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Summary

Composite materials are increasingly utilized in industries such as aerospace due to their exceptional
specific strength and stiffness. However, accurately predicting the structural behavior of composites
remains a challenge partly because of their inherent material variability, often arising from manufac-
turing imperfections such as fiber misalignment, inhomogeneous curing, and resin distribution. These
uncertainties lead to significant deviations between experimental data and numerical models, which
are typically addressed by applying conservative safety factors. While effective, this approach often
results in overly conservative, weight-inefficient designs.

This thesis presents a novel Stochastic Finite Element Method (SFEM) framework aimed at improving
the reliability analysis of composite structures by incorporating material uncertainty into the computa-
tional model. The method integrates the Karhunen-Loève (KL) expansion to represent spatial variability
in material properties and Latin Hypercube Sampling (LHS) to enhance the efficiency of probabilistic
simulations. The proposed framework is implemented in a widely-used commercial finite element soft-
ware, Abaqus, demonstrating a possible robust and user-friendly application of the stochastic method-
ology.

In the process of generating random fields for material properties, twomethods of applying the Karhunen-
Loève expansion are developed and compared: the Galerkin method and the Bounding Box method.
Both approaches discretize random fields over a finite element mesh, but they differ in terms of com-
putational efficiency and accuracy. The Galerkin method directly solves eigenvalue problems over the
mesh, while the Bounding Box method approximates the domain with simplified boundaries, reducing
computational cost. The former, despite being the norm in literature, is more complex and less efficient,
and is found to not significantly reduce approximation errors. LHS is found to speed up the convergence
of both these methods, when compared to Monte Carlo sampling.

The overall stochastic methodology involves multiple stages: random field generation using the KL
expansion, probabilistic sampling of the input variables through LHS, and finite element analysis to
simulate progressive failure in composite laminates. A continuum damage model (CDM) is employed
through a User Defined Material (UMAT) Abaqus subroutine to capture damage initiation and propaga-
tion. The methodology is designed to handle complex geometries and load cases, providing flexibility
for real-world applications. Obtaining probabilistic failure curves through statistical post-processing,
this framework facilitates reliability analysis with minimal intervention in third part codes.

Three case studies from literature, including open hole tension tests, are used to validate the SFEM
framework, comparing its probabilistic predictions of failure loads with experimental data. The method-
ology shows significant improvements in the accuracy of failure predictions, capturing the inherent vari-
ability than traditional deterministic methods ignore. The results also reveal that incorporating realistic
spatial variability into finite element models helps provide a more accurate assessment of failure proba-
bilities, when compared with simpler reliability methods. This suggests that, with future improvements
and further validation, stochastic methods such as the one presented have the potential of leading
to better optimization of composite designs, reducing unnecessary conservatism in structural safety
factors while ensuring reliable performance.

By offering a more efficient, robust and accurate method for handling material uncertainty, this research
advances the state of the art in composite reliability analysis and supports the ongoing transition toward
the use of virtual testing in the design and certification of composite components.
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1
Introduction

In the past few decades, the use of composite materials in the aerospace industry has grown signifi-
cantly. This can be seen in figure 1.1, where the A350 aircraft has far and ahead the highest percentage
of composite structural weight - the value for the A350XWB is around 50% [1]. Growing sustainabil-
ity concerns, which imply a need for lighter and damage tolerant structures, and an always-present
necessity to reduce costs by optimizing aircraft structures, suggest this growth will continue.

Figure 1.1: Evolution of use of composite materials in Airbus aircraft [2].

Composite materials result from combining two or more materials to obtain better properties than their
monolithic versions. Usually, a matrix serves as support to a reinforcement material, a fiber or partic-
ulate, which provides the strength and stiffness [3]. The most common versions are CFRPs (Carbon
Fiber Reinforced Polymers) and GFRPs (Glass Fiber Reinforced Polymers), which are composed of
a polymer resin matrix, either thermoset or thermoplastic, and carbon/glass fiber reinforcement. They
are very popular for high-performance applications partly because of their high strength to density
and stiffness to density ratios, a consequence of the load being transferred from the light matrix to
the strong/stiff reinforcement. The material can also be tailored, by changing the fiber orientations to
achieve the required properties on the expected load path, so that the weight is optimized.

The analysis of composite structures presents new challenges when compared to the isotropic case,
an inherent consequence of having direction-dependent material properties (anisotropy). That is espe-
cially true when it comes to predicting their failure, which is ruled by gradual, complex and interacting
mechanisms related to the fibers, matrix, and the different lamina that form a composite laminate. Ad-
ditionally, the variability in the properties of manufactured parts causes an unpredictable scatter in the
structural response, and a significant deviation between current numerical analysis methods and exper-
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imental measurements. The complex nature of composites and their manufacturing methods make this
randomness inherent and unavoidable, whether its related to the precise geometry, fiber orientation,
inhomogeneous curing, distribution of the resin, fiber volume ratio, or other sources. It is, however,
essential to improve current numerical methods for composite structural analysis: the growing demand
for these materials requires that the gap between experiments and computational modelling be bridged,
so that virtual testing can reliably replace part of the large amount of costly and time-consuming test
campaigns that are required in the design phase.

Currently, material uncertainty is addressed by applying safety factors to the expected loads and mate-
rial properties, which leads to overly conservative designs. Another option is to take the Finite Element
Method (FEM), by far the most popular tool for deterministic analysis, and include uncertainty in the
model, making probabilistic predictions in a stochastic approach which is referred to as the Stochastic
Finite Element Method (SFEM). This method can then be used for composite reliability analysis, pre-
dicting failure probabilities instead of a single failure load. Such a methodology may be used so that
a design achieves a target reliability, without exceeding it, which is often the case with safety factors.
Additionally, incorporating uncertainty in numerical analysis leads to a better understanding and more
realistic representation of the experimental response of a structure.

The present study aims to develop a SFEM framework for reliability analysis of composite structures.
This framework should improve current solutions, and be applicable to laminates with complex geome-
tries or load cases. Since Open Hole Tension (OHT) testing is required for the qualification of composite
parts that will be joined to other aircraft parts [4], this is chosen as the test case that will be used to
validate the proposed methodology.

The literature review of section 2 revealed that few SFEM implementations for composite reliability
including progressive failure analysis exist. Furthermore, spatial variation of material properties has
not been considered except in an uncorrelated, random way, with inefficient sampling. Therefore, it
was decided that the proposed framework should combine a Random Field (RF) discretization method
(Karhunen-Loève, or KL, expansion) and an improved sampling method (Latin Hypercube Sampling,
or LHS) with generic, commercial FEM software (Abaqus). At the end of the section, the research
questions and objective are defined.

In section 3, two methods of applying the Karhunen-Loève expansion, to generate random distributions
of properties in a given finite element mesh, are detailed. Those methods are then compared and
conclusions are made about their advantages and disadvantages for the current application and test
cases.

In section 4, the stochastic methodology is defined. First, the FEM is described, and then an overview
of the various steps and inputs is given. Finally, the limitations of the method are discussed.

In section 5, the proposed methodology is validated with three test cases from literature, two of them
being OHT. The results for each test case are presented and discussed.

Section 6 summarizes the findings of the study, and conclusions are made regarding the research
questions. Finally, recommendations for future research on the topic are given.



2
Literature Review

This research aims to develop a general-purpose SFEM capable of assessing the reliability of compos-
ite structures. The following sections review published literature on these topics: section 2.1 succinctly
describes the methods that are most commonly used for progressive failure analysis of composite
structures, and section 2.2 addresses the state-of-the-art of reliability methods and the Stochastic Finite
Element Method, which will be the focus of the research.

The developed method will, in section 5, be used to predict the probabilistic response of open-hole
laminates, and these predictions will be compared with experimental results, for validation purposes.
Therefore, the reviewed literature will often be related to the research objective and this test case. Fi-
nally, in section 2.3, conclusions will be made about the applicability of the reviewed ideas and methods
to the goal of the present study, as a gap in literature is found. The research questions and objective
are then defined.

2.1. Progressive failure analysis of composites
Composite laminates are becoming increasingly popular in industries where high-performance,
lightweight materials are sought out for, such as aerospace and automotive. These anisotropic
materials add complexity to structural design, but are used for their damage tolerance and high
stiffness and strength to weight ratios [5].

Several interacting damage mechanisms have been observed in FRPs, which can occur in different
scales and sections of the structure. It is frequently considered in analysis that the specimen fails when
all its plies have failed, with several options existing for the failure prediction of a ply. Understanding
how to model the initiation and propagation of the different types of damage, resulting in ultimate failure,
is what progressive failure analysis entails. As will be detailed in section 2.2, composite laminate anal-
ysis and predictions consistently deviate from experimental results, which is due to both the inherent
randomness in the properties and the complexity of the analysis process. The latter is consistently
being addressed in literature, as new challenges and strategies arise with the growth in popularity of
the materials.

This section describes current widespread methods used in progressive failure analysis of composite
laminates, reviewing established theory and literature on the topic. As this research project is focused
on the implementation of state-of-the-art reliability and uncertainty analysis, this part of the review will
not be too extensive, since it is intended that the model that will be developed will use well-known and
proven methods. Section 2.1.1 will focus on the failure modes and distinguishing stress-strain based
analysis (Continuum Damage Models) from fracture mechanics. Section 2.1.2 details how each of the
failure modes can be addressed in a Finite Element Model using strategies based on both CDMs and
fracture mechanics.

3



2.1. Progressive failure analysis of composites 4

Figure 2.1: Evolution of failure in laminates subjected to static or fatigue loading [7].

2.1.1. Damage modes and mechanics
Damage or failure modes can generally be divided into the intralaminar and interlaminar types. The
first type is observed in individual layers of the laminate, while interlaminar failure, or delaminations,
result from the interaction between two lamina, and are observed in the contact area.

The onset of damage in laminates precedes its ultimate failure, and damage is progressively accumu-
lated between the onset load and the failure load. The first damage mode that is normally observed is
matrix cracking [6]. Cracks can then accumulate and propagate to the direction of other plies, resulting
in separation of two plies, or delaminations. The fiber-matrix interphase may then fail with enough load
(debonding) and finally fibre failure will occur. A schematic representation of this progression is shown
in figure 2.1.

The most common approach is to simplify these microscopic mechanisms into meso-scale failure
modes, where different tests of a single lamina are used to obtain characteristic strength values for
each intralaminar mode. This ignores the different processes (such as cracking, debonding) that are
microscopically occurring. The following modes are usually defined:

• Tensile Fiber Failure (FFT): tension along the fibre direction, with the fibres, which are the main
and intended load-carrying component of the structure, not being able to take more load and,
with a transverse fracture, failing catastrophically. Since the fibre reinforcement direction is the
strongest one of the material, this is the desired failure mode of composite laminates. Strength
symbol is XT .

• Compressive Fiber Failure (FFC): compression along the fibre direction, resulting in fibre col-
lapse from shear kinking and surrounding matrix failure, where a local buckled band forms and a
fracture grows at its boundaries. [8]. Strength symbol is XC .

• Tensile Matrix Failure (MFT): tension transverse to fiber direction, with failure governed bymatrix
cracking along the fibers. Since the matrix is not the main load-carrying component, this mode
leads to reduced stiffness losses, but accumulation and propagation of cracks can lead to other
failure modes. Strength symbol is YT .

• Compressive Matrix Failure (MFC): compression transverse to fiber direction, related to shear
failure of the matrix, with the cracks growing at a fracture angle [9]. Strength symbol is YC .

• Pure shear failure: pure shear failure of a ply, with fracture surface along the fiber direction.
Strength symbol is S.
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• Delamination (DL): separation of adjacent plies due to out-of-plane shear or tensile stresses at
the interface, commonly originating from saturation of matrix cracks or ply stiffness mismatching
[8].

Different strategies exist to predict failure based on different known modes. The Continuum Damage
Model approach is the most common one in literature and industry, and is based on the stress-strain
relationship, which conveniently also governs FEA. This approach relies on failure criteria, which are
expressions that are calculated with the stresses on the specimen and the strengths for each failure
mode: if the expression leads to a value of 0 or less, damage is initiated. For this reason they are
also referred to as damage initiation criteria. When damage is predicted, its propagation must also be
modeled, to further increase the load until ultimate failure.

Damage Initiation

From the Von-Mises criterion for isotropic materials, criteria for composites have evolved into having a
stronger physical basis. Failure criteria can mode-dependent or independent. The former predicts the
type of failure that occurs where as the latter ignores the progressive damage accumulation and simply
predicts failure of the ply.

The simplest form of criteria are the max-stress and max-strain criteria. These are interchangeable
only in the case of on-axis tension/compression, while for other load cases non-linear effects mean
that there isn’t a direct proportionality term (on-axis young’s modulus divided by Poisson’s ratio) to
calculate stress from strain [6]. In any case, both criteria simply compare the strength of each failure
mode with the acting stress/strain, and predict failure in case the latter is higher. Obviously, this ignores
interactions between failure modes, and is therefore over-simplistic.

Tsai and Hill first developed a criterion that addressed the anisotropic nature of composites, extending
the isotropic Von-Mises criterion. Tsai-Hill has only one expression for failure, so it is mode-independent.
It was improved by the Tsai-Wu criterion, which resulted from curve-fitting Tsai-Hill and accounting for
different strengths in compression and tension. Although lacking physical basis, Tsai-Hill can show
adequate agreement with experimental results, and is still widely used in industry [8].

Hashin (and Hashin-Rotem) criteria were the first to differentiate between matrix and fiber failure, with
separate expressions and some physical basis. However, Puck was the first to be sucessful at devel-
oping a criterion based on the real mechanics at play in composite failure. Its formulation is not based
on yielding laws of ductile materials, but on brittle fractures, which is what actually governs failure in
composite laminates [6]. The assumption was made that failure at the critical failure plane is affected
only by stresses acting on that plane. Six acting stresses and failure strengths, which result from those
defined for each failure mode (plus the shear strength in the 23 plane, with fibres aligned with 1), are
included in 4 expressions. Out of these, two correspond to matrix compression failure, one to matrix
tension failure and the last to fibre tension/compression failure. Puck shows good agreement with
experimental results, including for combined load cases, but requires determining failure surface incli-
nation parameters. Other criteria of note in literature are Cuntze, which is based on curve-fitting (less
physical meaning) and LaRC03-5, which are a set of physics-based criteria, following up on Puck’s
work.

Failure criteria used in continuum mechanics models are chosen based on known accuracy for given
failure mode and computational cost. Simpler criteria like Tsai-Wu and Hashin-Rotem are very often
used in cases of acceptable agreement for their simpler formulations. Three editions of the Worldwide
Failure Exercise (WWFE) have offered some comparative data for the accuracy and quality of each cri-
teria, with Puck and LaRC05 being recommended [10]. Note that criteria that addresses delaminations
are scarce, since this failure mode is usually not modelled with the continuum damage strategy.

Damage Propagation

Damage propagation in CDMs is controlled by Material Degradation Models (MDMs). These models
relate the damagemode to a given decrease of the material stiffness properties. The way the properties
are decreased where damage was predicted is what differentiates each MDM. The models can use
either sudden or gradual degradation.

Most commonly, sudden degradation models reduce all the material properties of a lamina to 0 when
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Figure 2.2: Fracture modes [16].

fibre failure occurs, which was the approach taken by Lee [11]. This is because, as previously discussed,
the fibres are the main load-carrying components, with their failure being catastrophic. Other authors
have taken more realistic approaches, although always based on experimental campaigns and not
theory. Most notably, McCarthy et al. [12] applied a reduction of 10% to select material properties
depending on the nature of the loading (compression/tension), and in [13] Camanho and Matthews
used different factors for the longitudinal stiffness, while other properties remained intact.

Regarding matrix failure, most sudden degradation models, including Lee, degrade the transverse
stiffness to 0, as well as the shear moduli G12 and G13. Additionally, it can be considered that some
properties to which the fibres contribute may or may not be degraded (Mccarthy et al. degrade also E3),
and the differentiation between compressive and tensile failure is done by Camanho and Matthews.

Gradual degradation models are also commonly found in literature, most notably the one suggested
by Puck and bilinear sofetning [9]. The former uses a degradation factor that must be calculated for
every stress increment or obtained experimentally. Bilinear softening requires determining the fracture
toughness for each damage mode, as well as other parameters, so as to calculate the slope of the
degradation, for each increment giving a damage parameter that is included in the stiffness matrix.

This type of MDM can be said to be more realistic, since sudden degradation models consider only the
material as undamaged or fully damaged, with no states in-between, which can be overly conservative
[14]. It does however entail higher computational costs. Furthermore, it can be said that it still partly
suffers from the same problem as a lot of criteria/models used in CDMs, which is lack of a physical
basis. In general, delaminations are not modelled with the continuum damage strategy, so MDMs that
include it are rare.

Other approaches to modelling damage in composite laminates are based in fracturemechanics. This
methodology is energy-based and was first developed for isotropic materials by Griffith [15], forming
linear elastic fracture mechanics, with a plastic zone at the tip being introduced later by Irwin [8]. Three
modes of fracture are defined, as shown in figure 2.2: mode I for opening due to tensile stresses, mode
II for sliding due to in-plane shear, and mode III tearing due to out-of-plane shear. For each mode, a
strain energy release rate (SERR) G (rate of energy transformation during crack propagation) can be
defined, as well as a stress intensity factor K. The stress intensity factors represent the stress state
near the crack tip, where there is a singularity (infinite stress).

Critical SERRs can be obtained experimentally. Then they are compared with the current SERR, ob-
tained through different methods from the stress fields or displacements, and it is considered that crack
propagation occurs depending on the values of failure criteria expressions. For load cases correspond-
ing to a single mode, the criteria is simply that Gi be higher than the critical Gic of that mode. For most
situations, criteria including all the modes is used, such as the BK [17] and power-law [18] criteria.

Applying fracture mechanics to composite analysis, especially when it comes to modelling DLs, offers
additional challenges, but can have the benefit of better representing the real local processes than
CDMs. This is because the latter does not consider the specifics of crack growth in anisotropic materi-
als (along the fibers) and MDMs are often heuristic and lack physical basis [8]. Specifically, discretely
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modelling cracks can involve complications such as a priori knowledge of crack paths, since fracture
mechanics requires pre-existing discontinuities, mesh geometry re-defining, and additional criteria/-
models either for this ”crack enriching” or for behaviour between two lamina [19] [20]. Smeared crack
models offer an alternative to discrete models, the stiffness being degraded according to the cohesive
law of a crack smeared throughout the ply of an element of the mesh. These models, however, show
significant mesh dependence [9]. Section 2.1.2 will address in a practical way how these complications
are commonly tackled in FEA to model all failure modes, including strategies available in commercial
packages, and models found in literature which combine CDMs with those strategies.

2.1.2. Finite Element Modelling
Most composite parts cannot be analyzed by simply applying Classical Laminate Theory (CLT) through
analytical expressions. This is evidently the case of this research, where specimen with arbitrary ge-
ometries will be modelled. FEA is by far the most popular tool for structural analysis, and is based on
the relationship

F = Ku (2.1)

in the linear static case, with K being the stiffness matrix and F and u being the load and displacement
vectors, respectively. For each element of the mesh, a constitutive equation is written, with the nodal
degrees of freedom (DOFs) displacements/loads as variables, and then built into the global matrices
and equation. Depending on the type of elements and assumptions used, the constitutive model will
change. The most general lamina constitutive model is the three-dimensional one for an orthotropic
material, where its properties are defined in three directions and there are 6 DOFs. Often, this model
is simplified to a 2D one, with 3 DOFs. Both models are detailed in appendix A, and that formulation
will be used throughout this report.

The most commonly applied plate laminate theories are the aforementioned CLT (very thin plates) and
the first-order shear deformation theory. While both use 2D constitutive formulations, the latter adds
an additional linear shear deformation term [21]. In commercial FEA software, specifically Abaqus,
formulations and nomenclature may slightly differ from literature, but an important distinction is that
of shell elements, which are 2D elements with 5/6 DOFs per node, and brick elements, which are 3D
elements, with 3 degrees of freedom per node. Shell elements are usually used for plates, where two
of the dimensions are much larger than the other. It is also relevant that, typically, when calculating the
stiffness matrix, the Gauss-Legendre rule is used for the integral, where the values of any variables
being integrated must be known at the gaussian points. These are points defined geometrically in the
isoparametric representation of each element, and their number and weight parameter changes based
on the type of interpolation and number of nodes of the chosen element type.

A review is now presented of different methods found in current literature to model the damage modes
in composite laminates with FEA. There is a focus on open-hole plate models developed in Abaqus,
since that is of special interest for this thesis (will be the case study used for validation).

• Fiber Failure: These failure modes are almost exclusively modelled with the CDM approach.
Currently, common criteria for damage initiation are Hashin [22] [23], Puck [5] and LaRC05 [8],
along with the maximum stress criterion [24]. Regarding MDMs, gradual degradation models
are now quite common, like Puck and exponential evolution laws [23], while sudden degradation
remains popular due to its simplicity [22] [25]. The latter’s factors change a lot depending on the
chosen reference. Finally, in [26], a Critical Failure Volume method is used to predict fibre failure,
an averaging strategy which already encompasses stochastic effects and is used to predict failure
probabilities [27].

• Matrix failure: most authors have either taken the CDM approach [22], with similar criteria to
those of fibre failure, or the fracture mechanics approach through the Extended Finite Element
Method (XFEM) [8] [23].

This method is based on locally enriching elements so that a crack can propagate through them,
with additional functions used for the discontinuity. It avoids re-meshing and pre-defining a crack
path, with the crack being able to propagate in multiple directions. In Abaqus, an initial crack can
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Figure 2.3: Bi-linear traction separation law for Modes I and II, with quadratic nominal stress and BK criteria [29].

be specified, or crack initiation criteria defined, with choices frommaximum stress to the quadratic
nominal stress criterion, the latter relating different modes [28] and being widely used in literature
[20]. After initiation, criteria such as BK is used to predict final mixed-mode fracture. Figure 2.3
shows a typical bilinear traction-separation law for an element, with the separate laws for modes
I and II and mixed-mode [29]. Note that in these laws, the total work per unit area at full damage
is always equal to the corresponding fracture toughness Gc [20], and the current SERR can be
calculated from the traction-separation law as shown in the figure.

Some authors have blended the CDM and fracture mechanics approaches by enriching elements
only when stress-strain criteria is met. Multiple criteria have been used, such as Puck’s Matrix
failure criteria [8] or Hashin [23]. The latter example utilized the Phantom Node modification of the
method, in which the crack splits damaged elements into two elements with separate displace-
ment fields. After the CDM predicts damage onset, the softening part of the traction-separation
law, with propagation criteria such as BK, governs the behaviour of the element, instead of the
MDMs.

• Delaminations: the two most common ways of modelling DLs in FEM are cohesive elements [8]
[22] [23] [26] and the virtual crack closing technique (VCCT) [30], both fracture mechanics based.
Some authors have taken the simplistic approach of adding a very thin interlaminar isotropic layer
of matrix material [25] [24].

Cohesive elements are used in Cohesive Zone Models (CZMs). These models differ from XFEM
in the sense that crack paths have to be defined in pre-processing, and the elements inserted into
this path. This is the reason they are used to model inter-facial DLs, where potential crack paths
are known. The elements form a cohesive zone between two lamina, with 0 or very small thick-
ness. Cohesive elements are, similarly to XFEM, governed by a constitutive traction-separation
law, often with the same initiation and damage evolution laws. Several parameters have to be
defined to properly define the constitutive relation, which can go from more well-known and ex-
perimentally obtainable, such as the fracture toughness for each mode, to artificial or heuristic
ones such as viscosity and penalty stiffness [31]. Furthermore, CZMs often lead to convergence
issues and require more computational power due to the additional elements and fine mesh re-
quired. They are, nevertheless, the most popular way to model DLs and have shown good corre-
spondence to experiments [32].

The VCCT technique was first proposed by Rybicki and Kanninen [33],. They developed a tech-
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Figure 2.4: Flow chart of different steps of reliability analysis of composite structures[38].

nique of calculating the stress intensity factors in the context of FEA, assuming that the energy
required to close a crack will be the same as the one needed to create it [34]. For composite
analysis, the VCCT technique is used to obtain the SERR, based on the well established Paris re-
lation [35]. Doubled interlaminar nodes are initially bonded (same coordinates) [36] and open, or
are released, when the crack propagates along the interface plane, which it is usually constrained
to [37]. The VVCT is also quite popular, and has less parameters to be defined than CZM, but
is usually used to model brittle crack propagation when there is an initial flaw [30]. Additionally,
VCCT models can experience oscillatory behaviour and numerical instability [8].

2.2. Composite reliability analysis and the Stochastic Finite Ele-
ment Method

The present study mainly aims to improve the incorporation of uncertainty in existing models for struc-
tural analysis of composites. It is therefore necessary to introduce and contextualize the idea of relia-
bility and uncertainty analysis, especially with respect to composite structures.

The different steps, or choices, involved in stochastic modelling, are represented in figure 2.4, as de-
fined in [38]. Four main decisions are highlighted. In numerical order, they are: which limit state function
to use (mostly related to section 2.1, when choosing which failure criteria to use), what random vari-
ables are defined and how is this uncertainty modelled, which method to use to assess the reliability
on ply level, and how to relate it to laminate level reliability.

This section will first justify the necessity of stochastic analysis in composite structural response pre-
dictions, and then focus on decisions 2 and 3, presenting different ways to model uncertainties and
reliability methods found in literature. Finally, a more detailed explanation of random field discretiza-
tion methods, especially of the Karhunen-Loève method, is given.

2.2.1. The need for reliability analysis of composites
Deterministic predictions of the structural behaviour of structures are far and ahead the most common
type of analysis found in industry and literature. Based on expected average material properties and
loads, unique values of quantities like stresses, displacements and failure loads are predicted. The
most robust and well-established method of obtaining these values is of course the Finite Element
Method (FEM), which spatially discretizes complex geometries into a mesh of simpler elements, the
behaviour of which can be described by known sets of equations [39].

The deterministic quality of these predictions is very limiting, since experimental results will always differ
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from them, no matter how well the structure and load case are modelled. The main reason for this is
the uncertainty in the model, which can come from many sources (further detailed in section 2.2.2).
To account for the scatter in responses, the usual practice is to apply safety factors to the expected
loads and allowable values to the material strengths. For experimental certification, structures must
be predicted to be structurally reliable up to loads significantly higher than those expected in practice
[39]. Safety factors are defined based on an intended reliability, defined as the likelihood of a structure
surviving a given load case.

Probabilistic (or stochastic) predictions offer an alternative to the deterministic approach. Instead of
a single value as output, or failure being a binary variable, the uncertainties are incorporated into the
model, and predictions are made in terms of probabilistic distributions or single values of reliability,
calculated from a probability of failure.

Themain disadvantage of stochastic analysis is the added complexity of incorporating uncertainties and
calculating their propagation to the response. However, in recent years, computational advancements
have lead to a growing interest in this type of more demanding models, since the required computa-
tional power may now be achievable [5] [40]. The question remains though of why we should apply
probabilistic methods, specifically to composite structural analysis.

First, composites are inherently stochastic. The experimental response of this type of structures always
shows significant scatter and deviation from numerical analysis [5] [38]. The complexity of the material
and of the manufacturing processes makes it so that, even with the most rigorous checks, the material
properties and geometry will differ both from specimen to specimen and throughout a given specimen,
corresponding to random imperfections and defects from manufacturing [41]. For example, Liu and
Zheng [42] studied the effect of the uncertainty of layer thickness and radius of polar axis in the burst
pressure of aluminium-carbon fiber/epoxy composite vessels, assuming uniform and gaussian distri-
butions for each of those random variables, the variability of which is a consequence of the filament
winding process. It is then clear that modelling this inherent stochasticity is the only realistic way to
analyse composites, for which the average values are hardly representative of the structure.

Secondly, safety factors are more often than not overly conservative, and lead to over-designed struc-
tures [5] [38] [42]. Probabilistic design methodologies, though currently limited by certification require-
ments, have the potential of further optimizing designs and reducing weights, which is fundamental in
the aerospace industry. In this design approach, a reliability requirement is set, and the uncertainty is
incorporated into the model so that this value is calculated and achieved, whereas deterministic design
usually results in structures that are far more reliable than intended. Similarly, reliability analysis may
also be used to calibrate the safety factors themselves.

Finally, reliability analysis is in general a more complete and accurate representation of structural re-
sponses. The propagation of, for example, significant uncertainty in the material properties of a struc-
ture, may lead to unexpected results and possibly catastrophic failures if ignored. Lekou and Philippidis
[43] studied the stochastic behaviour of a Glass/Polyester composite, predicting failure with variability
in strength, stiffness and thermal expansion coefficients. They found that, for a given reliability level,
safety factors significantly overestimated the failure loads of the structure, when compared to three
different reliability estimation methods. This does not contradict the idea that safety factors generally
lead to overly conservative designs: it serves instead as an example of how ignoring uncertainties is
not an efficient or accurate method of modelling composites. Furthermore, reliability-based designs or
safety factor calculation are also common strategies that require probabilistic analysis.

2.2.2. Uncertainty Modelling
The issue of modelling the uncertainties in composite structures resides in two different parts: what un-
certainties are affecting the response, and what probabilistic distributions can represent this variability.

Types and origins of uncertainties

Two types of uncertainty can be distinguished [9]. There is always epistemic uncertainty, which comes
from the model itself, since it is never 100% trustworthy. This is because the settings and parameters
are not ideal and data is imperfect and finite - in other words, it is caused by our knowledge of a given
domain being limited. This uncertainty is systematic, and its estimation depends on the origin. In [44],
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Figure 2.5: Scales at which uncertainties can be considered and relation to stochastic analysis [46].

epistemic uncertainty originating from the difference between the training and testing sets of a Neural
Network was included in the predictions, since the ANN was trained with FEA results and tested with
experimental ones. Another common case of epistemic uncertainty being considered is for information
that is extrapolated from a dataset, e.g. assuming a probabilistic distribution, the strength of a part
is defined as the average of the experimental measurements, with a given percentage of uncertainty,
where the higher the number of measurements the smaller the uncertainty.

There is also the aleatory uncertainty, which comes from inherent stochasticity, rather than systematic
error. This is the uncertainty that is found to be much higher in composites than in other structures, and
will be the focus of this thesis. Aleatory uncertainty includes any events that we can only consider as
decided by randomness, such as a coin-flip, sorting of a deck of cards, etc.

Specifically for composite structures, randomness originates from the manufacturing methods, and
their complex constituent processes [45]. However, we can consider the uncertainty at different scales.
The smaller the scale, the harder it is to model and propagate uncertainties, but depending on the
objective of the research this may be necessary. Figure 2.5 [46] summarizes the different scales at
which composite uncertainties can be studied, in terms of sources and analysis variables.

The micro-scale refers to the fiber/matrix level, meso-scale to ply level, and macro-scale to
coupon/specimen level. In [45], similar uncertainty origin types to 2.5 are considered, with some
detailed additions being voids and porosity of the matrix and appropriate curing. It is also mentioned
that processes like ”thermal treatment, filament winding, [and] braiding” are directly connected to
variations in fibre curvature and orientation. All these sources, related to the micro and meso scales,
have an impact on the material properties such as strength and stiffness. It should also be mentioned
that there is an evident spatial variation aspect to most of these uncertainties, which implies variability
of material properties throughout one specimen.

Then different joining and cutting techniques (assembly in figure 2.5), and their interactions with the
laminates, confer macro-scale geometrical variability, while imperfections in boundary conditions and
loads can propagate to generate significant uncertainty in the results.

Micro-scale analysis is the least common in literature, which speaks to its higher complexity. Work on
this scale usually has the objective of quantifying the macro-scale material properties from uncertainties
in micro-mechanical models. In [47], Stochastic Finite Element Method (SFEM) with Monte Carlo (MC)
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is applied to determine the mechanical properties of polymer nanocomposites, which are reinforced
with single-walled carbon nanotubes. The young’s modulus and poisson’s ratio are calculated for each
finite element within a multiscale homogenization approach which considered a non-uniform distribu-
tion of the nanotubes. There is abundant literature on applying stochastic homogenization techniques
through constitutive modelling to derive macro-properties. Examples range from other composite ap-
plications, such as determining elastic constants of non-crimp fabric composites [48] and the effect
of non-periodic micro-variations in honeycomb structures in global properties (and response) [49], to
using the perturbation method to study the impact of microscopical geometrical variation of pores in
periodic porous materials[50] [51].

Macro-scale analysis has the objective of calculating the probabilistic response in quantities of interest
such as stresses, strains and failure loads. It usually involves attributing probabilistic distributions
to random variables or fields (in case spatial variation is considered), like the coupon stiffness, and
assessing the response to that variation. In SFEM literature, this is the most common type of stochastic
analysis [52] [53], and many more examples are given in section 2.2.3. Some authors have considered
randomness in each ply of a laminate, which could be considered a meso-scale approach [5].

Multi-scale approaches are also found in literature, which attempt to combine both aforementioned
types of analysis. Recently, in [46], uncertainties at micro-scale (fibre alignment and fiber/matrix pa-
rameters) are propagated to macro-scale to derive probability distributions of effective properties of
composite laminates, and then probabilistic failure analysis of the specimen is done from these dis-
tributions. More direct approaches, where from parameters the response distributions are calculated,
are developed in [54], for open-hole composite plates, and [55], for foam-filled honeycomb structures.

For the purpose of stochastic progressive failure analysis of complex FRP specimen, macro-scale anal-
ysis is the focus of this thesis, since developing a micro-mechanics model for a multi-scale approach
would be out of the scope of the project. Nevertheless, variations from ply to ply in one specimen
are a common consideration in literature that, as found in [5], matches experimental results well and
improves the reliability of the model.

Random distributions

In macro-scale stochastic analysis, random variables are associated with probability distributions,
which can be informed from experimental results or assumed.

Evidently, assumed distributions are less faithful to reality, and therefore may affect the accuracy of the
results. However, this is often done for convenience. The most common assumption is that random
variables have Gaussian distributions.

Gaussian (or normal) distributions are defined by a mean µ and standard deviation σ. Often methods
used to estimate reliability assume these distributions, as using other types may require additional
steps, which may not be trivial. Some authors have also assumed values for the standard deviation
parameter [56] [57]. Others, assuming the distribution, obtained µ and σ from experimental data. In [5],
the normal distribution parameters and additional stochastic inputs were obtained with Digital Image
Correlation and different relevant ASTM test standards, which were then used to generate random
fields (an example is shown in figure 2.10). Test standards used are those developed to characterize the
mechanical properties, typically a set of tensile/compressive tests on coupons with different fiber angles.
It should be noted that assuming a normal distribution does not necessarily make the results diverge
from experiments. Philippidis and Lekou [43] tested how several distributions matched experimental
results, first using the method of maximum likelihood to choose parameters to fit the data, and then
comparing the probability of the fitted distributions using the Kolmogorov–Smirnovmethod. It was found
that normal distributions closely followed empirical data for several of the random variables.

The Kolmogorv-Smirnov method, similarly to others such as chi-square [58] and Anderson-Darling
[59] tests, evaluates the likelihood of a given collection of samples corresponding to a reference PDF.
These methods can be combined with experimental testing to choose an ideal distribution for each
random variable. Common distributions are Normal, Weibull, lognormal, Gamma and extreme type
1 largest/smallest. Some of these are shown in figure 2.6 [43]. In that paper, all the aforementioned
distributions were considered, regarding a unidirectional Glass/Polyester composite manufactured by
hand lay-up, and Weibull was found to be very likely for the in-plane shear strength and poisson’s ratio,
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Figure 2.6: Experimental CDF of longitudinal stiffness in unidirectional Glass/Polyester composite compared with fitted normal,
weibull and extreme type 1 largest distributions [43].

while for example a lognormal distribution best matched the transverse modulus of elasticity E2. It
should be noted that the direct results of these methods are not the only consideration to be had when
doing this type of analysis: it is highlighted in the Philippidis and Lekou paper that it may be of interest
to choose the distribution that best models the low probability region, since that is often the area of
interest in structural design (where failure occurs).

Recently, in [26], a sensitivity study was performed to obtain the ideal distributions for random field
distributions in open-hole composite laminates of 8552-1/IM7 unitape (CFRP), which could be helpful
to inform the model used in this thesis. In this case, mostly normal distributions were found to be
representative. However, as is mentioned in [45], distributions and parameters chosen in different
papers, for the same variables and type of composite, show a lot of variation; it is therefore important
that comparisons with experiments use as input distributions fitted from empirical data of very similar
specimen. Nevertheless, a table is presented in this work with values and distributions used by several
authors, which may be helpful to inform the model developed in this thesis.

Finally, there is the issue of correlation between random variables: they are usually not truly indepen-
dent random variables. This is an aspect that is often ignored, due to its inclusion in reliability methods
being non-trivial, but may be of significance. In [59], values obtained for correlation between most
variables in GRFPs (Glass Fiber Reinforced Polymers) passed the threshold of significance, using
Pearson’s correlation coefficient.

2.2.3. Reliability Methods
The reliability problem centers around the probability integral

Pf =

∫
X|g(X)≤0

fX(X) d(X), (2.2)

where Pf is the probability of failure, X is a set of random variables that are considered as an uncertain
part of the failure evaluation, fx(X) is the probability density function (PDF) of the vector X, and g(x) is
the limit state function [38]. The latter is the expression that is used to evaluate failure, typically failure
criteria, for which a value of 0 or less means failure is predicted, and value higher than 0 corresponds
to a safe region. In essence, the expression represents the idea that the failure probability is given by
the probability that the set of random variables is in a zone of values for which failure occurs (failure
region).

Two additional things should also be defined based on equation 2.2. First is that reliability is given by
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Figure 2.7: Geometrical interpretation of FORM and SORM [38]. β is the euclidian distance between origin and failure function
in U space (space of the transformed random variables).

R = 1− Pf . (2.3)

Second is that obtaining PDFs or statistics for any quantity of interest that depends on the random
variables, such as failure probability curves, is linked to the same reliability probability integral. The
limit state function (LSF) can be defined based on that quantity of interest, and a given variable can be
changed systemically to successively solve the integral and generate PDFs.

In a review of reliability analysis of composites, Chiachio et al. [38] defined four types of methods used
to solve equation 2.2: Fast Probability Integration (FPI) methods, Monte Carlo methods, Analytical
methods and Numerical Methods. In this report, the numerical type is limited to the Stochastic Finite
Element Method.

FPI
FPI methods include the commonly used First and Second Order Reliability Methods (FORM and
SORM, respectively). They work by transforming the random variables (vector X) into standard un-
correlated normal variables, and approximating the LSF taylor series expansion around their means.
[38]

In FORM, this approximation uses only the linear terms. Because of the transformation done to the
variables, the LSF is given by the distribution N(µg,σg). Then

Pf = P (g ≤ 0) = ϕ[
µg

σg
] = ϕ[β], (2.4)

where ϕ is the standard cumulative distribution function and β is commonly referred to as the Reliability
Index[60]. By replacing the means of the random variables into the simplified LSF expression, its
mean and variance can be obtained, and replaced in equation 2.4 to obtain the probability of failure. A
geometrical interpretation of the method is shown in figure 2.7. The SORM is similar but includes the
second derivatives of the LSF in the taylor series approximation.

FPI methods are very commonly used, oftein being found in commercial software packages, and their
popularity is due to their simplicity and significant computational efficiency. FORM has recently been
used, for example, to study the deflection reliability of a bridge, for comparison with an improved Monte
Carlo method and the target reliability index [61]. Kamiński and Strąkowski [62] also recently proposed
a FORM like method for reliability analyis in civil engineering of steel structures under fire temperatures.

However, they are mostly applicable to simple problems with few random variables[61]. This is partly
due to complications in the SORM calculations but mainly because for complex problems the average
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and variance of the variables included in the LSF is not known. This is because they are not the random
variables that describe input uncertainties (e.g. the stiffness is an input random variable, and not the
stress, the latter appearing in the LSF).

Monte Carlo methods
Monte Carlo (MC) methods are perhaps the simplest way to assess the reliability of structures, and are
commonly used as a reference for comparison of other methods [38] [63] [64]. MC works by simulating
the structural response with different values for the random variables and inferring from the results of
the whole pool of samples.

In terms of the integral of equation 2.2, it can be written as

Pf =

∫
X

I[g(X)]fX(X) d(X), (2.5)

where I[g(x)] is 1 when g(x) ≤ 0, which identifies failure, and 0 for g(x) higher than 0. Then random,
independent samples of X can be taken, even if out of the failure region, and the probability of failure
becomes the average of function I over all the samples,

Pf = nf/ns, (2.6)

where nf is the number of samples for which failure occurred.

Reliability analysis using MC is often found combined with other more complex methods, but its accu-
racy and robustness makes it of general widespread use in literature. Noori and Abbas [65] recently
studied the probabilistic response of portal frame structures subjected to earthquake ground motions,
accounting for variability in geometry and material properties, using MC simulations and FEA.

The disadvantage of MC methods is that they are extremely computationally expensive when the real
probabilities of failure are low, meaning that a lot of samples are needed for convergence. A lot of work
has been done to find alternative sampling methods, for which the sampling is not so simple/direct.
Some of these alternatives are Importance-Sampling [61][66], Latin-Hypercube Sampling [67] [5] [56]
[68] and the Quasi-Monte Carlo method [23].

Importance-Sampling works by adapting equation 2.5 to

Pf =

∫
X

I[g(X)]fX(X)

h(X)
h(X) d(X) =

∫
X

H(X)h(X) d(X), (2.7)

where h(X) is a new space from which X samples are taken and H(X) is the function being averaged.
The h function can be picked to generate more samples in the failure region, therefore accelerating
convergence.

Latin-Hypercube Sampling (LHS) works by sampling in a semi-random way from an unchanged prob-
ability density function [67]. The function fX(X) is divided into N intervals, where N is the number of
samples that will be given as output. Then, for each interval, X is sampled randomly. Unlike standard
MC, in LHS each sample is not taken independently of other samples, since memory of the previously
chosen intervals must be kept to make sure there is no repetition.

As an example, in figure 2.8, a graphical representation of Latin Hypercube Sampling of N=8 samples
from the standard normal distribution is shown. The CDF is divided into N=8 equally probable inter-
vals, and each interval is randomly sampled from once, by locally inverting the CDF. Random MC is
equivalent to this process if only one interval was used, and sampled from 8 times.

This concept works for any number of variables that is being sampled. Figure 2.9 shows a represen-
tation of LHS of N=10 samples of an X vector of 2 random variables, compared with MC sampling for
the same scenario. In the LHS case, no row or column is sampled from twice.
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Figure 2.8: LHS of 8 samples from the standard normal distribution1.

Figure 2.9: MC sampling vs LHS of 10 samples of 2 random variables [69].

Because the probability functions of each variable are always sampled from at every interval, LHS has
been found to be significantly more efficient than Monte Carlo sampling for the purpose of simulations
[67] [5]. In section 3.1, an explanation of LHS application in the context of this thesis is given.

Analytical Methods
Some analytical solutions have been developed for the probability integral. These generally consist
of expressions for the LSF cumulative distribution function (CDF), that are derived for particular case
studies [38]. When the expression for the CDF is known, the probability of failure is easily calculated
by integrating it in the failure domain.

The Edgeworth Expansion Method was developed in [70] for the case of uniaxial tension in off-axis
composite coupons. It has also been applied for the general plane-stress case of a composite layer
in [71], and further developed to include thermal and elastic material properties, as well as stochastic
strengths, in [43]. Alternatively to this method, which calculates the CDF expression from the statistical
moments of the LSF, themselves obtained from those of the random variables, Pearson’s Empirical
Distribution method obtains the CDF by curve fitting empirical distributions.

Analytical methods are by far the least computationally expensive, and are therefore ideal for simple
cases with few random variables. They are not generally applicable, however, as LSF expressions
have to be developed and changed depending on the case study. Additionally, much like with FORM,
they require knowledge of the distributions of the random variables that appear in the failure function.

Stochastic Finite Element
The Stochastic Finite Element Method (SFEM) works generally by applying the standard FEA, but with
each element having different values of the random properties. Each random variable becomes a

1https://pythonhosted.org/pyDOE/randomized.html
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random field (RF) over the finite elements. This type of simulation may take into account the spatial
correlation of material parameters, or, in simpler applications, they may be attributed to each element
randomly. The use of RFs has the advantage of considering the relationship between local and global
mechanical properties for the different points of the model [72], as well as more realistically representing
the stochastic failure mechanisms in composites. An example of this is identified in [24] and [25]:
fiber failure happens progressively with an initial failure of weaker fibers that leads to increased stress
concentrations in neighbouring intact fibers and their ultimate failure - therefore, if deterministic values
for fiber strengths are used, the real (stochastic) nature of fiber failure is not captured. As previously
mentioned, FRPmaterials show considerable variance of their material properties throughout any given
specimen, and SFEM is usually the only method that includes this type of variability.

Evidently, another one of the main advantages of the SFEM is that it incorporates the most powerful and
widely used structural analysis tool, adding a probabilistic nature to it. This makes it the best method
to apply to complex and realistic problems and geometries [40]. It is therefore on these numerical
methods that the growing attention on stochastic mechanics has centered.

Depending on the formulation and type, it may be intrusive and non-intrusive. Intrusive methods require
altering the FEA calculations and matrices, while non-intrusive methods have a ”black-box” formulation,
meaning they can be coupled with any FEA software without effort. The latter have the advantage of
more easily accessing already established and efficient solvers, allowing for robust implementations
of stochastic analysis with complex and state-of-the-art methods (e.g. XFEM or degradation models).
Examples for both of these types of solutions are given below.

The two main SFEMs found in literature are the Perturbation Method and the Spectral Stochastic Finite
Element Method.

Perturbation Method

The perturbation method works by expanding the system matrices about the means of the random
variables through the Taylor series expansion [39]. The equilibrium equation for static problems is

K(αi)u(αi) = F (αi), (2.8)

where K, u and F are the stiffness matrix, displacement and force vectors respectively, and αi are the
N random variables. Assuming zero-mean and αi << 1, representing deviations from the mean of the
random properties, the stiffness matrix can be written as

K = K0 +

N∑
i=1

KI
i αi +

1

2

N∑
i=1

N∑
j=1

KII
ij αiαj , (2.9)

whereK0 is the stiffness matrix with the mean values (αi = 0) andKI
i andKII

ij are the first and second
partial derivatives of K with respect to the random variables (i and ij), at αi = 0, respectively [57]. Here
the expansion was limited to the second moment because calculation of higher moments is scarce in
literature, due to its computational cost.

The same can be done for the force and displacement vectors, where the displacement partial deriva-
tives can be calculated from the known vectors’ derivatives. Then, from the resulting truncated Taylor
series, one can calculate the mean and covariance matrices of the displacement.

This method is frequently found in literature, since despite requiring calculation of several partial deriva-
tives, the computational cost of which is significant, it is less computationally expensive than other
SFEMs. From simpler applications [73], it has been applied to non-linear structural dynamics [74], com-
bined with the Extended Finite Element Method (XFEM) [57] to solve fracture mechanics problems, and
adapted for meshless FEA of static linear structural problems [75].

Kamiński and Strąkowski [62] recently used an iterative generalized perturbation approach for obtaining
the probabilistic response of steel when subjected to fire temperatures. A perturbation-based approach
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has also been applied to stochastic homogenization analysis of porous materials considering the ran-
domness of the micro-structure [50], the latter determining the influence on the homogenized elastic
property.

Despite its wide applicability and development, the perturbation method is usually limited to low coef-
ficients of variation (10 to 15%) [39] and to obtaining the first statistical moments of the response to
Gaussian random variables. Some authors have, nevertheless, worked to surpass these limitations,
notably in [76], for high variance of random variables, and recently in [77] to allow for triangular and
uniform probabilistic distributions.

The limitation in variance of the random properties is particularly disadvantageous for FRP materials,
for which spatial variation can be significantly higher than those values. In [5], Digital Image correlation
was used to measure displacements and strains in tensile testing of CFRP coupons, and therefore
calculate the spatial distribution of mechanical properties. Figure 2.10 shows results for the transverse
stiffness, for which the obtained standard deviation is 22% of the mean. This shows the importance of
using a method that is accurate for high coefficients of variation in composite SFEM.

Figure 2.10: Spatial distribution of transverse stiffness in CFRP coupon [5].

Spectral Stochastic Finite Element Method

The Spectral Stochastic Finite Element Method (SSFEM) [78] typically works by representing a spatially
varying random property w with the Karhunen-Loève (KL) expansion, which discretizes continuous
random fields into

w(x, θ) = µw(x) +

∞∑
i=1

√
λiϕi(x)ξi(θ), (2.10)

where µw(x) is the average of the property at that node, λi and ϕi are the eigenvalues and orthonormal
eigenfunctions, respectively, of the covariance kernel, and ξi are gaussian random variables of 0 mean
and unit standard deviation, which confer the stochasticity to the expression. By truncating the sum in
equation 2.10, a random field can be represented with a limited number of variables. More details on
how to use the KL expansion are given in section 2.2.4.

The covariance kernel in this case describes the relationship between the random field values of points
in space, so it depends on the coordinates of two points, (x1, y1) and (x2, y2). The fact that there is
correlation between the values in different points of the structure makes distributions more realistic and
results converge faster. The values being generated with few random variables makes the KL more
computationally efficient than random MC sampling of values at every necessary point in space.

The covariance kernel, and therefore the eigenvalues and eigenvectors, are usually not known for the
response variable. As defined by Ghanem and Spanos in their textbook [63], there are two different
approaches to this problem. The first one is the homogeneous chaos, or polynomial chaos expansion,
which expands the solution with a Fourier-type series that depends on the KL random variables ξi(θ).
The second one is sampling, through MC methods, to obtain response statistics. The latter is often
combined with the galerkin method.

In the polynomial chaos method, the displacement vector is written as

U(θ) =

∞∑
j=0

UjΨj(θ), (2.11)
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where Uj is a set of deterministic coefficients and Psij is an orthogonal basis of polynomials in ξj [53]
[64].

The orthogonal basis is usually obtained from rewriting

U(θ) = aoΓ0 +

∞∑
i1=0

ai1Γ1(ξi1(θ)) +

∞∑
i1=0

∞∑
i2=0

ai1i2Γ2(ξi1(θ), ξi2(θ)) + ..., (2.12)

where

Γn(ξi1, ..., ξin) = e
1
2 ξ

T ξ(−1)n
∂n

∂ξi1, ..., ξin
. (2.13)

The coefficients of equation 2.11 can be used to calculate the probabilistic moments of the response.
Some authors have used the so called galerkin projection to solve FEA systems of the type

Np∑
j=0

NKL∑
m=0

ξmΨj(ξ)[Km]Uj =

NKL∑
m0

ξmfm, (2.14)

where the stiffness matrix and force vector are given by a KL expansion with NKL terms and the
response by a polynomial chaos expansion with Np terms [79][64]. In [79], this method is used for
response prediction of unidirectional FRP plates with variable material properties under tension, and
was found to be more efficient than Monte Carlo and more accurate than the perturbation method for
high standard deviation values. In [64], this approach is extended to account for the multi-layer effect
and variability.

The galerkin projection method shows promising computational efficiency, but has the limitation of
being intrusive, meaning that the system matrices are changed from those of the deterministic analysis,
making it impractical to combine with commercial FEA software.

Another way of calculating the coefficients in 2.11 is by using the collocation points method [80] [81].
In this approach, sampling is used to generate collocation points in the random space, and the deter-
ministic response is calculated for those samples. Then coefficients are calculated to vanish the error
in the FE system equation.

In [80], the fiber orientation of FRPs is considered a random variable for vibration analysis of rectan-
gular composite plates through the SSFEM, the orientation leading to stochasticity in the stiffness and
mass matrices. The effect of this uncertainty on the mode shapes and frequencies was determined.
The same author, in [80], studied the impact of uncertainty in elastic and damping parameters on the
acoustic transmission loss of FRP plates, for different frequencies. The random properties themselves
were modelled with the polynomial chaos expansion. Both of these studies used commercial deter-
ministic FEM software to generate the collocation points, and found this method to be much more
computationally efficient than standard Monte Carlo.

The major advantage of collocation point methods, whether through the polynomial chaos expansion
or alternative algorithms [82], is that a metamodel (e.g. polynomial expression) is created to describe
the relation between the output and input. This metamodel is much simpler than the full model that is
sampled from in Monte Carlo methods, and can be created using established FEA software through a
black-box SFEM formulation.

However, the Polynomial Chaos methods are difficult to generalize, as even with the non-intrusive
approach knowledge of the system for which the error must be minimized must be had. Furthermore,
usually just the first statistical moments are obtained, for few random variables. Applications where any
properties of a composite structure are given known probability distributions and progressive failure
analysis is performed are not found in literature, as this method may not be indicated for it.

The KL expansion is often combined with Monte Carlo sampling to obtain probabilistic responses. It is
a simple process, where the random properties in different points are calculated through equation 2.10,
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and those values are given to a FEA solver, for any given sample of random variables ξ. In [56], the KL
expansion is combined with LHS to obtain response PDFs of general structures and load cases using
Finite Element solves Abaqus. Most notably, in this paper the Random Field (RF) and FE meshes are
completely separate, which is useful to maximize computational efficiency by optimizing each mesh.
In [5], progressive failure analysis of FRP rectangular plates is done by combining KL and LHS and
using the Puck failure criterion, which gives the probability for any given load of a specific failure mode
happening, as well as final failure PDFs.

By obtaining the response statistics with LHS, there is evidently the limitation of the computational
cost being higher than for non-sampling methods. However, considering the goal of analyzing FRP
laminates with generic geometries, the MC+KL method shows great promise.

KL allows consideration of spatial variation of properties, which is key for realistic probabilistic modelling.
It also creates realistic distributions which are relatively fast to generate. Most importantly, the non-
intrusive nature of the process allows the use of commercial FE software. Because the model to be
developed in this thesis should work for case studies considerably more complex than the rectangular
plates of [5], using an external solver seems like a good choice, in order to also have a faithful modelling
of all the failure modes mentioned in section 2.1. Finally, the MC+KL can be generally useful for future
applications in composite analysis, since its formulation hardly changes with different geometries, and
any result statistics can be obtained, independently of the input.

Application to case study

In the descriptions of each reliability method, several examples from literature of probabilistic analysis
of composites were given. Most work that is found, though, centers around rectangular laminated FRP
plates, and random fields or the SFEM are not so commonly applied. Modelling of structures with
geometric details and spatial variation is significantly more complex: calculations with CLT must be
replaced by FEA for arbitrary geometries, as no analytical expression for the solution can be exploited
for the reliability analysis, meaning non-SFEM methods are not applicable; several failure modes can
be relevant and complex modelling strategies may be required; with regards to considering spatially
varying properties, again SFEM is the only available option, and generating fields of these properties
throughout the composite specimen is a non-trivial matter. Additionally, although extensive work has
been done in probabilistic failure predictions of composite specimen, only in a few cases were failure-
dependent criteria used, or damage accumulation considered.

In this research, the model will be used to assess the reliability of open-hole laminates in tension, as
an example of a geometric detail to be accounted for. In fact, some examples exist in literature of
stochastic analysis of open-hole composite plates. In [41], MCS is used to generate random properties
for a whole specimen, which is then analyzed through the deterministic FEM. In [22], the SFEM is used
for progressive damage analysis of PEEK laminates. Four failure modes were considered (fiber and
matrix tension and compression, shear, and delamination), and several criteria for damage initiation
and propagation are compared. All of this was modelled in Abaqus, and the stiffness and strength
properties of each element are sampled individually from gaussian distributions. Failure statistics are
obtained through running multiple samples.

More recently, Pitz and Pochiraju [23] studied the influence of spatial variation of strengths in the dam-
age propagation in open-hole composites, specifically the effect under tension on themean crack length.
Similar modelling techniques to [22] were used, and a Quasi-MC sampling method was used to gener-
ate the random fields. Finally, in [25] and [24], Monte-Carlo based probabilistic fatigue damage analysis
methods for FRPs were developed, the latter considering random fields of fiber strengths and modelling
the specimen on Abaqus, while the more recent one extended the previous approach to predict the ul-
timate failure caused by accumulation of damage.

This overview shows that extensive work has been done to accurately model accumulation of damage
in FRPs, and some authors have combined these models with probabilistic approaches. However, the
SFEM used for structures with geometric details is usually Monte Carlo based, which is very inefficient
and limiting in the computational sense, since properties have to be generated for each element and no
correlation is taken into account. There is, to the best of the author’s knowledge, a gap in the literature
corresponding to applying the SFEM with the properties and strengths as correlated random fields,
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generated through an expansion such as KL, to progressive damage analysis of composite structures
with generic geometries.

The SFEM, specifically using the KL expansion combined with MCS of deterministic FEA software,
has been identified as a promising process for this type of analysis. Several authors, some already
mentioned, have applied SFEM in commercial FEM software. Depending on the intrusive nature of the
method, a few papers have used element-defining subroutines (UEL in Abaqus) to construct stochastic
stiffness matrices [56][83][46]. Abaqus subroutines are used for applications that aren’t built in the
software, such as defining custom material behaviour. In [56], the KL random fields are the input of
custom-made stiffnessmatrices in a UEL subroutine. However, material property and strength definition
at different spatial points has recently been done by other authors by simply defining the material as
a user defined field dependent on the coordinates of the calculation (integration) points, through the
USDFLD Abaqus subroutine [82]. Other approaches include defining different materials at different
elements in the input file [84]. These applications have generally shown acceptable computational
efficiency, and have allowed for some complex SFEM applications.

Surrogate Models
It is common to use surrogate models to replace the evaluation of the LSF, which in the case of SFEM
means replacing the FE solver with a simpler system derived from results. The two most common
surrogate model types are polynomial-based Response Surface Methods (RSMs) and Artificial Neural
Networks (ANNs)[38].

The RSMs (here refering only to the polynomial-based ones) work similarly to what was referred to
earlier as the collocation points method, which uses the polynomial chaos expansion for the solution.
The LSF is replaced by a polynomial expression, which is obtained by first sampling the FE solver and
then accomplishing some type of regression analysis to calculate the coefficients of the explicit expres-
sion. In [42], the RSM was combined with MCS for reliability analysis of aluminium–carbon fiber/epoxy
composite laminates for pressure vessels. In [26], a systemic probabilistic analysis approach was de-
veloped for the open-hole tension case for FRP laminates, again by combining MCS with the RSM,
and varying all material and strength properties. Note that in neither of these examples was spatial
variation of the properties considered.

Another method found in literature is sampling an ANN instead of an FEA solver to obtain response
statistics. ANNs are machine learning computational models, inspired by biological neural networks
and organization, that can be trained from datasets to have predictive abilities. This has been found to
work better than RSM for more complex problems with several random variables [38]. Of the two, it is
the one more usable for the SFEM, where random fields are considered.

In [66], an ANN is sampled instead of an FEA solver using different Monte Carlo methods, to obtain
the probabilistic response to uncertainty in the material properties of composite laminates (without
variation within the specimen). Compared to sampling of the FE solver, this method of obtaining the
reliability values was found to be much faster. In [44], the KL+MC SFEM developed in [5] was used
to train a special type of ANNs, which are two-dimensional Convolutional Neural Networks, that are
advantageous when there are spatial relations in the data. The ANN was trained to predict the failure
of rectangular FRP plates under tension, from the values of the strains at 20% of the ultimate load, and
the predictions matched well with the experimental results.

Surrogate models, especially ANNs, for the aforementioned advantages, could serve as an advantage
to the SFEM used for specimen with complex geometries. Case studies may include many failure
modes and variables, so a simplified replacement model could be necessary to overcome computa-
tional effort problems. Additionally, an ANN has already been used with the KL+MCmethod for another
case study, so precedent for this exists in literature.

2.2.4. Random Fields and Karhunen-Loève expansion
When considering spatial variation of a given variable, it can be referred to as a random field (RF).
Random fields exist on a continuous domain, and therefore contain infinite random variables [85]. To
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make calculations and model these fields computationally, only a limited amount of points in space can
be considered, so the discretization is necessary.

KL expansion

The most common method of RF discretization is the already mentioned KL method [78]. The method
uses a covariance kernel, which expresses the correlation of the random variable between two points
in space, to expand at each point in a truncated series around the mean. In the end, the random value
is given by equation 2.10, truncated at M iterations of the sum. The equation includes the eigenvalues
λi and eigenfunctions ϕi of the covariance function (or autocovariance, since the variable is the same).
Those are obtained through the Fredholm integral

∫
Ω2e

C(x1, x2)ϕk(x2) dA2e = λkϕk(x1), (2.15)

where x1 and x2 represent the x and y coordinates in RF elements 1 and 2, respectively, and A2e is the
element 2 domain Ω2e in terms of x2 (x2,y2) [56]. This integral can usually only be solved numerically.
The most common approach is to use Galerkin methods, specifically finite element discretization and
Galerkin when working in a 2D space. However, other Galerkin approaches exist, such as spectral
and meshless, and, besides Galerkin, the Nystrom and collocation methods can be found in literature
[85]. An additional option, explored in [86], and suggested in [87], is to enclose the general geometry
in a bounding 2D or 3D rectangular geometry, for which the analytical solution of the integral is known.
From that solution, the one for the intended geometry can be “cut out”. As mentioned in [87], this option,
despite being suggested originally, has not received due attention in literature: although re-calculating
some parameters of the covariance function may be necessary, the computational advantage may be
significant, and obtaining the solution itself becomes much simpler.

In this research, the Galerkin FE discretization, as well as the bounding box formulation, will both be
used to generate RFs, and the specifics of these methods are given, respectively, in sections 3.1 and
3.2.

Alternatives

Although the KL expansion is far and ahead the most common random field discretization method found
in literature, some authors have developed alternative approaches. Two recent works [72][84] have
used a Cholesky decomposition of the covariance matrix, combined with ordinary Kriging, to produce
realizations of sampled random fields. Additionally, the Optimal Linear Estimation (OEL) Expansion,
developed in [88], has been used to discretize non-gaussian 1-D random fields of elastic properties in
sandwich beam structures [89]. That approach was combined with Monte Carlo to quantify the effect
of the uncertainties on the dynamic response of the structure. A note should be made, however, that
the OEL expansion has been shown to constitue a special case of the Nystrom method of solving the
KL Fredholm integral [85].

The alternatives found in literature are often less computationally expensive than KL, but because for
2D random fields this is by far the most common approach, it seems that for the case study of this
thesis the KL expansion is the more promising option.

2.3. Research Questions and Objective
The literature study that was conducted revealed a gap in existing work which will be addressed in
this thesis. Section 2.1 summarized extensive theory and research that has been done in relation to
deterministic progressive failure analysis of composites. The section, starting from the general context
of composite structures, highlighted the relevance of that type of analysis, and how current methods
are insufficient and always in development.

Then section 2.2 focused on reviewing literature relative to reliability analysis of composites. Again, the
relevance of adding a probabilistic nature to progressive failure analysis of composites was explained.
Then different methods of reliability analysis found in published work were addressed, and evaluated
in terms of their applicability to the intended research objective. It was found that developing previous
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SFEM work that used the Karhunen-Loève method and Monte Carlo Simulations would be the best
starting point. Additionally, combinations with commercial FEA software and/or surrogate models were
commonly found options that revealed a lot of promise. When reviewing this part of literature, it became
clear that few authors have applied stochastic methods to progressive failure analysis of composites
- even in the limited work that exists where strengths and material properties are considered random
variables usually only First-Ply-Failure is considered.

As previously discussed, recent work that is being developed already made the progress of using mode-
dependent criteria with a KL+LHS SFEM, applying it to rectangular laminates. Extending the analysis
to structures with complex geometries, such as the open-hole case, was chosen as a novelty for this
type of work, presenting new modelling challenges. The review of papers that performed stochastic
analysis of such specimen showed that the methods that have been applied use inefficient Monte Carlo
methods, or don’t consider spatial variation at all.

To conclude, this thesis aims to improve current applications of reliability methods in progressive failure
analysis of composites, since to the best of the author’s knowledge no work exists that has applied the
Karhunen-Loève method, or another Random Field discretization strategy, combined with sampling
for the progressive failure analysis of composite laminates with complex geometries. This reliability
method will be integrated with the Abaqus FEA solver.

The main question to be answered with this research is: To what extent can the SFEM be used to
predict the reliability and probabilistic damage evolution of composite laminates with geometric
details and spatially varying properties?

The following sub-questions should be answered in relation to the main question:

• What strategies for generating random fields and obtaining the response can be used to make a
general-purpose SFEM as computationally efficient and reliable as possible?

• What failure criteria give the most accurate results with the SFEM?
• How do the experimental results compare with the SFEM predictions?



3
Generating Random Fields

This section details the methods used to generate 2D random fields of the material properties of interest
to composite failure analysis. Specifically, the Karhunen-Loève discretization method is used, in a
way that is applicable to any arbitrary 2D geometry. In sections 3.1 and 3.2, two different algorithms
developed in MATLAB are detailed, which use the method differently. The first uses a galerkin finite
element approach, which is the most common in literature, while the second follows recent work [86]
where the analytical solution over a bounding box is used. These approaches will be compared and
one will be chosen for the case study.

3.1. Applying the Karhunen-Loève - Galerkin discretization

Since in this research we will work with 2D discretization, the widespread approach of discretizing in
a finite element mesh with the galerkin method, to solve the integral in equation 2.15, is first used.
Because throughout this report there will be mention of two distinct Finite Element meshes, the mesh
used for the galerkin method will be refered to as the RF mesh, while the one used for FEA will be the
FE mesh.

In this method, the orthonormal eigenfunctions are approximated over each element with

ϕi(x) =
nnodRF∑

j=1

Lj(x)dij =< L(x) > [d], (3.1)

where from the created RF mesh comes a group of nnodRF shape functions for each element and
nnodRF is the number of nodes per RF element. Finally, dij is the ith covariance eigenfunction value
at node j. This discretization tactic is in fact analogous to the finite element method used in structural
analysis, since the solution at the nodes of each element is calculated and interpolated at other coor-
dinates with the shape functions. These shape functions Lj(x) are usually the same as those used in
FEA. For the formulation and examples of this report, the RF mesh will be composed of linear quadri-
lateral (Q4) elements, represented in figure 3.1. The elements and their shape functions are defined
in isoparametric element coordinates ξ and η, with the shape functions for each node being

L1 =
1

4
(1− ξ)(1− η)

L2 =
1

4
(1 + ξ)(1− η)

L3 =
1

4
(1− ξ)(1 + η)

L4 =
1

4
(1 + ξ)(1 + η).

(3.2)

24



3.1. Applying the Karhunen-Loève - Galerkin discretization 25

The isoparametric formulation is used to map from the possibly irregular shape of the elements to a
regular one in the (ξ,η) space. The x and y coordinates of any point in the element can be obtained
with

xp =

4∑
m=1

Lm(ξp, ηp)Xm, (3.3)

with Xm being the x or y coordinates of the mth node, xp the x or y coordinate at the point of interest
and ξp/ηp the coordinates of the point in the isoparametric space.

Figure 3.1: Q4 element [90].

Substituting equation 3.1 into equation 2.15 results in

∫
Ω2e

C(x1, x2) < L(x2) > |Je| dA2e[d]e = λk < L(x1) > [d]e, (3.4)

where |Je| is the jacobian determinant that relates the isoparametric coordinates, in which the integral
will be solved, to the global ones (x and y). The determinant is given by

dx

dξ

dy

dη
− dx

dη

dy

dξ
, (3.5)

where each derivative can be calculated by differentiating the expression in equation 3.3.

The expression in equation 3.4 is actually not equivalent to the original one, because we approximate
the eigenfunctions by truncating the sum at nnodRF . There is a residual error in this approximation,
which is minimized with the Galerkin weighted residual method. Assuming the error is orthogonal to
the approximating space, it is equivalent to write, with the same set of shape functions on both sides,
and integrating to minimize the residual [63]:

∫
Ω1e

∫
Ω2e

C(x1, x2) < L(x1) >T< L(x2) > |Je1||Je2| dA2edA1e[d]e

= λi

∫
Ω1e

< L(x1) >T< L(x1) > dA1e[d]e.

(3.6)

The rest of the process is similar to the FEM, where the problem is generalized in matrix form with all
elements of the mesh assembled, by adding elemental matrices in succession. Elemental matrix Ce,
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with dimensions nnodRF by nnodRF , for each combination of elements 1 and 2, corresponds to the left
part of equation 3.6:

Ce =

∫
Ω1e

∫
Ω2e

C(x1, x2) < L(x1) >T< L(x2) > |Je1||Je2| dA2edA1e. (3.7)

Elemental Be matrix, with the same dimensions, corresponds to the right part:

Be =

∫
Ω1e

< L(x1) >T< L(x1) > |Je1| dA1e. (3.8)

Global matrices C and B have dimensions NRF by NRF , NRF being the total number of nodes of the
RF mesh. Matrix C is built by adding elemental matrices Ce to the lines corresponding to element 2
nodes and columns corresponding to element 1 nodes. Matrix B is built by adding elemental matrices
Be to the lines and columns corresponding to the element nodes [91]. Note that these global matrices
will be symmetric as long as the covariance function is symmetric.

A second error will originate from truncating the sum in 2.10 at M terms. This error exists for any
solution with the KL expansion, since this truncation is necessary for discretizing the field. In the case
of Galerkin, the number of terms used in the expansion (M) is limited by the number of nodes NRF .

Once matrices B and C are assembled, a diagonal matrix Λ with the first M eigenvalues is then assem-
bled:

Λij = δijλi, (3.9)

where δij is the kronecker delta. Then the full mesh version of equation 3.6 has the generalized eigen-
value formulation:

CD = BDΛ. (3.10)

The equation is solved for eigenvectors D and eigenvalues Λ, D containing the autocovariance function
eigenfunction values at all RF nodes (lines correspond to the nodes and columns to different eigen-
functions), with the columns ordered in the same way as the eigenvalues. The first M eigenvalues (in
descending order) and corresponding eigenvectors are then used in the solution. Values of the D ma-
trix can be replaced in 3.1 to obtain the eigenfunction values at any point in RF space, and the random
fields can be calculated with equation 2.10, by generating random variables ξ. These random variables
are gaussian, with mean 0 and standard deviation 1.

Some extra steps must be described that are required for our application. The RF mesh should be able
to have any arbitrary 2D geometry. It is also decided that the FE mesh should be decoupled from the
RF mesh. The reasoning for this is that these meshes have separate requirements: the FE mesh will
often need to be more fine, specifically in regions where the stress/displacement results may be of most
interest, while the RF mesh’s only requirement is to be fine enough to represent the spatial variation of
properties, depending on how correlated the field is. The method will then be more robust if it is able
to generate FE Random Fields from any RF mesh (in the same geometrical domain, evidently).

Covariance Function

The covariance function is chosen to be

C(x1, x2) = σ2
w exp(−|x1 − x2|

bcXLD1
− |y1 − y2|

bcY LD2
), x1, x2 ∈ Ω, (3.11)

which has received plenty of attention in literature and often been used to model spatially varying
material properties [63] [5] [56].

The parameters bcX and bcY will be referred to as correlation parameters, as they define how correlated
the field is. The values in the denominator bcXLD1 and bcY LD2 are often replaced by a single parameter
LC , which is the correlation length, but this way allows us to define the correlation length in relation to
the real field dimensions LD1 and LD2. For an arbitrary RF mesh, LD1 is given by
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LD1 = xmaxRF − xminRF , (3.12)

with xmaxRF and xminRF being the maximum and minimum x coordinates of RF nodes. LD2 is obtained
in the same way for the y direction. Finally, σw is the point-wise standard deviation, since it is the value
of the covariance function when x1= x2. Note that this standard deviation is the one for a single point,
in many RF cases, and not the spatial standard deviation within one RF. The latter can be adjusted with
bcX and bcY , without affecting the point-wise one.

Considering the chosen covariance function, it can be observed that the σ2
w element will affect only the

eigenvalues, in a linear way, thus it is equivalent to write

C(x1, x2) = exp(−|x1 − x2|
bcXLD1

− |y1 − y2|
bcY LD2

), x1, x2 ∈ Ω (3.13)

and change equation 2.10 to

w(x, θ) = µw(x) + σw

∞∑
i=1

√
λiϕi(x)ξi(θ). (3.14)

Computing the integrals

This change is useful because it means the eigenvalue problem does not have to be solved multiple
times (e.g. for every material property) as long as the mesh stays the same. The integrals in equations
3.7 and 3.8 will not be computed analytically, but rather with the Gauss-Legendre quadrature rule. In
figure 3.1, the gaussian, or integration points, of the RF elements are highlighted. Their coordinates in
the isoparametric space are ξ = ± 1√

3
and η = ± 1√

3
. The matrix calculations then become

Ce =

4∑
GP 1=1

4∑
GP 2=1

C(xGP 1
, xGP 2

) < L(xGP 1
) >T< L(xGP 2

) > |Je1||Je2| dA2edA1e (3.15)

and

Be =

4∑
GP 1=1

L(xGP 1) >
T< L(xGP 1) > |Je1| dA1e, (3.16)

where the x and y coordinates of the gaussian points are calculated with equation 3.3. Depending on
the covariance function and shape functions used, the number of integration points required for a good
approximation of the integrals may be higher than 4, specially in the Ce calculation [91]. However, linear
elements with 4 gaussian points were found to give good approximations, as will be shown.

Normalization of eigenvectors

Once all matrices have been calculated, the eigenvectors and eigenvalues are obtained with MATLAB’s
eig() function, and transformed from any resulting complex form to a real form with the cdf2rdf function,
according to what is recommended in [92]. This results in eigenvectors that have been normalized to
1. Like has been mentioned before, the eigenfunctions of the covariance kernel must be orthonormal
in the RF domain. Although the eigenvectors from 3.10, which contain sampled values of these eigen-
functions, have norm 1, that doesn’t make the eigenfunctions orthonormal in the RF domain, and so
an additional normalization process is necessary.

If ϕi(x) is normal in a domain Ω, then

∫
Ω

ϕ2i = 1. (3.17)
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Therefore, by calculating this integral for every eigenfunction, we can then divide the eigenfunctions by
the square root of the result, such that

∫
Ω

(
ϕi√∫
Ω
ϕ2i

)2 = 1. (3.18)

To solve the integral in 3.17, it is calculated separately for every RF element, such that the process
works for any geometry. Over each element, the integral is approximated as the volume of the solid
formed by the nodal values of ϕ2i and the xy plane. The resulting eigenfunctions after normalization are
approximately orthonormal.

Mapping from RF mesh to FE mesh

Once the generalized eigenvalue problem has been solved, the eigenfunction values at the RF nodes
are known. The objective of the process is to generate RFs of values for FEA. In FEA, the material
property values are taken at the integration, or gaussian points, since, similarly to the galerkin proce-
dure, the integral that must be calculated to obtain the stiffness matrix is solved with the gauss-legendre
quadrature rule. Many strategies can be used to discretize from the RF mesh to a FE model, like aver-
aging over an element or interpolation at different points of interest such as element centroids or nodes
[40].

The chosen option was to interpolate at the gaussian points of the FE mesh. The advantages of this
option are the excellent resolution of the Random Field and the direct transfer of values from MATLAB
to the stiffness matrices computed in the FE software, with no interpolation being required of the latter.
The main disadvantage is the higher computational cost.

Equation 3.1 can be used to calculate the eigenfunction values at the FE nodes, using the RF nodal
values of the RF element in which they are inserted. The first step is to go through every RF element
and, using MATLAB’s inpolygon function, find which FE nodes are inside or in the border of that element.
Because of FE nodes that are borders, a second process must exist to retract them from all but of the
RF elements (choice is arbitrary).

Then, to use equation 3.1, the coordinates of the FE nodes in the isoparametric space must be known.
From equation 3.3, the following equations can be written, where Xj

m and Y j
m are the coordinates of

the nodes of RF element j, to which the FE node is assigned to:

xFE =

4∑
m=1

Lm(ξFE , ηFE)X
j
m (3.19)

yFE =

4∑
m=1

Lm(ξFE , ηFE)Y
j
m. (3.20)

Equations 3.19 and 3.20 form a nonlinear system of equations that can be numerically solved for ξFE

and ηFE , using MATLAB’s fsolve() function. With the eigenfunction values at FE nodes, equation 3.14
can be used to generate θ Random Fields at FE nodes, by sampling values of ξi(θ) from the standard
normal distribution (bell curve with mean 0 and standard deviation 1). More details on the sampling
process are given at the end of this section.

To obtain the RF values at FE gaussian points, an equivalent shape function interpolation is used,
shown in equation 3.21, where wj

m represents the RF values at node m of FE element j and nnodFE is
the number of nodes per FE element.

wG(ξ, η) =

nnodFE∑
m=1

Lm(ξG, ηG)w
j
m (3.21)

Besides the RF values, the coordinates of the FE integration points can be obtained with equation 3.3.
In summary, the RF to FE mapping procedure has the following steps:
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• Using function inpolygon, go through every RF element and find the FE nodes inside or at its
border.

• Remove multiple instances of the same FE nodes.
• Solve system of equations 3.19 and 3.20 for each FE node coordinate in the isoparametric space
of their corresponding RF element.

• Using equation 3.1, find eigenfunction values at FE nodes.
• Using equation 3.21, calculate RF values at integration points.

An example of the separate RF and FE meshes, as well as of the FE gaussian points, where the RF
values must be obtained, is shown in figure 3.2.

Figure 3.2: Mapping procedure - separate RF and FE meshes and final (gaussian) interpolation points.

Meshing

One of the disadvantages of the galerkin procedure is the need to create an RF mesh, which can be
difficult for non-trivial geometries. Another option is to use the same mesh for both RF discretization
and FEA, which though simple can be unnecessarily expensive on the computational side, since the
FE mesh often requires more elements.

In the developed code, a mesh created on abaqus can be read through a .inp file and be used for the
RF/FE. As mentioned before, the RF mesh was limited to linear quadrilateral elements, since this was
found to give satisfactory results. The FE mesh is limited to linear full integration 4-node elements
or quadratic 8-node elements (on abaqus, S4 and CPS8, for example). However, especially for the
FE mesh, little adaptation is required to allow the possibility of other types of elements, with different
numbers of nodes or reduced integration.

The Abaqus option is the simplest, but makes iterating on the number of elements to find convergence
much more tedious. The other option is to develop a mesh creating process that can be easily iterated
on, adapted to the specific geometry. For example, regarding the open-hole case, a mesh can be
created that discretizes around a hole in the radial and tangential directions1. Then, the number of
elements can be iterated on by increasing the number of elements in each of those directions. An
example of the use of such a mesh in the galerkin procedure is given in figure 3.3.

1KSSV (2024). Mesh a plate with hole (https://www.mathworks.com/matlabcentral/fileexchange/44670-mesh-a-plate-with-
hole), MATLAB Central File Exchange. Retrieved May 24, 2024.
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Figure 3.3: Mesh for 1 by 1 open-hole plate with hole diameter of 0.4.

For any geometry, any RFmeshing procedure can be used, as long as it defined by its nodal coordinates
and a connectivity matrix, similarly to what is done in FE software.

Sampling

For the samematerial property, a Random Field is generated for each simulation and ply of the laminate
being analyzed, so that response statistics can be gathered. The randomness of each random field
comes from the variables ξi(θ) in equation 3.14.

To obtain standard normal variables ξi(θ), Latin Hypercube Sampling is used. In section 2.2.3, the
difference between LHS and random MC was explained, and exemplified in figure 2.9. The cumulative
distribution function of the standard normal variables is divided in Nθ intervals, Nθ being the number
of simulations to be run, or number of RFs generated of the same material property, for the same
ply. Similarly to what was exemplified for the 2D case (figure 2.9), the samples of each variable are
shuffled to satisfy the latin hypercube requirements (no column or line is sampled from twice), except
the problem now has M dimensions (number of random variables ξi(θ)).

This sampling procedure both preserves the marginal probability distributions [56], and is more efficient
than random MCS. This is shown in figure 3.4, which shows the convergence of the standard deviation
and mean of a set of samples of the standard normal variable. For the MC, each sample is random,
while for each number of samples (x axis) the LHS calculates a new evenly distributed set of samples.
The convergence can be observed to be much faster in the LHS case, for both statistical moments.

3.2. Applying the Karhunen-Loève - Bounding Box
A simpler method, recently suggested in [86], is to find a rectangular domain that bounds the 2D FE
meshwhere the RandomFields are to be generated. For this rectangular domain, the analytical solution
of the Fredholm integral 2.15, with the covariance function introduced in 3.13, is known. Then the
eigenfunction values at the integration points can be directly calculated and a Random Field in the FE
mesh is ”cut-out” from the bounding domain.

The first step in this approach is to find the ”bounding box”. Similarly to how the RF ones were defined
in 3.12, but adding an extra term d, the dimensions of the bounding box are given by

LD1 = (xmaxFE + d)− (xminFE − d) (3.22)

and

LD2 = (ymaxFE + d)− (yminFE − d), (3.23)
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Figure 3.4: Convergence of mean and standard deviation of samples of the standard normal variable, for LHS and random
MCS. Lines represent means of -0.05 and 0.05, as well as standard deviations of 0.95 and 1.05.

where the x and y terms represent the minimum and maximum coordinates of FE nodes in both direc-
tions and d is the distance between the box edges and the FE mesh edges. This distance is given as
a ratio dr to the biggest mesh dimension, such that

d = dr ∗ LD1. (3.24)

Figure 3.5: Bounding box with dr=0.05 around a 1 by 1 FE mesh with a 0.4 diameter hole.

An example of a bounding box around a 1 by 1 FE mesh with a 0.4 diameter hole is shown in figure
3.5. The analytical solution over the rectangular domain is obtained from the separate 1D solutions for
each direction x ad y. If the 2D eigenvalues and functions are assumed to be

ϕn(x) = ϕ
(1)
i (x)ϕ

(1)
j (y) (3.25)

and
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λn = λ
(1)
i λ

(1)
j , (3.26)

the Fredholm integral separates into two separate ones:

∫ xmaxFE+d

xminFE−d

exp(−|x1 − x2|
bcXLD1

)ϕ
(1)
i (x2) dx2 = λ

(1)
i ϕ

(1)
i (x1) (3.27)

and

∫ ymaxFE+d

yminFE−d

exp(−|y1 − y2|
bcY LD2

)ϕ
(2)
j (y2) dy2 = λ

(2)
j ϕ

(2)
j (y1). (3.28)

For the first equation, the following solution can be derived [63]:

λ
(1)
i =

2Lc1

(w
(1)
i )2L2

c1 + 1
(3.29)

ϕ
(1)
i (x) =

cos(w
(1)
i (x− c(1)))√

a(1) +
sin(2w

(1)
i a(1))

2w
(1)
i

(3.30)

for i odd;

ϕ
(1)
i (x) =

sin(w
(1)
i (x− c(1)))√

a(1) − sin(2w
(1)
i a(1))

2w
(1)
i

(3.31)

for i even, where

c(1) = (xminFE + xmaxFE)/2, (3.32)

a(1) = LD1/2, (3.33)

and

Lc1 = bcXLD1. (3.34)

The value of w(1)
i is calculated by solving the transcendental equation

(
1

Lc1
− w

(1)
i tan(w

(1)
i a(1)))(w

(1)
i +

1

Lc1
tan(w

(1)
i a(1))), (3.35)

for (i−1)π
2a ≤ w

(1)
i ≤ iπ

2a , using MATLAB’s fzero() function. The second equation has an analogous
solution with the y coordinates. If T eigenfunctions and values are calculated for each axis, then T ×T
terms of the KL expansion can be obtained. To truncate the expansion at M terms, similarly to the
galerkin procedure, at least M ×M eigenvalues/functions are always calculated, and then organized
in descending order. Finally, the ξi(θ) sampling procedure is equal to the one described in section 3.1,
for the galerkin method, and the FE meshes can also be read can be read in the same way, from an
Abaqus .inp file.
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3.3. Comparing the methods
Eigenfunctions 1, 2, 3 and 6 of the covariance function, obtained with the galerkin and bounding box
methods, are shown in figures 3.6 to 3.13, for a 1 by 1 square domain with bcX = bcY = 1, dr=0 and a
RF mesh with 100 elements. For such a case, the galerkin solution should converge to the bounding
box one, since the analytical solution domain and FE domain are the same.

Figure 3.6: 1st analytical eigenfunction. Figure 3.7: 1st galerkin eigenfunction.

Figure 3.8: 2nd analytical eigenfunction. Figure 3.9: 2nd galerkin eigenfunction.

Eigenfunctions 1 and 6 are in fact very similar for both methods, while 2 and 3 are quite different.
However the latter 2 are an eigenpair, meaning they correspond to the same eigenvalue. Note now
that it can be written that the covariance of the truncated KL random field is given by

Cov[w(x1, θ), w(x2, θ)] = σ2
wC(x1, x2) = σ2

w

M∑
i=1

λiϕi(x1)ϕi(x2), (3.36)

the expression on the right being the truncated spectral decomposition of the covariance function (mul-
tiplied by the prescribed variance) [91]. Because eigenpairs have the same eigenvalue, the point-wise
variance is not affected if the squared sum of the 2 eigenfunctions remains the same. If that calculations
is done for eigenfunctions 2 and 3, for example, the result is the same in the analytical and galerkin
case - this difference only slightly affects the covariance between different points, which can easily be
adjusted with the correlation length.

Figure 3.14 shows the first 10 eigenvalues for this same case with a 25 element RF mesh and two
different correlation parameters (bcX = bcX = 1 and bcX = bcX = 2). Two observations can be made of
these results: again, the galerkin method matches the analytical one; for lower correlation parameters,
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Figure 3.10: 3rd analytical eigenfunction. Figure 3.11: 3rd galerkin eigenfunction.

Figure 3.12: 6th analytical eigenfunction. Figure 3.13: 6th galerkin eigenfunction.

the eigenvalues decrease slower, which means a higher truncation term will be necessary to achieve
convergence.

The eigenfunctions help understand the KL expansion, as the RFs result from a linear combination
of the product of them with the eigenvalue term. In the case of our covariance function, that we are
prescribing to the fields, the correlation between two points decreases exponentially with the distance
between them, with the speed of this decrease being adjusted to a ratio of the dimensions of the
field. The eigenfunctions are then affected by the correlation parameters, maintaining their pattern but
changing the ”amplitude” and ”frequency”. The eigenvalues in turn grow linearly with the domain, and
are slightly affected by the correlation parameters.

While the galerkin mesh implies an approximation that is smaller for a finer RF mesh, both methods will
have an error in representing the prescribed covariance function, which comes from truncating the KL
expression - the generated RF variance will always be underestimated. The point-wise variance error
is given by

ϵM,σ2
w
(x) =

σ2
w − V ar[w(x, θ)]

σ2
w

, (3.37)

which using equation 3.36 can be rewritten as

ϵM,σ2
w
(x) = 1−

∑M
i=1 σiϕ

2
i (x)

σ2
w

. (3.38)
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Figure 3.14: Eigenvalues for 1 by 1 domain obtained with the analytical solution and the galerkin (25 element RF mesh)
solution, for bcX = bcX = 1 and bcX = bcX = 2.

This relative error estimator will be referred to as the local variance error, as it is different at different
points of the domain. In [91], a global estimator is also introduced, with the form

ϵ̄M,σ2
w
=

1

AD

∫
D

ϵM,σ2
w
(x)dx, (3.39)

which using equation 3.17 becomes

ϵ̄M,σ2
w
= 1−

∑M
i=1 λi

ADσ2
w

. (3.40)

This global error estimator is useful for a general accuracy assessment, since the local one might
change significantly from one point of the domain to another. However, equation 3.17 can be used
only if the condition of orthonormality is fulfilled. That doesn’t happen with the bounding box method
in any case where the solution domain is different than the bounding box. Therefore, the global error
estimator for the bounding box method is

ϵ̄M,σ2
w
=

1

n

n∑
i=1

ϵM,σ2
w
(x), (3.41)

which is more tedious to compute and results from spatially averaging the local error (using the FE
node values).

To compare the accuracy and efficiency of the methods described in sections 3.1 and 3.2, the example
of a 1 by 1 square mesh, with a 0.4 diameter hole, of linear Q4 elements will be taken. Considering
a constant (throughout the field) point-wise variance σ2

w of 1 and 0 mean, and an intended spatial
standard deviation σs of 0.5, both methods will be compared in terms of the error corresponding to
these values, as well as in their efficiency. The FE mesh that will be used can be seen in figures 3.3
and 3.5, with 355 elements, along with the 144 element RF mesh that will be used. The bounding box
for the comparison will have dr=0.

A study of the effect of the correlation parameters on both methods was first done, and the values
of bcX = bcY were set to the ones that minimized the relative error of the spatial standard deviation
σs, for which the target is 0.5. It is important to mention here that this relation between σs and the
correlation parameters can only be maintained if the integration points, for which the standard deviation
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is calculated, are evenly distributed throughout the domain. If the mesh density is higher in one area
in some cases, the standard deviation will no longer refer to the same domain as the target one. The
relative error is calculated with

ϵσs
= 1−

1
n

∑n
i=1 σs(θ)

σs
, (3.42)

which is the average of the standard deviations of each RF after n random cases were generated.
Values of b were considered in steps of 0.05, with a number of KL expansion terms that guaranteed a
global point-wise error smaller than 5%. Consequently, the correlation parameter is 1.7 for the galerkin
method, and 1.95 for the bounding box method. The evolution of σs with n for these correlation values
and corresponding methods is shown in figures 3.15 and 3.16, up until n=30000.

Figure 3.15: Standard deviation (average of values at each
RF) obtained with galerkin method (b=1.7, 40KL terms) vs

0.5 target.

Figure 3.16: Standard deviation (average of values at each
RF) obtained with bounding box method (b=1.95, 40KL

terms) vs 0.5 target.

The figures show how the spatial standard deviation quickly converges for both methods, to values
close to the target (ϵσs is 2% for galerkin and 0.2% for bounding box). Better approximations can be
obtained with smaller changes of b in the convergence study, around the chosen values. Therefore, the
main conclusion is that with both methods very good approximations of a chosen standard deviation
can be obtained, after a few hundred random cases. However, this convergence study is facilitated in
the bounding box method, because it runs each iteration considerably (up to 10x times) faster than the
galerkin method.

Figure 3.17 shows the global error with the first 40 KL terms for each of the solutions, where the error
parameter is calculated for galerkin and bounding box with expressions 3.40 and 3.41, respectively.
For both solutions, the error becomes smaller than 5% for around 14 KL terms, and they both converge
to about 2%.

Figures 3.18 and 3.19 show the local variance error throughout the domain for the galerkin and bound-
ing box solutions, respectively, using 40 KL expansion terms.

While the galerkin solution has peaks at edges of the domain, which include the outer box and the
circle that limits the hole, the bounding box has similar peaks just at the outer box, since this is where
the analytical solution was obtained. Additionally, the bounding box has the advantage of using the d
parameter, which so far has been set to 0. If it is increased, those peaks at the limits will be outside
the solution domain, and the local error peaks can be avoided. Figure 3.20 shows the local error with
d = 0.04. Increasing it by a small value like this does not change the global error significantly, but allows
the local peaks to be much smaller - increasing d by very high values, though, will cause slower decay
of eigenvalues (and slower variance convergence) [86].

The local error was studied in more detail at an arbitrary gaussian point (x=-0.045 y=-0.328), to confirm
the accuracy suggested by the error parameter, with 40 KL expansion terms and d=0. Figures 3.21 to



3.3. Comparing the methods 37

Figure 3.17: Global error evolution with increase of KL terms, for Galerkin and Bounding Box solutions

Figure 3.18: Local variance error with galerkin method. Figure 3.19: Local variance error with bounding box
method.

3.24 show the histograms and fitted normal distributions (fitdist in MATLAB) for the values at this point
in 30000 generated Random Fields w((x = −0.045, y = −0, 328), θ), with the galerkin and bounding
box methods. The CDFs are compared to the target normal distribution, which is the standard one
(mean 0 and variance 1).

It is apparent that the intended distribution is very well approximated at each point, while the RFs
globally are changed to achieve different spatial standard deviations. The plots agree with the very low
(≈ 3%) error in the representation of the prescribed covariance function, and no significant advantage
exists for either method in this aspect.

Figures 3.25 and 3.26 repeat the analysis of figure 3.4 for the convergence of the prescribed point-wise
standard deviation and mean. The standard deviation and mean of sampled values at point x=-0.045
y=-0.328 are plotted. The targets are the values to which they are expected to converge, considering
the truncation error in the case of the standard deviation.

Again, it was observed that the LHS leads to a faster convergence of the mean to the target 0. Here
the standard deviation does not seem to have such a difference. Nevertheless, there is an advantage
in using the LHS when compared to MCS. Furthermore, this study is useful to know that the prescribed
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Figure 3.20: Local error with bounding box method and d=0.04.

Figure 3.21: Histogram of 30000 samples at x=-0.045
y=-0.328, obtained with the Galerkin method.

Figure 3.22: Fitted normal CDF of 30000 samples at
x=-0.045 y=-0.328, obtained with the Galerkin method vs

standard normal distribution CDF.

covariance is already well approximated at each point for about 200 samples, for either method.

To finalize the comparison of the Galerkin and the bounding box methods, 1000 Random Fields were
generated with each method, for 14 properties (representative of the 14 properties that will be random
in the analysis) of every ply of a 16-ply laminate. The number of KL terms was 40 and all other inputs
remained the same as throughout the present section. Figures 3.27 and 3.28 show an example of an
RF generated with each method.

Generating all random fields was about 8 times faster for the bounding box. In this case, however,
the advantage is not very significant since both methods were fast, especially when compared to the
computational time that the rest of the SFEM process will demand. When looking for convergence
though, where the more computationally expensive parts of the galerkin method must be repeated, like
solving the non-linear equations, the speed of the analytical solution can be a relevant. This is also
true for models with a very large number of plies or integration points.

3.4. Using non-Gaussian probability distributions
The KL expansion as represented in equation 2.10 is based on generating random fields of normal
variables, with the randomness in the expression coming from the standard gaussian variables ξi. The
formulation of the expansion that has been presented is the simplest and more common one, and is
used to discretize gaussian processes [93].
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Figure 3.23: Histogram of 30000 samples at x=-0.045
y=-0.328, obtained with the Bounding Box method.

Figure 3.24: Fitted normal CDF of 30000 samples at
x=-0.045 y=-0.328, obtained with the Bounding Box method

vs standard normal distribution CDF.

Figure 3.25: Convergence with galerkin method of
standard deviation and mean of values at x=-0.045

y=-0.328 obtained with MC sampling and Latin Hypercube
sampling vs targets.

Figure 3.26: Convergence with bounding box method of
standard deviation and mean of values at x=-0.045

y=-0.328 obtained with MC sampling and Latin Hypercube
sampling vs targets.

However, it is often much more convenient to use non-gaussian probability distributions to represent
random processes of interest. One such case is when working with physical parameters that are al-
ways positive - the gaussian CDF always includes a ”negative tail”. That problem must be addressed in
this project, since material properties such as Young’s Modulus and tensile or compressive strength are
defined as positive, and finite elements cannot be correctly modelled with negative values for those vari-
ables. Additionally, some material properties may be better represented by non-gaussian distributions,
such as weibull or log-normal.

In [93], a method is explained that can be used to, with small adjustments, use the same KL formulation
with different original distributions. It works by utilizing the Nataf transform to calculate an equivalent
gaussian covariance function, and then reverting back to the original distribution after the discretization.
A table from that paper summarizing the adjustments for different processes is shown in figure 3.29.
The expressions used for the final variable transformation, which include ȳ and σy, can be found in [93].

The eigenvalues and functions of equation 2.10 can be calculated in the same way for the galerkin
solution, with equation 3.7 changing so that the covariance function is the KL Kernel ρg of figure 3.29.
The mean ȳ is only added when the change of variable is reversed (and not when the normal RF is
calculated with equation 2.10). For the bounding box solution, this approach is not possible, since that
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Figure 3.27: Random Field generated with the galerkin
method (40 KL terms, b=1.7)

Figure 3.28: Random Field generated with the bounding
box method (40 KL terms, b=1.95)

Figure 3.29: Summary of expressions to be used for parameters and the covariance function when using the Nataf transform
approach [93].

formulation uses the analytical solution of the covariance function shown in equation 3.11. Figures 3.30
and 3.31 show the histogram and best fit of 30000 generated random field values at an aforementioned
random mesh point already used in figures 3.21 and 3.23, with the original variable modeled as a
Rayleigh function with b =

√
2/(4 − π). Note that, after generating the random field values, they are

transformed back from the gaussian generated ones with the expression

w(x, θ) = ȳ + (

√
2 ln

2

1− erf(σywN (x, θ)/
√
2)

−
√
π/2)b, (3.43)

where σy and ȳ are calculated as shown in the table of figure 3.29. The KL kernel was calculated by
finding the root of the equation in the last column of the table, with 5 terms of the sum. The obtained
distribution matches the analytical one, very closely. This could be further improved by utilizing more
terms in the covariance calculation, although at some computational cost.

The log-normal distribution is particularly useful to avoid negative values of material properties in struc-
tural analysis, and that correction is used in [56]. Such a distribution is given by

X = eµ+σZ . (3.44)

with Z being the standard normal variable. In the approach used in that paper, the input log-normal dis-
tributions are given by their actual mean and variance, µL and σL, and then the log-normal parameters
σ and µ, which coincide with those of the normal distribution given by ln(X), are calculated with
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Figure 3.30: Histogram of 30000 samples at x=-0.045,
y-0.328, obtained with the galerkin method and a rayleigh

input variable (b =
√
2/(4− π)).

Figure 3.31: Fitted rayleigh PDF of 30000 samples at
x=0.045, y=-0.328, obtained with the galerkin method vs

analytical PDF with b =
√
2/(4− π).

σ =

√
ln(

σL
µL

2
+ 1) (3.45)

and

µ = lnµL − 1

2
σ2. (3.46)

After the values of the RF are calculated in the standard way, the change of variable is reversed with

w(x, θ) = exp(wN (x, θ)). (3.47)

In this almost equivalent approach, the covariance function is not adjusted, which means it can be
implemented with the bounding box solution. In [56], the reasoning for this was that the coefficients
of variations used were small, and so the lack of correction was found to not significantly distort the
correlation structure.

Figures 3.32 and 3.33 show the histogram and fitted distribution of 30000 generated samples with the
bounding box method, at a random point already chosen for figures 3.21 and 3.23, with the original
distribution being log-normal with mean 2 and standard deviation 1. The fitted distribution matches the
analytical one exactly, which shows the simplified adjustment works as intended.

3.5. Conclusions and Limitations
In sections 3.1 and 3.2, two methods of applying the Karhunen-Loève expansion to discretize random
fields of values at the integration points of a generic FE mesh were presented. In section 3.4, this
methodology was expanded to include the possibility of non-gaussian Random Fields.

In section 3.3, the Galerkin solution, which is the norm in literature, and bounding box solution were
compared based on error parameters and computational efficiency. It was found that the latter has
three main advantages: it is much simpler and doesn’t require generating an RF mesh, for which a
convergence study would be necessary; it can be adapted to limit peaks in local error, by extending the
bounding box; it is much faster. In terms of global errors in the mean, point-wise variance and spatial
standard deviation of the fields, both methods can generally achieve equally adequate results.

The analytical method disadvantages are that it is limited to the chosen covariance function, for which
an analytical solution exists, and that for geometries that occupy a small portion of the bounding box
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Figure 3.32: Histogram of 30000 samples at x=-0.045
y=-0.328, obtained with bounding box method and

log-normal input variable (mean 2 and standard deviation
1).

Figure 3.33: Fitted log-normal PDF of 30000 samples at
x=0.045, y=-0.328, obtained with the bounding box method
vs analytical PDF with mean 2 and standard deviation 1.

it may be difficult to control the spatial standard deviation with the b parameters. Additionally, it is also
limited to the use of lognormal or normal distributions, since this covariance function cannot be altered.

Nevertheless, for most cases in composite laminate applications, where the presented covariance func-
tion is applicable and the geometry occupies a big portion of its bounding box, which includes the case
studies of this thesis, the bounding box solution’s advantages seem to outweigh the cons. Therefore,
this is the chosen method for the validation examples that will be presented.

To allow maintaining physical, strictly positive values of variables, and avoid adjustments to the ker-
nel or covariance function, the same ”low coefficients of variation” assumption from [56] is made for
this project, since although the variance may sometimes be higher than that 10% of the mean thresh-
old defined in that study, the log-normal correction is not expected to require the covariance function
adjustment.

Only the log-normal distribution will be used to represent the random variables in the stochastic analysis
performed in the following sections. Other distributions would require more complex adjustments, and
limit the use of the bounding box solution, which has shown otherwise to be the preferable option. It
is recognized that this is a limitation of this work, but with log-normal distributions having shown great
results in modelling random material properties [5], the effect is not expected to be significant.

Finally, the LHS and MC sampling methods were compared in 3.3, in the context of the KL expansion,
and it was shown that the mean of the discretized variable converges significantly faster with LHS.



4
Stochastic Finite Element Method

This section details the proposed SFEM methodology of the present study. In section 2.1.2, the deter-
ministic FEM, which is a CDM, is described. Then, in section 4.2, the inputs of the SFEM are listed,
and possible ways to obtain them are addressed. In section 4.3, a workflow diagram (figure 4.2) rep-
resenting the developed framework is presented, and each step of the methodology is outlined and
discussed. Finally, section 4.4 covers the main conclusions and points of the present chapter.

4.1. Continuum Damage Model
This section outlines the finite element model developed in FE software Abaqus, that will be used for
validation of this project’s proposed stochastic method in section 5. The model uses a UMAT (User
Defined Material) subroutine based on a model developed in [8], referred to as DM1 in that work. Out
of the three presented by van Dongen et al., DM1, as a continuum damage model, was the simplest
one, and its failure predictions were as accurate or more than the other ones presented in their report;
those had the added complexity of using cohesive zones for delamination modelling (DM2) and XFEM
in the matrix damage propagation phase (DM3).

The reason this model was chosen as a base is then that it is a good compromise between simplicity,
computational efficiency and accuracy. First of all, the CDM approach is chosen because, for case
studies where delaminations are not predominant, it should be able to give good predictions of failure
and, with state-of-the-art criteria, of the initation and propagation of the different types of damage.

More complex techniques, mainly for delamination modelling, such as cohesive zones, and fracture
mechanics based matrix cracking (like XFEM), were also considered. Cohesive Zone modelling does
not, as was mentioned, necessarily improve failure predictions when compared with CDM, and that is
especially true in cases where delaminations are not the predominant failure mode. However, applying
the XFEM would likely allow even for these cases a more accurate prediction of damage patterns.

Nevertheless, with the amount of simulations involved in SFEM, this would come at too high of a com-
putational cost, as analysis with XFEM is significantly slower. Additionally, convergence issues are
much more problematic in that type of modelling, which would also pose an issue when running the
same model recurrently (with different properties) for statistical purposes.

Considering then only CDMs, the Larc05 criterion [94] is chosen for damage initiation, and a bilinear
softening constitutive model, as per the work of Lapczyk et al. [95], is chosen to regulate its propagation.
Themain reason for the choice is that this combination was the best performing overall out of three CDM
models in [96]. Furthermore, Larc05 is considered the state-of-the-art of composite failure criterion, and
bilinear degradation, as a gradual MDM, is expected to give more realistic predictions that sudden
degradation methods, where material properties are deteriorated almost fully as soon as failure is
predicted.

The CDM is implemented in a UMAT subroutine. This type of subroutine defines the whole material

43
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behaviour, calculating the stress at each increment instead of the abaqus solver. The general advan-
tage of using a subroutine, when compared to the options directly available in the Abaqus software,
is that any failure-dependent criteria and MDM formulations can easily be implemented, whereas the
latter offers very limited options. There are two criteria available in Abaqus: Hashin, which can only be
selected for shell elements, and Larc05, for which element degradation can only be used when XFEM
is also activated. With a subroutine, state-of-the-art criterion can be used without these constraints.
Additionally, factors such as shear non-linearity and in-situ strengths are more easily controlled.

In this section, the Continuum Damage Model is detailed, in terms of its damage initiation criterion
(section 4.1.1) and MDM (section 4.1.2), as well as additional numerical considerations (section 4.1.3).
The UMAT subroutine, adapted from the one developed for [8], is detailed in appendix C, in terms of
its working steps.

4.1.1. Initiation Criteria
The Larc05 criterion, proposed in [94], is considered by many the state-of-the-art when it comes to
failure criteria for FRPs. With the same Abaqus subroutine that will be used for this project, it was
combined by van Dongen [8] with a bilinear degradation MDM, and that CDM led to the best results
in modelling of open-hole specimen. Also, as was mentioned in section 2.1, that family of criteria has
received plenty of attention in current literature and obtained excellent results in the Worldwide Failure
Exercise editions.

The criterion differentiates between 4 different failure modes: matrix cracking, fiber kinking, fiber split-
ting, and fiber tension.

1. Matrix Cracking

This mode is given by the expression

FIM = (
τT

S23 − ηTσn
)2 + (

τL
S12 − ηLσn

)2 + (
⟨σn⟩+

YT
)2, (4.1)

where

σn(α) =
σ2 + σ3

2
+
σ2 − σ3

2
cos 2α+ τ23 sin 2α, (4.2)

τT =
σ3 − σ2

2
sin 2α+ τ23 cos 2α (4.3)

and

τL = τ12 cosα+ τ13 sinα. (4.4)

.

Equation 4.1 is meant to be used for both tension and compression, with ⟨σn⟩+ equal to 0 in
the latter case (when σn < 0). As with Puck, there is a basis on the Mohr-Coulomb hypothesis,
that fracture is only affected by stresses on the fracture plane. A value of FIM higher than 1
indicates failure. It depends on σn, τT and τL, which are the stresses on the fracture plane -
normal, transverse shear and longitudinal shear, respectively. Figure 4.1 illustrates the meaning
of this fracture plane on a lamina.

Those stresses depend on fracture angle α, which is found in an iterative way such that FIM is
maximized. Angles should be tested between 0◦ and 180◦. For pure compression, fracture angle
α0 can be obtained experimentally, and it has been found usually to be between 51◦ and 55 ◦[94].

Friction coefficients ηT and ηL serve to adjust the shear strength to the existing pressure, increas-
ing it in the case of compressive normal traction and decreasing for the tensile case. They are
usually obtained as presented in [97]:
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Figure 4.1: Fracture angle illustration [94].

ηT = − 1

tan(2α0)
(4.5)

and

ηL = −S12 cos(2α0)

YC cos(α0)2
. (4.6)

.

Finally, S23 is a difficult parameter to measure experimentally, and can be calculated [97] as

S23 = YC cos(α0)(sin(α0)− ηT cos(α0)). (4.7)

2. Fiber Kinking and Splitting

The assumption is made that fiber kinking and splitting originate from shear-dominated ”localised
matrix failure next to misaligned fibres” [94]. In the case of fiber kinking, longitudinal compression
then leads to the formation of kink bands and fiber fracture, whereas splitting happens when this
compression is less significant. Since these modes are not expected to be very significant in the
case studies of section 5, for which the loading is uniaxial tension, the process of calculating this
failure index is described in appendix B.

3. Fiber Tension

The fiber tension criteria is simply

FIFT =
⟨σm

1 ⟩+

XT
. (4.8)

4.1.2. Material Degradation Model
The model uses bilinear softening as a gradual MDM, proposed in [95]. The full compliance matrix is
defined as

C =



1
(1−df )E1

− ν21

E2
− ν31

E3

− ν21

E2

1
(1−dm)E2

− ν23

E2

− ν31

E3
− ν23

E2

1
(1−dm)E3

1
(1−dm)G23

1
(1−dm)G12

1
(1−dm)EG13


. (4.9)
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Damage variables df and dm represent fiber and matrix damage respectively and are 0 while corre-
spondent failure indices are smaller than 1. They are obtained by defining a slope between the onset
of damage and failure. To define this slope, equivalent stresses and strains are calculated for each
failure mode, with expressions from [98]:

ϵeq =


√
(⟨ϵ1⟩+)2 + γ212 + γ213 for FFT

⟨−ϵ1⟩+ for FFC√
(⟨ϵ2⟩+)2 + γ212 + γ223 for MFT√
(⟨−ϵ1⟩+)2 + γ212 for MFC

(4.10)

σeq =



⟨σ1⟩+⟨ϵ1⟩++τ12γ12+τ13γ13

ϵeq
for FFT

⟨−σ1⟩+⟨−ϵ1⟩+
ϵeq

for FFC
⟨σ2⟩+⟨ϵ2⟩++τ12γ12+τ23γ23

ϵeq
for MFT

⟨−σ2⟩+⟨−ϵ2⟩++τ12γ12
ϵeq

for MFC

(4.11)

.

The onset equivalent strain and stress ϵeq,0 and σeq,0 are the values calculated with equations 4.10 and
4.11 when the failure indices become 1. Because most likely the failure index will be higher than 1 in
the 1st iteration where damage is predicted, the value can be adjusted by dividing it by the square root
of the failure index (scaling function). At failure completion (maximum damage), the equivalent strain
is obtained with the crack band method developed in [99]:

ϵeq,f = 2
Gc

σeq,0L
. (4.12)

In equation 4.12, Gc is the mode-specific fracture toughness, which can be determined experimentally.
L is the characteristic length of the element, calculated independently of the crack direction, for solid
elements, as

L =

√
V

t
, (4.13)

where V is the volume of the element and t the thickness of the ply. For 2D elements, L is simply√
A. The characteristic length serves to remove some of the mesh refinement dependency of damage

propagation. Finally, each damage variable at a given iteration where the equivalent strain is ϵeq is

d =
ϵeq,f
ϵeq

ϵeq − ϵeq,0
ϵeq,f − ϵeq,0

. (4.14)

Each integration point has a maximum degradation of 1 and its damage is irreversible, meaning d is
always at its maximum value in the simulation so far.

4.1.3. Other considerations
Non-linearity

The analysis must be non-linear to account for both degradation and material behaviour. Degradation
is addressed with the MDM, while the material behaviour is addressed by adjusting the in-plane shear
relation. The Han-Tsai fit of that experimental stress-strain curve

γ12 =
1

G12
τ12 + βτ312 (4.15)

is adopted, through which the shear non-linearity parameter β is obtained with the least squares
method.
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In the context of the established constitutive model, τ12, which is normally obtained (omitting the degra-
dation for simplicity) with

τ12,i+1 = τ12,i +G12∆γ12, (4.16)

becomes

τ12 = τ12,i +
1

1
G12

+ 3βτ212,i
∆γ12. (4.17)

Element Type

The constitutive model and criteria presented in the previous sections can be applied to any element
type. Solid elements are required to obtain the through-thickness stresses, which are used to predict
delaminations. This failure is mode is, however, not addressed in the current CDM. For the case
studies that will be presented in section 5, conventional shell elements are more adequate, since they
significantly reduce the computational cost - reducing the duration of each simulation is key since the
SFEM involves running hundreds at a time.

Specifically, the Abaqus S4 element type, a 4-node, linear, full integration quadrilateral element repre-
sented in figure 3.1, is chosen. Each of the 4 integration points will have different material properties in
the stochastic simulations, and their formulation can easily be combined with the KL implementations
of section 3. Since the test cases will only feature in-plane loading, only 1 layer of integration points
through-thickness is required.

To use solid elements, such as C3D8, a simple correlation can be made with the Q4 element random
field discretization, by considering only in-plane material property variation - integration points with the
same in-plane coordinates have the same properties.

Step size

To maximize the efficiency of the simulations, two maximum step increment sizes are used in different
stages of the analysis. Until damage initiation, a relatively high value can be used, since the only non-
linear effect is that of the in-plane shear, which affects the predicted stresses. After damage initiation,
small increments must be made, since the properties of elements are degraded at each step.

In-situ strengths

In-situ shear and transverse tensile strengths are used as they have been reported to improve the accu-
racy of matrix crack growth prediction. The model, developed by Camanho et al. [100], distinguishes
between embedded and outer plies, as well as thick and thin plies. The thick ply values, which are
lower, serve as a lower bound to the others, so their intersection marks when the transition should be
made.

The in-situ shear strength is given by

S12,IS =

√√
1 + βϕG2

12 − 1

3βG12
, (4.18)

with

ϕ =


12

S2
12

G12
+ 18βS4

12 for thick embedded plies,
48GIIc

πt for thin embedded plies
24GIIc

πt for outer plies.
(4.19)

The in-situ transverse tensile strength is given by
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YT,IS =


1.12

√
2YT for thick embedded plies,√

8GIC

πt∆0
22

for thin embedded plies

1.79
√

GIC

πt∆0
22

for outer plies,
(4.20)

with

∆0
22 = 2(

1

E2
− ν221
E1

). (4.21)

4.2. Input properties and parameters
The SFEM inputs are summarized in table 4.1, which specifies how they may be obtained. These
inputs are for the general 3D case, and some will not be used with 2D element modelling. Transversely
isotropic assumptions mean ν13, G13, G23 and E3 are omitted. However, they are independent random
fields as well, meaning although they have the same stochastic parameters as in the other transverse
direction, the value in a simulation will be different.

Each random property’s mean and standard deviation, which will be the same at every integration
point, is obtained by testing several coupons and assuming a normal distribution fitted to the obtained
values. For some test cases, experimental data may not always be available. Nevertheless, for the
variables referenced with ASTM standard and DIC testing, the latter marks the possibility of informing
the correlation parameters bcX and bcY through DIC data. If not, the correlation can be inferred from
similar cases. Deterministic variables correspond to the material but not necessarily the specimen
being modelled - note that the fracture energies are usually obtained through compact tension and
compression specimen. Otherwise, if no such data is available, they can also be assumed based on
other materials or convergence of the model to the experimental results.

Finally, α0 is assumed as 53◦, which is common practice in literature [101], and β is calculated through
the Han-Tsai fit of the experimental shear stress-strain curve, with the process of determining the re-
maining inputs being described in section 4.3.

4.3. Summary of methodology
The diagram in figure 4.2 describes the workflow of the proposed stochastic method. The steps can
be summarized as follows:

Figure 4.2: Workflow diagram
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Table 4.1: Input variables of the FE model.

Input Random Field (µ + σ) Constant

E1 Experimental (DIC + ASTM)

E2 Experimental (DIC + ASTM)
ν12 Experimental (DIC + ASTM)

ν23 Experimental (ASTM)

G12 Experimental (DIC + ASTM)

XT Experimental (ASTM)

XC Experimental (ASTM)

YT Experimental (ASTM)

YC Experimental (ASTM)
S12 Experimental (ASTM)

α0 Literature (53◦)

GFFT Experimental (ASTM)

GFFC Experimental (ASTM)

GMFT Experimental (ASTM)

GMFC Experimental (ASTM)

β Experimental (curve fitting)

bcX DIC

bcY DIC

M KL error parameters

Nθ Convergence

• Tests/Assumptions
The material is characterized in terms of its properties and their variability. Tests give the mean
and variance of random lamina properties. The additional stochastic inputs are the number of
KL terms M , the correlation parameters bCX and bCY and the number of random cases Nθ. M
is chosen based on its effect on the local and global variance errors, ϵM,σ2

w
and ϵ̄M,σ2

w
. The

correlation parameters are chosen based on their effect on error parameter ϵσs
, which refers to

the spatial standard deviation. To accurately calculate ϵσs
, σs must refer to the same spatial

domain as the target standard deviation, which can be obtained from DIC data. If the FE domain
is different, or the mesh is not uniform, the parameters can be assumed from a similar case.
Nθ must be big enough so that the results converge, so it is informed by prior simulations and
increased in case convergence is not found.

• Generate Random Fields
Nθ random fields, with a chosen 2D geometry, are generated, for each of the random properties,
for each ply of the laminate. The Karhunen-Loève expansion is used to discretize the variables in
each integration point, with either the galerkin solution or the bounding box solution. The latter is
of more practical use, since it doesn’t require an RF mesh, and is significantly faster to compute.
The galerkin solution should be used if non-Gaussian probabilistic distributions better represent
the variables, if a different covariance function is chosen, or for cases where the bounding box en-
compassing the geometry includes too big of a portion that is not part of the FE mesh, excessively
distorting the correlation.

• Transfer properties of a random case to Abaqus
For random case i, the properties are written to a file. This file is read, before the analysis starts,
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through Abaqus subroutine UEXTERNALDB, which is usually used to open external files. In the
first increment, the UMAT subroutine finds the properties of if each integration point by matching
the coordinates with one of the points listed in the file. Only the in-plane coordinates are matched,
so integration points of the same lamina have the same values through thickness. This is then
saved and for the rest of the analysis the properties are read directly.

• Run progressive failure model and write results
The model described in section 4.1 is run. This is a CDM which combines failure initiation ruled
by the Larc05 criteria with bilinear degradation. Python/Abaqus scripting is used to write to a file
the results of the analysis, when it stops converging. Those results are the values at every step
of the damage index at every integration point, as well as of the applied force on the laminate.

• Process results
From the results, the ultimate failure load is retrieved, as the 5% load drop value. The damage
onset load for each mode and ply or integration point is the first value before ultimate failure for
which the damage index is not 0. After this post-processing step, step 3 is resumed for the next
random case.

• Statistical analysis
When data has been obtained for all random cases, statistical post-processing is done. Outliers,
most often cases of non-convergence, are removed. Then several sets of data can be fitted to a
probabilistic distribution. For the ultimate failure values, this consists only of calculating their mean
and standard deviation, in the Gaussian distribution case, or calculating a maximum likelihood
estimate of the parameters for another type of distribution. However, for the failure relating to
each mode, this is not so straightforward.

For a given random case, damage onset occurs on a ply when the sum of the damage indexes
of all its elements is no longer 0. However, due to the stochastic nature of the analysis, the same
type of failure may not occur for all random cases. This is because the simulations’ data goes
until ultimate failure, which will precede some failure modes on some plies. To deal with this,
one possibility would be to remove those cases altogether, but that would artificially increase the
probability of that mode occurring, when the data tells us otherwise.

To include the information from these random cases, their data was taken as right-censored,
meaning the ultimate failure load is the damage onset value when that damage never occurs.
Then a maximum likelihood estimate is done, through functionmle, of the distribution parameters.
This function minimizes the negative loglikelihood function, given by

− log
∏
x∈X

P (x|θ), (4.22)

where

P (x|θ) =

{
f(x) for exactly measured observations,
1− F (x) for right-censored observations,

(4.23)

and f(x) and F(x) are the PDF and CDF, respectively. Note this calculation is not done for failure
modes and plies where damage is never or almost never found, since those values would consist
mostly of right censored data and not be informative.

4.4. Conclusions and Limitations
Section 2.1.2 described the constitutive model of the SFEM, as well as the process of calculating the
Larc05 failure indices and the bilinear degradation damage variables. The UMAT that implements
these equations is available for both solid and shell elements, although the present study will use the
latter. Shear non-linearity and in-situ strengths are also incorporated into the model. The chosen CDM
is expected to predict ultimate failure sufficiently well, but is limited in two main aspects: the matrix
cracking progression it outputs is known to not match what is observed experimentally, with excessive
smearing, and delaminations are not modelled. The first problem could be addressed by, for example,
implementing XFEM-based MFT initation, but this was deemed to costly in the computational sense for
this study. Delaminations may be addressed with the inclusion of cohesive elements/behaviour, but for
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convergence and computational time reasons this was again discarded. In section 5, test cases where
delaminations are not expected to be significant are chosen. Finally, section 4.2 listed 14 random
variables, for which 10 means and standard deviations (in the solid element case) have to be provided
as input. Additionally, 6 parameters are taken as constant for all elements, and 4 stochastic inputs
are obtained based on previously defined error parameters. Section 4.3 showed how the FEM and
the KL expansion are connected in a loop to create the SFEM framework, and detailed the statistical
post-processing, which involves right-censored data considerations.



5
Validating the Stochastic Method

In this section, the stochastic methodology is validated with three test cases. The first test case, ad-
dressed in section 5.1, is a quasi-isotropic laminated plate, made from carbon fiber UD prepreg, in
uniaxial tension. This specific case is based on an experimental campaign from [5], where a SFEM
was already developed and gave good predictions of the ultimate and progressive failure PDFs. DIC
and mechanical test data is available for these specimens, and the probabilistic results are compared
not only with experimental curves but also with variations of sampling methods: KL+LHS+Hashin and
Random MC discretization.

In section 5.2, the more complex case of CFRP specimen in open hole tension, from [96], is modelled.
Stochastic inputs are assumed and results are compared with experiments and the same sampling
method variations. The goal is to check if the method provides acceptable reliability predictions, as
well as acceptable probabilistic predictions of damage initiation and progression around the hole.

In section 5.3, another open-hole tension test is modelled, from [102]. With a lack of data regarding
the variation of material properties in the loaded specimen, the example serves to study the effect of
the correlation and standard deviation stochastic inputs on the results, as well as to understand how
the results may differ from the case of section 5.2 (or confirm the previous conclusions).

For all test cases, a convergence/error analysis of the stochastic parameters (point-wise variance, spa-
tial variance, KL terms and number of random cases) is performed. The deterministic model and results
are then presented, followed by the stochastic ones, and all results are discussed. Finally, section 5.4
covers the main conclusions and points of the present chapter.

5.1. Plate in uniaxial tension - Nastos et. Al
Several quasi-isotropic specimen, manufactured from UD carbon fiber prepreg Hexply F6376C-
HTS(12K)-5%-35% with Autoclave curing, were tested in quasi-static uniaxial tension until failure
by Nastos et al. [5]. Before, lamina properties were obtained through 3 ASTM standard material
characterization tests (0◦, 90◦ and 45◦ laminates in tension), for elastic and shear moduli, on all
in-plane directions, as well as tensile and shear strengths and poisson’s ratio. DIC was used to
quantify the variability of the elastic properties within each specimen. This experimental campaign is
detailed in [5].

The quasi-static tensile testing was conducted with 9 rectangular plates with lamination [(0/90/ ±
45)s]2 and dimensions 250x25x2mm3. The loading was displacement controlled, with a loading rate of
1mm/min. Figure 5.1 shows a specimen after tensile breakage, which is the ultimate or last-ply-failure
(LPF) mode.

5.1.1. Applying the methodology
Tests/Assumptions

52
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Figure 5.1: Quasi-static tensile testing specimen at failure [5].

The material properties for the FE model are taken from these tests [5], [103] and [104], or assumed.
They are listed in table 5.1.

Table 5.1: Material properties of Hexply F6376C-HTS(12K)-5%-35%

Property Mean (standard deviation)

E1 [GPa] 143.7 (18.4)

E2 [GPa] 9.2(2)

ν12 0.37(0.14)

ν23 0.3 (0.1)

G12 [GPa] 5.14 (0.69)

XT [MPa] 2274 (146.9)

XC [MPa] 1849 (140.2)

YT [MPa] 107.6 (9.1)
YC [MPa] 255 (8.85)

S12 [MPa] 96.3 (0.8)

α0 [◦] 53

GFFT [N/mm] 67.1

GFFC [N/mm] 103.1

GMFT [N/mm] 0.25

GMFC [N/mm] 0.8
β [×10−8MPa−3] 3

GIc [N/mm] 0.25

GIIc [N/mm] 1

The bounding box solution of the KL expansion is used to generate the RFs with dr = 0, since for this
case the analytical solution exists for the exact FE domain. The correlation parameters are decided
based on the DIC data. The measuredE1 distributions (figure 5.6) are used to inform those parameters.
They were calculated by obtaining the strains and averaging the calculated values in the 25% to 75%
range.

From averaging the standard deviations at all measured E1 fields, the variable’s target spatial standard
deviation σs is set as 3.5% of the mean, approximately 5GPa. The correlation parameters bcx and bcy
are set as equal, and are varied within a range to find the value that minimizes the error ϵσs

, with Nθ

set as 500. A minimum is found at b = 7.35, as is shown in figure D.1, in appendix D. Note that all
values tested used 40 KL terms (M = 40), which is enough that the global error variance ϵ̄M,σ2

w
has

converged to under 5% for all values of b.

Figure 5.2 shows that with M=40 and b = 7.35 the error is less than 1%. The local error variance ϵM,σ2
w
,

represented in 5.3, is very small even at the peaks, so 40 KL terms will be used in the expansion.
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Figure 5.2: Global error variance ϵ̄M,σ2
w
for different

values of M.
Figure 5.3: Local error variance ϵM,σ2

w
for M=40.

Figure 5.4 shows the convergence of the mean and standard deviation σw at an arbitrary point and 5.5
shows the convergence of σs, all in relation to E1. For Nθ = 300, all statistical moments are stable, and
even for values from around 200, the error is smaller than 2%. A convergence study of the results will
be presented, but Nθ = 200 should be enough to represent the variability of the fields accurately.

Figure 5.4: Convergence of the E1 mean [Pa] and
standard deviation [Pa] at an arbitrary point with increase of

Nθ .

Figure 5.5: Convergence of the E1 σs [Pa] with increase of
Nθ .

Generate Random Fields

Now that all stochastic and deterministic inputs are defined, step 2 of the methodology can be carried
out. 200x10x16 (Nθ X Number of Random Variables X Number of Plies) random fields are generated,
with values at every integration point of the FE mesh. Figure 5.6 shows 4 arbitrarily chosen E1 RFs,
generated with the KL expansion, and 4 distributions obtained with DIC.

FE model

The model described in section 4.1 is run with a mesh of 63 by 6 S4 (conventional) shell elements.
The left side is clamped and displacement loading is applied on the right, with the Y and Z rigid body
motions constrained. The boundary condition representation on Abaqus can be found in appendix D.

The deterministic model is first run, predicting ultimate failure at 41.22kN. First-ply-failure (FPF) is matrix
cracking of the 90◦ plies (MFT), followed slightly after by tensile fiber failure (FFT) of the 0◦ plies, which
corresponds to ultimate failure.

In figure 5.7, the FFT index at the elements of a 0 ◦ ply, before failure, is represented. Evidently, the
ply will fail simultaneously, as the stress is uniform. Figure 5.8 is obtained after running one of the 200
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Figure 5.6: Examples of E1[GPa] distributions obtained with DIC (right) and generated with the KL expansion (left).

stochastic simulations, chosen arbitrarily. As expected, it contrasts with figure 5.7, in the sense that
the index is higher in some parts of the lamina, which will fail first. The E1 distribution of figure 5.9,
for the same ply and random case, closely matches the index distribution, showing the relation in the
stochastic model between the spatial variability of a property and failure.

Figure 5.7: Failure index for fiber tension failure in deterministic model, 0◦ ply.

Figure 5.8: Failure index for fiber tension failure in
stochastic model, arbitrary case and step, 0◦ ply.

Figure 5.9: E1 [MPa] distribution, arbitrary case and step,
0◦ ply.
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5.1.2. Results and Discussion
Different distributions were fitted to the model’s ultimate failure results, as well as to the experimental
failure data, and are compared in figures 5.10 and 5.11 with the empirical CDF.

Figure 5.10: Empirical, Normal, Lognormal, Weibull and
Gamma distributions fitted to experimental failure data.

Figure 5.11: Empirical, Normal, Lognormal, Weibull and
Gamma distributions fitted to the SFEM’s failure data.

The empirical CDF is defined as for the Kolmogorov–Smirnov test, which, in the 1-sample case, is used
to test if a sample (a set of data) came from a given distribution [105]. It is given by

Fn(x) =
1

n

n∑
i=1

1]−∞,x](Xi), (5.1)

meaning that the probability of failure at a given load is the number of failures measured at equal or
lower loads divided by the total number of measurements. The Kolmogorov-Smirnov test was then
used, employing MATLAB’s kstest function, to compare the empirical distribution with the others.

For the experimental distribution, the hypothesis could not be rejected at a 5% significance level with
any of the distributions. Furthermore, the p-value, which evaluates the probability of a sample as
or more extreme than the measured one coming from the distributions, was higher than 0.92 for all
cases. Given the small ammount of experimental measurements, it is clear there is not much difference
between fitted distributions, and the gaussian hypothesis is assumed.

For the model’s ultimate failure results, the hypothesis could again not be rejected for any of the distribu-
tions. However, the p-value for weibull (around 0.6) was lower than for the other distributions. Despite
the difference still being small, the normal distribution is, again, assumed. The complete results of the
Kolmogorv-Smirnov test are presented in table D.1.

Figure 5.12 shows three normal CDFs fitted to the ultimate failure values obtained with three different
stochastic models. For all models, the number of samples was one that guaranteed convergence of
the mean and standard deviation of the dataset.

The proposed method is compared to an identical one that used Hashin failure criteria instead of Larc05
(KL+LHS+Hashin), and to another that, instead of using the KL expansion, generates uncorrelated
RFs without considering a covariance function, independently at each integration point (Random MC +
Larc05). The latter is relevant for its frequent use in literature [23]. The Hashin criteria failure modes
and index expressions are detailed in appendix B. Finally, all methods are compared with the CDF
of a normal distribution fitted to ultimate failure values obtained in the aforementioned experimental
campaign. It is important to note here that this last plot has limited significance, the curve having been
fitted from only 8 values, although the 95% confidence intervals of the statistical moments will be more
useful for comparisons.
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Figure 5.12: Ultimate failure CDFs - normal distributions fitted to the results of proposed method, KL+LHS+Hashin and
Random MC + Larc05 variations, as well as experimental values.

First, the results with the Larc05 (proposed method) and Hashin are similar. This is likely because
the model predicts FFT dominated ultimate failure, slightly preceded by matrix cracking, and the FFT
criterion is similar for both criteria. The difference that is found is caused by variations in MFT initiation,
which have limited impact in ultimate failure values.

The difference between the RandomMCdiscretizationmethod and the KLmethods is notable. Because
each point is attributed a value independently, the variation between random cases is much smaller,
as within each RF the range is always similar. This causes the standard deviation to be very small as
well. Figure 5.13 shows an example of an RF generated with this method. It should be added that
convergence problems were much more common when using this type of RF.

Figure 5.13: RF of E1[Pa] generated with random independent values at each point (Random MC method).

Table 5.2 summarizes the ultimate failure results. It also includes the load values that correspond to a
FPF and LPF reliability of 0.9999 (failure probability of 10−4), calculated by inverting the CDFs. This
reliability value has often been used as a target for aerospace structures [43] [106].

The experimental fit mean is quite different from all models results, being off by around 9kN. Most of
this difference comes from the offset between the deterministic and stochastic means of the model
(6.6kN, or 16%). A possible explanation for the magnitude of this effect is that, since the RFs always
have weak areas, the laminate will fail when those areas of (one of) the 0◦ plies fail. Because failure
in this case is so dominated by those plies, and consequently their E1 and XT distributions, a ”weaker
than average” area will always exist, lowering the mean when compared with the deterministic model.

This effect was also reported in [23]. It would likely be smaller if cases where failure is more localized
or more progressive, in the sense that multiple plies and modes contribute significantly to it. The
discrepancy makes the stochastic models overly conservative, though at the same time it shows how
not considering material uncertainties can be unconservative.
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The KL methods offer good predictions of the standard deviation, within the 95% confidence interval,
and again being slightly conservative. The RandomMCmethod under-predicts it significantly. Between
these two discretization methods, the first one seems to better represent the stochastic nature of com-
posite failure, by using more realistic property distributions that take into account spatial correlation.
On the other hand,the difference between the stochastic predictions of the Hashin and Larc05 criteria
is not significant enough to conclude about their comparable accuracy, as both give similar variance
results.

Regarding the loads corresponding to a reliability of 0.9999, a simple comparison can be made with
the safety factor design approach, assuming it targets the same reliability value. With a safety factor of
1.5, the deterministic model predicts the structure to be safe until 27.48kN, which is overly conservative
when compared to the proposed SFEM prediction. All approaches are conservative when compared
with the experimental value, which is calculated with the lower and upper limit of the 95% confidence
intervals of the mean and standard deviation, respectively.

Table 5.2: SFEM results - Nastos et. Al case study. Values in parenthesis represent the 95% confidence intervals.

Model Mean [kN] Standard Deviation [kN] Load(RFPF=0.9999) [kN] Load(RLPF=0.9999) [kN]

Deterministic model 41.22 - - -

Proposed SFEM 34.62 1.57 22.80 28.77

KL + LHS + Hashin 33.56 1.99 23.35 26.21

Random MC + Larc05 33.13 0.14 22.75 32.62

Experimental fit 43.53 (42.5-44.56) 1.33 (0.9-2.55) - 38.57 (35.92-41.23)

The change in mean and standard deviation of the failure values, obtained with the proposed SFEM,
with increase of Nθ is plotted in figures 5.14 and 5.15.

Figure 5.14: Change in mean [kN] of ultimate failure
probabilistic distributions with increase of the number of

simulations.

Figure 5.15: Change in standard deviation [kN] of ultimate
failure probabilistic distributions with increase of the

number of simulations.

At Nθ ≈ 200, all parameters have changed less than 2% in the past 50 or so iterations, and can be
considered converged - in fact, the results are very stable after 100 simulations.

The CDFs of damage initiation for the predicted failure modes are shown in figure 5.16. For a given
random case, a failure mode has occurred on a ply when there is that damage on at least one element.
In this case, the probability is calculated of damage onset in any ply with a certain fiber orientation.

The same failure modes as the deterministic model are identified. As expected, the 90◦ ply matrix
cracking slightly precedes ultimate failure, and there is a lot of overlap between the two CDFs. This
means that in some cases the failure may be predicted to be only FFT, while in others there may be
extensive MFT damage propagation before LPF - this is not necessarily true however, as there is still
some gap between the two curves, which may mean that in all simulations there was 90◦ failure which
soon after led to ultimate failure.
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Figure 5.16: Damage initiation CDFs - normal distributions fitted to the Larc05 damage mode initiation loads. There is MFT in
the 90◦ plies and FFT in the 0◦ plies.

The same damage initiation can be predicted on an element by element basis, as was explained in
section 4.3. Then, for a chosen failure mode and ply, a 3D plot of the probability throughout the spatial
domain of the specimen can be presented. Figure 5.17 shows this distribution for tensile matrix failure
of the 90◦ plies.

Figure 5.17: Probability of MFT damage in any 90◦ ply at 36kN applied load, throughout the specimen.

The distribution of the probability is close to uniform, averaging around 60%. Compared with the dam-
age onset probability at 36kN, from figure 5.16, it is much lower, since only the weakest parts of the
lamina will fail in each case. Despite this, the plot is almost uniform, since no particular area should
be statistically more prone to MFT, and with enough simulations the elements converge to the same
results. This represents another advantage of the KL+LHS method: accurate local probabilistic results
are not obtained with the Random MC distributions, at least not without an unreasonable number of
simulations.

5.2. Open hole tension - van Dongen et al.
Notched CFRP specimen, made from autoclave curing of AS4/8552 UD prepreg, were tested until fail-
ure in quasi-static tension by van Dongen et al. [96]. Their quasi-isotropic lay-up was [45/−45/0/90]2s
and dimensions 250x25x2.72mm3. The hole had a nominal diameter of 6.35mm and the displacement
rate was 1mm/min.

5.2.1. Applying the methodology
Tests/Assumptions

The material property means for the FE model are taken from [96] or assumed based on results. No
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information exists on the variance of these parameters from specimen to specimen. Due to material,
manufacturing process and specimen geometry similarities, the coefficients of variation (COVs, or ratios
of standard deviation to mean) of the first test case, presented in section 5.1, are assumed. These
inputs are listed in table 5.3.

Table 5.3: Material properties of AS4/8552

Property Mean (standard deviation)

E1 [GPa] 135 (17.3)

E2 [GPa] 9.5(2.13)

ν12 0.32(0.12)

ν23 0.45 (0.15)

G12 [GPa] 4.9 (0.66)

XT [MPa] 2207 (168.5)

XC [MPa] 1531 (116.1)

YT,embedded [MPa] 82 (6.95)

YT,outer [MPa] 96 (8.14)

YC [MPa] 255 (8.85)

S12,embedded [MPa] 111 (0.88)

S12,outer [MPa] 111 (0.88)

α0 [◦] 53

GFFT [N/mm] 36.8

GFFC [N/mm] 80

GMFT [N/mm] 0.1

GMFC [N/mm] 0.4

β [×10−8MPa−3] 3

The remaining stochastic inputs are also kept the same as the previous case study - bcx = bcy = 7.35,
M = 40 and Nθ ≈ 200 (or a smaller number than leads to convergence). The RFs are generated
with the bounding box solution, which due to the specimen width and length will give equal analytical
distributions to those obtained in section 5.1, now discretized in a different mesh.

FE model

The model from section 4.1 is run with a mesh of 1691 S4 shell elements for each lamina. The element
size is smaller near the hole, though even away from the stress concentration it should be limited to
account for the material variations. The model and its boundary conditions are represented in figure
5.18.

The deterministic model is first run, predicting ultimate failure at 27.25kN. The effect of the mesh density
on this value is detailed in table D.2. Matrix cracking in tension first occurs in the 90◦ plies, followed by
the embedded±45◦ degree plies, which have lower in-situ strentghs, and then the 45◦ outer plies. Then
there is FFT damage initiation in the 0◦ plies, which will lead to ultimate failure after several elements
have failed along the net section. Close to that ultimate failure there are a few elements in the ±45◦

plies with FFT damage as well.

The damage pattern of the matrix cracking in the 90◦ plies is shown in figure 5.19. Evidently, this
pattern is constant for every ply with that orientation. It contrasts with the patterns in figures 5.20a and
5.20b, obtained for two different (inner and outer) 90◦ laminae in one of the 200 stochastic simulations.
It is observable that the general failure mechanism is the same, but its extent and specific location
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Figure 5.18: Model and boundary conditions for van Dongen et al. case study [96].

varies with each simulation and lamina - for the outer 90◦ ply, damage has extended beyond that of the
deterministic model, while less elements are damaged in the inner one, mostly in the net section.

Figure 5.19: Progression of matrix tensile failure in 90◦ plies - applied load 27kN, in deterministic model.

(a) Outer 90◦ ply. (b) Inner 90◦ ply.

Figure 5.20: Progression of matrix tensile failure in 90◦ plies - applied load 27kN, in stochastic model, arbitrarily chosen
random case.

5.2.2. Results and Discussion
Based on the Kolmogorov-Smirnov tests of section 5.1, gaussian distributions are assumed for all prob-
abilistic results. In figure 5.21, the converged CDFs of normal distributions fitted to the ultimate failure
values, obtained with the stochastic model and experimentally, are plotted. Only 6 values comprised
the experimental dataset, so this curve has, again, limited significance (although the 95% confidence
intervals are of interest).

There is a very slight decrease of the mean of the stochastic distributions when compared to the deter-
ministic prediction (for the proposed SFEM around 1%). This difference is much smaller than for the
case study of section 5.1. A possible explanation is that failure in this case is much more localized,
meaning low strength areas far away from the hole do not cause failure. This localized failure also
results in a much lower variance of the results (when compared with the unnotched case), which is
also seen in the experimental values.

Table 5.4 lists the ultimate failure results and the load values that correspond to a FPF and LPF reliability
of 0.9999. The standard deviations predicted by the KL methods are within the 95% confidence interval
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Figure 5.21: Ultimate failure CDFs - normal distributions fitted to the results of proposed method, KL+LHS+Hashin and
Random MC + Larc05 variations, as well as experimental values.

and overall those results match well with the experimental dataset. The Random MC + Larc05 model,
however, again under-predicts the variance, being outside of the interval. The different failure criteria,
Hashin (KL+LHS+Hashin) and Larc05 (proposed SFEM), as seen for the previous case study, give
similar results, including in terms of the predicted variance.

Regarding the maximum loads that the structure can see, based on the target reliability of 0.9999, a
similar calculation as in the previous test case can be done. If it is assumed that a safety factor of 1.5
has the same reliability target, the maximum load that can be seen based on the deterministic analysis
is 18.17kN, a value for which the probability of failure would be far smaller than the intended one. On
the other hand, the stochastic methods may be slightly unconservative in this case.

Table 5.4: SFEM results - van Dongen et. Al case study. Values in parenthesis represent the 95% confidence intervals.

Model Mean [kN] Standard Deviation [kN] Load(RFPF=0.9999) [kN] Load(RLPF=0.9999) [kN]

Deterministic model 27.25 - - 18.17

Proposed SFEM 27.00 0.55 6.08 24.94
KL + LHS + Hashin 26.72 0.60 6.47 24.51

Random MC + Larc05 26.63 0.31 6.10 25.47

Experimental fit 26.57 (25.77-27.37) 0.76 (0.47-1.86) - 23.74 (21.81 - 25.70)

Figures 5.22 and 5.23 plot the convergence of the mean and standard deviation of the ultimate failure
probabilistic distribution, obtained with the proposed SFEM method. Convergence is much faster for
this case, with both statistical moments stabilizing after only 40 simulations. Likely, the model variance
being smaller leads to faster convergence.
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Figure 5.22: Change in mean [kN] of ultimate failure
probabilistic distributions with increase of the number of

simulations.

Figure 5.23: Change in standard deviation [kN] of ultimate
failure probabilistic distributions with increase of the

number of simulations.

The CDFs of damage initiation for the predicted failure modes are shown in figure 5.24. In this case,
the probabilities refer to damage initiation in only one of the (outer) plies with each orientation, instead
of any ply with that fiber angle.

Figure 5.24: Damage initiation CDFs - normal distributions fitted to the Larc05 damage mode initiation loads. There is MFT in
all plies, as well as FFT in the 0◦ and ±45◦ plies.

The failure modes are the same as those predicted by the deterministic model, with the exception of
matrix cracking in the 0◦ ply. MFT damage in that ply occurred in only a few elements and a minority
of the simulations, but this is another interesting result that shows how stochastic analysis can differ
from deterministic analysis and better capture the variability of damage modes and initiation values in
CFRP specimen that is also seen in experiments. The curves generally follow the same pattern as
the deterministic model: first 90◦ transverse matrix cracking, then MFT in the −45◦ embedded ply and
damage in the 45◦ outer ply. Ultimate failure is dictated by the 0◦ ply, though damage initiates there, on
average, at 60% of the failure load. At higher loads there is longitudinal fiber failure in the ±45 degree
plies, followed by MFT damage in the 0◦ ply, which almost coincides with ultimate failure.

Finally, integration-point-level probabilistic results are shown in figure 5.25, regarding matrix cracking
in 90◦ plies. MFT is chosen for the plot as the pattern of this failure mode is of most interest, and the
results for the other plies are shown in appendix D (figures D.3 and D.4).

The points where failure is most likely follow the pattern of figure 5.19. Despite the different possible
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Figure 5.25: Probability of MFT in a 90◦ ply with 27kN applied load, throughout the specimen.

responses, like those shown in figures 5.20a and 5.20b, the average of probabilistic results converges
to the pattern obtained with the deterministic model. The SFEM, however, shows the possibility of
failure beyond or short of what is predicted in the deterministic analysis, with the non-zero probability
area extending past the propagation seen in figure 5.19 and the damage likelihood increasing with the
decrease of the distance to the hole.

The pattern predicted by the CDM-based FEM, as expected, does not accurately match the matrix
cracking observed in experiments. Instead of a discrete crack, damage propagates in many directions,
including through the fibers. This damage smearing is a known disadvantage of CDMs [96][107][108].
Nevertheless, the local failure results show the potential of the proposed SFEM for predicting in a probal-
istic way the propagation of damage in a laminate, which with other types of modelling may be used to
obtain accurate predictions of crack growth/size, or even the extent and location of delaminations.

5.3. Open hole tension - Nixon-Pearson et al.
Open hole tensile tests were conducted by Nixon-Pearson et al. on quasi-isotropic CFRP specimen,
with centrally located circular holes. UD carbon fiber-epoxy prepreg system IM7/8552 (Hexcel) was
autoclave-cured, and the nominal cured thickness of the plies is 0.125mm. A first campaign was cov-
ered in [102], where different geometries and types of scaling were tested. Then, in [109], a new
campaign was addressed, which included re-testing some of the previous configurations until failure.

The case study for the SFEM will be the sublaminate-level scaled lay-up [45/90/ − 45/0]2s, for which
the ultimate failure mode was found to be fiber pull-out (hence avoiding the modelling of delaminations).
The specimen’s dimensions were 64x16x2mm3, and the hole diameter 3.175mm. Three batches were
manufactured, with significant variability between the test results of the first batch and the subsequent
ones. No data exists on the specimen to specimen, or batch to batch, material property variation.
Therefore, this example serves to study the effect of different COVs, and correlation parameters, on
the predicted mean and variance of ultimate failure. Additionally, it is used to understand how the
probabilistic curves of each failure mode and the damage progression will change from the case of
section 5.2, which differs in terms of material, lay-up and width to hole diameter ratio.

5.3.1. Applying the methodology
Tests/Assumptions

The material property means are taken from [96] or assumed based on results. As mentioned, no data
exists on the variance of each input. Three different sets of standard deviations will be tested: COV2,
which corresponds to the same coefficients of variations that were used in sections 5.1 and 5.2, COV1,
which halves every COV by 2, and COV3, which doubles every COV. An exception is made for the in-
plane and transverse poisson’s ratios, for which the COV is kept constant. The reason for the change
is that they have little effect on the output of the model, and further increasing their already significantly
high COV led to convergence issues. The inputs of the FE model are listed in table 5.5.

The bounding box solution is again used, due to the computational time advantage. Different correlation
parameters will also be tested, with the standard deviations of COV2. Since previous sections have
used bcx = bcy = 7.35, the two other values chosen are b = 0.735 and b = 0.0735. Note that the COV1



5.3. Open hole tension - Nixon-Pearson et al. 65

Table 5.5: Material properties of IM7/8552

Property Mean COV1[%] COV2[%] COV3[%]

E1 [GPa] 171 6.4 12.8 25.6

E2 [GPa] 9.1 11.25 22.5 45
ν12 0.33 37.5 37.5 37.5

ν23 0.4 33.0 33.0 33.0

G12 [GPa] 5.3 1.25 2.5 5

XT [MPa] 2324 3.8 7.6 15.2

XC [MPa] 1200 3.8 7.6 15.2

YT,embedded [MPa] 160 4.25 8.5 17

YT,outer [MPa] 101 4.25 8.5 17
YC [MPa] 200 5.13 10.25 20.5

S12,embedded [MPa] 130 0.4 0.8 1.6

S12,outer [MPa] 107 0.4 0.8 1.6

α0 [◦] 53 -

GFFT [N/mm] 24 -

GFFC [N/mm] 80 -

GMFT [N/mm] 0.1 -

GMFC [N/mm] 0.3 -
β [×10−8MPa−3] 2.98 -

and COV3 models will use the original values.

As for the other stochastic inputs, M must be defined so that error parameters ϵ̄M,σ2
w
and ϵM,σ2

w
are

small enough in all models. Since the bounding box solution is used, and the analytical domain differs
from the FE domain, the global error is calculated with equation 3.41. The number of KL terms input is
limited by the COV3 and b = 0.0735 case, which maximizes the error for a given M. Figure 5.26 shows
that, even withM = 180, the local error in most of the field is higher than 10%, with ϵ̄M,σ2

w
= 10.2%. The

peaks at the edges are of around 22%. The number of KL terms needed to further reduce these errors
is unreasonable, so M is taken as 180 for the limit case, and as smaller values when the correlation is
higher.

Nθ will be varied to assure convergence for each model, since it is expected that different COVs and
correlation parameters will affect the number of simulations required. Convergence of the mean and
standard deviation ofE1, at an arbitrary point and for the original inputs, and of σs, for all input variations,
is plotted in figures D.5 and D.6.

Generate Random Fields

For each combination of COV and b, Nθ × X 10 X 16 RFs are generated with the bounding box solution
of the KL method. Figure 5.27 shows an example of an E1 RF for each variation. The values to which
σs converges with each set of inputs are also given, to understand how both the correlation and the
COVs affect the variation within a given lamina.

As expected, increased correlation leads to smaller variation within each specimen. This is evidently
also observed when the point-wise standard deviations decrease.

FE model

The model from section 4.1 is run with a mesh of 2878 S4 shell elements for each lamina, again with
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Figure 5.26: Local error variance ϵM,σ2
w
for M=180.

Figure 5.27: Examples of E1[GPa] distributions obtained with with the KL expansion and different correlation parameters and
COVs.

(a) b=0.0735,COV2 - σs −→ 17.5GPa (b) b=0.735,COV2 - σs −→ 15.4GPa (c) b=7.35,COV2 - σs −→ 5.8GPa

(d) b=7.35,COV1 - σs −→ 2.9GPa (e) b=7.35,COV3 - σs −→ 11.5GPa

a much higher density near the hole, where failure is expected to occur. The model and boundary
conditions are represented in figure 5.28.

The deterministic model predicts ultimate failure at 20.475kN. The effect of the mesh density on this
value is detailed in table D.3. Initially there is MFT in the 90◦ plies, followed by FFT in the 0◦ plies. Then
MFT in the outer plies (45◦) and the remaining ±45◦ ones soon after. Finally, closer to LPF there is
simultaneous tensile fiber damage onset in the ±45◦ plies. This damage progression is similar to the
one from section 5.2, with the exception that 0◦ ply FFT precedes matrix tensile damage in the ±45◦

laminae.

The damage pattern of the matrix cracking in the −45◦ plies is shown in figure 5.29. Figures 5.30a
and 5.30b were obtained for two different (inner and outer) −45◦ laminae in one of the 200 stochastic
simulations. Similar conclusions to those of section 5.2 can be made. The damage progression is
similar in all cases: a general tendency for crack growth in the transverse direction to the fibers, with
smearing instead of a discrete crack being formed. Again, it is the extent and specific location of failure
that varies with each simulation and lamina - for the outer 90◦ ply, MFT has extended beyond that of
the deterministic model, while less elements are damaged in the inner one.
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Figure 5.28: Model and boundary conditions for Nixon-Pearson et al. case study (adapted from [96]).

Figure 5.29: Progression of matrix tensile failure in −45◦ plies - applied load 20kN, in deterministic model.

(a) Outer −45◦ ply. (b) Inner −45◦ ply.

Figure 5.30: Progression of matrix tensile failure in -45◦ plies - applied load 20kN, in stochastic model, arbitrarily chosen
random case.

5.3.2. Results and Discussion
All results were assumed to follow gaussian distributions (based on the results of section 5.1). First,
the failure mode CDFs, obtained with the same COVs and b (COV2, b=7.35) as the first two test cases,
are shown in figure 5.31.

The same observations can be made regarding this graph as in section 5.2 - the probabilistic curves of
the damage modes follow the same order as the deterministic results. Another aspect of the plots that
is of interest is the variance of the values for each type of failure. The MFT curves, more influenced
by variables E2 and YT , have the highest standard deviations, which should be expected, since these
material properties have a higher input COV than E1 and XT , which influence FFT. The agreeance of
this aspect of the results with the inputs further validates the proposed SFEM and shows its reliability
in propagating material uncertainties.

For the same stochastic inputs, the spatial distribution of the probability of MFT in a -45◦ ply, with 20kN
of applied load, is plotted in figure 5.32. The equivalent plots for the other plies are shown in appendix
D (figures D.7 and D.8).
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Figure 5.31: Damage initiation CDFs - normal distributions fitted to the Larc05 damage mode initiation loads, obtained with
b=7.35 and COV2. There is MFT in all plies, as well as FFT in the 0◦ and ±45◦ plies.

Figure 5.32: Probability of MFT in a -45◦ ply with 20kN applied load, throughout the specimen.

Comparing this plot to figure 5.25, the elements with higher probabilities of failure are more concen-
trated in one direction. The smearing of the damage also seems to be less extensive than in the
examples shown in figure 5.30, showing that the CDM on average predicts matrix cracking to happen
from the hole and symmetrically, despite different pattern variations in every simulation. The predicted
pattern seems, again, unrealistic, as cracks have been observed experimentally to grow along the
fibers [8].

In figure 5.33, the CDFs of normal distributions, fitted to ultimate failure loads obtained with the three
different sets of COVs, are plotted.

First, as expected, the increase of input standard deviations results in a higher variance of the ultimate
failure results. More interesting is the change of the mean with this same increase. As in sections
5.1 and 5.2, the average of the stochastic model values is lower than the deterministic results. A
higher input variance increases that offset, with the COV3 plot shifting the most to the left. A possible
explanation is that a higher standard deviation exacerbates the effect of low strength areas causing
failure.

In figure 5.34, the CDFs of normal distributions, fitted to ultimate failure loads obtained with the three
different correlation parameter values, are plotted.
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Figure 5.33: Ultimate failure CDFs - normal distributions fitted to the results of proposed method, obtained with three different
sets of COV inputs (listed in table 5.5).

Figure 5.34: Ultimate failure CDFs - normal distributions fitted to the results of proposed method, obtained with three different
correlation parameter inputs (listed in table 5.5).

It can be observed that an increase in correlation leads to an increase in the variance of the results, as
well as a decrease of the mean. The increased variance could have been predicted, since this is the
same effect found in sections 5.1 and 5.2: the random MC fields, which can be thought of as the ”limit
case” of lowering the correlation in the KL expansion (every point is completely uncorrelated), led to
the lowest standard deviation of ultimate failure results in both cases.

Table 5.6 summarizes the ultimate failure results. The change in output standard deviation for each
COV input is almost linear, doubling each time the COVs are doubled. The means, however, decrease
in a less predictable way: -0.6%, -2.17% and -5.16% for COV1, COV2 and COV3, respectively. The
sensitivity to the correlation parameter is much smaller, with a 100x difference decreasing the standard
deviation by only 58%. The experimental values are also presented. While the variance between all
batches is higher than every option presented, which may have been caused by inadvertent changes
in the setups of both experimental campaigns, the one for each batch is quite similar and includes the
COV2 and COV3 results in its confidence interval. This suggests that, with data on material property
uncertainty, it could be possible to approximate the uncertainty of failure values with relative accuracy,
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using the proposed SFEM.

Table 5.6: SFEM results - Nixon-Pearson et. Al case study. Values in parenthesis represent the 95% confidence intervals.

Model Mean [kN] Standard Deviation [kN]
Deterministic model 20.475 -

Proposed SFEM (COV1,b=7.35) 20.36 0.17

Proposed SFEM (COV2,b=7.35) 20.03 0.35

Proposed SFEM (COV3,b=7.35) 19.31 0.68

Proposed SFEM (COV2,b=0.735) 20.07 0.25

Proposed SFEM (COV3,b=0.0735) 20.26 0.15

Experimental fit (all batches) 17.22 (16.48-17.96) 1.34 (0.98-2.12)
Experimental fit (1st batch) 15.98 (15.37-15.69) 0.58 (0.36-1.42)

Experimental fit (2nd batch) 18.77 (18.05-19.50) 0.58 (0.35-1.67)

Experimental fit (3rd batch) 17.14 (16.27-18.01) 0.55 (0.31-2.05)

Figures 5.35 and 5.36 plot the convergence of the mean and standard deviation of the ultimate failure
CDFs, obtained with each set of COVs. Convergence seems to be slower for higher input variances.
However, even for the COV3 results, the standard deviation has converged for around 130 simulations.

Figure 5.35: Change in mean [kN] of ultimate failure
probabilistic distributions with increase of the number of

simulations.

Figure 5.36: Change in standard deviation [kN] of ultimate
failure probabilistic distributions with increase of the

number of simulations.

5.4. Conclusions
In section 4.3, a summary of the steps involved in the proposed SFEM was presented. The two main
parts of that methodology are described in detail in sections 3 and 4.1, with the summary further describ-
ing how they are connected in a loop to generate the stochastic results. The steps of this methodology
were then put into practice with three examples of applications.

In the test case of section 5.1, the sets of ultimate failure results, both experimental and from the
proposed SFEM, were fitted with different probabilistic distributions. It was found that all of them provide
acceptable approximations, with only Weibull having a lower p-level in one of the cases, which means
assuming a Normal distribution is possible and supported by data. The ultimate failure CDFs indicated
that using the KL expansion results in a higher output variance than when correlation is not considered,
which better represents the variance in experimental values. No significant difference existed between
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the Hashin and Larc05 criteria and all stochastic model curves had significantly lower means than the
deterministic model prediction. Finally, convergence was achieved after about 100 simulations, with
the 2D distributions of failure probability converging to an average value, constant in the domain.

In the Van Dongen et al. test case (section 5.2), the Random MC method, where a value is sampled at
each integration point, with no spatial correlation, resulted again in an underestimation of the variance,
unlike the KL expansion methods. On the other hand, Larc05 and Hashin initiation criteria did not affect
the curves significantly. The difference between the mean of the CDFs and the deterministic prediction
was, in this case, smaller. Finally, after only 50 simulations, the results converged, with the spatial
distribution of failure probability converging to the deterministic pattern. Regarding the failure mode
CDFs, the stochastic progression of failure followed the same order as in the deterministic model, with
some added probability of matrix cracking in the 0◦ plies. The failure mode CDFs with the highest
variance were for MFT, since the transverse material properties had the highest input variance.

The last test case helped understand the sensitivity of results to the stochastic inputs. It was found
that increasing the input COVs results in a higher output variance, as well as a lower average failure
load. Increasing the correlation parameters led to a higher output variance, and seemed to also slightly
decrease the mean, although to a lesser extent.

Overall, the proposed methodology resulted in acceptable reliability predictions, which were positively
validated by admittedly limited experimental results. This is especially true regarding the standard de-
viation of the fitted CDFs, while the decrease of the mean in the 1st test case suggests the method
may lead to overly conservative results. It is also true, however, that using the KL expansion to gen-
erate the RFs led to results that much better match the variability that was found in the experimental
campaigns that when correlation was ignored. The damage patterns and progressive failure captured
by the stochastic model matched the inputs and the deterministic models. This again suggests the
proposed methodology is able to capture specimen variability, while still converging, within just a few
hundred simulations, to the average or deterministic results. So despite the CDM predicting damage
patterns that cannot validated by experiments, the stochastic methodology is further validated by the
sound relation between the deterministic and probabilistic results.
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Conclusions and Recommendations

The present study aimed to develop an improved SFEM framework for composite reliability analysis.
The purpose of adding a stochastic nature to FEM failure predictions is to better represent the scatter
commonly observed in experimental results. Model uncertainties are incorporated so that failure is
represented not as a single value, but as a probabilistic curve that could explain the aforementioned
scatter. After the literature study, the framework was defined further: the proposed method was to in-
corporate RFs of material properties, generated with the KL expansion, and LHS, with FEM simulations
being run in Abaqus to generate failure statistics. The KL expansion was expected to improve current
generally applicable methods in the sense that the representation of uncertainties would be more real-
istic, generating RFs that obey a certain covariance function. Additionally, LHS was expected to result
in better efficiency than MC sampling methods. Such a methodology had not before been applied to
complex cases, such as OHT.

In section 3, the RF discretization methodology was explored, with two solutions of the KL expansion be-
ing compared. It was found that, although most literature focuses on the galerkin discretization method,
the simpler approach of taking an analytical solution around the FE mesh can achieve similar results.
Although it may not be ideal for all geometries, this approach seems to work as well as the alternatives
for cases such as a notched laminate, and has the added benefit of simplicity and computational effi-
ciency. However, if different covariance functions are to be implemented, which may be necessary to
model a property with a non-gaussian distribution, the galerkin methodology should be used. Finally,
results showed the faster convergence of sampled values that is obtained when using LHS instead of
MC.

In section 4, the different steps of the SFEM methodology were explained. A CDM approach (imple-
mented through a UMAT subroutine) was chosen, as other, more complicated, modelling techniques
would be too costly in the computational sense. The main limitations of the approach were listed: it
has been found to predict the growth of matrix cracks in an unrealistic way, not respecting fiber-matrix
heterogeneity; it does not model delaminations, which are a significant failure mode in many cases.
In the context of the present study, the CDM was considered a good compromise that would allow
sufficient validation of the stochastic methodology. This validation, was, however, limited to test cases
were delaminations were not found to be significant.

In section 5, the methodology was tested with three case studies. Different probabilistic distributions
were fitted to the ultimate failure loads (experimental and predicted), and it was found that three out
of four distributions (normal, lognormal and gamma) provided equally good approximations. Normal
distributions were then assumed for all test cases. The CDFs resulting from the proposed methodology
were compared with others: the experimental CDF, one obtained with the same methodology but RFs
generated with Random MC sampling at each integration point, and another resulting from the same
methodology but Hashin failure criteria instead of Larc05. It was found that the methods that used the
KL expansion resulted in distributions that were the most similar to the empirical ones. The Random
MCmethod under-predicted the variance for both cases, while the other CDFs had standard deviations
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within the 95% confidence interval. The RandomMC variance was over 10x smaller for a simple plate in
uni-axial tension, and about half of the KL variance for the OHT test case. Despite this, the mean of the
stochastic failure loads was lower than the deterministic prediction, which in the first test case made the
probabilistic predictions overly conservative. Both failure criteria that were tested resulted in acceptable
and similar (within 6% of difference) predictions. Maximum loads, based on a target reliability of 0.9999,
were calculated by inverting each CDF. The maximum load calculated with a safety factor of 1.5 was
shown to be significantly more conservative than the others.

The 3D failure probability plots showed that the stochastic results respond to the inputs in a predictable
way, converging to the same patterns and progression of damage as the deterministic prediction, but in
probabilistic form - the proposed methodology can reliably use a deterministic damagemodel to provide
probabilistic progressive failure predictions.

Different correlation parameters and COVs were tested for a single model, with the following conclu-
sions: an increase in COV leads to a reduction in the average of the stochastic failure loads, while
evidently increasing their standard deviation; an increase in correlation leads to an increase in stan-
dard deviation, and small decrease of the mean. Possible explanations for all these observations were
given. First, when the variance within each RF is high due to less correlation, the variance between dif-
ferent RFs and random cases is smaller. Additionally, the mean of stochastic datasets is always smaller
than the deterministic prediction, since spatial variation causes each lamina to fail at a weaker-than-
average region. This effect is, as should be expected, more significant when failure is less localized
(plate in uni-axial tension test case) and when the variance is higher. Finally, results obtained with the
proposed methodology converge relatively fast (for the test cased within 200 simulations), the speed
increasing with the decrease of the standard deviation.

All these observations showed the very significant impact of material property uncertainty on the reliabil-
ity of the structure, with the input standard deviation having a direct relation with the standard deviation
of the failure CDF. The correlation of the fields was also shown to have a significant impact, especially
on the variance of the stochastic failure loads, which shows the importance of adequately determining
these parameters.

6.1. Answering the Research Questions
The research questions defined in section 2 are now answered directly. First, three sub-questions were
listed that will contribute to answering the main one:

What strategies for generating random fields and obtaining the response can be used to make a gen-
eral-purpose SFEM as computationally efficient and reliable as possible?

General-purpose SFEM implementations, as identified in the Literature Review, are limited to sampling
MC procedures, either random at each point or with random field discretization procedures such as
the KL expansion. The latter option considers spatial correlation of material properties, and this was
shown to have a very significant impact in the results, with up to 13x difference in the output variance
of both methods. The variance predicted with RFs generated with the KL expansion was found to be
closer to the experimental observations, so this strategy can be considered to make the SFEM more
reliable and accurate.

Additionally, LHS was found to be a more efficient sampling strategy than MCS, since the mean and
variance of the sampled random properties at each point converge to their targets faster when LHS is
used. This reduces the number of simulations that the SFEM requires for its results to converge.

What failure criteria give the most accurate results with the SFEM?

Only 2 criteria were tested, Hashin and Larc05, and both gave similar results, within the confidence
intervals of experimental values. Therefore, this question cannot be confidently answered based on
the present work. However, results suggest the stochastic inputs and methodology have a larger effect
on the SFEM output than the failure criterion itself, which may mean the latter can be chosen based on
deterministic FEM considerations.

How do the experimental results compare with the SFEM predictions?
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Even with often limited information on the stochastic inputs, SFEM results generally compared well with
experiments, especially in terms of the standard deviation, which was found in most cases to be within
the 95% confidence interval of the experimental value. The deterministic FEM, which was not the focus
of the project, also gave good approximations of the average of ultimate failure values, although it was
often unconservative. The mean of the SFEM results is always smaller than the deterministic output,
which in one of the cases led to overly conservative predictions. Both the correlation parameters and
input variance were found to have significant impact in the mean of stochastic results.

So, finally:

Towhat extent can the SFEMbe used to predict the reliability and probabilistic damage evolution
of composite laminates with geometric details and spatially varying properties?

The proposed stochastic methodology shows great potential for reliability analysis of composite struc-
tures, including applications of complex analysis such as the OHT case. First, its ultimate failure and
reliability results more often than not agreed well with experiments, capturing the experimental variabil-
ity with good accuracy. Secondly, the SFEM was shown to be able to predict maximum loads based on
a target reliability, for both FPF and LPF, with these loads being less conservative than those obtained
with a safety factor design strategy. Thirdly, it showed better accuracy and efficiency than other existing
implementations, with convergence requiring less than 100 simulations in some cases, depending on
the specimen and input COVs. In fourth place, its non-intrusive nature and generic formulations makes
it very practical and user-friendly, with the deterministic FEM component being interchangeable with
any software or alternative modelling strategies.

Finally, results suggest a methodology such as the one presented can reliably be used to predict
element-by-element and ply-by-ply damage evolution in a progressive way, based on a determinis-
tic damage model. This means that, depending on the accuracy of the deterministic model, the SFEM
could be used to understand how different mechanisms, such as matrix cracking or delaminations,
occur throughout a specimen in a stochastic way.

However, some limitations still exist. Depending on the application, the results may still be too conser-
vative, and so adjustments, for example to the correlation parameter calculations, may be necessary
to guarantee this does not occur. Additionally, the deterministic FEM component as presented in this
study leads to unrealistic damage patterns and often unconservative predictions, so validation of the
methodology with improved strategies is suggested.

6.2. Recommendations for future work
The following lines of research are recommend for future work on this topic:

• Further validation of proposed SFEM methodology: the framework was tested with only two
different types of laminate, so other, more complex quasi-static load cases and 2D geometries
could be assessed; a more extensive experimental campaign, to obtain both the stochastic in-
puts and failure CDFs with high degrees of certainty, is needed for true validation; other types
of uncertainty modelling should be tested, including different probabilistic distributions, different
random variables related to geometry and loading, and epistemic uncertainty considerations.

• Extending framework to other types of loading: besides quasi-static, other types of analysis
could be performed, such as fatigue or dynamic.

• Extending framework to 3D geometries: currently the method and code implementation are
only applicable to 2D geometries, but several cases of interest for reliability analysis require an
extension of the KL implementation, such as stiffened panels.

• Developing a surrogate model: the proposed methodology will likely by unfeasible for meshes
with a very large number of elements, or for a laminate with a large number number of plies, due
to the excessive computational time; a surrogate model that can replace the FEM solver after
only a few simulations would solve this issue, although it could be complex to integrate it with a
progressive damage model.
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A
Constitutive Models

Themost widely used 3D constitutive model for composite laminates is presented below, where a single
ply (unidirectional or fabric) is modelled as an orthotropic material (two planes of symmetry) [6].


ϵ1
ϵ2
ϵ3
γ23
γ13
γ12

 =



1
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E1

−ν23

E2

1
E3

1
G23

1
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1
G12




σ1
σ2
σ3
τ23
τ13
τ12

 (A.1)

The model is better understood with the diagram presented in figure A.1, where direction 1 is always
aligned with the fiber reinforcement direction, since this is the local reference system.

Figure A.1: Stresses on orthotropic lamina, adapted from [110].

The model has 9 independent material properties: Young’s Modulus in 3 directions (E1, E2, E3), Shear
Modulus (G23, G13, G12) and Poisson’s ratios (ν12, ν13, ν23). These are often reduced to five under
transversely isotropic assumptions (properties are the same in y and z directions). Under those as-
sumptions, E3 = E2, ν13 = ν12, G13 = G12 and G23 = E3/(2(1 + ν23)).

For structures where out-of-plane stresses are not significant, usually for thin plates, where one dimen-
sion is much smaller than the others, the model is commonly reduced to

84



85

 ϵ1ϵ2
γ12

 =

 1
E1

−ν21

E2
1
E1

−ν21

E2
1

G12

σ1σ2
τ12

 . (A.2)

This simplified model is significantly less computationally expensive, and therefore is frequently used,
for example in CLT.



B
Failure criteria

B.1. Larc05
The Fiber Kinking and Splitting failure index is presented below [94], while other failure modes are
addressed in section 4.1.

Fiber Kinking and Splitting

The same expression is used for both compressive failure modes, with the distinction coming from the
magnitude of σ1:

FISplit = FIKink = (
τm23

S23 − ηTσm
2

)2 + (
τm12

S12 − ηLσm
2

)2 + (
⟨σm

2 ⟩+

YT
)2, (B.1)

indicating fibre kinking for σ1 ≤ −XC/2 and fibre splitting for σ1 > XC/2. Similarly to the matrix
criterion, the stresses in the expression τm23, τm12 and ⟨σm

2 ⟩+ refer to the transverse shear, in-plane shear
and transverse in-plane normal stresses in the misalignment frame. This frame is always found in the
kink band plane, as is illustrated in figure B.1.

Figure B.1: Physical model for kink-band formation [94].

The stresses in the kink plane are given by
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σΨ
2 = cos(Ψ)2σ2 + sin(Ψ)2σ3 + 2 sin(Ψ) cos(Ψ)τ23, (B.2)

τΨ12 = τ12 cos(ψ) + τ31 sin(Ψ), (B.3)

τΨ31 = τ31 cos(ψ)− τ12 sin(Ψ) (B.4)

and

τΨ23 = sin(ψ) cos(ψ)(σ3 − σ2) + (cos(ψ)2)− sin(ψ2))τ23. (B.5)

The stresses in the misalignment frame are given by

σm
2 = sin(φ)2σ1 + cos(φ)2σΨ

2 − 2 sin(φ) cos(φ)τΨ12, (B.6)

τm12 = − sin(φ) cos(φ)σ1 + sin(φ) cos(φ)σΨ
2 + (cos(φ)2 − sin(φ)2)τΨ12 (B.7)

and

τm23 = τΨ23 cos(φ)− τΨ31 sin(φ). (B.8)

The kink plane rotation angle Ψ is the one that maximizes the failure index. The misalignment angle φ
is calculated with

φ = sgn(τΨ12)φ0 + γm0 , (B.9)

where γm0 is the shear strain given by

γm0 = τm0 /G12. (B.10)

In the above expression, τm0 is the shear stress calculated with equation B.7 and the initial misalignment
angle φ0. The initial misalignment angle can be calculated with equation

φ0 =
τ12 + (G12 −XC)φC

G12 + σ1 − σ2
, (B.11)

where

φC = arctan(
1−

√
1− 4(S12/XC + ηL)(S12/XC)

2(S12XC + ηL
). (B.12)

B.2. Hashin
The failure indices of the Hashin criteria are calculated as follows [111]:

MFT

FIMFT =
(σ2 + σ3)

2

Y 2
T

+
τ212 + τ213
S2
12

+
τ223 − σ2σ3

S2
23

(B.13)

MFC
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FIMFC =
1

YC
[(
YC
2S23

)2 − 1](σ2 + σ3) +
1

4S2
23

(σ2 + σ3)
2 +

1

S2
23

(τ223 − σ2σ3) +
1

S2
12

(τ212 + τ213) (B.14)

FFT

FIFFT = (
σ1
XT

)2 +
1

S2
12

(τ212 + τ213) (B.15)

FFC

FIFFC = |σ1| −XC (B.16)



C
UMAT subroutine

Figure C.1 shows an overview of the working steps of the UMAT subroutine. Note that viscous regular-
ization is not applicable to models that apply the bilinear degradation MDM.

Figure C.1: UMAT overview [96]
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D
Additional figures/tables from case

studies

This appendix includes figures and tables that are referenced/explained but not presented in the main
part of the report.

D.1. Plate in uniaxial tension - Nastos et al.

Figure D.1: Error parameter ϵσs for different values of bcx = bcy , with target value of 5GPa.

Figure D.2: FE model with boundary conditions.
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Table D.1: Kolmogorv-Smirnov test results - Test=1 means the hypothesis that the dataset came from a given distribution is not
rejected at that significance level.

Experimental set Model results

Test (5% significance) p-level Test (5% significance) p-level

Normal 1 0.94 1 0.99

Lognormal 1 0.93 1 0.92

Weibull 1 0.99 1 0.60

Gamma 1 0.99 1 0.96

D.2. Open-hole tension - van Dongen et al.
Table D.2: Effect of mesh size on deterministic model predictions (384, 1691 and 4832 elements).

Predicted [kN] Discrepancy to previous [%]
rough mesh 24.57 -
fine mesh 27.25 10.9%

very fine mesh 27.81 2.0%

Figure D.3: Probability of MFT in a 45◦ ply with 27kN applied load, throughout the specimen.

Figure D.4: Probability of MFT in a -45◦ ply with 27kN applied load, throughout the specimen.
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D.3. Open-hole tension - Nixon-Pearson et al.

Figure D.5: Convergence of the E1 mean [Pa] and standard deviation [Pa] at an arbitrary point with increase of Nθ .

(a) b=0.0735,COV2 - σs −→ 17.5GPa (b) b=0.735,COV2 - σs −→ 15.4GPa (c) b=7.35,COV2 - σs −→ 5.8GPa

(d) b=7.35,COV1 - σs −→ 2.9GPa (e) b=7.35,COV3 - σs −→ 11.5GPa

Figure D.6: Convergence of the E1 σs [Pa] with increase of Nθ , with different correlation parameters and COVs.

Table D.3: Effect of mesh size on deterministic model predictions (648, 2878 and 4724 elements).

Predicted [kN] Discrepancy to previous [%]
rough mesh 16.53 -
fine mesh 20.475 19.2%

very fine mesh 21.24 3.73%
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Figure D.7: Probability of MFT in a 45◦ ply with 20kN applied load, throughout the specimen.

Figure D.8: Probability of MFT in a 90◦ ply with 20kN applied load, throughout the specimen.
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