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Grammatical Evolution for Optimising Drone Behaviors

Christopher Groen, Shushuai Li, Guido de Croon

Abstract— This paper reviews the application of grammatical
evolution for the optimisation of low level parameters and high
level behaviors for two drone behaviors, namely wall-following
and navigation. In order to optimise these low level parameters
and high level behaviors, grammatical evolution was applied
to behavior trees. Grammatical evolution provided a signifi-
cant improvement in the wall-following behavior of a drone,
creating a more robust behavior. There was no improvement
for the navigation behavior however, with the success rate
of navigating deteriorating in some cases. The evolved wall-
following behavior was compared and tested against another
wall-following controller from literature, and shown to be
superior. A real-life experiment was also conducted for the
wall-following behavior, which led to positive results after
correcting for the reality gap. For the wall-following behavior,
the grammatical evolution promoted a continuous scanning
behavior, which greatly increased it’s awareness of obstacles.
Significant recommendations were given to improve the results
of the grammatical evolution for both behaviors.

I. INTRODUCTION

Unmanned aerial vehicles, more commonly known as
drones, have been studied rigorously over the past cen-
tury. Drones have been found to have a near limitless use
in real-life applications. While drones have already been
successfully applied to a variety of applications ranging
from warfare, delivery and search and rescue, a number of
emerging technologies are currently being applied in drone
research to further accelerate the introduction of drones into
the real world. Namely, artificial intelligence (AI) and nano-
or micro-technology are very promising emerging technolo-
gies which are greatly increasing the realm of possibilities
within the world of drones. Having the ability to make
drones autonomous, intelligent and smaller has the potential
to introduce drones into new environments to perform new
real-life tasks, such as indoor exploration, indoor or outdoor
non-destructive testing, and indoor target search.

A reason why larger drones have been applied in real
life at a larger scale than smaller ones, is their higher com-
putational and operational capacity. A higher computational
or operational capacity allows for more brutal methods for
controlling behaviors, such as simulataneous localization and
mapping (SLAM) [1], wifi-positioning systems (WPS) or
real-time locating systems (RTLS). Unfortunately, due to size
and computational constraints, these methods cannot always
be applied to smaller drones. This is especially the case if
the environment has further constraints, such as unreliable
or no GPS. Therefore, when working with small drones
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with limited computational capacity, alternative methods to
control behaviors should be investigated.

Innovations such as the Bitcraze Crazyflie [2] or the
Delfly [3] were a very promising step towards working
with miniaturized drones. Both are used by researchers
and startups to research and develop new applications for
drones. A variety of such applications have already been
researched, particularly for swarming. A lot of this work
is focused on state machines or other abstract modelling
techniques. For example the SGBA [4], which is a minimal
exploration algorithm designed for a swarm of Crazyflie’s
to efficiently explore a GPS-denied indoor environment, or
the Learning to Seek concept [5] for source seeking using
onboard reinforcement learning. Nevertheless, models such
as a finite state machine (FSM) are considered to be abstract
when representing logic, and are therefore difficult to un-
derstand or visualise. Furthermore, FSMs have a convoluted
structure which makes them particularly hard to maintain
during optimisation [6].

A useful alternative to FSMs are behavior trees (BTs).
BTs have been largely applied in the gaming industry to
define the behavior of non-playable characters. However,
due to their simple and concrete structure with the ability
to represent complex behaviors, are now being researched
in robotics, including drones [7]. BTs are favored for their
maintainability, reliability, and ease of understanding. This is
particularly useful when attempting to optimise the behavior
of a drone through non-manual techniques such as those
applied in artificial intelligence [8].

Solutions to optimize drone controllers have been re-
searched extensively for FSMs. However as discussed previ-
ously, optimizing an FSM can result in an optimized solution
which is too abstract to understand [9]. This is particularly
true for swarm applications, where the swarming in itself
produces an abstract behavior. When considering BTs, a
few optimization solutions also exist, but each of them
have particular limitations. Numerical-based optimisation
techniques would not suffice since they cannot optimize logic
structures. A common option is to use genetic programming,
which considers the full behavior tree in terms of subtrees
that stretch out of different nodes. The structure can then
be evolved to produce new trees by removing and adding
subtrees onto other nodes in the behavior tree [6] [10].
This is however a computationally heavy option, which to
a large extent also limits the novelty of the evolved BT. A
novel technique known as grammatical evolution, inspired
by genetic programming and biological evolution, offers a
solution which allows for completely novel solutions, and
much more flexibility in the search space of the optimisation



[11].
While grammatical evolution has been applied to behavior

trees [8], these behavior trees are standardized for a specific
task or behavior. This results in an inefficient framework
which requires heavy modification of the parameters and
structure of the grammatical evolution in order to apply
them to various tasks or behaviors [8]. Therefore, a more
generalized approach will be taken, such that the algorithm
can evolve a variety of behaviors without any modification
to the parameters or structure of the grammatical evolution.
This generalized approach will focus on motion related tasks
such as wall-following, navigation and exploration.

This new framework of evolving drone behaviors will
be applied to wall-following, navigation and exploration,
which are behaviors with a variety of applications including
exploration and target detection, and varying complexities.
Given a baseline controller, the grammatical evolution is
expected to evolve a significantly better controller.

Following this introduction, section 2 discussed how be-
havior trees and grammatical evolution were applied, along
with the chosen simulation environment, fitness and baseline
BT. In section 3 the simulation results were presented,
focusing on the wall-following evolution, and a navigation
evolution. The setup and results of a real-life experiment,
making use of the results from the wall-following evolution,
were presented in section 4. Finally, recommendations into
further work were given in section 5.

II. METHOD

This work mainly encompasses behavior trees and gram-
matical evolution. This section discusses how both of these
were applied in simulation.

A. Behavior Tree

Behavior trees are becoming a viable model to represent
and control drone behaviors, especially for developing and
understanding novel behaviors.

1) Behavior Tree Structure: A behavior tree is a structure
of nodes, starting from a root node (the parent node) which
goes to at least one other node (the child(ren) of the root
node). Apart from the root node, a behavior tree must have
at least one leaf node, which has no children nodes, and only
a parent node [9]. This leaf node must be a condition or an
action. Beyond this, the behavior tree may have intermediate
nodes, which have both parents and children nodes. The root
node and intermediate nodes must always be in the form of
a sequence or selector. A sequence node represents a node
which returns an action only if all of its children nodes return
’True’ for whatever conditions there may be. A selector node
on the other hand returns the first child node which returns
’True’.

2) Baseline Wall-Following Behavior Tree: As an input
to the grammatical evolution, a baseline wall-following be-
havior tree was created by hand. This hand-made controller
was created and partially optimised through inspection, such
that it is a reliable controller. The behavior tree can be found
in Figure 1.

This behavior tree has a simple structure, where the
root node is a selector node, and all of it’s child nodes
are sequence nodes. The children of every sequence node
consists of leaf nodes. This means that this behavior tree
will simply perform the action of the first sequence node
which returns ’True’. Note that S0 represents the front sensor
distance, S1 represents the left sensor distance, S2 represents
the right sensor distance, and S3 represents the change in
the left sensor distance over the course of 10 measurements.
The first and fifth sequence nodes ensures wall-avoidance for
the front sensor and dictates the wall-following direction,
where the first one has no velocity for situations that the
agent detects the front wall within 10 centimeters (S0 ¡ 0.1).
The second and sixth sequence nodes ensure wall-avoidance
for the left sensor (the side ’hugging’ the wall), while the
third and ninth sequence nodes ensure wall-avoidance for
the right sensor. The fourth sequence node ensures detection
of the end of a wall, such that the agent turns around the
outer corner. The seventh node is responsible for keeping the
agent aligned with the wall during the wall-following, while
the eighth sequence node is meant for realignment with the
wall in case the agent goes too far away from it. Finally, the
last sequence node ensures that the agent continues moving
forward when no other sequence nodes return true and there
are no obstacles within 60 centimeters of the front sensor.

B. Grammatical Evolution

A subset of genetic programming, grammatical evolution
takes inspiration from biological evolution in finding optimal
solutions. Unlike other genetic programmes, grammatical
evolution makes use of representing individuals through so-
called genotypes and phenotypes. The resemblence to biolog-
ical evolution is that the algorithm evolves the genotype (i.e.
the ’DNA’), which is then translated into a phenotype (i.e.
the behavior). In this simulation, the genotype was chosen to
be a large collection of 8-bit strings, whereas the phenotype
was represented as a behavior tree [12].

1) Grammatical Parser: As the name suggests, gram-
matical evolution makes use of a grammar to translate the
genotype into a phenotype. In previous works, the grammar
involved tailored conditions and actions for behavior trees,
which resulted in grammatical evolutionary algorithms that
are reserved for a small set of complex tasks [13] [11].
Instead, this paper uses a general grammar for the motion
of agents. This grammar can therefore be used to optimise a
large variety of problems related to motion (e.g. aggregation,
wall-following, wall-avoidance, dispersion, exploration). The
grammar used in this paper can be seen in Table I.

The logic behind this grammar involves terminal and non-
terminal terms. Terminal terms are those that do not appear
in the first column of the grammar, and make up the final
behavior tree. Non-terminal terms, along with the genotype,
are used to determine which terminal terms to choose.
Within the grammar, every row represents a production rule,
that tells the parser which translation to make based on
the genotype, the rulesize (how many options does this
production rule have), and the non-terminal term.



Fig. 1. The baseline wall-following controller. Note that the BT represen-
tation is rotated 90 degrees.

Figure 2 shows the logic of the parser, going from a string
of bits to a behavior tree. Firstly, an M amount of 8-bit strings
(the genotype) was translated into an M amount of integers.
The representation of the behavior tree is then initialized
using the non-terminal value ’ss’. The parser then loops
through the M amount of integers, at each iteration taking the
first non-terminal value in the representation of the behavior
tree (’ss’ at initialization), and selecting a new value from
the grammar based on the modulus of the integer against the
rulesize. The rulesize is based on how many choices there are
for a particular production rule. For example, the production
rule ’ss’ has two choices (’sequences’ or ’selectors’). In order
to ensure that the behavior tree has the potential for growth,
non-terminal terms such as ’sequence execution’, ’ss ss’ and
’conditions action’ were included. With such choices, the

TABLE I
GRAMMAR USED FOR GRAMMATICAL EVOLUTION

Production Rule Choice 1 Choice 2 Choice 3
ss sequences selectors

sequences sequence execution ss ss sequence
selectors selector execution ss ss selector
execution conditions conditions action
conditions condition conditions condition
condition greater less

action speed&yaw

Fig. 2. Parser logic, going from a string of bits to a behavior tree. The
green blocks show inputs into the parser, while the red block represents
the output of the parser. *Refer to Table I for more information about the
grammar. **A non-terminal term refers to a term which can be found in
the first column of the grammar in Table I, and therefore corresponds to a
production rule.

parser splits the choice into two terms and allows for growth
in the tree. The parser may loop through the M amount of
integers more than once until there are only terminal terms
in the list of behaviors. For the purpose of this paper, 2000
bits are used.

One may note that the condition and action terminal terms
do not actually specify what condition or action must be
fulfilled. Therefore, whenever the condition or action term
is chosen by the parser, the parser also uses the next two
integers to determine the sensor type and threshold for the
condition terminal terms, or the total speed and yaw rate for
the action terminal term.

Furthermore, behavior trees have a structure which has
to be defined within the parser. This is also done through
the 2000 bit gene, but also through some BT logic. Firstly,
whenever there is a sequence or selector term, the parser
automatically knows that the next term has to go one step
further from the root node. This is derived from the general
logic of BT’s. However if there is an action term, the third
integer after this action term is used to determine how close
to the root node the next term should come. Therefore, at
every new integer the parser passes, the parser keeps track
how far away from the root node the new term is, and if the
new term is an action term, the third integer determines how
much closer the following term should be to the root node.

Finally, in order to ensure a valid BT, the parser ensures
that there is at least one action node in the generated BT. If



there is no action node, the parser will place an action node
at the end of the BT.

2) Evolutionary Mechanics & Parameters: Grammatical
evolution drastically simplifies the evolutionary mechanics
for a behavior tree, in that it only has to evolve the string of
bits. This simulation makes use of the DEAP python library
in order to evolve the string of bits.

The selection procedure was chosen to be tournament
selection, with a tournament size of 0.06 · population. This
means that for the selection, 0.06 ·population amount of in-
dividuals are randomly chosen from the population, and from
these individuals the one with the highest fitness is chosen.
This is repeated until the entire population is replenished.
The population size was kept constant at 100 individuals
in all generations [14]. This allows for a sufficient level of
exploration, while at the same time limiting divergence in
the evolution. In terms of mutation [15], an individual is
randomly chosen (50% chance) and there is a 0.2% chance
of a bit being flipped. Ultimately this means that on average
4 bits are flipped in every mutation. An individual in the
new population also has a 25% random chance of being
crossed over with another individual, and the crossover point
is chosen randomly between 1 and 2000. In order to increase
the pressure on the evolution of the population, a random
map was generated for every new generation. Therefore,
every individual was re-evaluated in every generation. More
information about the random maps is given in subsection II-
C.

In order to initialize the evolution, a baseline controller
was made by hand. The string of bits representing this base-
line controller was used to populate the initial population.
This baseline controller is found in the previous section.

C. Simulation Environment, Fitness & Controller

The swarmulator environment [16] was used to evaluate
the individuals within the evolution. Although the swarmu-
lator was tailor made for swarms, this functionality was not
used. Swarmulator was used due to the available wrapper
to DEAP, and the ability to use a policy in the form of a
behavior tree for the controller.

The controller itself uses the behavior tree to determine
the inputs into the behavior of the agent. The controller
also computes the data required for the conditions within the
behavior tree, such as the sensor ranges and their derivatives.

The environments were custom made random maps with
four different obstacles in a room of six by six meters. For
every new generation, a new random map was generated.
There were four obstacles which were placed randomly in
each quadrant of the map. The five obstacles included a
horizontal or vertical wall segment, a corner wall segment,
a circular object, and a diagonal wall segment. During every
evaluation of an individual, the individual is simulated for
300 seconds. During these 300 seconds, the individual must
acquire the highest possible fitness. This fitness is based on
the objective, which in this instance is wall-following. The
fitness function is therefore dependent on the individuals
distance to the walls, it’s speed and a threshold distance

to the wall which identifies a crash. The fitness function to
determine the fitness F can be seen in Equation 1. Refer to
subsubsection II-A.2 for an explanation of S0, S1 and S2.
Also note that since this is a simulated environment, random
noise was introduced into all of the sensor measurements, in
order to account for the reality gap. Note that the units for S0,
S1, and S2 are in meters. Also note that θ represents the angle
turned in one direction to detect potential loops, in radian,
and vtot represents the speed of the drone in decimeters per
second.

if S1 < 0.6 and S1 > 0.2⇒
F = F + 0.01 · vtot · (0.6− S1)
if S0 < 0.1 and S0 > 0⇒
F = F − 0.1 · vtot · (0.2− S0)
if S1 < 0.1 and S1 > 0⇒
F = F − 0.1 · vtot · (0.2− S1)
if S2 < 0.1 and S2 > 0⇒

F = F − 0.1 · vtot · (0.2− S2)if θ > 15⇒
F = F − 0.01

(1)

III. SIMULATION RESULTS

In order to display the effectiveness of the grammatical
evolution and behavior trees, a series of simulations were
run. Firstly, the baseline wall-following behavior tree con-
troller presented in Figure 1 was simulated. Afterwards, this
controller was used in the grammatical evolution to evolve
a new, better behavior tree. This new evolved behavior tree
was simulated and visually inspected in order to identify
particular differences in behavior to the baseline controller.

A. Baseline Wall-following Controller

The baseline wall-following controller was handmade and
optimized through inspection of its performance over the
course of a couple of runs. In a controlled and simple
environment, this baseline controller had a consistent fitness
score, and the behavior was logical and easy to understand.
However, the performance of the baseline controller de-
creased significantly, and lost its consistency when exposed
to more random and complex environments. The results for
these simulations in more random and complex environments
can be found in subsection III-C, combined with the results
from the evolved controller, and another controller from the
literature.

B. Evolution Performance for Wall-Following

The goal of this research was to create a grammatical
evolutionary algorithm which could efficiently evolve a wall-
following behavior. All evolutions were initialized with the
baseline behavior tree presented in Figure 1, lasted for 100
generations, with each generation containing 100 individu-
als. A new environment was also initialised at every new
generation.

Figure 3 shows a scatter plot of the evolution of the max-
imum fitness for four different evolutionary runs. A bestfit



line was applied for every evolutionary run to better show
the evolution of the maximum fitness. The four evolutionary
runs are each represented by a unique color in the plot.

Fig. 3. Evolution of the maximum fitness for wall-following for four
different evolutionary runs.

As one may see, each evolution has a positive increase in
the maximum fitness, however some results are significantly
different. Despite all of the evolution runs starting with
the same baseline controller, evolution 1 has a significantly
higher fitness than all other evolution runs in the first 50
generations. This is an indication that the evolution already
evolved a significantly better controller in the beginning of
the run. On the other hand, evolution 1 shows the least
improvement in fitness. Due to the large search space of
this problem, this issue could lie in the random approach to
mutations and crossovers. According to Figure 3, evolution
1 experienced a fitness increase of 3.2 from the beginning
to the end of the evolution, evolution 2 an increase of 3.6,
evolution 3 an increase of 4.7, and evolution 4 an increase
of 4.7.

C. Evolved Wall-Following Controller Performance

Fig. 4. Comparison of BT controller fitness performance for wall-following
between the baseline and evolved controllers. Scatter plot representation.

Four separate evolutionary runs are shown in Figure 3.
Every evolved behavior tree controller from each of these
evolutions was compared to the baseline, as well as the
other evolved controllers. This was done by running these
five controllers (the baseline controller and four evolved
controllers) on 100 unique environments, and thoroughly
compare their fitnesses.

Fig. 5. Comparison of BT controller fitness performance for wall-following
between the baseline and evolved controllers. Bar plot representation.

The raw results of this can be seen in Figure 4. One
may directly notice the very wide range of fitnesses, from
under -10 to over 15. This can be attributed to the level of
randomness and complexity in the random room generator
and the chosen fitness functions. Certain generated rooms
consisted of ’traps’, which were areas of the environment
which were easy to get into, but significantly harder to get
out of. Also, since the fitness functions involve a negative
penalty for performing too many full rotations in a certain
time frame, once an agent got stuck in such a ’trap’, it would
accrue a high negative fitness. This data was processed into a
bar chart, seen in Figure 5 to better represent the distribution
of fitnesses between the baseline and four evolved behavior
trees. This bar chart allows one to notice that only evolved
controllers scored a fitness higher than 10. Moreover, every
evolved controller reached a fitness higher than 10 more than
50% of the time. On top of this, every behavior tree other
than the first evolved behavior tree scored a fitness below 0
at least once. Note that the average fitness was 4.04 for the
baseline, 10.81 for evolved 1, 10.18 for evolved 2, 10.43 for
evolved 3 and 10.29 for evolved 4.

From this comparison, it could be deduced that the first
evolved controller is superior to all other evolved controllers
and the baseline. In the remaining analyses, this evolved
controller will be considered. The evolved wall-following
behavior tree controller can be seen in Figure 6. One can
notice a few significant resemblances between the baseline
and evolved controller, however there are also a few positive
and potentially negative changes.

In terms of potentially negative changes, one can consider
the unnecessary nodes which only result in bloating but do
not contribute to the behavior of the drone. Firstly, the sixth



Fig. 6. The evolved wall-following controller. Note that the BT represen-
tation is rotated 90 degrees.

sequence node after the root node is never used. One may
observe that this sequence node would not be called since the
second sequence node would be called first. Furthermore, the
seventh sequence node after the root node would also never
be used, since it would indicate a range measurement less
than zero, and therefore result in a crash.

Fortunately the evolved controller exhibits a few positive
changes. The most substantial change is related to the seventh
sequence node which is never used. In the baseline controller,
this sequence node was responsible for keeping the agent
aligned with the wall to the left at a specific orientation.
Evidently this behavior in the baseline controller was un-
necessary. Moreover, it can be deduced that this smooth
alignment behavior greatly reduced the awareness of the
agent. With only four available sensors to detect obstacles, it

would be impossible for an agent moving forward to detect
every possible obstacle. Removing this behavior resulted in
a rapid scanning behavior while following the wall, which
in turn allowed the agent to observe a wider view in front
of itself. This scanning behavior was further complimented
by significantly increasing yawing rates, by 20 times when
aligning away from the wall, and 1.4 times when detecting
a large increase in distance from the left sensor.

D. Wall-Following Performance Comparison to Literature

The chosen evolved wall-following behavior tree con-
troller was simulated and visually observed in multiple envi-
ronments against the behavior of a controller from literature
and the baseline controller. The controller from literature
was chosen to be the controller used within SGBA [4]. The
environments for these three runs were chosen randomly.

Fig. 7. First random environment simulation comparing the baseline,
literature and evolved controllers.

Figure 7 displays the first analysed environment, where
the points of interest are circled purple and numbered. In
the first circle, one can note that both the baseline BT and
literature controller failed to detect the turn left, most likely
due to the presence of the circular object which caused them
to divert. The same situation can be see in the second point
of interest. In the third circle, one can see a clear collision,
where the baseline BT got stuck in between the two circular
objects.

Figure 8 shows the second environment with three points
of interest as well. In the first circle, one can identify a
collision between the circular obstacle and the baseline BT,
where the evolved controller itself also almost collided. The
third circle shows a very similar situation, where the evolved
controller barely avoided the obstacle, however the baseline
BT collided. Moreover this area also shows how the literature
controller was not able to detect the area in the top right of
the environment. Finally, the second circle once again shows
a close call for the evolved controller, but also shows two
collisions, one for the baseline BT, and the other for the
literature controller.



Fig. 8. Second random environment simulation comparing the baseline,
literature and evolved controllers.

Fig. 9. Third random environment simulation comparing the baseline,
literature and evolved controllers.

This final plot has only one point of interest. At this point
you can see that both the literature controller and baseline BT
collide with the obstacle. Although the evolved BT managed
to just avoid the obstacle both times that it passed, it does
come at the cost of it losing the wall in one of those instances,
and therefore skipping a large section of the wall.

Figure 7, Figure 8 and Figure 9 all demonstrate (visually)
the constant scanning behavior of the evolved BT. As men-
tioned before, it is this behavior that offers the evolved BT
additional spatial awareness, and therefore a better chance of
avoiding random obstacles.

E. Wall-Following Evolution Improvement Analysis

In order to get a more concrete understanding of the
level of improvement in the wall-following performance, the
results for the baseline and first evolved behavior trees from
Figure 4 were analysed using the bootstrap method. From
the comparison data, the mean fitness improvement between
the baseline and first evolved behavior tree was 6.77.

The baseline and evolved behavior tree fitness data was
then placed into a single data set, the combined data set. This

Fig. 10. Bootstrap analysis to determine significance of improvement.

data set was then resampled one hundred thousand times.
During each resampling, two new data sets were created and
both of their means were found. The mean from the second
data set was then subtracted from the first data set. Since
the combined data set was resampled one hundred thousand
times, such a mean is calculated one hundred thousand times
as well. These one hundred thousand variations of the mean
were plotted in a distribution in Figure 10. The red arrow in
this plot shows the mean fitness improvement from the non-
bootstrapped results (6.77). As this plot shows, the mean
fitness improvement of 6.77 is a significant improvement in
the fitness.

F. Evolution for Exploration & Navigation Behavior

In order to complement the grammatical evolution re-
sults for evolving drone behaviors, a separate evolution was
conducted for the exploration and navigation behavior. This
behavior required the agent to explore a random environment
and get as far away from it’s starting position, and after a
certain time limit (at half-time point) to navigate back to the
starting position. For this evolution a few differences were
introduced to the simulation, namely to the environment,
fitness functions and the input sensors.

Due to the different task, a new environment generator
had to be created. This new generator would randomly
generate nine rooms of varying sizes and varying entrances
to the different rooms. This allowed for the creation of
an environment which is suitable for both exploration and
navigation.

Furthermore, since the task is considerably different to
wall-following, a set of new fitness functions had to be
introduced. Ultimately, the new fitness functions would have
to include a measure for exploration as well as navigation.
For exploration, the fitness function involved measuring the
furthest reached point in the environment for both the X and
Y coordinates, shown in the first function in Equation 2. For
navigation, the fitness function firstly measured whether or
not the agent managed to find it’s way back, and if it does, an
additional fitness function accrued extra fitness until the end



of the simulation to account for the efficiency of navigation.
The fitness functions for navigation are seen in the second
and third function in Equation 2.

F = F +Xmax/20 + Ymax/20

if starting − point found⇒
F = F + 10

while at starting − point⇒
F = F + 0.001

if S1 < 0.6 and S1 > 0.2⇒
F = F + 0.001 · vtot · (0.6− S1)
if S2 < 0.6 and S2 > 0.2⇒

F = F + 0.001 · vtot · (0.6− S1)
if S0 < 0.1 and S0 > 0⇒

F = F − 0.01 · vtot · (0.2− S0)
if S1 < 0.1 and S1 > 0⇒

F = F − 0.01 · vtot · (0.2− S1)
if S2 < 0.1 and S2 > 0⇒

F = F − 0.01 · vtot · (0.2− S2)

(2)

Finally, in order to promote a wall-following behavior
throughout this task, the same functions as listed in Equa-
tion 1 were included, but at 10% of their weight in the wall-
following task to ensure that the evolution was focused on
evolving the exploration and navigation task. Also note that
a fitness function for wall-following along the right sensor
was included.

The values within this group of fitness functions were
tuned to ensure a feasible distribution of fitness gain to evolve
both exploration and navigation simultaneously. Xmax and
Ymax correspond to the furthest points reached during ex-
ploration for both the X and Y coordinate, in meters.
Furthermore, the starting point was defined as a point within
a 30 centimeter (0.3 units) distance of where the agent
started.

In order to make the exploration and navigation tasks
possible, an RSSI (received signal strength indicator) had to
be implemented into the simulation. In order to bridge the
reality gap, noise was included into the RSSI measurements.
Due to the very fast responsiveness of the behavior tree
and noisy RSSI, RSSI or it’s derivatives were not used as
a direct input sensor to the behavior tree. Instead, only an
indication of the direction that the agent should go in based
on the RSSI was given, represented by RSSIDirection. This
was done through finding the second derivative of the RSSI
(RSSIDD

). For exploration, since the agent would try to get
as far away from the signal as possible, a negative RSSIDD

indicated a correct general direction to travel away from the
source. Therefore, whenever the RSSIDD

turned positive,
the RSSIDirection would change. For navigating back to
the source, the opposite logic was used (negative RSSIDD

resulted in a change in RSSIDirection).
Furthermore, as mentioned before, the exploration and

navigation task would require the agent to be capable of

following the wall along it’s left and right side. Therefore
an additional sensor, WallDirection, was implemented. This
sensor would simply dictate whether the agent should follow
the wall along the left or right, by changing the yaw direction
when approaching a wall from the front. This implementation
was required to avoid the drone from getting stuck in a loop,
if it were in a room where the direction to the exit did
not correspond to the preferred RSSI direction or the wall-
following orientation. By simply changing the wall-following
direction, the agent would be able to get out of the room.
Therefore, some very rough yaw-based odometry was imple-
mented, such that if the agent would make two full rotations
or more in one direction, the wall-following direction would
change. This however only solved the issue in most cases,
since in some rooms, both wall-following directions could
result in looping. Therefore, whenever the wall-following
direction changed, the agent would be forced to follow the
wall for forty simulation seconds before being able to follow
the RSSI Direction again. This does unfortunately reduce the
flexibility for optimising the behavior through grammatical
evolution.

Fig. 11. Evolution of the maximum fitness for the exploration and
navigation behavior.

The results for the evolution of this task are shown in
Figure 11. Due to this considerably more difficult task, it is
evident that the slope of the best fit line for all four evolutions
are much lower. Notably, the third evolution even displayed
a negative slope, which would indicate devolution.

The evolved exploration and navigation BTs which were
generated in Figure 11 were compared against the baseline
BT on 100 randomly generated environments. These results
can be found in Figure 12. The results were relatively poor,
where only the second evolved BT scored on average higher
than the baseline controller. The average fitness for the
baseline was 21.15, for the first evolved BT 18.98, for the
second 23.79, for the third 12.92 and 18.62 for the fourth
evolved BT. The result for the third controller was expected,
given the poor evolution progress as shown in Figure 11

Figure 13 displays the fitness distribution for the five
different BTs. A few observations to note. Firstly, this



Fig. 12. Comparison of BT controller fitness performance for exploration
and navigation between the baseline and evolved controllers. Scatter plot
representation.

Fig. 13. Comparison of BT controller fitness performance for exploration
and navigation between the baseline and evolved controllers. Bar plot
representation

distribution plot allows one to notice the poor performance of
the first, third and fourth evolved BTs. These three evolved
BTs all had a significant number of runs where the agent
only scored a fitness of 10-15, and a few even in the 5-
10 range. Interestingly, the second BTs score was almost
evenly divided between a range of 15-20 and 25-30, with
no run scoring a fitness below 15 or between 20 and 25.
This does indicate a significant flaw in the second evolved
controller. After analysing the second evolved BT, it was
determined that the evolution focused on evolving an efficient
wall-follower in this case, rather than an efficient navigator.
This controller would therefore only follow the wall, and
find the source location only 60% of the time (includes all
scores between 25-30), compared to almost 80% for the
baseline. Therefore, despite receiving a higher average score
over the 100 random runs, the second evolved controller is
unfortunately ineffective with navigation. Recommendations
for improvement are listed in section V.

IV. EXPERIMENTS

Following the simulations, real-life experiments were per-
formed to evaluate the performance of the evolved controller
in practice. It is also useful to detect potential reality gaps,
and to compare it to the existing wall following controller
from literature. Unfortunately due to limited resources, which
included a lack of time and insufficient hardware to reduce
the RSSI noise or to use another system, only the wall
following behavior tree was tested in real life.

A. Experimental Setup

In order to perform the experiment, a Crazyflie drone was
used. This Crazyflie was equipped with a a multiranger deck,
which features four IR sensors (front, left, right and back)
for range detection. It also made use of the Flow Deck V2
for optical flow measurements.

Due to this drone of choice, the environment had to be very
specific and controlled. The Flow Deck V2 can only be used
on bright and patterned floors. Furthermore, the available
flying time had to be reduced to approximately three minutes,
to ensure sufficient power in the drone.

The literature controller used for this drone was the same
one that was used for the simulations. The software for this
drone can be found within the GitHub repository for the
Crazyflie firmware [17]. The evolved controller used was
almost identical to the controller evolved in simulation. Note
that a few changes had to be made due to the reality gap,
specifically due to the drone dynamics. These are described
below.

It was observed that the movement of the Crazyflie can
be erratic and that drift was common, especially in imperfect
conditions due to limitations of the Flow Deck. Furthermore,
at higher speeds the dynamics of the Crazyflie resulted in
suboptimal reactions to sensor inputs (e.g. despite setting a
sensor distance of 30cm, the Crazyflie would only react to
this input at 15-20cm). Unfortunately this was not accounted
for in the simulations. Therefore, it was decided to increase
the lower sensor distances to allow for more clearance from
the wall and obstacles. Finally, this insufficient reaction time
in the dynamics also negatively impacted the Crazyflie’s
ability to detect outer corners through the difference in the
left sensor distance. The solution to this was to double
the yawing rate in these situations, which helped keep the
Crazyflie aligned to the outer corner of the wall.

B. Validation Results

Figure 14 shows the path travelled for the evolved wall-
following BT, while Figure 15 shows the path travelled for
the literature controller. The environments for both cases
were identical, featuring four walls and four obstacles (plas-
tic house plants).

One may identify a notable difference between the results,
in that the literature controller has a much smoother path.
While this does produce a more elegant path, it proved to
greatly diminish the spatial awareness of the agent. In the
literature controller, by moving forward without constantly
scanning what is ahead, the agent struggled with the four



Fig. 14. Real-life experiment path taken by the evolved BT.

obstacles that were placed close to the walls. It took a total
of four runs before the literature controller was able to avoid
an obstacle which was placed around the X = 1.5 and Y =
-2.0 point, and another one around the X = 3.8 and Y = -2.0
point. For both obstacles the agent would either not detect it
at all, and fly into it with one propeller, or detect it far too
late and yaw into it with one of the propellers.

Fig. 15. Real-life experiment path taken by the controller from literature.

Moreover, despite the evolved controller requiring to stop
in some instances, the overall motion is a lot more continuous
when compared to the literature controller. This resulted in a
far more efficient wall-following behavior, where the evolved
BT managed to return to its starting point in one minute and
thirty nine seconds, the literature controller took over two
minutes and two seconds.

V. RECOMMENDATIONS

The focus of this paper was to determine the eligibility
of using grammatical evolution to evolve BTs for drone
behavior. This was done in the scope of keeping the BT
as low level as possible, such that the actions corresponded
to speed and yaw outputs, rather than higher level behaviors.

This allowed for the simulataneous evolution of lower level
parameters (conditions and actions), along with the overall
behavior (structure).

A. Large Search Space

As one may observe in subsection III-C, the grammatical
evolution unfortunately focused on the evolution of the
conditions and actions, whereas there was little change to the
structure where only one sequence node became obsolete.
This can be explained through the incredibly large search
space, where an individual could be represented through
any combination of 2000 bits. This resulted in a search
space of 22000 (a value with over 600 digits), whereas one
evolution searched through a maximum of 10,000 solutions.
Realistically, due to duplicate individuals, the maximum
number of searched solutions per evolution was likely to
be much lower. Such an evolution already took eight hours
with the available resources.

One may assume that running evolutions with higher pop-
ulations and more generations on a better equipped computer,
could in fact generate much more novel and interesting
results. Another option would be to reduce the number of
bits corresponding to each integer within the grammatical
evolution. Currently, one integer is represented through eight
bits, which can give it a value between 0 and 255. As
mentioned, this was required to give enough flexibility for the
optimisation (through evolution) of the low level parameters
such as speed, yaw and sensor distances. If one integer could
be represented through three bits, the search space would
already be over 10375 times lower. This would however mean
that the sensor distances, speed, and yaw could only have 8
different values, rather than 256.

B. Population Management and Tracking

Another significant limitation of this work can be found
within the evolution procedure itself. There is a level of
inefficiency in the way the populations are managed between
generations, which is due to a lack of information sharing
between the different generations and the overall complexity
of the problem.

Firstly, the best BT chosen at the end of the evolution
is solely based on the last generation. Therefore, there is a
chance that the chosen BT is only the best for that particular
environment, but is suboptimal in most other environments.
This issue could be minimised by testing every individual on
multiple environments within one generation, or by choosing
the best BT based on the performance of BTs in previous
generations as well.

Furthermore, this lack of information sharing between
generations meant that poor BT structures could be repeated
regularly after random mutation or crossover. Although 2,000
bits were used to represent an individual, in many cases
less than 1,000 bits were required to build a BT. Very poor
BT structures are those that do not have a single action
or condition node, or are heavily bloated through selector
or sequence nodes - where many of these types of BTs
can be identified through the first 100 bits. Although this



would make the evolution more computationally heavy, the
algorithm could reduce the randomness of mutations and
crossovers by avoiding crossovers or mutations that lead to
a poor BT structure.
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