3.4 Classifier Design

In this section, we elucidate the design of our classification methodology. Algo-
rithm 1 describes the pipeline of our classifier. Our supervised classification
algorithm begins with splitting the base-dataset of 1100 samples (2 classes ×
11 instances × 50 samples) into 90–10% stratified train-test sets, denoted as
raw train set and raw test set. Then, these subsets are processed as follows:

Algorithm 1. Pseudo code for our supervised classification.
1: for each run i from 1 to 10 do
2: Create raw train set and raw test set by 90–10% stratified partitioning.
3: Data preprocessing

• Replace NaN values from raw train set and raw test set with arithmetic mean
of the considered event.

4: Feature engineering
• train set := Extract feature(raw train set)
• test set := Extract feature(raw test set)

5: Feature scaling
• scaler := StandardScaler()
• scaler.fit(train set) �Fit scaler on train set
• scaler.transform(train set)
• scaler.transform(test set)

6: Feature selection
• Compute features’ importance with forests of trees on train set and select the
most relevant features.

7: Training
• Learn the model parameters for the given classifier (RF/SVM) on the training
set using grid search with 5-fold stratified CV.

8: Predict/classify the test set.
9: end for

1. Data preprocessing: The first step of any machine learning-based classification
is to process the raw datasets to fix any missing value. Since each event we
monitor returns a numerical value, we replace the missing values, if any, with
the arithmetic mean of the respective event.

2. Feature engineering: In this step, we obtain features that can be used to train
a machine learning model for our prediction problem. Here, we compute 12
statistical functions (listed in Table 4) for every event. This step converts each
sample consisting of 300 readings (rows) × 28 events (columns) to a single
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row of 336 (28 events × 12 features) data-points. The features extracted in
this phase, hereinafter referred to as train set and test set, are used for the
subsequent stages.

Table 4. The statistical functions that we used for our feature engineering phase

0.2, 0.4, 0.6, and 0.8 quantile 1, 2, and 3 sigma Skewness

Arithmetic and geometric mean Kurtosis Variance

3. Feature scaling: It is an essential step to eliminate the influence of large-valued
features because features with larger magnitude can dominate the objective
function, and thus, deterring an estimator to learn from other features cor-
rectly. Hence, we standardize features using standard scaler, which removes
the mean and scale the features to unit variance.

4. Feature selection: In machine learning, feature selection or dimensionality
reduction is the process of selecting a subset of relevant features that are
used in model construction. It aims to improve estimators’ accuracy as well
as to boost their performance on high-dimensional datasets. To do so, we
calculate the importance of features using forests of trees [22] and select the
most relevant features.

5. Training: The training phase consists of learning the model parameters for
the given classifier on the training set, i.e., train set. Given the nature of
the problem, we resort to supervised machine learning procedures. In par-
ticular, we employed two of the most successful machine learning meth-
ods for classification, namely Random Forest (RF) [34] and Support Vector
Machine (SVM) [30].
For model selection, we use grid search with 5-fold Cross Validation (CV).
The validated hyper-parameters for RF and SVM are shown in Table 10 and
Table 11, respectively in Appendix A. We chose standard range of values for
the hyper-parameters [35].

6. Prediction: Finally, prediction is made on test set.

The process is repeated ten times for a given experiment and the final results
are computed over these ten runs.

4 Evaluation

We throughly evaluated our approach by performing an exhaustive set of exper-
iments. We performed the following six different experiments: (1) binary classi-
fication (Sect. 4.1); (2) currency classification (Sect. 4.2); (3) nested classifica-
tion (Sect. 4.3); (4) sample length (Sect. 4.4); (5) feature relevance (Sect. 4.5);
and (6) unseen miner programs (Sect. 4.6). Table 5 describes the sample dis-
tribution in our base-dataset for each system, i.e., S1 and S2. Here, sub-classes
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of the mining task refer to the cryptocurrencies (discussed in Sect. 3.3) while
sub-classes of the non-mining task refer to the actual user-tasks that belong
to the negative class (mentioned in Sect. 3.2). We use the entire base-dataset
(1100 samples per system) for each experiment, unless otherwise stated in an
experiment.

Table 5. Dataset: name of the task, sub-classes per task, samples per sub-class, and
total samples per task for each system

Task Sub-classes per task Samples per sub-class Total samples per task

Mining 11 50 550

Non-mining 11 50 550

We evaluated our classifier using standard classification metrics: Accuracy,
Precision, Recall, and F1 score. To increase the confidence in our results, we
report the mean and the margin of error for the results with 95% confidence
interval from ten runs of each experiment for each of the evaluation metric.
We use (·) to indicate the best result for the metric and report the results as
mean ± margin of error.

4.1 Binary Classification

Our main goal is to identify whether a given instance represents the mining task
or not. Hence, in this experiment, the label of each sample was defined as the
positive or negative class, accordingly. Table 6 presents the results of the binary
classification using both RF and SVM.

Table 6. Results for binary classification

System Method Accuracy Precision Recall F1

S1 RF 1.000 ± 0.000· 1.000 ± 0.000· 1.000 ± 0.000· 1.000 ± 0.000·
SVM 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

S2 RF 0.999 ± 0.002· 0.999 ± 0.002· 0.999 ± 0.002· 0.999 ± 0.002·
SVM 0.990 ± 0.018 0.991 ± 0.016 0.990 ± 0.018 0.990 ± 0.018

Both the RF and SVM yielded superior performance. However, RF performed
better than SVM on both the systems; the possible reason for the difference in
classifiers’ performance is their underlying designs - RF and SVM characterize
their decision boundaries differently and also handle the outliers present in the
dataset differently. On another side, the minute variations in the performance
of a given classifiers across S1 and S2 are natural and expected; mainly due to
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distinct dataset and data stratification. For the sake of brevity, we report the
results only for RF for the subsequent experiments. We also present the details
of parameters selected by grid search in Appendix B.

4.2 Currency Classification

The aim of this experiment is to understand the difficulty level of classification
among various cryptocurrencies. Therefore, the input dataset for this experiment
contained instances only of the cryptocurrencies. Table 7 lists the results of the
currency classification.

Table 7. Results for currency classification

System Accuracy Precision Recall F1

S1 0.987 ± 0.017 0.992 ± 0.011 0.988 ± 0.016 0.985 ± 0.020

S2 0.986 ± 0.018 0.981 ± 0.027 0.985 ± 0.018 0.982 ± 0.024

Figure 2 depicts the confusion matrices for the classification among various
cryptocurrencies to provide a better perception of the results. Here, Fig. 2(a)
and Fig. 2(b) correspond to S1 and S2, respectively. The confusion matrices are
drawn using the aggregate results from all the ten runs. Currency classification is
a multi-class classification problem, and some cryptocurrencies were misclassified
among each other (see Fig. 2). Hence, the results are slightly lower than that of
the binary classification.

Fig. 2. Confusion matrix for classification among various cryptocurrencies
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4.3 Nested Classification

This experiment represents a simulation of a real-world scenario. Here, we first
classify whether a given instance belongs to the positive class. If so, we identify
the cryptocurrency it belongs to. Essentially, nested classification is equivalent
to performing currency classification on the instances classified as positive in the
binary classification.

Table 8 shows the results of the nested classification. In the worst case, we
expect the outcome of this experiment to be lower than that of the binary clas-
sification and currency classification together because a crucial aspect of such
staged classification is that an error made in the prediction during the primary
stage influences the subsequent stage; the results for S1 shows this phenomenon.
However, in a common scenario, the expected outcome of this experiment would
be between the results for the binary classification and currency classification;
the results for S2 shows this effect.

Table 8. Results for nested classification

System Accuracy Precision Recall F1

S1 0.973 ± 0.020 0.972 ± 0.026 0.972 ± 0.020 0.967 ± 0.026

S2 0.996 ± 0.007 0.997 ± 0.006 0.996 ± 0.008 0.996 ± 0.008

4.4 Sample Length

The objective of this experiment is to understand the effect of length of the
samples. For deployment in the real-world scenario, any solution - apart from
being accurate - must be able to detect cryptojackers rapidly. To this end, we
performed the binary classification of samples of a length of 5, 10, 15, 20, 25, and
30 s, each in separate experiments. It is worth mentioning that we used samples
of identical length for both the training and testing. Figure 3 shows the F1 score
when using samples of different length.

Fig. 3. F1 score for different sample lengths (whiskers represent margin of error)
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As explained in Sect. 3.1, the task of mining is to repeatedly execute the core
PoW algorithm. Hence, even samples of shorter length can grasp the signature.
As shown in Fig. 3, our system can achieve high performance with samples of
5 s. The dip in the curve for S1 corresponds to the thousandths digit of the
F1 score. For the sake of brevity, we omitted the results for sample shorter than
five seconds and only focus on the required minimum sample length to attain
high performance with our solution.

4.5 Feature Relevance

Next, we focus on our feature selection process (mentioned in Sect. 3.4). After
calculating the importance of features, we sorted them in ascending order of their
importance and selected the first-Ψ% features to do the binary classification.
The key idea here is to identify the lower-limit of (even less important) features
required to obtain the best performance. Figure 4 depicts the F1 score when
using first-Ψ% features.

Fig. 4. F1 score for first-Ψ% features (whiskers represent margin of error)

Since the features are sorted in the ascending order of their importance, we
begin with the feature with lowest significance. Intuitively, including important
features further improves the classification process. As shown in the Fig. 4, our
classifier attains high performance on both the systems using only the first-
40% (less relevant) features, which verifies/approves our feature engineering and
selection process.

4.6 Unseen Miner Programs

There can be several different miner-programs available to mine a given crypto-
currency. These programs come from different developers/sources. Consequently,
there can be some variations in the behavior of the miner-program itself,
e.g., in the code section before/after the PoW function or handling (on the
programming-side) a correct nonce found while mining. The reason is that they
are developed by different developers, which intuitively will cause variations.
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Training the model for each program may not be feasible for a variety of rea-
sons. Hence, to investigate the effectiveness of our approach in such a situation,
we set up this experiment. Here, we selected the binary classification as the tar-
get where the samples from all the mining and non-mining tasks were labeled
as the positive or negative class, respectively. However, we chose two additional
miner programs for BTC, namely, BFGMiner 5.5 and cgminer 4.10. We col-
lected additional 50 samples each for BFGMiner 5.5 and cgminer 4.10 on both
S1 and S2 separately. In the training phase, we used samples from one of the
three miner programs for BTC. On the contrary, we used samples from one of the
other two miner programs for BTC during the testing phase. Table 9 presents
the results of classifying samples from the miner programs that were unseen in
the training phase.

Table 9. Results for unseen miner programs

System Task Accuracy Precision Recall F1

S1 αβ 0.997 ± 0.006 0.997 ± 0.006 0.997 ± 0.006 0.997 ± 0.006

αγ 0.998 ± 0.005 1.000 ± 0.000 0.997 ± 0.006 0.998 ± 0.004

βα 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

βγ 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

γα 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

γβ 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

S2 αβ 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

αγ 0.998 ± 0.002 0.997 ± 0.003 0.997 ± 0.003 0.997 ± 0.003

βα 0.999 ± 0.002 0.998 ± 0.003 0.998 ± 0.003 0.998 ± 0.003

βγ 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

γα 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

γβ 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

The notation XY means that the training was done with the samples
from X while the testing was done with the sample from Y for BTC. Here,
α = cpuminer-multi 1.3.4, β = BFGMiner 5.5, γ = cgminer 4.10. It
is important to mention that these results are for the classification of all the
mining and non-mining tasks with BTC being trained and tested upon samples
from different programs. As discussed in Sect. 3.1, the miners have to execute
the same core PoW algorithm for a given cryptocurrency. Hence, samples from
different miner programs for a cryptocurrency retain the same signatures, which
is reflected in our results.
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Cross-Platform Classification: Next, we evaluate the transferability of the pro-
files built by our approach. We perform binary classification with additional
samples from S1’ (a system with the same processor as S1 ) and S2’ (a system
with the same processor as S2 ), and found that: (1) the profile of an algorithm
on a given processor can be used with the help of machine learning technique
to classify samples from another system with the same processor and (2) on the
contrary, the profile of an algorithm on one processor is not useful to perform
classification of samples from another processor.

5 Limitations

In this section, we address the potential limitation of our proposed approach.

5.1 Zero-Day Cryptocurrencies

A zero-day cryptocurrency would be a currency that uses a completely new
or custom PoW algorithm that was never seen before. As a matter of fact,
for a cryptocurrency to obtain market value: (1) its core-network should be
supported by miners/pools; and (2) its PoW algorithm must be accepted by the
crypto-community and tested mathematically for its robustness. Therefore, the
PoW algorithm for a new cryptocurrency would become public by the time it
gets ready for mining, which would give us sufficient time to capture this new
cryptocurrency’s signature and to train our model.

Importantly, miners prefer to mine cryptocurrencies that are more profitable
and avoid hashing the less rewarding ones. As it happens to be, more profitable
cryptocurrencies are indeed popular and their PoW algorithms are certainly
known to the public. In our experiments, we considered all the popular crypto-
currencies, and our results (presented in Sect. 4) demonstrate the high quality
of our proposed approach along various dimensions.

5.2 Scalability

The key concept of our approach is to profile the behavior of a processor’s events
for mining algorithms. Since there are only a finite number of CPUs/GPUs,
procuring their signature is only a matter of data collection. It might appear as
a ponderous job and may be seen as a limitation of our work. But, once it is
accomplished for the available CPUs/GPUs, maintaining it is relatively simpler
as merely a limited number of CPUs/GPUs are released over a period of time.

5.3 Process Selection

As mentioned in Sect. 3.2, our system requires per program/process-based
recording of HPC for different events as the input to the classifier. In prac-
tice, several processes run in the system. Hence, monitoring each process may
consume time and can be seen as a limitation of our work. However, as shown
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in Fig. 3, our system can achieve high performance even with samples of 5 s.
On another side, the miner programs attempt to use all the available resources.
Therefore, an initial sorting/filtering of processes based on their resource usage
can help to boost the detection process in real-time.

5.4 Restricted Mining

A mining strategy to evade detection from our proposed methodology can be
restricted mining that aims to change the footprint of the mining process. The
essence here is that the miner program/process can be modified to perform arbi-
trary operations during mining. But, such maneuvers would directly affect the
hashing rate and consequently the profits of mining; making the task of mining
less appealing. Nevertheless, like any signature-based detection technique, it may
be seen as a limitation of our work.

6 Conclusion and Future Works

Cybercriminals have developed several proficient ways to exploit crypto-
currencies with an aim to commit many unconventional financial frauds. Covert
cryptomining is one of the most recent means to monetize the computational
power of the victims. In this paper, we present our efficient methodology to iden-
tify covert cryptomining on users’ machine. Our solution has a broader scope
- compared to the solution that are tailored to a particular cryptocurrency or
a specific form (e.g., browser-based) of cryptomining on computers - as it tar-
gets the core PoW algorithms and uses the low-performance overhead HPC that
are present in modern processors to create discernible signatures. We tested our
generic approach against a set of rigorous experiments that include eleven dis-
tinct cryptocurrencies. We found that our classifier attains high performance
even with short samples of five seconds.

We believe that our approach is valid to distinguish GPU-based miners
because dedicated profiling tools, such as the nvprof [4] tool for NVIDIA GPUs,
allow us to monitor GPU events. Apart from most of the standard events found
on CPUs, GPUs have several dedicated events that can assist in creating unique
signatures for GPUs. Nevertheless, we keep such investigation as part of our
future work. We will also perform our experiments with a larger set of sys-
tems (CPUs) to observe the generalization of our approach. We also hope to
release a desktop application for run-time identification of covert cryptomining.

Appendix A Validated Hyper-parameters

The validated hyper-parameters for RF and SVM are shown in Table 10 and
Table 11, respectively.
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Table 10. Hyper-parameters vali-
dated for RF classifier

Parameter Validated values Effect on the model

n estimators {10, 25, 50, 75,

100, 125, 150}
Number of trees use

in the ensemble

max depth [2, ∞) Maximum depth of

the trees

max features ‘auto’, ‘log2’ Number of features

to consider when

looking for the best

split

split criteriongini, entropy Criterion used to

split a node in a

decision tree

bootstrap true, false Bootstrap

Aggregation (a.k.a.

bagging) is a

technique that

reduces model

variances

(overfitting) and

improves the

outcome of learning

on limited sample or

unstable datasets

random state 10 The seed used by

the random number

generator

Table 11. Hyper-parameters validated
for SVM classifier

Parameter Validated values Effect on the model

kernel ‘rbf’, ‘poly’,

‘sigmoid’

Specifies the kernel

type to be used in the

algorithm

C [10−3, 105] Regularization

parameter that controls

the trade-off between

the achieving a low

training error and a low

testing error that is the

ability to generalize

your classifier to unseen

data

γ ‘auto’, [10−7,

103]

Shape parameter of the

RBF kernel which

defines how an example

influence in the final

classification

degree default=3 Degree of the

polynomial kernel

function (‘poly’).

Ignored by all other

kernels

random state10 The seed of the pseudo

random number

generator used when

shuffling the data for

probability estimates

Appendix B Parameters selected by grid search

Here, we list the frequency of parameter-values selected by grid search over ten-
runs of different experiments. Table 12 corresponds to binary classification exper-
iment with SVM while Table 13 corresponds to binary, currency, and full clas-
sification experiments with RF for both S1 and S2.

Table 12. Binary classification with SVM

Parameter Value N. of times

selected on

S1

N. of times

selected on

S2

kernel ‘rbf’ 7 6

‘poly’ 1 0

‘sigmoid’ 2 4

C 0.01 1 0

0.1 0 4

1 1 1

10 3 2

100 2 2

1000 3 1

γ 0.0001 2 1

0.001 1 4

0.01 2 1

0.1 2 0

‘auto’ 3 4
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Table 13. Different classifications with RF

Binary classification Currency classification Full classification
Parameter Value N. of times

selected on
S1

N. of times
selected on
S2

N. of times
selected on
S1

N. of times
selected on
S2

N. of times
selected on
S1

N. of times
selected on
S2

bootstrap true 10 10 10 10 10 10
false 0 0 0 0 0 0

max features ‘log2’ 3 4 5 3 5 1
‘auto’ 7 6 5 7 5 9

max depth 2 0 0 4 1 0 0
3 5 5 5 5 5 1
4 2 1 0 3 4 7
5 2 2 1 1 1 2
6 1 0 0 0 0 0
7 0 2 0 0 0 0

split criterion gini 9 9 10 6 10 10
entropy 1 1 0 4 0 0

n estimators 10 2 3 0 5 0 0
25 5 1 1 2 1 0
50 2 1 4 1 0 1
75 0 0 2 2 0 0
100 0 0 2 0 5 5
125 1 4 0 0 3 1
150 0 1 1 0 1 3
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42. Rüth, J., et al.: Digging into browser-based crypto mining. arXiv preprint:
1808.00811 (2018)

43. Tahir, R., et al.: Mining on someone else’s dime: mitigating covert mining oper-
ations in clouds and enterprises. In: Dacier, M., Bailey, M., Polychronakis, M.,
Antonakakis, M. (eds.) RAID 2017. LNCS, vol. 10453, pp. 287–310. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66332-6 13

44. Wang, W., Ferrell, B., Xu, X., Hamlen, K.W., Hao, S.: SEISMIC: SEcure In-lined
Script Monitors for Interrupting Cryptojacks. In: Lopez, J., Zhou, J., Soriano, M.
(eds.) ESORICS 2018. LNCS, vol. 11099, pp. 122–142. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98989-1 7

45. Wang, X., et al.: ConFirm: detecting firmware modifications in embedded systems
using hardware performance counters. In: 34th IEEE/ACM ICCAD, pp. 544–551
(2015)

https://tinyurl.com/y8pdk922
https://tinyurl.com/y3nlad2h
https://tinyurl.com/y5nbprve
https://tinyurl.com/y3wj69s7
https://tinyurl.com/ydhauj8x
https://tinyurl.com/y8eos9pl
https://tinyurl.com/y8eos9pl
https://tinyurl.com/yco7cykl
https://tinyurl.com/3f4a6lr
https://tinyurl.com/3f4a6lr
https://doi.org/10.1007/978-3-319-66332-6_13
https://doi.org/10.1007/978-3-319-98989-1_7


364 A. Gangwal et al.

46. Wang, X., et al.: Hardware performance counter-based malware identification and
detection with adaptive compressive sensing. ACM TACO 13(1), 1–23 (2016)

47. Wang, X., Karri, R.: NumChecker: detecting kernel control-flow modifying rootkits
by using hardware performance counters. In: 50th DAC, pp. 1–7 (2013)

48. Yuan, L., et al.: Security breaches as PMU deviation: detecting and identifying
security attacks using performance counters. In: 2nd ACM SIGOPS APSys, pp.
1–6 (2011)


	Detecting Covert Cryptomining Using HPC
	1 Introduction
	2 Related Works
	3 System Architecture
	3.1 Fundamental Intuition of Our Approach
	3.2 Data Collection
	3.3 Cryptocurrencies and Miners
	3.4 Classifier Design

	4 Evaluation
	4.1 Binary Classification
	4.2 Currency Classification
	4.3 Nested Classification
	4.4 Sample Length
	4.5 Feature Relevance
	4.6 Unseen Miner Programs

	5 Limitations
	5.1 Zero-Day Cryptocurrencies
	5.2 Scalability
	5.3 Process Selection
	5.4 Restricted Mining

	6 Conclusion and Future Works
	A Validated Hyper-parameters
	B Parameters selected by grid search
	References




