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Spin and topological-qubit based quantum computers require an easily scalable and
highly sensitive method for readout and manipulation, for which Dispersive Gate Sens-
ing (DGS) is a promising candidate [1, 2]. DGS enables sensing of single electron tun-
neling events in a mesoscopic system by measuring a reflected Radio Frequency (RF)
signal from a resonator capacitively coupled to one of the system’s gate electrodes.
From the resonator’s perspective, the system is modeled as an effective ‘parametric
capacitance’ [3]. Motivated by its viability for qubit readout and control, we measure
transport characteristics of a semiconducting-superconducting hybrid charge island
system using this method. Doing so, we observe a spin degeneracy modulation of inter-
dot tunnel couplings resulting from hybridization of a dot orbital with a subgap state
of the superconductor, measured entirely within Coulomb blockade. Without DC mea-
surement, we also track a subgap state’s energy via voltage intervals between island
charge states as a function of field. Subsequently, we attempt to correlate changes in
the resonator’s internal dissipation with coherence of tunneling into the superconduct-
ing island. In particular, we collapse a superconducting island’s lowest energy state
to the Fermi level by applying a magnetic field. Contrary to expectations, internal
dissipation in the resonator did not change dramatically with field, in fact decreas-
ing at charge degeneracy points at all field strengths. We corroborate measurements
with existing theory, augmented by simple analytical and numerical models demon-
strating that coherence factors of superconducting quasiparticle states and the degen-
eracy of dot orbitals modulate parametric capacitance. A master equation model of
finite temperature interdot tunneling is solved, agreeing with experimental evidence
that Sisyphus dissipation is negligible when a dot orbital is hybridized with multiple
independent quasiparticle states. To be employed in quantum computers, a full un-
derstanding of all phenomena contributing to a DGS signal in these hybrid systems is
critical. Hence, these results mark a step towards unambiguous readout of Majorana
parity in topological qubits [4].
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Chapter 1

Introduction

QUANTUM COMPUTERS employ the entanglement present between many coupled
two-level quantum systems, or qubits, to process information in parallel, promis-

ing to solve problems infeasible for bit-based classical computers. Their applicability is
tremendous, ranging from breaking old encryption schemes [5] to offering better ones
[6]. They can search large databases [7], simulate quantum systems for pharmaceuti-
cal and materials research [8, 9], as well as solve linear systems of equations and other
algorithms [10, 11], all faster than a classical computer.

Unfortunately, of the many physical systems wrangled into the fundamental qubits
comprising these computers, nearly all suffer from the rapid decoherence of their state
seemingly inherent to all open quantum systems [12]. To achieve fault-tolerance, prac-
tical estimates suggest over one thousand physical qubits would be needed to encode
a single logical qubit with error correction [13], compounding the requirement that
any design for a quantum computer be scalable [14]. Hence, within this thesis we
investigate two complementary approaches of granting scalability to quantum com-
puters: subverting the need for error correction with topological qubits [15], and in-
tegrating sensitive measurement apparatus into gates defining the qubits themselves
with Dispersive Gate Sensing (DGS) [1]. Specifically, we apply DGS to characterizing
a normal-superconducting double quantum dot, itself a subsystem of many topological
qubit designs.

First, topological qubits utilize a degenerate ground state subspace of certain topo-
logical systems, wherein zero-energy excitations at the system’s edge are guaranteed
to exist by the bulk material’s topological phase. Described as quasiparticles, these
excitations can be non-Abelian anyons, meaning exchanging or ‘braiding’ them non-
trivially alters the system’s state. This is in stark contrast with fermions and bosons
occurring fundamentally in nature, which at most garner a π-phase factor upon ex-
change.

Using this ground state manifold as the computational space of a qubit ensures the
qubit state is energetically protected from decoherence by the ‘topological gap’ separat-
ing the first excited state. Furthermore, since any computational state is a many-body
state depending on the bulk material phase, it is immune to any local noise. Together,
these properties make quantum error correction unnecessary for topological qubits1.

Presently, scientists are primarily focused on creating topological qubits with semi-
conducting nanowires [18]. With strong enough spin-orbit coupling, a suitable mag-
netic field, and proximitized superconductivity, these wires can enter a topological

1‘Protected’ braiding operations only allow for a Clifford complete set of gates on topological qubits
formed from Majorana zero modes [16]. To achieve universality, these gates must be supplemented with
unprotected operations or coupled to other forms of qubits which do require error correction, such as spin
qubits [17].
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FIGURE 1.1: Minimal implementation of a Majorana box qubit [4]. The Majorana islands are
constructed from two proximitized nanowires electrically connected via their superconducting
(SC) shells and driven into the topological regime by a parallel field B∥. Electrons may tunnel
between two dots through the joint fermionic mode formed by MZMs γ̂1 and γ̂2 or via the ref-
erence arm. Interference between the two paths leads to a Majorana parity-dependent tunnel
coupling, modulated by a magnetic flux Bφ through the loop. The strength of tunnel coupling
can be measured via DGS coupled to a dot plunger gate with the simplified circuit shown. We
consider the case of a proximitized nanowire coupled to a quantum dot (red box).

p-wave superconducting phase2 [21, 22]. In this case, the Bogoliubov quasiparticles
spanning the superconductors’ excitation spectrum include two Majorana Zero energy
Modes (MZMs), so called because like Majorana fermions, they are their own antipar-
ticle3. These states’ wave functions are highly localized at opposite ends of the wire.
Analogous to a complex versus a real number, a superposition of two MZMs amounts
to a single fermionic mode. If one such mode is formed by Majoranas on two connected
nanowire charge islands, they may be braided by measuring occupation parity of the
joint fermionic mode, forming the basis of a topological qubit, as in Figure 1.1.

Each of these qubits requires two Coulomb blockaded Majorana islands and mul-
tiple quantum dots. Fitting many Majorana parity qubits on the same chip clearly
requires an ever increasing number of gates to define the charge islands. If combined
with separate on-chip electronics for charge sensors, the task becomes near insur-
mountable.

Dispersive Gate Sensing alleviates this issue by integrating the sensor’s interface
with the sample into one of the existing gates defining the qubit, as in the right side of
Figure 1.1. By capacitively coupling an LC resonator to the gate electrode, microwave
reflectometry can be used to observe single electrons tunneling between any coupled
charge islands. A microwave photon trapped in the resonator accrues a phase shift
dependent on the quantum state of the coupled qubit which can be measured in the
signal returning from the resonator. This method also allows one to leave the entire
qubit in Coulomb blockade relative to the lead, reducing the quasiparticle ‘poisoning
events’ which foil a topological qubit’s state. Other obvious advantages of DGS are its
state-of-the-art charge sensitivity and potential for fast qubit readout [23].

As a research tool, DGS is also profoundly interesting as a local probe of mesoscopic
systems. While conductance measurements of a Coulomb blockaded system depend on
the conductance through the whole system, a DGS probe only sees charge transitions
from dots which are capacitively coupled to the lead, enabling non-local tunneling cor-
relation measurements.

The goal of this thesis is therefore to implement DGS in studying a subsystem of a
Majorana parity qubit (outlined in red in Figure 1.1). Namely, this thesis will elucidate

2Strictly speaking, it is a quasi-topological phase, since only some system degrees of freedom are topo-
logically protected [19]. In particular, quasiparticle poisoning events can flip the wire’s charge parity,
altering the qubit state [20].

3Unlike Majorana fermions, MZMs are not fermions, since they obey non-Abelian exchange statistics.
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which charge transfer processes are possible between a superconducting charge island
and a quantum dot, and how this translates into a DGS measurement. Within, we
demonstrate coherent hybridization of a subgap state with a dot orbital, crucial for the
implementation of measurement based topological computers.

Outline of this Thesis

Chapter 2 briefly summarizes quantum dot theory and reflectometry readout of para-
metric capacitance and Sisyphus resistance, while Chapter 3 introduces models pre-
dicting various contributions to this capacitance in double dot systems. These include
those from degeneracy in Section 3.1, driven excitations in Section 3.2, finite temper-
ature effects in Section 3.3, and relevant effects for superconducting islands in Sec-
tion 3.4.

In Chapter 4, results for a normal-superconducting double dot measured by DGS
are given. The device is characterized in Section 4.2 while hybridization between a
dot orbital and subgap state is noted in Section 4.3. Coherence of single electrons tun-
neling between the dot and superconductor subgap state is compared with the quasi-
particle’s energy in Section 4.4. We summarize results in Chapter 5, where possible
experiments which further exploit DGS are also proposed.
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Chapter 2

Background Theory

MESOSCOPIC systems of charge reside in a vaguely semiclassical regime of physics,
where many degrees of freedom behave classically, though others may be well-

described by a single quantum state. This chapter therefore aims to lay out the requi-
site theory of quantum dots and charge sensing techniques required for understanding
results in subsequent chapters, along with its many underlying assumptions.

2.1 Mesoscopic Charge Systems in Coulomb Blockade

A Crash Course in Quantum Dots

FIGURE 2.1: Effective circuit for
a charge island with total capac-
itance C = Cg +CS +CD , biased
by Vb and gated by Vg. Tunnel
resistances RS/D are functions of
Vg.

A piece of conducting material so small that electro-
static repulsion between electrons at the Fermi level
renders the energy cost of adding a single charge sig-
nificant is called a charge island. Smaller still, charge
islands where quantum confinement makes electronic
orbital energy spacing significant is called a quan-
tum dot1. This occurs when the Fermi wavelength is
comparable to variations in the environment’s electro-
static potential. These devices are fundamentally use-
ful for reaching the quantum mechanical regime in a
circuit-based experimental framework, since they en-
able one to controllably push single electrons on and
off the island, quantizing charge.

To be specific, consider the simple circuit of a dot connected to leads by tunnel
barriers given in Figure 2.1. Such a dot could be defined with cutter gates overtop a
nanowire (as in our experiments), or by depleting an enclosure around a small region
within a 2-Dimensional Electron Gas (2DEG), among other realizations. At zero tem-
perature, the energy stored on the island with n electrons (or capacitor charge Q) is2

[24]:

U(n)= Q2

2C
= (CgVg −|e|n)2

2C
+

n∑
j=1

E j = Ec(n−CgVg/e)2 +
n∑

j=1
E j (2.1)

so that the electrochemical potential is:

µ(n)≡U(n)−U(n−1)= Ec (2n−1)− eαVg +En (2.2)

1Confusingly, charge islands with negligible quantum effects are still often called quantum dots, due
to differing charge configurations being separated by significant discrete energies. For simplicity, we also
adopt this unfortunate convention.

2This expression assumes the linear transport regime wherein bias voltage is ∼ 0. In this case, excited
states of the dot are not involved.
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Above, −e is the charge of an electron while Ec ≡ e2/2C is the charging energy, whose
significance will be explained below. E j is the energy of the j’th lowest electron orbital,
taking into account all quantum effects outside of the classical circuit picture3. The
ratio α ≡ Cg/C < 1 is the lever arm of the gate to the dot, and can be thought of as
a coupling strength converting voltage Vg to electrochemical potential induced on the
dot. Large lever arms (α ∼ 1) are critical to the sensitivity of DGS measurements, as
we will see in section 2.3.

FIGURE 2.2: Energies of dot charge levels U(n)
plotted as a function of reduced gate voltage for
a normal quantum dot (a) and superconduct-
ing charge island with E0 < ∆ < Ec (b). At
kbT = eVb = 0, the dot will reside in the lowest
energy charge state. The first and second ex-
cited charge states are highlighted with color,
with the superconductor’s quasiparticle contin-
uum in gray.

Neglecting orbital energies for now,
it is clear that two charge configurations
are degenerate when CgVg/e lies exactly
halfway between n−1 and n. Letting the
leads’ Fermi energy at zero bias be EF =
0, Vg is defined so that there are zero dot
electrons at Vg = 0. Consequently, the
addition energy needed to add another
charge to the dot is µ(n)−µ(n−1) = 2Ec,
twice the charging energy! When ther-
mal energy ∼ kBT is much less than Ec
and Vg is off resonance, current flow is
prevented by this charging effect, and
we say the system is in Coulomb block-
ade. Sweeping the gate voltage leads
to the dot accepting electrons from the
leads at discretely separated resonances
where two charge levels are degenerate,
as in Figure 2.2a. This translates to
sharp peaks in conductance through the
dot near zero bias [25]. At higher bi-
ases, the chemical potential difference
between the left and right leads makes
all dot states within this bias window
contribute to the current.

It is easy to confuse charge ‘levels’
with true quantum states, so this war-
rants some clarification. A fixed charge
number n merely restricts the system to

the n-electron Hilbert space within a larger Fock space. In fact, a relatively big charge
island may have a huge density of states near the n-electron ground state, with a
continuum of possible low-energy excitations for the electrons within. Only when the
lowest available orbitals’ energies En À kBT can one say the dot has a well defined
quantum state. When this is not the case, the system counterintuitively may be purely
classical for fixed charge. Electrons may decohere on short time scales in spite of the
island’s Fock space possessing a large energy scale Ec separating the ground states
of the underlying fixed-charge Hilbert spaces. Quantizing one degree of freedom in
a system does not amount to quantum behaviour if other degrees of freedom behave
classically.

Note that when En 6= 0, the addition energy needed to insert another electron Ea ≡
Ec +En+1 −En includes the energy difference between subsequent orbitals. Usually,

3Even this is an approximation: Electrons can only be described as sequentially filling single-particle
orbitals when they are non-interacting, but the existence of a non-zero charging energy implies some
degree of electron-electron repulsion.
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this orbital energy becomes important for small dots with only a few electrons, since in
the many-electron regime n À 1, we expect very little qualitative difference between
n+1 and n and thus En+1 −En ∼ 0. Of course, this approximates the electron orbitals
as being independent of n, but in reality the lowest ‘orbital’ energy cost for n versus
n+1 electrons could be similar, while within the n-electron Hilbert space the energy of
the lowest excitation may be larger than En+1 −En. Indeed, this is an approximation,
since the charging energy implies the existence of repulsive interactions between the
electrons, so that their states cannot be described completely independently.

The quantization of charge has other interesting effects in superconducting sys-
tems. For example, the Majorana islands in box qubits described in Chapter 1 must
remain in Coulomb blockade to fix their parity, and hence the qubit state. For a super-
conducting island, odd parity charge states are forbidden whenever the lowest energy
state E0 in the SC is higher than the charging energy. This is because superconductors
consist of a bosonic condensate of Cooper pairs of electrons, so that unpaired electrons
must be quasiparticle excitations of energy at least E0 (E0 is the gap ∆when no subgap
states are present). To reside in an odd parity state, the electron would have to pay
E0 > Ec, so instead the system relaxes by gaining another electron to form a Cooper
pair. On the other hand, when E0 < Ec, a single quasiparticle must be present in small
regions of width Ec −E0 in energy [26], see Figure 2.2b. In this way one can infer both
the island charge parity and value of E0 from distances between Coulomb resonances,
even when many thousands of electrons are present!

Double Quantum Dots

The physical phenomena observable with a single quantum dot is limited by the fact
that tunneling to and from leads results in unavoidably incoherent transport, due to
the leads’ continuous bath of relevant electron states near the Fermi level. To coher-
ently manipulate individual electron spins or observe tunnel coupling between two
quantum states (dot orbitals), at least two true quantum dots are thus needed [27],
with a well separated excitation energy in each charge level.

A simple circuit schematic of a Double Quantum Dot (DQD) connected in series is
shown in Figure 2.3a. As with the single dot, each dot’s charge state |n〉 and |m〉 is
such that energy is minimized, but in this case mutual capacitance Cm makes the dot
charges interdependent. The energy as a function of charges n1 and n2 is [28]:

U(n1,n2)= ∑
i=1,2

Eci
(
ni −CgiVgi/e

)2 +Em
c

(
n−Cg1Vg1/e

)(
n−Cg2Vg2/e

)+ ∑
i=1,2

ni∑
j=1

E i
j

(2.3)
where the capacitances C1(2) = CS(D) +Cg1(2) +Cm now have corrections due to the
mutual capacitance Cm, as do relevant energy scales:

Eci ≡ e2

2Ci

(
1

1−C2
m/C1C2

)
∼ e2

2Ci
+O (C2

m/C1C2), (2.4)

Em
c ≡ e2

Cm

(
1

C1C2/C2
m −1

)
∼ e2 Cm

C1C2
+O (C2

m/C1C2) (2.5)

and we have orbital energies E i
n for dot i. Notably, the magnitude of mutual capac-

itance Cm between the dots is a measure of how much they behave like separate
quantum dots from the perspective of the source and drain, while any interdot tun-
nel coupling amplitude tc (introducing off diagonal elements between charge states in
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the Hamiltonian) quantifies the degree to which they may be treated as separate dots
quantum mechanically4.

FIGURE 2.3: (a) Simplified circuit for a DQD connected in series. Each dot has charging
energy ECi ∼ e2/2Ci for small Cm and chemical potential controlled by gate voltages Vgi with
lever arms αi ≡ Cgi/Ci. (b) Charge stability diagrams at Vb = 0, neglecting dot orbital energies.
Black lines demarcate the boundary between stable charge configurations when tc = 0, while
the colored background qualitatively shows average charge values with tc = 0.1Ec1. At the
‘triple points’ where three such lines meet, two dot levels are on resonance with each other and
the leads. Moving across an interdot transition (orange arrow), quantum dot levels hybridize,
mixing the two nearest charge levels’ ground states into bonding and anti-bonding superposi-
tions, shown in (c). Triple points in (b) are rounded away from the interdot transition in a
similarly hyperbolic fashion for tc > 0. These interdot transitions are made energetically inac-
cessible at zero Cm and tc (bottom right), while for large Cm or large tc, they are so broad that
the two dots behave as one, gated by both Vg1 and Vg2 (top right).

In the ‘gate-space’ of Vg1 and Vg2, plotting the ground state of this distribution pro-
duces a so-called charge stability diagram, an example of which is given in Figure 2.3b.
As seen in the figure, these diagrams possess all information about capacitances of the
system, but they reveal more. A tunneling matrix element tc between orbitals on dots
1 and 2 hybridizes their ground states when near degeneracy, broadening the region in
gate-space where an electron may hop between them, depicted in fig. 2.3c. It also has
the effect of broadening the signal we measure in experiment, a detail to be discussed
in section 2.3.

A charge stability diagram like the one in fig. 2.3b can be measured in a multitude
of ways. Conductance through the whole system can be measured with a lock-in am-
plifier for example, but this cannot distinguish between individual tunnel couplings
without varying them, rather seeing their combined effect on the total conductance.
Furthermore, it is insensitive to interdot transitions. Another approach is capaci-
tively coupling a part of the sample to a Single Electron Transistor (SET) (essentially a
quantum dot) or a Quantum Point Contact (QPC) and measuring the RF conductance
through it [29, 30]. This makes the probe locally sensitive to the subsystem which it is
capacitively coupled to, enabling fast selective measurement of tunneling events from
a particular dot. These latter methods can approach quantum limits of sensitivity [31],
but suffer from scalability issues. Each DQD in a multiple box qubit or spin qubit setup
would require its own coupled RF-SET or RF-QPC, which goes hand in hand with addi-
tional readout circuitry. In the following sections, we describe a measurement scheme
which avoids all of these problems: Dispersive Gate Sensing.

4As DQDs are well described in the language of quantum mechanics, we often use this parameter
instead of tunneling resistance since it is simply the coupling Hamiltonian matrix element, though both
are related.
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FIGURE 2.4: (a) Basic circuit for a series RLC resonator circuit, with R in parallel. (b) Reflec-
tion coefficient Γ phase ∆φ and amplitude from an impedance matched (R = Z0) resonator at
different angular frequencies ω.

2.2 Reflectometry Readout of Charge Tunneling

In our experiments, we employ a non-invasive charge sensing technique called Disper-
sive Gate Sensing (DGS), capacitively coupling a resonator tank circuit directly to one
of the gates defining our system. More generally, all other non-invasive charge detec-
tion methods involve measuring quantum transport in a mesoscopic system through a
capacitive coupling to a sensor device such as an SET or QPC. Since source-to-drain
conductance can be negligible when some part of the system is in Coulomb blockade,
these approaches are far more sensitive to Coulomb oscillations and interdot transi-
tions than traditional DC measurements [32]. The technique of reflectometry is used
pervasively across these methods, including DGS. In brief, reflectometry amounts to
discerning information about a system by measuring the reflection coefficient of an AC
electric signal reflected from a circuit with this system contributing to its impedance.

For the purposes of DGS, reflectometry involves reflecting a Radio Frequency (RF)
carrier of angular frequency ω from an RLC resonator with inductance L in series
with bare capacitance C0 perturbed by some shift Cp, see Figure 2.4a. An internal
resistance R is also placed in parallel with C0+Cp, see Figure 2.4a. The impedance of
our resonator is [33]:

Z = iωL+ 1
iω(C0 +Cp)+1/R

(2.6)

For resonators connected to the source or drain of a dot system, R represents tunnel re-
sistance through the system. Alternatively, for a resonator connected to a gate within
this dot system, dissipation may still be present in the form of Sisyphus resistance, de-
scribed in section 2.4. The ‘bare’ capacitance C0 is to some degree a point of reference,
and may be considered for example to be the resonator capacitance when a coupled dot
system is in a stable charge state.

This resonator oscillates with characteristic frequency ω0 = 1/
p

LC, so that its
impedance reduces to R when ω=ω0. Clearly, if Cp increases, so changes the resonator
capacitance, leading to a downward-shifted resonance frequency ω = 1/

√
L(C0 +Cp)

[34], so that the shift is:

∆ω= 1√
L(C0 +Cp)

− 1√
LC0

∼−ω0

2
Cp

C0
Cp ¿ C0 (2.7)

A signal at ω0 = 1/
√

LC0 will then be slightly off-resonance with the LC circuit, leading
to an increase in amplitude of the reflected signal depending on the line width of the
resonance and frequency shift, depicted in Figure 2.4b.
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Furthermore, the now off-resonance carrier will experience a phase shift ∆φ depen-
dent on Cp and the external resonator quality factor Qs

e =
p

L/C/Z0 (see Appendix A
for derivation):

∆φ∼−tan−1

(
2Qp

e Cp

C0

)
Cp ¿ C0

Qr
(2.8)

assuming the resonator is probed with the bare frequency ω = 1/
√

LC0. Since high
signal-to-noise ratio (which is optimal for ∆φ = ±π/2) is desired in experiment, while
R ≥ Z0 and Cp ≤ C0 typically, eq. (2.8) implies high quality factor resonators are desir-
able. Unfortunately, this is counteracted by the need to actually measure the reflected
signal within a reasonable integration time: A resonator with infinite quality factor
never lets any photons escape.

Now we see that DGS can measure small capacitive couplings through a phase
shift in a reflected RF signal, but this is useless unless this capacitive coupling tells us
something interesting about the charge state. Thankfully, it does. The relevant per-
turbing capacitance Cp in our case is called the parametric capacitance and has direct
correspondence with tunnel coupling magnitudes and tunneling events in general. We
will also see that dissipation within the resonator, i.e. a resonance broadening, carries
other important information about multi-dot systems.

2.3 Parametric Capacitance

General Formulation

Parametric capacitance (Cp) is a correction to the capacitance of a system resulting
from a low density of states in part of the capacitor [35, 36]. To find a general expres-
sion for this correction, consider the differential capacitance of any island of charges
as seen by a coupled gate voltage Vg:

Cdi f f =
d 〈Q〉
dVg

(2.9)

with charge induced on the capacitor 〈Q〉, where the braket emphasizes that we con-
sider the charge to be a statistical average. If the classical ‘geometric’ capacitance to
the gate is Cg, then from electrostatics:

〈Q〉 = Cg(Vg −V ) (2.10)

where V is the total electrostatic potential on the island. As well as this, the total
charge on the island may be written in terms of the expectation value of the number
of electrons 〈n〉 or in terms of total self-capacitance C which includes Cg and all other
capacitances:

− e 〈n〉 = CgVg −CV (2.11)

Solving for V gives V = (e 〈n〉+CgVg)/C, which in conjunction with eqs. (2.9) and (2.10)
yields a capacitance with two contributions:

Cdi f f =
(C−Cg)Cg

C︸ ︷︷ ︸
Cgeom

−eα
d 〈n〉
dVg︸ ︷︷ ︸

Cp

(2.12)
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where α = Cg/C is the lever arm of Vg to the island. Cgeom constitutes the classical
or geometric capacitance Cgeom of two capacitors in series, subtracted by a correction
Cp resulting from changes in the statistical average number of charges on the island.
We call this latter correction the parametric capacitance, and it is important to note
that it arises from changes in the statistical average charge on the island, be it a ther-
modynamic or quantum mechanical average. For a small shift in the gate voltage
dVg centered at a Coulomb resonance, a coupled quantum dot’s energy changes by
dε = −eαdVg, so we see that at zero temperature parametric capacitance is propor-
tional to the local density of states ρ, since Cp =−(eα)2d 〈n〉 /dε=−(eα)2ρ. Intuitively,
Cp accounts for the fact that a capacitor plate with a low density of states cannot hold
an arbitrary amount of charge at a given voltage. This assumption entered our cal-
culation in writing the charge in terms of 〈n〉: for a closed charge island, 〈n〉 does not
change with voltage so d 〈n〉 /dVg = 0. When this island is tunnel coupled to an electron
reservoir such as a lead, 〈n〉 is effectively the charge on the lead, arbitrarily large and
therefore independent of Vg. In other words, charge must be quantized for d 〈n〉 /dVg to
be well defined and non-zero, implying a system with relatively low density of available
states compared to a grounded metal.

The above treatment of parametric capacitance is quite general, but more specif-
ically one might consider a single gate voltage coupled to multiple charge islands. In
this case the geometric capacitance is Cgeom = α1C1 +α2C2 as one might expect [28],
with αi being the lever arms of Vg with island i = 1,2 and Ci the contributions to their
capacitances unrelated to Vg.

Parametric capacitance seen by the gate, however, is the difference of the individual
parametric capacitances of each dot, since the loss of charge on one island seen be
the gate is also seen as a gain in charge on the other. The expression for parametric
capacitance to Vg is:

Cp =−e(α1 −α2)
d 〈n1〉
dVg

(near interdot transition) (2.13)

where α1 > α2 is the gate’s lever arm to the first and second island, respectively. No-
tably, parametric capacitance is zero for a gate which is equally coupled to both islands.

Away from interdot transitions, the assumption that d 〈n1〉 /dVg = −d 〈n2〉 /dVg is
no longer valid, because one dot may gain or lose an electron to the leads without
the other dot’s charge state being effected. Considering the most broad scenario of a
gate voltage coupled in parallel to N charge islands with capacitance Cgi (which them-
selves are coupled to each other with capacitance Ci j ≡ C ji for i 6= j), the differential
capacitance is:

Cdi f f =
N∑

i=1
Ci =

N∑
i=1

d 〈Q i〉
dVg

= d
∑N

i=1 〈Q i〉
dVg

(2.14)

where 〈Q i〉 = Cgi(Vgi −Vi) is the average charge induced on capacitor Cgi and Vi is the
electrostatic potential on island i. Proceeding as with the single-island case by writing
the total island charges −e 〈ni〉 in terms of voltage induced charges, we find:

− e 〈ni〉 = Cgi(Vg −Vi)︸ ︷︷ ︸
〈Q i〉

+∑
j 6=i

Ci j(Vj −Vi)−CeiVi (2.15)

Above, Cei contains any contributions not from islands or the gate to island i’s total
capacitance Ci. Solving this equation for CiVi, then substituting the same expression
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for C jVj into the result, we get:

CiVi = e 〈ni〉+CgiVg +
∑
j 6=i

Ci jVj

= e 〈ni〉+CgiVg +
∑
j 6=i

Ci j

C j

(
e 〈n j〉+Cg jVg

)+O (C2
i j/C

2
j ) (2.16)

Hence, after some rearranging, the total gate charge is found to be5:

N∑
i=1

〈Q i〉 ∼
N∑

i=1
αi

[(
Ci −Cgi −

∑
j 6=i
α jCi j

)
Vg − e

(
1−∑

j 6=i

Ci j

C j

)
〈ni〉

]
(2.17)

to first order in mutual capacitances. Differentiating finally produces an expression
for Cdi f f :

Cdi f f ∼
N∑

i=1
αi

(
Ci −Cgi −

∑
j 6=i
α jCi j

)
︸ ︷︷ ︸

Cgeom

−
N∑

i=1
eα̃i

d 〈ni〉
dVg︸ ︷︷ ︸

Cp

Ci j ¿ C j (2.18)

where we have defined an effective lever arm α̃i ≡ (1−∑
j 6=i Ci j/C j)Cgi/Ci. Comparing

this to the expression in eq. (2.12), it is clear that the total parametric capacitance is
the sum of the individual parametric capacitances, negatively corrected by the addi-
tional polarizability that mutual capacitance grants the island electrons. As with the
parametric capacitance near an interdot transition, this is another manifestation of
the fact that a gate probing parametric capacitance will not be sensitive to electrons
rearranging themselves on what is practically the same ’capacitor plate’.

A distinct expression for parametric (specifically, quantum) capacitance can also be
qualitatively guessed from a Hamiltonian approach [37]. Consider a system of elec-
trons probed by a gate voltage Vg with quantum Hamiltonian Ĥ. This Hamiltonian
may in principle be separated into a component −Ĥq containing all dependence on
quantum degrees of freedom, as well as a term Hc which contains purely classical con-
tributions to electrostatic energy. Since Cgeom is by definition the classical component
of capacitance, and because the energy stored on a capacitor is CV 2/2, it must be the
case that Hc = CgeomV 2

g /2 in the absence of dissipation or current into the system. Un-
der the assumption that the entire electronic system behaves as a capacitor as seen
by the gate voltage, we must have 〈Ĥ〉 = 〈L̂ 〉 = Ce f f V 2

g /2 for some effective capacitance
Ce f f , since the Hamiltonian consists only of potential terms. Differentiating this equa-
tion twice implies Ce f f = ∂2E/∂V 2

g . Applying this to our system’s Hamiltonian leads to
the result:

Ce f f =
∂2 〈Ĥ〉
∂V 2

g
= ∂2Hc

∂V 2
g

− ∂2 〈Ĥq〉
∂V 2

g
= Cgeom−∂

2 〈Eq〉
∂V 2

g︸ ︷︷ ︸
Cq

(2.19)

where Eq is the energy of our quantum system, neglecting classical capacitance terms.
Qualitatively, this demonstrates that a capacitance measured under these assump-

tions is proportional to the second derivative of the system’s energy with respect to the
probe voltage. This is analogous to an effective mass model, wherein electrons in a
metal are modeled as a free band ε~k = ħ2k2/2m∗ for some effective mass m∗ varying
from the bare electron mass, with capacitance taking the place of mass here. Just as
in a free electron approximation, this effective capacitance description of Cp is valid

5A similar result for N = 2 was obtained in [3] by neglecting mutual capacitance altogether.
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whenever the Hamiltonian is quadratic in probe voltage Vg. The above expression is
often qualitatively cited but seldom motivated [38–40], despite ambiguity as to why
the quantum Hamiltonian should be subtracted from Hc rather than added6.

Quantum Capacitance

An important distinction may be drawn between two forms of parametric capacitance:
quantum and tunneling. Quantum capacitance is described by eq. (2.19), and always
contributes to the total parametric capacitance when two charge states are hybridized
[3]. Physically, it results from adiabatic evolution of the electronic quantum state as
the probe voltage oscillates in time (see Figure 2.5). Near an anti-crossing of two
charge states in a DQD, the electron does not discretely (in time) jump from one dot to
another, but rather transitions between varying superpositions of occupying the first
or second dot, affecting the average dot occupation 〈n〉 and thus Cp.

More specifically, a DQD with no orbital degeneracy, tunnel coupling tc and de-
tuning from resonance7 ε has ground state energy Eg = −

√
(ε/2)2 +|tc|2, leading to a

quantum capacitance at zero detuning of:

Cq|ε=0 ∝
∂2Eg

∂ε2

∣∣∣∣∣
ε=0

= 1
2|tc|

(2.20)

This is simply the non-degenerate (N = 1) case from the more general double-dot model
solved in Section 3.1. Note from Section 3.1 that the same result would be obtained if
eq. (2.13) was used. Thus, quantum capacitance is an inverse measure of the interdot
tunnel coupling, and hence, the hybridization between their states!

Tunneling Capacitance

While quantum capacitance measures the system energy’s dependence on the oscillat-
ing voltage, tunneling capacitance depends primarily on thermal or driven excitation
and relaxation rates of the tunneling electron, and does not require quantum level
hybridization. Large interdot tunnel couplings are equivalent to very fast electron
tunneling rates, say Γr between the dots. If the probe voltage Vg(t) = V 0

g +δV sin(ωt)
oscillates with frequency ω¿ Γr and if excitation rates Γe ¿ ω, then the electron can
easily track the instantaneous voltage set by the probe: this is simply the adiabatic
quantum capacitance regime described above8.

Tunneling capacitance arises when excitation rates Γe and relaxation rates Γr of
the electron are comparable to the probe oscillation: Γe,Γr . ω. For a DQD slightly
away from zero detuning, this is because excitations and relaxations correspond to
either tunneling off of the dot or back on to it. The oscillating probe controls which
charge state is of higher energy, so if the electron excites and relaxes on the time scale
of one oscillation, it is on average lagging behind the preferred polarization induced by
Vg(t), depicted in fig. 2.5.

Clearly then, when tunneling capacitance is relevant depends on sources of exci-
tation and relaxation in the system. Charge relaxation rates Γr depend on the ge-
ometry and material properties of the system, but can conceivably be comparable to

6A brief explanation in [37] claims that Ĥ is the system’s Routhian, serving as a Hamiltonian for the
quantum degrees of freedom but as minus the Lagrangian for circuit degrees of freedom.

7From the electrostatic theory of DQDs described earlier, the detuning of charge levels near resonance
is always linear in either dot’s gate voltage Vg.

8The high frequency regime ω À Γr is not considered here, since in this case the resonator would
stimulate higher excitations as in photon assisted tunneling microwave experiments [28].
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FIGURE 2.5: Tunneling with rate Γr near a charge degeneracy point for a coupled DQD or
dot-lead system. for different charge relaxation rates Γr, subject to an oscillating reduced
gate voltage ng(t) = n0

g +δng sin(ωt). For slow oscillations or strong tunneling (top right), the
electron remains in its initial state, and no dissipation occurs. When charge tunneling rates are
finite but small (so that tc ≈ 0), the electron can not respond to electrostatic pressure from the
gate ng(t) immediately, gaining energy in the excited state until it finally relaxes. In this case,
dissipation occurs. The insets show chemical potential diagrams of a dot-lead system before
and after tunneling. Note the electron does not necessarily relax at the maximum or minimum
oscillation amplitude of ng(t), but because at this point the energy difference between excited
and ground state is maximum, the relaxation rate is largest at these points. When tunnel rates
are negligible (bottom right), the involved dots or leads are effectively decoupled and no energy
is dissipated. Figure based on one from [41].

the characteristic frequencies of resonators used in this thesis’ experiments (∼ hun-
dreds of MHz) [42]. Supposing the energy difference between ground and lowest ex-
cited states is ∆E, thermal excitation rates can then be estimated as Γe = Γrnp where
np = (e∆E/kBT − 1)−1 is the occupation number of a thermal bath of phonons in the
environment [3]. For truly discrete tunnel-coupled charge states, we expect in our ex-
periment interdot couplings well above 1ħ·GHz [43], which would significantly exceed
temperatures of kBT ∼ 0.4ħ·GHz (at 20 mK, a typical base temperature of dilution
refrigerators). Consequently, we only expect significant contributions to Γe from tem-
perature when two charge states are very weakly hybridized, such as in the coupling
between a dot state and the continuum of states in a lead. It has also been argued
that Rabi driving to excited states by Vg(t) can occur even when ω is far off resonance
with tc [43] provided driving power δVg is strong enough, but this is easily avoided
in our measurements by lowering this amplitude until power broadening is no longer
observed9.

One final mechanism by which the electron can be excited is through diabatic
Landau-Zener Transitions (LZTs), which occur when the driving potential is either
very strong or very fast. Supposing Vg(t) oscillates with V 0

g centered at zero detuning
between two charge levels, its potential is approximately linear when Vg(t) ∼ δVgωt
passes near 0 detuning. The probability PLZT of a LZT occurring as detuning is swept
across zero for levels hybridized with tunnel coupling tc is then [44]:

PLZT = e−2π|tc|2/ħeδVgω (2.21)

assuming a generously large lever arm α∼ 1. For tunnel couplings on the order of GHz
(µ eV) and probe frequencies on the order of 100s of MHz as in our experiments, this

9The Rabi formula implies the occupation probability of excited states is asymptotically ∝ (eδVg/(ω−
∆E)2 for driving frequency ω and transition energy ∆E when ω is far detuned and δVg is weak enough
that eδVG ¿|ω−∆E|.
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probability is vanishingly small for driving potentials less than 2.25µeV (for a 50Ω
system being driven with −100 dBm of power), see Figure 2.6. This is the regime we
use in experiment. On the other hand, when tunnel couplings are negligibly small or
zero, the probability of an LZT occurring approaches 1. This is the limit of two non-
interacting dots or a dot coupled to a lead: if two charge levels are completely decou-
pled, then there is no mechanism by which the electron can avoid a LZT by tunneling to
the other dot. For leads, inelastic processes dominate charge tunneling since there are
an abundance of states in the lead at any point above its Fermi level [23]. Significant
tunnel rates can coexist with negligible tunnel couplings (i.e. a strong tunnel barrier),
since the sum of very small tunnel rates to each of the many unoccupied states can
add to a significant total rate nonetheless [45]. The same is true for metallic charge
islands, or any system with a continuum of states spaced practically infinitesimally in
energy.

FIGURE 2.6: Probability of LZT occurring for
an α = 1 gate oscillating with frequency ω/2π
about a charge degeneracy point of tunnel cou-
pling tc. Power is relative to a 50Ω line.

Evidently, we can identify tunneling
capacitance as the result of incoherent
charge tunneling between nearly degen-
erate quantum states. Intuitively, this
makes it difficult to derive a clear rela-
tion between the tunneling capacitance
and characteristics of orbitals or sub-
gap states in charge islands10, but a
closely related phenomena called Sisy-
phus resistance may enable one to con-
clude whether or not electrons are tun-
neling between discrete quantum states
without dephasing or incoherently with a
bath of states from a DGS measurement.

2.4 Sisyphus Resistance

As mentioned above, the probability of a LZT is near unity when two decoupled charge
levels (i.e. in a DQD or lead and dot) are swept across a degeneracy point. Phrased
another way, it is impossible for an electron to adiabatically remain in the system’s
ground state if the initial and final ground state are separated by too high of a potential
barrier, such as a tunnel barrier. Recall the Adiabatic theorem, which states that a
system initially in some eigenstate of a Hamiltonian varying slowly in time will remain
in the analogous eigenstate of the instantaneous Hamiltonian, unless this eigenstate
becomes degenerate with another.

By definition of a level crossing, the energy of a system’s ground state relative to
the first excited state can only increase upon approaching this crossing. If relaxation
rates are finite and the energy released during relaxation is lost to the environment,
dissipation must be occurring, shown in fig. 2.5. For an oscillating voltage sweeping
two charge states across degeneracy, the resulting dissipation seen by the oscillator
circuit is called Sisyphus resistance [45]. Mathematically, it is written in terms of the
time averaged power dissipation Psis:

Rsis =
(δVg)2

2Psis
(2.22)

10Tunneling problems of a statistical nature such as this one are usually solved using a master equation
approach to find the probability of occupying different quantum states [41, 46, 47].
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Psis is heuristically defined as the average energy dissipated minus the average energy
gained per resonator cycle:

Psis = ω

2π

∫ 2π/ω

0
dt∆E(t) (Γ1→2P1 −Γ2→1P2) (2.23)

Above, ∆E(t) = E1(t)−E2(t), Γ1→2 and Γ2→1 are tunnel rates between ‘charge system’
1 and 2, and P1 and P2 are probabilities of an excess electron occupying either one of
these coupled systems.

FIGURE 2.7: Chemical potential diagram of a
dot orbital coupled to a lead. Additional dissi-
pation can occur through elastic tunneling into
excited states of the lead followed by relaxation
through scattering with a phonon. This cartoon
assumes charge relaxation rates Γr .ω but or-
bital relaxation rates Àω.

Importantly, the dissipated power is
zero whenever the relaxation and excita-
tion rates are zero or whenever the prob-
ability of occupying the excited state is
zero. For a discrete set of states, the for-
mer occurs for a very strong tunnel bar-
rier, while the latter arises from LZTs
being suppressed by a significant tunnel
coupling. For a dot state coupled to a con-
tinuum of states such as a lead, these in-
dividual tunnel couplings may combine
to a significant tunnel rate according to
Fermi’s golden rule [47], even when tun-
nel barriers are very strong.

From the above considerations, we
see that the existence of Sisyphus resis-
tance is indicative that the system’s rele-
vant charge states are approximately de-
coupled, but that a process nonetheless
exists allowing an electron to relax by
tunneling across a barrier. For a suffi-

ciently strong tunnel barrier, this means that many degenerate or near degenerate
states are present in the ground charge state or excited charge state manifold. We do
not claim the converse statement, however: For strong tunnel barriers, a marked lack
of dissipation increase while sweeping voltages across a charge degeneracy point does
not imply that only two or very few quantum states are involved, as far as current
experiments have suggested. We note that additional dissipation may also occur via
elastic tunneling into excited states of another charge level followed by orbital relax-
ation, see Figure 2.7.

One scenario not yet mentioned is the case of strong tunnel coupling between a
single dot orbital and a collection of nearly degenerate states. In this case, we expect
the electron to adiabatically remain in the ground charge state manifold, but naively
predict the resonator may drive orbital excitations within the nearly degenerate state
set, since the excitation energies are very small. While this would not lead to tunneling
capacitance or Sisyphus resistance as we defined it since no charge relaxation occurs,
the electron still may relax its orbital state, dissipating energy from the resonator
(Figure 2.7). This intuition, and whether or not it is accurate, will be discussed in
somewhat more detail in Section 3.3.
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Chapter 3

Theoretical Results

THIS chapter is presented as an explanation for phenomena we observe in experi-
ment, especially charge parity dependent tunneling. Measuring or braiding the

state of a Majorana box qubit amounts to measuring the fermion parity dependent tun-
nel coupling of a Superconducting Charge Island (SCI) with a Quantum Dot (QD) [4].
It is imperative, then, that any other transport phenomena modulating the interdot
tunnel rate depending on its parity be accounted for and calibrated out. In order, we
therefore explain the effect of introducing degeneracy to a Double Quantum Dot (DQD)
system, followed by accounting for thermal and driving effects, as well as coherence ef-
fects for the case of an SCI. Beyond building qubits, this also illustrates the wealth of
information contained in the impedance of a gate coupled to a quantum charge system.

3.1 Effect of Degeneracy on Quantum Capacitance

Since we will be dealing with semiconducting QDs coupled to SCIs with subgap states,
it is not always as simple as each charge level having a single discrete ground state for
an excess electron to occupy. Orbitals could be spin-degenerate, for example, or many
subgap states could be clustered near degeneracy. To gain some intuition regarding
how degeneracy affects quantum capacitance, we thus present a toy model minimally
describing this. A schematic of the model is given in Figure 3.1. For a single dot state
|D〉 tunnel-coupled to an N-fold degenerate charge state {|n〉}N

n=1 by tunnel coupling tc
with energy detuning ε, the Hamiltonian is:

Ĥ = ε

2
|D〉〈D|− ε

2

N∑
n=1

|n〉〈n|+
N∑

n=1

[
tc |n〉〈D|+h.c.

]
(3.1)

FIGURE 3.1: Energy dia-
gram of a single dot orbital
tunnel coupled by tc to some
N-fold degenerate state on
another charge island, de-
tuned by ε.

The eigenvectors and eigenenergies of this Hamilto-
nian can easily be solved for directly. The eigenvalue
equation Ĥ |ψ〉 = E |ψ〉 where |ψ〉 has components |ψ〉 =
c0 |D〉+∑

n cn |n〉 leads to the N +1 coupled equations:

(ε/2)c0 + t
∑
n

cn = Ec0 (3.2)

t∗c0 − (ε/2)cn = Ecn ∀n (3.3)

From inspection, we deduce two cases. First, if E 6=
−ε/2, then cn = t∗c0/(E + ε/2), and accordingly E is E± =
±

√
(ε/2)2 +N|t|2. Allowing c0 = 0 would force E = −ε/2,

against our assumption, so c0 must instead be determined
by normalization relative to cn.
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In the second case, where E = ε/2, we find c0 = 0, and∑
n cn = 0. By inspection, we can identify N−1 orthonormal solutions where, say, c1 = 1

and ci =−1 for some 1< i < Nqp. In summary, the eigenstates of our system are:

|±〉 = 1p
A
|D〉+ 1p

A

∑
n

t∗c
E±+ε/2 |n〉 , E± =±

√
(ε/2)2 +N|tc|2 (3.4)

|n′〉 = 1p
2

[|1〉− |n〉] , En′ =−ε/2 (3.5)

for N ≥ n > 1. We define A ≡ 1+N|tc|2/(E±+ε/2)2.
For significant tunnel couplings tc > kBT, the ground state E− is energetically well

separated from the degenerate |n′〉 states near ε= 0, where quantum capacitance Cq is
expected to be significant. Using its eigenvector, we can then calculate Cq at kBT = 0.
If we probe from the dot’s gate, the probability of an excess electron residing on this
dot is:

〈n〉D = |〈D|−〉|2 = 1
A

= 1
2

(
1− ε√

ε2 +4N|tc|2

)
(3.6)

Near zero detuning, eα′dVg = dε where α′ = α1 −α2 is the gate’s difference in lever
arms between the dot and degenerate island. The quantum capacitance is thus:

Cq =−(eα′)2 d 〈n〉D

dε
= (eα)2 N|tc|2

4(N|tc|2 + (ε/2)2)3/2 (3.7)

plotted in Figure 3.2. Clearly, the quantum capacitance has a peak of Cq = (eα)2/4
p

N|tc|
at ε= 0, and a quick calculation reveals that this peak has a Full Width at Half Maxi-
mum (FWHM) of ∆ε= 4

p
41/3 −1

p
N|tc| ≈ 3.07

p
N|tc|.

FIGURE 3.2: Quantum Capacitance
for a discrete charge state coupled to
N-fold degenerate charge states in its
ground state, using a realistic tunnel-
ing frequency tc/h = 10GHz [43] and
lever arm α= 1.

From this model, we deduce that measured
quantum capacitance broadens and flattens about
an interdot transition linearly in the tunnel cou-
pling, and ∝ 1/

p
N in the degeneracy of one of the

island’s states. This conclusion should hold when-
ever tc is significant and excitation rates are neg-
ligible. Thus, the phase response signal observed
in experiment for dot-to-lead or dot-to-metallic-
island transitions with DGS likely has negligible
contributions from quantum capacitance when tc
is significant since N À 1, with tunneling capaci-
tance dominating. Since tunneling and quantum
capacitance for dots coupled to continua both rely
on small tunnel couplings (i.e. small inter-state
anti-crossings), we expect there to be a very low
capacitive signal measured with DGS in experi-

ment for relatively open tunnel barriers aside from the classical geometric capacitance.
To test how valid these claims are in a slightly more realistic scenario, we simu-

late a dot orbital coupled to a second degenerate dot using zero temperature numerical
simulations (described in Appendix B). These simulations account for charging ener-
gies, mutual capacitance, degenerate fermionic modes, and parity dependent tunnel-
ing. Due to their modularity, they will be compared with experiment and other theory
throughout this thesis. The results for various degeneracies are given in Figure 3.3.
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FIGURE 3.3: Simulated charge stability diagrams of a DQD where one dot’s level is non-
degenerate and the other is N-fold degenerate. Linecuts are plotted to show qualitative agree-
ment with Figure 3.2, with resonances broadening and widening with increasing degeneracy.
The N = 10 linecut deviates slightly from the center because of interference from the lead
transition.

Spin Effects

The toy model also suggests a zero-field spin effect on quantum capacitance for DQD’s
with spin-degenerate levels, originally predicted by Cottet et al using linear-response
theory [48]. For such a DQD, there are two cases. When the DQD’s total charge parity
is even, there is a degeneracy: either a spin-up or spin-down electron may tunnel into
an empty orbital so that there is a 2-fold degeneracy of final states. For odd total charge
parity, however, there is no degeneracy. An excess electron of some spin shared between

FIGURE 3.4: (a) Tunneling channels for a spin-degenerate DQD at even and odd parity. (b)
Simulated charge stability diagram of quantum capacitance at T = 0 for a DQD with Ec =
E(1)

c = E(2)
c , tc = 0.1Ec, and Em = 0.7Ec, in order to most closely qualitatively reproduce the

results of Cottet et al [48]. Note that Cq peaks at interdot transitions for even DQD charge
parity are lower and broader than those for odd parity. Leads are modeled as dots with zero
charging energy and tunnel coupling to dots tl = 0.02Ec in order to reproduce correct transition
placement and tunnel broadening, but should only be considered qualitatively. Conversely, lead
transitions do produce a negative capacitance as predicted by Gonzalez-Zalba et al [23].
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two orbitals will maintain its spin as it tunnels provided there is no mechanism for
spin-flips (eg. due to a nuclear spin bath [49]). For a full orbital and one half full
orbital, only the electron with spin not present in both dot states may tunnel, by the
Pauli exclusion principle. These processes are schematized in Figure 3.4a. From the
perspective of the toy model, an even parity DQD has N = 2 while an odd parity DQD
has N = 1. For tunneling between discrete states in quantum dots or subgap states in
SCIs at zero field, we therefore expect a frequency shift due to quantum capacitance
that is

p
2 smaller for even parity transitions.

Since the N = 2 degeneracy is lifted when a magnetic field is applied due to the
Zeeman effect, the smaller capacitance peak is predicted by Cottet et al’s model to be-
come sharper and narrower, while the N = 1 peak remains invariant [48]. Obviously,
a Majorana qubit experiment in semiconducting nanowire geometries would involve a
strong magnetic field. This would break the zero field spin degeneracy, but this spin
blockade effect could still lead to parity dependent tunneling1. As a further demon-
stration of our numerical model, we reproduce qualitatively their results at zero field
in Figure 3.4b.

As a final note, the conclusions of this model may hold more closely for tunneling
into a SCI’s quasiparticle continuum than for a metallic island, since superconductors
have a well known ’coherence peak’ of diverging density of states at the superconduct-
ing gap edge. This means that the vast majority of states involved in tunneling are
very closely spaced at the gap edge.

3.2 The Adiabatic Regime of Dispersive Gate Sensing

Thus far, in addition to assuming low temperatures, we have also assumed that charge
level excitations are only driven by an RF-oscillating gate voltage when the avoided
crossings of two charge states are small compared to the drive power and frequency.
From the perspective of diabatic Landau-Zener transitions (LZTs), this proved justified
for frequencies below a gigahertz (see Equation (2.21)), as we use in experiment. For
systems driven by periodic potentials, however, Rabi oscillations may also lead to fluc-
tuating population of excited states. Earlier experiments in DQD systems found that
DGS measurements’ dependence on the RF power was well described by a Rabi-like
model [43].

Here, we justify neglecting these Rabi processes by showing that for eαδVg ¿p
N|tc|, the probability of excited states whose energy has non-zero second derivative

being occupied is itself on the order of (eαδVg/
p

N|tc|)2.
We consider the toy model of Section 3.1 depicted in Figure 3.1, where the detuning

oscillates as ε(t) = δεsin(ωt) for some angular frequency ω. As a reminder, this model
describes a DQD where one dot has a N-fold degenerate orbital {|n〉}N

n=1 while the other
|D〉 is non-degenerate. The Hamiltonian at t = 0 is:

Ĥ0 =+
N∑

n=1

[
tc |n〉〈D|+h.c.

]
(3.8)

1This would depend on spin-orbit coupling. Majoranas, for example, are expected to have a different
spin ‘canting’ angle for Majorana quasiparticles on opposite ends of a topological nanowire, arising due to
strong spin-orbit coupling [50, 51].
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with eigenstates:

|±〉0 ≡ |±〉|ε=0 = 1p
N +1

[
|D〉±

N∑
n=1

|n〉
]

, |n′〉0 ≡ |n′〉 |ε=0 = 1p
2

[|1〉− |n〉] (3.9)

of energy ±pN|tc| and 0 respectively. The perturbing potential is then:

Ĥ′ = 1
2
δεsin(ωt)

[
|D〉〈D|−

N∑
n=1

|n〉〈n|
]

(3.10)

which clearly has the effect of mapping Ĥ′ |±〉 = 1
2ε(t) |∓〉 and Ĥ′ |n′〉 = −1

2ε(t) |n′〉. Evi-
dently, the oscillating detuning only couples the ground state |−〉 to its excited counter-
part, merely evolving the phase of any |n′〉 component of the state. Assuming the sys-
tem resides in its ground state |−〉0 at t = 0, we can therefore neglect all |n′〉 states and
the problem reduces to that of Rabi oscillations. In experiment, our resonators probe
at sub-GHz frequencies, while typical tunnel couplings are O (GHz). Consequently,
the rotating wave approximation that 2

p
N|tc| +ωÀ 2

p
N|tc| −ω does not hold and

the standard Rabi formula is likely inapplicable2. Instead, we use second order per-
turbation theory. The resulting probability of occupying the excited state |+〉0 is (see
Appendix F for derivation):

P+(t)∼
(

δε

4
p

N|tc|

)2
sin2 (ωt) ω¿ 2

p
Ntc, δε¿ 2

p
N|tc| (3.11)

under a rotating-wave-like approximation which assumes the probe frequency to be
much lower than the transition frequency. As expected, the probability of occupying
an excited state due to Rabi driving is negligible whenever δε¿p

N|tc|. Interestingly,
in this limit the Rabi oscillations occur with the same frequency as the drive potential.

3.3 Finite Temperature Effects

From Section 3.2, we found that the probability of an oscillating RF gate voltage driv-
ing excitations to the |+〉 state (in the toy model of Section 3.1) is negligibly small in the
case that driving power is small compared to the transition energy. Still, we have ne-
glected the possibility of the electron occupying a localized |n′〉 state. At first this seems
valid – the oscillating detuning does not couple the ground state to any |n′〉 states –
but thermal excitation may cause tunneling between |−〉 and |n′〉. Since this state has
〈n〉D = 0, however, the electron has zero quantum capacitance while occupying this
state. This still holds some significance, though, since the quantum capacitance of the
system is the Cq it experiences in each state weighted by the probabilities of occupying
each state. Hence, we investigate how additional decoupled states in one of two charge
islands gives rise to thermal quantum and tunneling capacitance effects, even when
the interdot tunnel coupling is large. Resulting from this, we find that thermal ef-
fects enable tunneling capacitance and Sisyphus resistance-like dissipation even when
the oscillating potential is too weak to drive transitions to excited charge states, but
these contributions too are diminished by increasing degeneracy. The limitations of
our calculation are discussed, including the possibility of inelastic tunneling mediated
by phonons adding Sisyphus resistance beyond that predicted by our model.

2The Rabi formula states that the occupation probability of the excited state P+(t) oscillates as P+(t)=
(δε/ħΩ)2 sin2 (Ωt/2) for Rabi frequency Ω=

√
(2
p

N|tc|/ħ−ω)2 + (δε/ħ)2.
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FIGURE 3.5: Energy structure of a dot orbital
detuned by ε from an island with N = 400 levels
spaced apart by δ = 1/N. Labels denote the cor-
responding eigenstates in the δ = 0 case. Note
E+−E− ≈ 40tc = 2

p
400tc, while the gap to the

|n′〉-like states is smaller, especially at positive
ε.

To find an expression for parametric
capacitance and Sisyphus resistance, we
begin with the degeneracy model of Sec-
tion 3.1 with N À 1. This, we argue, is
sufficient to describe a dot orbital cou-
pled to a charge island with a continuum
of states when the continuum states are
decoupled from each other. Pictured in
Figure 3.5, we plot an altered version of
the degeneracy model with many states
N À 1 where we have shifted the en-
ergy of each |n〉 state to −ε/2+(n−1)δ for
some δ ¿ tc, simulating a continuum.
As can be seen from the plot, there still
exists N − 1 states decoupled from the
quantum dot where the electron is local-
ized to the degenerate island. Assuming
all relevant states to be near the lowest

decoupled state’s energy, we can approximate thermal excitation rates from |−〉 to each
of these states to be identical. This approximation is especially valid for a dot level
tunneling into a superconductor’s BCS quasiparticle continuum, since in that case the
density of states is drastically higher near the gap edge. In the end, this means we
can assume the tunneling rates Γ−→n′ into each of these nearly degenerate states are
roughly the same, and define Pn as the total probability of occupying any of the de-
coupled states. These states are approximately localized to the second island for small
splitting δ, so that the expectation value of the dot orbital’s charge when residing in
one of these states is zero. We also assume that the splitting is small enough that we
can approximate the system ground state as |−〉. The solution for a true continuum
of states, rather than an N-fold degenerate one, would likely differ in that thermal
excitations would occur between them.

To find a result for parametric capacitance and dissipation, we follow a similar ap-
proach to Gonzalez-Zalba et al [23], using master equations. To begin, suppose that our
system is subject to an oscillating voltage Vg(t) = V 0

g +δVg sin(ωt) with corresponding
energy detuning ε(t) = ε0 + δεsin(ωt). The expectation value of charge on the non-
degenerate dot 〈nD〉 may be written as:

〈nD〉 = 〈nD〉− P−+〈nD〉+ P+︸︷︷︸
≈0

+
N∑

n=2
〈nD〉n′︸ ︷︷ ︸

=0

Pn′ ≈ 〈nD〉− P− (3.12)

where the eigenstates are fixed at ε= ε0. Above, we approximated P+ ≈ 0 as it follows
from the assumption that ħω,δε¿p

N|tc|. The parametric capacitance is then:

Cp =−eα
d 〈nD〉
dVg

=−eαP−(t)
d 〈nD〉−

dVg
− eα〈nD〉−

dP−(Vg(t))
dVg

=−eαP−(t)
d 〈nD〉−

dVg
− eα〈nD〉−
δVgωcos(ωt)

Ṗ(t) (3.13)

where the gate has lever arm to |D〉 of α, no cross-capacitance to the other island, and
where we neglect mutual capacitance for convenience. The notation ḟ (t) ≡ d f /dt is
used hereafter. In the second equality, we applied the inverse function theorem and
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chain rule. To find the |−〉 occupation probability, we use the master equations:

Ṗ− =Γ−Pn −Γ+P−, Ṗn =Γ+P−−Γ−Pn (3.14)

where, as in [3, 23, 45], the excitation rates Γ+ =Γ0(e∆E/kBT −1)−1 and relaxation rates
Γ− = Γ++Γ0 are written based on the assumption that thermal processes give rise to
them [47]. Namely, Γ+ is the product of some bare relaxation rate Γ0 (assumed to be
constant for voltages between V 0

g −δVg and V 0
g +δVg) with the occupation number of a

coupled phonon bath. Γ− is shifted by Γ0 because relaxation occurs even in the absence
of phonons. ∆E = En′ −E− = −ε/2+

√
ε2/4+N|tc|2 is the energy difference between

ground |−〉 and excited states |n′〉. Recall that Pn describes the total probability of
occupying any of the |n′〉 states. These master equations can be solved to first order in
δVg, as is done in Appendix D. The result is, neglecting transient terms:

P− ∼ 1
2
+ Γ0

2ΓΣ
(1−Λcos(ωt))+ Γ0Λ

2(Γ2
Σ+ω2)

(ΓΣ cos(ωt)+ωsin(ωt)) t →∞ (3.15)

where we defined:

ΓΣ = (Γ−+Γ+)|t=0 = Γ0

tanh(∆E0/2kBT)
, Λ= 1

4

(
ε0√

ε2
0 +4N|tc|2

−1
)

(Γ0/ω)δε/kBT
sinh2 (∆E0/2kBT)

(3.16)
with ∆E0 ≡∆E|t=0. From section 3.1, we recall that:

〈nD〉− = 1
2

1− ε0√
ε2

0 +4N|tc|2

 ,
d 〈nD〉−

dVG
=−eα

N|tc|2
4(N|tc|2 + (ε/2)2)3/2 (3.17)

Now, if we were to apply eq. (3.14) to find the instantaneous differential capacitance, it
would contain sinusoidally oscillating tan(ωt) terms, which diverge at certain points.
This is a result of the AC signal: when electrons briefly move towards the capacitor
‘plate’ in phase with the oscillating signal, it is as though no capacitor is present since
charge is moving freely, leading to an infinite instantaneous capacitance. We thus
average out all sinusoidal terms to find:

〈Cp〉 = Cq +Ct (3.18)

where the quantum capacitance contribution is:

Cq = (eα)2N|tc|2 1+ tanh(∆E0/2kBT)
8(N|tc|2 + (ε0/2)2)3/2 (3.19)

corresponding to the derivative of the thermodynamic expectation value of charge,
while the tunneling capacitance term is:

Ct = (eα)2

16kBT

1− ε0√
ε2

0 +4N|tc|2


2

1
cosh2 (∆E0/2kBT)+ (ω/Γ0)2 sinh2 (∆E0/2kBT)

(3.20)
Naturally, the quantum capacitance term is dominant whenever the energy differ-

ence is large compared to temperature, though it is itself suppressed by large effective
tunnel couplings

p
N|tc|. The tunneling capacitance, on the other hand, is small when

ω is large compared to Γ0, but reaches a saturated value beyond about Γ0 = 2πω. This
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FIGURE 3.6: Thermal effects on the parametric capacitance and dissipation in the degeneracy
model of Section 3.1. All plots use the parameters N = 2, Γ0 = 10ω, ω= 500 MHz, tc/h = 1 GHz,
and kBT = tc, unless they are explicitly varied. (a) Tunneling Ct and quantum Cq capaci-
tance for different degeneracies. Within this limited model, both capacitances are broadened
by increasing degeneracy. (b) Capacitances plotted for different temperatures. Quantum ca-
pacitance Cq is reduced by increasing temperature, while temperature increases Ct up to a
maximum due to additional tunneling events occurring, until thermal broadening takes over
and reduces it. Somewhat surprisingly, quantum capacitance is the dominant capacitive con-
tribution in every scenario. (c) Ratio of the resistance quantum R0 = h/2e2 over the Sisyphus
resistance. Rsis is large enough to be negligible for a wide range of tunnel rates Γ0. Rsis
achieves a maximum at Γ0 ≈ (π/2)ω, though Γ0 is not shown for less than 0.2πω. (d) Tunneling
capacitance for different orbital excitation rates in the degenerate island. Ct increases with
increasing Γ0, quickly converging to a maximum at about Γ0 = 2πω, beyond which multiple
excitations occur on the timescale of the probe signal.

is not surprising, since the resonator can not possibly dissipate more energy per cycle
than it puts in to the system. We plot Ct and Cq for various parameters in Figure 3.6.

To some extent, this explains how it is possible for a parametric capacitance signal
to be measured in dots tunneling to highly degenerate islands, where the results of
section 3.1 suggested that quantum capacitance should be negligible at zero tempera-
ture. Finite temperature populates the |n′〉 states, leading to a tunneling capacitance
contribution resulting from tunneling between the ground ‘bonding’ state of the DQD
and states localized on the degenerate island. This is in contrast to the result for a
non-degenerate DQD system found by Mizuta et al [3], where tunneling was between
bonding and anti-bonding charge state superpositions.

With experiment in mind, we would also like to see if the degeneracy of a DQD
system leads to a dissipative impedance contribution, depending on the level of degen-
eracy N. The average power dissipated 〈P〉 into the DQD can heuristically be defined
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as the net energy gained through excitation and relaxation events averaged over a
resonator cycle:

〈P〉 = 〈∆E(t)(Γ−Pn −Γ+P−)〉 = 〈∆E(t)Ṗ−(t)〉 (3.21)

We expand to the lowest order in δε/kBT which survives after time averaging to find:

〈P〉 ∼ Γ0(eαδVg)2

16kBT sinh
(
∆E0
kBT

)
 ε0√

ε2
0 +4N|tc|2

−1


2 1− 1

1+ (ω/Γ0)2 tanh2
(
∆E0

2kBT

)
 (3.22)

contributing a parallel Sisyphus-like resistance to the effective impedance of the DQD
of:

Rsis =
(δVg)2

〈P〉 (3.23)

plotted in Figure 3.6c. Importantly, it becomes infinite at large positive or negative
detunings ε0, but seems to be a negligible amount of dissipation, particularly when
compared with the results of Esterli et al. They found the resistance quantum to be
on the order of one percent of Rsis in simulation of a non-degenerate DQD tunneling
between charge states.

The implications of this lack of dissipation depend crucially on how valid the model
is. It may hold for a system of a small number of degenerate states, but for islands with
larger degeneracies and continua, it seems to predict zero contribution from paramet-
ric capacitance and negligible dissipation. In these latter cases, this conclusion is likely
unphysical, since in experiment we do observe a capacitive frequency shift in DGS
measurements as well as dissipation in certain scenarios where a metallic (quasi-)
continuum of states is present.

FIGURE 3.7: Zoomed-in band structure of a dot
orbital tunnel coupled via tc to N = 400 levels,
linearly spaced by tc/20, themselves coupled via
td = tc. The dot orbital traces a path of anti-
crossings through the continuum states.

Hence, this model is not complete.
One possibility is that interactions with
the environment induce an effective cou-
pling between nearly degenerate states
in a continua [52]. We plot the nearly-
degenerate model of Figure 3.5 introduc-
ing this assumption in Figure 3.7. In
this case, the nearly degenerate contin-
uum states can no longer decouple from
the quantum dot state by entering a su-
perposition with each other, and so are
repelled in an anti-crossing by the dot
state. The width of these anti-crossings
decreases as the level spacing between
states decreases, so that even for large
tunnel couplings anti-crossings may be
small enough that the resonator can induce LZTs. This would lead to tunneling capac-
itance and Sisyphus resistance effects from the resonator driving excitations within
the continuum.

3.4 Normal-Superconducting Double Quantum Dots

In this section, we describe a low energy model of a Superconducting Charge Island
(SCI) coupled to a Normal Quantum Dot (QD), assuming the thermal energy kBT
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is much smaller than dot charge level spacings, superconducting gaps, and subgap
state energies. This last assumption is strong since it precludes Majoranas, which
are pinned at zero energy. Since the conclusions drawn here are related to electron
and hole-like coherence factors u and v modulating charge tunneling depending on
a SCI’s parity however, this is unimportant: Majorana zero modes have u = v, being
self-conjugate Bogoliubov quasiparticles. We calculate parametric capacitance of the
considered system in the regime of quantum capacitance, borrowing some results for
an ordinary DQD (Mizuta et al, Ciccarelli & Ferguson [3, 41]). Implicitly, this means
we assume significant tunnel couplings between the SCI and QD.

The Model

Consider a QD of charging energy EN
C with a tunnel coupling t to a SCI of charging

energy ES
C and gap ∆. Furthermore, suppose that there is a single spinful subgap

state E0 <∆. The Hamiltonian is:

Ĥ =
ĤD︷ ︸︸ ︷

EN
C (n̂N −nN

g )2+
ĤSC︷ ︸︸ ︷

ES
C(n̂S −nS

g )2 + ∑
σ=±1
p=e,h

(
E0γ̂

†
0σpγ̂0σp +

∑
ν

Eνγ̂
†
νσpγ̂νσp

)
+ĤT (3.24)

neglecting any mutual capacitance between the dots, where ĤT is a general tunneling
Hamiltonian:

ĤT = ∑
σ=±1

(
t0σn̂+ ĉ0σ+

∑
ν

tνσn̂+ ĉνσ+h.c.
)

(3.25)

with n̂D ≡∑
n n |n〉〈n| and n̂S =∑

ν,σ ĉ†
νσ ĉνσ being the QD and SCI’s charge number re-

spectively, and nN/S
g being their reduced gate charges. Hence, ĤD and the first term of

ĤSC are simply the quantized version of charge island energies given in Equation (2.1).
The operators n̂± =∑

n |n±1〉〈n| create/annihilate a charge on the normal dot. Finally,
the fermionic γ̂†

νσp operators create Bogoliubov quasiparticles (Bogoliubons) on the SCI

with energy Eν =
√
ε2
ν+|∆|2 (ν 6= 0) for non-superconducting energy band εν character-

ized by quantum number ν. These are defined in terms of the SCI’s electron operators
and coherence factors uνσ and vνσ as:

γ̂νσe = uνσ ĉνσ−σvνσ ĉ†
−ν−σe−iφ̂, γ̂nσh = γ̂νσeeiφ̂ (3.26)

with inverse relation:
ĉνσ = u∗

νσγ̂νσe +σvνσγ̂
†
ν−σh (3.27)

The exponential of the superconducting phase operator eiφ̂ creates a Cooper pair in
the condensate, so that γ̂nσe/h represent electron or hole-like excitations respectively
of energy Eν.

The same relation holds for ν= 0 [46, 53], as a consequence of using the BCS con-
densate |g〉 as the vacuum state of quasiparticles. It is of no profound physical mean-
ing, then, if this is assumption is made even when the subgap state is well described
as a second dot level tunnel-coupled to the superconductor. In this sense, u0 and v0 are
parameters ‘mapping’ a fermionic operator to another, the Bogoliubon, which acts in a
simpler way on |g〉.
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FIGURE 3.8: (a) Two tunneling processes possible when a dot orbital |D〉 is coupled to a SCI
with lowest energy state E0 <∆,ES

C . µD(S)(n) is the chemical potential of the n’th charge state
on the dot (SCI). Black and empty circles denote electrons and holes, respectively. Because
charge is quantized, particle-hole symmetry is broken, and gaining an electron on the SCI
by gaining or losing a quasiparticle involves either an electron or hole-like tunneling process,
respectively. (b) Illustration of particle-hole symmetric excitations. When Cooper pair number
is unfixed, hole-like quasiparticles are indistinguishable from electron-like quasiparticles.

Superconducting Charge Islands with Subgap States

Additional assumptions of our model are as follows in the case where |E0 −∆| À kBT.
If the normal dot level is near resonance with a charge state of the superconductor
modulated by the subgap state ES

C ±E0, and the subgap state is well separated from
continuum quasiparticle states, we can project out all continuum-state terms from the
Hamiltonian. Furthermore, since we will be studying the transfer of a single electron
between each subsystem, spin is implicitly conserved in Ĥ, and subsystem energies are
independent of spin, we can drop the spin index σ and assume the electron in question
maintains its spin at say σ= 1. The Hamiltonian reduces to:

Ĥ = ĤD +ES
C(N − n̂−nS

g )2 +E0γ̂
†
0pγ̂0p + t

[
u∗

0 n̂+γ̂0e −v0n̂+γ̂†
0h +h.c.

]
(3.28)

The value of p ∈ {e,h} depends on whether the normal dot level is near resonance with
an electron-like or hole-like transition into the superconductor (i.e. above or below the
gap). Finally, we assume that the likelihood of having two quasiparticles simultane-
ously on the SCI is negligibly small. In a voltage sweep where the SCI already has
a quasiparticle, the QD would be on resonance with the SCI’s Fermi level so that a
Cooper pair can be formed from a QD electron and the quasiparticle far before it is
resonant with the top of the gap. A Cooper pair could also break and doubly occupy a
spinful subgap state, but this costs twice E0 and so is suppressed whenever kBT ¿ E0.
Consequently, we can reduce the Fock space of the SCI to containing only the super-
conducting condensate |g〉 as well as the states γ̂†

0p |g〉 for p ∈ {e,h}. Hence, we are left
with two distinct physical processes:

First, if the SCI has even parity and the QD has n charges, the SCI can accept a
charge by creating a quasiparticle. Since the charge on the SCI must have increased
by one in this process, the quasiparticle must be electron-like:

|i〉 = |g〉⊗ |n〉 → | f 〉 = γ̂†
0e |g〉⊗ |n−1〉

with matrix element 〈 f |ĤT |i〉 = tu0 (sample calculations are in Appendix E).
Second, if the SCI has odd parity (so it contains a single quasiparticle under our

assumptions), and excepts an electron from the QD initially containing n charges, it
must form a Cooper pair from this electron and quasiparticle since the electron does
not have sufficient energy to tunnel into a quasiparticle state. Then the only possible
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processes are the following hole-like transfer and its reverse, because the SCI must
gain a charge by eliminating a quasiparticle:

|i〉 = γ̂†
0h |g〉⊗ |n〉 → | f 〉 = |g〉⊗ |n−1〉 (3.29)

with corresponding matrix element 〈 f |ĤT |i〉 = −tv∗0 . A cartoon of these processes is
given in Figure 3.8.

Clearly then, near resonance with an electron-like (p = e) or hole-like (p = h) charge
transfer between the dots, the problem reduces to an effective two-level system with
Hamiltonian:

Ĥ = ε

2
(|i〉〈i|− | f 〉〈 f |)+ tp | f 〉〈i|+ t∗p |i〉〈 f | (3.30)

where ε is the detuning between the occupied QD state and the unoccupied SCI state
under consideration3, and tp = tu0 for p = e and −tv∗0 for p = h. This Hamiltonian has
eigenstates:

|±〉 = 1p
2

eiθ
√

1± ε

∆E
|i〉± 1p

2

√
1∓ ε

∆E
| f 〉 (3.31)

with energies E± =±
√
ε2/4+|tp|2. We define the transition energy ∆E ≡ E+−E− and

θ ≡ Arg(tp). At zero temperature, we may apply the model from Section 3.1 for N = 1
to obtain the quantum capacitance:

Cq =−(eα′)2 |tp|2
4(|tp|2 + (ε/2)2)(3/2) (3.32)

reaching a maximum of −(eα′)2/4|tp|. This coherence-factor dependent tunneling has
also been predicted to modify the conductance through a SCI [53], an effect which has
been measured [54]. Unfortunately, to be a direct measure of coherence factors, such a
measurement requires that tunneling rates between the SCI and the source or drain
be near identical. With regards to quantum capacitance, however, we now see that the
frequency shift of a resonator probing the charge transfer with DGS is inversely pro-
portional to the appropriate coherence factor at zero detuning, provided temperature
is low relative to the bare tunnel coupling. If variations in the bare tunnel coupling
across a few successive SCI to QD charge transitions can be neglected, coherence fac-
tors may be directly measured by taking the ratio of frequency shifts for an odd to even
or an even to odd charge transition onto a SCI.

For completeness, we note how the complete parametric capacitance at finite tem-
perature may be calculated for this model, following Mizuta et al’s method for a DQD.
Suppose we probe the QD coupled to an SCI and consider a single excess electron hop-
ping between the subsystems. In that case, | f 〉 corresponds to an extra electron on the
SCI, and from the eigenvectors of Section 3.1 for N = 1 we can infer the ground and
excited state occupation expectation values as 〈n〉± = 1± ε/∆E. Then the expectation
value of the single charge on the QD 〈n〉 is, in that model:

〈n〉 = P+ 〈n〉++P− 〈n〉− = 1
2
+ ε

2∆E
χ (3.33)

3Choosing the QD as occupied is arbitrary, since substituting n → n−1 leads to the scenario of the SCI
being ‘occupied’ and donating a charge to the QD.
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where χ ≡ P−−P+, and we applied normalization of probability: P++P− = 1. Using
2.13, the parametric capacitance is then:

Cp = 4(eα′)2 |tp|2
∆E3χ︸ ︷︷ ︸

Cq

+ (eα′)2 ε

∆E
∂χ

∂ε︸ ︷︷ ︸
Ct

(3.34)

where we used the energy-voltage relation dε= eα′dVg. The first term describes a sys-
tem in a constant mixed state, so it is the quantum capacitance contribution, whereas
the second term is non-zero whenever the state is affected by perturbations in Vg, and
so is the tunneling capacitance. If we apply the result of Mizuta for a DQD at non-zero
temperature by substituting in the effective tunnel coupling tp, we obtain:

Cp = (e(α1 −α2))2

|tp|

 |tp|3√
ε2

0/4+|tp|2
tanh


√
ε2

0/4+|tp|2
kBT


 (3.35)

Charge Islands with a Continuum of States

Broadly, quantum capacitance is the sole contribution to parametric capacitance when
the probed system’s (potentially mixed) quantum state is fixed on the time scale of the
probing RF carrier’s oscillations. Given that the quasiparticle states above the gap
in a SCI constitute a continuum or ‘quasi-continuum’ of excitations, this condition is
not met. It is reasonable hypothesize that while the driving RF probe is not strong or
fast enough to induce Landau-Zener transitions to excited charge states in the regime
of concern, it very well may drive excitations within the SCI to higher quasiparticle
states, as discussed in Section 3.3. These transitions do not effect an electron’s charge
state, and therefore may occur at a different rate than charge relaxation and excitation.
Finding a quantitative expression using a more realistic model than in Section 3.3 is
difficult, but it is expected to cause dissipation into the DQD due to its incoherence,
as well as lead to a tunneling-like capacitance associated with these excitations in
addition to quantum capacitance arising from the mixed state of the system.

3.5 Other Capacitive Effects

In experiment, it was found that in many regimes, a resonator coupled to one quantum
dot’s plunger gate was sensitive to lead transitions on the other dot in a DQD setup, de-
spite the charge transfer not even involving the probed dot. Furthermore, despite this
being explicable according to Equation (2.18) for significant cross-capacitances of one
dot’s gate to the other dot, cross-capacitance was found to be negligible in experiment.
Interestingly, numerical simulations suggested this was a result of tunnel coupling be-
tween the dots. As the tunnel coupling between dot levels increases, the range of level
detuning over which the levels are still hybridized with each other becomes larger.
When an electron tunnels onto one dot within this range from a lead, then, the other
dot’s state is altered as well, since the new electron’s wave function is delocalized into
the other dot to some degree. We depict this with numerical simulations using the
model of Appendix B in Figure 3.9 for different tunnel couplings.
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FIGURE 3.9: Simulated zero temperature quantum capacitance charge stability diagrams for
two non-degenerate dots with charging energies Ec1 = Ec2 = Ec, mutual capacitance energy
Em = 0.7Ec, and tunnel coupling to quasi-leads 0.02Ec, as a function of reduced gate voltages
n(1),(2)

g . The tunnel coupling between the dots, tc is increased from top left to bottom right. The
capacitance is probed from dot 1, and the gates have no cross-capacitance with each other. For
weaker tunnelings, this is why lead transitions to dot 1 are visible but those to dot 2 are not.
At stronger tunnel couplings, electrons become delocalized between the two dots and dot 1’s
gate is sensitive to lead transitions onto dot 2 as well.
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Chapter 4

Experimental Results

HEREIN, we present transport and Dispersive Gate Sensing (DGS) measurements
of electron tunneling in a Normal-Superconducting-Normal triple quantum dot

device, focusing on the regime where it is tuned as a Double Quantum Dot (DQD). As
mentioned previously, readout and braiding of a Majorana parity-based qubit requires
measuring an effective tunnel coupling from a quantum dot through Majorana zero
modes to another quantum dot. Understanding all factors which modulate the effec-
tive tunnel coupling between a dot and superconducting island is therefore critical.
Another necessary condition for the implementation of such a qubit is that levels in
a quantum dot can be controllably hybridized with subgap states in a superconduc-
tor. To work towards meeting these conditions, we begin by characterizing our device
and identifying various parity-dependent tunneling processes described in Chapter 3.
Next, we demonstrate hybridization between a subgap state of a superconducting is-
land and a quantum dot level, and observe evolution of the state with increasing mag-
netic fields. Along the way, we analyze changes in the resonator lineshape as it re-
sponds to changes in the subgap state’s energy and degeneracy.

4.1 Experimental Setup & Methods

FIGURE 4.1: Attenuation
and amplification at each
temperature stage of the RF
circuit, down to the PCB.

Measurements are performed in a dry dilution refrigerator
from Leiden Cryogenics at its base temperature of about
20mK. Initial cooling to roughly 4 K is performed via pulse
tube vacuum pump refrigeration, while the final cooling
stage is accomplished with the help of a mixture of helium-
3 and helium-4 in the so-called ‘mixing chamber’. At this
stage, a helium-3 rich condensed phase is separated from
a dilute phase by a phase boundary. Pumping helium-3
from the dilute phase causes helium-3 from the condensed
phase to cross the phase boundary, pulling latent heat out
of the mixture.

DC voltages are controlled with the help of a set of Dig-
ital to Analog Converters (DACs) followed by filtering and
attenuation at various steps of cooling in the refrigerator
in order to reduce thermal noise seen by the sample. Sim-
ilarly, RF signals are filtered at each temperature stage of
the refrigerator to reduce noise, and amplified both at 4K
by a cryogenic amplifier and again at room temperature,
see Figure 4.1. The DC block prevents low frequency car-
riers from being transmitted in either direction. A Printed

Circuit Board (PCB) provides the electronic interface connecting input cables to bonds
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on the sample, and includes bias tees which combine the oscillating RF and DC signals
without DC components from the RF line (or vice versa) contributing to the output.

A Midas frequency multiplexer both serves as the RF source and measurement ap-
paratus. It is capable of mixing 8 controllable frequencies and sending them down a
single RF line, while it also separates the signals into each probe frequency’s compo-
nent in the return signal. This enables us to simultaneously probe multiple resonators
provided they are not too close in frequency. Including the Midas’ output signal of -
23 dBm, depending on the Variable Attenuator (VA) settings used in the signal chain,
RF power at the sample level was estimated to be between -123 and -128 dBm, relative
to a 50Ω transmission line. In terms of voltages, this translates to a swing of δVg
between 90-160 nV. Midas obtains the in-phase and quadrature (I and Q) components
of the return signal, from which the phase and amplitude of the reflected signal are
calculated.

4.2 The Normal-Superconducting Double Dot Device

FIGURE 4.2: SEM image of triple dot
device with gate design superimposed
in color and DGS resonator circuit
shown above. Between Source (S) and
Drain (D) leads, three dots may be
defined and controlled by tunnel cut-
ter gates (T1−T4) and plunger gates
VP1,VP2,VPS . VPS possesses its own
resonator circuit with a different res-
onant frequency.

We conducted DGS and direct current measure-
ments of a hybrid normal-superconducting dot de-
vice, pictured in Figure 4.2. Since the fabrication
recipe was not a focus of its research, and in fact
is identical to that used in [43, 55] aside from dif-
ferent dot lengths, we only briefly summarize it
here.

A roughly 140 nm thick indium-arsenide
nanowire was positioned on a silicon wafer coated
with 20 nm of silicon-nitride dielectric. This wire
has an epitaxially grown 10 nm aluminum shell
on two facets with all but a 1.1µm long segment
etched away, defining the superconducting charge
island. Leads are composed of a 10 nm titanium
sticking layer covered with 150 nm gold, deposited
after an argon milling step to improve contact
with the wire. Coating all this is a 10 nm alu-
minum oxide dielectric layer formed with atomic
layer deposition, made as thin as possible to max-
imize the gates’ lever arms. As with the leads, the
plunger and cutter gates are composed of 10 nm
titanium covered with 150 nm gold. The semi-
conducting dots’ sizes are defined by their 290nm
wide wrap gates, up to variations due to the dif-

fering voltages applied to them and the tunnel gates.
Off-chip superconducting resonators patterned with niobium spiral inductors on a

sapphire substrate were used in the DGS circuits, where the resonators’ capacitance
is composed of its parasitic capacitance to ground in parallel with any parametric ca-
pacitance of coupled dots [56]. Two such resonators with characteristic frequencies
of roughly ωP1 = 2π ·449 MHz and ωPS = 2π ·525 MHz were bonded to plunger gates
VP1 and VPS, respectively. The amplitude response of the resonator circuit is shown in
Figure F.1.

To begin, we characterized individual charge islands with a combination of current
measurements and reflectometry measurements of each resonator. To define dots, it is
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FIGURE 4.3: Current ‘pinchoff ’ maps as a function of tunnel gates bordering the QD (T1 and
T2, left) and those bordering the SCI (T2 and T3, right). As a result of necessary dilution re-
frigerator maintenance, the sample was thermally cycled once during this experiment. Upon
cooling back down to base temperature, pinchoff traces were shifted to more positive voltages,
indicating that the wire became less conductive after the cycle. Consequently, there are in-
stances in this thesis where similar tunneling regimes were found for tunnel gate settings off-
set by upwards of 50mV. In both cases, pinchoff traces showed very little hysteresis in sweeping
tunnel gates forward and backward in a single scan.

necessary to determine which ranges of the tunnel gate voltages (T1, T2, T3, and T4)
enforce weak tunneling across them. To this end, we measure voltage pinchoff curves,
given in Figure 4.3. Since the experiments conducted here are focused on a DQD
consisting of a Quantum Dot (QD, defined by VP1) and Superconducting Charge Island
(SCI, defined by VPS), we only present pinchoff curves for T1 to T3, simply setting T4
and VP2 to positive voltages to ‘open up’ that wire segment into behaving as a lead. This
was accomplished with varying success, since we found every tunnel barrier to contain
intrinsic quantum dots, see Figure F.3 for relevant tunneling spectroscopy data. To
avoid such ‘dotty’ barriers, we simply tuned the tunnel gates away from any resonant
spots where charges appeared to be tunneling to a third, unwanted dot. Hereon, we
identify the VP1 dot as the QD and the Superconducting Charge Island as the SCI.

Based on the pinchoff traces, dots are defined by setting their respective tunnel
gates to voltages near those where current is almost completely closed off, denoted the
pinchoff voltage. From here, a natural method of characterization of charge islands
is with Coulomb diamonds: the islands are swept through several charge states via
their plunger gates, while bias voltage Vbias is also swept. This results in character-
istic ‘diamond’ shaped features in the measured current or RF signal. The height of
these diamonds in bias is simply twice the addition energy Ea, while their width is
simply Ea divided by the gate lever arm α [24]. Coulomb diamonds therefore allow
us to estimate these parameters, while features at higher bias indicate the presence
of additional tunneling channels, such as excited states in the dot or quasiparticles in
the SCI. Furthermore, the difference in addition energy between successive Coulomb
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FIGURE 4.4: SCI Coulomb diamonds (top) with ~T ≡ (T1,T2,T3,T4) = (450,−84,−75,450)mV
measured with current (left) and ~T = (450,−83,−74,450)mV measured with VPS phase
response. Likewise, below are QD diamonds with ~T = (−184,−84,0,0)mV and ~T =
(−120,−25,100,100)mV for the DC and RF phase measurements, respectively. From these di-
amonds we estimate E0 ∼ 70µeV, ES

c ∼ 90µeV, and EN
c ∼ 360µeV. Ordinarily, one can estimate

the induced gap of the SCI from the bias point where 1e periodicity in Coulomb oscillations
begins, however in our device the gap is ‘soft’ at these voltages, making this irrelevant. In the
normal dot, particularly from the RF VP1 phase diamonds, lines running parallel to the dia-
mond edges either indicate transport through orbital excitations in the dot, or from the dot’s
drain lead being partially superconducting with subgap states. When diamonds are skewed
in one direction and one diagonal edge of the diamond supports more current than another
this is indicative of a mismatch in tunnel coupling and capacitance to the source and drain.
The swelling of current in part of the SC diamonds may be a sign of negative differential con-
ductance, known to arise from quasiparticle excitations occupying and thus blocking transport
channels [57].

diamonds is proportional to their orbital energy difference, since the charging en-
ergies cancel. For superconductors with lowest quasiparticle state energy E0 < ES

C
(the SCI charging energy), this difference is proportional to E0. Specifically, it is
∆E = EC +E0 − (EC −E0)= 2E0.

Two typical diamond scans for the QD and SCI are displayed in Figure 4.4, both
for DC and RF measurement. From these and other diamonds, we estimate that the
lever arms of the P1 and PS gates are both > 70%, increasing as the dots are depleted
at more negative voltages, where charging energies also tend to increase. These large
lever arms facilitate the sensitivity of DGS measurements, as evidenced by the large
phase shifts observed in their resonators in Figure 4.4. Note that in some cases we
take the phase data modulo 2π to make color scales more clear.

As is noted from the SCI diamonds, for VPS near zero volts there is a subgap state
of some energy. Considering the differential conductance of the above scans dI/dVbias,
the SCI appeared to have a ‘soft’ gap based on the lack of coherence peaks indicative of
a diverging BCS density of states. In other words, enough clustered subgap states are
present that the superconducting energy gap is not clearly defined. It has been shown
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that the superconducting shell’s coupling to the underlying nanowire is markedly in-
creased when the electrons’ wave functions are ‘pushed’ towards the shell by applying
a negative gate voltage opposite to the shell [58]. For near-zero voltages then, it is no
surprise that there is a soft gap. Contrary to this, we note that current is relatively
flat outside of Coulomb blockade in the odd regime of the SCI, other than the negative
dI/dV feature. This hints that a single subgap state at low energy is well energeti-
cally separated from higher energy states, since otherwise the current would continue
to rise in this region.

To shed some light on the nature of the E0 subgap state, it is helpful to consider
two limits. First, in the limit of a nanowire completely decoupled from the Al shell,
there is no superconductivity, and all orbital states are simply ‘dot-like’ states in the
semiconductor. An even-odd spacing effect can still be observed without proximitized
superconductivity due to the presence of an effective triple quantum dot [59], where
the Al shell behaves as a third charge island. On the other hand, when complete
proximitized superconductivity is achieved through strong coupling between the shell
and wire, there is a hard gap and therefore no subgap states. From this, and data to
be shown later, we note that the subgap state (or states) is likely better described as
a dot orbital tunnel-coupled with the superconducting shell than as an Andreev bound
state. To demonstrate hybridization between an SCI subgap state and a QD orbital,
however, it is not necessary for it to be an Andreev state.

Before proceeding to double dot measurements, it is important to note that for
E0,Ec −E0 À kBT, we can control with negligible uncertainty the quasiparticle oc-
cupation of the SCI, neglecting any quasiparticle poisoning from non-thermal effects
while our superconductor is in Coulomb blockade with respect to the leads1 [60]. In
the center of a Coulomb valley (tallest part of a Coulomb diamond) at zero bias, the
energetic cost of an electron tunneling into the SCI is either ES

c +E0 or ES
c −E0, de-

pending on if the island parity is even or odd, respectively. As well as that, the only
route by which a Cooper pair could split and occupy a quasiparticle state is through an
energy cost of at least E0, depending on if the other electron tunnels to the lead or an-
other quasiparticle state. When all of these energy scales are larger than temperature,
there is thus exponentially vanishing probability of the quasiparticle occupation being
zero (one) for an odd (even) parity Coulomb diamond. The conclusion is precisely what
was noted in Section 3.4: any Coulomb resonance of the SCI must involve tunneling
between the BCS condensate of the superconductor and a state with a single quasipar-
ticle. In the following section, we exploit this fact to correlate the charge parity of the
SCI with its tunnel coupling to dot orbitals and leads.

4.3 Parity-Dependent Tunneling

One important tool by which we probe tunneling between the SCI and its coupled QD
is with Charge Stability Diagrams (CSDs) given by DGS measurements. Sweeping
the gate voltages of both islands, we measure tunneling between them. The regions of
suppressed tunneling identify stable charge states, while boundaries between stable
charge regions reveal information about tunneling processes occurring. Imperfections
in the resonator such as stray resonances distort the resonator response, making its
phase and amplitude response non-monotonic. This prevents us from extracting quan-
titative results from DGS CSDs relating to tunnel couplings, but variations in this

1Note however, that finite but relatively large (on the timescale of RF measurement) quasiparticle
poisoning times have been observed for an SCI mostly decoupled from leads of > 10µs [46].



36 Chapter 4. Experimental Results

response nonetheless grant a qualitative picture of quantum transport in the system.
To inspect more closely features of interest, we conduct frequency sweeps around these
features, since the shift in the resonator’s amplitude dip near resonance should still be
a good measure of the shift Cp in capacitance of the resonator ∆ω∼−(ω0/2)Cp/C0, see
Figure 2.4b.

FIGURE 4.5: Three CSDs taken with a previous RF signal generator and waveform digitizer
instead of Midas: A Rode & Schwarz SGS100A and AlazarTech ATS9870, respectively. Charge
states of the dot (SCI) are shown as numbers n (m) with respect to some arbitrary charge state,
and interdot transitions are drawn as dotted lines. In all diagrams, barriers of T1 =−182mV
and T3 = −73mV enforce weak tunneling to the leads. Diagrams are shown for very weak
interdot coupling in amplitude response APS (a), strong coupling and mutual capacitance in
phase response φPS (b), and strong coupling in a more depleted SCI and QD regime (c).

To get a broad picture of the system, however, three typical CSDs are given in
Figure 4.5, where the resonator response of the VPS resonator is measured through its
reflected amplitude APS and phase φPS. From the CSD shown in Figure 4.5a in the
weak interdot coupling regime, we see that the plunger gates VP1(S) have negligible
cross capacitance to the opposite charge island, since otherwise VPS would gate the
QD and VP1 the SCI and the lead transitions would show a slope. Figure 4.5b is a
CSD for very strong interdot coupling and mutual capacitance, where the two dots
nearly behave as a single charge island gated by both VPS and VP1. Importantly, these
two factors tend to suppress the QD-to-lead transitions when the SCI has odd parity.
Also, in this regime the system is essentially a single charge island, part of which is



4.3. Parity-Dependent Tunneling 37

superconducting and part of which isn’t, making transport very complicated. Hence,
we generally avoid such regimes.

Lastly, Figure 4.5c shows a CSD for a more depleted QD and SCI. QD-to-lead tran-
sitions are not suppressed for the odd parity SCI, since the odd parity state is more
stable at these gate settings, having an energy closer to the SCI nanowire’s Fermi
level. In all cases, however, note that the SCI resonator is sensitive to lead transitions
on the QD despite having little cross-capacitance to it. As proposed in Section 3.5,
this is a result of electronic wave functions being spread between the two islands at
stronger tunnel couplings.

4.3.1 Peak-Fitting Models

Subsequent analysis in this thesis is heavily based on the positioning and width of our
VP1 resonator’s response, and on our ability to pinpoint charge transition positions in
gate-space. We thus explain the methods used for peak fitting before proceeding.

Uncertainty in evaluation of peak positions, be they in gate-space or frequency-
space, depends on the fit function used. As we saw in Section 3.1, the parametric
capacitance near an interdot transition should be a Lorentzian function of detuning ε,
while Gonzalez-Zalba predicts a 1/cosh2 (ε/kBT) variation [23] for tunneling from a dot
to a lead, itself a Lorentzian for small ε. Assuming small parametric capacitance,
the phase shift seen by the resonator is proportional to Cp, making it Lorentzian
as well. To approximately determine the peak position, we therefore heuristically
fit with a Lorentzian function the complex resonator data V = |V |eiφ formatted as
|V |cos(φ−φmax) where φmax is the maximum phase shift over the data set. By doing
so, we make use of both the real and imaginary part of the complex reflected signal,
since |V |cos(φ−φmax) is maximized for large phase and amplitude shifts. This model
fits the peak centers very well using the least-squares method, so we estimate that the
dominant uncertainty comes from uncertainty in the peak positioning due to broaden-
ing of the transitions. As a result, we overestimate the uncertainty in peak positioning
to be simply ±γmax/2≈ 6µV, half the largest FWHM γmax across all peak fits in a data
set.

FIGURE 4.6: A typical fit (orange) of
the VP1 resonance in amplitude using
eq. (4.2). Original data is in blue.

Fitting the resonator frequency response, on
the other hand, requires different approxima-
tions. We find in Appendix A that an ideal se-
ries resonator with some dissipation R in paral-
lel with the capacitance C has a reflection coef-
ficient with a square root Lorentzian-like depen-
dence on the difference in probe frequency ∆ω

from the true resonance ω0 characterizing the dis-
tribution’s width:

|Γ| ∼
√

(R−Z0)2 +4L2(∆ω)2√
(R+Z0)2 +4L2(∆ω)2

, ∆ω¿ω0 (4.1)

In practice, other resonances contribute to a vary-
ing background in the resonator response, so the
VP1 resonance is clearly not completely described by Equation (4.1) (see Figure F.1).
We nonetheless fit the VP1 resonator response with a function of the form:

f (ω)= f0 +b(ω−ω0)+ A|ω−ω0|/
√

(3/4)γ2 + (ω−ω0)2 (4.2)



38 Chapter 4. Experimental Results

with two fit parameters A and γ determining the scale and FWHM of the distribution
while ω0 is its center and f0 is an offset. We implicitly approximate the resonator
dissipation as being matched with the transition line impedance to reduce the number
of fit parameters. The term fitted with b accounts for the varying background of the
RF response, approximated as linear on the scale of the VP1 resonance width. To
provide an upper bound on the fit parameters’ uncertainties, we therefore include a
rough estimate of the scale of the RF background’s variation as the difference between
minimum and maximum values that b(ω−ω0) achieves over the width of the ω sweep,
and include this as uncertainty in the amplitude data at each frequency point. This
is then translated to uncertainty in the fit parameters through the standard deviation
calculated by the least-squares fitting algorithm used. An example of one of these fits
is in Figure 4.6.

4.3.2 Tunneling into the Superconducting Condensate

In addition to the obvious even-odd spacings characteristic to an SCI with a low en-
ergy subgap state, the amplitude and phase response of the resonator often alternated
between successive charge transitions, begging the question of whether this too was
related to superconductivity. Towards an affirmative conclusion, we discussed in Sec-
tion 3.4 the possibility for electron-like and hole-like coherence factors (u and v, re-
spectively) of the subgap state modulating tunneling into and out of it when the su-
perconductor has quantized charge. Some of our measurements also supported this,
shown in Figures 4.7a and 4.7b.

SCI-to-lead transitions were found to frequently display an even-odd phase re-
sponse difference, but these transitions are subject to the inherent incoherence of tun-
neling into a lead. Information about the electron tunnel rate into the lead is then
obscured by thermal effects [23], rendering this method of measuring coherence fac-
tors no more revealing than conductance based methods [54]. Optimistically, the fact
that there is a difference at all is nonetheless suggestive of a coherence factor depen-
dent tunneling. Probing even-odd frequency responses is possible when tunneling to a
coupled QD, however, and the spin effect described in the following section only alters
the effective interdot tunnel coupling when the total DQD parity is changed. Motivated
by this, we pinched off both leads by setting tunnel gates to strongly negative voltages,
fixing the DQD’s total parity.

In the floating DQD regime, CSDs consist solely of interdot transitions (Figure 4.7b),
so that a sweep of either VPS or VP1 crosses interdot transitions. Even-odd peak
heights in frequency response were sometimes observed in such sweeps, see Figures 4.7c
and 4.7d, but these patterns only persisted over a few charge transitions at a time.
Furthermore, alternating tunnel couplings can be explained by, for example, tunnel
coupling to the QD being dependent on if an empty or half-full spin-degenerate orbital
is being filled. Thus, to truly isolate effects from the coherence factors, a single QD
charge state should be tunneled into for each successive SCI charge transition. This
could be accomplished with a ‘side-loading’ experiment, discussed in Section 5.1.

Another unexpected feature of the resonator frequency response across interdot
transitions is that in many cases, the resonance becomes less broad at these transi-
tions, shown in Figure 4.7e. It is possible that low-lying excitations are occupied due
to driving by the RF signal when the dots are decoupled, and that bringing the dots
near resonance allows the ground state to lower its energy at an anticrossing, prevent-
ing population of excited states and thus dissipation. An example of a Hamiltonian
leading to this phenomena is that of a single dot orbital coupled to a nearly-degenerate
continuum of states, whose spectrum is shown back in Figure 3.5. When the nearly
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FIGURE 4.7: (a) and (b) are CSDs for weakly coupled (T1,T3 =−100,+3 mV) and pinched off
(T1,T3 = −280,−173 mV) leads, respectively. Numbers in (b) indicate relative DQD charge
states. (c-e) Frequency sweep along with VP1 in the floating regime, with fitted resonance
frequencies ω0 (d), and full widths at half maxima γ (e).
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degenerate states themselves are independent, the electron’s ground state energy is
lowered away from the continuum states by spreading its wave function across each
state, creating an energy gap.

4.3.3 Zero-Field Spin-Dependent Tunneling

In order to focus on the interdot transitions between the SCI and QD, the SCI’s lead
was pinched off by setting T4 = −400mV, so that lead transitions from the SCI could
only occur by direct tunneling to the source or via cotunneling through the QD. Fairly
strong coupling was created between the QD and SCI by setting T2 = 10mV , while
T1 = −100mV was set to enforce weak dot-to-lead tunnneling. Unfortunately, it was
found that the VPS resonator was still fairly insensitive to interdot transitions in this
regime, see Figure F.2. Furthermore, because all CSDs were taken in the vicinity of
500mV on each plunger gate, the SCI’s subgap state is likely dominated by the physics
of the InAs semiconductor.

Once again, we therefore focused on the VP1 resonator, which revealed a surprising
zero-field spin effect on the interdot tunneling. In the phase response of VP1 it was
noted that interdot transitions showed a stronger or weaker shift depending on the
total charge parity of the DQD, see Figure 4.9a. In this regime, spacings between QD
charge states also showed an even-odd effect, hinting that the dot is well described
by independent spin-degenerate levels separated by a significant orbital energy. This,
combined with the already established even-odd spacings of the SCI, allows the de-
termination of the total DQD charge parity based on the size of a given charge state’s
hexagon in a CSD. We observed that for odd total parity, the phase shift at transitions
was weaker than for even parity.

FIGURE 4.8: Sweep across a lead
transition at ε = 1.37mV, along
with fitted resonance frequencies
ω0 and FWHM shifts ∆γ at each
N points. From this we extract
a maximum frequency shift of
∆ωmax = −321±5 kHz and broad-
ening of ∆γmax = 240±40 kHz.

To further investigate, we selected nine pairs
of interdot transitions (boxes in Figure 4.9a), and
conducted 3-dimensional CSD sweeps, with a fre-
quency sweep about the VP1 resonance on the third
axis. At each point in the stability diagram, the
resonator was fit with the function f (ω) described
in Section 4.3.1 to extract the resonance’s FWHM
and and characteristic frequency. As is evident from
Equation (4.1), larger FWHM values correspond to
increased internal dissipation in the resonator, while
from early theoretical discussions we predict the fre-
quency shift is proportional to tunneling or quantum
capacitance. In order to facilitate study of the inter-
dot transitions while neglecting lead transitions, we
rotate our gate voltage coordinates, using the slopes
of SCI and QD lead transitions in earlier CSDs as
the transformation parameters. Incidentally, the ro-
tation matrix used:(

ε

N

)
= R(−126.9◦)

(
VP1 −500mV
VPS −500mV

)
, R(θ)=

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(4.3)

effectively mirrored the VPS axis. This establishes an ε axis, corresponding to detuning
from interdot transitions, and an N axis, it’s orthogonal partner which is perpendicular
to QD lead transitions. As a baseline, we sweep N across a lead transition, taking a
frequency sweep at each N point, an example of which is in Figure 4.8. In this way we
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FIGURE 4.9: (a) Phase response in the DQD with the SCI lead pinched off, demonstrating the
zero-field spin degeneracy effect on interdot tunneling. Indices (n,m) denote the charge state
of the dot and SCI relative to some arbitrary center, respectively. Interdot transitions show
an alternately strong or weak phase shift dependent on the total DQD parity. Voltage coordi-
nates are rotated to create an artificial axis ε representing detuning from interdot transitions,
as well as its orthogonal axis N. Boxes denote the nine pairs of interdot transitions chosen
for frequency-space analysis. (b) is a slice of the 3-D charge stability diagram of the central
transition pair, with a frequency sweep about the VP1 resonance on the third axis. At each
(N,ε) point, the amplitude response is fitted to find the frequency shift, plotted relative to the
frequency in Coulomb blockade in (c). In (d), we select the maximum frequency shift at each
N value from each 3D transition pair scan, plotting it relative to the minimum frequency shift
at each N. Colors correspond to the transition pair in (a), while the yellow lines show the
expected relative values of

p
2 and 1. Near the edges, lead transitions can clearly be seen to

induce stronger frequency shifts than the interdot transitions.
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establish the level of dissipation (γ) and frequency shift expected for lead transitions,
namely, that both are larger compared to interdot transitions.

Cottet et al and our model from Section 3.1 both predict a zero-field spin effect
dependent on the total parity of a DQD [48]. Particularly, these models predict the
effective interdot tunnel coupling to be a factor of

p
2 larger for even total DQD parity,

since in this case either spin up or spin down electrons can tunnel between the dots,
introducing a 2-fold degeneracy. To our knowledge, this effect has not been previously
observed in experiment before for two related reasons.

First, to distinguish between tunnel couplings
p

2tc and tc, the tunnel coupling tc
must remain constant over many charge transitions in order to establish this effect
as a pattern. This requires operating in the many-electron regime, where the orbital
wave-functions at subsequent charge numbers show little variation. Unfortunately,
in the many-electron regime it is often the case that excited states of the n-charge dot
state are within kBT of the ground state, making spin effects unresolvable. Conversely,
in the few-electron (< 100 electrons) regime the tunnel coupling commonly varies sig-
nificantly from transition to transition, though the presence of energetically-separated
spin-degenerate levels has enabled observation of a spin-blockade effect at field with
DGS [61, 62]. Possibly, the presence of a subgap state in an SCI constitutes a 2-fold
degenerate level at zero field, even in the many-electron regime. This is due to the
coherence of the even parity SCI states simply being a Cooper pair condensate, sep-
arated by E0 from its first excited state. The quasiparticle state at E0, on the other
hand, may be clustered next to several low energy quasiparticle excitations, though in
that case observation of the spin-effect is unlikely due to thermal excitations.

Performing these measurements, results support the observation of this zero-field
spin effect, albeit inconclusively. Six of the nine interdot transition pairs showed rea-
sonable agreement with a

p
2 difference in their frequency shifts, though the middle

row had a significantly larger difference in shift. This could not be explained by con-
tributions from lead transitions either, since the resonance broadening characteristic
of lead transitions only appeared at the very edges of each scan, see Figure F.4. On
the other hand, this unexpected discrepancy is consistent with a competition between
tunnel couplings being modulated by the

p
2 spin degeneracy and differing u and v

coherence factors of the subgap state. The former alternates based on the total DQD
charge parity, while the latter changes based only on the SCI parity. Hence, the ‘middle
row’ of interdot transitions differs from the other two precisely in whether or not the
larger of u or v increases the frequency shift difference between the strong and weak
shifts further, or makes it smaller.

As an example, we show a numerical simulation in Figure 4.10 where both spin
effects and coherence-factor dependent tunnelings are present. This can lead to con-
fusingly complicated patterns alternating with periods larger than just strong to weak
and back, from charge state to charge state. We note, however, that these differences in
experiment could also simply be caused by changes in the QD orbital between charge
states.

In any case, the observation of this spin-degeneracy effect crucially requires coher-
ent tunneling between two spin-degenerate levels2. This is therefore strong evidence
that these measurements demonstrate coherent hybridization of a dot orbital with the
subgap state of a superconducting charge island.

2The simulations of this effect, eg. that in Figure 3.4b, would not exhibit it if spin was not preserved,
for example. For incoherent tunneling between many states, this is certainly the case, since different
electrons may be involved in each tunneling event.
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FIGURE 4.10: Simulated charge stability diagram for a normal dot coupled to a supercon-
ducting island with ES

c = (90/350)EN
c , E0 = (70/350)EN

c , tc = (20/350)EN
c , and u = p

0.7, with
quantum capacitance Cq probed from the normal island and with no cross-capacitance be-
tween gates. nN(S)

g are the dot’s (SCI’s) reduced gate voltages. The cancellation between tc
modulation from the spin degeneracy roughly removes the appearance of a ‘spin’ degeneracy
effect in the interdot transitions on the right, while on the left they are distinctly resolvable by
eye.

4.4 Evolution of Subgap State Transport with Field

Finally, we begin to study transport between the SCI and QD at non-zero magnetic
field. Particularly, we are interested in the level of dissipation within the resonator
when the SCI is metallic as opposed to when it has a discrete subgap state. Measure-
ments are currently ongoing, but presently we have characterized the evolution of the
subgap state energy in a regime where the QD lead is pinched off, see Figure 4.11.
The field direction Bz is known to be within roughly 20 degrees of alignment with the
nanowire’s axis, based on how the sample was mounted in the dilution refrigerator.
Bz and Bx therefore are ‘nearly parallel’ and ‘mostly perpendicular’ field directions,
respectively.

From Figure 4.11, we see that the subgap state exhibits complex behavior as a
function of field and VPS. Recalling that the spacings between SCI lead transitions are
proportional to Ec ±E0, the presence of two successive transitions of roughly the same
width at VPS ≈ 2−3mV is indicative of the subgap state crossing zero energy at zero
field. Extracting the level spacings as a function of field using the model described in
Section 4.3.1, we observe the subgap state crossing zero energy multiple times, once,
or being repelled from zero energy altogether, depending on VPS. If E0 was simply the
induced gap on the SCI, it could not ‘reopen’ to non-zero energy after collapsing to zero
energy. Thus, we have tracked a subgap state’s energy as a function of field without
direct transport through the DQD system.

Interestingly, the resonance point at 2−3mV was consistently present across mul-
tiple measurements. Combined with previous observations that numerous disorder-
based dots were present near the tunnel barriers in our system (see Figure F.3), and
that we are operating at positive VPS voltages, one possibility is that we are observing
an effective triple dot. In other words, we may be observing a semiconductor dot state
on the SCI tunnel coupled to the Al superconducting shell, which passes through a
charge degeneracy point with the shell at this resonance. Additionally, a single subgap
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FIGURE 4.11: (a) SCI resonator amplitude response to lead transitions from the SCI evolving
as a function of almost-parallel field Bz. (b) Selected fitted even (red) and odd (blue) spacings
from the above scan. The colored boxes denote which transitions in (a) are fitted to the spacings
shown in (b).

state energy should evolve linearly with increasing but weak field strengths, so the
curvature of the even-odd spacings as they close to zero is indicative either that the
subgap state is being repelled by other higher energy states, or that mutiple states
with distinct g-factors and energies are overtaking each other in approaching zero en-
ergy. Likely then, there are numerous subgap states clustered within the proximitized
gap.

With the knowledge that a subgap state or small cluster of states with different
g-factors is present in our superconductor, we compare the resonator frequency re-
sponse for tunneling into this state with tunneling into the metallic continuum of Al at
higher fields. Picking a single pair of interdot transitions for the half-closed off DQD
at (VP1,VPS) = (6,51)mV roughly, we take small charge stability diagrams where fre-
quency is also swept about the VP1 resonance. Afterwards, we fit the resonance at each
point in gate-space with eq. (4.2), extracting the resonance frequency ω0 and FWHM
γ. The results for various field strengths of Bx are given in Figure 4.13.

By conducting a sweep of VPS versus field and extracting an even-odd spacing pair
in the same region, we verify that the proximitized gap is closed at roughly Bx = 50 mT,
see Figure 4.12. It is technically possible that Bx penetrates the Al shell more so from
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the side than perpendicular to its face, allowing superconductivity to persist at higher
fields, but the lack of oscillations of the spacings about zero µV suggests otherwise. We
do not expect to see Andreev bound states pinned at zero energy nor Majorana zero
modes at such positive plunger voltages and low field strengths [63].

FIGURE 4.12: A typical ex-
tracted neighboring even-odd
spacing of SCI-to-lead transi-
tions as a function of nearly
perpendicular field Bx in the
weak tunneling T3 = −14 mV
regime.

Curiously, the fitted FWHM reveal that the VP1
resonator obtains narrower amplitude response at in-
terdot transitions compared to Coulomb blockade, giv-
ing the appearance of reduced internal dissipation at
these points. Lead transitions, on the other hand,
show starkly larger dissipation. This provides fur-
ther evidence to the hypothesis that level hybridiza-
tion at interdot transitions separates the ground state
further in energy from excited states, decoupling the
resonator from sources of dissipation such as higher-
energy quasiparticle states.

As can be seen in Figure 4.13 from the γ fits, the
resonator linewidth overall becomes broader as a func-
tion of field, due to Bx flux lines penetrating the res-
onator chip itself. Nonetheless, it is still clear that
even at fields above 100 mT, placing gates at interdot
transitions narrows the resonator linewidth. Unfor-
tunately, this seems to indicate that γ is not a good
measure of whether or not electron tunneling is occur-
ring between discrete quantum states, since the SCI is almost certainly metallic at
these field strengths.

To look more closely at the frequency response as a function of field, we select
from each CSD in Figure 4.13 the maximum frequency shift relative to the resonance
frequency ω0 in Coulomb blockade for every value of VPS, with the results pictured in
Figure 4.14. At zero field, the frequency shift different between interdot transitions is
roughly

p
2, as expected. With increasing fields, the 2-fold degenerate state develops

a stronger frequency response due to the lifting of spin degeneracy, while the non-
degenerate state shows comparatively less change. At fields above 50 mT, the SCI has
become metallic, and so we see relatively little variation with even higher fields.

Moving on, we also fit the largest FWHM shift at each VPS value (positive or nega-
tive), also shown in Figure 4.14. At all field strengths, upper and lower lead transitions
from the CSDs are visible due to the Sisyphus dissipation into them. The central lead
transition, which at low fields is energetically suppressed by mutual capacitance and
tunnel coupling of the DQD in the odd-parity SCI regime, appears as a positive γ shift
in between the interdot transitions. Even at high fields, however, the interdot transi-
tions show a negative FWHM shift relative to Coulomb blockade.

Ongoing experiments with the same sample aim to conduct similar measurements
with the more parallel Bz field, especially at field strengths where the subgap state is
near energy.



46 Chapter 4. Experimental Results

FIGURE 4.13: Frequency fits for each point in VP1,VPS gate-space near a pair of interdot
transitions at various nearly-perpendicular magnetic fields. Green color maps correspond to
the fitted frequency shift ∆ω, while orange maps correspond to the fitted FWHM γ. Tunnel
barriers are set to (T1,T2,T3)= (−130,+12.1,−14)mV to nearly pinch off the QD’s lead. In the
central CSD, less visible lead transitions are drawn in black as guides to the eye, with charge
states indicated as having either odd (o) or even (e) SCI parity. Lines on the top left show an
example of fitted positions of maximum frequency shift and γ shift used in Figure 4.14
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FIGURE 4.14: Maximum fitted frequency shifts and FWHM γ for each value of VPS and Bx
using the data from Figure 4.13.
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Chapter 5

Conclusions & Outlook

In this thesis, we have scrutinized a relatively unexplored system for electron trans-
port (with a couple exceptions [55, 64]): semiconductor-superconductor hybrid double
charge islands. By making the charge islands tunable with tunnel cutter gates and
plunger gates, we were granted a great deal of flexibility in studying these systems,
which are essential components in some topological qubits.

With regards to theory, we found that quantization of charge in a superconducting
charge island renders electron and hole-like excitations distinct, so that they modulate
tunnel rates out of the island in a manner possibly detectable with Dispersive Gate
Sensing (DGS). Signatures of this effect were observed in some voltage regimes of a
hybrid double dot. Considering a dot orbital coupled to degenerate states, we found
that the level of degeneracy directly translates to a change in quantum capacitance of
the double dot. In experiment, we observed this for the case of a spin degeneracy, not-
ing that this is only possible when discrete quantum states in both dots are hybridized.
We considered the problem of a discrete dot orbital coupled to a nearly degenerate
quasi-continuum of states with a master equation approach, and found that negligible
dissipation is expected when interdot tunnel couplings are significant at finite temper-
ature. This prediction is counter-intuitive, since low-lying excitations would likely be
periodically occupied via Rabi driving from nearby plunger gates. Nonetheless, results
thus far in an ongoing experiment supported this claim.

Contrary to our initial expectations, it is not universally the case that electron tun-
neling into a quasi-continuum of nearly degenerate states increases dissipation in a
capacitively coupled resonator relative to when tunneling occurs between two discrete
quantum states. We found in particular that dissipation was reduced at charge de-
generacy points of the double island, even when the superconducting island was made
metallic by applying a magnetic field. This puts into question the possibility of using
DGS as a measure of tunneling coherence, since tunneling into a metal is certainly
incoherent.

Towards the long term goal of constructing a topological qubit, we note that our
observation of hybridization between a superconducting island’s subgap state and a
dot orbital is a necessary first step for using quantum dots as parity sensors for mea-
surement based topological qubits.

5.1 Outlook

Hybrid semiconducting-superconducting dot systems open up a wealth of experimen-
tal possibilities for studying transport through subgap states such as Majorana zero
modes. As examples, we mention two possible experiments.

First, by adding a second quantum dot next to a normal-superconducting double
dot, the former can be used as a discrete electron reservoir for the second dot. With this
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tool, electrons can be loaded from a discrete quantum state onto the superconducting
island without variations in the quantum state’s character. This would allow isolation
of various features of the island’s ground state, enabling measurement of a subgap
state’s electron and hole-like coherence factors, for example.

Second, placing a second quantum dot at the other end of a superconducting is-
land longer than its coherence length would make a unique cotunneling experiment
possible. If further research proves that studying the frequency response of local DGS
probes at either dot provides some quantitative measure to distinguish between coher-
ent and incoherent transport, an electron teleportation experiment could be conducted
[65]. Local DGS probes at either dot observing coherent cotunneling simultaneously
must be coupled coherently through the central superconductor. Tuning the system
into a regime expected to place the superconductor in a topological phase with a Ma-
jorana zero mode, this would provide strong evidence of electron teleportation through
the fermionic mode formed by two Majorana quasiparticles.
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Appendix A

Reflection Coefficient for an LC Resonator

Reflection from an Impedance Mismatch

Assuming the resonator is connected to a transmission line of standard impedance
Z0 = 50Ω, the relation between the incident RF voltage Vi = V0e−iωt and the reflected
voltage Vr at some point along the transmission line is given in terms of the reflection
coefficient Γ [33]:

Vr =ΓVi = Z−Z0

Z+Z0
Vi = |Γ|ei∆φVi (A.1)

Clearly to derive the amplitude change and phase shift of Vr, we need only calculate Γ.
Writing the impedance in terms of its effective resistance R and reactance X :

Γ= R+ iX −Z0

R+ iX +Z0
= R2 −Z2

0 + X2

(R+Z0)2 + X2 + i
2X Z0

(R+Z0)2 + X2 (A.2)

Γ’s magnitude is then:

|Γ| =
√

(R−Z0)2 + X2√
(R+Z0)2 + X2

(A.3)

For the case wherein R > Z0 (i.e. for tunnel resistance) the identity Arg(x+ i y) =
tan−1 (y/x) holds, and we find the phase shift:

∆φ= tan−1

(
2X Z0

R2 −Z2
0 + X2

)
R ≥ Z0 (A.4)

Resonator Sensing

For the case of a series resonator (see fig. 2.4a) probing a small capacitance C = C0+Cp
in parallel with a possible tunneling or Sisyphus resistance R À Z0, its impedance is:

Z = iωL+ 1
iωC+1/R

∼ 1
ω2C2R

+ iωL− i
ωC

R À 1/ωC (A.5)

C0 includes geometric capacitance to the probed system as well as parasitic capaci-
tance to the ground. When probing at radio frequencies and with capacitances on the
order of picofarads, a tunneling or Sisyphus resistance will easily satisfy the above
limit. In this case, we see that the resonator behaves as a series RLC circuit with
effective resistance Re f f = 1/ω2C2R ¿ Z0, provided 1/ωC . Z0. Consequently, the res-
onator’s characteristic frequency is ω0 = 1/

√
L(C0 +Cp).



Next, we assume we are near resonance, that is: |δ| ≡ |1−ω/ω0| ¿ 1. In the case
where we probe at ω = 1/

√
LC0 (the resonator’s bare frequency), this is equivalent to

assuming Cp ¿ C0, so that δ∼ Cp/2C0 to first order. Then:

X =ωL−1/ω(C0 +Cp)∼− 2δ
ω(C0 +Cp)

δ¿ 1 (A.6)

∼ Cp

C0

√
L
C0

∼ Cp

C0

√
L

C0 +Cp
∼ QrCp(Z0 +Re f f )

C0
Cp ¿ C0 (A.7)

The external quality factor is that for an ideal series RLC circuit [33] Qs
e =

p
L/C/Z0

with resistance being that of the transmission line when Re f f ¿ Z0. Since Cp ¿ C0,
the phase shift is:

∆φ∼ tan−1
(2Qs

eCp

C0

)
(A.8)

∼ 2Qs
e
Cp

C0
Qs

eCp ¿ C0,Re f f ¿ Z0 (A.9)

when ω= 1/
√

LC0, in agreement with Duty et al [38].
Next, we consider the analogous problem for a parallel RLC circuit. In this case,

the impedance is:

Z = 1
1/R+ iωC− i/ωL

= R
1+R2(ωC−1/ωL)2 + i

1/ωL−ωC
1/R2 + (ωC−1/ωL)2 (A.10)

Near resonance with the bare frequency ω=ω0(1+δ) with δ∼ Cp/2C0 for Cp ¿ C0 as
before, the the following relation holds:

1/ωL−ωC ∼
p

C/L(1−δ)−
p

C/L(1+δ)=−2
p

C/Lδ δ¿ 1 (A.11)

such that the impedance near resonance is1:

Z ∼ R−2iR2

√
L
C
δ δ¿ R/

p
C/L (A.12)

Leading to an expected phase of the reflection coefficient equal to:

∆φ∼ tan−1

(
−2R2Z0

p
C/Lδ

R2 −Z2
0 +4R4(C/L)δ2

)
∼−4Z0

√
C
L
ω−ω0

ω0

∼−2Qp
e

Cp

C0
Z0 ¿ R, Cp ¿ C0 (A.13)

when ω = 1/
√

LC0, once again proportional to the parametric capacitance Cp. Above,
we defined the external quality factor for a parallel RLC circuit as Qp

e ≡ Z0/Lω0 [33].

1This condition is not too strong for tunnel resistances on the order of the resistance quantum R0 ≈
104Ω, while for typical values of C = 0.3pF and L = 400nH [56], we expect

p
L/C ≈ 9×10−4Ω, so that

their ratio is roughly 0.1. As Sisyphus resistance is relatively unexplored in experiment, we abstain from
estimating it.
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Appendix B

Numerical Simulation of Hybrid Dot Systems

To confirm the broadening effect of degeneracy on quantum capacitance, and in order
to study the interference between these degeneracy effects and parity dependent tun-
nel couplings, a numerical model for simulating arbitrary numbers of dots and total
charges N at zero bias was constructed and formatted into a Python package1. To
make the simulation of interesting systems numerically tractable however, numerous
simplifications are needed.

Practical Simplifications, Features, & Limitations

For convenience, mutual capacitances are only incorporated to first order in this model.
Furthermore, due to the intractability of simulating a true fermionic continuum of
states in the leads, leads are modeled as quantum dots with zero charging energy
and some chemical potential, able to contain all the electrons included in the system.
Since tunneling to leads is an incoherent process, this is clearly unphysical, but it
does simulate broadening due to tunnel couplings between dots and leads well, and
correctly calculates the positions of dot-to-lead charge transitions.

Next, we make note of the flexibility of this simulation. Any number of dots and
leads may be included with any charging energy and chemical potential, with tunnel
couplings and mutual capacitances between any or all of them. Normal dots may be
granted a sequence of orbital energy costs associated with each charge state, while
superconducting (SC) islands may have any energy of the lowest excitation. In the low
energy spectrum, the dots may simulate any number of degenerate fermionic modes
for a given charge state, while superconducting quasiparticles may have an arbitrary
degeneracy as well. Finally, parity dependent tunneling amplitudes (eg. coherence
factors for SC quasiparticles) can be added to any SC dot.

The primary limitation of this model is that it is restricted to low energy. To make
simulations numerically tractable, the system Hilbert space is drastically reduced to
only the states important for the ground and first few excited states, assuming charg-
ing and quasiparticle energies are larger than temperature. Following from these as-
sumptions, it is valid to allow only a single quasiparticle state in a superconductor to
be occupied at a time. Finally, whichever quantum number is associated with degen-
erate fermionic modes on a dot (eg. spin) is assumed to be the same for each orbital, in
that the level of degeneracy remains the same.

In the following section, we motivate and justify the Hilbert space used to con-
struct a system Hamiltonian, proving that operators which add or remove electrons
obey fermionic exchange statistics. Since the numerical simulation simply consists of

1Source code available at https://github.com/cprosko/pyqd

https://github.com/cprosko/pyqd
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constructing the Hamiltonian then diagonalizing it using standard methods, it is this
step which is most critical to the simulation’s functionality.

The Hilbert Space

For non-superconducting quantum dots, a number basis was used, where the number
of electrons with each degenerate quantum number ν (eg. spin, but it could be a larger
degeneracy) are counted separately:

|ψ〉D ∈
{∏

ν

⊗|nν〉 : |nν−nν′ | ≤ 1 ∀ν,ν′
}

(B.1)

and the total charge on each dot may range between 0 and some fixed maximum N.
This makes use of the critical assumption that the charging energy is the largest en-
ergy scale in the system, and that each dot orbital contains the same ν degeneracy,
and only this degeneracy. In this case, the total charge on a dot at any given time is
fixed within one of some number. In the above Hilbert space definition, we only include
states wherein electrons of different quantum number are within one of the same to-
tal. Consequently, for a given gate configuration the number of electrons with each
quantum number is fixed to some n or n+1, where n is the same for all ν. In this
way, the Pauli exclusion principle is enforced in the low energy spectrum of this dot,
even though electrons of each quantum number are treated as different bosonic modes,
reducing the Hilbert space of the dot massively. Whenever a state does not obey the
Pauli exclusion principle, it is either energetically forbidden, or in the case where it is
eliminated by our choice of Hilbert space, this makes no physical difference, since that
state would be energetically degenerate with the ground state of the smaller Hilbert
space where the exclusion principle is enforced.

To prove that fermionic anticommutation relations are effectively implemented, we
identify the following with effective fermionic creation and annihilation operators ĉν:

ĉν ≡ |n〉〈n+1| , ĉ†
ν ≡ |n+1〉〈n| (B.2)

From these definitions, we calculate the anticommutation relations, beginning with:

{ĉ†
ν, ĉν}= |(n+1)ν〉〈nν|nν〉〈(n+1)ν|+ |nν〉〈(n+1)ν|(n+1)ν〉〈nν|

= |(n+1)ν〉〈(n+1)ν|+ |nν〉〈nν| = Îν (B.3)

Îν is the identity operator for quantum number ν in the local effective Hilbert space.
Now, for ν 6= ν′:

{ĉ†
ν, ĉν′}= 2 |(n+1)ν〉〈nν|⊗ |nν′〉〈(n+1)ν′ | (B.4)

If the state of the system is |nν〉⊗ |nν′〉, |(n+1)ν〉⊗ |(n+1)ν′〉, or |(n+1)ν〉⊗ |nν′〉, either
ĉ†
ν or ĉν′ will bring one of the charge states to n−1 or n+2, outside of the low energy

state-space, effectively annihilating the state. In the only other case, where the state
is |nν〉 ⊗ |(n+1)ν′〉, the anticommutator is simply a hopping term from one ν to the
other. Our Hamiltonian model does not allow for any direct quantum number-flipping
matrix elements, so this hopping ĉ†

ν ĉν′ never occurs. The only way for this exchange
process to occur is second order, via tunneling to a state on another dot. In this case,
the resulting fermionic phase of −1 gained by the charge is squared, making it indis-
tinguishable from the bosonic case. Assuming this intermediate mode obeys eq. (B.3)
and has creation operator d̂†, we may write out the double hopping process acting on
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the local vacuum state |0〉 =⊗ν |nν〉:

ĉ†
νd̂†d̂ ĉν′ ĉ

†
ν′ |0〉 = ĉ†

ν(1− d̂†d̂)(1− ĉ†
ν′ ĉν′) |0〉 = ĉ†

ν (B.5)

By this reasoning, we assume that the anticommutator need not be fermionic in this
specific case, since this combination of operators never appears in the Hamiltonian or
any observables. Moving on, the other fermionic anticommutation relation is easy to
check for ν= ν′:

{ĉν, ĉν}= 2 |nν〉〈(n+1)ν|nν〉〈(n+1)ν| = 0 (B.6)

while for ν 6= ν′:
{ĉν, ĉν′}= 2 |nν〉〈(n+1)ν|⊗ |nν′〉〈(n+1)ν′ | (B.7)

The relation is automatically zero for all possible states except |(n+1)ν〉⊗ |(n+1)ν′〉,
where by the same reasoning as before, the relation need not apply, since this operator
never appears in the Hamiltonian or any observables. A similar argument applies
to the conjugate anticommutator. Thus, all fermionic anticommutation relations are
either obeyed, or need not be obeyed, in our model. Since the Pauli exclusion principle
is fully enforced by energy scales and our choice of Hilbert space, this restricted set of
states indeed behaves as fermionic modes when low energies are considered.

Next, superconducting islands are also simulated under the assumption that the
charging energy and lowest energy states are large compared to temperature. In this
case, we may assume that only one quasiparticle exists at a time in the superconduc-
tor, and that this may only occur when the superconductor has odd parity. This is
because the island must either pay the charging energy to add another quasiparticle,
or twice the lowest energy state to break a Cooper pair. Hence, the Fock space for
superconducting islands is defined as:

|ψ〉SC ∈ { |BCSn〉
}∪{

γ̂†
ν |BCSn〉

}
ν (B.8)

Where |BCSn〉 denotes the BCS ground state with n Cooper pairs. The range of n
is implicitly restricted so that total particle number never exceeds N. As this choice
of Hilbert space resulted from direct projection of the full SC island’s Hilbert space
onto the low energy spectrum, it automatically behaves as truly fermionic. This can
also be seen by considering that a single particle (eg. a single quasiparticle) behaves
identically regardless of its exchange statistics, since there are no other particles for it
to exchange with.

The Fock space for leads is simplest of all:

|ψ〉L ∈ {|n〉}nd N
n=0 (B.9)

consisting of any charge state between 0 and a charge equal to the number of dots and
islands nd times the maximum decided charge per dot N. As stated previously, this
choice is not entirely physical, but it is easy to see that its particle creation operator
n̂+ = ∑nd N

n=0 |n+1〉〈n| obeys the anticommutator eq. (B.3) necessary for the previous
proof of fermionic statistics for normal dots.

The Hamiltonian

The total system Hamiltonian consists of a sum of Hamiltonians for all normal dots
D, superconducting dots S and leads L , as well as a tunneling Hamiltonian ĤT and



mutual capacitance term Ĥm:

Ĥ = ∑
d∈D

Ĥd + ∑
s∈S

Ĥs +
∑

l∈L

Ĥl + ĤT + Ĥm (B.10)

Normal dot Hamiltonians contain a charging energy term and an orbital contribution:

Ĥd = Ed
c (n̂d −nd

g)2 +
N∑

n=0

∑
ν

En |nν〉〈nν| (B.11)

where n̂ =∑N
n=0 |nν〉〈nν| is the dot number operator and nd

g is its reduced gate voltage.
For now, the orbital energies do not depend on the degeneracy index ν, but this feature
will be added in future updates. Hamiltonians for superconducting islands are simply
standard BCS Hamiltonians (in quasiparticle operator representation) with a charging
energy term:

Ĥs = Es
c(n̂s −ns

g)2 +∑
ν

E0γ̂
†
νγ̂ν (B.12)

whose corresponding number operator n̂s = 2nC +1 or 2nC where nC is the number of
Cooper pairs, while lead Hamiltonians consist solely of a constant chemical potential
term:

Ĥl =µl

nd N∑
n=0

n |nl〉〈nl | (B.13)

generally set to zero with µl = 0. This is because non-zero bias is not supported by
these simulations, since it would violate the simulation’s critical assumption that only
low energies are involved.

Mutual capacitances Eαλ between islands α and λ are only considered to first order
in Ĥm:

Ĥm = ∑
α,λ∈D∪S

α6=λ

Eαλn̂αn̂λ (B.14)

and finally, the tunneling Hamiltonian is completely general except that it does not
allow spins to be flipped upon tunneling between two dots which both are flagged as
having spin σ as their quantum number ν, and in general does not allow electrons to
directly tunnel between different ν values within the same dot:

ĤT = ∑
α,λ∈D∪S

α6=λ

∑
να,νλ

tαλ f (να,νλ)ĉα†
να

ĉλνλ (B.15)

The function f (να,νλ) 1 in all cases, except when both να,νλ ∈ {↑,↓} and να 6= νλ, where
it evaluates to 0. Annihilation operators for the normal dots simply act by decreasing
nν by one but computationally this is more complicated for SC islands. Namely, it
decreases an internally stored index of the islands charge state by one, and applies
γ̂

†
ν or γ̂ν depending on whether the island’s final parity is even or odd, respectively.

This corresponds with creating a hole-like excitation when the superconductor loses
an electron going from even to odd parity, or with removing an electron-like excitation
when the superconductor loses an electron going from odd to even parity.

As is evident from the above descriptions, systematically generating the system’s
relevant charge and orbital states and organizing them into a physically correct Hamil-
tonian for different gate voltages is the complicated part. Once this is complete, the
Hamiltonian can be diagonalized and number expectation values or parametric capac-
itances of low energy states can be evaluated fairly trivially.
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Appendix C

Far Off-Resonant Rabi Oscillations

Here we derive the solution of the Rabi Hamiltonian given in Equations (3.8) and (3.10)
to first order in the driving potential ε(t)= δεsin(ωt), and assuming probe frequencies
much lower than the characteristic level splitting ω¿ 2

p
Ntc.

Assuming the system is in its ground state at t = 0 so |ψ(0)〉 = |−〉0 = (|D〉−∑N
n=1 |n〉)/

p
N +1,

the general state at time t may be written:

|ψ(t)〉 = c−(t)ei
p

N|tc|t/ħ |−〉0 + c+(t)e−i
p

N|tc|t/ħ |+〉0 (C.1)

for some time dependent coefficients c±(t). In the basis of |±〉0 states and after project-
ing out the decoupled |n′〉 states, the Hamiltonian reduces to a two-level system:

Ĥ =
p

N|tc| [|+〉0 〈+|0 −|−〉0 〈−|0]+ 1
2
ε(t) [|−〉0 〈+|0 +|+〉0 〈−|0] (C.2)

Substituting in |ψ(t)〉 to the Schrödinger equation iħ∂ |ψ〉∂t = Ĥ |ψ〉 and taking the
inner product with either 〈+|0 or 〈−|0 translates this problem to a set of two differential
equations for ċ± ≡ dc±/dt:

ċ± =− i
2ħε(t)e

∓iω0Etc∓ (C.3)

defining ω0 = (E+ − E−)/ħ = 2
p

N|tc|/ħ. Noting that taking a time derivative of c±
increases the order of δε in the result by one, we see that we can calculate the n’th
order perturbation expansion of c± in δε by substituting it into the left side of eq. (C.3)
and the (n−1)’th order expansion in to the right side. By our own initial conditions, we
have c(0)− = c−(0)= 1 and c(0)

+ = c+(0)= 0, so:

ċ− = 0 ⇒ c(1)
− (t)= c−(0)= 1 (C.4)

Since the first order correction is equal to zero’th order, we can immediately find the
expression for c+ to second order:

ċ(2)
+ =− iδε

2ħ sin(ωt)eiω0 t =−δε
4ħ [exp(i(ω0 +ω)t)−exp(i(ω0 −ω)t)] (C.5)

This equation may be directly integrated to find:

c(2)
+ (t)=−δε

4ħ
[

exp(i(ω0 +ω)t)−1
ω0 +ω

− exp(i(ω0 −ω)t)−1
ω0 −ω

]
(C.6)

Hence, to second order in the time-oscillating detuning δεsin(ωt), the probability of an
electron occupying the excited state |+〉0 at time t when it was initially in the ground



state |−〉0 is:

P+(t)≈ |c(2)
+ (t)|2

=
(
δε

2ħ
)2 [

sin2 [(ω0 +ω)t]
(ω0 +ω)2 + sin2 [(ω0 −ω)t]

(ω0 −ω)2

−
(

sin2 [(ω0 −ω)t]+sin2 [(ω0 +ω)t]−sin2 (ωt)
ω2

0 −ω2

)]
(C.7)

found after application of the trigonometric identity 1−cos(2x)= 2sin2 (x) several times.
This is obviously a messy result, so for our purposes it is best to make some approxi-
mations. We operate in a regime where ω is sub-GHz while ω0 = 2

p
Ntc/ħ is at least

several GHz, so we approximate ω¿ω0. In this case, we can expand all rational terms
to first order in ω/ω0. On the other hand, every term in P+(t) either is constant, oscil-
lates with frequency ω0±ω, or with a frequency proportional to ω. On the time scale of
one resonator cycle and considering that ω¿ω0±ω, it is valid to make a rotating wave
approximation, neglecting all terms oscillating with frequency on the order of ω0. This
is because in a time average of P+(t) over one resonator cycle 2π/ω, these terms would
very nearly average to zero. The probability of occupying the highest excited state then
reduces to the simple result:

P+(t)∼
(
δε

2ħω0

)2
sin2 (ωt) ω¿ω0, δε¿ħω0 (C.8)

So the probability of occupying the excited state oscillates roughly with the same fre-
quency as the DGS probe provided ω¿ ω0, and has a negligibly small probability of
occupying the excited state provided δε¿p

Ntc.
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Appendix D

Master Equation Solution for a Degenerate DQD

Here we solve the master equations eq. (3.14) for tunnel rates Γ+ = Γ0np and Γ− =
Γ0(np +1) to first order in the oscillating detuning ε0 +δε(t) = ε0 +δεsin(ωt), where
np(t)= (e∆E/kBT −1)−1 is the phonon occupation number at energy ∆E. To this end, we
begin by rewriting the master equations, using the fact that P−+Pn ≈ 1 and Γ−−Γ+ =
Γ0:

χ̇(t)= Ṗ−− Ṗn =Γ−(1−P−)−Γ+P−−Γ+(1−Pn)+Γ−Pn =Γ0 − (Γ++Γ−)χ(t) (D.1)

Above we defined the probability difference χ(t) ≡ P−−Pn. Motivated by the solution
for Γ0 = 0, we presume the ansatz χ(t)= f (t)exp−∫ t

0 dτ(Γ−+Γ+) for some function f (t).
Substituting this into the above equation cancels the rightmost term, leaving:

ḟ (t)=Γ0 exp
[
]
∫ t

0
dτ(Γ−+Γ+)

]
=⇒ f (t)=Γ0

∫ t

0
dt1 exp

[∫ t1

0
dt2(Γ−+Γ+)

]
+ f (0)

(D.2)
This gives the solution for χ(t):

χ(t)=Γ0

∫ t

0
dt1 exp

[
−

∫ t

t1

dt2(Γ−+Γ+)
]
+ f (0)exp

[
−

∫ t

0
dt2(Γ−+Γ+)

]
(D.3)

To make this result explicit, we Taylor expand the energy difference ∆E:

∆E =
√

1
4

(ε0 +δεsin(ωt))2 +N|tc|2 − 1
2

(ε0 +δεsin(ωt))

∼−ε0 +
√
ε2

0/4+N|tc|2︸ ︷︷ ︸
≡∆E0

+ 1
2

 ε0

2
√
ε2

0/4+N|tc|2
−1


︸ ︷︷ ︸

≡λ

δεsin(ωt), δε¿
p

N|tc| (D.4)

followed by the tunnel rate Γ+:

Γ+ = Γ0

e∆E/kBT −1
∼ Γ0

e∆E0(1+λδε(t)/kBT)−1

∼ np(0)− λδε(t)/kBT
2cosh(∆E0/kBT)−2

δε¿ kBT,
p

N|tc| (D.5)



From this, we can calculate the following useful integral to first order in δε/kBT:∫ t2

t1

dt(Γ−+Γ+)∼Γ0

∫ t2

t1

dt
[(

2np(0)+1
)− λδε/kBT

cosh(∆E0/kBT)−1
sin(ωt)

]
=Γ0(2np(0)+1)︸ ︷︷ ︸

≡ΓΣ

(t2 − t1)+ (Γ0/ω)λδε/kBT
cosh(∆E0/kBT)−1︸ ︷︷ ︸

≡Λ

[cos(ωt2)−cos(ωt1)]

(D.6)

If we substituted this in to the expression for χ, we would see that the f (0) term con-
tains an exponentially decaying transient term. Since we are concerned with the time
averaged characteristics of the system, we discard this and all other transient terms.
Then Taylor expanding the exponential of the integral and integrating, we find:

χ(t)∼Γ0e−ΓΣ t
∫ t

0
dt1eΓΣ t1

[
1−Λcos(ωt)+Λcos(ωt1)

]
=Γ0(1−Λcos(ωt))

eΓΣ t −1
ΓΣ

+ 1
2
Γ0Λe−ΓΣ t

∫ t

0
dt1

[
e(ΓΣ+iω)t1 + e(ΓΣ−iω)t

]
∼ Γ0

ΓΣ
(1−Λcos(ωt))eΓΣ t + 1

2
Γ0Λe−ΓΣ t

[
e(ΓΣ+iω)t −1
ΓΣ+ iω

+ e(ΓΣ−iω)t

ΓΣ− iω

]
∼ Γ0

ΓΣ
(1−Λcos(ωt))+ Γ0Λ

Γ2
Σ+ω2 [ΓΣ cos(ωt)+ωsin(ωt)] (D.7)

From this result, it is trivial to calculate P− = (1+χ)/2 and Pn = 1−P−. Finally, note
that going to second order would have included terms like sin(2ωt) in

∫ t2
t1

(Γ−+Γ+)dt,
leading to terms of the form sin(2ωt) and cos(2ωt) in the final result – both of which
average to zero over one period.
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Appendix E

Normal-Superconducting Interdot Matrix Elements

In terms of quasiparticle operators, the tunneling Hamiltonian in Equation (3.24) is:

ĤT = t
∑
σ

[
u∗

0σn̂+γ̂0σe −σv0σn̂+γ̂†
0−σh +

∑
ν

(
u∗
νσn̂+γ̂νσe −σvνσn̂+γ̂†

−ν−σh

)]
+h.c. (E.1)

For definiteness, suppose the dot is transitioning between |n〉 → |n+1〉 electrons (the
reverse process simply has the conjugated matrix element). Then only terms in ĤT
proportional to n̂+ and not n̂− contribute. Note that Bogoliubov quasiparticles behave
as fermionic operators when acting on the superconducting ground state |g〉, so γ̂ |g〉 = 0
for any γ̂, and {γ̂a, γ̂†

b}= δab for quantum numbers a,b.
For example, let the initial superconductor state be |g〉 and suppose the E0 state

is absent. The final state must then have a quasiparticle γ̂
†
ησ0 p since the QD and

superconductor exchange an electron in this process. Then:

〈 f |ĤT |i〉 = 〈n+1|⊗〈g| γ̂ησpĤT |g〉⊗ |n〉
= t

∑
ν

〈n+1|n̂+|n〉︸ ︷︷ ︸
=1

(
u∗
νσ 〈g| γ̂ησ0 p γ̂νσe |g〉︸ ︷︷ ︸

=0

−σvνσ 〈g| γ̂ησ0 pγ̂
†
−ν−σh |g〉︸ ︷︷ ︸

=δη,−νδσ0 ,−σδp,h

)
+〈 f | (h.c.) |i〉︸ ︷︷ ︸

=0

= tσ0σv−η−σ0 (E.2)

Importantly, charge conservation in the double-dot system implies charge number
on the superconductor must be definite (when off resonance), so that an odd parity SCI
with a hole-like excitation can only change its state by accepting an electron from the
QD and returning to its ground state.

Appendix F

Supplementary Experimental Data

Here we include figures and data which helps provide a complete picture of the sample
we measured, and the steps which led us to the various experimental results in the
main text, beginning with the RF response of our resonator circuit in Figure F.1. We
also show an example illustrating the separate amplitude and phase charge stability
diagrams from both the VP1 and VPS resonator in fig. F.2.
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FIGURE F.1: Amplitude response of the chip circuit up to the maximum output frequency of
Midas (800MHz) with sample-level power of −128dBm relative to 50Ω. Resonators are identi-
fied on the plot by the electrode they are coupled to, Vbias being the sample source resonator
not used in these experiments. Inset is the VP1 resonator recorded in a later measurement
where a grounding issue altered the absolute amplitude. Phase response is not plotted because
its 2π periodicity causes phase wrapping, which even when ‘unwrapped’ showed unphysical
jumps around 0 and 2π.

FIGURE F.2: The same stability diagram as in Figure 4.9 in rotated and skewed N,ε voltage co-
ordinates, but where the phase and amplitude response from both the VP1 and VPS resonators
is shown. The nine interdot transition pairs used for frequency analysis are shown in the black
box.
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FIGURE F.3: RF tunneling spectroscopy data for the three tunnel gates defining our DQD.
Plungers VP1 and VP2 were opened to +100 mV while VPS was left at 0 mV. If the voltage
drop primarily occurs over the tunnel barrier being studied, the RF response is related to
the density of states at the barrier [66]. Coulomb blockade is observed in certain ranges of
barrier strengths for all three voltages, indicating that quantum dots are inherently present
in the sample aside from those defined by controllable voltages. Tunneling spectroscopy data
is difficult to interpret in our system however, since the metallic leads are not bonded directly
adjacent to the barrier.

FIGURE F.4: Maximum FWHM γ relative to the minimum γmin at each point along the axis
orthogonal to detuning, N, for the nine interdot transition pairs studied in Figure 4.9. At the
edges a significant broadening occurs due to the presence of QD to lead transitions, while the
interdot transitions show negligible resonator broadening relative to its width within Coulomb
blockade. Uncertainty is determined as the root variance of γ, given an uncertainty in the
frequency data of ±0.13MHz estimated from a least squares fit accounting for a linearly varying
background. This uncertainty is simply the total fitted variation of the background.
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