
PARALLEL ALGORITHMS FOR SOLVING
SYSTEMS OF LINEAR EQUATIONS AND
THEIR MAPPING ON SYSTOLIC ARRAYS

K. JAINANDUNSING
TR diss
1696

PARALLEL ALGORITHMS FOR SOLVING
SYSTEMS OF LINEAR EQUATIONS AND
THEIR MAPPING ON SYSTOLIC ARRAYS

PARALLEL ALGORITHMS FOR SOLVING
SYSTEMS OF LINEAR EQUATIONS AND
THEIR MAPPING ON SYSTOLIC ARRAYS

Proefschrift
ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag
van de Rector Magnificus, prof.drs. P.A. Schenck, in het openbaar te verdedigen ten
overstaan van een commissie aangewezen door het College van Dekanen op dinsdag 3
januari 1989 te 14.00 uur

door

K. JAINANDUNSING

geboren te Paramaribo
electrotechnisch ingenieur

TR diss
1696

Dit proefschrift is goedgekeurd door de promotor
prof.dr.ir. P. Dewilde

- To my parents -

CONTENTS

PREFACE iii
SUMMARY vii

1. INTRODUCTION 1
1.1 SOLVING SYSTEMS OF LINEAR EQUATIONS : DIRECT METHODS AND

SYSTOLIC ARRAYS 1
1.2 MAPPING REGULAR RECURRENT ALGORITHMS TO SYSTOLIC

ARRAYS 12

2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS FOR SOLVING SYSTEMS OF
LINEAR EQUATIONS 29
2.1 FEED FORWARD COMPUTATION OF x = / l - 1 b 29
2.2 THE CLASS OF FEED FORWARD ALGORITHMS 34
2.3 NUMERICAL STABILITY OF THE ALGORITHMS 50
2.4 SEMI-DIRECT NATURE OF THE GENERALIZED SCHUR ALGORITHM 54
2.5 GENERALIZATIONS OF THE FEED FORWARD METHODS 59

3. MAPPING REGULAR RECURRENT ALGORITHMS TO FIXED SIZE SYSTOLIC
ARRAYS 65
3.1 TESSELLATION OF FULL SIZE ARRAYS 66
3.2 STRATEGY I : LOCAL PARALLEL, GLOBAL PIPELINED

PARTITIONING 69
3.3 STRATEGY II: LOCAL SEQUENTIAL, GLOBAL PARALLEL

PARTITIONING 81

4. DESIGN OF A SYSTOLIC ARRAY FOR SOLVING SYSTEMS OF LINEAR
EQUATIONS 105
4.1 INTRODUCTION 105
4.2 FEED FORWARD SOLVERS 107
4.3 FULL SIZE SYSTOLIC ARRAYS FOR THE QR AND SC SOLVER 118
4.4 FIXED SIZE SYSTOLIC ARRAYS FOR THE QR AND SC SOLVER 122
4.5 DESIGN OF A HOUSEHOLDER PROCESSOR ELEMENT 129

5. CONCLUSIONS 141
APPENDIX A 143
APPENDIX B 147
APPENDIX C 153
APPENDIX D 159
CONVENTIONS, SYMBOLS AND DEFINITIONS 169
REFERENCES 173
SAMENVATTING 181
ABOUT THE AUTHOR 185

PREFACE

The research presented in this thesis has three points of focus. The first is the
development of algorithms for solving systems of linear equations with a maximum
degree of parallelism and pipelining. The second is the development of partitioning stra­
tegies for the design of systolic arrays with the number of processor elements indepen­
dent of the size of the problem. And the last is the synthesis of a concrete systolic array,
with a fixed number of processor elements, for the algorithms developed.

The thesis has the following outline. Chapter 1 is introductory. It is divided in two
main sections. Section 1.1 starts by summarizing the conventional direct methods for
solving systems of linear equations. It is shown that a systolic implementation of feed
forward direct methods such as Faddeev's execute almost twice as fast than a systolic
implementation of direct methods with backsubstitution. The backsubstitution is
identified as the bottleneck in such systolic implementations. Unfortunately, Faddeev's
feed forward direct method needs pivoting to be numerically stable, while pivoting is
hard to implement on a systolic array. The.problems discussed in this section form the
motivation for the development of the feed forward direct methods of Chapter 2. Sec­
tion 1.2 starts by summarizing the basic concepts of mapping a regular recurrent algo­
rithm on a full size systolic array. That is, an array with the number of processor ele­
ments proportional to the size of the problem. Next, it continues with the introduction of
partitioning strategies for full size systolic arrays. Application of these strategies results
in reduced size systolic arrays. That is, systolic arrays with a fixed number of processor
elements, independent of the size of the problem.

Chapter 2 presents a class of feed forward direct methods for solving non singular
systems of linear equations. These methods obtain the solution x of /4x = b, A e RNxN,
b e RNxl, through combination of an LU, LQ or LL' factorization of the matrix A and

IV

an updating or downdating of the Cholesky factorization of the matrix LL' + bb' or
LL' — bb', respectively, or an LU factorization of the matrix [L —b]'. The matrix L is the
lower triangular factor in either of the three factorizations of the matrix A. Section 2.1
explains how the solution x is computed from the up- or downdating of the Cholesky fac­
torization or from the LU factorization of the matrix [L -b] ' . Section 2.2 shows how an
LU, QR or LL' factorization of the coefficient matrix is combined with the methods in
Section 2.1, so that a class of feed forward direct methods is obtained. These methods
compute the solution of a non singular system of linear equations by a single factoriza­
tion. Thus the backsubstitution bottleneck is avoided in systolic implementations. The
class contains a feed forward direct method which uses only orthogonal transformations
as elementary operations. Hence, the method is stable for the general class of non singu­
lar systems of linear equations, unlike Faddeev's feed forward direct method (without
(partial) pivoting). Section 2.3 presents a numerical analysis of the feed forward methods
of Section 2.2. Section 2.4 shows that the method which combines an LL' factorization
of the coefficient matrix with a downdating of a Cholesky factorization is in fact a semi-
direct method. Section 2.5 explains how theonethods of Section 2.2 can be generalized to
perform computations of the kind C4_1 B + D, where the matrices A, B, C and D are of
proper dimensions and value. This generalization is similar to the extension of Faddeev's
feed forward direct method.

Chapter 3 presents the LPGP and LSGP partitioning strategies to partition a full size
systolic array into a reduced size systolic array. In an LPGP (local-parallel-global-
pipelined) partitioning of a full size array the array is tessellated into congruent tiles of,
say, p processor elements each. The computations of different tiles are executed in pipe­
line on the reduced size array, which has p processor elements and the same interconnec­
tion topology as the full size array. In an LSGP (local-sequential-global-parallel) parti­
tioning of a full size systolic array the array is again tessellated into congruent tiles of p
processor elements each. But, in this case the processor elements in a tile are replaced by
a single processor element in the reduced size array. This processor element executes the
tasks of the p processor elements in sequence. In general the reduced size systolic array
has a different interconnection topology than the full size array. Section 3.1 presents the

V

tessellation of a full size systolic array. Section 3.2 presents the LPGP partitioning stra­
tegy and Section 3.3 presents the LSGP partitioning strategy.

Chapter 4 presents the design of a reduced size systolic array for two of the feed for­
ward direct methods of Section 2.2. The purpose of this chapter is to illustrate the design
of a practical reduced size systolic array for these two methods. Section 4.1 introduces
the design constraints. Section 4.2 summarizes the two methods in terms of orthogonal
and hyperbolic Householder transformations. Section 4.3 illustrates the design of full size
systolic arrays for these methods. Section 4.4 illustrates the LPGP partitioning of the full
size systolic arrays of Section 4.3 and their unification into a single reduced size array.
Section 4.5 presents the architecture of a Householder processor element of the reduced
size array. The architecture is .that of an innerproduct-step processor, which serializes the
computation of a Householder transformation of a vector.

Finally, Chapter 5 contains the conclusions of the thesis :

1. systolic implementations of the feed forward direct methods execute roughly twice
as fast as systolic implementations of the direct methods with factorization and
backsubstitution;

2. the class of feed forward direct methods contains a method which is numerically
robust and stable without (partial) pivoting; for the complete set of non singular
systems of linear equations;

3. it is possible to design systolic arrays for which the I/O bandwidth is closely
matched to that of devices attached to the inputs and outputs of the systolic array
or for which the number of processor elements is independent of the size of the
problem that has to be executed on the array or both;

4. systolic arrays can be designed which execute more than one algorithm, with a
minimum of control overhead.

VI

I am greatly indebted to Dr.Ir. E.F. Deprettere for his professional advise and gui­
dance in solving the problems I encountered during my Ph.D. research.
Dr.Ir. E.F. Deprettere was my main source of stimuli in understanding these problems. I
would also like to thank him for his sincere friendship in the past 4 years.and his pati­
ence, while reading the preliminary drafts of the thesis.

Delft, K. Jainandunsing
October 1988

Vll

SUMMARY

SYSTEMS OF LINEAR EQUATIONS

Conventional direct methods for solving systems of linear equations consist of either
a factorization of the coefficient matrix followed by a backsubstitution [Golul983], or of
a factorization of an augmented matrix [Faddl959]. None of the two classes provide
good solutions for implementations on systolic arrays. Methods of the first class are
sequential in nature. I.e., the factorization of the coefficient matrix has to be completed
before the backsubstitution can be done. This obstructs the acceleration of such direct
methods when implemented on a systolic array.

A method of the second class is due to Faddeev [Faddl959]. It computes the solution
from a single LU factorization of an augmented matrix. This method, and feed forward
direct methods in general, do not require a backsubstitution step. Therefore, highly paral­
lel implementations on systolic arrays are possible. However, the LU factorization
without (partial) pivoting is in general not numerically stable. Unfortunately, (partial)
pivoting is hard to implement on an array where the length of interconnections between
processors is independent of the size of the array, as is the case for systolic arrays. In this
thesis feed forward direct methods are studied which rephrase the backsubstitution in
terms of an updating or downdating of a Cholesky factorization, or in terms of an LU
factorization. Combining this with an LU, LQ or LL' factorization of the coefficient
matrix A yields a whole class of feed forward direct methods, which do not suffer from
the backsubstitution bottleneck. One of these algorithms uses only orthogonal transfor­
mations as elementary operations and is therefore numerically stable for the general class
of non singular systems of linear equations. The feed forward direct methods that are
presented here have simple and highly parallel systolic implementations.

Vlll

SYSTOLIC IMPLEMENTATION

A systolic array is defined here (see also [Raol985] or [Raol988]) to be an array of
synchronously operating processor elements which are interconnected in a regular mesh
with interconnections of length independent of the size of the array. Their regular topol­
ogy is a desirable feature for area-efficient VLSI implementations and the absence of
interconnections of arbitrary length eliminates communication delays which depend on
the size of the array. Due to the massive parallelism of systolic arrays, systolic imple­
mentations of computationally intensive algorithms are given much attention. Most
matrix-based signal processing algorithms, including the ones presented in this thesis,
can be expressed as regular recurrent algorithms (see for instance [Ungel958],
[McC11959], [Ahmel982], [Deprl982], [Fortl985], [Delol986], [Jainl986a]). Such
algorithms can be automatically mapped to full size systolic arrays ([Moldl983],
[Raol985], [Frisl986], [Raol988]). However, since the number of processor elements in
a full size systolic array increases whenever the size of the problem grows, it is important
to know how to partition large problems so that they can be executed on a systolic array
with a small number of processor elements [Helll985], [Moldl986], [Horil987],
[Nelil988].

Two strategies are developed in this thesis to partition a full size systolic array into a
reduced size systolic array. The LPGP (local-parallel-global-pipelined) partitioning stra­
tegy tessellates the full size systolic array into congruent tiles of, say, p processor ele­
ments each. The computations of different tiles are executed in pipeline on a reduced
size systolic array of/? processor elements which has the same interconnection topology
as the full size systolic array. The LSGP (local-sequential-global-parallel) partitioning
strategy also tessellates the full size array into congruent tiles of, say, p processor ele­
ments each. The processor elements in a tile are replaced by a single processor element
which executes the tasks of these processor elements in sequence. In this case the topol­
ogy of the reduced size array is different from that of the full size systolic array. The
LPGP partitioning keeps all memory for intermediate results outside the reduced size
array. The LSGP partitioning causes local memory to increase, and reduces the I/O

IX

bandwidth of the processor elements. Combining the two strategies results in array
designs in which the number of processor elements is independent of the size of the prob­
lem and which have an I/O communication bandwidth which matches that of attached
peripheral devices (such as disks, a host computer, etc.) as close as possible.

SYSTOLIC ARRAY DESIGN

The partitioning theory is applied to the design of a reduced size systolic array for
two feed forward methods; 1) the method consisting of a combination of an LQ factori­
zation of the coefficient matrix A and an updating of a Cholesky factorization and 2) the
method consisting of an LL' factorization of the coefficient matrix A and a downdating
of a Cholesky factorization. This application illustrates the practical use of the partition­
ing theory for designing reduced size systolic arrays. The two methods are stated in terms
of orthogonal and hyperbolic Householder transformations, respectively. A processor ele­
ment of the reduced size array is implemented as an innerproduct-step processor, which
serializes the computation of a Householder transformation of a vector.

1

1. INTRODUCTION

1.1 SOLVING SYSTEMS OF LINEAR EQUATIONS : DIRECT METHODS AND
SYSTOLIC IMPLEMENTATIONS

Non singular systems of linear equations A x = b can be solved by iterative, direct or
semi-direct methods. The iterative methods, like the Jacobi and the Gauss-Seidel method
[Golul983], improve iteratively on an initial guess xo of the solution vector. The direct
methods, on the other hand, use matrix factorization (and backsubstitution) to obtain the
solution directly. Semi-direct methods, like the conjugate gradient method [Golul983],
obtain the solution by computing the minimum of the quadratic functional
/ (x) = Vix'A x - x' b, which is reached for x = A _1b. Theoretically the conjugate gradient
method computes the minimum in a finite number of steps. However, the method is itera­
tive in practice, due to roundoff errors and an error criterion is needed to halt the solution
process.

The iterative and semi-direct methods do not change the coefficient matrix during the
iterations. If the matrix is sparse, no fill-ins are created and the data can be efficiently
stored in the (main) memory of the computer, even if the matrix is very large. Therefore,
these methods play an important role in the solution of very large and sparse systems of
linear equations.

The direct methods do create fill-ins in a sparse coefficient matrix, since factors of a
sparse matrix are generally not sparse. These methods are more suited for solving dense
systems of linear equations and no error criterion is needed to terminate the solution pro­
cess.

2 I. INTRODUCTION

1.1.1 DIRECT METHODS

The direct methods for solving non-singular systems of linear equations, A x = b
(A E R W x A \ b e R ") , can be divided in two classes :

1. direct methods with backsubstitution;

2. feed forward direct methods.

We shall give a quick presentation of these two classes.

DIRECT METHODS WITH BACKSUBSTITUTION

These methods compute either an LU, QR or LL' (Cholesky) factorization of the
matrix A, followed by a backsubstitution step. Let us denote by X' either the lower tri­
angular factor in an LU factorization, the orthogonal factor Q, in a QR factorization, or
the lower triangular factor L, in an LL' factorization and let us denote by Rx the
corresponding upper triangular factor for each of these cases. Then, we can summarize
the direct methods with backsubstitution as follows :

A =X'RX, (1.1-a)

y=X- 'b , (l.l.b)

x=Rx1y. (l.l.c)

Computation of the factorizations is done by using either embeddings of elementary 2x2
transformations or Householder transformations [Golul983]. The discussion of factoriza­
tions with Householder transformations is deferred to Chapter 4. In case of an LU factor­
ization the 2x2 transformations are of the form :

1.1. Solving systems of linear equations 3

1 0
a 1 , a e R .

In case of a QR factorization they are of the form:

cos (a) -sin (a)
sin (a) cos (a) , a e R .

And, in case of an LL' factorization they are of the form :

, a e R. cosh (a) sinhia)
sink (a) cosh(a)

Remark : The hyperbolic transformations are used in Schur-Cholesky LL' factorization
algorithms (see Section 2.2 and [Dewil981], [Deprl982] and [Delol984]). These algo­
rithms are less known than the Cholesky factorization algorithm as found in [Golul983].
For the Schur-Cholesky LL' factorization algorithms it has been illustrated that they can
be mapped onto highly parallel systolic arrays of processor elements (see for instance
[Ahmel982] and [Delol986]).

The three types of elementary transformations can be represented by the following
parameterized form [Walt 1971] :

0(/n ;a) = cos (m 1/4a) -m ^sin (m 1/4a)
m ~'Asin (m 1/4a) cos (m 1/4a) , m e {0,1-1}. (1.2)

Case m =0, m = 1 and m ■=-! are known as the so-called linear (Gauss), orthogonal
(Givens) and hyperbolic (Minkowsky) rotation, respectively. The matrix 0(m;a) is
orthogonal with respect to the following signature matrix :

S(m) =
1 0
0 m (1.3)

That is,

& (m ;a)S (m)@{m ;a) = 5 (m) (1.4.a)

4 1. INTRODUCTION

and for m = ±1 we also have :

0(m ;a)5 (m)0'(m ;a) = S (m). (1.4.b)

Property (1.4.a) is referred to as S (m)-orthogonality of 0(m ;cc), or just orthogonality in
casern = 1.

A QR or LU factorization is obtained by premultiplication of the matrix A by embed-
dings of the 2x2 orthogonal or linear rotations (/w=l or 0, respectively) of the following
form :

©;,(m) =

O O

cos (m 'A a,;,) -m '''sin (m wa;y) •
1

0

■m ^sinim^aij)-

O

O

1
cos(m'A(Xij)

1

(1.5)

For the appropriate choice of <X;;-, premultiplication by ®ij(m) eliminates the entry atj of

A. The product I~[0,;(O), where the pairs (i,j) are such that all elements in the strictly
i.j

lower triangular part of the matrix A are eliminated, is a lower triangular matrix which is
the inverse of the lower triangular factor L in the LU factorization of the matrix A. The

<-
product n©;y(l), where the pairs (i,j) are the same as in the case of the LU

1.1. Solving systems of linear equations 5

factorization, is an orthogonal matrix which is the inverse of the orthogonal factor Q in
the QR factorization of the matrix A. The LU factorization of indefinite matrices is
numerically unstable without (partial) pivoting [Golul983]. A small entry on the diago­
nal of the matrix A will blow up certain coefficients a(; in (1.5). This is impossible for
the QR factorization, since the absolute value of the sine and cosine function is bounded
by 1.

The use of hyperbolic rotations is restricted to the case where an LL' factorization of
the matrix A is computed. That is, in case A is symmetric positive definite. We defer the
discussion of computing Cholesky factors by means of hyperbolic rotations to Chapter 2.

FEED FORWARD DIRECT METHODS

A not too well known feed forward direct method is due to Faddeev [Faddl959]. This
method avoids an explicit backsubstitution step and obtains the solution from a single
LU factorization of an augmented matrix. In fact, it was this method that motivated the
search for the algorithms that will be considered in Chapter 2. Faddeev's method is stated
in the following proposition.

Proposition 1.1 :

Let A e RWx/v be a non singular matrix and be R " . Let L e R2tfx2N be the

inverse of the lower triangular factor of the LU factorization of the augmented matrix
[A' I -INY and let [R' I O]' be the corresponding upper triangular factor, R e WLNyN.
Then, the solution x of the system of linear equations A x = b satisfies the following equa­
tion :

A b
-IN 0 =

R *
0 x

Proof:

6 1. INTRODUCTION

Partition the 2Nx2N matrix 1L as follows :

L = L2X L22
, with Lu ,Ll2,L21,L22e R NxN

Substituting (1.6.b) in (1.6.a) gives :

L2X = L22A~ .

Thus,

L2\b = L22A~ib = L22\.

And by observing that L22 = IN, it follows that:

I,2ib = x

and(1.6.a) follows.

(1.6.b)

(1.7)

(1.8)

(1.9)

D

Faddeev's method is not only capable of solving Ax = b, but it can also compute the
Schur complement of a matrix. This is easily understood by applying Faddeev's method
to a block matrix :

A B
C D

R *
O E

with appropriate L . Using (1.6.b) in this equation gives :

E = (D-CA~lB),

which is the Schur complement of the augmented matrix

(1.10)

(1.11)

A B
C D Choosing the dimen­

sions and values of the matrices A, B, C and D appropriately we can :

1. solve for multiple right hand sides, i.e., AX =B, where B e R NxM.

1.1. Solving systems of linear equations 7

2. compute innerproduct accumulations, i.e., d - d b;

3. compute matrix-vector product accumulations, i.e., d - dB;

4. compute matrix-matrix product accumulations, i.e., D -CB.

The LU factorization in Faddeev's method is numerically stable only when the matrix A
is positive definite. In case the matrix A is indefinite, pivoting strategies must be used to
guarantee numerical stability. In [Nashl988] it is shown how the numerical stability of
Faddeev's method can be improved, by using Givens rotations to compute the upper tri-
angularization of the matrix A, after which linear rotations are applied to eliminate the
matrix C, using the diagonal elements of the upper triangular factor of the matrix A as
pivots. This method is not completely stable, since the linear rotations may still explode
if the matrix A has a large condition number. A different approach is given in Chapter 2
of this thesis, see also [Jain 1986b], where a numerically robust feed forward direct
method is described which uses only Givens rotations.

1.1.2 SYSTOLIC ARRAYS

DEFINITION

Systolic arrays are defined to be arrays of synchronously operating processor ele­
ments, connected in a regular mesh with interconnections of length independent of the
size of the array. This definition is the same one given in [Raol985]. The first introduc­
tion of systolic arrays dates back to 1958 [Ungel958], [McC11958]. With the maturing
of VLSI technology they were re-introduced and their potential for compact integration
was recognized [Kungl979a], [Leisl981]. Since then, many authors have illustrated
how different numerical (see for instance [Kungl979b], [Kungl982], [McWhl983],
[Kungl988], [Chual985], [Schrl985], [Delol986], [Naval986], [Jainl986b] and
[Krekl988]) as well as combinatorial algorithms, such as sorting and transitive closure

8 1. INTRODUCTION

algorithms (see for instance [Liptl986], and [Kungl988]), can be executed on systolic
arrays.

SYSTOLIC ARRAYS FOR SOLVING SYSTEMS OF LINEAR EQUATIONS

Systolic arrays for the LU and QR factorization of matrices have been presented by
different authors [Gentl981], [Leisl981], [Ahmel982]. Linear arrays for the back-
substitution were presented in [Leisl981], [Gentl981]. In Figure 1.1(a) a systolic array
is shown for the QR factorization of a 4x4 matrix A = [a,j] = QR, with R = [r i ;]. At the
same time the array also computes y = Q'b, as requested in (l.l.b), with y = {yt ■ ■ ■ v4] '
and b= [&i • • • 64] ' . Since the processor elements of the array operate synchronously,
the input data at the inputs at the left of the top two processor elements must be delayed
one and two time steps, denoted by "-" and "- -", respectively. The squares denote proces­
sor elements, which are assumed to have zero processing delay. An interconnection with
a delay is denoted by an arrow through a rectangle. An unnumbered rectangle denotes a
single delay unit. Otherwise, the number denotes the number of delay units associated
with the interconnection.

Each processor element computes the angle needed to zero out an entry in the compu­
tation of the upper triangular factor of the coefficient matrix, and applies rotations over
this angle on the rest of its input data. The angles a are stored locally at the processor
elements, while the computation of the upper triangular matrix factor progresses upwards
in the array. The entries of the upper triangular factor R and the vector y, leaving at the
top of the array, must be stored and re-ordered for backsubstitution on the bidirectional
linear array in Figure 1.1(b).

The entries y-t of the vector y = Q'b are propagating to the right, while the computed
entries x, of the solution vector x propagate to the left. Notice that the arrays in
Figure 1.1(a) and 1.1(b) are completely different. Not only in terms of processor ele­
ments but also in terms of data flow. Also notice that the backsubstitution array starts its
computations with y4 and 7-44. These are the last elements produced by the factorization
array of Figure 1.1(a), so that there is no concurrency between the computations in the

1.1. Solving systems of linear equations 9

Hi

yi

/"23

yi
ru,
?3

T44
>4

I f̂ l t#1 . I#1 ''
64^44.^43.042.^41.- "

b 1A V.A 33^31."

*2>£ 24 A 23.^22.021

*1^14^13.<3l2.flll

^]a

cos (a) -sin (a)
sin (a) cas (a)

Figure 1.1. (a) Systolic array for the QR factorization.

two arrays. This lack of concurrency is a serious bottleneck in systolic implementations
of the direct methods with backsubstitution.

A systolic array for Faddeev's method is shown in Figure 1.2 for an example where
A e R4x4 . Each processor element computes a coefficient a needed to zero out an ele­
ment in the computation of the LU factorization of the matrix [A' I - /] ' . Once this
coefficient is computed, the processor element applies linear rotations with this
coefficient on the rest of its input data.

Comparing the combination of the factorization and backsubstitution array to the
array for Faddeev's method, the simplicity of the last one is striking. But, more impor­
tant, as shall be illustrated next by a calculation of the number of time steps needed to
compute the solution of A x = b by the arrays for both methods, the backsubstitution is a
bottleneck in a systolic implementation. From a generalization of Figure 1.1(a) it follows
that the QR factorization of an NxN matrix takes 3N-2 time steps to compute the upper
triangular factor and the transformation of the right hand side vector. And from a gen­
eralization of Figure 1.1(b) it follows that the backsubstitution requires 4N-3 time steps

10 1. INTRODUCTION

0...0

r\A,
rv,

rn

rv.

rn

rn

rn

rv.

r\i

rx+y ^
r-Kx+y)

Figure 1.1. (b) Systolic array for the backsubstitution.

to be completed on the linear array (N-l steps to load the array with the elements of the
transformed right hand side, 2N-1 time steps to compute all elements of the solution
vector and N - l time steps to shift the last computed element of the solution vector out of
the array). Due to lack of parallelism or pipelining between the computations of the QR
factorization and the backsubstitution, the total number of time steps to compute the
solution is the addition of the number of time steps for each of them. Hence, the total
number of time steps is IN-5 in this case. On the other hand, from a generalization of
the array in Figure 1.2, we find that only 2>N time steps are required to compute the solu­
tion in this case. This is roughly equal to the number of time steps required for the QR
factorization. And Faddeev's array computes the solution roughly twice as fast as the
combination of the QR factorization and backsubstitution array. Unfortunately, the Fad-
deev array is only useful for solving positive definite systems of linear equations, because

1.1. Solving systems of linear equations 11

1#]
0,1

0,0,1 ■
T ffti tp

0,0,0,1 ■

&
i§]

-B- fr

0,0,0,0,1 - - -

64^44^43^42^41 - -

^3^34,<l33,a32,a31 -

62,024^23^322^21

b\0\4A\lfl 12^11

{ r&l rjjjfll rjlffrl

rB]

TO Cn

*
" # 1

cpfftl

£§]

* 4

* 3

* 2

* 1

a
CD

&
flT

fft] q 3 ^ T J_i§]a

T T
= 1 0

a 1 y

Figure 1.2. The Faddeev array for solving systems of linear equations.

pivoting, which is not straight forwardly done on such arrays due to lack of global com­
munication paths, is not needed in such cases1. In Chapter 2 we derive a class of feed

In [Roycl988] it was shown that one can devise LU factorization algorithms with partial
pivoting, which can be mapped to systolic arrays. However, the sacrifice being made in these
algorithms is that the rows of the upper triangular factor are not naturally ordered at the
outputs of the array. Thus, the output at which an entry of the solution vector appears will be
depending on the coefficient matrix A . This property implies additional overhead for locating
the entries of the solution vector at the outputs of the array in practical implementations.

12 I. INTRODUCTION

forward direct methods of which some do not suffer from such pivoting problems. It will
appear that the methods of this class can be mapped onto a triangular array, similar to the
one in Figure 1.1(a), which is smaller than the array for Faddeev's method.

1.2 MAPPING REGULAR RECURRENT ALGORITHMS TO SYSTOLIC
ARRAYS

Matrix operations, such as matrix-matrix multiplication and matrix factorization,
have a highly regular computational structure. These operations are expressed in the form
of multi-dimensional recurrence equations (which will be referred to as regular recurrent
algorithms) [Kungl979b], [Meadl980]. The dependencies among the computations in
these algorithms are, or can be forced to be regular. This regularity simplifies the analysis
of the algorithms in the context of parallel execution of their computations [Karpl967]
and it facilitates simple mappings of the algorithms on systolic arrays [Moldl983],
[Raol985], [Frisl986], [Raol986]. The techniques used in this thesis for scheduling
and mapping of the algorithms of Chapter 2 on systolic arrays are to be found in
[Rao 1985]. For convenience of the reader we shall give a brief review of these tech­
niques in Section 1.2.1.

The synthesis techniques for systolic arrays, presented in [Raol985] and [Frisl986],
yield systolic arrays which are scaled to the size of the problem. Such arrays are called
full size systolic arrays (FSA's). However, in practice we cannot go on adding or deleting
processor elements in a systolic array when the size of the problem changes. Instead, the
systolic array must be embedded in an environment which handles fluctuations of the
problem size. Different strategies can be followed to partition a large problem on a small
size array. Most notable are the strategies described in [Moldl986], [Horil987],
[Nelil988].

Unfortunately, the partitioning solutions described there have certain shortcomings.
The partitioning strategy described in [Moldl986] divides the problem in parts which are

1.2. Mapping regular recurrent algorithms 13

solved in sequence on the small size array. Each processor element of the array is
assigned a sequence of computations, for each part. However, although a processor ele­
ment may have finished its computations for a part, it has yet to wait until the rest of the
processor elements of the array have completed their computations for the part, before it
can start with the computations of the next part. This implies inefficient use of computa­
tional resources.

The partitioning strategy described in [Nelil988] clusters groups of, say,p processor
elements on a single processor. The p processor elements in a group are scheduled in
sequence and may therefore, be replaced by a single processor element. The analysis of
this strategy was carried out only for 1-D groups of processor elements. Independently, in
[Horil987] the 1-D results were generalized for the clustering of 2-D groups of processor
elements. However, questions were left open such as how the groups are positioned rela­
tively to each other and under which conditions such 2-D groups do exist. In Sec­
tion 1.2.2 the two types of partitioning strategies are reviewed and in Chapter 3 it is
shown how to eliminate the shortcomings of the strategies described in [Mold 1986],
[Horil987], [Nelil988].

1.2.1 SYNTHESIZING SYSTOLIC ARRAYS FROM REGULAR RECURRENT
ALGORITHMS

REGULAR RECURRENT ALGORITHMS AND DEPENDENCY GRAPHS

A regular recurrent algorithm has the following definition2.

2. In [Moldl983], [Rajol987], [Bul988], [Dongl988], [Roycl988] and [Wongl988] systematic
procedures are presented for the derivation of such algorithms from code written in a von
Neumann high level programming language.

14 1. INTRODUCTION

Definition 1.1 : a regular recurrent algorithm is defined to be a 1'-tuple
{ln y.CJFv ,FC ,s J)}, where :

1. I" is the index set of the algorithm, which is a lexicographically ordered collection
of tuples (/!,...,/„), where the i\ to in assume values in (a sub set of) Z. A tuple
(i i , . . . , in) is called an index point and to each index point there is associated an
index vector i = [i i • • • /„] ' .

2. V is a set of indexed variables that are defined at every point in the index set. A
variable a at index point i will be denoted by a (i) or at.

3. C is a set of control variables, which are defined with the same denotational con­
ventions as the variables in V.

4. Fy is a set of functional relations among the variables ofV, restricted to be such
that, if a (i) is computed using a (i - d), then d is a constant vector, called displace­
ment vector, independent of'\ and the extent of the index space (if(i - d) falls out­
side I", then a (i - d) is an input variable of the algorithm).

5. FQ is a set of functions, which define functional relations between the variables of
C in a way similar to Fy.

6. s is a selector which selects functions from Fy, depending on the value of the vari­
ables in C.

7. D is the set of displacement vectors in the algorithm.

Definition 1.2 : The index set V and the set of displacement vectors D define a depen­
dency graph G={ln JD] of the algorithm, where I" is the set of vertices andD is the set of
directed edges.

The algorithm is said to be regular since the dependencies among the variables are con­
stant. Let I3 = f0'i,i2.«3) I l & ' i ^ N , / IO ' I)< I ' 2^MIO ' I) , /2(M.'2)^«3^«2(»i,«2)7 be a
lexicographically ordered index set and D= {dh ... ,AW). Let C={a\,...,ap},

1.2 Mapping regular recurrent algorithms 15

y = {ap+l aw}, ¥v={Fu...fq}, where F,(ap+1(i)...avv(i))= (ap+1(i+d1)...aw(i+dM,)).
Let Fc = {Fq+i}, where Fq+1(a \(i)...ap (i)) = (a i(i+di)...ap (i-KL,)). And let s b e a selec­
tor function from Vc to Fy. The regular recurrent algorithm defined by the above is
given in Figure 1.3. The selector function is implemented by the case statement and the
statement "initializations" refers to the set of input variables of the algorithm. The algo­
rithm is said to be in input standard form, because all variables in the domains of the
functions F,-, j=l,.. .^+l, are at the same index point.

MAPPING REGULAR RECURRENT ALGORITHMS ON FULL SIZE SYSTOLIC ARRAYS

From the dependency graph of the algorithm we can determine a schedule for the
computations at the index points. One possible schedule S is the lexicographical order of
the index points. This schedule corresponds to the sequential order in which the algo­
rithm in Figure 1.3 is defined. Of all possible schedules we restrict ourselves to linear
schedules [Raol985]. This means that we identify an ordered set of parallel hyperplanes
in the index space, which contain only index points in which computations can be
scheduled simultaneously. Hyperplane k is characterized by the equation s' i = p*, where
Pk is a constant and s is the normal of the plane. In order to make this vector unique, we
choose it to be a vector which is such that there is at least one coprime pair of entries.
This vector is referred to as the schedule vector and the hyperplane is referred to as the
schedule plane. The sequence {p\, ■ • ■ ,p„}, where p,+i > p;, is a new sequence of
schedule events for the computations of the algorithm. The fact that all points in a
schedule plane are independent (i.e., they can be scheduled in parallel) means that there
are no displacement vectors in a schedule plane. Hence, the innerproducts of the schedule
vector s and any displacement vector in the dependency graph is non-zero. Moreover, in
order to have causality it is further required that these innerproducts are positive. This
leads to the inequality :

s'[d! ■•- d w]> [l •■• 1]. (1.12)

So far the index points in the dependency graph have been partitioned into sets of
points which are scheduled in parallel. By mapping index points, scheduled at different

16 1. INTRODUCTION

initializations;
for i i = 1 to N

forj'2 = /iO'i)to«iO'i)
fori3 = /20'i,»2)tOM2(»l.»2)

case [a ̂ i) ••• ap(i)]
[cv„ ••• cvlp]:(ap+i(i+dp+l) ••• ow(i+dw)) = F1(ap+1(i) ••• aw(\));

[cvql ••• cvw]:(a /,+i(i+dp+1) ••• aw(i+dw)) = Fq(ap+i(i) •■■ aw(i));
endcase
(aiO+dO ■•■ ap(i+dp)) = Fq+^a1(i) ••• ap(\));

endfor
endfor

endfor

Figure 1.3. A regular recurrent algorithm with three nested loops.

time steps ..., p,-, p,+i, ..., to a single processor element we can minimize the number of
processor elements needed for the execution of the algorithm. Let the integer vector t
define a line i + v t, i e I" and v e Z, on which all index points are not simultaneously
scheduled. The vector t is made unique requiring that it has at least one coprime pair of
entries. Then, with an (n-l)xn transformation matrix T, Tt = 0, we can map all such
index points i + v t to a single processor element at location i = T (i + v t) = T i. This pro­
cessor element executes the computations for all the points (i + v t) e I", for v e Z. We
refer to t as the projection vector. The collection I"-1 = ft I i = T (i + v t), i e I", v e Z/
is referred to as the processor space and is envisualized as the set of processor elements
in the full size array (FSA). A processor element i = T(i + vt) is scheduled at events
fs'(i + vt) I v E Z/ . The set of interconnections in the FSA is given by
D = {d I d = 7"d, d e Dj and the number of delay units along an interconnection d = Td
is given by a = s' d. (Note that if s' t = 0 we would map index points, at which computa­
tions are scheduled simultaneously, on the same processor element. This is not allowed

1.2. Mapping regular recurrent algorithms 17

and therefore, it is required that s't * 0).

Summarizing, a procedure for synthesizing full size systolic arrays from regular
recurrent algorithms is as follows :

1. Find a solution s of the inequality :

s'[d! • -■ d w] > [l ■ •• 1].

2. Select a direction of projection t, such that s' t * 0.

3. Transform the index set of the algorithm according to the rule :

(1.13)

4. Transform the dependencies of the dependency graph according to the rule :

(di d„) =
di dw

(1.14)

5. Identify the set of processor elements of the FSA as the image In_1 = (i) of the
index set I" under the map T. Identify the set of the interconnections between the
processor elements as the image D = (dj) of the set D under transformation T.

6. Identify the schedule sequence S(i) of a processor element i = T (i + v t), v e Z, as
the sequence S(i)= fpv I pv =s'(i + vt), (i + vt)e I" and v e Z.}, which is
sorted on the values pv .

7. Identify the delay along an interconnection dy = Tdj, as ay = s' d;.

In this procedure the order of steps 1) and 2) may be reversed. Steps 1) and 2) define a
space-time partitioning of the algorithm, since the transformation T(i + vt) specifies the
spatial coordinates of the processor elements in the FSA and s' (i + v t) specifies the time
coordinates at which processor elements are scheduled. Steps 1) to 7) have been imple­
mented in SYSTARS [Omtzl987], [Omtzl988], a CAD tool for designing systolic

18 I. INTRODUCTION

arrays from regular recurrent algorithms.

To illustrate the above procedure, we give an example of designing an FSA for the
matrix-matrix multiplication FX = X, where F - \fij], X = [xij] and X = [x^] arcNxN
matrices. The matrix-matrix multiplication is written as a regular recurrent algorithm as
shown in Figure 1.4.

The index set I3 of this algorithm is the subset I3 = {(j ,j,k) I 1 < J J Jc < N} and the
set of displacement vectors is D = {[0 1 0]', [1 00] ' , [00 I]'}. The dependency graph
DG = (I3,D) is depicted in Figure 1.5, for N =4. At a vertex (i,j,k) the variables
fi,j+i,k,Xi+\jtt and Xijji+i are computed and communicated to nodes at relative position
[0 1 0]', [1 0 0]' and [0 0 1]', respectively.

Let us make the choice s = [1 1 1]' for the schedule vector and t = [0 0 1]' for the
projection vector. Then, we may choose for the transformation T :

T =
1 0 0
0 1 0

By applying the transformation [T' I s]' to the index vectors of I3 and the displacement
vectors of D we obtain a 4x4 systolic array for matrix-matrix multiplication as shown in
Figure 1.6. The orientation of the interconnections and the number of delays per inter­
connection are found from (1.14).

At the inputs at the bottom of the array we find the columns of the matrix X and at
the inputs at the left we find the rows of the matrix F. The elements of the matrix X are
computed iteratively according to Figure 1.4 and stored in the delays of the loops. Note
that variations in the projection vector t cause variations in the topology of the systolic
array. Similarly, variations in the schedule vector s cause variations in the number of
delay units along the interconnections of the systolic array.

1.2. Mapping regular recurrent algorithms 19

fi.QJc =fik'< I* initialization */
Xo,jjc - xkj '< /* initialization */
Xijto = 0; /* initialization */
for i = 1 to N
for; = l t o N
for k = 1 to N

fi.j+ljc —fi,j,k'<
xi+l,j,k =xi,j,k>
XiJ.k+l = xiJJa +fij,kXi,j,k'<

endfor
endfor

endfor

Figure 1.4. Regular recurrent algorithm for matrix-matrix multiplication.

1.2.2 MAPPING LARGE PROBLEMS TO SMALL SYSTOLIC ARRAYS

A systolic array designed by the procedure outlined in the previous section, has a size
which is proportional to the "accidental" size of the problem. Execution of the problem
with a different size requires a re-scaling of the array. Here we face a difficulty with ever
growing sizes of the problem. In practical situations there is a limit to the up-scaling of a
systolic array, due to technological and economic reasons. Hence, it is important to look
for partitioning strategies which can solve this scaling problem, so that once the array has
been designed it does not have to be re-scaled for a particular problem size.

The partitioning strategies introduced here, act directly on the full size array. The
number of processor elements of this array is directly proportional to the size of the prob­
lem at hand3. The FSA is reduced to a desirable size, yielding a so-called reduced size

20 1. INTRODUCTION

j

Figure 1.5. Dependency graph of matrix-matrix multiplication for N = 4.

array (RSA). It correctly executes the problem partitions and is again systolic.

Common to partitioning strategies is the tessellation of the FSA in tiles of, say, p pro­
cessor elements each. The way in which the computations in these tiles are scheduled
will determine the RSA and how the problem partitions are scheduled on the RSA. The

3. Partitioning of the problem itself [Hell 1985] is equivalent to the partitioning of the full size
array, since problem and array are equivalent with respect to the dependency graph. This
equivalence is due to the fact that the transformation matrix in (1.13) is non-singular.

1.2. Mapping regular recurrent algorithms 21

^ 4 4 / 4 3 / 42 /41 - - "

/ 3 4 / 3 3 / 3 2 / 3 I " "

fufnfafi.

/ 1 4 / 1 3 / 1 2 / 1 :

FJ], 1 #1

CD

H

CD

*

fr

&

fl
r&] CDrEhj cprEr]

r&] cpjr&i cp^B] cxfB]
* *

e*

CD r&] CD£&] CD£&] CDj£j]

T
*21

*31

X41

»

T
* 2 2

■>:32

X 4 2

fl*

fr

T
*13

X23

*33

*43

fr

* f + l j , 4

T

*14

*24

*34

XtA

- ^ fijk- / i j + u

* 4 »

Figure 1.6. A full size systolic array for 4x4 matrix-matrix multiplication.

various ways in which an FSA can be partitioned can be traced to either of the following
three cases (or combinations of these) of scheduling the computations of the tiles on a
(yet to be designed) RSA.

1. All computations in a tile of the FSA are executed by a single processor element of
the RSA. Thus the RSA has as many processor elements as there are tiles in the
FSA. In general the processor elements and the topology of the RSA are different
from those of the FSA.

2. The computations of all tiles in the FSA are executed in pipeline on an RSA. The
RSA has the same number of processor elements as a tile and the same intercon­
nections as the FSA. Pipelining among the computations of a single tile, if existing
in the FSA, as well as the sequence of computations in a tile is preserved in the

22 1. INTRODUCTION

RSA.

3. The same as the previous case, except that there is no pipelining among the com­
putations of different tiles.

We shall briefly discuss these three cases in sequence.

Casel:
As an example of the first case we partition the 4x4 matrix-matrix multiplication exam­
ple. Choosing schedule vector s = [1 2 4]', we obtain a pattern of activity as shown by the
snap shots in Figure 1.7. The self-loops are omitted for the sake of clarity and the active
processor elements are hatched. In this pattern we can distinguish tiles of 4 processor
elements each. In a tile one and only one processor element is scheduled at any time.

Hence, the 4 processor elements in a tile may be replaced by a single one, a so-called
cluster processor. In this way the full size array of 16 processor elements is reduced to an
array of only 5 processor elements. This method of partitioning is referred to as the
local-sequential-global-parallel (LSGP) partitioning strategy. The name refers to the fact
that the processor elements in a tile are scheduled sequentially, while processor elements
in different tiles may be scheduled in parallel. A tile is referred to as cluster. The proces­
sor elements in a cluster are called virtual processor elements. The processor elements in
the RSA are the cluster processors.

The cluster processors have selectors which select the correct input (a feed back from
the processor element itself, or an output of another cluster processor) at the right time.
These selectors require control information which is derived from the sequencing of
activities in a tile. The cluster processors also have state registers which store the inter­
mediate results.

Observe that there is always one and only one processor element active at a schedule
time step when shifting the pattern of tiles across the FSA. For instance, we can shift the
pattern over a distance of one column of processor elements to the right and still there is

1.2. Mapping regular recurrent algorithms 23

Figure 1.7. Snapshots of the tiles in the FSA for schedule vector s' = [1 2 4]'.

one and only one processor element active in a tile, at a schedule time step. Depending
on the shape of the FSA the pattern of tiles may be shifted in a position where the FSA is
covered by a minimum of tiles. For instance, the positioning of the pattern of tiles in Fig­
ure 1.7 requires 5 tiles to cover the complete FSA. Shifting the pattern over a distance of
one row up needs 8 tiles to cover the complete FSA. And since the number of tiles is
equal to the number of cluster processors in the RSA, it follows that the positioning in
Figure 1.7 results in only 5 cluster processors, compared to the 8 processors of the second
positioning.

The LSGP partitioning strategy was considered in [Nelil988] for 1-D clusters, and in
[Horil987] for 2-D clusters. The analysis given in [Horil987] does only find a set of

24 I. INTRODUCTION

processor elements which may be clustered, but leaves open questions such as how the
clusters are positioned relatively to each other and under what conditions which type of
2-D clusters can be proven to exist. As can be seen from Figure 1.7 (s' = [1 2 4]) and
Figure 1.8 (s' =[2 3 6]) the clusters can form different patterns, due to different relative
positions. Moreover, the relative positions seem to be predetermined by the choice of
schedule vector. For example, the relative positions of clusters in Figure 1.8 are not pos­
sible for schedule vector s' = [1 2 4] in Figure 1.7. In Chapter 3 an analysis is given to
show under what circumstances which 2-D (and 1-D) clusters with certain relative posi­
tions exist.

Case 2 :

As an illustration of the second case of partitioning we tessellate the matrix-matrix multi­
plication array of Figure 1.6 in 4 tiles, as shown in Figure 1.9.

In this partitioning strategy the RSA is identical to a single tile of processor elements
in the FSA. The computations of a tile are scheduled on the RSA in the same way as they
are scheduled in the tile itself, whereas the computations of different tiles are pipelined
on the RSA. This partitioning method is referred to as the local-parallel-global-pipelined
(LPGP) partitioning strategy. The name refers to the fact that the processor elements in a
tile are scheduled in parallel, while the tiles are scheduled in pipeline on the RSA.

Let us denote (in clockwise direction, starting at the bottom left tile) the tiles in Fig­
ure 1.9 by (1,1), (1,2), (2,2) and (2,1), respectively. Now, since all computations inside
tile (1,1) precede the computations in the other tiles, the computations for this tile are the
first ones to be scheduled on the RSA. The initialization data for the computations of tile
(2,1) are collected in the buffers connected to the horizontally oriented outputs of the
RSA (see Figure 1.10). Similarly, the initialization data for the computations of tile (1,2)
are collected in the buffers connected to the vertically oriented outputs of the RSA.

After the last computation of the bottom left processor element of tile (1,1) has been
scheduled on the bottom left processor element of the RSA, the computations in either
tile (1,2) or tile (2,1) may be scheduled on this processor element. In this way the

1.2. Mapping regular recurrent algorithms 25

±r± i-riL
B* -fl* -fl

^ 3 - ^ 3 -

dDJ„ cd J „ en3 „•' cti X 2 ritU 2 r-±-, 2: p.
e» -e- -B i CD

2 ^ 2 A 3 2 : t P
-Mien re

B~

.p.,.jT
B*

QQ-Ua-ma
IK S 2 J32

2
1

C D 3 . cfc3 J cb-

(a)

■B*

F T-rvT

I

(b)

Hi

1
"£.3

S
'i'Si'.
1M f* 3 £ 3

2 r^> 2
B

3,3

3,3
C3->

B>

3. .^.3. A 7
2 J l , 2 r-t-, 2 1̂3
B*

£ T ± 1 i*-fM&-T}B>r

ifc2

A3
2£3

2S3
2Ji3

T- -T
(0

Figure 1.8. Same as Figure 1.7, but for schedule vector s' = [2 3 6].

computations of different tiles are pipelined on the RSA. We may arbitrarily select the
next tile, for instance tile (2,1). Now the data collected in the buffers at the vertically

26 1. INTRODUCTION

T- -T""1^ 4
Figure 1.9. Tessellation of the matrix-matrix multiplication array.

oriented outputs of the RSA are part of the initializations of the computations of tile
(2,2). After the last computation of the bottom left processor element of tile (2,1) has
been scheduled on the RSA, the computations of tile (1,2) are scheduled. The data which
is collected in the buffers at the horizontally oriented outputs of the RSA are the rest of
the initializations for the computations of tile (2,2). Finally, the computations of tile (2,2)
are scheduled on the RSA, after the last computation of the bottom left processor element
of tile (1,2) has been scheduled.

Case 3 :
The third case is identical to the second one, except that the computations of the next tile
are scheduled only after the RSA has finished all the computations of the previous tile.
That is, the computations in different tiles are executed sequentially on the RSA. The
disadvantage of this case, compared to the previous one, is obvious. This partitioning
method is referred to as the local-parallel-global-sequential (LPGS) partitioning stra­
tegy. The name refers to the fact that the processor elements in a tile are scheduled in
parallel, while the tiles themselves are scheduled sequentially on the RSA. Partitioning
strategies with such schedules are found in [Fortl985], [Helll985] [Moldl986].

1.2. Mapping regular recurrent algorithms 27

--=»

(l.D
(2,1)

A

f A

^ * d.l)
(1.2)

(a)

--=»

(1.2)
(2,2)

A

f 1
~ L » (1.2)

-

(2,1)
(U)

J,„ i
i

(1

-5»

(2.2)

1 f A

_r* (2.D
(1.2)

>)

~ i j (2,2)

(c) (d)

Figure 1.10. Snapshots for the contents of the buffers of the RSA.

The LSGP and the LPGP strategies are two partitioning methods which offer impor­
tant advantages in the design of practical systolic arrays of fixed dimensions. These
advantages are the following. In general the processor elements operate at a much higher
I/O bandwidth than busses which supply data to and receive data from the processor ele­
ments. If clusters are large enough in an LSGP partitioning, there will be a considerable
number of processor elements in each cluster, which do not communicate with processor
elements outside the cluster. Since the LSGP partitioning has the effect of serializing the
computations in the clusters, the I/O bandwidth of the cluster processors is reduced by a
certain factor. Careful choices of cluster sizes may lead to a close match of the I/O
bandwidths of the cluster processors and the busses, be it at the expense of increased
local memory.

In the LPGP partitioning strategy the I/O bandwidth of the processor elements is
unaffected by the partitioning. Moreover all memory to hold the initialization data for the

28 1. INTRODUCTION

computations of the tiles is kept outside the RSA itself. This means that the number of
processor elements of the RSA and the amount of local memory of a processor element is
independent of the size of the instance of the problem. Thus, a combination of the two
partitioning strategies may well serve the purpose of solving such important design issues
such as I/O bandwidth matching and problem size independency. In Chapter 3 of this
thesis a detailed analysis is given of both partitioning strategies. Additional problems,
that appear at the boundaries of an FSA when tessellated, are also discussed4 there.

4. These are problems caused by an incomplete number of processor elements in tiles that may
extend across the boundaries of a tessellated FSA. See e.g., Figure 1.7 and Figure 1.8.

29

2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS
FOR SOLVING SYSTEMS OF LINEAR EQUATIONS

In this chapter a class of feed forward methods is presented for solving non singular
systems of linear equations Ax = b, A e ~RNxN and b e Rw . The presentation has the
following outline. First, in Section 2.1 it will be assumed that the lower triangular factor
L and the inverse X~! of the remainder X in the factorization A = LX are given. It is then
explained how the solution x is obtained from the augmented matrix :

L' X~' 0"
- b ' 0' 1 '

by applying a series of either linear, orthogonal or hyperbolic rotations to this matrix.

Next, in Section 2.2 it is shown how the factors L' and X~' are properly generated
and combined with the result of Section 2.1, to give simple feed forward methods for
solving A x = b. In Section 2.3 the numerical stability of the methods is discussed and in
Section 2.4 it is shown that one of the methods is in fact a semi-direct method, in contrast
to the rest, which are all direct methods. Finally, in Section 2.5 it is shown how the
methods of Section 2.2 can be generalized to perform computations of the kind
CA~XB +D. This generalization is similar to the generalization of Faddeev's method
[Faddl959].

2.1 FEED FORWARD COMPUTATION OF x = A _1 b

Let A e RNXN be a non-singular matrix and let b e R N be a column vector. The
solution of the equation :

30 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

Ax = b (2.1)

may be expressed in terms of a given lower triangular factorization :

A=LX (2.2.a)

where L is a lower triangular matrix and the matrix X is one of the following :

1. X = U is upper triangular (JLU factorization of A);

2. X=Q is orthogonal (QQ' = Q'Q =1) (LQ factorization of A);

3. X=L' is the upper triangular Cholesky factor of the matrix A in case it is sym­
metric positive definite (LL' factorization of A).

Hence, denoting

Ly = b,
Equation (2.1) becomes

Xx = y.

Equations (2.2.b) and (2.2.c) can be rewritten as follows :

[y' i]
V
-b ' = 0,

(2.2.b)

(2.2.c)

(2.3.a)

[y' i]
\x-'

0 = x (2.3.b)

The computation of x in (2.3.b) is based on the following observation. The matrix
[L I -b] ' in (2.3.a) is a rectangular (N+l)xN matrix, so that it can be reduced to an upper
triangular form, with zero last row, by applying a proper sequence of rotations to the

matrix. Then, since the last row, say r, of this product of rotations satisfies r , = 0,it

must be proportional to [y' 1], given that A is non-singular. Therefore, when this row is

2.1. Feedforward computation of\ = A~b 31

substituted for [y' 1] in (2.3.b), the result will be a vector proportional to the solution
vector x'.

Thus, let the sequence of rotations applied to [L I —b]' be denoted by the
(N+l)x(N+l)matrixG(m), withm <= f0,l ,-l j :

eo«)=n8M
1=1

with:

6,(W):

Ii-l

and such that:

0(w)
V
-b '

cos{rnAQ.i) -mAsin{rnAo.i)

m~'Asin(miAai) coi(m1/4a()

R(m)
0'

(2.4.a)

(2.4.b)

(2.5)

where R (m) is upper triangular. That is, the angles a,- are chosen such that an upper tri-

angularization of the matrix [L I —b]' is obtained in the recursion :

-bl y'=i
, i=l,2,...,tf, (2.6.a)

where:

bj = t0---0M° ••• btilil (2.6.b)

The matrix &(m) is Z(/n)-orthogonal, i.e.,

&(m)I,(m)@(m) = L(m), (2.7)

32 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

with :

Z(m) =
\IN

(2.8)

For m = ±1, we also have that:

e(m)E(m)0'(/n) = S(m). (2.9)

As yet we have to prove that the angles a,- exist for given lower triangular matrix

L = Uij] and vector b = [/?,] in either of the cases m e {0,1,-1J. For m = 0, a, = —-—
Hi

(allowing pivoting in case of zero pivots). Using linear rotations, m = 0, amounts to an

LU factorization in (2.5), with U=[R (0) I 0] . For m = \, Mn(a,)=—-— always
Hi

exists, since the function ton (a,) has image R . Using orthogonal rotations, m = \,
amounts to a QR factorization in (2.5), with R = [R'{1) I 0]'.

The use of hyperbolic rotations, m=-\, is restricted to special cases. Namely, to
those cases where the elements of the matrix L and the vector b are such that

\tanh(a{)\ = I——I < 1. Only then do the hyperbolic rotations exist. The following
Hi

proposition states for which case 6(- l) in (2.5) exists.

Proposition 2.1:

Let L e R x/v be a lower triangular matrix and b e R a vector, such that:

LV - b b ' > 0 . (2.10)

Then, there exists a matrix 0(- l) as defined in (2.4.a) and (2.4.b)for m = - 1 , such that:

0(-l) -b '
R(-l)

0'
(2.11)

where R (-1) is upper triangular.

2.1. Feedforward computation ofx-A ' b 33

Proof:

For a proof we refer to Appendix A.

D

The case m = -1 may seem superfluous since it puts a restriction on the vector b (see
(2.10)). But, as we shall see in Section 2.4, this case is important for computation of max­
imum entropy approximations of the solution vector.

The proportionality constant between the last row of the matrix &{m) and [y' 1] can
be found from the properties of the matrix 0(m), as follows. Write for the (N+\)x(N+l)
matrix 0(m):

Bn(m) e12(m)l
0(m) = B'21(m) k(m) , © n (m)e R NxN (2.12)

where k{m) is the proportionality constant. For m = 0 it follows from (2.4.a) and (2.4.b)
that k(0) = 1 . Hence, 02i(O) = y and, consequently :

0(0)
V X-'
-W 0'

R(0) *
0' x' (2.13)

This equation expresses an LU factorization of the matrix [L I -b] ' . For m = 1 or
m = - l w e substitute (2.12) in (2.9). This gives:

mk(m) + 821 (w)02i (w) = m-

Hence, with y = k~x (m)82i (rn) it follows that:

k(m) = (\+my'yT1/i. (2.14)

Thus:

0(m)
V X-* 0
- b ' tf 1

R (m) * *
0' k(m)x' k(m) e {1, -1). (2.15)

'34 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

Using the Z(m)-orthogonality of 6(w), we get from (2.15) LL' +mbb' = R'(m)R(m), so
that (2.15) expresses an updating and a downdating of a Cholesky factorization for m = 1
and m = —1, respectively.

A numerically important property of the case m = - 1 , for LL' - bb' > 0, is stated in
the following theorem.

Theorem 2.1:

LetLe R NxN be a lower triangular matrix and b e R N, such that the matrix :

1 - b '
- b LL' '

is positive definite with all its main diagonal entries equal to 1 (this is accomplished by a
trivial normalization). Then, the magnitude of all entries of the matrices L± and the vec­
tors b, in the recursion (2.6.a)-(2.6.b),for m = - 1 , is bounded by 1.

Proof:

The proof is deferred to Section 2.2.3.

D

2.2 THE CLASS OF FEED FORWARD ALGORITHMS

In this section it is shown how the results in (2.13) and (2.15) are combined with the
lower triangular factorization of the matrix A, to obtain feed forward methods for solving
Ax = b.

2.2. The class of feed forward algorithms 35

2.2.1 LU FACTORIZATION

Let A = LU be an LU factorization of the matrix A. Then, an LU factorization of the
augmented matrix [A' I IN] will give :

U[A' \IN] = [L' I U-'], (2.16)

where U = U~'. L' and U~' are the matrix factors appearing in (2.3.a) and (2.3.b). I.e.,
X"' = U~' in (2.3.b). Next, we show how either of the possible factorizations in (2.13)
and (2.15) are combined with the LU factorization in (2.16), such that a feed forward
method is obtained for solving A x = b. Put:

Vij =

7-1

'w
a-ij 1

h-i

, i,j=l,...,N-l. (2.17)

The entries of the first column of the strictly lower triangular part of the matrix [A' I /#]

AM
are eliminated by premultiplication with Ĵ f £/,-1, with appropriate a,i . Hence, the first

row of the resulting matrix will be the first row of the matrix [L' I U~']. Next the first
rotation @i(m), in the product @(m) in (2.4.a) is applied to this row and the vector
[-b' I 0*], such that the first entry of - b ' is eliminated. Secondly, we eliminate the ele­
ments of the second column of the strictly lower triangular part of the matrix

AM ,v-i
(YlUn)[A' I IN], by premultiplication with f j t/;2, with appropriate 0t;i- Thus, obtain-

i=l (=2

ing the second row of the matrix [L' I £/"']. Next, the second rotation &2(m), in the pro­
duct @(m) in (2.4.a) is applied to this row and the vector that resulted from the applica­
tion of the rotation ©^m) on [-b' 1.0']. ©2(/n) is chosen such that the second element of
this vector is eliminated. The above procedure is repeated until all the elements of the
vector - b ' are eliminated against the pivots of the matrix L'.

36 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

Thus, we get the following feed forward computational scheme for Ax = b :

A' IN 0]
eJV(m)(eAr-i('»)OrAM.AM) • •' (02("On£/.-2)(ei(m)ny,-i)

i=2 i'=l

N

-b' tf 1

fl (m) * *
0? k(m)xl kirn) (2.18)

(jn e ^0,1,-17). Note, that allowing m = - l is constrained to the condition that
LL' - bb' > 0, where L is the lower triangular factor of the LU factorization of the matrix
A.

Observe that (2.18) expresses an LU factorization of the matrix [A I -b] ' in case we
use linear rotations for the 0,(m) (ra = 0). I.e.,:

QN(oy9N-i<muN-w-i) ■■■ (e2(O)n1f/;2)(0i(O)nV1i)
i=2 i=l

- b '
*(0)

0' (2.19)

Since the LU factorization of a matrix is unique, it follows that different orderings of
linear rotations can be applied to obtain the result in (2.18). For instance, the following
order of linear rotations (indicated by combinations (ij) of row i and row j) gives the
same result as in (2.18):

(N,N+l), (N-l,N),..., (1,2) followed by (N,N+l), (N-l,N) (2,3), etc.

A possible regular, systolic processor array which uses the scheme of linear rotations
in (2.19) is shown in Figure 2.1 for N = 4. This array is identical to the one in
Figure 1.1(a), except that now the processor elements perform linear rotations and there
is an extra row of linear rotors for the elimination of the elements of the vector
b = [bi b2b3b4]'.

2.2. The class of feed forward algorithms 37

I ffl] I A * fftl i ffi

rEn cD£m CD

X4..Jt! 0...0

CD£m cp^tr]

^1 qjffl l }

[§] I ^ f ^ l

0 0 0 0 - ^ 4 - 6 3 - 6 2 - 6 ! - - -

10 0 0 044 a43 a42 a4i - -

0 1 0 0 034 a33 a31 -

0 0 1 O a ^ 0^3 022 021

0 0 0 1a,,, a,3 a12 a,,

0

Figure 2.1. Systolic array for the feed forward LU method.

2.2.2 QR FACTORIZATION

T
-B»/

x1

i =
'l 0
a 1

X

y

Let A = L(2 be the LQ factorization of the matrix A. Then, a Q/? factorization of the
matrix [A' I /#] will give :

e [A ' l / w] = [L ' l !2]) (2.20)

where Q = Q. V and Q are the matrix factors appearing in (2.3.a) and (2.3.b). I.e.,
X~' = Qin (2.3.b). The factorizations in (2.13) and (2.15) are combined with the factori­
zation in (2.20) in the same way as was explained for the LU factorization of [A' I If/],
but using circular rotations for the QR factorization of [A' I If/]. That is, putting :

38 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

Qij =

r>-i
cos(a.ij) sin(a.ij)

h-j
Sin (CC;y) COS (a l y)

IN-I

we get the following feed forward computational scheme for ,4x = b :

N-l AM
0A,(m)(0JV_1(m)QN-i.w-i) ••• (^ w n & P i w n e a)

(=2 i=l

A' IN 0

- b ' (f 1

(2.21)

R(m) * *
Of k(m)x' kirn)

(2.22)

(TO e {0,1,—V)- Note, that allowing w = - l is constrained to the condition that
LL' -bb' > 0, where L is the lower triangular factor of the LQ factorization of the matrix
A.

Observe that (2.22) expresses a QR factorization of the matrix [A I -b] ' in case we
use orthogonal rotations for the 0;(m) (m = 1). I.e.,:

<=2 i=l

'A'
-b ' 01 (2.23)

Since the QR factorization of a matrix is unique, it follows that different orderings of
orthogonal rotations may be found by which the result in (2.23) is obtained. For instance,
the following order of orthogonal rotations (indicated by combinations (i,j) of row i and
row j) gives the same result as in (2.22):

(N,N+l), (N-l,N),..., (1,2) followed by (N,N+l), (N-l,N) (2,3), etc.

A regular, systolic processor array which uses the scheme of rotations in (2.23) is

2.2. The class of feed forward algorithms 39

identical to the one in Figure 2.1, except that the processor elements perform Givens
rotations.

2.2.3 SCHUR-CHOLESKY FACTORIZATION

If the coefficient matrix A is a symmetric positive definite matrix, a fast Cholesky
factorization of the matrix is possible with the so-called Generalized Schur algorithm
[Deprl982], [Delol984]. This algorithm is a generalization of the Schur algorithm for
the Cholesky factorization of a symmetric and positive definite Toeplitz or close to Toe-
plitz matrix [Dewil978], [Levl984]. First we shall present the generalized Schur algo­
rithm and its properties, after which it is shown how to combine this algorithm with the
factorizations in (2.13) and (2.15), in order to obtain feed forward algorithms.

The Generalized Schur algorithm

Theorem 2.2:

Let A = [aij] e R""" be a symmetric positive definite matrix, normalized such that
we can write

A=RL+IN + R'L, (2.24)

where Rr, = [a^], i > j , is the strictly lower triangular part of A. Put :

U=RL+IN (2.25.a)

Y = RL. (2.25.b)

Then, there exists a matrix product O e R 2A/x2W .-

40 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

N-\N-\

*=nn*y.
of embedded plane hyperbolic rotations .

o„
cosh (0Cy) s/n/i (a^)

sinh(oijj) cosh(o.ij)

h+j-i-\

such that the Cholesky factor V of the matrix A satisfies :

L'] \U'
0 = <t> Y'

(2.26.a)

(2.26.b)

(2.27)

Proof:

We refer to Appendix B for the proof.

□
The hyperbolic rotations O t t , Q>k+l k, ..., O/v-i.i in the planes (k+\,N+l), {k+2,N+2),
..., (N, 2N-k), respectively, eliminate the elements on the (N-k+l)st diagonal of the
matrix:

k-W-l

j=i t=j

The matrix <I> is /-orthogonal, i.e.:

(2.28)

with :

2.2. The class of feed forward algorithms 41

J=IN ©-/, N- (2.29)

The product form in (2.26.a) implies a diagonal-recursive form for the computation of
the Cholesky factor of the matrix A :

u0 = U, Y0 = Y

= * / j=\,...,N-l (2.30)

where

UN-I = L, YN_! = 0,

N-l
(2.31)

From Theorem 2.2 the factor V is obtained as required in (2.3.a). It remains to show how
the factor X~' =L~X, is obtained for use in (2.3.b). For this purpose we need the follow­
ing corollary as it follows from Theorem 2.2.

Corollary 2.1:

The J-orthogonal matrix $ in (2.26.a) is of the global form

o =
L"1 0
0 R~l

U -Y
-Y' U'

where

A=LL'=RR'

(L is lower triangular andR is upper triangular).

(2.32)

(2.33)

Proof.

42 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

Let O be partitioned in 4 NxN sub matrices

o = <D21 o 2 2

Then, it follows from (2.27) that:

<bnU' + <S>nY'=L'

and

With :

(as follows directly from (2.25.a) and (2.25.b)), Equation (2.35) becomes :

<D2i =-3>225'-

Since O is /-orthogonal, it follows that:

* 1 2 = <&11<J>21*22 = -<*>11'S-

Substituting this in (2.34) gives :

<Dn 6T1 (£/{/ ' - YY')U~' = L'U~',

with :

UU'-YY'=A =LL',

as follows from (2.25.a) and (2.25.b). Thus,

<S>n=L~xU

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

and, consequently :

2.2. The class of feed forward algorithms 43

®n = -L-lY. (2.41)

From the /-orthogonality of <S> it follows that:

* 2 2 * 2 2 - ®21*21 =IN-

Using (2.35) and (2.34), this becomes :

(<D22t/-'M(<I>22 t r ') '= / JV- (2.42)

But, from (2.26.a) and (2.26.b) it follows that <I>22 is upper triangular and hence, 022I/~'
is upper triangular. From the uniqueness of the upper-lower triangular factorization of a
square matrix it follows that:

<b21U~'=R ■' - J ? - I (2.43)

□
From the global form of the matrix O it immediately follows that the factor L~l is found
from:

L-1

R-1 = <D (2.44)

Remark : Using (2.25.a) and (2.25.b), a simple calculation shows that the upper triangu­
lar factor R is obtained from :

= o

where O is the same matrix as in (2.27).

Feed forward direct methods with Schur-Cholesky factorization

In the preceding it was shown how to obtain the Cholesky factor L' and its inverse
L~\ as required in (2.3.a) and (2.3.b). Next it will be shown how either of the possible
factorizations in (2.13) and (2.15) are combined with the generalized Schur algorithm,

44 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

such that a feed forward algorithm is obtained.

The first row of [£/' I IN] (JJ is as given in (2.25.a) is the first row of the matrix
[L' I L~x] (L is the Cholesky factor of the matrix A). Application of ©i(/n) to this row
and the vector [-b' I 0*] eliminates the first element of - b ' for a proper choice of the
angle c^. Next, the rotations <Dn, <t>2\, ..., ®N-I,\ &£ applied to the matrix [U Y]'. The
result being that the Nth lower subdiagonal of this matrix is eliminated and the second
row of the matrix :

N-l U' IN

Y' IN

is equal to the second row of [L' I L - 1] . Now a rotation &2(m) is applied to this row and
the vector that resulted from the application of ®i(m) to [-b' I (/]. This procedure is
repeated until all elements of the vector -b ' are eliminated. With the following embed­
ding of the matrices ®i{m) in (2.4.b):

[e,-(i»)] =

/«-i

cos (m* aft

Iw-i
m l/isin(ml/ia.i)

-rnAsin(rnAa.i)

cos(rnAa.i)

(2.45)

we get the following feed forward computational scheme for Ax = b :

2.2. The class of feed forward algorithms 45

[G^mMe*-!(m)]«£>„_,,„_! ©1)) • • • a 0 2 (m)] n W Gl))([&i(m)m(<t>ii ©D)
i=2 i= l

V' /JV 0"
Y' IN 0

- b ' 0' 1
=

R(m) * *
Q * *

. 0' k(m)x' k{m\
(2.46)

(m e fO,l,-lj). Note that, allowing m--\ is constrained to the condition
LL' - bb' > 0. In this case (2.46) expresses the Cholesky factorization of the positive
definite matrix A - b b ' . Indeed, since the .product of hyperbolic rotations in (2.46) is
orthogonal with respect to the signature matrix J = (/# ©-/#+!), we deduce that
A - b b ' =R'(-l)R(-l). And since the Cholesky factorization of a symmetric positive
definite matrix is unique it follows that /?'(-l) is the Cholesky factor of the matrix
A - bb'. A systolic processor array for the execution of the above scheme of rotations is
given in Figure 2.2 for N=4 and m = —1.

The processor elements on the first diagonal of the lower 3x3 triangular part that pro­
cess the entries of the matrix A, eliminate the Nth lower subdiagonal of the matrix
[U Y -b] ' . The processor elements in the ith (i >1) diagonal of this lower 3x3 triangular
part eliminate the {N~i+l)st lower subdiagonal of the matrix that results after /—1 steps
in (2.46). The processor element at the top of the ith column of this lower 3x3 triangular
part produces the (i+\)th row of L' and L~x. These rows are used in the upper row of 4
rotors, which compute k (-l)x' and k (-1).

Lemma 2.1:

Let the following be given. A e R WxW is a symmetric positive definite matrix with its
diagonal entries equal tol.be RN is such that A - bb' > 0. B e R(W+1)XCV+D „ t/,e

positive definite matrix:

http://tol.be

46 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

10000-bi-bi-b2-b1

0 0 0 0 1 ait <j13 a12

OO0\0a2Aan

0 0 1 0 0 a , .

1 #1 T #1, I #1, T

1

fl

CD

1

k(r\)k(r\)x1...k(-\)xiO...O

qbpr| CDffij C3fB"|

rBj i | §]

qjf&1 cprr3-|a

1 1
a 1 2 fl23 a34 0
a13 a j , 0 0
« „ 0 0 0

1 1 1 1
0 0 0 0
0 0 0
0 0
0

r i -B*/

cosh (a) sinh(a)
sinh(a) cosh (a)

Figure 2.2. Systolic array for the feed forward Cholesky method.

B
1 -b '
-b A

U'B is the upper triangular part of the matrix B

U'B =
1 -b '
0 U'

and Y'B is the strictly upper triangular part of the matrix B

Y'B =
0 - b '
0 Y'

(2.47)

(2.48.a)

(2.48.b)

where U' and Y' are the upper and strictly upper triangular part, respectively, of the
matrix A. Let O be the sequence of hyperbolic rotations as in (2.26.a)-(2.26.b), with N
substituted by N+\, that obtains the Cholesky factor of the matrix B by premultiplication
of[Ug Y/)]' with <X>. Then, the solution x of Ax = b satisfies the equation :

2.2. The class of feed forward algorithms 47

<D

1 -b'
1 Av+i
+

-b'

r IN +I

fl(-l) I

0' I k(-l) k(-\)x'
O I *

(2.49)

Proof:

The proof follows immediately by noticing that the arrangement of the rows in
[UB YR]' and the choice of the sequence of rotations in O gives rise to the same angles
and accumulation of product terms of the product sequence in (2.46).

□

Contractivity

The use of hyperbolic rotations deserves special care. When applying a hyperbolic
plane rotation to a vector [x] X2] :

[Xi X2]
cosh (a) sinh(a)
sinh(a) cosh(a) = lyi yi\,

the square of the length of the vector {x\ x2] is preserved when measured with respect to
the metric £ = 1 ©-1 . I.e.,*? -x\ ~y\ -y\. However, the elementsy\ and)>2 m a v be
very large in this equation, even when x \ and x2 happen to be small. Such behavior leads
to numerical problems. Therefore, it is important that we guarantee in the generalized
Schur algorithm that excessive element growth does not occur. This is indeed the case,
as stated by the following theorem.

Theorem 2.3:

Let UQ = Un and YQ = YD in recursion (2.30). Then, since the absolute value of the
elements of Un and YD is bounded by 1 in (2.48.a) and (2.48.b), respectively, the

48 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

absolute value of the elements ofUj and Yj in (2.30) is also bounded by 1.

Proof:

We refer to Appendix C for the proof.

D

Referring back to Theorem 2.1 in Section 2.1, we observe that the recursion stated there
is contained in the recursion on Ufa and Y'g in (2.48.a) and (2.48.b). Hence, the proof of
Theorem 2.1 follows directly from Lemma 2.1 and Theorem 2.3.

Economized Schur-Cholesky factorization

In case the coefficient matrix is a Toeplitz matrix, e.g.,
A = [a,y I atj = a,+ij+i] e 'RNxN, or a close to Toeplitz, symmetric positive definite
matrix, the amount of computations involved in the generalized Schur algorithm can be
drastically reduced as is shown by the results in [Lev 1984]. Let the matrix Z be the lower
shift matrix :

Z =

1 0

(2.50)

and define the so-called box operator on the matrix A as follows [Kaill979]:

D4 :=A -ZAZ'. (2.51)

Then, D4 can always be decomposed as follows [Kail 1979] :

D4=G5G' , (2.52)

where the signature matrix S is of the form S - Ip ®-Iq, with p +q=r <N. The matrix
G' e R rxW is such that there exists an 5-orthogonal matrix P, such that:

2.2. The class of feed forward algorithms 49

(GP)' =

8'
— +
0 1

1

. 1
0 1

p
(2.53)

where 8' = [8j • • • 8W] and T= [yu] e R ^ - U X M) .

Remark : /M case the matrix A is a Toeplitz matrix, we have 5 = 1 ©-1 andG' is the fol­
lowing matrix (assuming that the matrix A is normalized such that a,-,- = I) [Dewil978] :

"1 an ••• a1N

0ai2 ••• fli./^-i
G' (2.54)

In [Lev 1984] it is explained how the rows of the Cholesky factor V of the matrix A are
computed through elimination of the columns of the matrix T' in (GP)', with S-
orthogonal rotations. The entries of the first column of V can be eliminated by shifting T'
one column to the left and applying (p-\) circular rotations in the planes (1,2), (1,3),...,
(l,p), such that the first p-\ entries of the first column of T1 are eliminated. Next, the
remaining entries can be eliminated by applying (r-p+l) hyperbolic rotations in the
planes (l,p+l), (l,p+2),..., (l,r). The first row of the Cholesky factor L' of the matrix A
is equal to the modification of the row 8' after the sequence of rotations. Next, the new
matrix r* can be shifted one column to the left and again such a sequence of appropriate
(p-1) circular and (r-p+l) hyperbolic rotations can be applied, such that the elements in
the second column of T1 are eliminated. The second row of the Cholesky factor is now
equal to the modification of the row vector 8', which results after this second sequence of
rotations. The shift and rotate procedure is repeated until all columns of I* have been
eliminated. The inverse Cholesky factor L_1 of the matrix A is found by applying the
rotations to the column vector [1 0 • • • 0 1]'. The number of operations is reduced to

r-2
O (rN2), compared to the O (N3) operations of the generalized Schur algorithm.

50 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

Combining these economized Schur-Cholesky factorizations with the possible factori­
zations in (2.13) and (2.15) results in efficient solvers as shown in Figure 2.3. The rectan­
gles denote the rotors and the squares marked by "D" denote a unit delay. The entries of
the factors V and L"1 appear at the taps after the delays. An example of such a solver
can be found in [Jain 1986a] for an application in speech coding. Note that the number
of rotors in Figure 2.3 for the elimination of a column of r* is equal to r—1, where r may
range from 2 to N. The case r=2 corresponds to the Toeplitz case and r=N leads to the
full complexity of the generalized Schur algorithm.

2.3 NUMERICAL STABILITY OF THE ALGORITHMS

In the numerical stability analysis of the feed forward direct methods of Section 2.2
the central issue is the study of the propagation of roundoff errors due to finite precision.
Detailed numerical stability analyses of the LU factorization with linear rotations, the QR
factorization with circular rotations and the LL' factorization with hyperbolic rotations
can be found in, for instance, [Golul983], [Gentl975] and [Bultl981], respectively.
Since the methods of Section 2.2 can all be deduced to either of these three types of fac­
torizations, a detailed analysis of the numerical properties of the methods shall not be
given here. Instead, an intuitive explanation shall be given.'

The result of an operation /applied to a vector u in finite precision arithmetic will be
denoted as fl(f (u)). The relation between the finite precision and exact result is the fol­
lowing :

y?(/(u)) = (l+Ti)/(u), (2.55)

where r) is bounded by the machine precision. Notice that (2.55) is a generalization of the
case where / denotes either a scalar addition, subtraction, multiplication or division, as
found in [Golul983]. Let/j ;, i,j-\,2 be the functions that determine the (/-entries of a
plane rotation 0 from a vector u. Let the matrix 0 denote the matrix that results when the
entries are computed in finite precision arithmetic. Then, 0 is represented as follows:

2.3. Numerical stability of the algorithms 51

W5K--

(- l)x ' ,(- l)

— — Oylr...yNr 1

— ' ■ — 0YI 2 . . .YJV2 0
Oy„ ...yjviO

«f{D}«£— 8) 82... bN 1

Ofc] b2...bN 1

Figure 2.3. Solver with economized Cholesky factorization.

0 =
#(/n(u))yz</i2(u))"
^ 2 1 (U)) J?(/22(u))

'(l+TUl)/ll(u) (l+Tll2)/l2(u)'

(l+Tl2l)/2l(") (1+Tl22)/22(U) (2.56)

where the T\y, ij=l,2, are bounded by the machine precision. Putting

T) = max(lTiii I, ITI12I. I1I211.1"H22') we find the following upper bound for the Fro-

benius norm of the matrix © :

l l@l l F <(H-Ti)
2 2
I Z/&(u)

>/2

= (i + n) i i e i i / ? . (2.57)

Now, suppose ®k - [Si/]. i= l , . . ,n , are plane rotations computed in finite precision arith­

metic. Then, applying ©! in finite precision arithmetic to a vector x = [JCJ x{\1 gives for

some error numbers bounded by machine precision, E;;- and y,-, i,j=l,2 :

[0(
1

1i)^i(l+e11) + 0 (i2)^2(l+ei2)](lni)

[B$x, (l+e21) + 9^jc2(l-«22)Kl+fe)
fl(®i*) =

U+Yi)

(I+T2)

(l4eu)eiV (l+e12)0(i12)

(l+£2l)021) (l+e22)022

Putting T]! = WMK(IE U I . I E ^ I , lE2i I. '£22' . 'Yi I. IY2O and using the inequalities

IIAB I l 2 < MA I l2 l \B\ l2, I U x l l 2 < I U I l 2 l l x l l 2 , \\A\\F>\\A\\2, we

obtain the following bound for the /2-norm of fl(@ix):

52 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

ll^(01x)ll2<(l+Tli)22V4l 10! I l F l l x l l 2 .

Using the result in (2.57), with £i = max (T|, r|i), we obtain :

I \fl(@lX)\ l2 <(l+^i)32'Al I©, I \p\ Ixl l2.

By induction we can proof that:

(2.58)

liy?(0n...y?(0lX)...)ll2<22(lHn):

%n=max{r[n,tin_x,\\), $o = 0.

3n n i i e / i i f
1=1

l l x l l 2 , «=1,2,.

Indeed, assume that the induction hypothesis :

n - l

l l^(0n_1 . . .^(01x). . .) l l2<2 2 (l+^-i)*"^ Ixl h

^„_1=/WOX(TlB_i,^1_2, Tl)

is valid. Then,

ra+Yi)
j?(ell...j?(e1x)...) = (1+Y2)

(l+en)efi> (l+e12)6in
2

)

(l+e2i)e2
ni) (l+e22)e22) fl(®n-i ...y?(0ix)...).

Putting T|„ = max(I £1 11, I e J 21, 1 e211, I £221, I yi I, IY2 I) and using the inequalities, we
obtain :

I 1/Z(©„..,#(©ix)...)I l2<2 , '4(l+rin)2l l@„l lF | \fi(©„_,...fli^x)...)I l2

< 2 2 (l H n - i) 3 (" - 1) (l + T l n) 2 l i e j l F

Using the result in (2.57), with %n = max (T|n, !;„_[, r\), we obtain :

n i 10,1 if
J'=l

I Ixl l2.

2.3. Numerical stability of the algorithms 53

i^(en...^(e1x)...)ii2<22(i+^)3n nue.'i'F
i = i

I Ixl I-

S2 2 (l+3^ n) n ' ' e, 11F
<=1

i i x i i 2 + 0($2)

S2" nueii
1=1

I lxM2+e„,

where:

e„<2 2 3^ „ n n e ; i i F
1=1

11x112 + 0(55).

And from the inequality I \A I l/r <A'V41 U 112 = JVViA.(A), where X(>1) is the spectral
radius of the matrix A e RNxN, we find :

en<2n3n^n rw©.)
;=i

M x l l 2 + 0£ 2) . (2.59)

This expression shows that the propagation of the roundoff error is amplified by the
spectral radius of the rotations 0,. In case the 0, are orthogonal the spectral radii are
equal to 1 and there is no amplification of roundoff errors due to the 0;. Hence, the feed
forward direct method in (2.23) is numerically robust.

However, in case the 0; are either linear or hyperbolic rotations, the spectral radii

are, respectively, [(1+ 1/*la,-l2) + ((l +Vila,-!2)2-1)*] and
(1 + I tanh (a,) I)(1 - tanh2(a|.))_V4. In case of linear rotations the I a,-1 become large, if
the diagonal elements of the matrix A are small relatively to the oj^-diagonal elements. In
such cases the spectral radius of 0; is approximately equal to let;I . And this already
happens for relatively small a,'s, because of the quadratic term (1 + xh I a; 12)2. On the
other hand, if the matrix A = [aij] is positive definite, then the I a,-1 < 1 due to the fact
that an > I aij I, and the amplification of roundoff errors is less.

54 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

From Section 2.2.3 we know that the hyperbolic rotations can only be used when the
matrix B in (2.47) is positive definite. In that case I tanh (a,) I < 1 for all j . From (2.59)
the amplification of the roundoff error due to the hyperbolic rotations is given by :

n O + to«/»(ai))(l - tanh2(a1))-1'4.
i=l

From (2.26.a), (2.26.b) and (2.44) it follows that the ith diagonal entry of the inverse
Cholesky factor LB1, of the matrix Be RCV+i)x(AT+i) i n ^Al) is e q uai t 0

TJ(1 - tanh (<Xy)) , for j=2,3,..., and equal to 1, for j'=l. Hence, the determinant of B is

N+li-2
equal to J] [J (1 - tanh2 (a,)) and it follows that the closer to singularity the matrix is,

i=2 7 =l

the closer to ±1 one of the factors tanh (ay) is. Therefore, the amplification of the round­
off error increases as the matrix approaches singularity.

2.4 SEMI-DIRECT NATURE OF THE GENERALIZED SCHUR ALGORITHM

The generalized Schur algorithm of Section 2.2 can be shown to be a semi-direct
method for solving positive definite systems of linear equations. (This was shown in
[Nehol983] for the Levinson algorithm [Orfal985]). Hence, we may prematurely abort
the recursion in (2.30) and still obtain an approximation for the solution. Let A e RWx/v

be a symmetric positive definite matrix with its diagonal entries equal to 1. And let
b £ R^ be such that A - bb' > 0, and p, is the ith row of the inverse of the Cholesky
factor L of the matrix A. Then, the computations in (2.30), with UQ = Ug and YQ = YB,
can also be stated in terms of the following recursion.

2.4. Semi-direct nature of the generalized Schur algorithm 55

for i'=0 to N-\ do
compute p,+] such that p'+iAp^ = 8,+ij j = l,...,i+l (2.60)
r,-=i4x,--b (2.61)
a i + 1=p{+ 1r; (2.62)
x1+1=x, + a,+ip i+1 (2.63)

endfor
a

This recursion is very similar to the conjugate gradient method [Golul983]. The
difference being that the vectors p,- are linear combinations of the Lanczos vectors of the
matrix A in case of the conjugate gradient method. Notice that the above recursion can
be terminated when r, = 0. This may happen before i = /v-1 , if the solution x lies in a
subspace of the space spanned by the columns of the inverse of the Cholesky factor of A.
For instance, if x lies in the space spanned by pi, then the residuals r,-, i=l,...,N—l, are
zero and the recursion can stop at i=l.

To show that the computations in recursion (2.60)-(2.63) are indeed those of recur­
sion (2.30) with UQ = UB and YQ = YB, the following approach is taken. First we show
that a ;+i in (2.62) is really fan/i(a,+1) in (2.4.b), for m = - 1 , by showing that recursion
(2.61)-(2.63) can be embedded in recursion (2.6.a)-(2.6.b), for m = —\. And since we
compute the p;+i, by recursion (2.30) it follows that the computations in (2.60)-(2.63) are
similar to the computations in recursion (2.30) when UQ = UB and YQ = YB- From this we
will be able to conclude that recursion (2.30) expresses a semi-direct method for solving
symmetric positive definite systems of linear equations.

Embedding of residual Equation (2.61) in a vector-matrix product gives :

: [(l -x 'b) I rf] (2.64) [1

"1 - b '
- b A

1 x<]
1 -b'"

- b A

= LBL'B, where I (6 = _ h A =LBL'B, where LB is the Cholesky factor of the matrix B). At the end of

56 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

recursion (2.60)-(2.63) we have :

[1 I x ']B=[(l -x 'b) I 0...0] = [(1 - I Ixllji) I 0...0], (2.65)

where
l lx l l^=x 'Ax. (2.66)

Since the matrix B is positive definite, it follows that (l - l l x l l j) > 0 . Hence, dividing
both sides of (2.65) by (1 - I IxI I \)*h is allowed and gives :

[(1-11x112)-* I x*]S =E(1 - I Ixl li)1/4 I 0...0], (2.67.a)
and

x* = (l - l l x l l ^ r V 4 x ' . (2.67 .b)

Equation (2.67.a) can be solved using a Levinson recursion on B [Orfal985] as follows.

Normalize (2.64) through division by (1 - x'b)1'4 :

[(l-xib)_V4 I x-]B=[(l-x|b) , / 5 I rj], (2.68.a)

where
x- = (l-x|b)-Vix{ (2.68.b)

and
?{ = (l-x{b)-V4ri. (2.68.c)

For the moment assume that

[(l - x j b r * I x|] = [y{ I 0---0] , (2.69.a)
N-i

with
y'i = {yi,o y u ••• y,-.,] (2.69.b)

and
yit0 = (l-x'ibfA. (2.69.C)

Also assume that

2.4. Semi-direct nature of the generalized Schur algorithm 57

[y! I 0---0]B=[(l-xfb)V i I 0---07i{\)-"7i{N-i)]. (2.70)
N-i i

It will follow next, by induction, that both assumptions are true.

Surely (2.70) holds for / =0 (i.e., putting x0^0). Now, let p,-+1 denote the (i +l)st row
of L~l, without the zero elements of p,+1 . Then, y,- is updated by the rule :

y|+i=([y{ I 0] + pi+1[0 I p,+i])(l-p?+i)- I A . (2.71)

The value of p;+1 then follows from the residual equation :

f[yi 0 I 0 • • • 0] + p(+1[0 p1+1 I 0 • • • 0]lfl =
L N-i-l N-i-l J

[(l-x{b)v i I 0--.-0 7j(l)---Fi(rV-i)] +
J

Pi+iCYi+i 0 • • • 0 /i+1(l) • • • /i+i(A^-i)] =

[(l-xi+1b)1 '4 I 0 - - -0 r j + 1 (l) - " r i + 1 (AM-l)] . (2.72)
.1+1

The elements /,-+i(i) are the non-zero elements of the (i+l)sf row of L'. From (2.72) it
then follows that:

'i+ui)

And from the positivity of the matrix B it follows that

l p 1 + i l < l . (2.74)

A flow graph representation of the Levinson recursion in (2.72) is depicted in Figure 2.4,
for an initial guess of XQ = 0.

58 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

JK: >o°c
PN P3 P2 PI

Figure 2.4. Graphical representation of the Levinson recursion in (2.72).

The symbol

-b{ -b2 ~-bN

denotes the 2x2 hyperbolic rotation with p, = tank (a,) in (1.6) (m = -1). This sequence
of hyperbolic rotations is exactly the same as the one in recursion (2.6.a)-(2.6.b). But
since (2.64) is an embedding of the residual Equation (2.61) and (2.70) is equal to (2.64),
it must be that the update rule for x1+1 in (2.63) is equivalent to (2.71), with p,+i = a,-+i,

x|+i = to. I • • • yu i o • ■ • 0] + p(+1 [p i+1 i o • • • 0], x{ = tv,-. i • • • yu i o • • • 0],
5V-i N-i-l N-i

Px+i = [Pi'+i I 0 • • • 0] and r' = [0 • • • 0r i+1(l) • • • T7;+1 (iV —i —1)]. And because recur-
N-i-l i+ l

sion (2.30) combines the computations of recursion (2.6.a)-(2.6.b) and the computations
of the rows of L and L~l, for U0 = Ug and Y0 = YB, it follows that the computations in
recursion (2.30) are equivalent to those of recursion (2.60)-(2.63). And we conclude that
recursion (2.30) is in fact a semi-direct method.

As was noticed before, the recursion in (2.60)-(2.63) expresses the conjugate gradient
method, when the p,- are chosen to be linear combinations of the Lanczos vectors of the

2.4. Semi-direct nature of the generalized Schur algorithm 59

matrix A. If the Lanczos procedure is prematurely terminated the resulting tridiagonal
matrix T has extreme eigenvalues which approximate the extreme eigenvalues of the
matrix A and the obtained solution vector is an approximation to the exact solution vector
[Golul983].

In contrast, premature termination of the generalized Schur recursion results in a
maximum entropy extension approximation of the inverse of the coefficient matrix A (see
[Dewil981] for the Toeplitz case and [Dewil987] for the general case). In fact, the
approximative inverse is banded, such that its inverse coincides with the matrix A within
the band [Dyml981]. Hence, early termination of (2.60)-(2.63) results in a solution of a
system of linear equations, which coincides in the band with the original set of linear
equations.

2.5 GENERALIZATIONS OF THE FEED FORWARD METHODS

The algorithms in Section 2.2 can be straight forwardly generalized to handle more
general matrix arithmetic. Straightforward generalizations can be given for the following
computations:

1. computing an unknown matrix X from the matrix equation AX=B, where
A 6 RNxN,X e RWx» andB 6 RWx«;

2. computing an inner product/accumulation b'c + d;

3. computing a vector-matrix product/accumulation Cb + d;

4. computing a matrix-matrix product/accumulation CA~lB + D.

We shall consider two cases. The first case presents a generalization based on an LU or
LQ factorization of the matrix -4. The second case presents a generalization based on an
LL' factorization of the matrix A.

60 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

CASE I

Suppose we have a non singular matrix A e "RNxN and matrices B e R " ^ ,
C e R ' * and D e R r x ? . Let bj, ..., b ? and di, ..., dq denote the columns of the
matrices B and D, respectively. Let m be a vector m = [mi • • • mq]', nij e f0, l , - l / ,
<=1,...,9. We show that sequences of rotations as in (2.18) and (2.22) can be applied to
the matrices :

Wi =
'A' C
-b'i di w

'A' C
-b'q d'q

such that we can combine the results into a matrix E„

■diagik^rrn) ••• kq{mq)){B'A~'C +D').

The sequences of rotations in (2.18) and (2.22) can be re-ordered to ®(m)

N
where 0(/n) = Yl®<(™) (see (2.4.a)-(2.4.b)) and

1=1

(2.75)

\x~l 6
tf I

or

-l

Of 1

tf 1

N-1N-1

= nnuij,

JV-UV-1 = nn&;.
respectively, t/y and g y are as given in (2.17) and (2.21), respectively. Let us denote by

0(m,) the matrix 0(m) in the product @(m)
X -1 0'
tf 1 , when applied to W-t

e(m,)
r-i

tf 1
A' C
-b'i d{

Ri *

0' e{

where [R\ I 0]', with Rt e HNyN, is the upper triangular factor of [A I -b,] ' . Writing the

(N+l)x(N+l) matrix 0(m() as :

2.5. Generalizations of the feed forward methds 61

e(ml-) =
~Qu(m) e12(m,)

, e,i(m/)6 R"*",

we find:

and

eii(«.-) = *,-(«,-)bM-*XI

Hence, it follows that :

e'i = ki(miXb'iA-'C' + d'i).

Thus, for i = 1,...,<? we can combine the results ei,..., e^ as the rows of the matrix Em in
(2.75).

CASED

A similar result can be obtained for a Schur-Cholesky factorization of the matrix A (in
case A is symmetric positive definite). Let the following be given. A e JR.NxN is a posi­
tive definite matrix, B e RWx? is a matrix with columns bj, ..., b ? , such that
A - b;bf > 0, i = l,...,q, C e Rrx2/V is the following augmented matrix : C = [C I C]
with C e TRrxN, and Z? e R r x ? is a matrix with columns di, ..., d?. Moreover, let
G = [U Y], where U and F are the lower and strictly lower triangular part of the matrix
A, respectively. We show that sequences of rotations as in (2.46) can be applied to the
matrices :

Wx =
G' C'

-b i d',
W =

, . . . , IT Q —

G' C'
t

q <*q - b i d'

such that we can combine the results into a matrix Em as given in (2.75).

The sequence of rotations in (2.46) can be reordered to [©(/n)]
<t> 0
Of 1

where

62 2. A CLASS OF HIGHLY STRUCTURED ALGORITHMS

N
[®(m)] = nt®<(m)] (see (2.45)) and <J> is as given in (2.26.a)-(2.26.b). Let us denote by

fo 6
[0(m,)] the matrix [@(/n)] in the product [@(/n)]

tf 1 , when applied to W,- :

"o o"
0 1

G' Cr

-b'i d< =
Ri *

0' e< Wmi)]

where /?, = [fl, I 0] ' e R 2 ^ and /?, E R M being the Cholesky factor of the matrix

A - b,-bj. Writing the (2N+l)x(2JV+l) matrix [©(m,)] as :

[©(m,)]:
@ii(m,) 0 e12(/n,)

O IN 0

821 fa) 0 *,•(«,•)

, 0 n K) e R W W ,

we find:

efc1(ml-)L'=*.-(iBl-)bf

and because :

o =
IT1 0 [/ -Y

-Y' V

(see Corollary 2.1) we get:

ej=8^(m i)L-1C'+*1(m,)dj.

Hence, it follows that:

e{ = * i(^)(biA-1C' + dI-).

Thus, for i = l,...,q, we can combine the results e'i,..., e'q as the rows of the matrix Em in
(2.75). Hence, with the appropriate choice of the matrices A, B, C and D we can realize
each of the four above listed computations.

2.5. Generalizations of the feed forward methds 63

An example of a systolic implementation for the computation of (2.75), for m = 0, is
shown in Figure 2.5.
The rows of processing elements in the rectangular part transmit the data coming from
the triangular part unchanged, along the vertical interconnections to their upper neighbor.
This has been indicated by the arrows across a processing element.

' JO, ' J3, ' JJ, '
,__fH]I_4E]r. JE]__ |S

-B* —

rows of -B' andD' <

1 n n
C2CXTI C 3 f t h CD

qiifr| cpi&l cpjfr| cpfB~|

rows of A' andC <
^1 TO TO I

l&

> rows of £ 0

^ ^ ^ ^ ^ -J^J

Figure 2.5. Systolic array for expressions (CA XB +D).

I,

65

3. MAPPING REGULAR RECURRENT ALGORITHMS TO
FIXED SIZE SYSTOLIC ARRAYS

In this chapter the LPGP and the LSGP partitioning strategies are presented. The
presentation will be restricted to the partitioning of 2-D systolic arrays. In Section 3.1
the tessellation of a systolic array into tiles of processor elements is characterized. This
tessellation is common to the LPGP and the LSGP partitioning strategy. In Section 3.2
the LPGP partitioning strategy is presented. A full size systolic array is first tessellated
after which a dependency graph for the tessellated FSA is derived. From this dependency
graph the order is determined in which the computations of different tiles must be exe­
cuted on a reduced size array. A model for the LPGP partitioned FSA is presented, which
consists of the RSA, buffers to store intermediate data, a controller which issues the read
and write addresses for the buffers and an interconnection network which routes the out­
puts of the RSA to the inputs. It is shown how the addresses are derived from the
scheduling of the processor elements in the FSA and the dependency graph of the tessel­
lated FSA.

In Section 3.3 the LSGP partitioning strategy is presented. The existence is proved of
clusters which have the shape of either a parallelogram, trapezoid, or triangle and it is
shown how the clusters are positioned relatively to each other in the FSA. The clusters
and their positioning can be characterized by the tessellation of an FSA, as explained in
Section 3.1. From the dependency graph of the tessellated FSA the control is derived for
a cluster processor.

66 3. MAPPING REGULAR RECURRENT ALGORITHMS

3.1 TESSELLATION OF FULL SIZE ARRAYS

A 2-D full size systolic array is regularly tessellated into congruent tiles of equal size.
The tessellation is done by repeating a tile across the FSA, without overlapping. The
repetition is done only by translations. Tessellation of an FSA is common to the LSGP
and the LPGP partitioning strategy. With respect to its local frame of reference, a tile P
is characterized by two linearly independent integer vectors bi=[b\\ 621]' and
'J2 = [b 12 ^22]' and an integer support region F :

P = f x l B n = x, n e F j , (3.1)

whereB = [bi I b2] and F c Z 2 has finite cardinality. The integer support region F is
such that P is homogeneous (see CONVENTIONS, SYMBOLS AND DEFINITIONS,
Definition HI) in the space spanned by bj and b2- To each value of n in F corresponds a
processor element in P.

Let us define an integer displacement matrix U = [uj I 112], where the columns Uj
and U2 are such that translations of tile P, by linear combinations of these two vectors,
uniquely assigns a processor element per value of n to a tile P| :

P| = fx I Sn + C/i + r = x, n e F}, (3.2)

for some translation vector i and offset vector r. For a given size of the FSA we have
i e H, where H is the domain for the repetition of tile P, such that each processor element
of the FSA is uniquely assigned to a tile. The offset vector r determines the point at
which the repetition starts. Thus, we can characterize the tessellation of an FSA by the
following 5-tuple T of parameters:

T={U,H,B,F,r}. (3.3)

At this point we would like to remark that the choice of the matrix U is not unique, given
B, F and r. Similarly, the choice of r is not unique, given U, B and F. For examples of
different tessellations of a 2-D FSA we refer to Figure 3.1.

3.1. Tessellation of full size arrays 67

In order to denote which processor elements belong to a tile, dotted squares have
been drawn around the processor elements. In the sequel we shall use the convention that
delays at an output of a processor element belong to the same tile as the processor ele­
ment itself. In Figure 3.1(a) the following choices for the parameters of the tessellation T
have been made :

r = 0,

B =
1 0
0 1

F =
0
0 •

1
0 »

0
1 »

1
1

u =
2 0
0 2

H =
0
0 »

1
0)

2
0 -

0
1 »

0
2 i

: |

2
1)

1
2 »

2
2

In Figure 3.1(b) these are chosen to be :

68 3. MAPPING REGULAR RECURRENT ALGORITHMS

o 1 \ \ \ o 1 I 4 1
(a) (b)

Figure 3.1. Two different tessellations, with square tiles.

r = 0

fi =
1 0
0 1

F =
0
0 1

1
0 »

0
1 »

V
I

t/ =
2 0

-1 2

0
0 •

0
1 >

0
2 i

1
1 •

1
2 »

1
3 j

2
1 »

2
2 »

2
3 H =

Notice that for given B, F and U the number of elements in H, i.e., the number of tiles,

depends on the vector r. For instance, putting r = [2 2]' in Figure 3.1(b), gives :

H =
0
0 •

0
1 y

0
-1 i

1
0 »

1
1 •

1
2 '

1
-1 -

-1
0 »

-1
1

-1
-1 -

- l"
-2

3.1. Tessellation of full size arrays 69

That is, 11 tiles compared to 9 tiles for r = 0.

3.2 STRATEGY I : LOCAL PARALLEL, GLOBAL PIPELINED PARTITION­
ING

The different steps that are involved in the LPGP partitioning strategy are the follow­
ing.

1. Tessellate the FSA such that there are no reverse interconnections across an edge
of a tile and such that the number of tiles is minimal. Reverse interconnections
across the same edge of a tile are not allowed, because computations of the next
tile are scheduled on the RSA only when a processor element has finished all its
computations for the currently scheduled tile. Notice that reverse interconnections
give rise to a loop in the dependency relations between two tiles.

2. If necessary, extend the FSA with dummy processor elements, such that it can be
tessellated in tiles of, say, p processor elements each, for a particular choice of the
offset vector r and the displacement matrix U. A dummy processor element just
performs an identity I/O map.

3. Find an admissable order of the tiles. The order is admissible when the dependency
constraints between the tiles are not violated and when the order is such that no
two or more tiles are assigned to the same position in the order.

4. Identify the processor elements in a tile which communicate with processor ele­
ments in other tiles. The interconnection pattern between these processor elements
defines the buffered communication from the outputs to the inputs of the RSA. See
Figure 1.10. The RSA is defined to have card(p) processor elements and the same
interconnections as the FSA, between processor elements.

70 3. MAPPING REGULAR RECURRENT ALGORITHMS

3.2.1 TESSELLATION OF THE FULL SIZE ARRAY

Depending on the offset vector r and the displacement matrix U the tessellation of an
FSA may yield tiles with less than card(F) processor elements. See for instance
Figure 3.1(a). In this figure the tiles which cover the right most column of processor ele­
ments have each only 2 processor elements, instead of 4. Since the RSA will consist of 4
processor elements, an extra column of dummy processor elements must be added to the
FSA, so that each tile has exactly card(F) processor elements. By adding this extra
column of processor elements it suffices to have all communication between the RSA
and peripherals (like buffers and a host computer) to take place at the boundaries of the
RSA.

Since the computations of all tiles are going to be scheduled on the RSA, the func­
tionality of the processor elements of the RSA must include the identity I/O map of a
dummy processor element. Moreover, control must be added to select between different
functionalities of a processor element. There.are different ways to accomplish this, all
with their own drawbacks and merits. We shall present two obvious methods and discuss
their advantages and disadvantages.

Method 1. The first method consists of having control lines running through all pro­
cessor elements in the FSA. By means of a differentiation in the initialization of the con­
trol lines, a distinction can be made between dummy and real processor elements. For
instance, in Figure 3.1(a) we can run vertical control lines through all columns of proces­
sor elements and initialize the control line for the column of added processor elements to
1, in distinction to the rest of the control lines, which are initialized to 0. In this way the
control is propagating systolically, in the same way as the data. Similarly we may run
vertical and horizontal control lines through the extended FSA and initialize these prop­
erly. The advantage of this method is that the extended FSA remains regular and systolic.
However, at the cost of increased mesh complexity. An other disadvantage of this
method is that we may need more than 1 bit of information per control line to identify
dummy processor elements when their distribution is more complicated.

3.2. Strategy I: LPGP partitioning 71

Method 2. The second method consists of specifying a control structure on top of the
array. This control structure contains the information which tells a processor element in
the RSA when it is either a dummy or real processor element. In this method the control
structure resides outside the RSA, so that the mesh complexity of the RSA itself is unaf­
fected. The disadvantage is however, that this complexity is shifted to the complexity of
the communication network between the control structure and the RSA. In the worst case
the number of interconnections from the control structure to the RSA is equal to the
number of processor elements in the RSA. However, each control line carries just 1 bit of
information.

In these two methods of control specification we need to modify the instruction set of
a processor element in the RSA as follows:

case c
0 : I/O map for real processor element
1 : I/O map for dummy processor element

where the control variable c is issued from the controller to the processor, in case of
method 2. In case of method 1 c is a vector valued variable. The entries of the vector
being the values of the different control variables that were introduced in the FSA.

3.2.2 COMPUTING ORDERINGS OF THE TILES

Since the computations of the tiles in the full size array are going to be scheduled in
pipeline on the RSA, we have to determine an order for the tiles. This order does not
change the phase difference between the schedule time steps of the processor elements in
a tile. It merely tells which tile is next in the execution of its computations on the RSA.
An order is found as follows.

The dependencies between the processor elements of the FSA give rise to a depen­
dency graph G= {V, E}, of the tessellated FSA. The set V of vertices of this graph

72 3. MAPPING REGULAR RECURRENT ALGORITHMS

consists of the tiles. A vertex or tile is referred to by the coordinates of the lower left
corner of the tile. The set E of edges consists of the dependencies between tiles. These
are implied by the dependencies between processor elements in different tiles. The
dependencies are computed as follows. Let d be an interconnection in the FSA and let Pi
and p2 be two distinct tiles. IfB -1(p] +Bn + d - p 2) e F with n e F, then (p2 - P i) is a
dependency in the dependency graph of the tessellated FSA. If there exists at least one
pair (p,-, p,), p,*py and p ,*p i , P ;*Pi , such that (p; - Pi) =- (p ; - - Pi), then there
exists a loop in the dependency graph and the tessellation is not valid for an LPGP parti­
tioning of the FSA. For example, the tessellation in Figure 2.1(a) has vertex set V =
{Ui I i e H}, where the matrix U and the domain H are from the 5-tuple T of the tessel­
lation in Figure 2.1(a). Thus, V = {(0,0), (0,2), (0,4), (2,0), (2,2), (2,4), (4,0), (4,2),
(4,4)}. The interconnections are [1 0]' and [0 1]'. Let pj =0. In this case we can restrict
the computations B_1(pi +fin + d - p2) to the "neighborhood" N = {(2,0), (2,2), (0,2),
(-2,2), (-2,0), (-2,-2), (0,-2), (2,-2)) of p, , with p2 e N. With B and F as given in the
5-tuple T of the tessellation in Figure 2.1(a), we find :

a. n = 0, d = [1 0]' gives ([1 0]' - p2) £ F for all p2 e N;

b. n = 0, d = [0 1]' gives ([0 1]' - p2) £ F for all p2 e N;

c. n = [1 0]', d = [1 0]' gives ([2 0]' - p2) 6 F for p2 = [2 0]';

d. n = [1 0]', d = [0 1]' gives ([1 1]' - p2) £ F for all p2 e N;

e. n = [0 1]', d = [1 0]' gives ([1 1]' - p2) £ F for all p2 e N;

f. n = [0 1]', d = [0 1]' gives ([0 2]' - p2) e F for p2 = [0 2]';

g. n = [1 1]', d = [1 0]' gives ([2 1]' - p2) E F for p2 = [2 0]';

h. n = [1 1]', d = [0 1]' gives ([1 2]' - p2) e F for p2 = [0 2]';

Hence, the set of dependencies is E = {[2 0]', [0 2]'). the resulting dependency graph is
depicted in Figure 2.2(a). Similarly, the dependency graph of the tessellation in

3.2. Strategy I: LPGP partitioning 73

Figure 3.1(b) is shown in Figure 3.2(b).

At this point we should stress the fact that these dependency graphs do not contain
any scheduling information whatsoever, that relates to the scheduling of the processor
elements in the tiles. The only information that they contain is the plain fact that the
computations of a tile depend on those of other tiles. For this reason the delays in a tile
are not made explicit in these graphs.

We restrict ourselves to linear orderings of the tiles. I.e., orderings of which the ele­
ments are computed by a function of the form / (v) = p'v, where v e V and p is a con­
stant vector (the order vector), which is found from the following constraints :

p'[e, • • • e j > [1 • • • 1] (3.4.a)

p'v*p'w, forv*w, (3.4.b)

where e,- e E and v, w e V. Constraint (3.4.a) is the familiar scheduling constraint as
given in (1.12), while constraint (3.4.b) expresses the fact that no two or more tiles may
be at the same position in the order. Unlike the scalar products s'i in Chapter 1, the
values / (v) do not denote time steps. They merely state precedences, in the sense that if
/ (v) > / (w), then the computations of tile w on the RS A are preceded by the computa­
tions of tile v. Examples of order vectors for Figure 3.2.(a) are p' = [3 1], p' = [2 3] and
p' = [1 3]. These, respectively, lead to the following orderings of the tiles :

1. /"(0,0), (0,2), (0,4), (2,0), (2,2), (2,4), (4,0), (4,2), (4,4)^;

2. f(0,0), (2,0), (0,2), (4,0), (2,2), (0,4), (4,2), (2,4), (4,4)^;

3. f(0,0), (2,0), (4,0), (0,2), (2,2),'(4,2), (0,4), (2,4), (4,4);.

For each order we can keep track of the number of sets of intermediate results that are
to be stored at a certain schedule time step, for each output of the RSA. If we would
extend the graph in Figure 3.2(a) to a graph of 4x4 tiles, the order vector p' = [3 4],
which enumerates the tiles along the diagonals of the graph, would cause a larger number

74 3. MAPPING REGULAR RECURRENT ALGORITHMS

Figure 3.2. Dependency graphs for the tessellations in Figure 3.1.

of sets of intermediate results to be stored temporarily, compared to order vectors which
enumerate the tiles along columns or rows. If our strategy were to minimize the total
amount of storage for intermediate results at each of the outputs of the array, then we
should choose among orderings which yield this minimum.

3.2.3 PIPELINING COMPUTATIONS OF THE TILES ON THE RSA

The model that we shall employ for the pipelining of the computations of the tiles on
the RSA is shown in Figure 3.3. It consists of the RSA, selectors (s,-, /=1,...), buffers
(buffer^ j'=l,...), a controller and an interconnection network. The controller operates a
selector s(- via the control signal sc,-:

1. to select either data produced by the RSA or initialization data from the environ­

ment (the host computer for example);

2. to re-route the selected input data to one of the two outputs of the selector.

Via the signal fc(- the controller instructs a processor element pt of the RSA to perform
either the identity or the default I/O map. Via the signals denoted by w,- and r,- the

3.2. Strategy I: LPGP partitioning 75

controller specifies, respectively, where data is written into and read from the buffer
buffert. The interconnection network routes the outputs of the RSA (via the selectors and
the buffers) to the inputs of the RSA. The routing is determined by the tessellation of the
RSA (see Figure 3.2).

The organization of a buffer buffer^ is shown in Figure 3.3(b). The buffer consists of
a number of memory banks, TILE_1 to TILEN and two decoders. A memory bank
stores either the data produced by an output of the RSA or the input data of the FSA.
The decoders select a specific memory bank, depending on the value of the signals w,-1
and ri\. The address in a memory bank is specified by the signals w(2 and r,^. A memory
bank must be envisualized as divided in two separate sections to make simultaneous
reading and writing in a memory bank possible. Data from the memory section into
which data is written from a selector output is copied into the memory section from
which data is read by the RSA. In this model the number of memory banks per buffer has
been taken to be equal to the number of tiles in the tessellation of the FSA. Of course, in
practice it will suffice to have a smaller number of memory banks, because the contents
of a memory bank can be overwritten as soon as the data in this bank has been processed
by the RSA. However, such schemes require a more sophisticated memory management
algorithm for the controller, than will be the case for the model used here. Moreover, the
organization of a buffer, as shown in Figure 3.3(b), may be too general for specific tessel­
lations and order vectors. For instance, consider the tessellation in Figure 3.1(a) and its
dependency graph in Figure 3.2(a), with order vector p' = [3 1]. In this case each buffer
for the vertical outputs of the RSA can be a simple FIFO (first-in-first-ouf). And each
buffer for the horizontal outputs can be a concatenation of 3 FIFO's. When the first tile in
the next column of tiles in Figure 3.2(a) is about to be scheduled, the left most FIFO con­
tains the data needed for the computations of the first tile in a column of the graph in
Figure 3.2(a) (counted from top to bottom), the middle FIFO contains the data needed for
the computations of the second tile in the column and the right most FIFO contains the
data for the computations of the third tile in the column. The algorithm of the controller
will be also simpler, because no memory bank selection (w,-] and r,-j) and address selec­
tion signals (w;2 and r,^) are needed in this particular case. We would like to remark here

76 3. MAPPING REGULAR RECURRENT ALGORITHMS

(a)

'&]

from selector dec­
oder

TILE 1

TILE N

fc]
dec­
oder ->• to network

(b)

Figure 3.3. (a) Model for an LPGP partitioned FSA. (b) Organization of buffer bufferi.

that the buffer organization in Figure 3.3(b) does not necessarily represent a hardware
implementation. The hardware implementation may be in the form of a disk, for instance,
in which case the organization in Figure 3.3(b) represents an algorithm for data storage
and access on the disk.

THE STRUCTURE OF THE CONTROLLER

For the model in Figure 3.3 we derive an algorithm that implements the controller.
Let the following be given. S_in_bufferi is the sequence of tiles receiving input data of

3.2. Strategy I: LPGP partitioning 11

the FSA which must be supplied to an input of the RSA via buffer^ For instance, if the
horizontal input of processor element (0,1) in a tile of Figure 3.1(a) is connected to
buffer i, then S_m_buffer i - {(0,0), (0,2), (0,4)}. S_out_s,- is the sequence of tiles pro­
ducing output data of the FSA which leave via the output marked by out of selector s,-.
For instance, if the horizontal output of processor element (1,1) in a tile of Figure 3.1(a)
is connected to selector s \, then S_out_.s i = ((4,0), (4,2), (4,4)}. S_tiles is the sequence
of tiles, ordered according to a specific order vector p. For instance S_tiles= {(0,0),
(0,2), (0,4), (2,0), (2,2), (2,4), (4,0), (4,2), (4,4)}, for p' = [3 1] in Figure 3.2(a).
S_I/0_p is the sequence of tiles to which a processor element p had to be added in order
to achieve the required number of processor elements per tile (the co-ordinates of p are
specified relative to the local frame of reference of a tile). For instance,
S_I/O_(l,0) = {(4,0), (4,2), (4,4)} in Figure 3.1(a), for processor element (1,0) (relative
to the local frame of reference of a tile). S_added is the sequence of processor elements
that were added to tiles to achieve the required number of processor elements per tile.
For instance S_added = {(1,0), (1,1)} in Figure 3.1(a), where the coordinates of the pro­
cessor elements are with respect to the local frame of reference of a tile. "dependency_i"
is the edge in the dependency graph of the tessellated FSA which is associated with the
input of the RSA that connects to the buffer buffer,-. Given these sets and dependencies,
the algorithms run by the controller for the signals sc,-, tct, w,- and r, are as follows
(First(S) returns the first element of sequence S and Remainder(S) returns the remainder
of the sequence S when its first element is deleted).

78 3. MAPPING REGULAR RECURRENT ALGORITHMS

I* Initialization of buffers with the input data of the FSA */
for (each buffer bufferi and selector s,)

set signal sci of S; to select the input "init"
and the output connected to buffer bufferf,
I* select memory bank and reset address field w-,2 */
while (SJnJbufferi # 0)

wi l *~ (First(S_in_fc«j5rer1) - dependencyj); /* select memory bank corresponding
to the tile from which input data will be read by the RSA for the
computations of the tile First(S_in_&uj5fer,) */
wi2 «- 0;

SJn_bufferi <- RemainderCSJn^u/fer,);
/* point to address in selected memory bank, where data for the computations of a tile must be stored */
while (S_w,-1 Jbuffer^ * 0) /* S_w,- [Jbuffer•,• is the sequence of schedule

time steps of the processor element in tile w,i, which
will receive its input data from buffer bufferi */

*>n *-vv i 2 + 1;
S_wn_bufferi <— Rema\nder(S_wil _bufferi);

endwhile
endwhile

endfor

3.2. Strategy I: LPGP partitioning 79

/* Issue control signals w(- = [w;2 w(- j] ' to the buffers buffer t */
for (each buffer buffer; and selector $;)

f,t o = lsf schedule time step of the processor element in
tile First(First(S_tiles)), for which input data is collected in buffer,-;
do

no-operation;
until (schedule_time_step == f,_ o) /* do nothing until time step f(i o */
I* start at tt< 0 */
while (Sjiles * 0)

w; i <— First(S_tiles); /* select memory banks to which the results
of the computations of tile First(S_tiles) will be written */
wi2 <-0 ;

S_tiles <— Remainder(S_tiles);
if (w,i e S_out_5,)

set signal sc; to select the input of s-t which is connected
to the RSA and to select the output of 5; which is labeled "out";

endif
else

set signal sc, to select the input of .$,- which is connected to the RSA
and to select the output of $; which is connected to buffer;;

endelse

while (S_wu_bufferi * 0) / * S_wi_bufferi is the sequence of schedule
time steps of the processor element in tile {w-,\ + dependency_i)
for which the input data is being collected in buffer buffer, */

W/2 « - W;2 + 1;
S_wn_bufferi <- Remainder(S_w,-!_buffer{)\

endwhile
endwhile

endfor

80 3. MAPPING REGULAR RECURRENT ALGORITHMS

I* Issue control signals r-t = [ri2 r,- j] ' to the buffers buffer,- */
for (each buffer buffer,)

li, 00 = ^st schedule time step of the processor element in the tile
First(S_tiles) which requests data from a buffer buffer,;
do

no-operation;
until (schedule_time_step == :,_ 0o) /* do nothing until schedule time step f,t oo */
I* start at f,-_ oo */
while (S_tiles * 0)

r,-1 «— (First(S_tiles) - dependency_i); /* select memory bank which contains
the input data for the processor element which gets its input data
from bufferi and which starts with its computations for tile First(S_tiles) */
r,-2<-0;

S_tiles <— Remainder(S_tiles);
while (S_r; _buffer, * 0) /* S_rn_bufferi is the sequence of

schedule time steps of the processor element in tile (r,- j + dependency_i)
which requests input data from buffer buffer-, */

ri2 <- ri2 + 1;
S_ru_bufferi <— Remainder(S_w,1_6«j5rer,);

endwhile
endwhile

endfor

file:///_buffer

3.2. Strategy I: LPGP partitioning 81

/* Issue control signals re,- to the processor elements of the RS A */
for (each processor element p(- of the RSA)

t; = \st schedule time step of the processor element p,- in First(S_tiles);
do

no-operation;
until (schedule_time_step == /,) /* do nothing until schedule time step t-t */
I* start at f,- */
while (S_tiles # 0)

tile <r- First(S_tiles);
S_tiles «— Remainder(S_tiles);
while (S_tile_p,- * 0) /* S_tile_p; is the sequence

of schedule time steps of processor element p,- in tile "tile";
if (p.- e S_added & tile e S_I/Oj9()

tci <— identity_map; /* identity I/O map */
endif
else

tCi <— default_map; /* default I/O map */
endelse

endwhile
endwhile

endfor

3.3 STRATEGY II : LOCAL SEQUENTIAL, GLOBAL PARALLEL PARTI­
TIONING

The LSGP partitioning strategy divides the full size array into congruent clusters of p
processor elements each. The scheduling of processor elements in each cluster is serial­
ized and each cluster is replaced by a single cluster processor. In the thesis we restrict
ourselves to the LSGP partitioning of 2-D FSAs.

The different steps that are involved in the LSGP partitioning strategy are the follow­
ing.

82 3. MAPPING REGULAR RECURRENT ALGORITHMS

1. Find a schedule vector s, such that a processor element is scheduled once every pth
schedule time step in a cluster of p processor elements and one and only one pro­
cessor element in the cluster is scheduled at a schedule time step.

2. Generate the tessellation of the FSA from the shape of the clusters and, if neces­
sary, add dummy processor elements to tiles (clusters) which contain less than p
processor elements.

3. By tracing the sequence of activity in a cluster, determine the control sequences for
input selectors and the selection of the appropriate functionality of the cluster pro­
cessor. An input selector selects either the output of its own cluster processor or
that of a different cluster processor. Because, as we shall see, the source of input
data for an input of a cluster processor may depend on the schedule time step.

The outline of this section is as follows. We start developing the concepts of a cluster
number, cluster and cluster direction. Based on these concepts we formulate a lemma
which states the conditions for the existence of a 1-D cluster. The 1-D cluster is spanned
by a cluster direction. Based on linear combinations of two linearly independent cluster
directions we formulate three propositions for the existence of 2-D clusters. Each propo­
sition states the conditions for the existence of a certain cluster with its own characteris­
tic tessellation pattern. Next we show how the 5-tuple T in (3.3) is derived to characterize
the tessellation in case of each of the propositions. And finally, we illustrate how to
derive control sequences for the selectors of a cluster processor.

3.3.1 CLUSTER NUMBERS, CLUSTER DIRECTIONS AND CLUSTERS

Let the following be given. G={I3, D} is the dependency graph of an FSA. From now
on we only consider index sets I3 which contain (O.O.O)1. The vectors s and t are a

3.3. Strategy H: LSGP partitioning 83

schedule and a projection vector, respectively. The matrix T is a transformation matrix,
such that Tt = 0 and which maps index set I3 to index set I2.

Definition 3.1: A cluster P is defined to be any subset of I2, such that :

1. P has finite cardinality;

2. Pis homogeneous (see Definition III in CONVENTIONS, SYMBOLS AND DEFINI­

TIONS) in the vector space (\ I T= Ti, i s Z 3 / ;

3. no two or more processor elements in P are simultaneously scheduled;

4. a processor element is scheduled once every card (P) time steps.

Definition 3.2 : The cluster number of a cluster P is equal to card(P).

Definition 3.3 : Let dx e Z2 be such that there are no processor elements between two
processor elements with relative position dx in the processor space I2. If, for every p e l 2

and for some integer k > 1, only processor elements at ..., —kdx + p, p, kdx + p,
2kdx + p,... are scheduled simultaneously, then dx is said to be a cluster direction.

Notice that it follows from the definition of a homogeneous set that a cluster number
is always greater than 1. Also notice that along a cluster direction we find 1-D clusters
with cluster number equal to k.

The following lemma is important for the derivation of 2-D clusters.

Lemma 3.1 :

1. If I does not contain (0,0,0) it can always be translated such that it does.

84 3. MAPPING REGULAR RECURRENT ALGORITHMS

Let the following be given, s e Z 1 is a schedule vector, t e Z3 is a projection vector
and T is a 2x3 transformation matrix such that Tt = 0. Let s and t be such that I s't I > 1.
Let dx e Z 3 be such that ax = s'dx is not a multiple of I s't I and there are no processor
elements between two processor elements with relative position Tdx = dx. Then, dx is a
cluster direction with cluster number :

I s'tI ,_ „
cx = : (3.5)

gcdtft, ax)

P=fi I i = *dx, 0<k <cj (3.6)

and

is a cluster.

Proof:

Let i + k\dx be a line in the processor space I2, for k\ a free variable (k\ € Z). Let
^ O E Z be a free variable. The set of all points in index set I3 that are mapped by
transformation T to this line is given by :

M = fi I j = i + M*+*ot> r i = i", i,j e I3;.

Two points i and j in M are simultaneously scheduled if s'i = s'j = s'(i + k j dx + hot). Or,

[to *il = 0, ax = s'dx.

For the coprime pair (^0, ^i) and its multiples ..., (-2k0, -2kx), (rko,-k\), (0,0),
(2jfcn. 2k\), ... that satisfies this equation, it follows that the processor elements at ...,

-&idx + i, O.dj + i, k\dx + \, 2k\dx + \, ... are simultaneously scheduled. Hence, since
there are no processor elements between two processor elements which have a difference
of position equal to dx, there are exactly \k\\ processor elements that can be clustered

- - I s't I between pk\dx and (p+l)ktdx (p e Z). Putting \kx I = and
gcd (s't, ax)

3.3. Strategy II: LSGP partitioning 85

\ax\ I / fen I = > w e have £c^(£n> *i)= 1- Hence, there are exactly l/fcj I = cx pro­
ved (s't, ax)

cessor elements between pk\dx and (p+\)k\dx that can be clustered. And since

a* *k Is'tl, it follows that cx > 1. Consequently, d* is a cluster direction with cluster

number cx and P = ft I i = kdx, 0 < k < cx} is a cluster.

Summarizing, given a certain cluster number cx and cluster direction dx a (set of)
schedule vector(s) is found from the following sets of constraints:

Is'tl . , _ .
cx : (3.8.a)

gcd(s't, ax)

s'fdj • • • dm] > [1 • • • 1]. (3.8.b)

(d i , . . . , dm are the dependencies of the dependency graph G). A lemma comparable to
Lemma 3.1 was also proved in [Nelil988]. However, there it was proven that, if

p3 0 -t{\
I s't I > 1 and the transformation T is chosen of the special form T = n , . where

t' = [f! f 2 '3] ' . tnen there is at least one cluster direction [f30 0]', [0f3 0]', or
[-t 1 -t2 0]'. Lemma 3.1 is different in the sense that it characterizes all possible cluster
directions (which may be more than three) for given s and t, such that I s't I > 1, without
any assumptions made on the explicit form of the transformation T.

Given the result of Lemma 3.1 for 1-D clusters, a logical extension to 2-D clusters
can be based upon linear combinations of two linearly independent cluster directions dx

and d r With this in mind we specialize Definition 3.1 in case of a 2-D cluster to the fol­
lowing definition.

Definition 3.4 : Given two linearly independent cluster directions dx and dy which span
the processor space I2. I.e., the linear combinations kxdx+kydy, with
kx,ky = ...,—1,0,1,... are in I2. Any subset P e l 2 of processor elements is defined to be a

86 3. MAPPING REGULAR RECURRENT ALGORITHMS

2-D cluster if :

1. card(P) = Is'tl;

2. card (P) > 2 (we must have card (P) > 2 in order to define a plane);

3. P is homogeneous in the vector space spanned by Ax and 6y;

4. no two or more processor elements in P are simultaneously scheduled;

5. a processor element in P is scheduled once every I s't I time steps.

Suppose dx and dy span a 2-D cluster. From Lemma 3.1 it follows that cluster
numbers cx and cy for cluster directions dx and dy, respectively, are divisors of Is'tl.
That is:

Is'tl =mxcx,
Is'tl =mycy,
.

for some positive integers mx and my. Notice that a* and cCy are the phase differences in
schedule time steps between two processor elements with relative position dx and dy,
respectively. If ax - Oy it means that two processor elements with relative position
(dx — dy) are simultaneously scheduled. Provided that (d* - d)̂ extents outside the clus­
ter, this is not in conflict with Definition 3.4. Only then mx = my is allowed. Otherwise
the remaining possibilities for mx and my are :

1. mx > 1 and my = 1 (or vice versa);

2. mx > 1, my > 1 and mx*my.

Definition 3.1 does not allow us to find the abundance of 2-D clusters that may exist
for Is'tl > 2, without an extensive search procedure. However, provided that there exist
cluster directions dx and dy with cluster numbers cx and cy, respectively, we can prove
the existence of 2-D clusters which have the shape of a parallelogram, when either of the

3.3. Strategy II: LSGP partitioning 87

following two sets of constraints is satisfied :

1. gcd(cx, cy) = 1, cxcy = Is'tl and cx, cy > 1, or

2. Cy = 1 s't I = ncx and n, cx > 1;

and we can also prove the existence of 2-D clusters which have a trapezoidal or triangu­
lar shape when the following set of constraints is satisfied :

cy = Is'tl > 2andcx > 1.

The sets 1) and 2) of constraints for clusters with the shape of a parallelogram imply
mx > 1, my >1 and mx > 1, my = 1, respectively. The set of constraints for the tra-
pezoidally or triangularly shaped clusters implies mx>\ and my — 1. Before presenting
the existence proofs for these types of clusters we need the following lemma.

Lemma 3.2:

/ / c = I s't I Igcd (s't, a) and a is not a multiple of I s' 11, then ac = p I s't I, for some
non zero integer p.

Proof:

If c = I s't I Igcd (s't, a), then a=pq and I s't I = cq, for some non zero integers p and
qwhh gcd(p,c) = 1. Hence,ac =pqc =p Is'tl.

□
In the following we denote by 6X and dy two linearly independent cluster directions with
cluster numbers cx and cy. dx and d̂ , are assumed to span the processor space I2 of a
dependency graph G={I3,D}. I.e., the linear combinations kxdx + kydy, with
kx,ky = ...,-1,0,1,... belong to I2. Processor elements which have a difference in position
of dx or dy have a phase difference in schedule time steps of ax or Oy, respectively. If T
is the 2x3 transformation matrix (Tt = 0, for chosen projection vector t) which maps I3 to
I2, then dx and d̂ are such that Tdx = dx and Tdy = dy. Moreover, from now on we shall

88 3. MAPPING REGULAR RECURRENT ALGORITHMS

assume that dx and dy are such that ax = s'd* > 0 and a,, = s'dj, > 0.

Proposition 3.1 :

Let a schedule vector s and a projection vector t be given for a dependency graph
G=/l3, D}. Let s and t be such that there exist two linearly independent cluster directions
dx and dy with cluster numbers cx and cy, respectively, such that gcd(cx,cy) = l,
cxcy= Is'tl andcx,cy > 1. Then there exists a cluster :

P = «x,y) \[xy}' = kxdx + kydy, 0 < kx < cx, 0 <ky < cy}, (3.9)

with cluster number I s't I.

Proof:

The proof of this proposition is given in two steps. First we shall prove that no two or
more processor elements at kxdx and kydy are scheduled simultaneously, for 0 < kx < cx

and 0 < ky < cy ((kx, ky) * (0,0)). Next, using this result we prove that no two or more
processor elements at kxi dx + ky \ dy and kxidx + ky^dy are scheduled simultaneously, for
0<k x i < cx andQ<kyi < cy ((kx\, kyl) *■ (kx2, ky2)), J=l,2. But first, from cxcy = Is'tl
we deduce:

1- cx = cxcy/gcd(cxCy, ax), so that gcd(cxcy, ax) = cy and thus, ax = cyqx, where
gcd(cx,qx)=l;

2. cy = cxcy/gcd(cxCy, <Xy), so that gcd(cxcy, <Xy) = cx and thus, Oy = cxqy, where
gcd(cy,qy)=l.

Step 1. We show that:

[MUls^l =[^Oy] | s ' t |

if kx = vxcx and ky =vycy, for some vx, vy e Z, and when gcd(cx, cy) = 1, cxcy = Is'tl
and cx,cy > 1, then

3.3. Strategy II: LSGP partitioning • --■ 89

fcCCjls'tl =[^<Xj,]|s't|

only ifkx = vxcx and ky = vycy, for vx, v̂ e Z. The //part is easy to prove and follows
immediately from Lemma 3.2, after substitution of kx = vxcx and ky = vycy, since in this
case kxo.x and kyOy belong to the same equivalence class with respect to congruence
modulo I s't I. To prove the only (/"part, we write :

kxax = kyay + n Is'tl.

Substitution of ax = cyqx, o.y = cxqy and I s't I = cxcy, gives :

kxqxCy=kyqyCx + ncxCy.

Thus:

cx

a. kxqx = kyqy— + ncx, or
cy

cy
b. kxqx— = kyqy + ncr

cx

Now, since kxqx in case a, or kyqy in case b, is an integer it must be that :

Cy
1. kyqy =PyCy, or ky = py— for some integer py, since gcd(cx,cy)= 1 and cy > 1;

but, since ky is an integer it must follow that/?}, = vyqy and thus, ky = vycy;

cx
2- ^?x =Pxcx> o r kx = Px— for some integer px, since gcd(cx,cy) = 1 and cx > 1;

Qx

but, since A:x is integer it must follow that px = vxqx and thus, kx = v^c^;

Hence, it is proved that processor elements at k\dx and k2<ly, for any 0<kx<cx and
0SjtJI<c>, with (kx, ky) *■ (0,0), are never simultaneously scheduled when
gcd(cx, Cy)= 1, CJCJ, = Is'tl and cx, Cj, > 1.

Step 2. We show that:

90 3. MAPPING REGULAR RECURRENT ALGORITHMS

[<,kxXax + kyXay)\\s'i\ * [(kx2ax + ^ 2<V]| s ' t l

foiO^kri < cx, 0<kyi < Cy, with (kxX *kx2 and ky\ *ky2). The proof of this will be by
contradiction. Suppose

[dkxXax + kylay)]\s'i\ =[{kx2a.x + ky2ay)\\s>i\

for some 0 <kxj < cx,0<kyj < cy 0=1,2), with^i *kx2 and ky\ *ky2. Then,

kxiax-¥ky\a.y = kx2ax + ky2ay + n Is'tl,

for some n e Z. Hence,

(**l ~kx2)ax = (ky2-kyl)ay+n\s'tI.

Or, equivalently,

kxo.x = kyOLy + n I s't I,

where 0 < kx=kxi-kx2 < cx, 0 < ky=ky2-ky j < Cj, and (kx ,ky) * (0,0). Hence,

[Mx] I s't I = [*j,<Xj,]is'tl.

But, in Step 1 we found that

fcci*] I s't I ^[kyay]\s't\,

for 0 < kx < cx, 0< ky < cy with (kx, ky) * (0,0). Thus, we have a contradiction. And
since the linear combinations kxdx +kydy reach all processor elements in the region
0 < kx < cx, 0 < ky < Cy, there are exactly cxcy = I s't I processor elements in this cluster.

□
Example 3.1 :
Take cx = 3 and cy = 4. Hence, cxcy = 12. From cx - cxcy/gcd(cxcy, ax), we could possi­
bly have Ox = 4 and from cy = cxcylgcd(cxcy, ay), we could possibly have a>, = 3. With
0<kx<3, 0<ky<4 in (3.9), Table 3.1 shows the phase differences between the
schedule time steps of the processor element at (kx,ky) = (0,0) and the schedule time

3.3. Strategy II: LSGP partitioning 91

steps of the rest of the processor elements in the cluster. These phase differences are
given by: [kxax + kyay] \ s ' t i.

Proposition 3.2:

Let a schedule vector s and a projection vector t be given for a dependency graph
G={1 , D}. Let s and t be such that there exist two linearly independent cluster directions
dx and dy with cluster numbers cx and cyi respectively, such that cy= I s't I -ncx and
n, cx > 1. Then there exists a cluster :

P = {(x,y) I [xy]' = kxdx + kydy, 0<kx<cx, 0<ky< n}, (3.10)
I

with cluster number I s't I.

Proof:

cy If we can prove that there are exactly — = cx processor elements between (0,0) and
n

cydy, such that there exists a bijection between these cx processor elements and the cx

processor elements between (0,0) and cxdx, in the sense that a processor element
between (0,0) and cxAx is related to one of the cx processor elements between (0,0) and
cydy if they are scheduled simultaneously, then the proposition is proved. Indeed, since
the phase difference between schedule time steps of two processor elements along a clus­
ter direction is independent of the absolute position of the processor elements, it will then
follow that no two or more processor elements between kdx and kdx + ndy are simul­
taneously scheduled (0<k<cx). And, consequently, for every k\ and k-i,
0 < k\,k<i < cx, there will be no processor element between kidx and ktdx + ndy which
is simultaneously scheduled with a processor element between kidx and ^ 2 ^ + ndy.

Thus, we must show that:

[kynOy] 1 s't 1 = [kxax] 1 s't 1, for 0 < kx, ky < cx.

But first we need the following. From cy = I s't I and cy = \s't\/gcd(s't, o^) it follows

92 3. MAPPING REGULAR RECURRENT ALGORITHMS

0

1

2

3

0

0

3

6

9

1

4

7

10

1

2

8

11

2

5

TABLE 3.1. Phase differences between schedule time steps of processor elements in a

cluster with cx - 3 and cy - 4.

that

gcd(cy, oty)= 1. And from Is'tl =cy = ncx and cx = \s't\/gcd(s't, ax) it follows that
gcd(ncx, a,) = n and, consequently, ax = nq with <? > 1 and gcd(cx, q) = 1.

Along Ay the phase difference a>, defines ê distinct equivalence classes [k'ycty]c ,

i.e., [0]c , [l] c , ..., [cy - l] c , for the Cj, integer values of k'y in the interval [0, cy - 1],

since gcd(cy, oty) = 1 and gcd{cy, k) = 1 for any k in this interval. For a fixed value of

k'y the equivalence class [k'y<Xy]c is:

{k'yOLy+pCy}, /? = ...," 1 , 0, 1

Dividing all the elements of this class by n gives:

/ ' - O L + P c J , p = ... -1,0,1,...,
n

kyOy
since cv = ncx. This class is an equivalence class of with respect to congruence

' n
modulo cx, only if —-— is an integer. Since gcd(cy, ay) = 1 and since n is a divisor of

k' Oy
cy, it follows that k'y must be a multiple of n if {— \-pcd, p = ...,-1,0,1,..., is to be

J n

file:///-pcd

3.3. Strategy II: LSGP partitioning 93

A. yUU,

an equivalence class of with respect to congruence modulo cx. That is, k'y = nky,

0<ky < cx.ln that case we have :

0 < r s kyOy (mod cx) < cx, 0 < ky < cx.

From the fact that ax = nq (q > 1) we also have that:

0 < r = kxq (mod cx) < cx, 0 < kx < cx.

(This follows by dividing the elements of the equivalence class [kxax]c = {k^p* +pcy},

p = ...,—1,0,1,..., by «). But this means that :

[kxq]Cl = [kyay]Cz, 0 <kx,ky < cx

and hence,

[kxnq]Cy = [kxax]Cy = [kynay]Cy, 0 < kx,ky < cx.

Thus, it follows that, for each kx, 0<kx < cx, there are n processor elements between
^d j and kxdx + ndy which are never scheduled simultaneously. And for every £i and
k-i, §<k\,ki<cx there is no processor element between k\dx and k\dx + ndy simul­
taneously scheduled with a processor element between k2dx and ^ d ^ + ndy. Therefore,
(3.10) is a cluster with cluster number I s't I.

□
Example 3.2:
Take cx = 3 and cy = I s't I = 9. From cy/cx = n we get n = 3. From cx = 9/gcd (9, ax), we
could possibly have ax = 3 and from cy = 9/gcd (9, o ,̂), we could possibly have cXj, = 4.
With 0<kx<3&0<ky<3in (3.10), Table 3.2 shows the phase differences between
the schedule time steps of the processor element at (kx,ky) = (0,0) and the schedule time
steps of the rest of the processor elements in the cluster.

94 3. MAPPING REGULAR RECURRENT ALGORITHMS

V*
0

I

2

3

4

5

6

7

8

0

: °
: 4

; 8

3

7

2

6

1

5

1

3

7

2

2

6:

1 :

5:

TABLE 3.2. Phase differences between schedule time steps in a cluster with

cy = I s't I = 9 and cx - 3.

Proposition 3.3:

Let a schedule vector s and projection vector t be given for a dependency graph
G=/l3, Dj. Let s and t be such that there exist two linearly independent cluster direc­
tions dx and dy, with cluster numbers cx > 1 and cy= I s't I > 2, respectively, and
Ox*(Xy. Then there exists a cluster :

P = {(.x,y) I [xy)'=kydy, ky=Q,\,...,(m-\), [may]Cy - [ax]Cy}

u{(x,y) I (x,y)'=kydy+kxdx,lcy=0,\,...,(cy-m-l),kx = l} (3.11)

with cluster number I s't I.

Proof:

3.3. Strategy II: LSGP partitioning 95

Since there are exactly cy equivalence classes [mOy]c for 0<m < cy, surely for

some 0 <m < cy we have [ax]c = [may]c . Because the phase difference between the

schedule time steps of two processor elements with a difference in position of dy is

independent of the absolute positions of the processor elements, and ax * Oy, it follows

that the processor elements between (0,0) and mdy (the processor element at mdy

excluded) are never simultaneously scheduled with those between dx and

dx + (cy ~~ tn)dy (the processor element at dx + (cy - m)dy excluded). And since

cy = I s't I, there are exactly I s't I processor elements in the cluster. Hence, the proof.

□
Example 2.3 :
Take cx = 3 and cy - I s't I = 9. Hence, we could possibly have a* = 3 and cty = 4. With
0<ky < 3forkx = 0 & 0<ky <6forkx = \ in (2.11), Table 2.3 shows the phase differ­
ences between the schedule time steps of the processor element at (kx,ky) = (0,0) and the
schedule time steps of the rest of the processor elements in the cluster.

Since the nullspace of the transformation matrix T is spanned by t * 0, there may be
more than one pair (dx, d̂ ,) that maps to the same pair (dx, dy). It remains to show that it
does not matter which pair (d*, d^) we choose with regard to ax and Oy in the computa­
tion of the clusters (2.9)-(2.11). Suppose dx as well as d / map to dx. This means that:

for some integer k. Thus, with s'dx = ax and s'd/ = a / , we get the relation :

ax = ax' + ks't.

The question is now, whether gcd (s't, ax) = gcd(s't, <xx')? Assume that I s't I =pq and
ax' = pr, with gcd{q,r)- 1. Hence, gcd (s't, ax')=p and ax =p(r + kq). Thus, we have
to show that gcd(q,r + kq)-\. Assuming that q = nm and r + kq = nl, with
gcd(m,l)= 1, leads to :

96 3. MAPPING REGULAR RECURRENT ALGORITHMS

0

1

2

3

4

5

6

7

8

0

: o

: 4

■ 8

3

7

2

6

1

5

1

3

7

2

: 6

■ I

■ 5

TABLE 3.3. Phase differences in schedule time steps in a cluster with cy = I s't I = 9 and

l = —+km. n

But, since gcd(q,r) = l, it follows that n = 1. Thus, showing that
gcd(tft, ax)=gcd(s't, OLx'). Moreover, it does not make any difference whether we use
Ox or a / to calculate the relative schedule time steps in the clusters, since
[a*] I s't I = [«xT | s't I» as follows from the fact that ax = ax' + ks't.

3.3. Strategy II: LSGP partitioning 97

3.3.2 TESSELLATION OF THE FSA

Each of the clusters defined by Proposition 3.1-3.3 can be characterized by a non
singular, integer matrix B and a support region F as in Section 3.1. Moreover, displace­
ment matrices can be derived for each of these clusters.

CLUSTERS OF TYPE (3.9)

For clusters of this type we have that cluster :

P={x I fin = x, n e F;

is spanned by the vectors dx and d r Hence, from (3.9) we have :

B = [dx I d,]

►, kx=0,l,...,(cx - 1), ky=0,...,(cy-l).

Now, since [cxax]|s 'ti =0, it follows that there is a cluster at relative position cxdx.
Similarly, there is a cluster at relative position, cydy. Hence, the displacement matrix U is

of the form:

U = [Cxdx I CyAy}.

The situation is sketched in Figure 3.4, where we have ui = cxdx and 112 = cydy.

Example 3.4:

As an example, consider the matrix-matrix multiplication example in Figure 1.4, with
F and X 8x4 and 4x4 matrices, respectively. Projecting the dependency graph of this
algorithm along t' = [0 0 1] results in a systolic array as shown in Figure 35 (only the
topology is shown for simplicity). Choose cluster directions dx = [1 0]' and dy = [0 1]',

F =
kx

98 3. MAPPING REGULAR RECURRENT ALGORITHMS

u2=cy<\y

ui=c,d

Figure 3.4. Resulting tessellation for tiles of the type in (3.9).

with cluster numbers cx = 2 and cy = 3, respectively. From cxcy = Is'tl we must have
I s't I = 6. With s = [s i J2 S3]1, we find that 53 = 6. From cx = 2a possible choice for ax

could be Ox = 3, and from ax = s'[l 0 0]' it follows that s 1 = 3. From cy=3 we can
choose Oy = 2, and from (Xy = s'[0 1 0]' it follows that s2 = 2. Hence, we get s = [3 2 6]'.
And for the columns of the displacement matrix U of the tessellation we get u\ = [2 0]'
and U2 = [0 3]', so that:

U =
2 0
0 3

The tessellation is shown in Figure 3.5. The numbers adjacent to the processor elements
(circles) denote the order in which they are scheduled in a tile.

CLUSTERS OF TYPE (3.10)

For clusters of this type we have :

3.3. Strategy II: LSGP partitioning 99

-»-y

O 1 ^ ^

o4 ob o
"2 €>—©—©

e—e—e
e—©

e—o
o—e—e e—e—©
(We—e e—©—e

^̂ —o
e—©

Figure 3.5. Tessellation of the matrix-matrix multiplication array for s - [3 2 6].

fl = [dz I d,]
n = [kx ky]'

F = \ikx=0,...,(cx-l),ky=0,...,(n-l).

Now, since [c^ax]|s'ti =0, it follows that there is a cluster at relative position cxdx.
Similarly, there is a cluster at relative position kdx + ndy, where 0 < k < cx is such that
[kax + nOy]c = 0. Hence, the displacement matrix U is of the form :

U = [cxdx I kdx + ndy].

The situation is sketched in Figure 3.6, where we have Uj = cxdx and 112 = kdx + ndy.

Example 3.5 :

Consider again the matrix-matrix multiplication example, with t' = [0 0 1]. Choose
cluster directions dx = [1 0]' and dy = [0 1]' with cluster numbers cx = 2 cy= I s't I =6,

respectively. Possible choices ofax and ay are 3 and 5, respectively. Thus, s' = [3 5 6].

From [kax + nOy]c = 0, with ax = 3, ay = 5 and n = cylcx = 3, if follows that k = \.
Hence, the displacement matrix of the tessellation is :

100 3. MAPPING REGULAR RECURRENT ALGORITHMS

a, kd, u^=cxd

Figure 3.6. Resulting tessellation for tiles of the type in (3.10).

U =
2 1
0 3

The tessellation is shown in Figure 3.7.

CLUSTERS OF TYPE (3.11)

For clusters of this type we have :

B = [dx I dy]

F = hu kjfc = 0,l,...,m-l, l = 0,l,...,(cy-m-l)

where [may\Cy = [ax\Cy.

From (3.11) we see that adjacent clusters are at relative positions (dx + (cy-m)dy)
and (dx —mdy). Hence, the displacement matrix U is of the form :

U = [dx + (Cy-m)dy I dx-mdy].

The situation is sketched in Figure 3.8, where we have ui = (dx + {cy-m)dy) and

"2 = (^ - mdy).

3.3. Strategy II: LSGP partitioning 101

- * - y

Example 3.6:

Figure 3.7. Tessellation for s' = [3 5 6].

Consider again the matrix-matrix multiplication example, with t' = [0 0 1]. Choose
cluster directions dx = [1 0]' and dy = [0 1]' with cluster numbers cx = 3 and
cy= I s't I = 9, respectively. Possible choices for ax and <Xy are 3 and 2, respectively.
Thus, s' = [3 2 9]. From the equation [ax]c = [mOy]c (see the proof of Proposition 3.3)
it follows that m - 6. This gives :

U =
1 1
3 -6

for the displacement matrix of the tessellation. The tessellation is shown in Figure 3.9.

3.3.3 THE DERIVATION OF CONTROL SEQUENCES FOR INPUT SELEC­
TORS

Similar to the LPGP case, we are able to construct a dependency graph for the LSGP
partitioned FSA. For examples we refer to Figure 3.2. In such a graph the nodes represent
the cluster processor. A cluster processor consists of:

102 3. MAPPING REGULAR RECURRENT ALGORITHMS

(a): m <cy-m (b): m >cy-m

Figure 3.8. Resulting tessellations for tiles of the type in Proposition 3.3.

1. the processing element;

2. selectors, which are used to control input selection;

3. first-in-first-out (FIFO) memory for intermediate results;

4. a controller which selects different functionalities of a processor element and
which controls the selector.

This model of the cluster processor is depicted in Figure 3.10.
There is a selector for each input of the processing element. Similarly, there is a feed
back loop with a FIFO buffer for each output of the processing element. The FIFO buffer
at an output of the processing element has length equal to the number of delay units that
is associated with the interconnection in the FSA to which this output corresponds.

The issue that remains is the derivation of the control for the input selectors. This is
not a hard problem to tackle. The control is easily derived by tracing for each input of the
processing element in the cluster processor from which cluster processor input data is

3.3. Strategy II: LSGP partitioning 103

->-y

Figure 3.9. Tessellation fors' = [3 2 9].

requested. Below we give a hint towards the implementation of such a trace procedure.

Let us define an indexing function / for a cluster :

/ : [kxax + kyay]\s't\ -»(kxdx + kydy),

where kx, ky are defined within the extend of the cluster. I.e., we use the relative schedule
time steps as indices for the processor elements in the cluster.

With D the set of interconnection primitives in the FSA, D(/) the domain of index
function / and E the set of dependencies in the graph of the tessellated FSA we can define
the following map:

M : D(0 x D -> D u E

This map relates the input edges (which are members of the set D) of the processor ele­
ment in the cluster processor at each relative schedule time step (an element of D(/)) to
either an j'wfer-cluster dependence (an element of E) or an infra-cluster dependence (an
element of D).

At each schedule time step we can now specify a formal set of rules to extract the
control information of the selectors of a cluster processor :

104 3. MAPPING REGULAR RECURRENT ALGORITHMS

Figure 3.10. Model of a cluster processor.

for all (xit y,) e P, with /(/) = (x,-, y,) & all (t, u) e D :

1- (x/, yd - (f, w) e P => M (/, (r, u)) = (f, II)

2. (xi,yi)-(t, u) 4 P => M(/, (f, M)) = (V, W), (V, W) e E a/id (v, w) = -£/i,
tvAere i w i«c/i that (A:,- — f, v, - M) e {x I x = y + U'\ + r, y e PJ.

In plain words : for a processor element (x,-, y,-) scheduled at time step i, relative to the
processor elements in the same cluster, we test for all its inputs (f, u), whether the input
is coming from a processor element in the same cluster P, or whether it comes from a dif­
ferent cluster. If it comes from a different cluster, we have to determine from which one.
Since we know that (x, - 1 , y,- -u) belongs to some cluster {x I x = y + Ui + r, y e P},
we conclude that the input is originating from a cluster with relative position Ui.

The controller can control the I/O map of the processing element of the cluster pro­
cessor by keeping track of the next virtual processor element in the cluster that has to be
simulated by the cluster processor. Notice that this is not necessary if systolically pro­
pagating control signals were already available in the FSA to select the proper I/O map
for each of the processor elements in the FSA.

105

4. DESIGN OF A SYSTOLIC ARRAY FOR SOLVING SYS­
TEMS OF LINEAR EQUATIONS

4.1 INTRODUCTION

In this chapter a fixed size systolic array is designed which executes the feed forward
QR factorization method as well as the feed forward Schur-C holes Icy factorization
method of Section 2.2.2, Equation (2.23) and Section 2.2.3, Equation (2.46), respectively.
However, instead of performing orthogonal and hyperbolic rotations, the processor ele­
ments of this array will execute orthogonal and hyperbolic Householder transformations.
Thus we show that Householder transformations can be used in the feed forward direct
methods of Chapter 2. First, two full size arrays will be designed, each implementing
one of the two feed forward methods. These designs are done with the aid of SYSTARS,
a CAD system for the synthesis of systolic arrays [Omtzl987]. SYSTARS has a graph­
ics interface which displays a specified dependency graph and allows one to obtain from
it a full size systolic array interactively, by specifying a projection vector t and a
schedule vector s, as was explained in Chapter 1.

Next, reduced size arrays will be derived from the full size arrays, using the LPGP
partitioning strategy of Chapter 3. It will turn out that the RSAs for both feed forward
methods have identical interconnection topologies, so that a single RSA will be obtained
for both methods. This RSA will be designed such that the following constraints are
satisfied:

1. the size of the local memory of a processor element does not depend on the size of
the problem;

106 4. DESIGN OF A SYSTOLIC ARRAY

2. the size of problems to be executed on the RSA can be arbitrary larger than the size
of the array itself;

3. all I/O with peripherals are handled at the boundaries of the RSA;

4. the RSA is flexible with respect to communication speed requirements of different
peripherals (disks, host computer), attached to the array.

Constraints 1) and 2) will be satisfied by using the LPGP partitioning strategy of
Chapter 3. Constraint 3) will be satisfied by properly tessellating the FSAs and by adding
dummy processor elements where needed. Constraint 4) will be satisfied by implement­
ing the Householder transformations on innerproduct-step processor elements. An
innerproduct-step processor executes an innerproduct sequentially. The entries of a data
vector on which a Householder transformation is applied are multiplexed at a single input
of the processor element. Likewise, the entries of the resulting vector are multiplexed at
a single output. As we shall see, by defining the processor element as a sequentially
operating processing unit, we are able to control the I/O bandwidth of the RSA by the
size of the input vectors. Thus, we obtain the effect of an LSGP partitioning (see Sec­
tion 3.3).

This chapter mainly illustrates the feasibility of the design of a systolic array, dedi­
cated to the feed forward QR and Schur-Cholesky factorization method, using the design
principles of Section 1.2 and Section 3.2. The architecture of the Householder
innerproduct-step processor is a conservative signal processor like architecture
[Baral988], containing standard components such as a floating point multiply-add system
[Hwanl979], registers, FIFO memories, random access memory (RAM) and a micro­
controller with a micro-instruction read only memory (ROM) and a sequencer as its main
components. Hence, it can be expected that the design turn-around time of such a proces­
sor element will be short.

Note : the design of a systolic array which uses circular or hyperbolic rotations is not stu­
died here. The availability in the near future of standard, high throughput pipelined

4.1. Introduction 107

CORDIC (Coordinate Rotating Digital Computer) processor elements [Waltl971],
[Langl988] for these operations will make the design of such systolic arrays feasible and
attractive.

The outline of this chapter is as follows. In Section 4.2 the feed forward QR and
Schur-Cholesky factorization methods are restated in terms of Householder transforma­
tions. Regular recurrent algorithms are derived for these methods, from which depen­
dency graphs are deduced. In Section 4.3 full size arrays are synthesized from these
dependency graphs, using the principles of Section 1.2. In Section 4.4 these FSAs are
partitioned, using the LPGP partitioning strategy of Section 3.2. And finally, in Sec­
tion 4.5 the architecture of an innerproduct-step Householder processor element is
presented.

4.2 FEED FORWARD SOLVERS

4.2.1 THE QR AND SC SOLVERS

For convenience of the reader the feed forward QR and Schur-Cholesky factorization
methods of Chapter 2 are summarized here in the form of two theorems.

Theorem I (QR solver): Let A e JRNxN be a non singular matrix and b e R w .

Then, there exists an (/V+l)x(/V+l) orthogonal matrix 0 :

N N

e=nrr% (4-D
where the 0,y are {N+l)x(N+l) orthogonal matrices of the form :

108 DESIGN OF A SYSTOLIC ARRAY

ey =

j - i

cos (Qjj) sin (0,y)

-sin (9y) cos (0y)
(4.2)

5wc/i that the solution x o/fAe system of linear equations Ax = b obeys :

©
V / 0
- b ' 0 1

R * *
0 &@x' &Q

(4.3)

where R is an NxN upper triangular matrix, satisfying R'R =AA' + bb' and k& is equal
to :

fce = (l + x x) • (4.4)

□
A matrix 0 which, satisfies Equation.(4.3) will be referred to as the QR solver,

because Equation (4.3) expresses a QR factorization.

Theorem II (SC solver): Let A e RNxN be a symmetric positive definite matrix
with diagonal elements a,-, = 1, j =1 ,...,N, and b e R N , such that the matrix:

A =
1 -b '
-b A (4.5)

is a positive definite matrix. Let U and Y be the lower, respectively, strictly lower tri­
angular part of the matrix A and let J be the signature matrix J = /#+i ©-/#+ 1 . Then,
there exists a 2(N+l)x2(N+\) matrix <$:

N N
(4.6)

where the fl>;y are 2(N+l)x2(N+l) J-orthogonal matrices of the form :

4.2. Feedforward solvers 109

O;,
cosh{ifij) sinh{§ij)

sinh($ij) cosh{§ij)
JN+j-i-\

(4.7)

such that the solution x of the system of linear equations Ax = b obeys :

<D
Yc IN+I

/? * *

0 k&x' ICQ
Q * * •

N+l
1 ,
N

(4.8)

where R is an N~xN upper triangular matrix, satisfying R'R =A andkq, is equal to :

jk* = O-x'Ax)'^, x'Ax < 1. (4.9)

□
A matrix O which satisfies Equation (4.8) will be referred to as the SC solver, because
Equation (4.8) expresses a Schur-Cholesky factorization.

4.2.2 ORTHOGONAL AND HYPERBOLIC HOUSEHOLDER TRANSFORMATIONS

Instead of defining the matrices 0 and <S> in (4.3) and (4.8) in terms of the orthogonal
and /-orthogonal rotations in (4.2) and (4.7), respectively, they can also be defined in
terms of orthogonal and hyperbolic Householder transformations, respectively.

ORTHOGONAL HOUSEHOLDER TRANSFORMATIONS [Housl975]:

The orthogonal Householder transformation is defined to be the following NxN
matrix :

110 4. DESIGN OF A SYSTOLIC ARRAY

H=IN-—uu', (4.10)
u'u

where u is a non-zero Nx\ vector. Given a non-zero vector x, we can determine the vec­
tor u, such that:

//x = ± l lx l l 2 e 1 , (4.11.a)

where I I x I 12 = (x'x)v* and ei is the vector [1 0 • • • 0]'. It is readily verified that

u = x± I Ixl l2ea. (4.11.b)

We choose u = x + sign (x j) I Ixl 12e!, to guarantee that I lul l2 > I Ixl I2-

HYPERBOLIC HOUSEHOLDER TRANSFORMATIONS [Radel985] :

The hyperbolic Householder transformation is defined to be the following NxN
matrix :

H=J — uu', (4.12)
~~ u'yu —

■where u is a non-zero Nx\ vector and J is an NxN signature matrix :

J = diag(l,±l, • • , ± 1) . (4.13)

(Notice that (4.12) expresses an orthogonal Householder transformation in case all diago­

nal entries of / are' positive). The hyperbolic Householder transformation is J-
orthogonal, i.e.,

H'JH=HJH'=J. (4.14)

Given a non-zero vector x, such that x'7x > 0, we can determine the vector u, such that

Hx = ±\ Ixl lyej, (4.15.a)

where I Ixl \j = (x'/x)1^. In this case it is readily verified that:

4.2. Feedforward solvers 111

U = /X± I Ixl lye].

We choose u = Jx + sign (x j) I Ixl I yej, to guarantee that I I u I I / > I I x I I / .

(4.15.b)

The computation of the reflection vector u or u, from a given vector x and the com­
putations of I Ixl 12«i or M x i I yei will be referred to as vectorizing, while the applica­
tion of a given H or H_ matrix to a given vector y, will be referred to as reflection.

4.2.3 ORTHOGONAL REFLECTIONS AS ELEMENTARY OPERATIONS IN
THE QR SOLVER

The matrix 0 in (4.3) can be replaced by a product of (embedded) orthogonal House­
holder transformations of fixed size. For instance, let A be an 8x8 matrix and b an 8x1
vector and write :

P =

A1

-b f

0'
0'
0'

h o
0' 1
0' 0
0' 0
0' 0

= \p„], x=l,...,\2,y=l 17.

And let Htj, j=l,...,8, j= (j/3],...,3. be orthogonal Householder transformations of the
2

form Hij =1^ —Uiju'ij. Then, making the proper choices for the Hy, the matrix :

112 4. DESIGN OF A SYSTOUC ARRAY

@ = (77 ©7783 ©1)

(76 ©77 73 ©72)
(/5 ©7763 ©/3)(/g ©77 62)
(/ 4 © / / 5 3 © / 4) (/ 7 © / / 5 2 © l)
(73 ©#43 ©75)(76 ©#42 €>/2)
(72 ©//3 3 ©76)(/5 ©//3 2 ©/3)(/8 ©7731)
(1 ©#23 ©/7)(/4 ©7722 ©/4)(/7 ©//2i ©1)
(/ / n ©78)(73 ©7712 ©75)(76 ©77n ©72), (4.16)

will upper triangularize the matrix P in the product ©P. Notice that the ith row (counting
from bottom to top) of © eliminates the ith column of the strictly lower triangular part of
P. Application of the ith row will be referred to as the ith sweep and the part of a column
on which a matrix 77;; acts will be called a partial vector.

In order to formulate the computation of the product 0 P in terms of a regular
recurrent algorithm (see Chapter 1), we set up the following scheme of operating on the
columns of the matrix P. Let us consider the-first sweep. Denote the 4x1 partial vector
on which Hu (i=j=l) acts by Piu = [v'ni Ciu]'. where the first three entries of this
vector are contained in the 3x1 vector vU£ and the last entry is contained in e\\k. The
first index of the variables v and e denotes the current sweep, the second index denotes
the current partial vector and the third index denotes the current column of P. Since the
matrix 77 j 2 acts on a partial vector which has last entry equal to the first entry of
#iiPn*> we decompose the partial vector WnPiit into its first entry, denoted by e^
(2=y+l) and the remaining three entries, denoted by the 3x1 vector v2u (2='+l)- These
remaining entries are going to be used in the second sweep. Denoting the first three
entries of the partial vector on which 77 j 2 will act, by v ^ , this partial vector is then
denoted by [v'12t e 1 2 t] ' . Similarly for the rest of the transformations in (4.16). In order to
express the application of a transformation 77;; on all of the columns of P, we denote the
reflection vector Uy by ii;;* - where the indices have the same interpretation as above -
and copy it to Uij^+i, when 77i;- must be applied to the partial vector in column k+l after
it has been applied to the partial vector in column k. However, since a reflection vector

4.2. Feedforward solvers 113

Uy has to be computed first from the jth partial vector in column i=k before it can be
applied to subsequent columns, we introduce a control variable Cy* which is initialized to
0 for i=k and to 1 everywhere else. Whenever c^ = 0, a reflection vector Uy* is com­
puted. Else the computed reflection vector is used to reflect the partial vector. The value
of Cyi is copied to Cj+i^t+i, because the partial vectors in column k+l in sweep I'+I,
will be next eliminated and it is from this column that new reflection vectors are com­
puted. The regular recurrent algorithm for this scheme of implementing the computation
of the product &P is given in Figure 4.1. A reflection vector u,tJijt+1 is computed from
partial vector [Vy* e^]' by the function / () (see (4.1 l.b)). The function g() computes
±M[vv-t e(/*]fl l2ei- That is, e,- ,+ u =±l \[v'ijk eijk]t\\2 and v , - + u t = [0 0 0]'. The
function k() computes a reflection of [vy i e^]' with the previously computed reflection
vector Uy*.

The set of displacement vectors for the variables Vy*, e^, Cy* and Uy* is:
DQR = {[10 0]', [0 1 0]', [1 0 1]', [0 0 1]'). The index set ifa of the algorithm is :
Ig/? = RiJ.k) I 1 < i < 8, \i/3] <j <3,i<k< 11}. The set of index points (/,;,*) and
the displacement vectors, define the vertices and the edges, respectively, of the-depen-
dency graph of the algorithm in Figure 4.1. This graph is depicted in Figure 4.2, for k
only until 9 to avoid a too complex graph. At a node (;' \J\,k\) of the graph the compu­
tations at i=ii, j=j\, k=k\, in the regular recurrent algorithm, are performed. The
results for the variables e, v, u and c at node (/1, j i, k \) are communicated to nodes at
relative positions [0 1 0]', [1 0 0]', [0 0 1]' and [1 0 1]', respectively. The location of ini­
tialization data in the graph and the location of output data follows immediately from the
algorithm in Figure 4.1.

4.2.4 HYPERBOLIC REFLECTIONS AS ELEMENTARY OPERATIONS IN
THE SC SOLVER

The matrix <b in (4.8) can be replaced by a product of (embedded) hyperbolic
transformations which act on vectors of n entries. For instance, let A in (4.5) be a 10x10

114 4. DESIGN OF A SYSTOUC ARRAY

I* initializations */
ctjk, eijt e R ; uijk e R 4 ; \ijk e R 3 ;
e m = 0 ;
vijk = \Pm(jh2,k Pm(jhi.kPm(j),k\' withm(j) = 9- 3(/ - l) , 7=1,2,3;
C\j\ = 0; cyk -\ for k * 1;
/* transformations */
for z'=l to 8
fory=[i/3"|to3
for jfe=j to 17

case Cy*

0: U/ , ; , t+ i=/ ();

!(

1 : U I . J ,*+1 - uijk;

ei.j+l.k
V«+U*

Vyt

Vyt
. uijk)>

endcase
ci+l,y',t+l = Qj'i;

endfor
endfor

endfor
Figure 4.1. A regular recurrent algorithm for the QR solver.

matrix with lower and strictly lower triangular parts U and Y, respectively, and write :

>
M= Q

4.2. Feedforward solvers 115

Figure 4.2. Dependency graph of the algorithm in Figure 4.1.

116 4. DESIGN OF A SYSTOUC ARRAY

P = [U' IN+i] = \pv], x=l,...,10,y=l,...,20,

Q = [Y' IN+i] = [qv], x=l 10,y=l,...,20.

Let Hjj, i = 1.....9, j = 1,...,3- L('-l)/3j, be hyperbolic Householder transformations of

the form Hjj=Jn_i Uyu},-, with u{;- = [u^ 0 • • ■ 0 u^ u^ u^] and
u'j7i3-,u l 7 9-i

7i3_, = / 9 Q-l^i. In this way Hjj acts only on a vector of 4 entries in a column of 13—i
entries. These vectors will be called partial vectors. Making the proper choices for the
Hjj, the matrix:

<& = (/9 ©tf91 ©/7)
(/8 ©tf81 ©/7)
(h ©tf71 ©/7)

(/9 ©H62 ©/4)(/6 ©H6l ©/7)
(/8 ©H52 ©/4)(/5 ©W51 ©/7)
(/7 ©//42 ©/4)(/4 ©//41 ©/7)
(/9 ©H33 ©l)(/6 ©//3 2 ©/4)(/3 ©//31 ©/7)
(/8 QH23 ©l)(/5 ©Wja ©/4)(/2 ©tf21 ©/7)
(/7 ©W13 ©l)(/4 ©W12 ©/4)(1 ©W„ ©77), (4.17)

will eliminate the non-zero entries of Y' in the product <M/. Notice that the transforma­
tions in a row of O can be applied in parallel to the matrix M. Application of the ith row
of & will be referred to as the ith sweep.

In order to formulate the computation of the product <PM in terms of a regular
recurrent algorithm, we set up the following scheme of operating on the columns of the
matrix M. Let us consider the first sweep. Denote the partial vector on which / / j 2

0'=1, j=2) acts, by P12* = tern v'm]'> where e^k denotes the first entry and vi2* is a
3x1 vector which denotes the remaining entries of the partial vector. The first index
denotes the current sweep, the second index denotes the partial vector and the third index
denotes column k, k=i+3(j-\)+\,...,20. Applying //1 2 to partial vector p12* results in a
partial vector W12pi2*. The first entry of this vector will be the first element of the first

4.2. Feedforward solvers 117

partial vector in column k to which //41 (4=j+3, \=j—\) will be applied (that is, in the
fourth sweep). Denote this entry by e^. The remainder of the partial vector A/12P12*
will be used in the second sweep and is denoted by the 3x1 vector ¥22*. Denoting the last
three elements of the partial vector to which //41 is applied, by the 3x1 vector V4lt, this
partial vector is denoted by V^A\k v4iiJ'- Similarly for the rest of the transformations in
(4.17). In order to express the application of a transformation //y to all of the columns of
M, we denote the reflection vector uy- by u;^ - where the indices have the same interpre­
tations as above - and copy it to Uij,k+\, when //(J- must be applied to the partial vector in
column £+1 after it has been applied to the partial vector in column k. However, since a
reflection vector u,y has to be computed first from the partial vector in column
k=i+3(J-l)+l, j=l , . . . ,3- L('-l)/3j, before it can be applied to subsequent columns, we
introduce a control variable c,jk which is initialized to 0 for k=i+3(j-l}+l,
j=\,...,3- LO'—l)/3j, and to 1 every where else. Whenever cy-* = 0 a reflection vector u/y*
is computed. Else the computed reflection vector is used to reflect the partial vector. The
value of Cijk is copied to c,+i,y,yt+i. because the partial vectors in columns k=i+3(J-l)+2,
y'=l,...,3- L(i'-l)/3j, in sweep j+1, will be next eliminated. The regular recurrent algo­
rithm for this scheme of implementing the computation of the product &M is given in
Figure 4.3. The function / () computes the reflection vectors u,-̂ according to (4.15.b).
The function g() computes ±1 l[e;^ v';/t]'l \jet (see (4,15.a), These computations are
done in case the control variable c,y,t=0. In case cyt=l, a reflection is computed by the
function h () with the computed reflection vector u,^.

The set of displacement vectors for the variables Uy*, Vy*, Cy* and e^ is given by:
Dsc = {[0 0 1]', [1 0 0]', [1 0 1]', [3 -1 0]'}. The index set ljc of the algorithm is:
lie = {(i,j,k) I 1 S J <9, 1,1 < ; < 3 - L0'-1)/3J, i+3(/-l) ^k<\9). The correspond­
ing dependency graph is shown in Figure 4.4, for k only until 9 to avoid a too complex
graph. The location of initialization data in the graph and the location of output data fol­
lows immediately from the algorithm in Figure 4.3.

118 4. DESIGN OF A SYSTOLIC ARRAY

I* initializations */
cijk, eijk e R ; uijk e R 4 ; \ijk e R 3 ;
eijk=Pi+m<j)X' '=1,2,3; 7=1,2,3;
k=i+m(j),...,\9\
Viy* = \.Qm(j),k Qm{j)+\.k ?m0')+2.*]';

7=1,2,3; *=2+3(/-l) 20;
with m 0) = m O'-l) + 3, m (0) = -2;
Clyt = 0forit=2+30'-1), 7=1,2,3; c ^ = 1 everywhere else;
/* transformations */
for i=\ to 9
for7=lto3-L(/-l)/3j
forJfc=i+3(/-l)+lto20
case Cyi

0 : H . \ ; , * + i = / (

«i+3.7-i.* = 8(

1 : iL'.M+i - !!«>*»

ei+Xj-l.k
vi+l,7,t

= *(, u;yt);

endcase
C<+1,7,*+1 = ^ 7 * ;

endfor
endfor

endfor
Figure 4.3. A regular recurrent algorithm for the SC solver.

4.3 FULL SIZE SYSTOLIC ARRAYS FOR THE QR AND SC SOLVER

4.3. Full size systolic arrays 119

Figure 4.4. Dependency graph of the algorithm in Figure 4.3.

4.3.1 DESIGN OF AN FSA FOR THE HOUSEHOLDER QR SOLVER

From the dependency graph G={Ig/?(DQR }, with :

IQR = fi = [ijk]'\l<i< 8, [J /3] <j<3,i<k< \1} (4.18.a)

and

120 4. DESIGN OF A SYSTOLIC ARRAY

VQR = f[l 0 0]', [0 1 0]', [1 0 1]', [0 0 1]';, (4.18.b)

a full size systolic array can be synthesized by the procedure given in Section 1.2. Let the
schedule vector s be s = [1 1 1]' and the projection vector t = [0 0 1]'. Choose a transfor­
mation matrix T:

1 0 0
0 1 0

(such that Tt = 0). As a matter of convenience we translate the dependency graph G to
the origin (0,0,0) by the vector [-1 -1 -1] ' . The set of processor elements in the FSA is
then given by:

I&R = r i l i = r (i - [l l l] ') , i e I ^ ; .

The set of interconnections in the FSA is given by :

DQR = {Td\de BQR} = fll 0]', [0 1]', [00]';.

The set of schedule time steps for a processor element i e Ig# is given by :

S W s ' (i - [l l l] ')l i e I ^ a n d T (i - [l l l] ') = y.

(4.19)

(4.20)

(4.21)

V
0
0

= l , s '
0
1
0

= l , s '

r i

1
0
1

= 2,s'
b"
0
_i

The number of delay units associated with the different interconnections in the FSA is
given by :

= 1.

The FSA is shown in Figure 4.5.

Many different systolic arrays can be deduced from the dependency graph, but we
shall focus on this particular one, because it satisfies the constraint that all I/O communi­
cation with peripherals is handled at the boundaries.

4.3. Full size systolic arrays 121

rlalal
■•Cl32.c131

■.Vi32,V,31 - - -4H
0,2;

••.v122.Vl21 " -f*

a

••.Cn2,clu -?• o,0

-.V112.V1H 4 4

ajia
a

a
-&—

a.
::rBn i " r B l curBl en

a
■a-*

fiff

■a-*
lallalala

-B-r

a IT

2,0

- ^ 0

T T
0 0

UU*+1

c;+i.;,*+i

hB— Vi.;.*

Figure 4.5. A full size systolic array for the QR solver.

4.3.2 DESIGN OF AN FSA FOR THE HYPERBOLIC HOUSEHOLDER SC
SOLVER

From the dependency graph G={Isc> DQR). with :

l2c = fl = t* J *]' I 1 </ < 9, 1 < ; < 3 - L('-1)/3J, i + 3(/- l) < fe < 20; (4.22.a)

and

Dsc = {U 0 0]', [3 -1 0]', [1 0 1]', [0 0 1]';, (4.22.a)

a full size systolic array for the SC solver can be synthesized by the procedure given in
Section 1.2. Let the schedule vector s be s = [l - 3 1]' and the projection vector
t = [0 0 1]'. Choose a transformation matrix T:

T =
1 0 0
0 - 1 0

(such that Tt = 0). As a matter of convenience we translate the dependency graph G to
the origin (0,0,0) by the vector [-1 -1 -2] ' . The set of processor elements in the FSA is

122 4. DESIGN OF A SYSTOLIC ARRAY

then given by :

lie = fl I i = T(i - [1 1 2]'), i 6 l i d . (4.23)

The set of interconnections in the FS A is given by :

D s c = {Td I d e D5C; = fll 0]', [3 1]', [0 0]';. (4.24)

The set of schedule time steps for a processor element i e \}c is given by :

Si = fs'(i - [1 1 2]') I i e lie and T(i - [1 1 2]') =7j. (4.25)

The number of delay units associated with the different interconnections in the FSA is
given by:

"ll [3] fl] |0
= 1.

V
0
0

= l , s '
"3"
-1
0

= 6, s'
V
0
1

= 2,s '
o
0
1

Notice that we can apply a transformation

K =
1 -3
0 1

to the elements of \}c and the interconnections in Dsc, so that the FSA has an orthogonal
2-D mesh of interconnections. I.e., K[l 0]' = [1 0]' and K[3 1]' = [0 1]'. The result is
shown in Figure 4.6. Again there exist many other possible arrays, but we chose this par­
ticular one, because all I/O with peripherals is handled at the boundaries of the array.

4.4 FIXED SIZE SYSTOLIC ARRAYS FOR THE QR AND SC SOLVER

Problems of which the size exceeds that of the systolic array on which they have to
be executed, must be partitioned. Here we shall demand that the partitioning preserves
the property that all I/O with peripherals is handled at the boundaries of the systolic
array. To achieve problem size independency of local memory, the full size arrays of the

4.4. Fixed size systolic arrays 123

. . . ,CU2,CU 1

-.Vm.Vm - H

•.Cl22'c121

•■.vm,v ia

•.Ci32'ci3i

-.Vl32.Vl3I

]gj frfr] T#]j J j5 j'jfl| T"l&l
P.o-fl 1,0; :2,o;

2
■B-rl '3,0'

?3,-l

c:rfr| 6CDf&] 6c]r&l

« n i e>2i

e212

«i t3J- lJb

- E H - v/+i./.«

«321
«322

a'larla" 2

cDrEh ScDrBn ĈDrEh

curBi 6C3r£h 6 " r & l

F
«131

«232 «331
«332

1 Figure 4.6. A full size systolic array for the SC solver.

previous section are partitioned by employing the LPGP partitioning strategy of

Chapter 3. Summarizing, this strategy tessellates the array in tiles of, say, p processor

elements each and schedules the computations of the tiles in pipeline on the reduced size

array (RSA). An important property of this partitioning strategy is that all memory,

required to store intermediate results, is "kept outside the array. Thus, preventing local

storage to depend on the size of the problem.

The different steps that are involved in the LPGP partitioning strategy of Chapter 3

are the following.

1. Tessellate the full size array into congruent tiles of, say, p processor elements each

(if necessary, dummy processor elements are added such that each tile has exactly

p processor elements).

124 4. DESIGN OF A SYSTOUC ARRAY

2. Find an admissable ordering of the tiles. This ordering dictates in which order the
computations of the different tiles are pipelined on the RSA.

3. Identify the set of processor elements which receive data from a particular tile. By
scanning the interconnection pattern of these processors with the processor ele­
ments in this tile, the routing paths from the outputs to the inputs of the FSA are
established.

4. Compute schedules for the read and write signals of the buffers of the RSA.

4.4.1 TESSELLATION OF THE FSAs FOR THE QR AND SC SOLVER

THE QR SOLVER

The first step in the LPGP partitioning procedure is the tessellation of the full size
array. A possible tessellation of the FSA in Figure 4.5 is envisualized by the dotted lines
in this figure. The RSA consists of 6 processor elements. According to Section 3.1 this
tessellation is characterized as follows :

r = 0

1 0
0 1 F= ([0 0]', [1 0]', [2 0]', [0 1]', [1 1]', [2 1]';

U =
3 0
1 2 , H = |r[0 0]', [10]', [2 0]', [0 1]';.

Although many different tessellations exist, this particular one has the advantage that all
inputs of the RSA will be at its boundaries. Notice that not all tiles consist of a sub-array
of 6 processor elements. Dummy processor elements must be added to these tiles. Either
method 1 or method 2 of Section 3.2 can be used to control the functionality of the pro­
cessor elements in the RSA. We select method 2 here, because it does not enhance the

4.4. Fixed size systolic arrays 125

complexity of the interconnections in the RSA.

From Figure 4.5 we construct a dependency graph, which expresses the dependencies
between tiles, as they are implied by the interconnections in the full size array. This
graph, G={V,E}, is shown in Figure 4.7, where a vertex represents a tile.

The set of vertices is given by V = {(0,0), (0,2), (3,1), (6,2)) , where the vertex coor­

dinates correspond to the coordinates of the processor element at the lower left corner of

the corresponding tile. The set of edges (dependencies) is given by E = {[3 1]', [0 2]',

[3-1]'}.

As was explained in Section 3.2, an order vector p is computed which obeys the fol­
lowing set of constraints:

p ' e > l , for all e e E (4.26.a)

p'v * p'w, for all v, w € V and v * w. (4.26.b)

There are many solutions for the above set of constraints. However, we choose p = [6 1]',
since it results in a minimum of storage for intermediate results at each output of the
RSA. With this choice of order vector the tiles are ordered as follows: (0,0), (0,2),
(3,1), (6,2).

THE SC SOLVER

Similarly, we derive for the FSA of the SC solver a tessellation, dependency graph
and ordering of the tiles. The tessellation is envisualized by the dotted lines in Fig­
ure 4.6. Its characterization is as follows:

126 4. DESIGN OF A SYSTOLIC ARRAY

(0.2)

Figure 4.7. Dependency graph of the tessellated FSA of the QR solver.

r = 0

B =
1 0
0 1 , F = {[0 0]', [1 0]\ [2 0]', [0 1]', [1 1]', [2 1]';

u =
3 3
-1 1 H = /T0 0]', [10]', [2 0]', [1 l]'j.

This tessellation has the advantage that all inputs of the RSA will be at its boundaries.
Dummy processor elements must be added where necessary and method 2 of Section 3.2
is used to control the functionality of processor elements in the RSA.

The dependency graph, G=(V,E], of the tessellated FSA of the SC solver is depicted
in Figure 4.8. For this graph we find : V = {(0,0), (3,-1), (6,-2), (6,0)) and E = ([3 -1] ' ,
[0 3]', [3 2]'}.

Out of all existing solutions for the order vector p of graph G, we choose p' = [6 1],
since it results in a minimum of storage for intermediate results at each output of the
RSA. With this choice of order vector the tiles are ordered as follows: (0,0), (3,-1),
(6,-2), (6,0).

Since the interconnection pattern is the same for both RSAs, only the algorithms for
the controller in the model of the LPGP partitioned FSAs (see Figure 3.3) and the
number of delays along an interconnection shall differ. Taking appropriate measures for
this difference in delays, a single, programmable RSA can be designed to implement

4.4. Fixed size systolic arrays 127

(6.0)

(0,0) jrfL
(3.-1)

(6.-2)

Figure 4.8. Dependency graph of the tessellated FSA of the SC solver.

both solvers.

4.4.2 PIPELINING THE COMPUTATIONS OF THE TILES ON THE RSA

The model for the LPGP partitioned FSAs of the QR and SC solvers is depicted in
Figure 4.9. Interpretation of this model is given in Section 3.2. The delays numbered
with x can be programmed to implement either 1 or 6 delay units, as required in the FSA
for the QR and SC solver, respectively. The controller for the model is implemented by
the algorithms given in Section 3.2 for the controller. The different parameters of these
algorithms are in the case of the QR solver :

r

128 4. DESIGN OF A SYSTOUC ARRAY

S J I U M # W I = {(0 ,0) , (0 ,2)}

SJn_buffer2 = ((0,0), (0,2), (6,2))
S_in_buffer3 = SJn_buffer4 = S_in_buffer5 = ((0,0), (3,1), (6,2)}
S_out_*i = ((0,2),(6,2)}
S_out_s2 = ((0,0),(3,l),(6,2))
S_ouw3 = S_out_s4 = S_out_s5 = ((0,2), (3,1), (6,2))
S_tiles=((0,0),(0,2),(3,l),(6,2))
S_I/O_(0,l) = S_I/0_(1,1) = S_I/0_(2,1) = ((0,2), (6,2))
S_added = ((0,l),(l,l),(2,l))
dependency_l = [3 1]'
dependency_2 = [3 -1] '
dependency_3 = dependency_4 = dependency_5 = [0 2]'

and in the case of the SC solver :

S_in_bufferi = {(0,0), (3,-1), (6,-2))
S_m_buffer2 = {(0,0), (6,0)}
S_in_buffer3 = SJn_buffer4 = S_in_buffer5 = {(0,0), (3,-1), (6,-2))
S_out_i! = {(0,0), (6,-2), (6,0)}
S_out_i2 = {(6,-2), (6,0))
S_out_i3 = S_out_54 = S_out_55 = {(0,0), (3,-1), (6,0)}
S_tiles = {(0,0), (3,-1), (6,-2), (6,0)}
S_I/O_(0,1) = S_I/0_(1,1) = S_I/0_(2,1) = {(0,0), (6,0)}
S_added=((0,l), (1,1)', (2,1)}
dependency_l = [3 1]'
dependency_2 = [3 -1]'
dependency_3 = dependency_4 = dependency_5 = [0 2]'.

4.5. Design of a Householder processor element 129

?s

' 3

w4

buffer^
w5 IT

buffer, T|.

5
JCl lC,...lCt

XitJj&XiJp^ J controller

Figure 4.9. LPGP partitioned array model for a 2x3 RSA for the QR and SC solver.

4.5 DESIGN OF A HOUSEHOLDER PROCESSOR ELEMENT

In this section we address the implementation of a processor element in the RSA of
Figure 4.9. We shall focus on an innerproduct-step approach for the implementation of
the orthogonal and hyperbolic Householder transformations. An innerproduct-step imple­
mentation serializes computations involved in the application of a Householder transfor­
mation to a vector, so that we are able to satisfy the constraint of being flexible with
respect to communication bandwidth requirements of peripherals, attached to the I/O pro­
cessors of the array (see constraint 4 in Section 4.1).

130 4. DESIGN OF A SYSTOLIC ARRAY

4.5.1 IDENTIFYING, MINIMIZING AND SCHEDULING OF COMPUTATIONS

A Householder transformation is relatively complex. The computations that are
involved in orthogonal and hyperbolic Householder transformations are summarized in
Table 4.1.

The number of computations for the calculation of P and py can be minimized by
writing p = l / l l x l l 2 l u i l and py = 1/1 I x 11 y I«i I. The number of multiply-add opera­
tions that are required for vectoring and reflection for the orthogonal case, are given in
Table 4.2. The table is similar for the hyperbolic case. All vectors are assumed to be of
size n and all results in the table are assumed to be obtained by one or more multiply-add
operations.

Since the RSA is timed systolically (synchronous), the computation of a reflection
vector should take as much time as the computation of a reflection. Hence, from
Table 4.2 we deduce the following condition :

n=ni + ns + l, (4.27)

where «/ and ns are the number of multiply-add steps required for the computation of an
inverse and a square root, respectively. Since n is the number of entries in the data vec­
tors, (4.27) determines the size of the partial vectors [v'y* e,^]' and [e^ v'ijkY in Fig­
ure 4.1 and 4.3, respectively, once the numbers n% and ns are fixed. Moreover, the choice —
of «; and ns will fix the minimum amount of local memory for a processor element. This
memory is needed to store the reflection vector and the data vector in case of vectorizing
and reflection, respectively. It is also needed to store Taylor series coefficients for the
calculation off(x)=x'A and g (x) = x~^, as we shall see in the sequel.

4.5. Design of a Householder processor element 131

Vectoring Reflection
Orthogonal Hyperbolic Orthogonal Hyperbolic

u = x + sign(x\)l IxI 12ej
2

P = lul I?

I Ixl \j

u = x +sign{x\)\ Ixl lye]

w'y u'y

yi - P("'y)«.- ±y,--P/(u'y)«,-

TABLE 4.1. Summary of orthogonal and hyperbolic Householder computations.

4.5.2 COMPUTATION OF SQUARE ROOTS AND INVERSES

The square root and inverse calculations that are required to compute (3 and I Ixl 12,
can be easily formulated in terms of innerproduct-step algorithms. The number of steps
in such algorithms will fix the quantities ns and «,, respectively. Square roots and
inverses may be computed from a Taylor series expansion [Ardel963] by an approxi­
mating polynomial:

f(x;z) = ZbiWx - z)' = (60(z) + {x- z)(bx(z) + (x- z)(...(bn(z))...))),
;=o

(4.28)

where the b;(z) = are the coefficients of the polynomial in the point z and p'>

denotes the ith derivative of the function /. The approximation error En+1 is known to be
[Ardel963]:

g»+i = -C+'il?fr-z>("+1)' S=z + e(x-z) ,o<e<i .
(«+l)!

The right hand side of (4.28) expresses the computation of f(x;z) in terms of an
innerproduct-step algorithm. Although there are better (faster) algorithms for computing
inverses and square roots, we choose a Taylor series expansion because then we will not
need special hardware besides an innerproduct-step processor to perform all the different
computations that are required for the application of a Householder transformation to a
vector. With this in mind the Householder processor element can be designed cost-

132 4. DESIGN OF A SYSTOUC ARRAY

Vectoring
Computation

1Ixl \\

l l x l l 2

u\ =x\ +sign(xx)\ Ixl 1

W ! 1 1 X I 1 2

B l
K M X I I J I M J I

multiplv-add's

n

ns

1

1

« i

Reflection
Computation

u'y

P(u'y)
y - (Pu'y)u

multiDlv-add's
w

1

n

TABLE 4.2. Listing of computations and the numbers of multiply-add operations.

effectively and compactly.

Let a number* be represented as a normalized floating point number in the set:

n r m

Rjilm, le) = {0} V{X = OmXmx2a°Xe I <Jm, Oe € {+,-}, Xm = £x (B[i]2-' , Xm[i] E fO, U,
1=1

xm[i] = l,xe= 5>e[/]2', xe e fO.ljj.
i=0

The elements of this set have the property that xm e [0.5, 1). A unique representation for

0 is chosen to be the following : GQ = +, 0m[i] = 0, i=\,...,lm, oe = - and 0e = £ 2 ' . In
;=o

case of computing the square root of x, the exponent xe is divided by 2. Hence, xe has to
be even. In case xe is odd, it must be first incremented by 1 and the mantissa xm must be
divided by 2. In that case the mantissa is denormalized and therefore we choose the inter­
val [0.25, 1) in which Taylor series expansions are computed for/(x) =xh. For simpli­
city of implementation we also choose this interval in which the Taylor series expansions
are computed for g (x) = x~l. The interval [0.25, 1) is divided in sub intervals of length
A and the points z* = (fcA + 0.25) (k = 0,1,...) become the points around which the Tay­
lor series expansions are computed. Of all points ZQ, Z\,... in the interval [0.25, 1) the
point z* is selected as the one closest to xm. Hence, ẑ is computed as follows :

4.5. Design of a Householder processor element 133

, x-0.25 , ne\ k = — + 0.5 ,

zk = kA + 0.25.

A simple algorithm for the computation of the square root of a number x = omxmx2
is the following.

frxe

sqrt(xe>xm)
if (xe is odd)

xe *— xe + 1;

endif
xe <- xe/2;

x m -0 .25
k<r- + 0.5

zk<^kA + 0.25;
n

*m<- 'Lbi{zk){xm-zk)t;
i=0

endsqrt

An algorithm for the computation of x'1 is similar to the one above, except that no
checking is needed for the exponent. The only operation that is needed for the exponent
is the inversion of its sign bit oe. Storing the coefficients bi(zk) in tables, it is easy to
compute x'A or x_1 within desired accuracy. The computation of index k for zk is at the
same time the address computation of the entries of the tables. Apart from the
coefficients bj(,zk) the points -zk may be computed in advance and also stored in the
tables. Thus, the kth entry in the tables forxx/l and x~x looks like :

134 4. DESIGN OF A SYSTOLIC ARRAY

-z* *»(**) ba{zk)

The parameters «,• and n, are functions of A, the length of the approximation interval.
In an actual implementation we have to seek for the optimum of the values «,-, ns and the
sizes of the tables for x'A and x'1 . Preferably A is chosen to be a fixed point number, in
order to simplify the computation of k.

4.5.3 ARCHITECTURE OF A HOUSEHOLDER PROCESSOR ELEMENT

Expressing the computations of (i ((3/) and I I x It 2-< I I x I ly) in Table 4.2 in terms of
Taylor series expansions of the form (4.28), we are able to schedule all computations in
this table on a micro-programmed innerproduct-step processor. The architecture of this
processor is given in Figure 4.10. In this architecture it is assumed that the constants A-1

and 0.5-0.25A-1 are available as precomputed numbers. The different components of
the architecture are the following.

BUSSES

The processor element has a double-bus architecture and is optimized for computa­
tion of Householder transformations in a minimum number of instruction cycles. Access
to the busses is obtained via instate buffers, denoted by the triangles. Internally numbers
are represented as a mantissa of r bits and an exponent of s bits wide. The parameters r
and s are left to be made explicit in the final stage of the design, where the floorplan and
the layout of the Householder chip are defined.

LOCAL MEMORY

The two tables TABLE1 and TABLE2 are read only memories (ROMs), which con­
tain the coefficients of the Taylor series expansions of the functions f(x)=xX/i and

4.5. Design of a Householder processor element 135

VEC_OUT

cue
RESET

SYSTEM BUS

Figure 4.10. Architecture of the Householder processor.

g (x) = x~l, respectively. In case of reflection the input data vector y is stored in the first-
in-first-out buffer FIFO-Y." In case of vectorizing, the last (n-1) entries of the input data
vector are stored in the first-in-first-out buffer FIFO-U. The first entry U\ of the
reflection vector parameter is computed after several steps and is stored separately from
the other entries in the register RUl. The first entry of the input vector is stored in the
register RXl. In this way, when the processor has to perform a vectorizing operation on
an input vector x, it can keep the first entry X\ of this vector for future computations,
such as for calculation of u i in Table 4.2. The scaling constant [}, is computed last and
stored in the register RBETA. The feed back loop from the output of the floating point
adder to one of its inputs is meant to speed up the accumulation part of the innerproduct
computations. Without this loop the output of the adder has to go via bus A or B, leading
to a delay of one clock cycle per accumulation step, since registers RTMP1 and RTMP2
are also loaded via the same busses.

MICRO CONTROLLER

136 4. DESIGN OF A SYSTOLIC ARRAY

The microprograms for the Householder transformations are contained in the micro­
instruction memory, which consist of a read only (ROM) and random access (RAM)
part. In the ROM the sub-routines for the square root and inverse are stored. In the RAM
the microprograms are stored which perform either orthogonal or hyperbolic transforma­
tions, using the sub-routines in the ROM. These programs are loaded into the RAM via
the system bus of the host computer. The micro-instructions are loaded into the instruc­
tion register IR, containing the control signals for the data path of the processor element.
The microprogram for the processor is found in [Hofwl988], together with the tables for
the coefficients of the Taylor series expansions of the functions f(x)=x'A and

The sequencer controls the execution of the microprograms by taking into account
branch conditions and loops encountered in the computations listed in Table 4.2. Its main
components are the program counter PC, the return address register RAR and the loop
counter LPCNTR. The program counter computes the next microprogram address. The
return address register stores a return address in order to recover from a sub-routine call.
The loop counter implements repeat-until control for the innerproduct-step calculations.

EXPONENT HANDELING

The box denoted by SQR_INV has the following functions. In case of square root
computations it tests whether the exponent must be incremented by 1 and it divides the
exponent by 2. If the test was successful it also divides the mantissa by 2. In case of the
computation of an inverse it reverses the sign of the exponent. The exponent is stored for
normalization of a computed result to floating point format.

INPUT/OUTPUT INTERFACE

The box denoted by 10, controls the flow of input data to and output data from the
busses. It also controls the buffers at the inputs and outputs of a processor element (see
Figure 4.5 and Figure 4.6). Via the control signal VO the processor element instructs an
output buffer, that contains a vector v;yi, to receive a new vector v (+1 ; jt from the

4.5. Design of a Householder processor element - 137

processor element. The entries of this vector are transmitted one by one to the buffer via
the output VEC_OUT. Via the control signal SO the processor element instructs an out­
put buffer, that contains a scalar e^ , to receive a new scalar e(iy+i^ or c,-+3,y_i,t, from
the processor element. This scalar is transmitted to the buffer via the output SCA_OUT.
Via the control signal VI the processor element instructs an input buffer, that contains a
data vector v^ , to transmit the entries of this vector one by one to the processor element.
The processor element receives the entries.at the input VEC_IN. Via the signal SI the
processor element instructs an input buffer, that contains a scalar e^, to transmit this
scalar to the processor element. The processor element receives the scalar at the input
SCA_IN. Via the signal V/R_0 the processor element instructs an output buffer, that
contains a control bit c;^, to receive a new control bit c;+1,^+1 • This control bit is
transmitted at the output V/R_OUT. Via the signal V/R_I the processor element instructs
an input buffer, that contains a control bit c^, to transmit its content to the processor ele­
ment. The control bit is received at the input VR_IN. Via the signal 0/H_I the processor
element instructs an input buffer to transmit a control bit, which determines whether the
processor element performs an orthogonal or hyperbolic Householder transformation.
The processor element receives this control bit at its input 0/H_IN. Via the signal
0/H_0 the processor element instructs an output register to receive a control bit which
determines whether a processor element performs an orthogonal or hyperbolic House­
holder transformation. This control bit is transmitted at the output 0/H_OUT.

PROCESSOR ELEMENT STATUS

The register STATUS is the status register of the processor element. It contains sig­
nal values upon which decisions are based for branching in the micro-instruction pro­
grams. The control ID, signals whether the processor element has to perform an identity
or default I/O map (Householder transformation). V/R_IN signals whether the processor
element must perform computations for vectoring or reflection. 0/H_IN signals whether
the processor element must perform orthogonal or hyperbolic Householder transforma­
tions.

138 4. DESIGN OF A SYSTOLIC ARRAY

FLOATING POINT MULTIPLY-ADD SYSTEM

The multiplier and adder are designed to, respectively, multiply and add floating
point numbers in Rf(lm, le). The result of a multiply-add operation is normalized and
rounded, such that it is again in Rj{lm, le). The floating point multiply-add system takes
care of computing the sum of exponents when two numbers are multiplied. It also shifts
the mantissa of the smallest of two numbers which have to be added and makes the
exponent of the smallest number equal to that of the largest one. And it normalizes and
rounds the result of a multiply-add operation, such that it is an element of Rj{lm, le).
Details of the implementation of the different parts of the architecture, the microprogram
for the Householder transformations, tables for the coefficients of the Taylor series
expansion of the functions f (x)=x'/2 and g (x) = x~l, as well as accuracy analyses are to
be found in [Hofwl988]. A microprogram, written in a pseudo language, which
describes the operation of the Householder processor element is listed in Appendix D.

In case of a vectorizing operation the processor element reads data from its inputs,
only during the n steps for the computation of the square of the norm of input vector x.
During the next steps -the processor element does not request data from its buffered
inputs. Hence, via the numbers ns and «,■ (see (4.27)) we can control the latency of the
vectorizing operation and thus, the I/O bandwidth during vectorizing.

In case of the reflection operation, the processor element reads input data from its
buffered inputs, only during the computation of the inner-product u'y. During the next
n + 1 steps no data is requested from the input buffers. But, the number of these steps is
related to ns and nt via (4.27). Hence, by means of this equation we can control the I/O
bandwidth of the processor elements of the array at design time.

Fitting the scheduling of the computations in Table 4.2 in the scheduling of the RSA
in Figure 4.9 is not hard to do, considering the following interpretation of the schedule
time steps in the RSA : all relevant input data must be available at the inputs of a pro­
cessor element at time step f, and all relevant output data must be available at the inputs
of a connected processor element at time step r,+1. Hence, we are free to schedule the

4.5. Design of a Householder processor element 139

sub expressions of the Householder transformations, as long as we meet the constraints
imposed by the scheduling of the RSA. Since all outputs of a processor element in the
RSA are buffered, a processor element can store its output in the buffers during the last n
steps of a reflection (see Table 4.2). Notice that it is not necessary to output data during
vectorizing. In this way we are certain to provide all input data from time step f; to time
stepri+1.

141

5. CONCLUSIONS

The power of the feed forward direct methods of Section 2.2 is their high degree of
parallelism and pipelining. This allows fast execution on systolic arrays, despite the fact
that the amount of input data is nearly doubled due to the need for processing an identity
matrix in (2.18) and (2.22) and a block identity matrix in (2.46). Both systolic arrays in
Figure 2.1 and Figure 2.2 are roughly two times faster than the combination of the arrays
in Figure 1.1(a) and (b). This combination requires 7N-5 time steps to solve Ax = b
(A 6 R) as was explained in the introduction. A generalization of the systolic array
in Figure 2.1 shows that Ax = b (A e HNxN) is solved in 4N time steps on this array, and
a generalization of the systolic array in Figure 2.2 shows that A\= b is solved in 3N+1
time steps. The systolic arrays for the methods of Section 2.2 are simple and with com­
plexity in the order of the complexity of a QR factorization. The feed forward method
which uses only Givens rotations (see (2.23)) is a numerically stable and robust method
for the complete class of non singular systems of linear equations. Moreover, the simple
extensions given in Section 2.5 show that systolic arrays can be synthesized to compute
expressions of the form CA~lB +D. Thus making it possible to compute a wide spec­
trum of expressions by choosing appropriate values and dimensions for the matrices A, B,
CandD.

The partitioning theory developed in Chapter 3 takes the synthesis of practical sys­
tolic arrays one step further into reality. The LPGP and the LSGP partitioning strategies
are important in realizing systolic arrays of which the number of processor elements is
independent of the size of the problem. By means of the LPGP partitioning of a full size
array all memory for intermediate results is kept outside the systolic array. Therefore, the
array can be designed once and for all, so that no modification in its architecture is

142 5. CONCLUSIONS

required when different sizes of a problem are executed on it. By means of the LSGP par­
titioning of a full size array the throughput of a processor element can be controlled,
although at the expense of increased local memory. By controlling the throughput of the
processor elements we control the I/O bandwidth of the systolic array and a close match
can be found between the I/O bandwidths of the array and peripherals (such as disks or
the host computer). Combining both strategies in the design of systolic arrays enables
one to control I/O bandwidth as well as the number of processor elements. When added
to a computer aided design environment for systolic arrays, such as SYSTARS
[Omtzl987], these strategies can make a significant contribution to the synthesis of prac­
tical systolic arrays.

The design of a reduced size systolic array for two methods of the novel class has
served to illustrate the practical use of the partitioning theory. Unfortunately, the choice
of a Householder version of the methods has limited the versatility of the resulting array
to solving systems of linear equations only. Generalizations in the sense of Section 2.5
are inefficiently realized with Householder transformations, since we have to separate the
transformations for the computation of the factorization of A' from the transformations
on the vectors b ' (see Section 2.5). This is-necessary in order to pass the result of the fac­
torization of A' unchanged to the transformations on all the b'. Such a scheme suffices
with 2x2 transformations on the b ' and the result of the factorization of A'. To imple­
ment these transformations with Householder processor elements which handle «xl vec­
tors (n significantly larger than 2) would be very inefficient. For the same reasons it is not
efficient to implement. Householder versions of (2.22) and (2.46) with a choice of,
respectively, hyperbolic and orthogonal Householder transformations for the @,(7w).

143

APPENDIX A

Proposition 2.1:

Let L e RWxW be a lower triangular matrix and b e R w a vector, such that:

LL' - b b ' > 0 . (A.l)

Then, there exists a matrix 0 (- l) as defined in (2.4.a) and (2.4.b)form = - 1 , such that:

0(-l) -b ' 0'

where R (-1) is upper triangular.

(A.2)

Proof:

The proof is by induction. Put L0 = L and bo = b = [b^ • • • bffl]'. Let s0 be the
column vector

From (A.l) we derive that:

i-oU - b0b0 = L0(/w - sos0)Lo > 0.
Hence,

IN - s0s0 > 0.

(A.3)

(A.4)

(A.5)

b[0) b[0)

Since 4 0) = ~mT^ UN -SOSO) is a matrix with its 11-entry equal to (1 - (—) 2) > 0.
Ai Ar

lM0)l Hence, it follows that — ^ — < 1 and there exists a matrix 0 i (- l) (see (2.4.b) for j'=l),

144 APPENDIX A

6 f
with tanh (cti) = —^r, such that

-b'i = ©i(-D
L'o

where Li is a lower triangular matrix and bi = [0 b^ ■ ■ ■ btyy.

Now, suppose that there exists a ©,_i (-1), such that:

4-1
-bi-! = ©,-,(-1)

-b{-2

with

and

b{_1=[0...0 6[,'~!) ••• *tf_1)]
i - i

bU = [0...0b\L-p ••• bti-*].
i-2

We show that there exists a matrix ©;(-!)> such that:

= ©,(-l) -bi
LU

-bi-,

with

bi = [o...oMV)i ••■ bft).

Equation (A.7) can also be written as :

LU
-bi-i

L'o

-bb

(A.6)

(A.7)

(A.8.a)

(A.8.b)

(A.9)

APPENDIX A 145

Since the 0j(- l) are £(-l)-orthogonal, we get :

L,_,L{_i -b ;_!bj_i =L0L'0 - b0bS > 0.

Thus,

IN-S^SU >0,

and

1-1

where

e(«'-i) -

Hence, from (A.l 1) and (A. 13) we see that

1 -
'11

>0.

(A. 10)

(A. 11)

(A. 12)

(A. 13)

(A. 14)

I fcf-1) I
Hence, —p^r?—< 1, and there exists a matrix 0,(- l) (see (2.4.b)) with

I / „• l

fanA (a,-) = a-_n , such that :

4
= 0,(-D

4-1
-bi-i

(A. 15)

with Lt lower triangular and b' = [0...0 b\% ■ ■ ■ b$].

147

APPENDIX B

Theorem 2.2:

>NxN Let A = [ay] e R™*™ be a symmetric positive definite matrix, normalized such that
we can write

A=RL+IN + R'L,

where Ri = [a^], i >j, is the strictly lower triangular part of A. Put:

U=RL+IN

(B.La)

(B.l.b)

Y = RL.

Then, there exists a matrix product <I> e R 2A,x2w .-

N-lW-1

of embedded plane hyperbolic rotations :

* i / =

cosh (a^) sinh (aiy)

h-j-\
sinh (a^) cosh (a,y)

iN+j-i-i

(B.l.c)

(B.2.a)

(B.2.b)

such that the Cholesky factor L' of the matrix A is given from :

148 APPENDIX B

L'
0 = o Y' (B.3)

Proof:

The proof is by induction. Put UQ = U and Y0 = Y and let SQ be the strictly lower tri­
angular matrix:

Then,

SQ = UQ Y0.

A=[UQ Y0]J[U0 Yof^UoU'o-YoY'o

(B.4)

Hence,
= U0VN-SOS'O)U'O >0.

IN —SQSQ > 0.

The first q/f-diagonal in the lower triangular part of the matrix SQ has entries

(B.5)

"i+U+i
i=l,...,N-\, where yffl and « ^ are the W-entries of ^o and UQ, respectively. And it fol­
lows from (B.5) that:

iy£iU < 1, i = l,...,/V-l. (B.7)

Thus, there exist /-orthogonal matrices <D/i (see (2.26.b) for j=\) with

tanh(a.u) = — ' '' , z=l,...,N-l, such that:

APPENDIX B 149

: * ,
U'o
ft (B.8)

A / - 1

* i = n < i > i i .
» = 1

(B.9)

where 7 j is strictly lower triangular with its first o/f-diagonal zero and U\ is lower tri­

angular and invertible. From the /-orthogonality of the matrix <P\ it follows that:

UM -YiY\=U0Ub-Y0Yb.

Now, suppose there exists a matrix O n

AM

i=k-l
(B.10)

(the matrices <X>(i*_i as given in (2.26.b) for j=k-\) such that:

= * * - !
U'k-i

n-2 (B.ll)

with t/jt_i and l/t_2 lower triangular, invertible and Y^ and Yk_2 strictly lower triangu­

lar, with the first it and k-l qj^-diagonals zero, respectively. We shall show next that

there exists a matrix <J>* :

A / - 1

(the matrices 4>^ as given in (2.26.b) for j=k) such that :

U't-i

with t/jk lower triangular, invertible and y^ strictly lower triangular, with the first £+1

oj^-diagonals zero.

150 APPENDIX B

From (B.10) we can write (B.l 1) as

k-XN-l

= nn^y
U'o

(B.12)

Putting:

Sk-l = Uk~-iSk-\,

and, since the <Dy are /-orthogonal, it follows from (B.12) that:

'Ov — •S'jfe-i-S'i-i >0.

(B.13)

(B.14)

The matrix Sk-i is strictly lower triangular, with the first k-l oj^-diagonals zero and
entries:

V(*TU
„(*-i)
"I+I , I+I

, i=k-l,...,N-l (B.15)

on the kth oj^-diagonal. The ii-entry of the product Sk-iS'k-i is equal to the sum of
squares of the elements of the ith row of the matrix Sk-\. Hence, it follows from (B.14)
that:

< 1, i=*-l, . . . ,N-l, (B.16)

and there exist matrices <!>,■* (see (2.26.b) for j-k) with tanh (a,*) = — j ^ \ — , such that:
"i+i.r+i

N-l

i=k

U'k

Y'k = * *
U'k-\

Y'k-i

(EM)

(B.l 8)

with Uk lower triangular, invertible and Yk strictly lower triangular, with its first k off-

APPENDIX B 151

diagonals zero.

Next, it remains to show that the matrix L in (B.3) is the Cholesky factor of the
matrix A. Since the matrix O is ./-orthogonal, it follows that:

LL' = UU' - YY'. (B.19)

And, from (B.l.b) and (B.l.c) it follows that UU' ~YY'=A, so that L must be the Chole­
sky factor of the matrix A.

D

153

APPENDIX C

Theorem 2.3 :

Given an NxN positive definite matrix A = IN + Ri + R'L (RL strictly lower triangu­
lar), let the matrices U and Y be defined as U ' = /# +RL and Y -RL- Then, in the recur­
sion :

U0 = U, Y0 = Y

= o, y'j-i j=l,...,N-l (Cl)

10v-i=O,

N-l
(C.2)

(the matrices Oy are as given in (226b)) the entries in both Uj and Yj are bounded by 1
in absolute value, for j=l,...,N-l.

Proof:

Consider recursion (C.l) applied on the ixi (i > 1) leading principal submatrix Aj, of
the NxN matrix A :

= q>(o
Y'

(C.3)

154 APPENDIX C

with

< D (,) = n
7=1

Put:

/«-i

cosh(a.ij) sinh(a.ij)

'N-j-\
sinh (a;y) cosh (a,y)

/*- •«•+;

o('- i)><i,a)=/w . (C.4)

6i=kU = R>& (C.5)

where L, and Rj are lower and upper triangular, respectively. According to (2.32) we
find for 0 (,) :

where

<t)(') =

L7J =

L71 0

0 RJ1

'LJl 0
0 /„_,

'U,- -Y,

-Yi Uj
(C.6)

(C.7)

RJ i _
'RJ1 0

0 IN-i
(C.8)

U,-
V; 0

0 IN-i (C.9)

Y; = 0 0 (C.10)

The matrices f/,- and 7,- are the J'XJ leading principal submatrices of U and Y, respectively.
The structure of LJ1, RJ1, C/,- and Y; is infered from the fact that the matrix <J>(,) must

APPENDIX C 155

leave the N-i last rows of U' and Y' unaffected in (C.3), while the ixi leading principal
sub matrix of U^ must be equal to L'. Note that the matrix O ^ is /-orthogonal so that:

[U Y]&iyJ(t>> (0 --fN = U{i)LJl-Y{i)RJl. (C l l)

Now, because the ixi leading principal submatrix of Y^ is zero, it follows from (C.ll)
and (C.6) that the diagonal elements of U^LJ1 are 1 and also that the ixi leading princi­
pal sub matrix of U^ is the inverse of LJX as expected.

Substituting (C.6) in (C.3) gives:

UV'i - YY\ = U{i)h\; (C.12.a)

yU,--t/Y,- = y(;)R{. (C.12.b)

Substituting

U = Y+IN (C.13.a)
and

Vi = Yi+IN (C.13.b)

in (C.12.a) gives

y + /A, + Y; = (y + y' + /N) + (Y ; - r) ' =

A + (Y ; - y) ' = [/(,)L;-.

Or,

Ahj' = l/<''> - (Y; - Y)'LJ'. (C.14)

From (C.7) and (C.IO) it follows that the factor (Y(- - Y)'Lj' is strictly upper triangular.
Hence,

156 APPENDIX C

ekALT'e1=ekU<-i)el = u$, forifc=l,...,/V and /=1,...,*, (C.15)

with ey- the jth natural base vector in RN x". Equation (C.15) gives all entries in the lower
triangular part of U^\

Substituting

Y=U-IN (C.16.a)
and

Y,- = U(--/W (C.16.b)

in (C.12.b) gives

U-\Ji = (U + Y')- (U,- + Y>) =

A-(\Ji + Y') = Y<-i)R'i.

Or,

ARj' = Y^ + (}Ji + Y')RT'. (C.17)

But, as follows from (C.8) and (C.9) we have

e'kARl'ei = ekY{i)ei = v $, fork=i+\,...,N and l=l,...,k-l. (C.18)

I.e., these are all entries in the strictly lower triangular part ofY^'\ outside the JXJ leading
principal sub matrix of Y^\

Next, we define the inner product :

1) <v,w>,4 = v'Aw,

2) <V,V>A = N vl \\ > 0 {A is positive definite),

3) | Ivl \A =0, iff v = 0 04 i's non-singular),

for which the Gauchy-Schwarz inequality holds :

APPENDIX C 157

l<v,w>l < I lvl l 4Mwl \A. (C.19)

According to the above definition of the inner product, we find for (C.15) and (C.18) the
following Gauchy-Schwarz inequalities:

Iw&l = \<ek,LT'ei>Al ^ 11 ejt M A I IL^'e/l \A, k=l,...,N; 1=1,...,k, (C.20)

\y$\ = I ^ . R r ' e , ^ ! <\\ek\\A\ \Rj'et\ \A,k=i+\,...,N;l=\,...,k-l. (C.ll)

From the fact that the matrix A has only l's on the mam-diagonal, it follows that:

l l e t l l A = l. (C.22)

For I ILf'e, I \A we find from (C.14) :

WLi'eli)i=et
lLj}AhJlel

= e,
lhJlU^el-e'lLJ1(Yi~Y)tLT'el

= e}L71L/(i)e;, (C.23)

since L71 (Y,- - Y)'LJl is strictly upper triangular with zero ixi leading principal sub
matrix. But, from (C.ll) we know that the ixi leading principal sub matrix of C/(,) is
equal to L;, so that L71t/(,) has all l's on the mam-diagonal. Hence,

I IL7'e,l lA = l. (C.24)

From (C.20) it then follows that:

lu# l <1, for k=l,...,N and 1=1,...,k. (C.25)

For I IRf'e/l \A in (C.21) we find :

IIRy- 'e/l l^ejR-'ARr'e; . (C.26)

But, from the fact that the matrix A has all l's on its mam-diagonal and from (C.8) and
(C.5) we deduce that the product R71-4R7' also has all l's on the mam-diagonal. Hence,

158 APPENDIX C

WRj'tl\\A = \. (C.27)

From (C.21) it then follows that:

ly#l <1 , for k=i+\,...,N and l=\,...,lc-l. (C.28)

Although the proof, as given above, is based on the leading principal submatrices of U
and Y, it is valid for the diagonal-recursive scheme in (C.l). In the leading principal sub-
matrix approach we do not consider the elements below the ith row of U and Y (for jxi
leading principals), unlike in the diagonal-recursi\e scheme. However, the elements of
these rows can be considered by taking successively the (J+1)X(J+1), (i+2)x(/+2),...
leading principals. In other words, it does not matter if we first process the ixi leading
principal and continue with the (<+l)x(j+l),... leading principals, or if we adhere to a
diagonal-recursive scheme as in (C.l).

D

159

APPENDIX D

In this appendix the micro-program for the Householder processor element of
Chapter 4 is expressed in a pseudo programming language. All statements grouped
within rectangular brackets are supposed to be exectuted in a single clock cycle:

do
t
O/HJ = READ_IN_0/H; /* enable input buffer at 0/H_IN to send O/H control bit */
V/R_I = READ_IN_V/R; /* enable input buffer at V/RJN to send V/R control bit */
VO = DISABLED; /* disable output buffer at VECJDUT to receive */
50 = DISABLED; /* disable output buffer at SCA_OUT to receive */
VI = DISABLED; /* disable input buffer at VECJN to send */
51 = DISABLED; /* disable input buffer at SCAJN to send */
0/H_0 = DISABLED; /* disable output buffer at 0/H_OUT to receive */
V/R_0 = DISABLED; /* disable output buffer at V/R_OUT to receive */

]
if (0/H_IN == ORTH) /* orthogonal Householder transformation */

micro_program_orth
endif
if (O/HJN == HYPER) /* hyperbolic Householder transformation */

micro_program_hyper
endif
[
0/H_0 = WRITE_OUT_0/H; /* enable output buffer at 0/H_OUT to receive */
V/R_0 = WRITE_OUT_V/R; /* enable output buffer at V/RJDUT to receive */
]

160 APPENDIX D

I
O/H_0UT = O/HJN; /*■ send O/H control bit from input buffer at 0/H_IN
to output buffer at 0/H_OUT */
V/R_OUT = V/RJN; /* send V/R control bit from input buffer at V/RJN
to output buffer at V/R_OUT */
]

until (forever)

The micro-program micro_program_orth is listed below. It expresses the execution of a
Householder transformation. Details of exponent handling in floating point arithmetic by
the unit SQR_INV in Figure 4.10 have been omitted here. The details can be found in
[Hofw88]. The micro-program micro_program_hyper for the execution of hyperbolic
Householder transformations is identical, except for the necessary subtractions that are
introduced by the signature matrix (see (4.13)).

micro_program_orth:
if (V/R_IN == VECT & ID == DISABLED) /* a vectorizing operation */

[
LOOPCNTR=l;
VI = READJNJVECT; /* enable input buffer at VECJN to send entries of vector x */

]
while (LOOPCNTR < n) I* compute £x f */

i=i .
[
BUS A = BUS B = VECJN;
RTMP1 = BUS A;
RTMP2 = BUS B;
if (LOOPCNTR > 1) /* x2,...jn are t n e l a s t " _ 1 entries of u */

FIFO_U[LOOPCNTR -1] = BUS A;
endif
if (LOOPCNTR == 1) /* store x \ to compute u i */

[
RTMP3 = 0;
RX1 = BUS A;
]

endif

APPENDIX D 161

]
RTMP4 = RTMP1*RTMP2; /* xf */
[
LOOPCNTR = LOOPCNTR+1;

RTMP3 = RTMP3+RTMP4; /* xj+'^xj */

]
endwhile
t
SI = READ_IN_SCA; /* enable input buffer at SCAJN to send */
VI = DISABLED; /* disable input buffer at VECJN to send */

]
[
BUS A = BUS B = SCAJN; /* receive xn from input buffer at SCAJN */
RTMP1 = BUS A;
RTMP2 = BUS B;
]
RTMP4 = RTMP1*RTMP2; /* x2

n */
[
BUS B = RTMP3+RTMP4; /* I I x I 11 */
RTMP2 = BUS B;
RTMP1 = A-1; /* starting computation of table-row entry k */
]
[
RTMP3=0.5-0.25A_1;
RTMP4 = RTMP1*RTMP2;
]
[
ROWJTNTR = L (RTMP3+RTMP4J ; /***/
LOOPCNTR =1 ;
RTMP1 = 1;

]
[
RTMP4 = RTMP1*RTMP2;
BUS B = TABLEl[ROWj:NTR, LOOPCNTR]; /* -zk */
RTMP3 = BUS B;
]
[
BUS B = RTMP4+RTMP3;

162 APPENDIX D

RTMP2 = BUS B; /* I Ixl I \-zk */
RTMP1 = 0;
LOOPCNTR = LOOPCNTR+1; /* start Taylor series expansion of (I I x I I \)h */

]
[
RTMP4 = RTMP1*RTMP2; /* 0 */
BUS B = TABLEl[ROW_CNTR, LOOPCNTR]; /* bni */
RTMP3 = BUS B;

]
[
BUS A = RTMP4+RTMP3;
RTMP1 = BUS A; /* fon> */
LOOPCNTR = LOOPCNTR+1;
]
[
while (LOOPCNTR < ns) /* compute the rest of the Taylor series expansion */

[
RTMP4 = RTMP1*RTMP2;
BUS B = TABLEl[ROW_CNTR, LOOPCNTR]; /* fe, */
RTMP3 = BUS B;

]
[
BUS A = RTMP4+RTMP3;
RTMP1 = BUS A;
LOOPCNTR = LOOPCNTR+1;

]
endwhile
[
RTMP4 = RTMP1*RTMP2;
BUS B = TABLEl[ROW_CNTR, LOOPCNTR]; /* b i */
RTMP3 = BUS B;

]
[
BUS B = ±(RTMP4+RTMP3);
RTMP2 = BUSB; /*±I Ixl l 2 * /
RTMP1 = 1; /* start computation of u j */
]
[
RTMP4 = RTMP1*RTMP2;

APPENDIX D

BUSB = RX1;
RTMP3 = BUSB;/*xi */
]
[
BUS A = RTMP4+RTMP3; l*ux*l
RTMPl = RU1 = BUS A;
RTMP2 = IRTMP2I;/* I Ixl l2*/
]
[
RTMP4 = RTMPl *RTMP2;
RTMP3 = 0;
]
[
BUS B = RTMP4+RTMP3;
RTMP2 = BUS B; /* (T1 */
RTMPl = A-1; /* starting computation of table-row entry k */
]
[
RTMP3=0.5-0.25A_1;
RTMP4 = RTMPl *RTMP2;
]
[
ROW^CNTR =[(RTMP4+RTMP3j ; /***/
LOOPCNTR = 1;
RTMPl = 1;
]
t
RTMP4 = RTMPl *RTMP2;
BUS B = TABLE2[ROW_CNTR, LOOPCNTR];
RTMP3 = BUS B; /* -zk */
]
[
BUS B = RTMP4+RTMP3;
RTMP2 = BUS B; /* P_1-z t */
RTMPl = 0;
LOOPCNTR = LOOPCNTR+1; /* start Taylor series expansion of ((3_1)
]
[
RTMP4 = RTMPl *RTMP2;

164 APPENDIX D

BUS B = TABLE2[ROW_CNTR, LOOPCNTR];
RTMP3 = BUS B; /* bn. */

}
[
BUS A = RTMP4+RTMP3;
RTMP1 = BUS A; /* bn. */
LOOPCNTR = LOOPCNTR+1;
]
while (LOOPCNTR < «,-) /* compute the rest of the Taylor series expansion */

[
RTMP4 = RTMP1*RTMP2;
BUS B = TABLE2[ROW_CNTR, LOOPCNTR];
RTMP3 = BUS B; /* ft, */

]
[
BUS A = RTMP4+RTMP3;
RTMP1 = BUS A;
LOOPCNTR = LOOPCNTR+1;
]

endwhile
[
RTMP4 = RTMP1*RTMP2;
BUS B = TABLE2[ROW_CNTR, LOOPCNTR];
RTMP3 = BUSB;/*fe, */
]
[
BUS A = RTMP4+RTMP3;
RBETA = BUS A;/*(}*/
]

endif

if (V/RJN == REFL & ID == DISABLED) /* a reflection operation */
t
LOOPCNTR = 1;
VI = READ_IN_VECT; /* enable buffer at VECJN to send entries y i to y„_i of vector y */
]

n - l

while (LOOPCNTR < n) I* compute X 11,7, */
1=1

[

APPENDIX D 165

BUS A = VECJN;
if(LOOPCNTR==l)/*«i */

[
RTMP3 = 0;
BUSB = RU1;
]

endif
else

BUS B = FIFO_U[LOOPCNTR-1]; /* u2 to un *l
endelse
RTMP1 = BUS A;
RTMP2 = BUS B;
FIFO_Y[LOOPCNTR] = BUS A; /* store entries of vector y */
]
RTMP4 = RTMP1*RTMP2;
[
RTMP3 = RTMP4+RTMP3;
LOOPCNTR = LOOPCNTR+1;
]

endwhile
[
SI = READ_IN_SCA; /* enable input buffer at SCAJN to send yn */
VI = DISABLED; /* disable input buffer at VECJN to send */
]
[
BUS A = SCAJN;
BUS B = FEFOJJfLOOPCNTR-l]; /* un */
RTMP1 = BUS A; /* yn */
FIFOJY[LOOPCNTR] = BUS A; /* store yn */
RTMP2 = BUS B; /* «„ */

]
[
RTMP4 = RTMP1*RTMP2;
LOOPCNTR = LOOPCNTR+1;
]
[
BUS A = RTMP4+RTMP3;
RTMP1 = BUS A; /* u'y */
BUS B = RBETA; /* (5 */

166 APPENDIX D

RTMP2 =BUS B;
]
[
RTMP4 = RTMP1*RTMP2;
RTMP3 = 0;
]
[
BUS A = -(RTMP4+RTMP3);
RTMP1 = BUS A; /* -p(u'y) */
BUSB = RU1;
RTMP2 = BUS B;

]
while (LOOPCNTR < n) I* compute y,-P(u'y) */

[
RTMP4 = RTMP1*RTMP2; /* -p(u'y)w; */
BUS B = FIFO_Y[LOOPCNTR]; /* y,- */
RTMP3 = BUS B;
if (LOOPCNTR == 1) /* y !-P(u'y)M i goes to the scalar output */

SO = WRITE_OUT_SCA; /* enable output buffer at SCA_OUT to receive scalar */
endif
else

[
SO = DISABLED; /* disable output buffer at SCA_OUT to receive */
VO = WRITE_OUT_VEC; /* enable output buffer at VEC_OUT to receive */
]

endelse
]
[
BUS A = RTMP4+RTMP3; /* y~P(u'y)«; */
if (LOOPCNTR == 1) /* to scalar output */

SCA_OUT = BUS A; /* output buffer at SCA_OUT receives y i-P(u'y)«i */
endif
else /* to vector output */

VEC_OUT = BUS A; /* output buffer at VEC_OUT receives entries y2-P(u'y)M2

toy„-p(u'y)"„*/
endelse
BUS B = FIFO_U[LOOPCNTR];
RTMP2 = BUS B;

]

APPENDIX D 167

LOOPCNTR = LOOPCNTR+1;
endwhile

endif

if (ID == IDENTITY) /* the identity I/O map */
[
VI = READJN_VEC; /* enable input buffer at V E Q J N to send) ' , toy>„_i */
LOOPCNTR = 1 ;
]
while (LOOPCNTR < n) /* read in the n-\ elements of y */

[
BUS A = VECJN;
FIFO_Y[LOOPCNTR] = BUS A; /* store y,- */

]
LOOPCNTR = LOOPCNTR+1;

endwhile
[
VI = DISABLED; /* disable input buffer at V E C J N to send */
SI = READ_IN_SCA; /* enable input buffer at SCA_IN to send y„ */

]
[
BUS A = SCAJN;
FIFO_Y[LOOPCNTR] = BUS A; /* store y„ */
]
do /* wait until the (n+l)st clock cycle before sending output data */

[
SI = DISABLED; /* disable input buffer at S C A J N to send */
LOOPCNTR = LOOPCNTR+1;
]

until (LOOPCNTR == «+l)
[
SO = WRITEJDUTJSCA; /* enable output buffer at SCAJDUT to receive */
LOOPCNTR = 1;
]
[
BUS B = FIFO_Y[LOOPCNTR];
SCA_OUT = BUS B; /* y i */ '
]

168 APPENDIX D

t
SO = DISABLED; /* disable output buffer at SCA_OUT to receive */
VO = WRITE_OUT_VEC; /* enable output buffer at VEC_OUT to receive */
]
while (LOOPCNTR < n) /* output y2 to yn */

I
BUS B = FIFO_Y[LOOPCNTR];
VEC_OUT = BUS B; /* >>, */
]
LOOPCNTR = LOOPCNTR+1;

endwhile
endif

endmicro_program_orth

169

CONVENTIONS, SYMBOLS AND DEFINITIONS

CONVENTIONS

In this thesis the following notational conventions are used. Scalars are denoted by
(indexed) lower case letters in italic font or by indexed lower case Greek symbols. Occa­
sionally an upper case Greek symbol is used to denote a scalar, but this will be clear from
the context. Vectors are denoted by lower case letters in bold font or by lower case
Greek symbols. Matrices and maps are denoted by upper.case letters in italic font or by
upper case Greek symbols. Sets are denoted by upper case letters in roman font.

SYMBOLS

Z
R

Z"
R "
0

: set of integers
: set of reals
: the vector space of nxm integral matrices
: the vector space of nxm real matrices
: the vector space of nxl integral vectors
: the vector space of nxl real vectors
: the empty set

v e G : scalar v is a member of the set G
v 4 G : scalar v is not a member of the set G
H c G : His a subset of G
H <£ G : H is not a subset of G
H u G : the union of sets H and G
card(H) : the cardinality of the set H
{x I P) : set of all elements with property P
[a, b] :{x I a<x<b)
{a, b) :{x\a<x<b}

170

[a, b)

(a,6)

{x I a < x < bj
{x I a < x < bj

IN

A'
A-1

A > 0

A = [fly]

: NxN identity matrix
: transpose" of the matrix-j4
: inverse of the non singular matrix A
: a positive definite matrix A
: the matrix A with entries a,-,-

<a,b>
<a,b>i4

I I a I l2

l l a l l A

I 1.4 I lF

UA)
©
gcd(ax,...,an)

W

UAi

LL'

scalar product a' b
scalar product a'A b with respect to the matrix A

: (a'a)*
: (aMa)*

: the Frobenius norm X S a

,=i;=i

of the A'xM matrix /4 = [a,y]
: the spectral radius of the matrix A
: orthogonal sum
: a positive integer which is the greatest
common divisor of the integers a \, ...,an

: the largest integer less than or equal to a
: the smallest integer greater than or equal to a
: the ith derivative of the function /

: the product A^...A)

the LU factorization of a matrix A
the QR factorization of a matrix A
the LQ factorization of a matrix A
the Cholesky factorization of a symmetric positive definite matrix A

171

DEFINITIONS

Let M be a subspace of Z2 .

Definition I : The neighborhood N(x) ofxeM is defined to be the set :

N(x) = /y e M I I I x - yl I2 <randr= min l l x - p l l ^ .
all p G M, p * x

Definition I I : Let L c M. The contour C(L) ofh is defined to be the set :

C(L) = {xe L I N(x)(£L;.

Definition III : Let L c M, with contour C(L) and card(L) > 1. The set L is said to be
homogeneous in M, if for every i e L, the total angle of revolution around i is not zero
when the contour C(L) is traversed in counter clockwise direction from j e C(L) back to
j

Definition IV: Let x and y be integers, and z a positive integer. We say that x is
congruent to y modulo z, and write x = y (mod z), whenever x - y is divisible by z.

Definition V : For any integer x and positive integer z we denote the equivalence class of
x with respect to congruence modulo z by [x]z. That is, [x]z consists of all integers yfor
whichy -xisamultiple ofz.

173

References

Ahmel982. Ahmed, H.M., "Signal Processing Algorithms and Architectures," Ph.D.
dissertation, (Stanford University, 1982).

Ardel963. Arden, B.W. and K.N. Astill, "Chapter 7," pp. 174-183 in Numerical Algo­
rithms: Origins and Applications, Addison-Wesley Publishing Company (1963).

Baral988. Barazesh, B., J.C. Michalina, and A. Picco, "A VLSI Signal Processor with
Complex Arithmetic Capability," IEEE Transactions on Circuits and Systems
35(5) pp. 495-505 (May 1988).

Bul988. Bu, J. and E.F. Deprettere, "Converting Sequential Iterative Algorithms to
Recurrent Equations for Automatic Design of Systolic Arrays," Proceedings
ISCAS, (1988).

Bultl981. Bultheel, A., "Error Analysis of Incoming and Outgoing Schemes for the
Trigoniometric Problem," Pade Approximation and its Applications, pp. 100-109
Springer Verlag, (1981).

Chual985. Chuang, H.Y.H. and G.He, "A Versatile Systolic Array for Matrix Compu­
tations," Proceedings International Conference on Parallel Processing 1985, pp.
315-322(1985).

Delol984. Delosme, J.M. and I.C.F. Ipsen, "Efficient Parallel Solution of Linear Sys­
tems with Hyperbolic Rotations," Research Report YALEU/DCS/RR-341, Yale
University (Nov. 1984).

Delol986. Delosme, J.M. and I.C.F. Ipsen, "Efficient Systolic Arrays for the Solution
of Toeplitz Systems: An Illustration of a Methodology for the Construction of Sys­
tolic Architectures in VLSI," Proceedings of the Int. Workshop on Systolic Arrays,
pp. F3.l-F3.22 (July 1986).

Deprl982. Deprettere, E.F., "Mixed Form Time-Variant Lattice Recursions," pp.
545-561 in Outils et Modeles Mathematiques pour UAutomatique L Analyse de

http://F3.l-F3.22

174

Systemes et le Traitment du Signal, ed. I.D. Landau,, Paris (1982).

Dewil981. Dewilde, P. and H. Dym, "Schur Recursions, Error Formulas and Conver­
gence of Rational Estimators for Stationary Stochastic Sequences," IEEE Tran.
Inf.Th. IT-27(4)(July 1981).

Dewil987. Dewilde, P. and E.F. Deprettere, "Modelling VLSI Interconnects as an
Inverse Scattering Problem," IEEE Proceedings ISCAS, pp. 147-153 (May 1987).

Dewil978. Dewilde, P.M., A. Viera, and T. Kailath, "On a Generalized Szego-
Levinson Realization Algorithm for Optimal Linear Predictors Based on a Net­
work Synthesis Approach," IEEE Tran. Circuits and Systems CAS-25 pp. 663-675
(Sept. 1978).

Dongl988. Dongen van V. and P. Quinton, "Uniformization of Linear Recurrence
Equations: A Step towards the Automatic Synthesis of Systolic Arrays," Proceed­
ings of the International Conference on Systolic Arrays, pp. 473-482 (1988).

Dyml981. Dym, H. and I. Gohberg, "Extensions of Band Matrices with Band
Inverses," Linear Algebra and its Applications, pp. 1-24 Elsevier, (1981).

Faddl959. Faddeeva, V.N., Computational Methods of Linear Algebra, Dover Publica­
tions, Inc., New York (1959).

Fortl985. Fortes, J.A.B., K.S. Fu, and B.W. Wah, "Systematic Approaches to the
Design of Algorithmic Specified Systolic Arrays," Proc. ICASSP, (1985).

Frisl986. Frison, P., P. Gachet, and P. Quinton, "Designing Systolic Arrays with DIAS-
TOL," pp. 93-105 in VLSI Signal Processing II, ed. S.Y. Kung, R.E. Owen and
J.G. Nash, IEEE Press, New York (1986).

Gentl981. Gentleman, M.W. and H.T. Kung, "Matrix Triangularization by Systolic
Arrays," SPIE, Real-Time Signal Processing IV 298 pp. 19-26 (1981).

175

Gentl975. Gentleman, W.M., "Error Analysis of QR Decompositions by Givens
Transformations," Linear Algebra and its Applications 10 pp. 189-197 (1975).

Golul983. Golub, G.H. and C.F. Loan van, Matrix Computations, The John Hopkins
University Press, Baltimore, Maryland (1983).

Helll985. Heller, D., "Partitioning Big Matrices for Small Systolic Arrays," pp.
185-199 in VLSI and Modern Signal Processing, ed. S.Y. Kung, H.J. Whitehouse,
T. Kailath, Prentice Hall, Englewood Cliffs (1985).

Hofwl988. Hofwegen, K. and K. Jainandunsing, "Design of a Householder Processor
Element for Systolic Array Processors," Technical Report TU Delft, The Nether­
lands, Delft (1988).

Horil987. Horiike, S., S. Nishida, and T. Sakaguchi, "A Design Method of Systolic
Arrays Under the Constraint of the Number of the Processors," Proceedings
ICASSP, pp. 764-767 (1987).

Housl975. Householder, A.S., The Theory of Matrices in Numerical Analysis, Dover
Publications, Inc., New York (1975).

Hwanl979. Hwang, K., Computer Arithmetic: Principles, Architecture and Design,
John Wiley & Sons, New York (1979).

Jainl986a. Jainandunsing, K. and E.F.A. Deprettere, "Design and VLSI Implementa­
tion of a Concurrent Solver for N Coupled Least-Squares Fitting Problems," IEEE
Journal on Selected Areas in Communications SAC-4(1) pp. 39-48 (January 1986).

Jainl986b. Jainandunsing, K. and E.F. Deprettere, "A Novel VLSI System of Equa­
tions Solver for Real-Time Signal Processing," Proceedings SPIE, Real Time Sig­
nal Processing IX 698(1986).

Kaill979. Kailath, T., S.Y. Kung, and M. Morf, "Displacement Ranks of Matrices and
Linear Equations," Journal of Math. Anal, and Appl. 68(2)(April 1979).

176

Karpl967. Karp, R.M., R.E. Miller, and S. Winograd, "The Organization of Computa­
tions for Uniform Recurrence Equations," Journal of the ACM 14 pp. 563-590
(1967).

Krekl988. Krekel, P. and E. Deprettere, "A Systolic Algorithm and Architecture for
Solving Sets of Linear Equations with Multi-Band Coefficient Matrix," Proceeed-
ings of the International Conference on Systolic Arrays, (May 25-27,1988).

Kungl979a. Kung, H.T. and C.E. Leiserson, "Systolic Arrays (for VLSI)," Sparse
Matrix Proceedings 1978, pp. 256-282 Society for Industrial and Applied
Mathematics, (1979).

Kungl979b. Kung, H.T., "Let's Design Algorithms for VLSI Systems," Proc. of the
First Caltech Conference on VLSI, pp. 65-90 (Jan. 1979).

Kungl982. Kung, H.T., "Why Systolic Architectures?," Computer, pp. 37-45 (1982).

Kungl988. Kung, S.Y., VLSI Array Processors, Prentice Hall, Englewood Cliffs, New
Jersey (1988). "" '

Langl988. Lange de, A.A.J., A.J. Hoeven van der, E.F. Deprettere, and J.C. Bu, "An
Optimal Floating Point Pipelined CMOS CORDIC Processor," Proc. ISCAS 1988,
(June, 1988).

Leisl981. Leiserson, C.E., "Area-Efficient VLSI Computation," Ph.D. dissertation,
(Carnegie-Mellon University, 1981).

Levl984. Lev-Ari H. and T. Kailath, "Lattice Filter Parameterization and Modeling of
Nonstationary Processes," IEEE Trans. Inform. Th. 30(l)(Jan. 1984).

Liptl986. Lipton, R.J. and D. Lopresti, "Comparing Long STrings on a Short Systolic
Array," Proceedings of the Int. Workshop on Systolic Arrays, pp. K1.1-K1.10
(July 1986).

177

McC11958. McCluskey, E.J., "Iterative Combinatorial Switching Networks - General
Design Considerations," IRE Trans, on Electronic Computers EC-7pp. 285-291
(1958).

McWhl983. McWhirter, J.G., "Recursive Least-Squares Minimization Using a Systolic
Array," Proceedings SPIE 431(1983).

Meadl980. Mead, C. and L. Conway, Introduction to VLSI Systems, Addison-Wesley
Publishing Company (1980).

MoIdl983. Moldovan, D.I., "On the Design of Algorithms for VLSI Systolic Arrays,"
Proceedings of the IEEE 71(1) pp. 113-120 (January, 1983).

MoIdl986. Moldovan, D.I. and J.A.B. Fortes, "Partitioning and Mapping Algorithms
into Fixed Size Systolic Arrays," IEEE Tran. Computers C-35(l)pp. 1-12 (Janu­
ary, 1986).

Nashl988. Nash, J.G. and S. Hansen, "Modified Faddeeva Algorithm for Concurrent
Execution of Linear Algebraic Operations," IEEE Transactions on Computers
37(2) pp. 129-137 (February, 1988).

Naval986. Navarro, J.J., J.M. Llaberia, and M. Valero, "Solving Matrix Problems With
no Size Restriction on a Systolic Array Processor," Proceedings Int. Conf. Par.
Proc, pp. 676-683 (1986).

Nelil988. Nelis, H. and E. Deprettere, "Automatic Design and Partitioning of
Systolic/Wavefront Arrays for VLSI," CSSP Special Issue on Array Processing,
(January, 1988).

Omtzl987. Omtzigt, E.T.L., "SYSTARS, a CAD Tool for the Synthesis and Analysis
of VLSI Systolic/Wavefront Arrays," Technical Report No. 87-68, Delft Univer­
sity of Technology, Dept. of Electr. Eng„ (1987).

Omtzl988. Omtzigt, E.T.L., "SYSTARS, a CAD Tool for the Synthesis and Analysis
of VLSI Systolic/Wavefront Arrays," Proceedings of the International Conference

178

on Systolic Arrays, (1988).

Orfal985. Orfanidis, S.J., OPTIMUM SIGNAL PROCESSING , Macmillan Publishing
Company, New York (1985).

Radel985. Rader, CM. and A.O. Steinhardt, "Hyperbolic Householder Transforma­
tions," IEEE Tran. Acoustics, Speech and Signal Processing, (1985).

Rajol987. Rajopadhye, S.V and R.M. Fujimoto, "Systolic Array Synthesis by Static
Analysis of Program Dependencies," Proceedings of the Conference on Parallel
Architectures and Languages Europe, pp. 295-310 Springer-Verlag, (1987).

Raol985. Rao, S.K., "Regular Iterative Algorithms and their Implementations on Pro­
cessor Arrays," Ph.D. dissertation, (Stanford University, October 1985).

Raol988. Rao, S.K. and T. Kailath, "Regular Iterative Algorithms and Their Imple­
mentation on Processor Arrays," Proceedings of the IEEE 76(3) pp. 259-269
(March 1988).

Roycl987. Roychowdhurry, V.P., L. Thiele, S.K. Rao, and T. Kailath, "On the Locali­
zation of Algorithms for VLSI Processor Arrays," Technical Report, Stanford
University, California (1987).

Roycl988. Roychowdhury, V.P. and T. Kailath, "Regular Processor Arrays for Matrix
Algorithms with Pivoting," Proceedings of the International Conference on Sys­
tolic Arrays, pp. 237-246 (May 25-27, 1988).

Schrl985. Schreiber, R. and P.J. Kuekes, "Systolic Linear Algebra Machines in Digital
Signal Processing," pp. 389-405 in VLSI and Modern Signal Processing, ed. S.Y.
Kung, H.J. Whitehouse, T. Kailath, Prentice Hall, Englewood Cliffs (1985).

Ungel958. Unger, S.H., "A computer Oriented Toward Spatial Problems," Proceed­
ings of the IRE 46 pp. 1744-1750 (October, 1958).

179

Waltl971. Walter, J.S., "A Unified Algorithm for Elementary Functions," Proceedings
Spring Joint Computer Conference 38 p. 397 AFIPS Press, (1971).

Wongl988. Wong, Y. and J.M. Delosme, "Broadcast Removal in Systolic Arrays,"
Proceedings of the International Conference on Systolic Arrays, pp. 403-412
(1988).

181

SAMENVATTING

STELSELS VAN LINEAIRE VERGELIJKINGEN

De bekende directe methodes (factorisatie gevolgd door terugsubstitutie en "feed for­
ward" directe methodes) voor het oplossen van stelsels van lineaire vergelijkingen zijn
niet optimaal voor implementatie op een systolisch array. Zo zijn de directe methodes,
die de oplossing van Ax = b berekenen door middel van factorisatie van A gevolgd door
terugsubstitutie, sequentieel van nature. Deze sequentiele geaardheid wordt tot uitdrukk-
ing gebracht in het feit dat de terugsubstitutie slechts kan worden uitgevoerd nadat de
factorisatie van de matrix A beeindigd is. Hierdoor is de verkregen acceleratie beperkt, in
geval dergelijke directe methodes geimplementeerd worden op systolische arrays.

De "feed forward" directe methode van Faddeev berekent de oplossing van Ax = b
via een enkele LU factorisatie. Dergelijke "feed forward" methodes vereisen geen terug­
substitutie, zodat hun implementaties op systolische arrays een hoge mate van parallel-
lisme vertonen. Echter de LU factorisatie zonder (partiele) pivotering is numeriek niet
stabiel voor indefiniete matrices. Helaas is (partiele) pivotering moeilijk te implemen-
teren op arrays met interconnecties tussen processor elementen die van constante lengte
zijn, zoals het geval is bij systolische arrays. In deze thesis worden nieuwe "feed for­
ward" methodes beschreven. Deze methodes herformuleren de terugsubstitutie in termen
van een "updating" of "downdating" van een Cholesky factorisatie, of in termen van een
LU factorisatie. De combinatie van deze factorisaties met een LU, LQ of LL' factorisatie
van de coefficienten matrix A leidt tot een klasse van geheel nieuwe "feed forward"
directe methodes. In een dezer methodes wordt uitsluitend gebruik gemaakt van circu-
laire rotaties. Dit leidt ertoe dat deze methode numeriek stabiel en robuust is voor de
gehele klasse van niet singuliere stelsels van lineaire vergelijkingen, in tegenstelling tot

182

Faddeev's "feed forward" directe methode. De hier beschreven nieuwe "feed forward"
directe methodes hebben een simpele en in hoge mate parallelle systolische implementa-
tie.

SYSTOLISCHE IMPLEMENTATIE

Een systolisch array is gedefinieerd als een array van processor elementen die syn-
chroon opereren en die door middel van een regelmatig netwerk van interconnecties,
waarvan de lengte onafhankelijk is van de grootte van het array, met elkaar verbonden
zijn. Deze regelmatige topologie is een wenselijke eigenschap voor compacte VLSI
implementaties. Bovendien is de vertraging over interconnecties onafhankelijk van de
grootte van het array, doordat de lengte van interconnecties onafhankelijk is van de
grootte van het array. Doordat systolische arrays een hoge mate van parallelle verwerk-
ing toelaten, wordt er veel aandacht geschonken aan systolische implementaties van rek-
enintensieve algoritmen. De meeste lineair algebraische, numerieke algoritmen, inclusief
de hier beschreven "feed forward" directe methodes, kunnen uitgedrukt worden als regu-
liere, recurrente algoritmen. Deze kunnen automatisch afgebeeld worden op systolische
arrays, waarvan het aantal processor elementen direct proportioned is met de grootte van
het probleem. Echter, omdat het aantal processor elementen ,
van dergelijke arrays van voile grootte meevarieert met de grootte van het probleem, is
het belangrijk te weten hoe grote problemen te partitioneren, zodat deze geexecuteerd
kunnen worden op een array met een kleiner aantal processor elementen dan het array
van voile grootte.

Twee partitioneringsstrategieen worden in de thesis ontwikkeld, ten behoeve van het
partitioneren van systolische arrays van voile grootte naar systolische arrays van geredu-
ceerde grootte. De LPGP (local-parallel-global-pipelined) partitioneringsstrategie ver-
deelt het array van voile grootte in congruente partiries van, bijvoorbeeld, p processor
elementen elk. De berekeningen die in de verschillende partities plaats vinden, worden in
pipeline geexecuteerd op een systolisch array van gereduceerde grootte. Dit array bestaat
uit p processor elementen en bezit een netwerk van interconnecties tussen de processor

183

elementen die dezelfde topologie heeft als het array van voile grootte. De LSGP (local-
sequential-global-parallel) partitioneringsstrategie verdeelt het array van voile grootte
ook in congruente partities van, bijvoorbeeld, p processor elementen elk. De processor
elementen in een partitie worden nu vervangen door een enkel processor element, dat de
taken van de p processor elementen in sequentie uitvoert. In dit geval heeft het resul-
terende array van gereduceerde grootte een topologie die verschillend is van het
oorspronkelijke array. De LPGP partitioneringsstrategie heeft tot gevolg dat al het extra
benodigd geheugen voor het opslaan van tussenresultaten buiten het array van geredu­
ceerde grootte terecht komt. De LSGP partitioneringsstrategie heeft tot gevolg dat het
locaal geheugen aangroeit en de I/O bandbreedte van processor elementen afneemt. Een
combinatie van beide strategieen resulteert in ontwerpen van systolische arrays, waarvan
het aantal processor elementen onafhankelijk is van het probleem en waarvan de I/O
bandbreedte nagenoeg gelijk is aan die van perifere apparaten die op het array aangeslo-
ten zijn, zoals disks, de host computer, etc.

SYSTOLISCH ARRAY ONTWERP

In de thesis wordt de partitioneringstheorie toegepast in het ontwerp van een array
van gereduceerde grootte. Dit array is in staat twee van de nieuwe "feed forward" directe
methodes te executeren; 1) de methode bestaande uit een combinatie van een LQ factor-
isatie van de coefficienten matrix A en een "updating" van een Cholesky factorisatie en 2)
de methode bestaande uit een LLl factorisatie van de coefficienten matrix A en een
"downdating" van een Cholesky factorisatie. Deze toepassing illustreert het practisch nut
van de hier gepresenteerde partitioneringstheorie voor het ontwerpen van systolische
arrays van gereduceerde grootte. De twee "feed forward" directe methodes zijn geformu-
leerd in termen van orthogonale en hyperbolische Householder transformaties, respec-
tievelijk. Een processor element van het array van gereduceerde grootte is geimplemen-
teerd als een inproduct processor, die de calculates voor een Householder transformatie
van een vector sequentialiseert.

185

ABOUT THE AUTHOR

Kishan Jainandunsing was born in Paramaribo, Surinam, on August 15, 1960. In
1978 he graduated cum laude from the Myranda Lyceum in Zorg en Hoop, Surinam.
After an introductory 4 months of studying medicine at the Faculty of Medical Sciences
in Rotterdam, The Netherlands, he started his studies for electrical engineering in January
1979 at the Delft University of Technology, in Delft, The Netherlands. In July 1984 he
received the Ingenieurs' degree (the equivalent of an M.Sc.) cum laude from the Electri­
cal Engineering Department, Delft University of Technology.

In September 1984 Mr. Jainandunsing joined the Laboratory for Network Theory of
the EE Department at Delft University of Technology, where he worked towards the
Ph.D. degree on parallel algorithms for solving systems of linear equations and their
mapping on systolic arrays. Most of the results of this research have been published on
international conferences and in the SIAM Journal on Scientific and Statistical Comput­
ing, 1989. In the Summer of 1985 he was a research assistant at the EE Department of
the University of Southern California (USC); in the group of Professor S.Y. Kung, on a
joint research program on partitioning strategies for systolic arrays.

During his Ph.D. research Mr. Jainandunsing held the position of Chairman of the
IEEE Student Branch Delft, from 1984 until 1985. He was a co-organizer of the national
Symposium on Automated VLSI Design and Interactive Graphics Workstations, May
1985, in Delft, The Netherlands. He also was a co-organizer of the International
Workshop on SVD and Signal Processing, September 1987, in Les Houches, France.

- 1 -

1. Bij de evaluatie van de executiesnelheid van een algoritme dient altijd expliciet
rekening gehouden te houden met het type architectuur waarop het geexecuteerd
zal worden.

2. De ontwikkeling van nieuwe algoritmen en nieuwe computer architecturen
ondervindt een wederzijdse beinvloeding.

3. Hoewel algoritmen voor het oplossen van stelsels van lineaire vergelijkingen met
gebruikmaking van hyperbolische transformaties numeriek inferieur beschouwd
worden ten opzichte van algoritmen die uitsluitend gebruik maken van orthogonale
transformaties, is het bestaansrecht van de eerstgenoemden te vinden in het feit dat
zij een groep van semi-directe methoden vormen die, hetzij de oplossing in een
minimum aantal stappen berekenen, hetzij een approximate van de werkelijke
oplossing berekenen.

4. Volledige geautomatiseerde synthese van systolische arrays in het bijzonder en van
de synthese van oplossingen in het algemeen kan mogelijk zijn, doch de uitkomst
zal niet altijd geaccepteerd worden door de opdrachtgever indien het niet strookt
met zijn verwachtingspatroon.

5. De stelling dat er altijd wel een probleem te vinden is dat groter is dan een gegeven
computer aankan is door de voorzienigheid gegeven; want, volledige kennis over
de invloed van elke parameter in een physisch processes zou tot volledige
besluiteloosheid kunnen leiden.

6. Het gebruik van Householder transformaties (reflecties) voor het oplossen van
stelsels van lineaire vergelijkingen valt in sommige opzichten te prefereren boven
het gebruik van rotaties, omdat men in een systolische implementatie volstaan kan
slechts een LPGP partitionering uit te voeren om zo tot een systolisch array te

- 2 -

komen, waarvan het aantal processor elementen onafhankelijk is van de omvang
van het stelsel van lineaire vergelijken en waarvan de I/O bandbreedte te beheersen
is zonder de noodzaak van een LSGP partitionering.

7. De beschaving zoals wij die ervaren is een illusie. Echte beschaving is
onafhankelijk van de beschermingen en vervulling van behoeften die een
gemeenschap biedt aan haar leden.

Errata

Page 49 : (r-p+\) must be (r-p)

Page 51, Figure2.3 : Yir must be Yi,r-i. Yvr must be Yiv-i,r-i. YA-2 must be Yw-1,2. YAM
mustbeYN-1,1

Page 76, Figure 3.3(b): w= must be w,=, =r must be =/-,-, from selector must be from
selector *,-

Page 91 : cy = \s!t\/gcd(s't,ax) must be \s't\/gcd(.s't,ay)

Page 149 :... the first k and &-1 oj^-diagonals ... must be ... the first k-\ and k-2 off-
diagonals ...

Page 149 :... with the first Jt+1 fl/T-diagonals ... must be ... with the first k r^-diagonals ...

Page 150 : Sk-i = t/;i,S*_, must be S»_, = l/lii r*-i

