
Storing and using scale-less topological data efficiently in a
clientserver
DBMS environment
Maarten Vermeij, Peter van Oosterom, Wilko Quak and Theo
Tijssen
Faculty of Civil Engineering and Geosciences,
Department of Geodesy,
section GIS Technology,
P.O. Box 5030, 2600 GA Delft, The Netherlands.
Tel +31 15 2783756; Fax +31 15 2782745;
Email: quak@geo.tudelft.nl
Abstract
In this paper we present a data structure that stores the results of a generalisation
procedure efficiently as a scale-less map inside a spatial DBMS. This structure
makes is possible to interactively visualize polygonal subdivisions on any scale
efficiently. This is done by maintaining a topological structure from which a map
can be reconstructed. The reconstruction of a polygonal subdivision for a given
scale is done in two steps. The first step retrieves the necessary boundary lines
from the database together with information on how these boundaries should be
combined to for a subdivision. The second step reconstructs a topologic layer
from these boundaries. The two steps in the process are modelled in such a way
that the first step can be efficiently implemented on top of a standard spatial
DBMS (with three simple SQL queries). The second part of the process, which is
more iterative, can be either performed at the client side or on an applications
server. An important feature of the data structure is that the data is stored
topologically in such a way that as much of the geometry of an object is re-used.
This makes the storage very compact and ensures that only little data needs to be
shipped from the database.
1. Introduction
When interactively working with map data, it is common for the user to start viewing the
complete extent of the data and then interactively zooming in to the region in which one
is
interested. If the data set is big, viewing the complete extent will involve huge amounts
of
data and drawing all the details will result in an overcrowded map. To overcome these
problems, cartographic generalisation can be used to reduce the amount of data in a map.
However, generalisation is an expensive procedure that is complex to perform
automatically.
Current approaches (Hardy 2003; Galanda 2002) on automatic generalisation focus on
agent
technology where autonomous agents perform simplification algorithms on parts of the
map.
The computational complexity of this task makes it impossible to compute the
generalized

map when the user asks for it. Instead, the generalisation is pre-computed and the result is
stored on disk. There are two ways to store the result of the generalisation process; as a
multiscale
map or as a scale-less map. In a multi-scale map, a collection of maps with different
scales is made. When viewing the map data, the map with the scale that is nearest to the
scale
that the user request is shown. In the storage of the maps on the different scales there can
be
quite some redundancy; if an object is does not change across different scales it will be
stored
twice. In a scale-less map, the result of the generalisation procedure is stored in such a
way,
that a map of any scale can be produced efficiently. This makes it possible to store a map
object that looks the same on different map scales only once.
In this paper we propose a data structure for the efficient storage and retrieval of a scale-
less
polygonal subdivision. The structure can be implemented in any DBMS that supports the
OpenGIS simple feature specification (OpenGIS, 1998). Our current prototype runs on
top of
an Oracle9i database server.
The rest of the paper is structured as follows. After the introduction we describe the
architecture that we use in Section 2. The data structure that stores the scale-less data is
described in section 3. Section 4 gives examples of how generalisation operations can be
implemented on top of the structure. Finally in Section 5 we conclude.
2. The architecture.
The reconstruction of the map from the database consists of two steps. In the first step the
necessary data is retrieved from the database, in the second step polygons are
reconstructed
from this data. For the implementation of the process two architectures can be used. In a
twotier
architecture. The client software (browser, GIS application) directly connects to the
database server. The database server provides the data, which is reconstructed by the
client.
In recent years desktop computers have become much more powerful and by using the
processing power of the client, no expensive server is needed. In the three-tier
architecture, a
Client
application
Database
Client
application
Application
Server
Database
Client tier
Presentation
tier

Middle tier
Thick
Client
Thin Client
Figure 1: Architecture.
middle layer is introduced that performs the reconstruction of the polygons,. In this case
no
functionality is needed at the client, which can be any web mapping application.
The queries that are posed to the DBMS server are relatively simple Spatial SQL queries,
that
do not put a heavy burden on the database server. Depending on the application the
reconstruction of the polygons can either be done at the client, or in a middle tier
application
server.
3. The data structure.
This section describes the proposed data structure as well as how to use it. First the layout
of
the data structure itself is discussed. The setup of the data structure allows distinct use of
both
server-side and client-side computing power. The processes that take place at both sides
are
therefore also discussed.
Server-side storage
The data structure is developed as a topological variant of the GAP-tree (van Oosterom,
1995), which could only be used on the generalisation operator aggregation. That data
structure is intended to be used on planar partitioning maps. The new data structure
however
does not store complete geometric descriptions of the faces that make up the partitioning.
Instead it uses a topological setup. A two-dimensional topological representation uses
three
types of objects, nodes, directed edges and faces. Of these three only the edges and faces
are
stored in the data structure. The nodes are determined when necessary, based upon
geometric
properties of the edges. In the current setup this will be at the client-side as discussed in
paragraph (client-side polygon reconstruction). The edges and faces are stored in two
tables.
These tables must at least contain the attributes as described in table 1.
EdgeTable FaceTable
Name Type Name Type
OID
GEOMETRY
LENGTH
LFACE
RFACE
BBOX3D
NUMBER(11)
LineString
NUMBER(9,3)
NUMBER(11)

NUMBER(11)
Box3D
OID
PARENTID
AREA
IMPORTANCE
BBOX3D
NUMBER(11)
NUMBER(11)
NUMBER(15,3)
NUMBER(15,3)
Box3D
The edges table primarily stores the geometric properties of the polygons. The faces table
does not store any information on the geometric properties of the faces. This table is
intended
to store all other information on the faces. The link between these two tables is
established
via the LFACE and RFACE attributes in the Edges table. These two attributes refer to the
faces that lie left and right of the Edge at the highest level of detail for which the edge is
valid. This corresponds to the lowest z-value of the BBOX3D associated with that edge.
At
other detail levels these references might not be valid any more as the faces they refer to
can
be replaced by other, larger faces. To obtain the correct face references the PARENTID
attribute in the faces table is used. Through the PARENTID references a hierarchy in the
total
set of faces is defined. Since this hierarchy is stored bottom-up there are no restrictions
with
regards to the number of children per parent. To be able to select the appropriate edges
and
faces, both tables contain an attribute called BBOX3D.
Table 1: Basic layout of the tables.
Using third dimension for scale information
An integral part of the setup of the data structure is the use of a third geometric
dimension for
the scale information. The major advantage of this choice is that it enables the use of 3D
indexing methods on the combined geometric and scale data. This in turn allows the
selection
of records based on both the geometric as well as the scale requirements in simple
queries.
The 3D geometries that are used to support these indexes are 3D boxes that are created as
the
2D bounding boxes of the geometric shapes of respectively the edges and the faces,
extended
with the scale values for the third dimension.
Figure 3: Selection of faces by intersection of 3D boxes with a 3D rectangle. If the
rectangle moves up less detail is retrieved
Oid
ParentId
…
Oid

ParentId
…
Oid
ParentId
…
Oid
ParentId
…
Oid
ParentId
…
Oid
ParentId
…
Oid
ParentId
…

Figure 2: Hierarchy of faces through parent references. The ellipsis represent all
additional information on the faces, e.g. thematic data.
Server-side selection
The selection of the appropriate elements for a map at a certain LoD is done at the
serverside.
In on-the-fly generalisation the selection has address both the geometric extent of the
data as well as the scale information. The three-dimensional bounding boxes used in the
data
structure provide this possibility. To obtain a map of an area at a certain scale three
separate
queries have to be performed of which the selection of the necessary Edges and Faces are
the
most important. The queries for the Edges and Faces are actually the same. All records
are
selected of which the bounding box described in the BBOX3D attribute intersect with a
3D
rectangle. This 3D rectangle with x,y extent equal to the query window and the z value
equal
to the desired LoD. The following (simplified) lines of code are used to construct the 3D
query for the selection of the faces:
Select * from FaceTable
Where mdsys.sdo_filter
(
bbox3d, mdsys.SDO_GEOMETRY
(
3003, srid, NULL, mdsys.SDO_ELEM_INFO_ARRAY(1, 1003, 3),
mdsys.SDO_ORDINATE_ARRAY(minx ,miny ,lod ,maxx ,maxy ,lod)
),
'mask=ANYINTERACT querytype = WINDOW'
)= 'TRUE'";
Figure 1 shows a schematic visualisation of the concept of the 3D query for the selection
of
faces. The light blue rectangle represents the 3D rectangle as defined in the query. Each
of the
boxes represents a 3D box of a face. The red boxes are intersected by the rectangle and
thus
their accompanying records are selected. The selection of the edges uses the same kind of

query.
The mdsys.sdo_filter function is able to use, if available, a 3D R-tree index to speed up
the
selection process. A limitation of this function is that the query window must be an
axisparallel
rectangle. This is often the case with queries for visualisation purposes. These
selected records are sent to the client, where they are stored in lists for the necessary
processing to create complete geometric descriptions of the faces for proper visualisation.
There is also the need for a third query, which selects the necessary information for the
correct assignment of faces to reconstructed polygons. In this query the OID and
PARENTID
fields of the FACETABLE are selected for all records that are present in a 3D box
extending
from the requested scale down to the most detailed scale and covering the entire query
window.
Client-side polygon reconstruction
An important aspect of the procedure is the fact that the geometric shapes of generalized
faces are determined at the client-side at query time. The geometric shape of the faces is
not
stored explicitly but instead should be reconstructed based on the separate edges. The
polygon reconstruction starts with an unsorted list of the edges comprising the boundaries
of
all polygons that need to be reconstructed. This list of edges is obtained by a query of the
client to the server.
Listing 1: 3D Query for selection of faces (Oracle 9i Spatial DBMS)
The reconstruction algorithm needs two directed edges for each boundary, one for each
adjoining polygon. Therefore each edge must be present twice in the edge list, each with
an
opposite direction to the other. Since the list initially only contains one edge per
boundary
segment, as returned by the server, this demand is satisfied by adding a reversed copy of
each
edge to the list. The next step is to create nodes at the start of each edge. Whenever two
edges
meet, i.e. multiple edges start at the same location, multiple edges will share the same
node.
Each node contains a list of all outgoing edges. This list needs to be sorted on the angle
of the
first line segment of each outgoing edge in order for the reconstruction routine to be able
to
find the next edge in a ring. With the lists of edges and nodes ready, rings can be
detected. A
ring is a closed sequence of line segments that encloses a region and does not contain any
self-intersections. Rings are created using a program loop that adds edges to the ring until
the
end of the last added edge has the same coordinates as the beginning of the first edge.
This

program can be described by the following pseudo code.
Select arbitrary edge
Select the node at the beginning the edge
Store this edge in firstEdge
Loop
Add linesegments in the edge to OutputRing
Select the node at the end of the edge
Select next edge in clockwise direction from edge at selected node
Until (selected edge)=(firstEdge)
Pseudo Listing 1: Description of ring reconstruction using edges and nodes.
Using this algorithm it is possible to create all rings present in the set of rings. These
rings
should be separated into two groups. One contains the shells, or outer rings of polygons,
and
one contains the holes or rings in the interior of polygons. The described ring
reconstruction
algorithm automatically creates shells that are counter clockwise oriented rings and holes
that
are clockwise oriented. Holes should be assigned to the smallest shells they lay in, i.e.
(area(holes)<area(shell)) and (hole lays within shell). The combination of a shell with
zero or
more holes is called a polygon. These polygons can be visualised on a clients display
using
standard functionality to show geometric objects.
The polygon reconstruction method has two important prerequisites, first with regards to
the
creation of the nodes at the client-side, and secondly with the content of that topological
data.
The polygon reconstruction process needs a topological data structure consisting of edges
and
the nodes at which the edges touch each other, however these nodes are not stored in the
database. Instead they are determined only just prior to the reconstruction, based upon
geometric properties of the edges. The position and content of the nodes are determined
at
query time based upon the coordinates of the first point of each edge. A node is located at
the
first point of each edge. Whenever two edges start at the same exact location they share
the
same node. For this method to create all the necessary nodes it is important that edges do
not
contain internal points that are located at nodes, since those would not be considered
nodes,
and therefore not be used in the reconstruction process.
The second prerequisite is that all polygons that lie completely or partially within the map
window must be reconstructed, at least for the visible part. The total set of topological
data
present after a query is not enough to satisfy this demand as seen in figure 4a. This would
result in incomplete maps as can be se en in figure 4b. The demand was addressed by also
including the map window border as a set of edges. These edges are intersected with the

edges from the database. At the intersection between two edges, both are split into two.
This
process is performed prior to the determination of the nodes. Figure 4c shows the edges
and
nodes that are now present. After execution of the intersection and the edge splitting, the
amount of topological information present, is sufficient to reconstruct enough polygons to
complete cover the map, as seen in figure 4d.
Besides the geometric properties of the objects to show, proper visualization of the
polygons
also requires that appropriate symbolisation is used. The symbolisation should be based
upon
the thematic information. The thematic information on the faces is stored in the faces
table.
To determine which faces are bounded the edges at a certain level of detail, the face
reference
attributes of the edges table and the PARENTID attribute of the faces table are used. The
determination of the correct face record for a reconstructed polygon starts by taking the
face
reference of an arbitrary edge bounding a polygon. This reference is only valid for the
most
detailed face bounded by that edge. Should the requested map however be of lower detail,
another face must be selected. To select the correct face, the face hierarchy traversed
upwards
until the encountered face satisfies the scale of the map. This procedure could be
executed at
either the server- or the client side. Should this be done at the server side than the process
must be performed for every edge that is returned to the client. Should this however be
done
at the client side, only one edge per polygon has to be processed. However, it is then
necessary to transfer the entire relevant subset of the face hierarchy to the client. The part
of
the face hierarchy is which to be sent to the client is again selected through a 3D query.
Line Generalisation
Because all geometries are stored topologically, using line-segments, there is another
possibility for generalisation by putting an on-the-fly line generalisation like the Douglas
Peucker algorithm (1973) algorithm on all line geometries. This is only possible because
the
data is modelled topologically.
Generalisation across edges
All edges present in the data structure are those that bound the original faces at the input
Scale. These exact same edges become the boundaries of the larger faces and lower
LoDs.
Subsequently these larger faces are bounded by a large number of small edges, which
represent an increasingly large amount of data as larger query windows are used at
smaller
scales. Although each of these edges can individually be simplified, e.g. by using the

Douglas
Peucker algorithm, this cannot be done for a combination of edges. The primary reason
for
this is the fact that in addition to storing the geometric shape of a boundary, an edge also
stores references to its left and right face. Combining multiple edges into one large edge,
would cause this combined edge to have to contain multiple reference to left and right
faces.
Depending on the scale of a query, multiple separate edges would have to be returned for
one
single compound edge. To be able to perform this combining of edges quickly and
efficiently,
this in some way has to be stored beforehand in a data structure for the edges. The
primary
idea here is to create a tree structure over the edges. This tree structure together with
some
stored procedures, should enable the database to dynamically create edge records that are
to
be sent to the client. The ideal for this edge data structure would be to store large edges,
and
then to dynamically ‘create’ the smaller edges if the scale requires that. Besides being
able to
create the output edges, this data structure must also encompass the storage of the
appropriate
face references for all edges that it must be able to create. The edge tree method should
actually remove the need for this additional query totally, as the references can
automatically
be set to the correct value if the edge-tree data structure correctly supports this feature.
Although some ideas about the shape of the data structure came up both theoretical as
well as
practical obstacles prevented it from being realised with in the research.
4. Applying generalisation operators on the new structure.
In this section we show how standard generalisation operators are handled in the data
structure. For a start we can have a look at the standard generalisation functions:
Selection,
Simplification, Exaggeration, (Re-)Classification, Symbolisation, Aggregation,
Typification
and Anamorphose (VBB Viak 1997). How well each of these operators is supported by
the
data structure is described in Table 2. Of course when a generalisation operation replaces
a
geometry with a completely different geometry, there is not much to re-use and there will
be
no gain in using the structure. However most operations leave a lot of the original
geometry
intact making reuse possible.
Table 2: Support of generalisation operators

Generalisation
Method
Data reduction.
Selection Since selection is performed before the data is put in the data-structure
this operation is irrelevant.
Simplification This can be done by putting a line simplification algorithms (like BLG)
on the lines of the structure. The use of topology in the data structure
assures there is no overlap of the borders of two polygons, which could
introduce sliver polygons when applying line simplification to both
lines. Therefore the data structure supports the use of simplification.
Exaggeration By submitting a new geometry for the exaggerated object (and for the
surrounding objects that have to shrink), this operation can be
implemented. Because of the topological structure the exaggerated
object shares its boundary with the surrounding objects. This new
geometry is stored only once in the DBMS.
(Re-)Classification The assignment of classes only affects the faces as it applies to the
thematical information. New faces can be created, based upon the
classification, but the original geometries can be re-used.
Symbolisation Symbolisation through the collapse operator can be used with the data
structure. The collapsing of a face would yield a change in the shape of
the surrounding faces. However it is not necessary to store complete
new boundaries for those surrounding faces. Only their boundary with
the collapsed face has to be saved in a new set of edges.
Aggregation The aggregation of faces is easily supported. To aggregate two faces,
the edges of their shared boundary are removed and a new face record
is created that describes the new combined face.
Typification Typification requires alteration of both shape and location of objects.
This can be applied with the data structure but it has no real advantages
other than that for some objects the thematic information does not have
to be stored again.
Anamorphose To maintain a correct data structure it is important that geometric and
topological conflicts are detected and corrected. With the data structure,
conflicts can be resolved by changing edges, to satisfy spatial and
topological constraints.
As is clear from Table 2 all of the necessary operators can be used with the data structure,
although some better than others. The data structure was not designed for use with a
specific
generalisation method.
5. Conclusions and future work
In this paper we prove that it is possible to store the result of generalisation algorithms for
planar subdivisions efficiently making scale-less access to topological map data possible.
The
result of any map generalisation procedure can be stored in the data-structure and for
many
standard generalisation operations the storage is very efficient.
The structure has proven itself in prototype using an Oracle9i database and java

application
for the polygon reconstruction. In this prototype a few simple generalisation operations
were
implemented.
Although the first prototype was promising, and proved that the data-structure works in
practise, new experiments are needed. We plan to test the structure with the whole 1:10
000
topographic map of the Netherlands. Also experiments with more generalisation
operations,
for example the operations in (Galanda 2002), would give more insight in the usability of
the
structure. Another research topic is incremental change of the data-structure.
6. References
DOUGLAS, D. H. & PEUCKER, T. K. 1973, `Algorithms for the reduction of points
required to represent a digitized line or its caricature', Canadian Cartographer
10, 112-122.
GALANDA, M. and WEIBEL, R. ,2002, `An agent-based framework for polygonal
subdivision generalisation', Advances in Spatial Data Handling, 10th International
Symposium on Spatial Data Handling pp. 209-224.
PAUL HARDY, MELANIE HAYLES, PATRICK REVELL, ‘Clarity – a new
environment
for generalisation using agents, java, xml and topology. ICA Generlisation Workshop,
Paris, April 2003
VAN OOSTEROM, P. 1995, The gap-tree, an approach to on-the-fly" map generalization
of an area partitioning, in J. Mueller, J. Lagrange & R. Weibel, eds, `GIS
and Generalization, Methodology and Practice', Taylor & Francis, pp. 120-132.
OPEN GIS CONSORTIUM, INC. 1998, OpenGIS simple features specification
for SQL, Technical Report Revision 1.0, OGC.
http://www.opengis.org/techno/specs/99-049.pdf
VBB Viak, Automatic Generalization of Geographic Data 1997

