

>1:1

2050

References: World Economic Forum. (2016). The New Plastics Economy: Rethinking the future of plastics. T. W. E. Forum.

ReCoNet

a recycling community network for living

CONTENT

Structure of the presentation

Introduction 5 Macro Plastic crisis Reconnect the site 6 Thematic research Meso Use of recycled plastic Reconnect the neighbour Site 7 Micro Analysis of Merwedeterrein Reconnect the nature **Future Vision** 4 8 development Reconnect in 3 different scales Future-proof ReCoNet

INTRODUCTION

Plastic crisis

PLASTIC CRISIS

Growth in plastic production

Note: World Economic Forum. (2016). The New Plastics Economy: Rethinking the future of plastics. T. W. E. Forum.

PLASTIC CRISIS

Plastics demand by segment in Europe in 2019

Plastics Europe. (2012).

Plastics: Architects of modern and sustainable buildings. P. AISBL. https://plasticseurope.org/wp-content/uploads/2021/10/Final_BC_brochure_111212_web_version_UPD2018.pdf

PLASTIC FLOW IN THE NETHERLANDS

System boundary of Plastic Recycling System in the Netherlands, [1 year]

Waste packaging plastic flows from household in the Netherlands in 2017 (kg/cap)

PLASTIC FLOW IN THE NETHERLANDS

Waste packaging plastic flows from household in the Netherlands in 2017 (kg/cap)

PLASTIC FLOW IN THE NETHERLANDS

THEMATIC RESEARCH

Use of recycled plastics

RESEARCH QUESTION

The use of recycled plastic in shearing layers

How can recycled plastic household waste be applied within the shearing layers of Stewart Brand's model?

Shearing layers of change by Stewart Brand (1994)

RESEARCH RESULT

Shearing layers of change

STRUCTURE

SPACE PLAN **SERVICES** SKIN STRUCTURE

STUFF

SITE

Upper layers 7 years 15 years 25 years 50 years 200 years Eternal Bottom layers

RESEARCH RESULT

Shearing layers of change

SPACE PLAN

STRUCTURE

SERVICES SKIN STRUCTURE

SPACE PLAN

STUFF

SITE

Upper layers 7 years 15 years 25 years 50 years 200 years Eternal Bottom layers

Possible

Best

Only for small scale

| Thematic Research | Site | Vision | Macro | Meso | Micro | Future development Introduction

RESEARCH RESULT

Characteristics of recycled plastics

Visual

Various of colours

Easy to mould

Weather-proof

Water resistance

Insulation

Better than conventional insulation (U-value:0.18)¹

As good as acoustic tiles² $(\alpha = 0.5)$

Fire resistance

Class B in fire resistance³

JD Composites. (2019). Homeowner information sheet.

² Biskupičová, A., Ledererová, M., Unčík, S., Glorieux, C., & Rychtáriková, M. (2021). Sound absorption properties of materials based on recycled plastic granule mixtures. Slovak Journal of Civil Engineering, 29(1), 15-19.

³ Pretty Plastic. (2021). Product information. Pretty Plastic. Retrieved 04 January 2022 from https://www.prettyplastic.nl/tile/#product-information

SITE

Analysis of Merwedeterrein

HEART OF THE CITY

North Arnhem in the Presikhaaf region

LACK OF CONNECTION

Program in Merwedeterrein

LACK OF CONNECTION

Circulation in Merwedeterrein

NOISY

Noise diagram in Merwedeterrein

MIXED USERS

Demographics in Presikhaaf-West

Arnhem - Presikhaaf-West

1/3 residents are low-income

rental properties

social housing

ReCoNet in 3 different scales

ReCoNet - Reconnect in 3 different scales

MACRO

Site reconnect the site to form a new recycling centre

ReCoNet - Reconnect in 3 different scales

MACRO

Site reconnect the site to form a new recycling centre

MESO

Neighbourhood reconnect the neighbourhood to form a recycling plastic community

ReCoNet - Reconnect in 3 different scales

MACRO

Site reconnect the site to form a new recycling centre

MESO

Neighbourhood
reconnect the neighbourhood
to form a recycling plastic community

MICRO

Nature
reconnect the nature
to use recycled plastic in a circular and
sustainable way

MACRO

reconnect the site to form a New recycling centre in Arnhem

- 1. Plastic recycling factory
- 2. Treatment of existing users
 - 3. Recycled park

keywords: connection

New recycling centre

15-mintues city

Waste packaging plastic flow for the all 58.000 residents in the North Arnhem in 2030 (kg/week)

Thematic Research | Site | Vision | Macro | Meso | Micro | Future development Introduction

Waste packaging plastic flows from household in the Netherlands in 2017 (kg/cap)

Vaste packaging plastic flow for the all 58.000 residents in the North Arnhem in 2030 (kg/week)

80% recycled

TREATMENT OF EXISTING USERS

Type of users

TREATMENT OF EXISTING USERS

Type of users

TREATMENT OF EXISTING USERS

Type of users

Car company

Mosque

Artists in KW37

Living van

Keephave their own community
for future extention

Car company

RelocateIntergrat with the new parking

Car company

Transform

Recycled park to promote recycling and provide a leisure area for residents

Mosque

Rebuild was a school with poor experience

Mosque

Rebuild
better connection
better quality

Plastic factory

Buildplastic factory to collect household plastic waste in the North Arnhem

Artists in KW37

Integrate better working and living space Light green:artist park

Overall scheme

SITE SECTION

Relationship with the train track and environment

reduce urban heat island effect

MACRO

reconnect the site to form a new recycling centre

MESO

reconnect the neighbour to form a recycling plastic community

- 1. Massing
- 2. Recycling plastic community
 - 3. Community collaboration

keywords: community & collaboration

Concept

Extrude

Compacted form to create a warmer courtyard

Concept

Subtract

Openings to create more welcoming semi-public spaces

Concept

Divide and Shift

Apply modular construction and diffuse noise by shifting

Concept

Compress

Lower down the block on the South and West for better sunlight in the courtyard

Concept

Add-on gallery

creates social gathering space in the gallery

Concept

Green roof and courtyard

put solar panels on the roof community gardening space on the ground and roof

a various range of programs on the GF

Proposed circulation

Plastic waste collection point

Collect waste at home

Bring the waste to the collection point and get stamps

Redeem stamps in the local community

Reference: Zero Waste Lab in Amsterdam

Plastic waste collection point

Plastic-free supermarket

Reference: YES FUTURE in Barcelona

exhibition, demonstration, workshop

Program arrangement

Typical floor plan

Typical floor plan

COLLABORATION

Artist collaboration

 $\begin{array}{c} \text{Artist co-working/ living studio} \quad 150 \ m^2 \\ \text{2-4 people} \end{array}$

Artist co-living apartment 190 m^2 $\,$ 4-8 people

COLLABORATION

Artist park

Buffer zone and shifting facing the noisy train track

MESO

reconnect the neighbour to form a recycling plastic community

MICRO

reconnect the nature

to use recycled plastic in a circular and sustainable way

- 1. Modular CLT construction
 - 2. Use of recyceld plastics
 - 3. RE!facade
 - 4. Circular concept
 - 5. Climate scheme

keywords: circularity

Module unit

Module unit for artists

Artist co-living apartment 190 m²
4-8 people

Artist co-working/living studio 150 m² 2-4 people

Delivery method

Advantages

Cheaper

More flexible

Easier to apply new material

Different shearing layers

STRUCTURE

Different shearing layers

Design for disassemble and reuse

Space plan

Precious Plastic. (2020). Plastic bricks. Retrieved 04 January 2022 from https://preciousplastic.com/starterkits/buy/bricks. SelectTech. (2019). Flooring by SelechTech.

Services

RPM Pipes. (2019). Product Catalogue 2019. R. Pipes. http://rpmpipes.com.au/resources/rpm-product-catalogue-2019/
Prinsco. (2014). ECOFLO® 100. Prinsco. Retrieved 04 January 2022 from https://www.prinsco.com/wp-content/uploads/2014/06/EcoFlo100_Ag_ProductSheet_102317Web.pdf

Skin

Concept

Base cladding

500 mm

335 mm

Plug-in options

Video - Different use of RE!facade

Windows opening

Full cladding

Quarter cladding (window)

Half quarter cladding (edges only)

Corner study

Video - implementation with structure

Modular construction with recycled plastics

Space plan: 1140 kg
Partition: 1000 kg
Floors: 80 kg
Wall tiles: 60 kg

Skin: 1600 kg RE!facade: 100 kg Insulation: 1000 kg

Services: 75 kg

- = 2.800 kg recycled plastics
- = **280.000** plastic bottles
- = save 9.000 kg of CO_2

300 units

- = 840 tons of plastics
- = 7.5 months to collect (1.380 tons per year)

1:20 model

CIRCULAR CONCEPT

Circular material - recycle

Introduction | Thematic Research | Site | Vision | Macro | Meso | Micro | Future development

CIRCULAR CONCEPT

Circular material - upcycle

Energy-neutral circular building

Rain water for flushing toilet

72%

of the consumption (save 5300m³ water per year)

Rainwater harvesting

Heat network

Biodiversity

Grey water rouse

Grey water Large Water

Calculation

 $\begin{array}{lll} \mbox{Average annual precipitation:} & 850\mbox{mm} \\ \mbox{Number of consumers:} & 600 \\ \mbox{Roof surface:} & 9000\mbox{ m}^2 \\ \mbox{Average water consumption per person per day: } 34\mbox{L} \end{array}$

Introduction | Thematic Research | Site | Vision | Macro | Meso | Micro | Future development

Energy-neutral circular building

Introduction | Thematic Research | Site | Vision | Macro | Meso | Micro | Future development

PVT panels calculation

Solar energy for residents and retails

131%

of the consumption (save 1.000.000 kWh per year)

Extra: for electric bikes and cars

Calculation

Total surface area: 30000 m^2 Number of residents: 600Roof surface: 9000 m^2

Also input of:

Area of each facade, Type of heating, Type of ventilation, Thermal mass etc.

Summer

Loggia: buffer zone

Facade: noise diffused $(\alpha = 0.5)$ as good as acoustic tiles

introduction | Thematic Research | Site | Vision | Macro | Meso | Micro | Future development

Winter

Loggia: buffer zone

Facade insulation Rc-value: 6.5 (>3.7) U-value: 0.035

Floor heating from the heat network (powered by the waste)

MICRO

reconnect the nature in a circular and sustainable way

FUTURE DEVELOPMENT

Future-proof ReCoNet

EXPORTING THE PRODUCTS

Use the cargo train

Introduction | Thematic Research | Site | Vision | Macro | Meso | Micro | Future development

can be changed in the future (modular construction)

Studio (A&B) 47.5 m² 1-2 people

Senior 95 m² 2 people

Family 95 m² 2-3 people

Family loft 142.5 m² 4-5 people

Original arrangement

Possible future arrangement

Carpark can be transformed to housing

Introduction | Thematic Research | Site | Vision | Macro | Meso | Micro | Future development

CARBON AMBITION

Reduce carbon emission significantly

 $\underset{85000 \text{ m}^2}{\text{Greenery}}$

CLT construction -600 kg CO₂ per m³ (500 kg)

Zero-energy building with solar power

Recycled plastics from 3.2 kg CO_2 to 1 kg CO_2 Factory: saving 300 tons of CO_2 per year

VIDEO

QUESTIONS