

AI on Low-Cost
Hardware

Microcontroller Subgroup
by

Jarl Brand & Mano Rom

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

to be defended on Wednesday, June 21, 2023, at 4:00 PM.

Students: J. Y. K. Brand: 5367980 & M. Rom: 5331498
Project duration: April 24, 2023 – June 30, 2023
Thesis committee: prof. dr. ir. F.P. Widdershoven, NXP, TU Delft, supervisor

dr. ir. J. H. G. Dauwels, TU Delft, supervisor
dr. C. Frenkel, TU Delft, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
The creation of effective computational models that function within the power limitations of edge de-
vices is an important research problem in the field of Artificial Intelligence (AI). While cutting-edge deep
learning algorithms show promising results, they frequently need computing resources that are many
orders of magnitude more than the available power and memory budgets for these devices. During
the thesis, two unique learning algorithms (backpropagation and forward-forward) were developed and
compared using the Teensy 4.1, a low-cost microcontroller board. This work seeks to bridge the gap
between the necessary computing efficiency and the hardware’s restricted resources.

By creating and analyzing these algorithms, with the Fashion MNIST dataset as a validation set, this
thesis creates a baseline for AI efficiency on microcontrollers, with performance targets set at a mini-
mum of 80% test accuracy. The microcontroller software, implemented in C++, is limited to using less
than 512 kB RAM for all online training methods. In addition, the potential of transfer learning was also
explored.

Key performance parameters, including memory utilization, training and inference times, and accu-
racy, were analyzed in a comparative study of the backpropagation and forward-forward algorithms.
For each learning algorithm, several configurations were explored (such as topologies, and optimizers)
to determine the most effective and efficient way for AI implementation on low-cost hardware. The key
conclusions of this study reveal that backpropagation demonstrates superior performance in terms of
both accuracy and computational efficiency. However, it requires more memory for storing variables,
which may be a constraint in on-edge environments. Conversely, the forward-forward algorithm, while
achieving lower accuracy, is more memory-efficient, making it a potential choice for less complex tasks
or systems with severe RAM limitations.

The application of transfer learning showed potential to accelerate the learning process and to improve
the final accuracy, hinting at an effective strategy for deploying advanced AI models on resource-limited
edge devices.

i

Preface
It is with great pleasure that we, Jarl Brand and Mano Rom, present to you this thesis, the culmination
of countless hours of effort, learning, and not to mention, a fair share of debugging. This work would not
have been possible without the support of several people, whom we would like to express our heartfelt
gratitude to.

Firstly, we are also profoundly grateful to our supervisors, prof. dr. ir. F.P. Widdershoven, dr. ir.
J. H. G. Dauwels, dr. C. Frenkel, and Y. N. Esparza, for their expert guidance and insights. Their
feedback during our weekly meetings was invaluable, and their enthusiasm for the subject was truly
contagious.

We would like to extend our deepest thanks to our parents, whose enduring belief in us, constant
encouragement, and much-needed supply of caffeine and snacks, served as the fuel that powered this
journey. To Jan and Petra, and Adinda and Luc, we couldn’t have done this without you.

We would also like to take this opportunity to thank the Technical University of Delft, for the enrich-
ing experiences throughout our Bachelor’s program. It has been a period of both academic growth and
personal development, albeit amidst some rather unexpected global circumstances. The sudden tran-
sition to online learning due to the pandemic was not without its challenges. Still, it is safe to say that
we have attended more lectures in our pajamas than we ever thought possible. However, the return
to campus brought a renewed sense of energy and friendships, and we enjoyed the chance to engage
with our peers and professors in person again.

To our fellow students and educators at TU Delft, thank you for making this journey an awesome ex-
perience.

Enjoy reading!

Jarl Brand & Mano Rom
Delft, June 2023

ii

Glossary
AI Artificial Intelligence. i, 1–4, 9–11

ANN Artificial Neural Network. 6

ARM Advanced RISC Machines. 2

BP Backpropagation. 24, 27, 28

CNN Convolutional Neural Network. 7, 11

FF Forward-forward learning. 10, 24, 26, 27

FP32 32-bit Floating Point. 10, 12, 14

FPGA Field Programmable Gate Array. 2, 18, 26, 27

FPU Floating Point Unit. 12

IIoT Industrial IoT. 1

KiB Kibibyte. 22

MCU Microcontroller Unit. 2, 12, 17, 26–28

MLP Multilayer Perceptron. 6, 7, 10

RAM Random-access memory. i, 2, 4, 14

ReLU Rectified Linear Unit. 12, 13, 15, 16

SGD Stochastic Gradient Descent. 8, 10, 13–16, 22, 23, 27

TF TensorFlow. 13–15, 25, 26

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Statement of Problem . 1
1.3 Objective of the Study . 2
1.4 Sub-group dynamics . 2
1.5 Choice of Hardware and Dataset . 2
1.6 Outline of the Thesis . 3

2 Program of Requirements 4
2.1 Functional Requirements. 4
2.2 Mandatory Requirements . 4
2.3 Trade-Off Requirements . 5

3 Background and Related works 6
3.1 Neural Networks . 6

3.1.1 Multilayer Perceptron. 6
3.1.2 Convolutional Neural Network . 7

3.2 Backpropagation . 7
3.2.1 Fundamentals of Backpropagation . 7
3.2.2 Stochastic Gradient Descent. 8
3.2.3 Learning Rate Decay . 8
3.2.4 Momentum . 8
3.2.5 Strengths and Weaknesses of Backpropagation 9
3.2.6 Applicability to this Thesis . 9

3.3 Forward-forward . 9
3.3.1 Overview of the Forward-Forward Algorithm . 9
3.3.2 Fundamentals of Forward-Forward . 10
3.3.3 Advantages and Disadvantages . 10

3.4 AI in microcontrollers . 10
3.4.1 Offline Learning. 10
3.4.2 Online Learning. 10
3.4.3 Transfer Learning. 11
3.4.4 TensorFlow and TensorFlow Lite . 11

4 Methodology 12
4.1 Algorithm Implementation and Optimization. 12

4.1.1 Backpropagation . 12
4.1.2 Forward-Forward . 14
4.1.3 Transfer Learning. 16

4.2 Testing Procedures & Metrics . 17

5 Results and Discussion 18
5.1 Performance of backpropagation . 18

5.1.1 Baseline. 18
5.1.2 Learning rate decay . 19
5.1.3 Momentum . 20
5.1.4 Dual-Layer network. 20
5.1.5 Larger networks using memory-optimized SGD 22
5.1.6 Comparison with TF Lite . 22
5.1.7 Discussion . 23

iv

Contents v

5.2 Performance of Forward-Forward Algorithm . 24
5.2.1 Baseline. 24
5.2.2 Dual-layer network . 25
5.2.3 Comparison with TF Lite . 25
5.2.4 Discussion . 25

5.3 Transfer Learning. 26
5.4 Comparison with other teams . 26
5.5 Discussion . 27

6 Conclusion 28
6.1 Summary of Findings. 28
6.2 Limitations of the Study . 29
6.3 Recommendations for Future Work . 30

A Background information 33
A.1 The Teensy 4.1 Microcontroller . 33

A.1.1 Hardware Specifications . 33
A.1.2 Constraints and Opportunities . 33

A.2 Fashion MNIST Dataset . 33
A.2.1 Composition of the Dataset . 34
A.2.2 Challenges Presented by the Dataset . 34
A.2.3 Appropriateness for the Study . 35

B Results 36
B.1 Backpropagation . 36

B.1.1 Baseline. 36
B.1.2 Single-layer with LR decay. 37
B.1.3 Single-layer with momentum. 40
B.1.4 Dual-layer . 41
B.1.5 Dual-layer with LR decay. 43
B.1.6 Larger networks using memory-optimized SGD 43

B.2 Forward-Forward . 44
B.2.1 Baseline. 44
B.2.2 Dual-Layer Network . 45

B.3 Comparison with other groups . 45
B.3.1 BP Baseline. 45
B.3.2 BP Baseline + LR decay . 46
B.3.3 BP Baseline + Momentum . 46
B.3.4 Dual layer BP . 47
B.3.5 Baseline FF . 47
B.3.6 Dual Layer FF . 48

B.4 Forward-Forward with batch size of 32 . 48
B.5 Direct comparison for foward-forward and backpropagation 48
B.6 Justification for testing methodology. 48

C General code / support structure 50
C.1 Data Loading . 50
C.2 Interfacing with MCU . 50
C.3 Linear Algebra Library . 50
C.4 TensorFlow Lite Micro . 51

D Mathematical definition loss and gradient 52
D.1 Forward-Forward contrastive loss . 52

D.1.1 Definition . 52
D.1.2 Gradient. 53

1
Introduction

1.1. Background
AI is a rapidly evolving field that is transforming how we perceive and handle data, resulting in ad-
vancements in healthcare, finance, transportation, and many more [1]. AI has the potential to improve
the efficiency of many systems, but there are limitations to its deployment, particularly in low-cost, low-
power devices [2]. AI implementation in such systems frequently necessitates a degree of processing
and power resources that exceeds the existing hardware capacities. On-edge AI, designed to handle
data locally and in real-time, without relying on cloud-based servers for computational support. This
becomes indispensable where connectivity is scarce, latency is critical, or data privacy is paramount [3].

Consider autonomous automobiles, where decisions must be made quickly and reliably based on real-
time sensor data. There is no room for lag. Wearable healthcare devices frequently collect sensitive
data and must provide real-time health recommendations, making on-edge AI advantageous for both
short response times and data privacy. On-edge AI can help with predictive maintenance in industrial
IoT (IIoT) environments [4] [5], detecting probable defects or anomalies in machinery. In farming it
can process data locally when mobile connectivity is limited [6], saving time and resources. Finally, in
smart homes and smart cities, this technology can improve privacy by processing data locally rather
than transferring it to the cloud.

However, achieving efficient on-edge AI necessitates the effective implementation of AI algorithms
on low-cost, low-power hardware, which is a significant challenge due to the computational intensity of
many AI tasks. Consequently, our exploration into the adaptation of AI algorithms, specifically back-
propagation and forward-forward learning, for such devices could provide a stepping stone towards
more practical and widespread applications.

1.2. Statement of Problem
While AI algorithms are being optimized for high-performance computer systems, less attention has
been paid to their implementation on microcontrollers [7]. This discrepancy creates a knowledge gap
in efficiently adapting and deploying AI algorithms for resource-constrained edge devices.

As a well-established learning algorithm, backpropagation has been extensively explored in high-
performance computing scenarios. Yet, it needs further research for its adaptation to edge devices
[8]. On the other hand, the forward-forward learning algorithm, though less utilized in general AI ap-
plications, holds potential for low-resource environments, but has not been sufficiently investigated in
this context. As such, a thorough understanding of the performance and trade-offs associated with
implementing these learning algorithms is lacking.

1

1.3. Objective of the Study 2

1.3. Objective of the Study
The primary objective of this study is to implement and evaluate the backpropagation and forward-
forward algorithms for on-edge application. This includes understanding the trade-offs involved in
memory utilization, training time, inference time, and ultimately, model accuracy. Thus, this study
aims to provide a systematic understanding of how best to adapt and optimize these algorithms for
resource-constrained edge devices.

To accomplish the objectives of this study, a collaborative approach was adopted, wherein three sub-
groups were formed, each consisting of two students. The task of each group was clearly outlined
based on their specific roles.

1.4. Sub-group dynamics

Figure 1.1: Software development pipeline. The software team was primarily responsible for developing the learning algorithms
in Python using TensorFlow. The microcontroller team focused on the implementation of these algorithms in C and C++.

The software group was responsible for providing high-level implementations of each algorithm. They
utilized the TensorFlow framework in Python, aiming to create a standard against which other imple-
mentations could be compared. In close collaboration with the software group, the microcontroller
group focused on translating the high-level implementations into a more basic form. To ensure a clear
understanding of the underlying processes, they removed the abstraction provided by TensorFlow and
instead used NumPy (a mathematics library) in Python for rewriting each algorithm. Following this, the
microcontroller group continued by implementing the algorithms on the microcontroller. They wrote a
custom linear algebra library and converted the Python model to a C++ version that could be deployed
to the microcontroller. This allowed them to test the performance of the algorithms within the specific
constraints of a low-cost hardware environment. The software group concurrently performed a hyper-
parameter search. The findings were shared with the other groups to ensure uniformity and optimal
performance across all implementations. A separate group worked on the implementation of the algo-
rithms on a Field-Programmable Gate Array (FPGA). However, this work was carried out independently
of the microcontroller group’s work, and little interaction took place between these two groups. The the-
sis you are currently reading presents the findings of the microcontroller group’s implementation and
performance evaluations.

1.5. Choice of Hardware and Dataset
The algorithms are implemented on representative low-cost hardware, specifically, the Teensy 4.1 mi-
crocontroller board. The choice of this particular board is driven by its capabilities, widespread applica-
tion, and in-store availability, thereby serving as a relevant case study. Still, the findings are expected
to provide broader insights relevant to a range of similar microcontrollers. By using the Fashion MNIST
dataset for validation, this study also looks to provide a generic evaluation scenario that could be repli-
cated across various hardware and datasets. To this end, this section presents a review of the Teensy
4.1 hardware, the Fashion MNIST dataset, and why they are appropriate for this study.

The Teensy 4.1, developed by PJRC [9], is an advanced microcontroller board equipped with an
IMXRT1062DVJ6 (ARM Cortex M7) MCU and two 512KbRAM chips. Despite some constraints, such
as its limited memory and lack of a dedicated AI hardware accelerator, the Teensy 4.1’s hardware ca-
pabilities coupled with its affordability make it an attractive choice for this study. Its high computational

1.6. Outline of the Thesis 3

power relative to its cost makes it a representative case for low-cost AI applications, aligning with the
overall goal of our research.

As for the dataset, Fashion MNIST [10] was chosen because of its increased complexity compared
to the original MNIST dataset. Composed of 60,000 training and 10,000 test examples, it introduces
more variance in the images while maintaining the same format as the original MNIST. Each exam-
ple is a 28 pixel by 28 pixel, grey-scale image of a piece of Zalando clothing. This dataset provides
a more challenging environment for the backpropagation and forward-forward algorithms and yet re-
mains manageable for a microcontroller like the one found on the Teensy 4.1 board. Furthermore, as a
well-known dataset, the results obtained from the Fashion MNIST can be easily compared with those
of other studies, facilitating the validation of our findings.

More in-depth specifications of the Teensy 4.1 microcontroller board and the Fashion MNIST dataset
are provided in appendix A.

1.6. Outline of the Thesis
The thesis opens with chapter 2, ’Program of Requirements,’ which outlines the primary constraints
and requirements of our study. It sets the foundation for our research by defining the problem, the
objectives, and the criteria for the assessment of the learning algorithms.

Following this, chapter 3, ’Background and Related Works’, provides a comprehensive review of the
existing literature and studies in this field. This chapter helps situate the thesis within the broader sci-
entific context.

Chapter 4, ’Methodology’ then details the specific steps taken to implement and evaluate the backprop-
agation and forward-forward algorithms. It covers the intricate techniques employed, the optimizations
made, and the experimental setups that were used to collect the results.

Chapter 5, ’Results and Discussion’ presents our findings and engages in a thorough analysis of the
data. It compares the performance of the two algorithms and discusses the implications of these results
in terms of memory usage, training time, inference time, and accuracy.

Finally, in chapter 6, ’Conclusion’, we reflect on our research, summarizing the key findings and dis-
cussing their implications.

2
Program of Requirements

The aim of this project is to develop and implement selected AI algorithms efficiently on a low-cost
microcontroller, in the context of on-edge application. The selection of algorithms and defining their
respective boundary conditions form the core of this project. This Program of Requirements provides a
comprehensive summary of the implementation sequence of the chosen algorithms and the restrictions
brought about by hardware limitations.

2.1. Functional Requirements
The core functional requirement of the project is to enable the efficient running of the chosen AI algo-
rithms on a low-cost microcontroller. These algorithms are:

• Backpropagation

• Forward-Forward algorithm

The successful implementation and evaluation of each algorithm will follow a stepwise process, com-
mencing with a simple base case and gradually extending to the hardware’s limits:

1. Offline single-layer implementation using TensorFlow and TensorFlow Lite (guidance from Soft-
ware group)

2. Offline single-layer implementation using Python and Numpy

3. Online single-layer implementation using C++

4. Offline multi-layer implementation using TensorFlow and TensorFlow Lite

5. Offline multi-layer implementation using Python and Numpy

6. Online multi-layer implementation using C++

7. Transfer learning using a convolutional network

2.2. Mandatory Requirements
The mandatory requirements for all training algorithms are:

• The software for the microcontroller must be written in C or C++.

• All online training algorithms must use less than 512 kB RAM.

• Test accuracy after full training on Fashion MNIST should be over 80%.

• Accuracy on-device learning should be nearly identical to full precision TensorFlowmodels (within
2%).

• Implement Backpropagation and Forward-Forward on the microcontroller.

4

2.3. Trade-Off Requirements 5

2.3. Trade-Off Requirements
The trade-off requirements listed below are open for consideration and adjustment to achieve an optimal
balance between various desired outcomes. Each requirement includes a specified target. Although
improvements beyond these targets are desirable, they should not supersede the optimization of other
trade-off requirements.

• Minimize the memory use of all algorithms, striving for a target lower limit of 256 kB RAM - a
common memory size for microcontrollers.

• Minimize the time required for training, aiming to achieve a goal of less than 1 minute per epoch.

• Minimize inference time, targeting a maximal duration of 0.5 seconds per batch of 16 images.

• Maximize the accuracy of trained networks on the Fashion MNIST test dataset. This requirement
does not have a specified target but should always be optimized.

• Experimenting with different topologies, with a minimum of online single-layer.

3
Background and Related works

This chapter delves into the specifics of the backpropagation and forward-forward learning algorithms,
which are the primary focus of our study. By comprehensively reviewing the existing research related
to these areas, we aim to set a robust foundation for the forthcoming investigation into the performance
of these algorithms on the microcontroller.

3.1. Neural Networks
Artificial neural networks [11] (ANNs) consist of multiple layers of interconnected artificial neurons, or
nodes. Each node is connected to a set of other nodes, and is triggered by an activation function, which
determines whether the neuron should be activated based on the weighted sum of its inputs. However,
despite the neurons’ apparent simplicity, neural networks can learn complex behaviors.

3.1.1. Multilayer Perceptron
The Multilayer Perceptron [12] (MLP) is a type of feedforward artificial neural network, often forming
the foundation for basic implementations on hardware. An MLP is characterized by one or more layers
of perceptrons, with each perceptron formulated as:

𝑦 = 𝑓(
𝑛

∑
𝑖=1
𝑤𝑖𝑥𝑖 + 𝑏) (3.1)

Where:

• 𝑦 is the output of the neuron.

• 𝑓 is the activation function.

• 𝑤𝑖 are the weights associated with the inputs.

• 𝑥𝑖 are the input values.

• 𝑏 is the bias term, providing an additional degree of freedom.

• 𝑛 is the number of inputs to the perceptron.

The MLP is typically trained by backpropagating an error gradient and then using an optimizer which
aims to minimize the discrepancy between the network’s output and the actual target output [12] [13].

6

3.2. Backpropagation 7

Figure 3.1: An example of a Multilayer Perceptron network

3.1.2. Convolutional Neural Network
Convolutional Neural Networks [14] [15] (CNNs) are a class of deep learning models most commonly
applied to analyzing visual data. CNNs are designed to automatically and adaptively learn spatial hi-
erarchies of features from tasks such as image classification.

CNNs are organized in three dimensions (width, height, and depth), as can be seen in fig. 3.2, and
use convolutional layers, pooling layers, and fully connected layers for the extraction of features from
input images. After feature extraction, the fully connected layers utilize these features for classification.

The network is typically trained by backpropagating an error gradient and then using an optimizer,
to adjust weights and biases based on this gradient.

Max-PoolMax-Pool Flatten

16@28x28

8@13x13 8@5x5 1x72

Figure 3.2: An example of a CNN with two hidden layers

3.2. Backpropagation
Backpropagation [13] is the cornerstone of learning in most modern neural networks and an essential
part of the training process for multi-layered networks, includingMLPs and CNNs. The backpropagation
training process can be divided into two phases: forward propagation and backward propagation.

3.2.1. Fundamentals of Backpropagation
During forward propagation, the input is passed through the network, layer by layer, until an output is
generated. This output is then compared to the expected output using a cost function (also known as
a loss or objective function) to determine the error of the prediction.

In the backward propagation phase, the error computed is propagated backward through the network.
This is where the ’backpropagation’ algorithm gets its name. The error is used to calculate the gradient
of the cost function with respect to the weights in the network.

The weights are then adjusted in the direction that minimizes the cost function. This is done using

3.2. Backpropagation 8

the method of gradient descent or one of its variants (such as stochastic gradient descent, mini-batch
gradient descent, or others). The rate at which the weights are adjusted is controlled by a parameter
called the learning rate.

Derivation of Backpropagation
The key mathematical insight of backpropagation is the application of the chain rule to compute the
gradient of the cost function with respect to the weights and biases. Given a cost function 𝐶(𝑤, 𝑏) that
depends on the weights 𝑤 and biases 𝑏 of the network, the chain rule yields the following:

𝜕𝐶
𝜕𝑤𝑖𝑗

= 𝜕𝐶
𝜕𝑎𝑗

⋅
𝜕𝑎𝑗
𝜕𝑧𝑗

⋅
𝜕𝑧𝑗
𝜕𝑤𝑖𝑗

(3.2)

Here 𝑎𝑗 is the activation of the 𝑗-th neuron in the next layer, and 𝑧𝑗 is the weighted input to that neuron.
The terms 𝜕𝐶

𝜕𝑎𝑗
, 𝜕𝑎𝑗𝜕𝑧𝑗

, and 𝜕𝑧𝑗
𝜕𝑤𝑖𝑗

can be computed relatively easily, making it feasible to compute the

gradient 𝜕𝐶
𝜕𝑤𝑖𝑗

[16].

3.2.2. Stochastic Gradient Descent
Stochastic Gradient Descent [17] [18] (SGD) is a variant of the traditional Gradient Descent algorithm,
which is used to find the local minimum of a function. SGD introduces an element of randomness
into the optimization process, which can help to avoid getting stuck in local minima and speed up the
computation.

Basic Principle of SGD
The basic principle of SGD is to estimate the gradient of the cost function by calculating it for a small
randomly-selected subset of the data, rather than for the entire data set as in standard Gradient De-
scent. This subset is referred to as a mini-batch. For each mini-batch, we calculate the gradient and
update the model’s parameters (e.g., the weights in a neural network) in the direction that minimizes
the cost function. This process is repeated until the algorithm converges to a minimum.

Advantages and Disadvantages
The main advantage of SGD is its efficiency. Because it uses only a small subset of the data at each
step, it is much faster than traditional Gradient Descent, especially for large datasets, which is particu-
larly important in memory-constrained microcontrollers [19].

SGD also has some drawbacks. Its convergence is less stable than traditional Gradient Descent,
the cost function does not decrease smoothly but fluctuates up and down, although the general trend
is downwards. This fluctuation can be reduced by decreasing the learning rate over time. Another
challenge is the selection of an appropriate learning rate and mini-batch size, which can significantly
impact the efficiency and effectiveness of the learning process.

3.2.3. Learning Rate Decay
The learning rate in the context of neural networks is a hyperparameter that determines the step size
at each iteration while moving toward a minimum of a loss function. It greatly influences how quickly
or slowly a network learns during the training phase. However, setting an optimal learning rate can be
challenging. If it is set too high, the loss function may oscillate or diverge; if it’s too low, convergence
may be slow or the function may get stuck in a local minimum.

Learning rate decay [16] is a common strategy to tackle this issue. The idea is to start with a rela-
tively high learning rate to benefit from fast initial learning, and then gradually reduce it over time. This
allows the model to make large updates to the weights early on when the errors are usually high, and
smaller updates later when trying to fine-tune the weights.

3.2.4. Momentum
Momentum is another technique used to accelerate the training of a neural network and to mitigate the
risk of getting stuck in local minima. The concept of momentum is borrowed from physics: a ball rolling

3.3. Forward-forward 9

downhill will keep its momentum and continue to roll even when it reaches a shallow or flat area.

In the context of neural networks, when we update the weights with gradient descent, we also take
into account the previous change in weights. We add a fraction of the update vector of the past time
step to the current update vector. The addition of momentum to the weight update rule causes past
gradients to influence the current direction in the weight space.

Mathematically, the weight update rule with momentum can be represented as follows:

𝑉𝑡 = 𝜇 ⋅ 𝑉𝑡−1 + (1 − 𝜇) ⋅ 𝜂 ⋅ ∇𝑤𝐶 (3.3)

𝑤 = 𝑤 − 𝑉𝑡 (3.4)

Here:

• 𝑉𝑡 is the velocity (the amount by which the weights are adjusted) at time step 𝑡.

• 𝜇 is the momentum term, which is a hyperparameter between 0 and 1.

• 𝑉𝑡−1 is the velocity at the previous time step.

• 𝜂 is the learning rate.

• ∇𝑤𝐶 is the gradient of the cost function with respect to the weights.

The use of momentum helps the model navigate along the relevant directions and diminishes oscilla-
tions, thus leading to faster convergence [16].

3.2.5. Strengths and Weaknesses of Backpropagation
Backpropagation offers several advantages. It is generalizable and can be applied to any differentiable
system. It also has strong empirical success across a wide range of tasks, including those involving
large and complex data.

However, it also has its drawbacks. Backpropagation requires substantial computational resources,
which can make the networks slow on a microcontroller, and requires not only the weight matrices and
bias vectors to be stored but also their gradients and intermediate values calculated during the forward
pass, which makes it challenging to implement on low memory hardware such as microcontrollers.
Moreover, it requires complex hyperparameter tuning to ensure convergence and avoid local minima
during optimization.

3.2.6. Applicability to this Thesis
Numerous studies [20] [21] have proposed solutions to optimize the implementation of the Backprop-
agation algorithm on resource-constrained hardware. These solutions typically involve trade-offs be-
tween accuracy and computational requirements. Given the large body of research and discoveries
made in the domain of Backpropagation on a microcontroller, this will serve as a reference to other
algorithms to be implemented on the microcontroller.

3.3. Forward-forward
This section covers the forward-forward algorithm [22], another learning algorithm in AI, with potential
benefits for on-edge applications.

3.3.1. Overview of the Forward-Forward Algorithm
The Forward-Forward algorithm operates on the principle of updating the weights of the network lay-
ers sequentially from input to output, hence the name ’forward-forward’. When applied in the context
of classification, the input and a label are given to the network, the networks goal is to maximize the
output when a correct label is given and minimize the output for an incorrect label. Unlike backpropa-
gation, which computes the error signal at the output and propagates it backwards, the forward-forward
algorithm bases the weight updates on the neuron outputs in the previous layer.

3.4. AI in microcontrollers 10

3.3.2. Fundamentals of Forward-Forward
The forward-forward (FF) algorithm uses an incremental learning approach, where the network’s weights
are updated iteratively based on the neuron’s outputs from the previous layer.

The input layer consists of the flattened input data and a label, the network will either get positive
data (data with the correct label) or negative data (data with an incorrect label). The hidden layers
are fully connected MLPs, the networks output 𝑝 is the probability that the data is positive, given by
applying the logistic function 𝜎 to the summed squared output for each neuron 𝑦 in that layer 𝑗 minus a
threshold 𝜃, making it the neural networks objective to maximize this sum when positive data is applied
and minimize the sum when negative data is applied, this is shown in eq. (3.5) as presented in the
original paper by Hinton [22].

𝑝 = 𝜎(∑
𝑗
𝑦2𝑗 − 𝜃) (3.5)

In the training phase, the weights can be updated by using SGD as described in section 3.2.2, on
every layer individually instead of across the whole network. The weight update rule highlights one
of the primary distinctions of the forward-forward algorithm, that is, the error used to update a weight
depends only on the target and output of the current layer, and the output of the previous layer. This
iterative procedure is repeated for each layer in the network, from the first hidden layer to the output
layer, thus completing one epoch of training.

3.3.3. Advantages and Disadvantages
While the forward-forward algorithm’s mathematical simplicity is appealing, it’s worth noting that its
learning dynamics can be substantially different from those of backpropagation, as will be further ex-
plored in chapter 4 and chapter 5. The primary advantage of the forward-forward algorithm is its locality
of information during the weight update process, which leads to less memory utilization.

However, one potential drawback is that the forward-forward algorithm may be slower to converge
or may get stuck in poor local minima due to the lack of global error information. Another drawback is
that during inference, each image is tested against every possible label, where the highest score is the
networks prediction. This increases the amount of forward passes required for each classification.

3.4. AI in microcontrollers
This section provides an overview of the current state of AI implementation in microcontrollers. It
explores the unique challenges and opportunities presented by these low-cost, low-power devices and
reviews the techniques and approaches that have been proposed to overcome the computational and
power constraints in these systems.

3.4.1. Offline Learning
Offline learning refers to the training of a neural network on a high-performance computing machine,
followed by its deployment on an edge device for inference. The typical practice during model training
is the utilization of 32-bit floating-point (FP32) precision. The weights of the network are then scaled
down to integers through a process known as quantization. This process not only minimizes the stor-
age requirements of the model but also permits the usage of more compact hardware architectures.
Previous studies have established that this quantization process can be performed without incurring
significant accuracy losses [23]. TensorFlow Lite, in particular, provides an assortment of tools de-
signed to facilitate the quantization of neural networks.

3.4.2. Online Learning
The concept of online learning involves performing (a portion of) model training directly on the edge
device. This approach provides the advantage of enabling the model to adapt to changes in the en-
vironment. Backpropagation coupled with a variant of Gradient Descent is the standard approach for
model training. However, these methods are memory-intensive, making them unsuitable for devices

3.4. AI in microcontrollers 11

with limited memory capacity. Moreover, models are typically quantized, which poses additional chal-
lenges for optimization [20].

3.4.3. Transfer Learning
Transfer Learning, a technique that combines aspects of both online and offline learning, is sometimes
used as a solution. The initial phase of this approach mirrors offline learning, wherein a neural network
is trained on powerful hardware and then the weights of this network are frozen and quantized, pre-
venting any further modifications on the microcontroller. Following this, an additional layer is added to
the network, which will be (re)trained on the edge device. Whenever a label is available for input data,
the weights of the final layer are updated using an online gradient descent algorithm [24].
In this configuration, the offline layers will do feature extraction and the online layers will do classifi-
cation. This can be particularly advantageous when the model extracts features of a moving dataset,
wherein in case the data changes over time, it can detect new patterns.

One of the major benefits of using CNNs in the context of transfer learning lies in their ability to ef-
ficiently extract features from input data. The initial layers of a CNN, trained on a large-scale dataset,
can identify and extract generic features like edges, curves, and textures. These features often have
universal utility and can be applied to a variety of different tasks. Thus, these pre-trained CNN layers
can be used as a fixed feature extractor while the subsequent layers of the network can be trained on
a specific task.

The application of transfer learning with CNNs not only saves computational resources but also time,
as the network does not need to learn these features from scratch. The pre-trained CNN can be quan-
tized, significantly decreasing memory utilization, and a smaller network can then be trained online to
adapt to specific tasks or environmental changes.

A possible use case for this could be a wearable device for health monitoring. A CNN pre-trained
on a large database of biomedical signals could be used to extract relevant features from incoming
sensor data, and a smaller network could be trained online to learn the specific patterns of the indi-
vidual user. This could be used to monitor and alert about changes in the health status of the user,
personalized to their unique physiology.

3.4.4. TensorFlow and TensorFlow Lite
TensorFlow [25], developed by Google Brain Team, is one of the most popular open-source libraries
for machine learning and neural networks. It provides a comprehensive ecosystem of tools, libraries,
and resources that facilitate building and deploying machine learning applications. It’s well-suited for
large-scale machine learning tasks with high computational demands, providing support for distributed
computing.

However, when considering deployment on edge devices, the full TensorFlow library can be exces-
sive due to its high computational and storage requirements. This is where TensorFlow Lite comes
into play. TensorFlow Lite is a streamlined version of TensorFlow designed specifically for deployment
on mobile and edge devices. It allows models to run on resource-constrained devices, focusing on
efficiency and performance.

In the context of this study, TensorFlow Lite is particularly relevant as we aim to implement AI solutions
on the low-cost, low-power Teensy 4.1 microcontroller. TensorFlow Lite provides the tools necessary
to train models offline and implement the quantized models on this hardware.

4
Methodology

4.1. Algorithm Implementation and Optimization
This thesis explores the implementation of the backpropagation and forward-forward algorithms on the
microcontroller to train neural networks. First, considerations regarding each training algorithm are pre-
sented. Finally, transfer learning is implemented using both algorithms. Information about the support
structures for these algorithms (data loading, linear algebra library, etc.) can be found in appendix C.
Care is taken to statically allocate contiguous memory, instead of using dynamic allocation. This can
be faster on microcontrollers and avoids the problem of memory fragmentation [26].

Full precision (FP32) is used for the implementation of learning algorithms on the microcontroller. This
allows for a direct comparison of the results to the models trained with TensorFlow. Also, if the gradient
is 8-bit integer quantized, the gradient may not be accurate enough to converge properly [27]. There
are papers that have addressed the issue[27][20], but within the scope of this thesis it is not possible
to replicate these works. By using full precision for all learning algorithms on the MCU, a fair compari-
son can be made regarding their performance. Furthermore, the Teensy has an FPU, which allows for
floating point math at about the same speed as integer math[9].

4.1.1. Backpropagation
The backpropagation algorithm is evaluated in both an offline and online setting. First, a model is
trained in Python using TensorFlow on a computer, after which the trained model is inferred on the
microcontroller. The samemodels are also trained on-device, such that performance can be compared.

Network Topologies & Hyperparameters
Two main neural network topologies are used to evaluate the backpropagation algorithm. The images
in the Fashion MNIST datasets are 28x28 grayscale. These images are flattened to form an input di-
mension of 784. There are 10 classes, so the output dimension is 10. First, a network with a single
hidden layer is trained. This layer has 32 neurons. This model shall serve as a baseline implementation
to compare other models against.

A network with two hidden layers is also trained, with both layers consisting of 32 neurons. The amount
of neurons is mainly chosen because it easily fits in memory and inference and training times are low,
making it easier to test multiple configurations of hyperparameters. Apart from this, it is arbitrary.

For all layers except the output layer, the ReLU activation function is used. For the output layer, softmax
is used to obtain class probabilities. The loss is sparse categorical cross-entropy. Its implementation
and derived gradient are adapted from [28]. The network topologies are shown in fig. 4.1.

For both training processes, the same set of hyperparameters is used. Stochastic Gradient Descent is
used as an optimizer. Learning rate decay and momentum are implemented in both training processes.

12

4.1. Algorithm Implementation and Optimization 13

Most of the hyperparameter search is carried out by the software team, as they are able to iterate faster
using TensorFlow. The hyperparameters that are used are as follows:

• Learning rate: 0.1 with learning rate decay, 0.01 without learning rate decay.

• Learning rate decay: 0.95 every 200 batches with a lower limit of 0.01 (when applied).

• Momentum: 0.9 (when applied).

• Batch size: 16: this results in lower memory usage and faster convergence than higher batch
sizes.

Two of the hyperparameters (learning rate of 0.01 and momentum of 0.9) are chosen because they are
the default values for SGD in TensorFlow and are thus expected to provide reasonable results.

Figure 4.1: Network topologies of the networks that are trained using backpropagation. Layer dimensions are shown in paren-
theses. The network with a single hidden layer (baseline) is shown on the left and the network on the right has two hidden layers.
Both networks use the ReLU activation function for the hidden layers and the softmax activation function for the output.

Offline learning & TF Lite inference
In order to run inference-only models, a way is needed to run the models that are trained on the com-
puter using TensorFlow on the MCU. TensorFlow Lite Micro provides such functionality, as described
in chapter 3. In appendix C it is described how it was ported for use on the Teensy.

TensorFlow Lite Micro is able to infer TensorFlow Lite models. The models are first trained on a com-
puter using Python and TensorFlow by the software team. Then, they are converted into a TensorFlow
Lite model. During this conversion, post-training quantization is applied, in which the network weights
are converted from 32-bit floating point values to 8-bit fixed point integer values. TensorFlow Lite
also calculates appropriate zero points and scaling factors for the input and output tensors. These are
required to quantize and dequantize the input and output of the model respectively. 8-bit integer quanti-
zation is chosen over 32-bit floats for inference, because the accuracy often does not suffer significantly
[29] and due to the 4x smaller memory footprint, it is popular for model inference on microcontrollers.

The conversion process produces a .tflite flatbuffer file. This file is then converted into a c++
file, including the flatbuffer in an array. A TF Lite model interpreter is initialized with only the operations

4.1. Algorithm Implementation and Optimization 14

that the model uses. This saves memory when compared to initializing the interpreter with all opera-
tions enabled. Furthermore, memory is allocated for the interpreter to carry out its calculations.

Inference of each model is accomplished by loading in one example at a time, quantizing said ex-
ample using the previously found zero point and scaling factor, and invoking the model interpreter.
After the model has been inferred, the output is dequantized.

Online learning
In order to facilitate online learning, the backpropagation algorithm is implemented in Embedded C++.
For this to be successful, the forward and backward pass are first worked out manually, following the
software development pipeline outlined in chapter 1.

Once these are worked out, they are written in C++ using the custom linear algebra library (appendix C)
to perform all necessary calculations.

All required matrices and vectors for the weights, biases, gradients, and intermediate values are stat-
ically allocated. First, the weight matrices and bias vectors are initialized according to a normal distri-
bution and scaled down. The scaling is important because this prevents that the network outputs high
confidence scores in the beginning, which results in slower training in the beginning. Instead, at the
start of training, a uniform distribution over all classes is expected at the output, which is more the case
after scaling. The scale factor may also not be too small, otherwise, the gradients will also become
small and the model will train slowly in the beginning.

After initialization, training is started. First, a batch of training examples is loaded from the SD card.
The rows of the input matrix represent the batch dimension and the columns the feature (pixel values in
this case) dimension. Then, the forward pass is executed. For each layer, the input matrix for that layer
is multiplied by its weight matrix. Then, the bias vector of the layer is added to the resulting matrix as a
row vector. Finally, an activation function is applied to the resulting matrix. The loss over the batch is
calculated by applying categorical cross-entropy on the output of the network. After the forward pass,
the backward pass is executed. In this stage, the gradient of the loss with respect to the weights and
biases is calculated. Several optimizations are introduced to enhance the learning process and speed.

First of all, the calculations in the backward pass rely on multiplying the transpose of a matrix with
another matrix. These two operations are combined into one in order to save memory. Additionally,
there is a memory-optimization possible when the optimization algorithm is regular SGD. It is possi-
ble to directly update the weights, instead of first calculating a gradient matrix and then updating the
weights. This approach can save a large amount of RAM. For example, if a weight matrix is of shape
784x32 (784 is the image input size, and 32 the number of neurons), the gradient matrix must be of the
same size. If the gradients are FP32, the amount of memory that is saved with this approach would
be 784 ⋅ 32 ⋅ 4 = 98 kB. Making this optimization does, however, mean that momentum based opti-
mizers cannot be used, as they rely on keeping a moving average of the gradient matrices in memory.
Because TensorFlow does not make this optimization, it is not used when directly comparing backprop-
agation on the microcontroller with backpropagation in TensorFlow. A similar optimization is applied to
momentum: the moving average is directly applied inside the gradient matrix.
In case the optimization is not enabled, an extra step is required to apply SGD to the network weights
and biases. During this step, momentum is also calculated and applied. Furthermore, in both cases,
the number of processed batches are tracked in order to apply learning rate decay.

4.1.2. Forward-Forward
In contrast to backpropagation, the forward-forward algorithm performs learning locally (with local
meaning one layer at a time). Furthermore, it cannot be made to output class probabilities in the final
layer. These characteristics of the algorithm make it so that both training and inference are different
from what is the case for backpropagation. In this section, the implementation of both inference and
training is presented (offline using TF Lite Micro and online).

4.1. Algorithm Implementation and Optimization 15

Network Topologies & Hyperparameters
As mentioned earlier, when training using the forward-forward algorithm, there is no output layer that
explicitly outputs class probabilities. This has consequences for the network topology. Two network
topologies are presented in fig. 4.2. The first network has a single layer of 32 neurons. The second
network has two layers of 32 neurons each. The choice to make the second layer have 32 neurons
is influenced by the implementations [30], including the original paper [22] that all feature layers of the
same dimensions. This also allows for a more direct comparison with backpropagation. The activation
function for all layers is ReLU. In between layers, layer normalization is applied. This is done in order
to make the second layer learn new features [22].
The loss function is defined per layer. The loss function is contrastive and is equivalent to [30]. Its
mathematical definition and gradient derivation are shown in appendix D. It is designed to pull the neu-
ron activations above a certain threshold (which is a hyperparameter) for ”positive” data and below the
threshold for ”negative” data.

Figure 4.2: Topologies of the networks trained with the forward-forward algorithm. Layer dimensions are shown in parentheses.
The activation function is ReLU for all layers. Layer normalization is applied in between layers. The loss is calculated over the
layer activations before normalization

The optimizer that is used is SGD without momentum and learning decay. The learning rate for the first
layer is 0.1 and for later layers it is 10. This is done because during the testing phase using TensorFlow
and NumPy, it was found that the later layers train much slower than the first. The loss threshold is
set to 2. A batch size of 16 is used. This is the same as for backpropagation and allows for direct
comparison of memory usage.

Offline learning & TF Lite Inference
Using TensorFlow, the two layers are trained and quantized seperately by the software team. On the
microcontroller, TF Lite Micro is used to infer layers seperate from each other. This is required, because
it is not possible to extract the independent layer activations from TF Lite Micro after inferring multiple
layers at once. The normalization in between the layers is not done by TF Lite Micro. Predictions are
generated following the approach outlined in chapter 3.

Online Learning
Before any data is put through the model, the input data has to be made positive or negative. There
are multiple ways of doing this. One could pre-process the training dataset and make two copies of it:
a positive dataset and a negative dataset. It is also possible to generate positive and negative data on
the fly. In this approach, first a batch of data without encodings is loaded into memory along with the
corresponding labels. Then, the data is made positive by encoding the true labels. After encoding, a
training step is run on this data. Then, the positive encodings are overwritten by negative encodings

4.1. Algorithm Implementation and Optimization 16

and the training step is repeated. This method has the benefit of not requiring any pre-processing,
which may be more representative of a use case in which the data is an incoming stream instead of a
static dataset. The drawback is that the network is required to train on the same batch each time for
both positive and negative data. This approach is chosen because of the aforementioned benefits.

At the start of training, the weight matrices are initialized randomly. After this, the forward pass is
executed up until the layer currently under training. If the layer in question is not the first layer, layer
normalization is applied. After this, the forward pass functions like any other forward pass, with ma-
trix multiplication, row vector addition, and a ReLU activation function. A key difference, however, with
backpropagation is that intermediate calculations do not need to be kept in memory, because the learn-
ing is local per layer. This means that memory allocated for matrices can be re-used, which is facilitated
by the linear algebra library by being able to adjust matrix dimensions. This makes networks trained
with forward-forward easier to scale up in depth.
After a forward pass, the loss is calculated for the layer and the gradient is calculated with respect to
the layer weights and biases. Then, the weights and biases for that layer are updated using SGD.

4.1.3. Transfer Learning
Network Topologies & Hyperparameters
The network topologies that are used for transfer learning are different than the other topologies dis-
cussed. While it would be possible for example to pre-train only one of the layers of the dual hidden
layer network that was discussed earlier, this would not be a realistic use-case for transfer learning.
Instead, a simple convolutional feature extractor is pre-trained (see fig. 4.3), on top of which a classifi-
cation network can be trained. The convolutions are 3x3 kernels and no padding is applied. In between
convolutional layers, max-pooling is applied. The classification networks are a single hidden layer net-
work for backpropagation and a single layer network for forward-forward. The hyperparameters for
these classification networks stay the same. For forward-forward, the feature vector is extended with
the one-hot encoded labels. The use of convolutional neural networks means that no direct compari-
son can be made with the other networks. Instead, the aim is to show the impact on performance that
adding such a network can have.

Max-Pool Max-Pool Flatten

16@28x28

8@13x13 8@5x5 1x72

Figure 4.3: Feature extraction network for transfer learning. The network reduces the number of features from 784 to 72 using a
convolutional network. The kernel size is 3x3 and no padding is applied (hence 28x28 becomes 26x26 after convolution, etc.).
A classification network can be added on top of this feature extractor, which can be trained with backpropagation or forward-
forward.

4.2. Testing Procedures & Metrics 17

4.2. Testing Procedures & Metrics
For all learning algorithms, the fashion MNIST dataset is used for training. The following metrics are
used to measure performance.

• Test accuracy after 1 epoch

• Test accuracy after 5 epochs

• Test accuracy after 10 epochs

• Required memory (kB)

• Inference time per example (𝜇𝑠)

• Training time per epoch (s)

• Energy per inference (mJ)

The metrics related to accuracy (after 1, 5, 10 epochs) are chosen to represent different stages of the
optimization procedure. The choice to have no accuracy measurements beyond 10 epochs is made
because, although some training still takes place after 10 epochs, it is to a much lesser degree than
between epochs 1-10 (for example, see fig. B.14). Running all algorithms for many epochs also takes
a considerable amount of time on the MCU (see tables 5.1 and 5.3).
Metrics regarding the accuracy and inference/training times are automatically collected using a Python
script. The script automatically trains the network that is loaded onto the microcontroller for 10 epochs
and measures accuracy after each epoch, allowing for accuracy over time plots. This is, however, not
possible for multi-layer networks trained using forward-forward, because the layers are sequentially
trained for a certain amount of epochs. Instead, the accuracy is measured at 1, 5 and 10 epochs.
For multi-layer networks trained using forward-forward, the training time per epoch is not directly de-
fined, because all layers are trained for a certain amount of epochs sequentially. The training time per
epoch is instead defined as the sum of training times per epoch of all the individual layers. This makes
the training time per epoch scale similarly to other training procedures.
All time-related metrics exclude data transfer times. This is done to exclude variance coming from SD
card reading, thus making the results more generalizable to other microcontrollers.

In addition to these metrics, in order to compare the adaptability of the models, a dataset with a moving
distribution is created from the fashion MNIST dataset. Of one of the classes, 90% of the training data
is initially removed from the dataset. The models (trained with offline backpropagation, online back-
propagation, and online forward-forward) are then tested to establish a baseline accuracy. The online
trained models are then trained on the full dataset, after which the accuracy is again measured. The
idea is that the accuracy should increase, which indicates that the models are able to adapt to new
environments.

The mean of the power consumption is measured once, as it is observed to be the same across algo-
rithms. Using the power and the inference time, the energy consumption per inference is calculated.

5
Results and Discussion

In this section, the results of backpropagation, forward-forward, and transfer learning are presented.
For backpropagation and forward-forward, detailed results of the tested network topologies and train-
ing algorithm are given, followed by a discussion and a comparison of relevant results obtained by the
software and FPGA teams. More information and full-size versions of the figures are available in ap-
pendix B. All reported accuracies are on the Fashion MNIST test dataset and all reported times exclude
data transfer.

5.1. Performance of backpropagation
In this section, we discuss the performance of various configurations of the backpropagation algorithm
using the Fashion MNIST dataset. We begin by establishing a baseline, then investigate the impact
of learning rate decay and momentum. Finally, we test the performance of a dual-layer network and
compare all these configurations. Inference-only TensorFlow litemodels are also tested for comparison.

Table 5.1: Collectedmetrics for on-device backpropagation. Memory usage between parentheses is using thememory-optimized
version of SGD as described in chapter 4.

Metrics Baseline Baseline
+ LR
Decay

Baseline
+ Mo-

mentum

Dual
layer

Dual
layer +
LR

Decay
Accuracy on test set after 1 epoch 0.7999 0.8404 0.8154 0.8006 0.8502
Accuracy on test set after 5 epochs 0.8454 0.8591 0.8549 0.8569 0.8649
Accuracy on test set after 10 epochs 0.8563 0.8648 0.8670 0.8684 0.8705
Memory required (kB) Variables 265.22

(165.81)
265.22
(165.81)

265.22 278.47
(173.94)

278.47
(173.94)

Memory required (kB) Code 99.90 99.90 100.52 102.02 102.02
Avg. inference time (us) / image 258.4 258.4 258.3 270.0 270.0
Training time (s) / epoch 37.29 37.29 37.86 39.66 39.66
Energy (mJ) / inference 0.171 0.171 0.171 0.179 0.179

5.1.1. Baseline
Our baseline network for testing the performance of the backpropagation algorithm has a topology of
784-32-10, reflecting the input layer of 784 nodes (equivalent to the dimensionality of an image in the
Fashion MNIST dataset), a hidden layer of 32 nodes, and an output layer of 10 nodes (corresponding
to the 10 classes of the dataset). The learning rate for this configuration is a constant 0.01, and we do
not use momentum.

18

5.1. Performance of backpropagation 19

Figure 5.1: Accuracy of Baseline over 10 epochs

As can be seen from the results, the accuracy on the test set of the model steadily increases with each
epoch, indicating that the model is learning effectively from the training process.

In terms of memory utilization, the baseline configuration required a total of 365.11 kibibytes (KiB).
This was divided between memory required for variable storage (265.22 KiB) and code (99.90 KiB).

The baseline configuration will provide us with a reference point against which the performance and re-
source utilization of the other configurations can be compared. In the following subsections, we discuss
the impact of introducing learning rate decay, momentum, and a dual-layer network architecture.

5.1.2. Learning rate decay
To investigate the impact of learning rate decay, we use the same network topology (784-32-10), but
this time we implement a learning rate decay strategy. The initial learning rate is set to 0.1. After every
200 batches, the learning rate is multiplied by 0.95, with the condition that it cannot decrease below
0.01. Momentum is not employed in this configuration. We compare the performance of this network
with the baseline to understand how learning rate decay affects the training process.

(a) Accuracy over 10 epochs (b) Loss during the first epoch (Loss vs Time (s))

Figure 5.2: Baseline vs Learning rate decay configuration

First, looking at the accuracy, we see that the model with learning rate decay starts with a higher accu-
racy after the first epoch compared to the baseline (0.8404 vs 0.7999). This trend continues throughout
the training period with the learning rate decay configuration consistently achieving higher accuracies
at the end of each epoch. After 10 epochs, the model with learning rate decay reached an accuracy
of 0.8648, while the baseline model reached an accuracy of 0.8563. This indicates that learning rate

5.1. Performance of backpropagation 20

decay can contribute to achieving better accuracies in fewer epochs. However, with a lot of training
cycles, both methods will find similar local minima, thus making their accuracies converge.

The training times for the baseline and the baseline + learning rate decay are the same, demonstrating
that the inclusion of learning rate decay does not have an impact on computation time.

5.1.3. Momentum
Next, we introduce momentum into our configuration. The network topology remains the same (784-
32-10). The momentum is set to 0.9, without learning rate decay. Training with momentum is compared
with training with learning rate decay in fig. 5.3.

Figure 5.3: Accuracy of training with Learning rate decay vs Momentum configuration over 10 epochs

In the plot, it can be seen that the configuration with learning rate decay starts out with a higher ac-
curacy. This is due to the higher learning rate in the beginning, compared to the configuration with
momentum. As the training proceeds, it can be seen that the configuration with momentum learns
quicker than the configuration with learning rate decay and learning rate decay gets overtaken by mo-
mentum by epoch 8. Both configurations finish training with similar accuracies (0.8670 for momentum
and 0.8648 for lr decay), with a slight edge to the momentum configuration.

Both learning rate decay and momentum improve the accuracy of the model compared to the baseline
without increasing test time.

5.1.4. Dual-Layer network
In this configuration, we experiment with a more complex network architecture: a dual-layer network
with a topology of 784-32-32-10. This represents an input layer of 784 nodes, two hidden layers of
32 nodes each, and an output layer of 10 nodes. We revert to a constant learning rate of 0.01 and
do not employ momentum or learning rate decay. By comparing the performance of this dual-layer
network with the simpler single-hidden-layer networks, we can gain insights into the trade-offs involved
in increasing the complexity of the network.

5.1. Performance of backpropagation 21

(a) Accuracy over 10 epochs (b) Loss during the first epoch

Figure 5.4: Baseline vs Dual-Layer configuration

Comparing the final accuracies achieved at the end of the 10th epoch, the baseline network reached an
accuracy of 0.8563, while the dual-layer network achieved a higher accuracy of 0.8684. Because the
dual-layer network has a greater number of parameters and hence a higher capacity to model complex
patterns, it seems to provide a performance advantage over the simpler network.

A notable aspect here is the increase in inference time for the dual-layer network. The inference
time per example for the dual-layer network (270.0 µs) is consistently higher than the baseline net-
work (258.4 µs). This indicates that increasing the complexity of the network in this manner incurs a
computational cost.

To keep a fair comparison, and only vary one parameter at a time, only the topology was varied com-
pared to the baseline. However, this is not optimal because the dual-layer network requires a larger
initial learning rate to tune the increased parameter dependencies, as can be seen from fig. 5.4b.

Nevertheless, to demonstrate what the dual-layer network can achieve, the same network is trained
using learning rate decay, with an initial learning rate of 0.1 and a decay of 0.95 every 200 batches to
a minimum of 0.01.

Figure 5.5: Accuracy of Dual-layer without learning rate decay vs Dual-layer with learning rate decay configuration over 10
epochs

The implementation of a learning rate decay schedule has significantly enhanced the dual-layer net-
work’s performance during the initial training phase, as can be seen from fig. 5.5. From the results,
the dual-layer network with learning rate decay achieved a final accuracy of 0.8705 after 10 epochs,

5.1. Performance of backpropagation 22

slightly better than the dual-layer network without learning rate decay, which reached an accuracy of
only 0.8684. The learning rate decay allows the network to converge significantly faster.

5.1.5. Larger networks using memory-optimized SGD
In this section, we present the results from an optimized version of the Stochastic Gradient Descent
(SGD) algorithm that allows for larger network sizes, such as a 784-80-80-10 topology. This larger
network is trained using learning rate decay but without momentum.

Figure 5.6: Accuracy of Baseline vs Maximum Dual-Layer configuration over 10 epochs

As seen from the results, the maximal network achieved a final accuracy of 0.8834 after 10 epochs.
This is the highest score tested, and considerably higher than the final accuracy of 0.8563 that the
baseline model achieved within the same number of epochs. This suggests that the optimized SGD
algorithm successfully leveraged the additional capacity provided by the larger network size to learn
more complex patterns in the data, resulting in improved predictive performance.

When comparing the memory utilization of the maximum network with the baseline model, there is
a noticeable increase in the memory footprint. The maximum network uses approximately 356.19 KiB
of memory for variables, which is an increase compared to the 265.22 KiB utilized by the baseline
model. This increase in memory use is primarily due to the larger size of the maximal network, which
requires more memory to store the additional weights and biases of the extra neurons. However, it
shows an impressive decrease in memory required by each neuron compared to the non-optimized
version.

The memory used for the code is almost similar for both networks, with the maximum network using a
slightly larger amount (102.21 KiB) compared to the baseline model (99.90 KiB).

5.1.6. Comparison with TF Lite

Table 5.2: Collected metrics for inference-only TensorFlow Lite models (same hyperparameters as baseline models). Single
layer model is 784-32-10, dual layer model is 784-32-32-10.

Metrics Single layer Dual layer
Accuracy after 10 epochs 0.8560 0.8631
Memory required (kB) Variables 52.12 54.13
Memory required (kB) Code 105.18 105.18
Avg. inference time (us) / image 76.9 82.1
Energy (mJ) / inference 0.051 0.054

From the tables table 5.1 and table 5.2 it can be seen that the on-device training algorithms can achieve
similar behavior as the Tensorflow quantized models.

5.1. Performance of backpropagation 23

• Accuracy: It is observable from the tables that TensorFlow Lite models achieved a slightly lower
accuracy compared to the on-device trained models, with the dual layer model performing the
best in both scenarios.

• Memory Usage: The memory required for variables was significantly lower in TensorFlow Lite
models. For instance, the single-layer model required only 52.12 kB as compared to 265.22 kB
(or 165.81 kB for the memory-optimized version) for the on-device trained model.

• Inference Time: TensorFlow Lite models exhibited a faster inference time per image, taking
around 76.9 - 82.1 microseconds, compared to 258.4 - 270.0 microseconds for the on-device
models.

• Energy Usage: The energy consumed per inference was lower for the TensorFlow Lite models.

The comparison reveals that on-device training may seem unnecessary when looking at accuracy and
memory utilization. Nonetheless, on-edge devices often gain considerable advantages from their ca-
pacity to adapt to changing circumstances.

On device learning
Consider a scenario where we alter our dataset by removing 90% of all the images from the t-shirt
class in the Fashion MNIST dataset. We employ the baseline 784-32-10 network for this experiment.
Upon training this network for five epochs, it yields an accuracy of 85.53% on the reduced dataset,
slightly better than the baseline’s 84.54%. However, when the network trained on the reduced dataset
is tested exclusively on t-shirt images, it only achieves an accuracy of 35.22%. In contrast, the baseline
retains its original accuracy of 84.54%. This illustrates that the network has not effectively learned the
distinctive features of t-shirts and thus fails to categorize them correctly.

It’s noteworthy that all the prior networks, whether trained on the edge or as quantized Tensorflow
models, could have achieved comparable accuracy levels. However, the unique advantage of on-edge
learning becomes apparent when we allow our network (previously trained on the reduced dataset) to
undergo additional training on the original, unaltered dataset. After just five more epochs, it manages
to classify t-shirts with an accuracy of 81.95%, marking an improvement of more than 46%.

This is a great illustration of the necessity for on-edge learning, albeit an artificial one. For potential
applications see chapter 1, and we leave it to the reader to imagine many more.

5.1.7. Discussion
The previous sections have extensively explored several strategies to optimize the backpropagation
algorithm in different neural network architectures. The introduction of learning rate decay showed
clear benefits. For instance, in the case of the single-layer network with 32 nodes, accuracy after 10
epochs increased from 0.8563 to 0.8648 when learning rate decay was introduced. Similar gains in
accuracy were observed for the dual-layer network with learning rate decay, where accuracy improved
from 0.8006 to 0.8502 after the first epoch.

Introducing momentum in the single-layer network with 32 nodes yielded slightly more accuracy gains,
increasing from 0.8563 to 0.8670 after 10 epochs. This suggests that momentum offered a better opti-
mization. It does, however, come at the cost of not being able to make the SGD memory optimization
suggested in chapter 4.

Regarding the network architectures, it’s worth noting that although the dual-layer network with learning
rate decay achieved the highest accuracy after 10 epochs (0.8705), this configuration also required the
highest memory utilization (278.47 kB for variables and 102.02 kB for code) and had a longer inference
time per image (270 microseconds) compared to the other configurations. This indicates a trade-off
between model complexity, computational requirements, and prediction accuracy.

Training time per epoch stayed the same with learning rate decay. It increased slightly with the in-
troduction of momentum and significantly with an additional hidden layer, as one might expect due to
the increased complexity of computations.

5.2. Performance of Forward-Forward Algorithm 24

5.2. Performance of Forward-Forward Algorithm
In this section, we discuss the performance of various configurations of the Forward-Forward algorithm
using the Fashion MNIST dataset. We begin by establishing a baseline, then investigate the impact
of learning rate decay. Finally, we test the performance of a dual-layer network and compare all these
configurations. A direct comparison between BP and FF can be found in table B.19.

Table 5.3: Forward-Forward Model Comparison. Memory usage between parentheses is using the memory-optimized version
of SGD as described in chapter 4. Training time for multi-layer configurations is defined as the sum of training times per layer.

Metrics Baseline FF Dual-layer
Accuracy on test set after 1 epoch 0.6932 0.7002
Accuracy on test set after 5 epochs 0.8226 0.8193
Accuracy on test set after 10 epochs 0.8374 0.8206
Memory required (kB) Variable 267.06 (168.94) 274.19 (176.06)
Memory required (kB) Code 98.09 99.21
Avg. inference time (us) / image 2533.3 2794.3
Training time (s) / epoch 71.18 106.30
Energy (mJ) / inference 1.676 1.848

5.2.1. Baseline
The forward-forward algorithm was tested with a single-layer network, having a topology of 784-32.
This configuration does not use learning rate decay or momentum.

Figure 5.7: Accuracy of Baseline over 10 epochs

The forward-forward algorithm shows steady improvements in accuracy over the 10 epochs (as can be
seen in fig. 5.7). After the first epoch, the accuracy was measured at 0.6932. By the end of the fifth
epoch, the model accuracy improved significantly to 0.8226. Eventually, after 10 epochs, the accuracy
was noted at 0.8374. This indicates that the forward-forward algorithm can provide substantial learning
capacity to the neural network.

However, one should note that the test time for this algorithm was quite high, approximately 26.95
seconds for each epoch. This can be attributed to the fact that the network has to run a forward pass
on every label, and select the label with the highest output. The substantial increase in test time sug-
gests that while the forward-forward algorithm can improve accuracy over time, it does so at the cost
of computational speed.

In terms of memory utilization, the forward-forward algorithm with a single-layer network required
267.06 kB for variables, which is slightly more than the backpropagation baseline in the previous sec-
tions. The code sizemeasured slightly lower at 98.09 kB. This is to be expected, as thememory savings
that forward-forward has when compared to backpropagation only show up at higher network depths.

5.2. Performance of Forward-Forward Algorithm 25

5.2.2. Dual-layer network
In the dual-layer configuration, each layer is comprised of 32 neurons. Surprisingly, after multiple
epochs, the performance of the dual-layer model is worse than that of the single-layer model. When
further probing the second layer (by only taking into account its activations for accuracy measure-
ments), however, it is found that the second layer does learn (its accuracy is 0.7327). Furthermore,
in table B.18, a batch size of 32 is used. Here, the dual-layer model outperforms the single-layer model.

In terms of memory utilization, the dual-layer network required slightly more memory for storing vari-
ables, measuring 274.19 kB compared to 267.06 kB for the single-layer configuration. This is a differ-
ence of 7.13 kB, compared to the 13.05 kB for backpropagation. This difference exists because there
is no need to store the gradient and neuron activations across multiple layers. This is a significant
advantage of the Forward-Forward algorithm. The dual-layer configuration for forward-forward uses
less memory than the dual-layer configuration for backpropagation (274.19 vs 278.47). This trend will
continue as the network depth is increased.

5.2.3. Comparison with TF Lite

Table 5.4: Collected metrics for inference-only TensorFlow Lite models trained and quantized using forward-forward by the
software team. Single layer model is 784-32, dual layer model is 784-32-32

Metrics Single layer Dual layer
Maximal achieved accuracy 0.6966 0.6793
Memory required (kB) Variables 52.09 60.47
Memory required (kB) Code 105.18 105.18
Avg. inference time (us) / image 1007.7 1188.7
Energy (mJ) / inference 0.665 0.786

From Tables 5.3 and 5.4, it can be observed that the on-device trained model and the Tensorflow Lite
model show substantially different behaviour.

• Accuracy: The on-device trained models achieved higher accuracy than the TensorFlow Lite
models, with the single-layer on-device model performing the best after 10 epochs.

• Memory Usage: Similar to the Backpropagation comparison, TensorFlow Lite models require
significantly less memory for variables.

• Inference Time: TensorFlow Lite models still have a shorter inference time per image compared
to the on-device trained models.

• Energy Usage: Energy consumption per inference for TensorFlow Lite models is lower compared
to on-device trained models, because of their reduced inference time.

5.2.4. Discussion
The dual-layer network implemented with the forward-forward algorithm performsworse than the single-
layer network. This is unexpected, but in line with the results from the software team. In table B.18 it
is shown that it is possible for the dual-layer model to outperform the single-layer model. This seems
to indicate that the dual-layer model can only outperform the single-layer model using specific hyper-
parameters.

The TF Lite models for forward-forward performed significantly worse than the models trained on-
device, however the reported accuracy by the software team for the dual layer model on full precision
is 83%. This is more or less in line with the result for on-device forward-forward (82%). Therefore, it
can be assumed that the quantization process drastically affected performance.

When compared to the offline trained models using backpropagation, the models trained with forward-
forward fall short on all metrics:

• Accuracy: Like before, it is hypothesized that the low accuracies are due to the quantization
process.

5.3. Transfer Learning 26

• Memory: The memory advantage of forward-forward only exists during training, as for inference,
no intermediate steps need to be remembered, because backpropagation is not done for infer-
ence. Furthermore, the memory usage for the network trained with forward-forward is higher than
for backpropagation, because in order to obtain individual layer activations, it requires a TF Lite
Micro interpreter for each layer.

• Inference time: The same disadvantages for inferring models trained with forward-forward still
exist: for every class, the network needs to be inferred once per example. This results in much
higher inference times when compared to the models trained with backpropagation.

• Energy per inference: Because the inference time is higher and the power is constant under
load, the energy per inference scales linearly with inference time and is thus very high.

This makes inference of models trained using forward-forward with TF Lite hard to justify, even if the
accuracy were comparable to other models.

5.3. Transfer Learning
Transfer learning is implemented with the feature extractor network and classification heads, as de-
scribed in chapter 4. For backpropagation, the classification head is a 72-32-10 network and for
forward-forward it is a 82-32 network. The results are shown in table 5.5.

Table 5.5: Forward-Forward Model Comparison. Memory usage between parentheses is using the memory-optimized version
of SGD as described in chapter 4.

Metrics Backpropagation Forward-Forward
Accuracy on test set after 1 epoch 0.8552 0.7491
Accuracy on test set after 5 epochs 0.8672 0.8298
Accuracy on test set after 10 epochs 0.8717 0.8511
Memory required (kB) Variable 1 78.31 (67.90) 84.31 (73.93)
Memory required (kB) Code 154.98 156.91
Avg. inference time (us) / image 2425.5 2681.5
Training time (s) / epoch 147.91 151.82
Energy (mJ) / inference 1.604 1.774

As can be seen from the results, both learning algorithms were able to achieve higher accuracies than
their baseline implementation. Backpropagation was able to learn more effectively from the features
output by the convolutional neural network, while also using less memory. Training was slower than
the baseline in both training and inference because the feature extractor needed to be inferred for
each example. The memory taken up by the code is significantly higher than for backpropagation or
forward-forward alone, due to the extra code required for the TensorFlow Lite Micro interpreter and
feature extractor model. The memory taken up by variables, however, is significantly lower, because
the weight matrices of the classification heads are reduced in size since the amount of input features
is reduced from 784 to 72.

5.4. Comparison with other teams
In table 5.6, a comparison between backpropagation baseline models of the software, microcontroller,
and FPGA teams is shown. The accuracies for the full-precision TensorFlow model and the on-device
trained model are similar, which is expected. Furthermore, the accuracies of the quantized models are
similar for all teams. Training times per epoch are around 7.9 times higher on the MCU than on the PC.
Inference times are only 4 times higher. Interestingly, the inference time reported by the FPGA team
(16.32 µs) is much lower than the other int8 quantized models (34.62 µs using TF Lite on the PC, 70.19
µs using TF Lite on the microcontroller).
A comparison between the software team and microcontroller team is shown in table 5.7. Both models
achieve similar accuracies. Training on the MCU takes 2.4 times as long on the MCU as it does on
the PC. Inference takes 4.2 times as long. All obtained results can be found in B.3. The Dual Layer
FF model is the only model whose test accuracy differs more than 2% (2.13%) between the TF and
on-device implementation.

5.5. Discussion 27

Table 5.6: Comparison table of the BP baseline model (784-32-10, no LR decay, no momentum, batch size = 16, lr = 0.01)
between the different groups. It can be seen that the model trained with on-device BP and SGD performs similarly to the model
trained using TensorFlow. The quantized model also performs similarly to the models running on the PC and FPGA.

Metrics TF (PC) TF Lite
(PC)

TF Lite
(MCU)

Local
MCU

FPGA

Datatype fp32 int8 int8 fp32 int8
Accuracy on test set after 1 epochs 80.72 NA NA 79.99 NA
Accuracy on test set after 5 epochs 85 NA NA 84.54 NA
Accuracy on test set after 10 epochs 85.82 NA 85.6 85.63 NA
Accuracy on test set after 30 epochs 86.41 86.33 86.33 NA 85.53
Memory required (KiB) (Variable | Code) NA NA 60.16 |

105.74
265.22 |
99.90

25.08 |
1.34

Inference time per sample(us) 65.02 34.62 70.19 258.4 16.32
Training time (s) 142.2 NA NA 372.9 NA
Training time per epoch (s) 4.74 NA NA 37.29 NA

Table 5.7: Comparison table of the FF baseline model (784-32, no lr decay, no momentum, batch size = 16, lr = 0.1) between the
software and MCU groups. Accuracies are similar between models trained on the MCU and models trained using TensorFlow.

Metrics TF (PC) Local MCU
Datatype fp32 fp32
Accuracy on test set after 1 epochs 68.72 69.32
Accuracy on test set after 5 epochs 79.50 82.26
Accuracy on test set after 10 epochs 82.55 83.74
Memory required (KiB) (Variable | Code) NA 318.19 | 98.09
Inference time per sample(us) 604.1 2533.27
Training time per epoch (s) 29.24 71.18

5.5. Discussion
The Backpropagation and Forward-Forward algorithms can both be used in the field of neural networks
on microcontrollers, but they function quite differently and therefore have distinct strengths and limita-
tions. Here, we offer a discussion comparing these two algorithms based on their implementation in
the context of this research.

1. Accuracy: In terms of accuracy on the test set, backpropagation consistently achieved higher
accuracy across the board, both for single-layer and dual-layer configurations. For instance, after 10
epochs, a single-layer backpropagation network achieved 0.8563 accuracy, while a single-layer FF
network reached only 0.8374. When adding a second layer to the network, the FF algorithm’s accu-
racy was 0.8206, falling short of the backpropagation’s single-layer result.

2. Memory utilization: Comparing the memory utilization of the two algorithms, backpropagation
requires more memory for storing variables at higher network depths (with two layers, BP uses 1.56%
more memory than FF, but this difference grows bigger as more layers are added). This can be at-
tributed to the fact that backpropagation needs to keep track of intermediate values in the computational
graph for use during the backward pass, whereas FF only needs tomaintain values for the forward pass.
Thus, in environments where memory is a crucial constraint, the FF algorithm could be a better choice.

3. Training and Inference Time: Concerning computational time, backpropagation proved to be more
efficient. In terms of training time per epoch, backpropagation, even with the dual-layer network, was
faster compared to FF. The inference time of backpropagation was also significantly lower. This could
be an essential factor to consider in some real-world applications where time efficiency is vital.

6
Conclusion

6.1. Summary of Findings
While backpropagation shows higher accuracy and efficiency, it comes with higher memory require-
ments and complexity. On the other hand, the forward-forward algorithm, despite its lower accuracy,
can be more memory-efficient and simpler to implement. The choice between these two algorithms
largely depends on the specific requirements and constraints of the problem at hand. It’s also worth
noting that these results might be improved by careful hyperparameter tuning, which could potentially
enhance both algorithms’ performance.

The project has fulfilled all functional requirements outlined in chapter 2. Namely, all required algorithms
and models have been implemented. Furthermore, the project has fulfilled all mandatory requirements:

1. The software for the microcontroller must be written in C or C++.

• The software has first been implemented in C, targeting x86 systems. Later, it was ported
to C++, targeting the ARM-based Teensy.

2. All online training algorithms must use less than 512 kB RAM.

• The developed algorithms use no more than 512 kB RAM and can therefore run on the
Teensy and many other microcontrollers.

3. Test accuracy after full training on Fashion MNIST should be over 80%.

• All networks were able to achieve an accuracy of over 80%, both using backpropagation
and forward-forward, except for the TensorFlow Lite models using forward-forward provided
by the Software group. It is suspected that accuracy is lost during the quantization process,
since the full precision model does reach the target.

4. Accuracy on-device learning should be nearly identical to full precision TensorFlowmodels (within
2%).

• The test accuracy of the on-device trained networks is within 2%of the test accuracy achieved
by the full-precision TensorFlow models, except for the dual layer forward-forward configu-
ration. The accuracy is, however, very close to this target (2.13%). Furthermore, most
accuracies of BP configurations are within 1% of each other.

5. Implement Backpropagation and Forward-Forward on the MCU

• Backpropagation and Forward-Forward have been successfully implemented and tested on
the Teensy microcontroller board.

Some, but not all of the trade-off requirements have been fulfilled:

28

6.2. Limitations of the Study 29

1. Minimize the memory use of all algorithms, striving for a target lower limit of 256 kB RAM - a
common memory size for microcontrollers.

• Memory use has been reduced using multiple optimizations. For example, an optimiza-
tion to SGD allowed for in-place weight updating, without the need for gradient matrices.
Only backpropagation baseline, baseline + LR Decay, TensorFlow Lite models, and transfer
learning models can fit in less than 256 kB RAM.

2. Minimize the time required for training, aiming to achieve a goal of less than 1 minute per epoch.

• Some effort has been put into tuning the hyperparameters for convergence speed, such
as for forward-forward, but the training time is mostly unoptimized. Still, all baseline and
dual-layer backpropagation models were able to train one epoch in less than 1 minute.

3. Minimize inference time, targeting a maximum duration of 0.5 seconds per batch of 16 images.

• Minimizing inference time has not been a major focus of this study, but all models can be
inferred on a batch of 16 images in less than 0.5 seconds.

4. Maximize the accuracy of trained networks on the MNIST test dataset. This requirement does
not have a specified target but should always be optimized.

• Effort was put intomaximizing the accuracy of the trained networks, in particular the networks
trained with backpropagation. Experiments included LR decay and momentum. These im-
proved the accuracy of the models.

5. Experimenting with different topologies, with a minimum of online single-layer.

• Only single-layer and dual-layer networks were explored in this study.

6.2. Limitations of the Study
This study has focused on studying the viability of training neural networks with the forward-forward
algorithm and comparing this to backpropagation. We identify several limitations that may have influ-
enced the outcomes and interpretations of our findings.

1. The study was conducted using a specific microcontroller board, the Teensy 4.1, and a specific
dataset, Fashion MNIST. The results, therefore, may not be generalizable to other microcon-
trollers and datasets.

2. Extensive hyperparameter tuning was not attempted, which can have a significant impact on
the performance (in terms of our trade-of requirements) of the models. While we can draw the
conclusion that both algorithms are viable, nothing can be said about the maximal achievable
accuracy.

3. The Forward-Forward algorithm is a relatively new area of research, with limited prior work done
in the context of low-cost hardware. The implementation and testing of the Forward-Forward
algorithmwere based on our understanding of the algorithm at the time of the study, and theremay
be room for improvements or different approaches to its implementation. These could significantly
improve memory utilization and accuracy.

4. Memory usage has been optimized such that it is at least no more than 512 kB, but the imple-
mentations may not be optimal in terms of memory use.

5. This study has only focused on training with full precision. No conclusions can be drawn on how
the discussed algorithms may behave when quantized training is applied.

6.3. Recommendations for Future Work 30

6.3. Recommendations for Future Work
Recommendations for future studies include:

1. Identifying multi-layer training issues with forward-forward

• In this thesis, it was shown that forward-forward has reducedmemory usage when compared
to backpropagation if the depth of the network is increased. However, it was also shown
that the multi-layer forward-forward setup performed worse than the single-layer setup. This
means that in order to exploit the strength of forward-forward this issue will have to be ad-
dressed.

2. Quantized forward-forward training on microcontrollers

• Studies have already been done on quantized backpropagation for on-device training, but
the same has not been done for forward-forward. Quantized training using forward-forward
could allow for increased network sizes.

3. Evaluation on Real-World Datasets

• While the Fashion MNIST dataset was used in this study due to its standardization and
ubiquity in similar works, a more realistic assessment of on-edge learning would involve
using diverse, real-world datasets.

Bibliography
[1] X. Wang, X. Ren, C. Qiu, Z. Xiong, H. Yao, and V. C. M. Leung, “Integrating edge intelligence

and blockchain: What, why, and how,” IEEE Communications Surveys Tutorials, vol. 24, no. 4,
pp. 2193–2229, 2022. DOI: 10.1109/COMST.2022.3189962.

[2] J. Hartmann, P. Cappelletti, N. Chawla, F. Arnaud, and A. Cathelin, “Artificial intelligence: Why
moving it to the edge?” In ESSDERC 2021 - IEEE 51st European Solid-State Device Research
Conference (ESSDERC), 2021, pp. 1–6. DOI: 10.1109/ESSDERC53440.2021.9631778.

[3] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge computing,” Proceedings
of the IEEE, 2019, ISSN: 00189219. DOI: 10.1109/JPROC.2019.2922285.

[4] J. Dalzochio, R. Kunst, E. Pignaton, et al., “Machine learning and reasoning for predictive mainte-
nance in industry 4.0: Current status and challenges,”Computers in Industry, vol. 123, p. 103 298,
2020, ISSN: 0166-3615. DOI: https://doi.org/10.1016/j.compind.2020.103298.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0166361520305327.

[5] N. Davari, B. Veloso, R. P. Ribeiro, P. M. Pereira, and J. Gama, “Predictive maintenance based
on anomaly detection using deep learning for air production unit in the railway industry,” IEEE,
Oct. 2021, pp. 1–10, ISBN: 978-1-6654-2099-0. DOI: 10.1109/DSAA53316.2021.9564181.
[Online]. Available: https://ieeexplore.ieee.org/document/9564181/.

[6] O. Debauche, S. Mahmoudi, M. Elmoulat, S. A. Mahmoudi, P. Manneback, and F. Lebeau,
“Edge ai-iot pivot irrigation, plant diseases, and pests identification,” Procedia Computer Science,
vol. 177, pp. 40–48, 2020, The 11th International Conference on Emerging Ubiquitous Systems
and Pervasive Networks (EUSPN 2020) / The 10th International Conference on Current and
Future Trends of Information and Communication Technologies in Healthcare (ICTH 2020) / Af-
filiated Workshops, ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2020.
10.009. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1877050920322742.

[7] S. S. Saha, S. S. Sandha, and M. Srivastava, “Machine learning for microcontroller-class hard-
ware: A review,” IEEE Sensors Journal, vol. 22, pp. 21 362–21 390, 22 2022, ISSN: 1558-1748.
DOI: 10.1109/JSEN.2022.3210773.

[8] F. Sakr, F. Bellotti, R. Berta, and A. D. Gloria, “Machine learning on mainstreammicrocontrollers,”
Sensors 2020, Vol. 20, Page 2638, vol. 20, p. 2638, 9 May 2020, ISSN: 1424-8220. DOI: 10.
3390/S20092638. [Online]. Available: https://www.mdpi.com/1424-8220/20/9/2638/
htm%20https://www.mdpi.com/1424-8220/20/9/2638.

[9] “Teensy® 4.1.” (), [Online]. Available: https://www.pjrc.com/store/teensy41.html.
[10] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset for benchmarking ma-

chine learning algorithms,” Aug. 2017. [Online]. Available: https://github.com/zalandoresearch/
fashion-mnist.

[11] J. Zupan, “Introduction to artificial neural network (ann) methods: What they are and how to use
them,” Acta Chimica Slovenica, vol. 41, pp. 327–327, 1994.

[12] L. Noriega, “Multilayer perceptron tutorial,” School of Computing. Staffordshire University, vol. 4,
p. 5, 2005.

[13] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, “Backpropagation: The basic theory,”
Backpropagation: Theory, architectures and applications, pp. 1–34, 1995.

[14] K. O’Shea andR. Nash, “An introduction to convolutional neural networks,” arXiv preprint arXiv:1511.08458,
2015.

[15] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural network,”
in 2017 international conference on engineering and technology (ICET), Ieee, 2017, pp. 1–6.

31

https://doi.org/10.1109/COMST.2022.3189962
https://doi.org/10.1109/ESSDERC53440.2021.9631778
https://doi.org/10.1109/JPROC.2019.2922285
https://doi.org/https://doi.org/10.1016/j.compind.2020.103298
https://www.sciencedirect.com/science/article/pii/S0166361520305327
https://doi.org/10.1109/DSAA53316.2021.9564181
https://ieeexplore.ieee.org/document/9564181/
https://doi.org/https://doi.org/10.1016/j.procs.2020.10.009
https://doi.org/https://doi.org/10.1016/j.procs.2020.10.009
https://www.sciencedirect.com/science/article/pii/S1877050920322742
https://www.sciencedirect.com/science/article/pii/S1877050920322742
https://doi.org/10.1109/JSEN.2022.3210773
https://doi.org/10.3390/S20092638
https://doi.org/10.3390/S20092638
https://www.mdpi.com/1424-8220/20/9/2638/htm%20https://www.mdpi.com/1424-8220/20/9/2638
https://www.mdpi.com/1424-8220/20/9/2638/htm%20https://www.mdpi.com/1424-8220/20/9/2638
https://www.pjrc.com/store/teensy41.html
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

Bibliography 32

[16] R. Rojas and R. Rojas, “The backpropagation algorithm,” Neural networks: a systematic intro-
duction, pp. 149–182, 1996.

[17] L. Bottou, “Stochastic gradient descent tricks,” Neural Networks: Tricks of the Trade: Second
Edition, pp. 421–436, 2012.

[18] N. Ketkar and N. Ketkar, “Stochastic gradient descent,” Deep learning with Python: A hands-on
introduction, pp. 113–132, 2017.

[19] E. Zamora and H. Sossa, “Dendrite morphological neurons trained by stochastic gradient de-
scent,” Neurocomputing, vol. 260, pp. 420–431, 2017.

[20] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, “On-device training under 256kb
memory,” Jun. 2022. [Online]. Available: https://arxiv.org/abs/2206.15472.

[21] F. Ortega-Zamorano, J. M. Jerez, D. U. Munoz, R. M. Luque-Baena, and L. Franco, “Efficient
implementation of the backpropagation algorithm in fpgas and microcontrollers,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 27, pp. 1840–1850, 9 Sep. 2016, ISSN:
2162-237X. DOI: 10.1109/TNNLS.2015.2460991.

[22] G. Hinton, The forward-forward algorithm: Some preliminary investigations, 2022. arXiv: 2212.
13345 [cs.LG].

[23] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quantization for deep neural
network acceleration: A survey,” 2021.

[24] H. Ren and T. A. Runkler, “Tinyol: Tinyml with online-learning on microcontrollers; tinyol: Tinyml
with online-learning on microcontrollers,” 2021. DOI: 10.1109/IJCNN52387.2021.9533927.

[25] Martín Abadi, Ashish Agarwal, Paul Barham, et al., TensorFlow: Large-scale machine learning
on heterogeneous systems, Software available from tensorflow.org, 2015. [Online]. Available:
https://www.tensorflow.org/.

[26] I. Deligiannis and G. Kornaros, “Adaptive memory management scheme for mmu-less embedded
systems,” IEEE, May 2016, pp. 1–8, ISBN: 978-1-5090-2282-3. DOI: 10.1109/SIES.2016.
7509439.

[27] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for 8-bit training of neural
networks,” May 2018.

[28] “Makemore.” (), [Online]. Available: https://github.com/karpathy/nn- zero- to-
hero/blob/master/lectures/makemore/makemore_part4_backprop.ipynb (visited
on 06/13/2023).

[29] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, Integer quantization for deep learning
inference: Principles and empirical evaluation, 2020. arXiv: 2004.09602 [cs.LG].

[30] “Pytorch forward forward.” (), [Online]. Available: https://github.com/mohammadpz/
pytorch_forward_forward (visited on 06/08/2023).

[31] “Github - zalandoresearch/fashion-mnist: A mnist-like fashion product database. benchmark.” (),
[Online]. Available: https://github.com/zalandoresearch/fashion-mnist.

[32] “Eigen linear algebra library.” (), [Online]. Available: https://eigen.tuxfamily.org/
index.php?title=Main_Page (visited on 06/06/2023).

[33] “Tensorflow lite micro library for arduino.” (), [Online]. Available: https://github.com/
tensorflow/tflite-micro-arduino-examples (visited on 06/06/2023).

https://arxiv.org/abs/2206.15472
https://doi.org/10.1109/TNNLS.2015.2460991
https://arxiv.org/abs/2212.13345
https://arxiv.org/abs/2212.13345
https://doi.org/10.1109/IJCNN52387.2021.9533927
https://www.tensorflow.org/
https://doi.org/10.1109/SIES.2016.7509439
https://doi.org/10.1109/SIES.2016.7509439
https://github.com/karpathy/nn-zero-to-hero/blob/master/lectures/makemore/makemore_part4_backprop.ipynb
https://github.com/karpathy/nn-zero-to-hero/blob/master/lectures/makemore/makemore_part4_backprop.ipynb
https://arxiv.org/abs/2004.09602
https://github.com/mohammadpz/pytorch_forward_forward
https://github.com/mohammadpz/pytorch_forward_forward
https://github.com/zalandoresearch/fashion-mnist
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/tensorflow/tflite-micro-arduino-examples
https://github.com/tensorflow/tflite-micro-arduino-examples

A
Background information

A.1. The Teensy 4.1 Microcontroller
In this section, we summarize the features of the Teensy 4.1 [9] microcontroller board. We discuss
its hardware specifications, computational capacity, power requirements, and the features that make it
suitable for the implementation of AI algorithms. The constraints posed by this device and the oppor-
tunities will also be discussed.

The Teensy 4.1 is a compact, versatile microcontroller board developed by PJRC. As an advanced
yet affordable piece of hardware, it is a suitable platform for implementing AI algorithms.

A.1.1. Hardware Specifications
• ARM Cortex-M7 processor operating at 600 MHz (with cooling up to 1 GHz). It uses a Dual Issue
Superscalar Architecture, allowing it to achieve 2 instructions per cycle about 40% to 50% of the
time.

• It offers two 512Kb RAM chips, the first synchronous with the clock, the second at 1/4 clock speed,
making the second chip non-ideal for storing of large matrices.

• 2 MB of on-board flash.

• The Floating Point Unit (FPU) performs 32-bit float and 64-bit double precision math in hardware,
32-bit float speed is approximately the same speed as integer math. The training of AI models
requires a lot of 32-bit float operations, making the FPU a useful addition.

• Micro SD card reader. This is useful for storing datasets.

A.1.2. Constraints and Opportunities
Despite its advantages, the Teensy 4.1 presents some constraints when used for AI applications. The
available RAM and flash memory, although relatively large for a microcontroller, limits us to small mod-
els. Additionally, the absence of a dedicated hardware accelerator for AI tasks means all computations
need to be handled by the main processor. Dedicated hardware like the Neural Processing Unit present
on the NXP MCX N94 can significantly improve power utilization and computation speed.

The Teensy 4.1, despite some limitations, offers a promising platform for implementing AI algorithms.
Its hardware capabilities, combined with its affordability, present an unique platform for AI on the edge.

A.2. Fashion MNIST Dataset
The Fashion MNIST dataset, introduced by Zalando [10], serves as a drop-in replacement for the
original MNIST dataset, which has become a standard benchmark in the field of machine learning.
Although the original MNIST dataset of handwritten digits is very useful, it is often considered too

33

A.2. Fashion MNIST Dataset 34

simple and overused. The Fashion MNIST dataset was created to address these issues, introducing
more complexity while maintaining the same format as the original MNIST.

Figure A.1: Example images of the Fashion MNIST dataset. Figure obtained from [31]

A.2.1. Composition of the Dataset
The Fashion MNIST dataset consists of a training set of 60,000 examples and a test set of 10,000 ex-
amples. Each example is a 28x28 grayscale image, associated with a label from 10 different classes,
which represent different clothing items: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
Sneaker, Bag, and Ankle boot.

A.2.2. Challenges Presented by the Dataset
While the Fashion MNIST is more complex than the original MNIST, it is still a relatively simple dataset
compared to many real-world image recognition tasks. However, the diversity of clothing items, the
variations in their appearances introduce a higher level of complexity compared to recognizing sim-
ple digits, as can be observed from a PyMDE comparison in Figure A.4, making the dataset more
challenging than MNIST for benchmarking and validating AI algorithms.

A.2. Fashion MNIST Dataset 35

Figure A.2: Fashion MNIST Figure A.3: MNIST

Figure A.4: PyMDE feature complexity comparison between Fashion MNIST and regular MNIST

A.2.3. Appropriateness for the Study
The choice of the Fashion MNIST dataset for this study is appropriate for several reasons. First, its
compatibility with the original MNIST dataset means that it can be used with minimal changes to any
learning algorithm train on the MNIST dataset. Second, it provides a more demanding test for the
Backpropagation and Forward-Forward algorithms compared to the original MNIST set, yet remains
manageable for a microcontroller like the Teensy 4.1. Lastly, using a well-known and commonly used
dataset like the Fashion MNIST allows for easy comparison with other studies and models.

B
Results

B.1. Backpropagation
B.1.1. Baseline

Table B.1: Hyperparameters for the baseline configuration

Neurons first layer Neurons second layer Initial LR LR decay factor Momentum
32 0 0.01 0 0

Figure B.1: Accuracy of Baseline over 10 epochs

36

B.1. Backpropagation 37

Figure B.2: Loss of Baseline during the first epoch (Loss vs Time(s))

Epoch Accuracy Test Time (s)
1 0.7999 4.162
2 0.8229 4.162
3 0.8333 4.163
4 0.8414 4.162
5 0.8454 4.162
6 0.8488 4.162
7 0.8517 4.161
8 0.8532 4.162
9 0.8543 4.162
10 0.8563 4.162

Table B.2: Test accuracy and time per epoch for the baseline configuration.

B.1.2. Single-layer with LR decay

Table B.3: Hyperparameters for the single-layer with LR decay configuration

Neurons first layer Neurons second layer Initial LR LR decay factor Momentum
32 0 0.1 0.95 0

B.1. Backpropagation 38

Figure B.3: Accuracy of the learning rate decay configuration over 10 epochs

Figure B.4: Loss of the learning rate decay configuration during first epoch (Loss vs Time(s))

B.1. Backpropagation 39

Epoch Accuracy Test Time (s)
1 0.8404 4.1618
2 0.8528 4.1607
3 0.8558 4.1618
4 0.8573 4.1619
5 0.8591 4.1610
6 0.8601 4.1610
7 0.8623 4.1614
8 0.8638 4.1605
9 0.8637 4.1612
10 0.8648 4.1613

Table B.4: Test accuracy and time per epoch for the single-layer with LR decay configuration.

Figure B.5: Accuracy of the Baseline vs the LR decay configuration over 10 epochs

B.1. Backpropagation 40

Figure B.6: Loss of the Baseline vs the LR decay configuration during the first epoch (Loss vs Time(s))

B.1.3. Single-layer with momentum

Table B.5: Hyperparameters for the single-layer with momentum configuration

Neurons first layer Neurons second layer Initial LR LR decay factor Momentum
32 0 0.01 0 0.9

B.1. Backpropagation 41

Figure B.7: Accuracy of training with Learning rate decay vs Momentum configuration over 10 epochs

B.1.4. Dual-layer

Table B.6: Hyperparameters for the baseline configuration

Neurons first layer Neurons second layer Initial LR LR decay factor Momentum
32 32 0.01 0 0

B.1. Backpropagation 42

Figure B.8: Accuracy of the Baseline vs Dual-Layer configuration over 10 epochs

Figure B.9: Loss of the Baseline vs Dual-Layer configuration during the first epoch (Loss vs Time(s))

B.1. Backpropagation 43

B.1.5. Dual-layer with LR decay

Table B.7: Hyperparameters for the baseline configuration

Neurons first layer Neurons second layer Initial LR LR decay factor Momentum
32 32 0.1 0.95 0

Figure B.10: Accuracy of Dual-layer without learning rate decay vs Dual-layer with learning rate decay configuration over 10
epochs

B.1.6. Larger networks using memory-optimized SGD

Table B.8: Hyperparameters for the baseline configuration

Neurons first layer Neurons second layer Initial LR LR decay factor Momentum
80 80 0.1 0.95 0

B.2. Forward-Forward 44

Figure B.11: Accuracy of Baseline vs Maximum Dual-Layer configuration over 10 epochs

B.2. Forward-Forward
B.2.1. Baseline

Table B.9: Hyperparameters for the baseline configuration

Neurons first layer Neurons second layer Initial LR LR decay factor Momentum
32 0 0.01 0 0

Figure B.12: Accuracy of Baseline over 10 epochs

B.3. Comparison with other groups 45

Figure B.13: Loss of the Baseline vs the LR decay configuration during the first epoch (Loss vs Time(s))

B.2.2. Dual-Layer Network

Table B.10: Hyperparameters for the baseline configuration

Neurons first layer Neurons second layer Initial LR LR decay factor Momentum
32 32 0.01 0 0

B.3. Comparison with other groups
In this section, the results of themicrocontroller team are presented alongwith the results of the software
and FPGA teams.

B.3.1. BP Baseline

Table B.11: Comparison table of the backpropagation baseline model (784-32-10, no lr decay, no momentum) between the
different groups. From this table, it can be seen that the model trained with on-device backpropagation and SGD performs
similarly to the model trained using TensorFlow. The quantized model also performs similarly to the models running on the PC
and FPGA. Hyperparameters used for training: Batch size = 16, lr = 0.01, momentum = 0, no lr decay

Metrics TF (PC) TF Lite
(PC)

TF Lite
(MCU)

Local
MCU

FPGA

Datatype fp32 int8 int8 fp32 int8
Accuracy on test set after 1 epochs 80.72 NA NA 79.99 NA
Accuracy on test set after 5 epochs 85 NA NA 84.54 NA
Accuracy on test set after 10 epochs 85.82 NA 85.6 85.63 NA
Accuracy on test set after 30 epochs 86.41 86.33 86.33 NA 85.53
Memory required (KiB) (Variable | Code) NA NA 60.16 |

105.74
265.22 |
99.90

25.08 |
1.34

Inference time per sample(us) 65.02 34.62 70.19 258.4 14.38
Training time (s) 142.2 NA NA 372.9 NA
Training time per epoch (s) 4.74 NA NA 37.29 NA

B.3. Comparison with other groups 46

B.3.2. BP Baseline + LR decay

Table B.12: Comparison table of the backpropagation baseline model (784-32-10, lr decay, no momentum) between the different
groups. From this table, it can be seen that the model trained with on-device backpropagation and SGD performs similarly to the
model trained using TensorFlow. The quantized model also performs similarly to the models running on the PC. Hyperparameters
used for training: Batch size = 16, lr = 0.01, momentum = 0, lr decay = 0.95 every 200 batches

Metric TF (PC) TF Lite
(PC)

TF Lite
(MCU)

Local MCU

Datatype fp32 int8 int8 fp32
Accuracy on test set after 1 epoch 84.17 – – 84.04
Accuracy on test set after 5 epoch 85.8 – – 85.91
Accuracy on test set after 10 epochs 86.23 – – 86.48
Epochs trained 26 – – 10
Accuracy for given epochs 86.74 86.68 86.68 –
Memory required (KiB) (Variable | Code) – 25.08 | 1.34 60.16|105.74 265.22 |

99.90
Inference time per sample(us) 86.97 30.55 70.1 258.4
Training time (s) 262.6 – – 372.9
Training time per epoch (s) 10.1 – – 37.29
Energy / inference (mJ) – – 0.046 0.199

B.3.3. BP Baseline + Momentum

Table B.13: Comparison table of the backpropagation baseline model (784-32-10, no lr decay, momentum) between the different
groups. From this table, it can be seen that the model trained with on-device backpropagation and SGD performs similarly to the
model trained using TensorFlow. The quantized model also performs similarly to the models running on the PC. Hyperparameters
used for training: Batch size = 16, lr = 0.01, momentum = 0.9, no lr decay

Metric TF (PC) TF Lite
(PC)

TF Lite
(MCU)

Local MCU

Datatype fp32 int8 int8 fp32
Accuracy on test set after 1 epoch 83.05 – – 81.54
Accuracy on test set after 5 epoch 85.95 – – 85.49
Accuracy on test set after 10 epochs 86.94 – – 86.7
Epochs trained 12 – – 10
Accuracy for given epochs 86.43 86.45 86.43 –
Memory required (KiB) (Variable | Code) – 25.08 | 1.34 60.16|105.74 265.22 |

100.52
Inference time per sample(us) 69.1 24.83 70.35 258.3
Training time (s) 82.88 – – 378.6
Training time per epoch (s) 6.91 – – 37.86
Energy / inference (mJ) – – 0.047 0.171

B.3. Comparison with other groups 47

B.3.4. Dual layer BP

Table B.14: Comparison table of the backpropagation dual layer model (784-32-32-10, no lr decay, no momentum) between
the different groups. From this table, it can be seen that the model trained with on-device backpropagation and SGD performs
similarly to the model trained using TensorFlow. The quantized model also performs similarly to the models running on the PC
and FPGA. Hyperparameters used for training: Batch size = 16, lr = 0.01, momentum = 0

Metric TF (PC) TF Lite
(PC)

TF Lite
(MCU)

Local
MCU

FPGA

Datatype fp32 int8 int8 fp32 int8
Accuracy on test set after 1 epoch 81.03 – – 80.06 –
Accuracy on test set after 5 epoch 85.07 – – 85.69 –
Accuracy on test set after 10 epochs 86.66 – – 86.84 –
Epochs trained 22 – – 10 –
Accuracy for given epochs 87.46 87.36 87.36 – 85.67
Memory required (KiB) (Variable | Code) – 26.20 |

2.33
61.16 |
105.74

278.47 |
102.02

–

Inference time per sample(us) 72.34 37.47 75.2 270.04 15.24
Training time (s) 123.9 – – 396.6 –
Training time per epoch (s) 5.63 – – 39.66 –
Energy / inference (mJ) – – 0.05 0.179 0.029

B.3.5. Baseline FF

Table B.15: Comparison table of the forward-forward baseline model (784-32, no lr decay, no momentum, batch size = 16, lr =
0.1) between the software and microcontroller groups. Accuracies at different training stages are similar between models trained
on the MCU and models trained using TensorFlow.

Metrics TF (PC) Local MCU
Datatype fp32 fp32
Accuracy on test set after 1 epochs 68.72 69.32
Accuracy on test set after 5 epochs 79.50 82.26
Accuracy on test set after 10 epochs 82.55 83.74
Memory required (KiB) (Variable | Code) NA 318.19 | 98.09
Inference time per sample(us) 604.1 2533.27
Training time per epoch (s) 29.24 71.18

Table B.16: Comparison table of the forward-forward baseline model (784-32, no lr decay, no momentum, batch size = 32, lr =
0.1) between the software and microcontroller groups using TensorFlow Lite. A significant drop in accuracy can be seen when
going from full-precision to quantized.

Metrics TF (PC) TF Lite (PC) TF Lite (MCU)
Datatype fp32 int8 int8
Accuracy on test set after 20 epochs 82.43 68.9 69.66
Memory required (KiB) (Variable | Code) NA 25.32|1.48 57.06 | 105.18
Inference time per sample(us) 604.1 8771.5 1065.4
Training time per epoch (s) 29.24 NA NA

B.4. Forward-Forward with batch size of 32 48

B.3.6. Dual Layer FF

Table B.17: Comparison table of the forward-forward dual layer model (784-32-32, no lr decay, no momentum, batch size = 32,
lr = 0.1) between the software and microcontroller groups using TensorFlow Lite. A significant drop in accuracy can be seen
when going from full-precision to quantized.

Metrics TF (PC) TF Lite
(PC)

TF Lite
(MCU)

Local
(MCU)

Datatype fp32 int8 int8 fp32
Accuracy on test set after 10 epochs 79.46 59.79 67.93 81.59
Memory required (KiB) (Variable | Code) NA 26.58|2.96 70.47 |

105.18
327.31 |
99.21

Inference time per sample(us) 1374 16065 1189.1 2794.27
Training time per epoch (s) 57.006 NA NA 106.3

B.4. Forward-Forward with batch size of 32
Table B.18: Forward-Forward Model Comparison. Memory usage between parentheses is using the memory-optimized version
of SGD. Batch size = 32, network topologies and other hyperparameters are unchanged with respect to chapter 5

Metrics Baseline FF Dual-layer
Accuracy on test set after 1 epoch 0.6202 0.5952
Accuracy on test set after 5 epochs 0.7668 0.7942
Accuracy on test set after 10 epochs 0.809 0.8121
Memory required (kB) Variable 318.19 (220.06) 327.32 (229.19)
Memory required (kB) Code 98.09 99.21
Inference time (us) / image 2533.3 2794.3
Training time (s) / epoch 71.18 106.30
Energy (mJ) / inference 1.676 1.848

B.5. Direct comparison for foward-forward and backpropagation
Table B.19: Direct comparison between models trained using backpropagation and forward-forward. The used model topologies
are the same as before (784-32-10, 784-32-32-10 for BP, 784-32, 784-32-32 for FF). No LR decay or momentum are used during
training.

Metrics BP Single
hidden
layer

BP Dual
hidden
layer

FF Single-
layer

FF
Dual-layer

Accuracy on test set after 1 epoch 0.7999 0.8006 0.6932 0.7002
Accuracy on test set after 5 epochs 0.8454 0.8569 0.8226 0.8193
Accuracy on test set after 10 epochs 0.8563 0.8684 0.8374 0.8206
Memory required (kB) Variable 265.22

(165.81)
278.47
(173.94)

267.06
(168.94)

274.19
(176.06)

Memory required (kB) Code 99.90 102.02 98.09 99.21
Inference time (us) / image 258.4 270.0 2533.3 2794.3
Training time (s) / epoch 37.29 39.66 71.18 106.30
Energy (mJ) / inference 0.171 0.179 1.676 1.848

B.6. Justification for testing methodology
Below, the accuracy vs epochs is plotted for a dual layer model trained using TensorFlow with momen-
tum and enabled. This plot is included to elucidate the decision to not include accuracies of models
trained for more than 10 epochs in the results. It becomes clear that most training happens in epochs
1-10. While this proof is anecdotal and there are certainly networks that benefit from training more
than 10 epochs, it is reasonable to think that it is applicable to the networks trained on the microcon-
troller. For example, the network topology in this case is the same, and so is the optimizer. Training

B.6. Justification for testing methodology 49

networks on the microcontroller also takes a considerable amount of time (especially forward-forward,
which would take approximately 1.5 hours to train with 50 epochs). This is why the decision was made
to only report accuracies up to 10 epochs.

Figure B.14: Test accuracy on fashion MNIST using a dual hidden layer model (784-32-32-10) trained with SGD (lr=0.001,
momentum=0.9) using TensorFlow. This plot shows that most of the training occurs in the first 10 epochs.

C
General code / support structure

There are pieces of code that are generic and can be used with all algorithms. Namely, the data loading
code handles loading the train and test datasets into memory, the interfacing code provides a user
interface over the serial connection, and the linear algebra library provides all functionality regarding
vector and matrix operations.

C.1. Data Loading
As described in appendix A, the Teensy 4.1 microcontroller has 2 MB of on-board flash. This makes
it impossible to load the entire fashion MNIST dataset onto flash (the fashion MNIST dataset is 26
MB[10]). This means that the dataset must be loaded into memory in mini-batches. There are two
main ways to achieve this: over a serial connection or by reading from an SD card. Loading from the
SD card is chosen because it is easy to implement. First, the data is read from a CSV file, because this
allowed us to put the dataset in a human-readable format onto the SD card. We choose to pre-flatten
the images, because this would be easier to read into memory and store in files. Quickly, it became
apparent that the string processing on the Teensy was massively bottlenecking the speed at which
new examples could be loaded into memory. To remedy this, a Python script was created to put the
entire dataset into a binary format. This is easy in the case of images, because all pixel values are
represented by a single byte. Then, on the Teensy, the contents of the binary file can be copied directly
into memory, avoiding the need to do computationally expensive string processing. This massively
reduced the amount of time it took to load data from the SD card into memory, however, loading data
from the SD card still takes a considerable amount of time when compared to running computations
for the neural network inference and training. The amount of data that was loaded from the SD card at
a time was varied. Two configurations were investigated: loading per example and per batch. There
was not a significant difference in data loading times between these configurations. Ultimately, the
per-example loading was used, because this requires a smaller read-buffer, thus saving memory. The
normalization of the input data is done on-device, as we think this is more representative of the real
world use cases of both inference-only and on-device training.

C.2. Interfacing with MCU
In order to run experiments, a simple user interface was built to interface with the Teensy over a serial
connection with an attached computer. This user interface allows training for multiple epochs and
testing the models, as well as saving the trained weight matrices and bias vectors to a human readable
format. A tool for plotting loss graphs was built in Python which uses the serial connection to obtain
real-time running losses from the microcontroller.

C.3. Linear Algebra Library
For both training and inferring neural networks, vector and matrix operations are paramount. There
exist linear algebra libraries written in c++ [32], however, these libraries are often large and would take
up a significant amount of memory. Therefore, a custom, lightweight, linear algebra library was written

50

C.4. TensorFlow Lite Micro 51

that only contains the required operations for training and inferring fully connected neural networks. By
writing a custom linear algebra library, it is also possible to make optimizations to certain operations.
The library works with both statically and dynamically allocated matrices and vectors. Each matrix or
vector is a C-struct that consists of a pointer to a storage array and metadata about how the array is
organized, such as vector length, and the amount of rows and columns. This makes re-using allocated
memory easy. Instead of having to create a new matrix or vector, one can simply alter the metadata of
the struct to change dimensions. The library also contains various combined operations. For example,
matrix multiplication and transposition can be done in a single function call, removing the need to
allocate a second matrix to store the result of the transposition.

C.4. TensorFlow Lite Micro
TensorFlow Lite Micro is not officially supported on the Teensy 4.1. This means that, in order to make
use of it, the library has to be ported to the Teensy. This is accomplished by adapting the TF Lite
Micro library that was developed for the Arduino Nano 33 BLE [33] to work with the Teensy 4.1. This is
done because the Arduino board has a microcontroller with the same core architecture as the Teensy
(namely, the Arduino has an ARM cortex M4 based MCU and the Teensy has an ARM cortex M7 based
MCU).

D
Mathematical definition loss and gradient

D.1. Forward-Forward contrastive loss
In this section, the mathematical definition and the gradient with respect to layer weights and biases of
the contrastive loss function of forward-forward is given. Matrices are denoted by bold letters, vectors
are denoted with ⃗𝑎𝑟𝑟𝑜𝑤𝑠. Operations (squaring, addition) of a matrix / vector with a scalar is element-
wise). Furthermore, sums of matrices can be taken over a certain axis (axis 0 = rows, axis 1 = columns).
Example of summing over the row dimension:

∑
𝑎𝑥𝑖𝑠=0

Y

The operation above would result in a vector with a length equal to the column dimension of the matrix
Y.

D.1.1. Definition
The definition of the loss follows [30]. It is given for positive data. The following symbol definitions are
used:

• 𝑓: amount input features.

• 𝑛: batch size.

• ℎ: amount of neurons in the layer.

• 𝜃: threshold hyperparameter of the loss.

• ℒ: loss.

• �⃗�: bias vector (of length ℎ).

• �⃗�: goodness vector (length 𝑛), which stores the mean of square activations per example.

• X: batch matrix (size (𝑛, 𝑓))

• W: the weight matrix (size (𝑓, ℎ))

• Y′: pre-activation layer outputs (size (𝑛, ℎ)).

• Y: layer activations after applying the ReLU activation (size (𝑛, ℎ)).

52

D.1. Forward-Forward contrastive loss 53

The loss ℒ is defined as follows:

Y′ = X ×W+ �⃗�
Y =max (0,Y′)

�⃗� = 1
ℎ ∑
𝑎𝑥𝑖𝑠=1

Y2

ℒ = 1
𝑛

𝑛

∑
𝑖=1
𝑙𝑛(1 + 𝑒−𝑔𝑖+𝜃)

D.1.2. Gradient
Now, the gradient with respect to the layer weights and biases is calculated using the chain rule. To
make the derivation easier, the following additional symbols are defined:

• 𝛼 = −𝑔𝑖 + 𝜃

The gradient is then computed as follows:

𝜕ℒ
𝜕𝛼 =

1
𝑛 + 𝑛𝑒−𝛼

𝜕𝛼
𝜕𝑔𝑖

= −1

𝜕𝑔𝑖
𝜕𝑌𝑖𝑗

= 2
ℎ𝑌𝑖𝑗

𝜕𝑌𝑖𝑗
𝜕𝑌′𝑖𝑗

= {1 if 𝑌′𝑖𝑗 ≥ 0
0 if 𝑌′𝑖𝑗 < 0

Now, the chain rule is applied. Because 𝑌𝑖𝑗 = 𝑌′𝑖𝑗 if 𝑌′𝑖𝑗 ≥ 0 and 𝑌𝑖𝑗 = 0 if 𝑌′𝑖𝑗 < 0, multiplying by the
last partial derivative does not change the derivative of ℒ with respect to 𝑌′𝑖𝑗. The partial derivatives are
now combined:

𝜕ℒ
𝜕𝑌′𝑖𝑗

= − 1
𝑛 + 𝑛𝑒𝑔𝑖−𝜃

2
ℎ𝑌𝑖𝑗

Now, a gradient matrix Y′𝑔𝑟𝑎𝑑 is defined:

Y′𝑔𝑟𝑎𝑑 =
⎡
⎢
⎢
⎣

𝜕ℒ
𝜕𝑌′00

… 𝜕ℒ
𝜕𝑌′0ℎ

⋮ ⋱ ⋮
𝜕ℒ
𝜕𝑌′𝑛0

… 𝜕ℒ
𝜕𝑌′𝑛ℎ

⎤
⎥
⎥
⎦

The gradients of the loss with respect to the weights and biases can now be computed:

W𝑔𝑟𝑎𝑑 = X𝑇 × Y′𝑔𝑟𝑎𝑑
�⃗�𝑔𝑟𝑎𝑑 = ∑

𝑎𝑥𝑖𝑠=0
Y′𝑔𝑟𝑎𝑑

For negative data, −𝛼 is used instead of 𝛼. The gradient derivation for this is now trivial.

– The End –

	Introduction
	Background
	Statement of Problem
	Objective of the Study
	Sub-group dynamics
	Choice of Hardware and Dataset
	Outline of the Thesis

	Program of Requirements
	Functional Requirements
	Mandatory Requirements
	Trade-Off Requirements

	Background and Related works
	Neural Networks
	Multilayer Perceptron
	Convolutional Neural Network

	Backpropagation
	Fundamentals of Backpropagation
	Stochastic Gradient Descent
	Learning Rate Decay
	Momentum
	Strengths and Weaknesses of Backpropagation
	Applicability to this Thesis

	Forward-forward
	Overview of the Forward-Forward Algorithm
	Fundamentals of Forward-Forward
	Advantages and Disadvantages

	AI in microcontrollers
	Offline Learning
	Online Learning
	Transfer Learning
	TensorFlow and TensorFlow Lite

	Methodology
	Algorithm Implementation and Optimization
	Backpropagation
	Forward-Forward
	Transfer Learning

	Testing Procedures & Metrics

	Results and Discussion
	Performance of backpropagation
	Baseline
	Learning rate decay
	Momentum
	Dual-Layer network
	Larger networks using memory-optimized SGD
	Comparison with TF Lite
	Discussion

	Performance of Forward-Forward Algorithm
	Baseline
	Dual-layer network
	Comparison with TF Lite
	Discussion

	Transfer Learning
	Comparison with other teams
	Discussion

	Conclusion
	Summary of Findings
	Limitations of the Study
	Recommendations for Future Work

	Background information
	The Teensy 4.1 Microcontroller
	Hardware Specifications
	Constraints and Opportunities

	Fashion MNIST Dataset
	Composition of the Dataset
	Challenges Presented by the Dataset
	Appropriateness for the Study

	Results
	Backpropagation
	Baseline
	Single-layer with LR decay
	Single-layer with momentum
	Dual-layer
	Dual-layer with LR decay
	Larger networks using memory-optimized SGD

	Forward-Forward
	Baseline
	Dual-Layer Network

	Comparison with other groups
	BP Baseline
	BP Baseline + LR decay
	BP Baseline + Momentum
	Dual layer BP
	Baseline FF
	Dual Layer FF

	Forward-Forward with batch size of 32
	Direct comparison for foward-forward and backpropagation
	Justification for testing methodology

	General code / support structure
	Data Loading
	Interfacing with MCU
	Linear Algebra Library
	TensorFlow Lite Micro

	Mathematical definition loss and gradient
	Forward-Forward contrastive loss
	Definition
	Gradient

