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Abstract 
In this paper we present a data structure that stores the results of a generalisation 
procedure efficiently as a scale-less map inside a spatial DBMS. This structure 
makes is possible to interactively visualize polygonal subdivisions on any scale 
efficiently. This is done by maintaining a topological structure from which a map 
can be reconstructed. The reconstruction of a polygonal subdivision for a given 
scale is done in two steps. The first step retrieves the necessary boundary lines 
from the database together with information on how these boundaries should be 
combined to for a subdivision. The second step reconstructs a topologic layer 
from these boundaries. The two steps in the process are modelled in such a way 
that the first step can be efficiently implemented on top of a standard spatial 
DBMS (with three simple SQL queries). The second part of the process, which is 
more iterative, can be either performed at the client side or on an applications 
server. An important feature of the data structure is that the data is stored 
topologically in such a way that as much of the geometry of an object is re-used. 
This makes the storage very compact and ensures that only little data needs to be 
shipped from the database. 
1. Introduction 
When interactively working with map data, it is common for the user to start viewing the 
complete extent of the data and then interactively zooming in to the region in which one 
is 
interested. If the data set is big, viewing the complete extent will involve huge amounts 
of 
data and drawing all the details will result in an overcrowded map. To overcome these 
problems, cartographic generalisation can be used to reduce the amount of data in a map. 
However, generalisation is an expensive procedure that is complex to perform 
automatically. 
Current approaches (Hardy 2003; Galanda 2002) on automatic generalisation focus on 
agent 
technology where autonomous agents perform simplification algorithms on parts of the 
map. 
The computational complexity of this task makes it impossible to compute the 
generalized 



map when the user asks for it. Instead, the generalisation is pre-computed and the result is 
stored on disk. There are two ways to store the result of the generalisation process; as a 
multiscale 
map or as a scale-less map. In a multi-scale map, a collection of maps with different 
scales is made. When viewing the map data, the map with the scale that is nearest to the 
scale 
that the user request is shown. In the storage of the maps on the different scales there can 
be 
quite some redundancy; if an object is does not change across different scales it will be 
stored 
twice. In a scale-less map, the result of the generalisation procedure is stored in such a 
way, 
that a map of any scale can be produced efficiently. This makes it possible to store a map 
object that looks the same on different map scales only once. 
In this paper we propose a data structure for the efficient storage and retrieval of a scale-
less 
polygonal subdivision. The structure can be implemented in any DBMS that supports the 
OpenGIS simple feature specification (OpenGIS, 1998). Our current prototype runs on 
top of 
an Oracle9i database server. 
The rest of the paper is structured as follows. After the introduction we describe the 
architecture that we use in Section 2. The data structure that stores the scale-less data is 
described in section 3. Section 4 gives examples of how generalisation operations can be 
implemented on top of the structure. Finally in Section 5 we conclude. 
2. The architecture. 
The reconstruction of the map from the database consists of two steps. In the first step the 
necessary data is retrieved from the database, in the second step polygons are 
reconstructed 
from this data. For the implementation of the process two architectures can be used. In a 
twotier 
architecture. The client software (browser, GIS application) directly connects to the 
database server. The database server provides the data, which is reconstructed by the 
client. 
In recent years desktop computers have become much more powerful and by using the 
processing power of the client, no expensive server is needed. In the three-tier 
architecture, a 
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Figure 1: Architecture. 
middle layer is introduced that performs the reconstruction of the polygons,. In this case 
no 
functionality is needed at the client, which can be any web mapping application. 
The queries that are posed to the DBMS server are relatively simple Spatial SQL queries, 
that 
do not put a heavy burden on the database server. Depending on the application the 
reconstruction of the polygons can either be done at the client, or in a middle tier 
application 
server. 
3. The data structure. 
This section describes the proposed data structure as well as how to use it. First the layout 
of 
the data structure itself is discussed. The setup of the data structure allows distinct use of 
both 
server-side and client-side computing power. The processes that take place at both sides 
are 
therefore also discussed. 
Server-side storage 
The data structure is developed as a topological variant of the GAP-tree (van Oosterom, 
1995), which could only be used on the generalisation operator aggregation. That data 
structure is intended to be used on planar partitioning maps. The new data structure 
however 
does not store complete geometric descriptions of the faces that make up the partitioning. 
Instead it uses a topological setup. A two-dimensional topological representation uses 
three 
types of objects, nodes, directed edges and faces. Of these three only the edges and faces 
are 
stored in the data structure. The nodes are determined when necessary, based upon 
geometric 
properties of the edges. In the current setup this will be at the client-side as discussed in 
paragraph (client-side polygon reconstruction). The edges and faces are stored in two 
tables. 
These tables must at least contain the attributes as described in table 1. 
EdgeTable FaceTable 
Name Type Name Type 
OID 
GEOMETRY 
LENGTH 
LFACE 
RFACE 
BBOX3D 
NUMBER(11) 
LineString 
NUMBER(9,3) 
NUMBER(11) 



NUMBER(11) 
Box3D 
OID 
PARENTID 
AREA 
IMPORTANCE 
BBOX3D 
NUMBER(11) 
NUMBER(11) 
NUMBER(15,3) 
NUMBER(15,3) 
Box3D 
The edges table primarily stores the geometric properties of the polygons. The faces table 
does not store any information on the geometric properties of the faces. This table is 
intended 
to store all other information on the faces. The link between these two tables is 
established 
via the LFACE and RFACE attributes in the Edges table. These two attributes refer to the 
faces that lie left and right of the Edge at the highest level of detail for which the edge is 
valid. This corresponds to the lowest z-value of the BBOX3D associated with that edge. 
At 
other detail levels these references might not be valid any more as the faces they refer to 
can 
be replaced by other, larger faces. To obtain the correct face references the PARENTID 
attribute in the faces table is used. Through the PARENTID references a hierarchy in the 
total 
set of faces is defined. Since this hierarchy is stored bottom-up there are no restrictions 
with 
regards to the number of children per parent. To be able to select the appropriate edges 
and 
faces, both tables contain an attribute called BBOX3D. 
Table 1: Basic layout of the tables. 
Using third dimension for scale information 
An integral part of the setup of the data structure is the use of a third geometric 
dimension for 
the scale information. The major advantage of this choice is that it enables the use of 3D 
indexing methods on the combined geometric and scale data. This in turn allows the 
selection 
of records based on both the geometric as well as the scale requirements in simple 
queries. 
The 3D geometries that are used to support these indexes are 3D boxes that are created as 
the 
2D bounding boxes of the geometric shapes of respectively the edges and the faces, 
extended 
with the scale values for the third dimension. 
Figure 3: Selection of faces by intersection of 3D boxes with a 3D rectangle. If the 
rectangle moves up less detail is retrieved 
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Figure 2: Hierarchy of faces through parent references. The ellipsis represent all 
additional information on the faces, e.g. thematic data. 
Server-side selection 
The selection of the appropriate elements for a map at a certain LoD is done at the 
serverside. 
In on-the-fly generalisation the selection has address both the geometric extent of the 
data as well as the scale information. The three-dimensional bounding boxes used in the 
data 
structure provide this possibility. To obtain a map of an area at a certain scale three 
separate 
queries have to be performed of which the selection of the necessary Edges and Faces are 
the 
most important. The queries for the Edges and Faces are actually the same. All records 
are 
selected of which the bounding box described in the BBOX3D attribute intersect with a 
3D 
rectangle. This 3D rectangle with x,y extent equal to the query window and the z value 
equal 
to the desired LoD. The following (simplified) lines of code are used to construct the 3D 
query for the selection of the faces: 
Select * from FaceTable 
Where mdsys.sdo_filter 
( 
bbox3d, mdsys.SDO_GEOMETRY 
( 
3003, srid, NULL, mdsys.SDO_ELEM_INFO_ARRAY(1, 1003, 3), 
mdsys.SDO_ORDINATE_ARRAY(minx ,miny ,lod ,maxx ,maxy ,lod) 
), 
'mask=ANYINTERACT querytype = WINDOW' 
)= 'TRUE'"; 
Figure 1 shows a schematic visualisation of the concept of the 3D query for the selection 
of 
faces. The light blue rectangle represents the 3D rectangle as defined in the query. Each 
of the 
boxes represents a 3D box of a face. The red boxes are intersected by the rectangle and 
thus 
their accompanying records are selected. The selection of the edges uses the same kind of 



query. 
The mdsys.sdo_filter function is able to use, if available, a 3D R-tree index to speed up 
the 
selection process. A limitation of this function is that the query window must be an 
axisparallel 
rectangle. This is often the case with queries for visualisation purposes. These 
selected records are sent to the client, where they are stored in lists for the necessary 
processing to create complete geometric descriptions of the faces for proper visualisation. 
There is also the need for a third query, which selects the necessary information for the 
correct assignment of faces to reconstructed polygons. In this query the OID and 
PARENTID 
fields of the FACETABLE are selected for all records that are present in a 3D box 
extending 
from the requested scale down to the most detailed scale and covering the entire query 
window. 
Client-side polygon reconstruction 
An important aspect of the procedure is the fact that the geometric shapes of generalized 
faces are determined at the client-side at query time. The geometric shape of the faces is 
not 
stored explicitly but instead should be reconstructed based on the separate edges. The 
polygon reconstruction starts with an unsorted list of the edges comprising the boundaries 
of 
all polygons that need to be reconstructed. This list of edges is obtained by a query of the 
client to the server. 
Listing 1: 3D Query for selection of faces (Oracle 9i Spatial DBMS) 
The reconstruction algorithm needs two directed edges for each boundary, one for each 
adjoining polygon. Therefore each edge must be present twice in the edge list, each with 
an 
opposite direction to the other. Since the list initially only contains one edge per 
boundary 
segment, as returned by the server, this demand is satisfied by adding a reversed copy of 
each 
edge to the list. The next step is to create nodes at the start of each edge. Whenever two 
edges 
meet, i.e. multiple edges start at the same location, multiple edges will share the same 
node. 
Each node contains a list of all outgoing edges. This list needs to be sorted on the angle 
of the 
first line segment of each outgoing edge in order for the reconstruction routine to be able 
to 
find the next edge in a ring. With the lists of edges and nodes ready, rings can be 
detected. A 
ring is a closed sequence of line segments that encloses a region and does not contain any 
self-intersections. Rings are created using a program loop that adds edges to the ring until 
the 
end of the last added edge has the same coordinates as the beginning of the first edge. 
This 



program can be described by the following pseudo code. 
Select arbitrary edge 
Select the node at the beginning the edge 
Store this edge in firstEdge 
Loop 
Add linesegments in the edge to OutputRing 
Select the node at the end of the edge 
Select next edge in clockwise direction from edge at selected node 
Until (selected edge)=(firstEdge) 
Pseudo Listing 1: Description of ring reconstruction using edges and nodes. 
Using this algorithm it is possible to create all rings present in the set of rings. These 
rings 
should be separated into two groups. One contains the shells, or outer rings of polygons, 
and 
one contains the holes or rings in the interior of polygons. The described ring 
reconstruction 
algorithm automatically creates shells that are counter clockwise oriented rings and holes 
that 
are clockwise oriented. Holes should be assigned to the smallest shells they lay in, i.e. 
(area(holes)<area(shell)) and (hole lays within shell). The combination of a shell with 
zero or 
more holes is called a polygon. These polygons can be visualised on a clients display 
using 
standard functionality to show geometric objects. 
The polygon reconstruction method has two important prerequisites, first with regards to 
the 
creation of the nodes at the client-side, and secondly with the content of that topological 
data. 
The polygon reconstruction process needs a topological data structure consisting of edges 
and 
the nodes at which the edges touch each other, however these nodes are not stored in the 
database. Instead they are determined only just prior to the reconstruction, based upon 
geometric properties of the edges. The position and content of the nodes are determined 
at 
query time based upon the coordinates of the first point of each edge. A node is located at 
the 
first point of each edge. Whenever two edges start at the same exact location they share 
the 
same node. For this method to create all the necessary nodes it is important that edges do 
not 
contain internal points that are located at nodes, since those would not be considered 
nodes, 
and therefore not be used in the reconstruction process. 
The second prerequisite is that all polygons that lie completely or partially within the map 
window must be reconstructed, at least for the visible part. The total set of topological 
data 
present after a query is not enough to satisfy this demand as seen in figure 4a. This would 
result in incomplete maps as can be se en in figure 4b. The demand was addressed by also 
including the map window border as a set of edges. These edges are intersected with the 



edges from the database. At the intersection between two edges, both are split into two. 
This 
process is performed prior to the determination of the nodes. Figure 4c shows the edges 
and 
nodes that are now present. After execution of the intersection and the edge splitting, the 
amount of topological information present, is sufficient to reconstruct enough polygons to 
complete cover the map, as seen in figure 4d. 
Besides the geometric properties of the objects to show, proper visualization of the 
polygons 
also requires that appropriate symbolisation is used. The symbolisation should be based 
upon 
the thematic information. The thematic information on the faces is stored in the faces 
table. 
To determine which faces are bounded the edges at a certain level of detail, the face 
reference 
attributes of the edges table and the PARENTID attribute of the faces table are used. The 
determination of the correct face record for a reconstructed polygon starts by taking the 
face 
reference of an arbitrary edge bounding a polygon. This reference is only valid for the 
most 
detailed face bounded by that edge. Should the requested map however be of lower detail, 
another face must be selected. To select the correct face, the face hierarchy traversed 
upwards 
until the encountered face satisfies the scale of the map. This procedure could be 
executed at 
either the server- or the client side. Should this be done at the server side than the process 
must be performed for every edge that is returned to the client. Should this however be 
done 
at the client side, only one edge per polygon has to be processed. However, it is then 
necessary to transfer the entire relevant subset of the face hierarchy to the client. The part 
of 
the face hierarchy is which to be sent to the client is again selected through a 3D query. 
Line Generalisation 
Because all geometries are stored topologically, using line-segments, there is another 
possibility for generalisation by putting an on-the-fly line generalisation like the Douglas 
Peucker algorithm (1973) algorithm on all line geometries. This is only possible because 
the 
data is modelled topologically. 
Generalisation across edges 
All edges present in the data structure are those that bound the original faces at the input 
Scale. These exact same edges become the boundaries of the larger faces and lower 
LoDs. 
Subsequently these larger faces are bounded by a large number of small edges, which 
represent an increasingly large amount of data as larger query windows are used at 
smaller 
scales. Although each of these edges can individually be simplified, e.g. by using the 



Douglas 
Peucker algorithm, this cannot be done for a combination of edges. The primary reason 
for 
this is the fact that in addition to storing the geometric shape of a boundary, an edge also 
stores references to its left and right face. Combining multiple edges into one large edge, 
would cause this combined edge to have to contain multiple reference to left and right 
faces. 
Depending on the scale of a query, multiple separate edges would have to be returned for 
one 
single compound edge. To be able to perform this combining of edges quickly and 
efficiently, 
this in some way has to be stored beforehand in a data structure for the edges. The 
primary 
idea here is to create a tree structure over the edges. This tree structure together with 
some 
stored procedures, should enable the database to dynamically create edge records that are 
to 
be sent to the client. The ideal for this edge data structure would be to store large edges, 
and 
then to dynamically ‘create’ the smaller edges if the scale requires that. Besides being 
able to 
create the output edges, this data structure must also encompass the storage of the 
appropriate 
face references for all edges that it must be able to create. The edge tree method should 
actually remove the need for this additional query totally, as the references can 
automatically 
be set to the correct value if the edge-tree data structure correctly supports this feature. 
Although some ideas about the shape of the data structure came up both theoretical as 
well as 
practical obstacles prevented it from being realised with in the research. 
4. Applying generalisation operators on the new structure. 
In this section we show how standard generalisation operators are handled in the data 
structure. For a start we can have a look at the standard generalisation functions: 
Selection, 
Simplification, Exaggeration, (Re-)Classification, Symbolisation, Aggregation, 
Typification 
and Anamorphose (VBB Viak 1997). How well each of these operators is supported by 
the 
data structure is described in Table 2. Of course when a generalisation operation replaces 
a 
geometry with a completely different geometry, there is not much to re-use and there will 
be 
no gain in using the structure. However most operations leave a lot of the original 
geometry 
intact making reuse possible. 
Table 2: Support of generalisation operators 



Generalisation 
Method 
Data reduction. 
Selection Since selection is performed before the data is put in the data-structure 
this operation is irrelevant. 
Simplification This can be done by putting a line simplification algorithms (like BLG) 
on the lines of the structure. The use of topology in the data structure 
assures there is no overlap of the borders of two polygons, which could 
introduce sliver polygons when applying line simplification to both 
lines. Therefore the data structure supports the use of simplification. 
Exaggeration By submitting a new geometry for the exaggerated object (and for the 
surrounding objects that have to shrink), this operation can be 
implemented. Because of the topological structure the exaggerated 
object shares its boundary with the surrounding objects. This new 
geometry is stored only once in the DBMS. 
(Re-)Classification The assignment of classes only affects the faces as it applies to the 
thematical information. New faces can be created, based upon the 
classification, but the original geometries can be re-used. 
Symbolisation Symbolisation through the collapse operator can be used with the data 
structure. The collapsing of a face would yield a change in the shape of 
the surrounding faces. However it is not necessary to store complete 
new boundaries for those surrounding faces. Only their boundary with 
the collapsed face has to be saved in a new set of edges. 
Aggregation The aggregation of faces is easily supported. To aggregate two faces, 
the edges of their shared boundary are removed and a new face record 
is created that describes the new combined face. 
Typification Typification requires alteration of both shape and location of objects. 
This can be applied with the data structure but it has no real advantages 
other than that for some objects the thematic information does not have 
to be stored again. 
Anamorphose To maintain a correct data structure it is important that geometric and 
topological conflicts are detected and corrected. With the data structure, 
conflicts can be resolved by changing edges, to satisfy spatial and 
topological constraints. 
As is clear from Table 2 all of the necessary operators can be used with the data structure, 
although some better than others. The data structure was not designed for use with a 
specific 
generalisation method. 
5. Conclusions and future work 
In this paper we prove that it is possible to store the result of generalisation algorithms for 
planar subdivisions efficiently making scale-less access to topological map data possible. 
The 
result of any map generalisation procedure can be stored in the data-structure and for 
many 
standard generalisation operations the storage is very efficient. 
The structure has proven itself in prototype using an Oracle9i database and java 



application 
for the polygon reconstruction. In this prototype a few simple generalisation operations 
were 
implemented. 
Although the first prototype was promising, and proved that the data-structure works in 
practise, new experiments are needed. We plan to test the structure with the whole 1:10 
000 
topographic map of the Netherlands. Also experiments with more generalisation 
operations, 
for example the operations in (Galanda 2002), would give more insight in the usability of 
the 
structure. Another research topic is incremental change of the data-structure. 
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