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Summary

The minimum number of bodies required to form a closed kinematic chain capable of motion is four.
A planar four-bar mechanism has one degree of freedom (DOF), whereas in three-dimensional space,
it becomes over-constrained, reducing its DOF to -2. While this kinematic idealization remains unaf-
fected, its physical realization introduces conflicting constraints. This study deliberately incorporates
misaligned over-constraints in four-bar mechanisms to achieve tailorable load-displacement character-
istics by utilizing a compliant coupler link. Such tailorable characteristics could potentially eliminate the
need for traditional springs and dampers in mechanical systems.

A positioning strategy formisaligned over-constraints is developed. An Euler-Bernoulli beammodel with
superposition is employed to analyze how misalignments influence the load-displacement response.
Additionally, a numerical model using SimscapeMultibody is implemented to verify the analytical results.
To further validate the findings, a physical prototype is constructed and tested to compare real-world
behavior with computational models. The numerical simulations effectively capture the response of the
four-bar mechanism, considering elastic deformations in the compliant coupler link.

The results from all models exhibited strong agreement. Parameter relaxation is introduced to ac-
count for manufacturing tolerances and geometric imperfections. Furthermore, a parametric study is
conducted to examine the influence of individual design parameters on the load-displacement charac-
teristics. To facilitate design exploration, a graphical user interface (GUI) is developed, enabling users
to tailor four-bar mechanisms based on specific load-displacement requirements. Two distinctive be-
haviors are presented: extended regions of nearly constant torque and sinusoidal load-displacement
characteristics, both of which have potential applications in precision engineering and motion control.
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Nomenclature

Abbreviations
Abbreviation Definition

FEA Finite Element Analysis
GUI Graphical User Interface
DOF Degree of Freedom
ODE Ordinary Differential Equation

Symbols
Symbol Definition Unit

G Shear modulus [GPa]
E Young’s modulus [GPA]
I Second moment of Area [m4]
J Polar moment of Inertia [m4]
U Energy [J]
M Bending moment [Nm]
L1 Ground link [m]
L2 Input link [m]
L3 (Compliant) coupler link [m]
L4 Output link [m]

θ1 Angle of ground link [rad]
θ2 Angle of input link [rad]
θ3 Angle of rigid coupler link [rad]
θ4 Angle of output link [rad]
θa Polar angle joint A [rad]
θ′a,0 Initial angle of projected position vector wrt x3 [rad]
θ′a Angle of projected position vector wrt x3 [rad]
θb Polar angle joint B [rad]
θ′b,0 Initial angle of projected position vector wrt x′

3 [rad]
θ′b Angle of projected position vector wrt x′

3 [rad]
ϕa,0 Initial azimuth angle joint A [rad]
ϕa Azimuth angle joint A [rad]
ϕb,0 Initial azimuth angle joint B [rad]
ϕb Azimuth angle joint B [rad]
ϕT,0 Initial angle of twist [rad]
ϕT,a,0 Initial angle of projected position vector joint A wrt x3 [rad]
ϕT,b,0 Initial angle of projected position vector joint B wrt x3 [rad]
ϕT Angle of twist resulting in torsion [rad]
ρ̂a Unit position vector joint A [ϕa, θa]
ρ̂b Unit position vector joint B [ϕb, θb]
ρ′a Projection position vector joint A on x3 − x2-plane [x2, x3]
ρ′b Projection position vector joint B on x′

3 − x′
2-plane [x′

2, x
′
3]

ρ′′a Projection position vector joint A on x1 − x3-plane [x2, x3]
ρ′′b Projection position vector joint B on x1 − x3-plane [x2, x3]
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1
Introduction

1.1. Background and motivation
A four-bar linkage is the simplest closed-chain mechanism capable of motion, consisting of four rigid
bodies connected by four revolute joints. From a planar perspective, such a mechanism has one
degree of freedom (DOF). However, in the three-dimensional space, the same mechanism becomes
over-constrained, resulting in a system with a theoretical DOF of –2. Although this does not affect
the kinematic idealization, it introduces conflicting constraints when physically realized. These over-
constraints can lead to internal stresses, reduced predictability, and, in some cases, buckling — espe-
cially when geometric imperfections arise from manufacturing tolerances or environmental influences
such as thermal expansion.

While over-constraints are often considered undesirable, they also present unexplored potential. This
research explores the deliberate use of misaligned over-constraints, in combination with a compliant
coupler link, to tailor the load–displacement characteristics of a four-bar mechanism. By embedding
compliance into one of the mechanism’s links, it becomes possible to passively control force responses
during motion, potentially reducing or eliminating the need for traditional springs, dampers, or actuators.

This approach not only aims to simplify mechanical systems but also to enable adaptive behavior
through design. Tailored load–displacement responses have significant potential across various en-
gineering applications, such as passive mass balancing, suspension systems, motion control, and
singularity mitigation in linkages. Existing methods often require solutions like embedded springs,
dampers or actuators, which can increase mass, cost, and design complexity. This work proposes an
alternative: It deliberately introduces misaligned over-constraints in mechanisms to achieve tailorable
load–displacement characteristics by leveraging a compliant link.

1.2. Research Objective
The primary objective of this research is to develop a methodology for designing four-bar mechanisms
with misaligned over-constraints that produce nonlinear, tailorable load–displacement characteristics.
The study combines theoretical analysis, numerical modeling, and physical prototyping to achieve the
following goals:

• Analyze the influence of misaligned over-constraints using Euler–Bernoulli’s classical beam the-
ory and the principle of superposition.

• Validate analytical results through numerical simulations in Simscape Multibody.
• Experimentally verify the mechanical behavior using a physical prototype.
• Develop a graphical user interface (GUI) to support design exploration.
• Identify and characterize uniquemechanical behaviors (e.g., significant regions of constant torque,
sinusoidal-like responses).

1



1.3. Scope 2

1.3. Scope
The study focuses on a single degree-of-freedom four-bar mechanism in the three-dimensional space,
in which only the coupler link is compliant. The joints are modeled as revolute joints, with two selected
joints deliberately misaligned to introduce the misaligned over-constraints. These joints are located
on either end of the compliant coupler link. The compliant link is straight and stress-free in the initial
configuration of the four-bar, with a circular and constant cross-section. These assumptions are kept
consistent to effectively compare and analyze the effects of misalignment on the mechanism’s load–
displacement characteristics.

1.4. Structure of report
This report consists of a research paper, which forms the core of the work, followed by several appen-
dices that provide supplementary materials:

• Chapter 2 presents the research paper, which details the methodology, modeling approaches,
results, and conclusions. This chapter can be read independently.

• Appendix A contains MATLAB code used for analyzing the four-bar mechanism based on Euler–
Bernoulli beam theory and the principle of superposition.

• Appendix B includes supplementary code for the Simscape Multibody model.
• Appendix C presents the MATLAB App Designer code for the GUI that allows interactive design
exploration.

• Appendix D provides additional photographs of the experimental setup and prototype, along with
technical drawings of the machined parts.

• Appendix E highlights initial concepts and design iterations that preceded the final design and
may serve as a foundation for future research.
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Generating nonlinear load-displacement characteristics in
mechanisms by introducing misaligned over-contraints

Author: Winkler van Grafhorst, supervisor: Dr. ir. G. Radaelli

Abstract—The minimum number of bodies required to form a
closed kinematic chain capable of motion is four. A planar four-
bar mechanism has one degree of freedom (DOF), whereas in
three-dimensional space, it becomes over-constrained, reducing
its DOF to negative two. While the kinematic idealization
remains unaffected, its physical realization introduces conflicting
constraints. This study deliberately incorporates misaligned over-
constraints in four-bar mechanisms to achieve tailorable load-
displacement characteristics by utilizing a compliant coupler link.
Such tunable characteristics could potentially eliminate the need
for traditional springs and dampers in mechanical systems.
A positioning strategy for misaligned over-constraints is de-
veloped. An Euler-Bernoulli beam model with superposition is
employed to analyze how misalignments influence the load-
displacement response. Additionally, a numerical model using
Simscape Multibody is implemented to verify the analytical
results. To further validate the findings, a modular physical pro-
totype is constructed and tested to compare real-world behavior
with computational models. The numerical simulations effectively
capture the response of the four-bar mechanism, considering
elastic deformations in the compliant coupler link.
The results from all models exhibit strong agreement. Parameter
relaxation is introduced to account for manufacturing tolerances
and geometric imperfections. Furthermore, a parametric
study is conducted to examine the influence of individual
design parameters on the load-displacement characteristics. To
facilitate design exploration, a graphical user interface (GUI) is
developed, enabling users to tailor four-bar mechanisms based
on specific load-displacement requirements. Two distinctive
behaviors are presented: extended regions of nearly constant
torque and sinusoidal load-displacement characteristics, both of
which have potential applications in precision engineering and
motion control.

Keywords: Four-bar mechanism, misalignment, over-
constraint, nonlinear, load-displacement, constant torque,
revolute joints, compliant mechanism.

I. Introduction

Degrees Of Freedom (DOF) determine a mechanism’s mobil-
ity. Before any mechanism is designed, the number of DOF
should be determined [1]. Various theories for calculating a
mechanism’s mobility have been proposed. The development
of mobility criteria has been an area of research for over
150 years [2]. Many of these methods can be traced back
to the same fundamental criterion, known as the Cheby-
chev–Grübler–Kutzbach mobility criterion [3]. It is applicable
for calculating the mobility of planar mechanisms, and can
also be adapted for spatial mechanisms. The criterion for
spatial mechanisms is provided by equation 1.

M = 6(n − j − 1) +
j∑

i=1

fi (1)

For a four-bar linkage in the three dimensional space -
with n = 4 bodies, j = 4 kinematic pairs, and each ith
kinematic pair allows one DOF - this equates to minus two
DOF. Therefore the four-bar is considered over-constrained.
Over-constrained mechanisms may be desirable due to
their enhanced load-bearing capacity compared to exact
constrained mechanisms. In addition, Eigenfrequencies are
reduced, and a high degree of symmetry is often involved
[4]. While the kinematic idealization of a mechanism is
not affected by over-contraints, the physical realization is
[5]. Geometric imperfections, arising from manufacturing
tolerances or thermal expansion differences, effectively
transform redundant constraints into conflicting ones. This
can cause internal stresses, part deformation, and increased
loads on bearings in mechanisms, potentially leading to
nondeterministic behavior [6], or even complete immobility. In
compliant mechanisms, misalignments can lead to undesirable
static and dynamic behavior, including buckling, variations
in support stiffness, and bifurcation [7]. However, these
misalignments also present a potential opportunity that is often
overlooked. By deliberately introducing extreme misaligned
over-constraints in a compliant mechanism, it is possible to
achieve tailorable load-displacement characteristics. In this
approach, compliance is incorporated into one of the links,
enabling a new method of controlling mechanical response.
Traditionally, tailored load-displacement characteristics are
achieved by incorporating actuators, springs, or dampers into
mechanisms to perform specific functions. This alternative
strategy leverages the inherent flexibility of compliant
elements, potentially reducing system complexity while
enhancing adaptability. Examples of traditional approaches to
generate nonlinear load-displacement characteristics include
the work of S. Liu et al., who embedded flexible joints
within a metastructure to achieve nonlinear joint stiffness
[8]. Furthermore, X. Jing et. al present a review on a
method for nonlinear stiffness manipulation and employment
in an X-shaped mechanism [9], [10]. Besides, spring
elements are also used in the design of machinery and
automated systems where gravity is a key factor that must be
considered. Improper design can result in excessive force and
actuator demands, which can be mitigated through passive
mass balancing [11]. However, this approach increases
system mass, leading to added weight and higher resource
consumption. These challenges exemplify just a few of the
many trade-offs in mechanism design. This research aims
for another direction; not by adding springs, dampers and
masses to the system, but by utilizing compliance of a part
of a mechanism itself. By accurately positioning misaligned
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over-constraints, compliant elements will function as the
loading and unloading of a spring as the mechanism moves.
The effect of misaligned over-constraints in mechanisms have
been studied before; however, it was applied to a mechanism
where compliant joints absorbed the forces [4]. In contrast,
this study implements compliance in the links rather than
the joints. The misaligned over-constraints are revolute joints
positioned under an angle, allowing for one DOF. The goal is
to develop a methodology for the development of nonlinear
load-displacement characteristics in mechanisms by utilizing
misaligned over-constraints. Such mechanisms can have a
wide range of applications; from mass-balancing systems,
suspension systems, to smoothening of peak torques and
forces in mechanisms. The use of (strong) actuators, springs
and dampers could become redundant in some applications.
Additionally, misaligned over-constraints can be strategically
incorporated into mechanisms to mitigate the effects of
singularities. For example, they enable the conversion of
reciprocating actuation into rotary motion using linkages,
ensuring efficient torque transmission even near kinematic
singularities [12]. Since mechanisms vary widely in form and
function, this research focuses on the mechanical response of
misaligned over-constraints in four-bar mechanisms — the
simplest closed-chain linkage that exhibits motion.

The structure of this paper is as follows. Section II, outlines
the methodology that led to the results. It introduces the
underlying concepts, including Euler-Bernoulli’s beam theory
and the principle of superposition, and presents the numerical
Simscape model, the physical prototype and the experimental
setup. Thereafter, in Section III, the results of the various
models are compared and analyzed. A parameter study il-
lustrates how different variables affect the load–displacement
characteristics of the system. Furthermore, a Graphical User
Interface (GUI) is presented, enabling users to quickly explore
unique load–displacement behaviors. Two notable behaviors
identified during this research are a plateau of constant torque
and a sinusoidal torque response. In Section IV, potential
improvements are proposed and future research directions are
explored. Finally, the conclusion is presented in Section V.

II. Methodology

To generate nonlinear load-displacement characteristics, multi-
ple steps are involved. These steps are covered in this section.
First the concept will be explained in Section II-A. In section
II-B, a simplified model will be presented: Euler-Bernoulli’s
beam theory and the principle of superposition. This simplified
model serves as an effective tool for interactively design-
ing and optimizing desired load–displacement characteristics.
Next, the numerical model developed in Simulink Simscape is
detailed in Section II-C. This model supports validation and
refinement of the subsequent design stage. Finally, the physical
model that was developed and tested is presented in Sections
II-D and II-E, respectively.

A. Concept

Misaligned over-constraints in precision mechanisms might
seem odd; however, this study incorporates misaligned over-
constraints in combination with a compliant beam to deploy
nonlinear load-displacement characteristics. The least amount
of links required in a closed chain involving motion is four.
A four-bar linkage has negative two degrees of freedom.
Formulated differently: it has three over-constraints. The effect
of misaligned over-constraints will be demonstrated on a four-
bar linkage with four revolute joints. The concept is applicable
to other over-constraint mechanisms, provided their kinematic
chain is known, and their aligned counterpart does involve
motion. Other types of joints, such as sliders, can also be
utilized. The four-bar linkage consists of a ground link (L1),
input link (L2), coupler link (L3) and output link (L4). Their
absolute angles are indicated with θ1, θ2, θ3 and θ4 respectively,
as shown in figure 1. The ground link is parallel to the x-axis,
θ1 = 0.

y

x

+

L2

L3

L4

L1

θ2

θ3

θ4

D
C

A

B

Fig. 1: Crank-Rocker four-bar mechanism, L1 is the ground
link (with θ1 = 0, not indicated), L2 is the input link (θ2), L3
represents the coupler link (θ3) and L4 is the output link (θ4).
The misaligned over-constraints will be introduced to joint A
and B, indicated in orange.

A subscript zero is used to indicate angles in the initial
configuration, as in θ2,0. The coupler link is the compliant link,
indicated by a thick line. This compliant link has a circular
cross section with radius R. The joints that are misaligned with
respect to a pure out of plane direction, are joints A and B, on
either side of the compliant coupler link. Because the joints are
nonparallel, the compliant link must deform to accommodate
the kinematics. The deformation of the compliant link varies
over the four-bar’s range of motion and depends strongly on
the design variables, including the misalignment parameters,
resulting in complex load–displacement characteristics. The
theory is demonstrated on a crank-rocker mechanism because
it allows infinite motion of input angle θ2. A crank-rocker
mechanism is identified by the Grashof criterion [13]. All
plots throughout this paper have θ∗2 on the x-axis, indicating
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θ2 − θ2,0. As result, the x-axis of all plots ranges from 0 to 2π.
In addition, the properties of the steel compliant link are as
follows; E = 200 GPa, G = 75 GPa [14]; R = 1 mm. Finally,
an established sign convention is used. The positive directions
are as follows: load acts upwards; internal shear force causes
clockwise rotation of the beam segment on which it acts; the
internal moment causes compression in the top fibers; and
clockwise rotation of angles.

B. Euler-Bernoulli Beam Theory and superposition
In this section the theory is split into two parts; the first
part elaborates on the kinematics of the four-bar linkage and
misaligned over-constraints. The second part focuses on how
the misaligned over-contraints result in deformation of the
compliant beam. Finally, the two parts are analyzed together to
determine the mechanism’s load–displacement characteristics
in the absence of external loads. In the final step, external
loading conditions are applied. Throughout this subsection, the
configuration of the four-bar mechanism and the misalignment
parameters remain unchanged.

1) Kinematics: The vector loop equation for a four-bar
linkage with aligned over-constraints is formulated in Equation
2.

L2eθ2i + L3eθ3i − L4eθ4i − L1eθ1i = 0 (2)

The position analysis of the four-bar mechanism is based on
Freudenstein’s equation [15] and solved numerically using
fsolve in MATLAB over input angles ranging from θ2,0 to
θ2,0 + 2π. The solution returns θ3 and θ4 for all input angles
of θ2. For a crank-rocker mechanism, there are two possible
solutions except at singularity position [16]. At singularity,
the four-bar linkage gains or loses a DOF. The two branches
are visualized in figure 2. The blue links showcase the cross-
configuration, whereas the black links showcase the open
configuration.
The initial position of the aligned four-bar linkage is set
by θ2,0, θ3,0 and θ4,0. Assumed is that for a similar config-
uration, the location of joint A and B of the aligned four-
bar, correspond exactly with the locations of A and B of
the misaligned four-bar. This assumption is justified since
the misalignments are small and therefore have a negligible
effect on the length of the compliant beam once the compliant
beam is deformed. To improve manufacturability, every initial
configuration, at θ2,0, the four-bar is designed stress free, i.e.,
an undeformed compliant coupler link. Figure 4 illustrates the
compliant coupler link in its initial, undeformed configuration,
at θ2,0. Once θ2 starts to rotate, the compliant coupler link
will deform, as shown in figure 5. The axes of revolution
of the aligned four-bar correspond to x3 and x′3 for joint A
and B respectively. The axes of revolution of the misaligned
revolute joints in A and B corresponds to the position vectors,
ρ̂a and ρ̂a respectively. These position vectors are specified by
the polar angle (θ ∈ [0, π2 ])1 and azimuth angle (ϕ ∈ [0, 2π]).

1In mathematics, the polar angle is defined over the interval [0, π]; however,
in this case, once it exceeds π2 , the configuration may admit an equivalent
description due to symmetry.

y

x

+

L4

L3

θ2θ2

L2

L3

L4

L1

θ2

θ3

θ′3

θ4
θ′4

D
C

A

B

B′

Fig. 2: Two branches of a Crank-Rocker four-bar mechanism:
open and cross-configuration (the latter indicated in blue).
Each four-bar mechanism has two solutions, resulting in
different load-displacement characteristics once the misaligned
over-constraints are introduced.

The polar angle represents the magnitude of the misalignment,
and remains constant throughout the motion of the four-bar
linkage. The azimuth angle defines the rotation of the radial
line around the polar axis, and varies throughout the motion
of the four-bar linkage. The azimuth in joint A, θa, starts at a
selected value θa,0 and varies throughout one revolution with
the relative angle between the input link (L2) and the coupler
link (L3), corresponding to θ3 − θ2. Similarly, the azimuth in
joint B, θb, starts at a selected θb,0 and varies with a relative
angle corresponding to θ4−θ3. For a given initial configuration,
the azimuth angles in joint A and B are plotted in figure 3.
Next, the influence of position vectors on the boundary condi-
tions at joints A and B will be presented. Over a full revolution
of θ2, the position vectors in joint A and B constrain the
compliant coupler link. The slope of the compliant link at
joint A equals the slope of the projection of the position vector
of joint A on the x3x2-plane with respect to x2, plus a shift.
This shift ensures that for each selected initial position of the
four-bar mechanism, the compliant coupler link remains in its
undeformed state. The same approach applies to the slope of
the compliant beam at joint B. This is visualized in figure 6.
The projections of the position vectors are indicated with ρ⃗′a
and ρ⃗′b. Their angles are calculated using equations 3 and 4
respectively. Substituting the azimuth angles with the initial
azimuth angles results in the shift that ensures a stress-free
initial configuration of the four-bar mechanism.

θ′a = arctan
sin θa sin ϕa

cos θa
(3)
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Fig. 3: The azimuth angle of joint A and B as function of θ∗2.
In this plot, the following configuration is used: ϕa,0 = 0 rad,
ϕb,0 =

π
2 rad and θ∗2 = θ2− θ2,0 rad. θ2,0 = π4 . ϕa Completes one

full revolution from 0 to 2π, whereas ϕb completes a partial
revolution.

θ′b = arctan
sin θb sin ϕb

cos θb
(4)

Next to bending, the compliant coupler link is subjected to
torsion. The angle of twist equals the relative angle between
the projected position vectors of the spherical coordinate
systems on the x1x3-plane, from figure 4 and 5. The angles
that result in torsion are shown in figure 7. Similar to bending,
a shift is added to ensure zero torsion at the selected initial
position, θ2,0. The angle of the projection of the position
vectors on the x3− x2-plane with the x3-axis from figure 4 and
5, is calculated using equation 5 and 6 for the misalignments
in joint A and B respectively. The relative torsion angle (ϕT )
equals ϕT,b − ϕT,a. For a given initial configuration, figure 8
shows a plot of the torsion angle and their relative angle as a
function of θ∗2.

ϕT,a = arctan
sin θa cos ϕa

cos θa
(5)

θT,b = arctan
sin θb cos ϕb

cos θb
(6)

2) Kinetics: With the boundary conditions of the compliant
beam at joint A and B fully defined, the focus now shifts to the
kinetics. The beam will be subjected to torsion and bending
as a function of θ2. Because the loading is linearly related to
the stress that is to be determined; and the loading does not
significantly change the beam’s geometry, superposition can be
applied [14]. From the elastic curvature of the compliant beam,
the bending moments at both ends can be determined. First, the
mechanism will be considered with zero external loading on
the output link. A free body diagram of the compliant beam,
together with the moment diagram and torsion diagram is
shown in figure 9. The directions of all loadings is subjected to
change as θ2’s angle changes. The compliant beam is subjected
to two varying moments at either end (Ma and Mb). The

moment function is given by equation 7. E is the Young’s
modulus of the compliant beam, and I is the polar moment of
inertia. For a given θ2, the torque remains constant along the
length of the compliant beam due to its uniform cross-sectional
area. Likewise, the shear force remains constant at each value
of θ2. The internal moment varies along the length of the beam,
with Ma and Mb potentially differing in both magnitude and
direction. Integration of the moment function with respect to x,
results in the slope function, given by equation 8. Integrating
the slope function, gives the deflection function, given by
equation 9.

M(x) = EI
d2v
dx2 =

Mb − Ma

L3
x + Ma (7)

EI
dv
dx
=

∫
M(x) · dx =

1
2

Mb − Ma

L3
x2 + Max +C1 (8)

EIv(x) =
∫

EI
dv
dx

dx =
1
6

Mb − Ma

L3
x3+

1
2

Max2+C1x+C2 (9)

Solving the boundary conditions, given by the set of equations
10, yields the integration constants C1 and C2, as shown in
equation 11.

EI
dv
dx

(x2 = 0) = θa,

EI
dv
dx

(x2 = L3) = θb,

EIv(x2 = 0) = 0,
EIv(x2 = L3) = 0

(10)

C1 = −
Mb − Ma

6
L3 −

1
2

MaL3,

C2 = 0.
(11)

Solving the system of equations result in the bending moments
at position A and B of the compliant beam. The solution
is given by Equation 12 and 13 respectively. For a given
configuration, the moments in A and B are plotted versus θ∗2
in Figure 10. The varying bending moments in A and B over
θ∗2 result in a varying elastic curve, plotted in Figure 11.

Ma = −
2EI(2θa − θb)

L3
(12)

Mb =
2EI(θa + 2θb)

L3
(13)

The torsion is calculated using Equation 14, where G is the
shear modulus, J is the polar moment of inertia and ϕT is the
angle of twist.

T = ϕT
JG
L3

(14)

Similar to torsion, the shear force along the beam is constant.
Since the compliant beam is slender, deformations due to shear
are negligible compared to those caused by bending. Moreover,
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ρ̂a

x1

x3

L3A

Bϕa,0

θa

ρ̂b

x′1

x2, x′2

x′3

θb

ϕb,0

Fig. 4: The Compliant coupler link (L3) in between two misaligned revolute joints. Input link and output link are not shown,
x1 and x′1 are always perpendicular to the coupler link of the aligned four-bar. The position vector of a spherical coordinate
system represents the axis of revolution of the misaligned joint. This vector is described using the azimuth angle (ϕ ∈ [0, 2π])
and the polar angle (θ ∈ [0, π4 ]). This figure shows the compliant coupler link (L3) in its undeformed state at a selected initial
configuration. x1 And x′1 are always perpendicular to the aligned four-bar mechanism’s coupler link. x2 and x′2 are in line with
the aligned four-bar mechanism’s coupler link.

ρ⃗a

ϕa

θa

ϕb

x1

x3

L3

A
B

ρ⃗b

x′1

x2, x′2

x′3

θb

Fig. 5: Figure of deformed state of compliant coupler link at a given position of θ2. ϕa and ϕb are functions of θ2. Input and
output link are not shown, x1 and x′1 are always perpendicular to the aligned four-bar counterpart. The position vectors, ρ̂a and ρ̂b

do rotate with azimuth angle, inducing bending and torsion on the compliant coupler link. The magnitude of the misalignments
(polar angles) remain the same throughout a revolution of θ2 and can only be changed between different configurations.

classical beam theory (Euler–Bernoulli) does not account for
shear deformations.
At this point, the internal bending moment as a function of
x2 and implicitly of θ2, as well as the torsion as an implicit
function of θ2, are known. The bending strain energy and

torsional strain energy can then be computed using Equations
15 and 16 respectively.

Ubending =

∫ L3

0

M(x)2

2EI
dx (15)
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x2, x′2

x3 x′3
ρ⃗′a

ρ⃗′b
θ
′

a,0
θ
′

b,0

θ
′

a,0

θ
′

b,0L3

x2, x′2

x3 x′3
ρ⃗′a ρ⃗′b

θ
′

a θ
′

b
θ
′

a,0 θ
′

b,0

Fig. 6: Top: undeformed compliant coupler link at the selected
initial position (θ2,0). The shift of θa,0 and θb,0 ensures no
deformation. Below: Bending mode of compliant coupler link
at a given position of θ2. Shifts are added to the angle of the
projected position vectors. The projected position vectors ρ⃗′a,
ρ⃗′b are projections of ρ⃗a and ρ⃗b as shown in figure 4 on the
x3x2/x′3x′2-plane.

Utorsion =
T 2L3

2GJ
(16)

The superimposed strain energy in the compliant beam is given
by equation 17. Figure 12 shows how torsion strain energy and
bending strain energy contribute to the total strain energy for
a given initial configuration.

Utot = Ubending + Utorsion (17)

To calculate the torque of the input link as a function of θ2,
the total strain energy has to be differentiated with respect
to θ2, shown by equation 18. This results in the angular
displacement-torque characteristics of a four-bar with mis-
aligned over-constraints, as shown in figure 13.

τ =
dUtot

dθ2
(18)

Thus far, the mechanism was considered without external
loading on the output link. In general, a four-bar mechanism
transfers motion, force or energy from a source to an output.
Because the compliant beam is in the kinetic chain of the
mechanism, the beam will be subjected to compressive or ten-
sile loading, depending on its configuration. As the compliant
link deforms due to bending during a rotation of θ2, axial
compressive and axial tensile strength of the beam is affected
by the initial curvature of a member’s axis [17], [18]. For a

x1, x′1

x3, x′3

ρ⃗′′a

ρ⃗′′b
ϕT,0 ϕT,a,0

ϕT,b,0

x1, x′1

x3, x′3

ϕT,a

ϕT,b

ϕT,0

ϕT

ρ⃗′′a

ρ⃗′′b

Fig. 7: Projections of ρ⃗a and ρ⃗b on x3x1-plane. Relative angle
of the two projections equals the angle of twist, plus a shift.
This results in torsion of the compliant coupler link throughout
a revolution of θ2.

Fig. 8: Torsion angle of joint A and joint B and their relative
angle, resulting in the angle of twist of the compliant beam.
θ∗2 = θ2 − θ2,0. θ2,0 = 30◦. For this plot, the azimuth angles are
ϕa,0 = 210◦, ϕb,0 = 48◦, the misalignments are θa = θb = 5◦

and beam lengths are L1 = 0.20 m, L2 = 0.08 m, L3 = 0.23 m
and L4 = 0.15 m.

perfectly straight beam, its behavior remains deterministic as
long as the applied load does not exceed the critical buckling
load, defined by Equation 19.
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Fig. 9: Compliant coupler link with two moments on either end
and torsion. Estimated deformation mode is indicated with a
dashed line. Underneath, a section cut is made at distance x2
to analyze internal bending moments and shear force. Internal
bending moment equals Mi = Ma + Fax2, and shear force
equals V = −Fa. The bottom two diagrams show moment and
torsion as function of x2.

Pcr =
π2EI

L2
3

(19)

The beam is perfectly straight when θ∗2 = 0 ∨ θ∗2 = 2π, for
other values, the beam is in a deformed state as shown in Fig-
ure 11. Therefore, for deterministic behavior the beam should
at least not exceed the critical load in the initial position. Once
the beam is bent, the axial strength of the beam is influenced
by shape of the elastic curve. FEA would efficiently automate
the solution process. This will be discussed in Section II-C.

Fig. 10: Bending moments in joint A and B as function of
θ∗2 = θ2−θ2,0. For this plot, the azimuth angles are ϕa,0 = 210◦,
ϕb,0 = 48◦, the misalignments are θa = θb = 5◦ and beam
lengths are L1 = 0.20 m, L2 = 0.08 m, L3 = 0.23 m and
L4 = 0.15 m.

Fig. 11: Elastic curves of compliant coupler link (L3) over one
revolution of θ2, at a given initial configuration [θ2,0 θa θb ϕa,0
ϕb,0] = [30◦ 5◦ 5◦ 210◦ 48◦]. Beam lengths are L1 = 0.20 m,
L2 = 0.08 m, L3 = 0.23 m and L4 = 0.15 m.

C. Numerical model

To validate the approach from the previous section, a nu-
merical model in Simulink Simscape is made. Part of the
block diagram is shown in figure 14. Note that this figure
shows an applied constant torque of 0.5 Nm to the output
link, this value remains zero for the unloaded situation. The
blocks are obtained from the Simulink and Simscape library.
The misaligned over-constraints are revolute joint blocks,
positioned with rigid transforms. The input, output and ground
link are solid blocks and the compliant coupler link is a
general flexible beam with circular cross-section. The general
modeling of the flexible beam can be viewed as a transient
dynamic analysis of a rigid body coupled with integrated finite
element analysis (FEA). This general flexible beam is capable
of elastic deformations. A ramp signal is used to provide a
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Fig. 12: Bending strain energy, torsion strain energy and their
superimposed strain energy. Constant slope results in a region
of constant torque. θ∗2 = θ2 − θ2,0 where θ2,0 = 30◦. For
this plot, the azimuth angles are ϕa,0 = 210◦, ϕb,0 = 48◦,
the misalignments are θa = θb = 5◦ and beam lengths are
L1 = 0.20 m, L2 = 0.08 m, L3 = 0.23 m and L4 = 0.15 m.

Fig. 13: Derivative of total strain energy with respect to θ2
results in the torque profile of the input link as function of θ∗2.

constant angular velocity to the input link. Since a mechanical
system with constraints is analyzed, a stiff, variable-step solver
(ODE23t) is used [19]. To minimize inertial effects, the mass
of the solids is reduced, and the constant angular velocity
is maintained moderate at 2π/10 rad/s. The positioning of
the misalignments are with respect to the compliant beam,
and are parametrized using the same spherical coordinates as
discussed in the previous section. Gravity is set to zero. The
torque is measured from joint A as result of a constant angular
velocity input signal. The general flexible beam is discretized
into three elements, as it showed to be the optimal trade-off
between simulation time and a detailed result. For a given
initial configuration, similar to the four-bar configuration of
the previous section, output data (angle and torque) are plotted
and shown in figure 17.
In addition to the unloaded four-bar, a loaded four-bar is

Fig. 14: Simscape Multibody model of four-bar linkage. Joint
D is driven with a constant angular velocity. At joint D, the
torque is automatically computed and sent to the workspace.
The same applies to the angular displacement. Joint A and B
are located in two subsystems. The misalignments are located
in the subsystems and modeled as rigid transform blocks
involving rotation. compliant beam is modeled as general
flexible beam with n = 3 elements. All other body are modeled
as solid bricks. Joints are modeled as revolute joints with zero
stiffness and damping. In this figure a constant torque of 0.5
Nm is applied to the output link.

modeled; however, Simscape does not inherently account for
axial compressive or tensile strength changes due to beam
deflection in a way that captures geometric stiffening or
buckling effects. It does consider length variations due to
deformations.

D. Physical model

A physical model is made to validate theoretical predictions
and to test real-world behavior that the simulations might
overlook. A render of the model is shown in figure 15.
To obtain a high degree of reliability and repeatability, the
compliant beam was made out of a steel alloy material. The
diameter of the compliant beam equals 2 mm. The input and
output link are machined out of a 6000-series aluminium.
To reduce friction between the links, a pair of ball bearings
is used for every joint. The bearings were press-fitted into
their position. The mechanism was designed to change as
many variables as possible without sacrificing reliability. As
a result, the length of all links can be changed, the azimuth
angles can be varied and the initial starting position of the
input link with a stress free compliant beam can be chosen;
in addition, the misalignments can be varied by producing
additional cylinders with other polar angles. Laser engravings
make sure the reading of azimuth angles is within a margin of
five degrees. The joints were made with 5◦ polar angles. The
axles of all joints have a diameter of 4 mm. The cylinders that
hold the bearings are hold in place using set screws.

E. Experiment set-up

The experiment was executed at room temperature using a
Zwick/Roell universal testing machine with a static torque
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Fig. 15: Render of the physical model. Most system parameters
are interchangeable. (A) Output link; (B) Mounting position;
(C) Adjustable misaligned over-constraint cylinder with a pair
of ball bearings; (D) Compliant coupler link; (E) Connector
between coupler link and misaligned joint cylinder; (F) Input
link; (G) Alternative mounting position for the input link with
ball bearings; (H) Ground link.

sensor. The four-bar mechanism is fixed upside down to a
Thorlabs frame structure. This structure connects the frame
to the torque sensor without limiting the range of motion
of the mechanism, see Figure 16. The input link is driven
with a constant angular velocity of 2π rad/min. This speed
was determined by comparing experimental results with lower
and higher angular velocities. To reduce gravitational effects,
the mechanism’s motion was set perpendicular to gravity. In
addition to experiments with misaligned joints, experiments
with aligned revolute joint cylinders were conducted. These
were subtracted from the misaligned results to isolate and
mitigate the effects of a shifting center of mass, which
could introduce imbalance in the mechanism and influence
the load–displacement characteristics. Simultaneously, general
bearing friction is eliminated by extracting these results.
Finally, every measurement consisted out of four revolutions
in positive direction, followed by four reverse rotations. Figure
16 shows the test set-up with parts labeled.

III. Results

In this section, the results obtained from the three models
— Euler-Bernoulli, Simscape and the physical model — are
presented and analyzed. First, a comparative analysis of the
model’s performance and accuracy is conducted. Subsequently,
experimental results are shown. Followed by a parametric
study, that is carried out to investigate the influence of key
parameters on the system’s behavior. Lastly, two distinct load-
displacement characteristics are examined to highlight unique
response features under specific conditions.

A. Comparative analysis

Each model has its own purpose; the Simscape model is
an accurate model that does take into account variations in

Fig. 16: Photo of experimental set-up. A. Constant angular
velocity actuator; B. Coupler link; C. Ground link; D. Output
link; E. Compliant coupler link; F. Thorlabs frame structure
around mechanism; G. Input link; H. Ball joint that prevents
jamming; I. Torque sensor; J. Clamping mechanism (small
working bench).

compliant beam length as result of deflection. The higher
accuracy comes with a cost; higher computation times can
be expected. This is where the Euler-Bernoulli model comes
into place; it needs a fraction of the computation time to
compute the kinematic solution of the four-bar mechanism,
from there results are instantly displayed. Thereby some as-
sumptions have been made; Euler-Bernoulli assumes a beam’s
neutral plane does not involve compression or tension; and
the beam’s length is fixed regardless of bending. Finally, the
physical model validates the aforementioned models while also
taking into account real-world behavior: i.e., damping, friction,
manufacturing tolerances and other geometrical imperfections.
For all explored configurations, the Simscape model and Euler-
Bernoulli model are in close agreement, as shown in figure 17.
The residual plot, confirms the finding and shows deviations
that are orders of magnitude smaller than the absolute torques
obtained, shown in figure 18. The deviations are attributed to
the varying beam length of the compliant coupler link that is
not considered in the Euler-Bernoulli model. Besides, shear
strain energy is ignored, because the compliant beam is a
slender beam.
Experiments have been conducted for two given configura-
tions. Figure 19 shows measurements from four consecutive
revolutions in positive direction, followed by four reverse
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Fig. 17: Model comparison between Simscape and Euler-
Bernoulli. For the given configuration, both models parameters
are set at θ∗2 = θ2 − θ2,0, where θ2,0 = 30◦. The azimuth angles
are ϕa,0 = 210◦, ϕb,0 = 48◦, the misalignments are θa = θb = 5◦

and beam lengths are L1 = 0.20 m, L2 = 0.08 m, L3 = 0.23 m
and L4 = 0.15 m.

Fig. 18: Residual plot of Simscape torque values minus Euler-
Bernoulli torque values over one revolution of θ2. This residual
plot corresponds to the given configuration from figure 17.

revolutions. The blue line corresponds to the data obtained by
the torque sensor. The purpose of measuring four revolutions
was to eliminate the effects of acceleration during the startup
and stopping phases of the constant velocity driver. Hysteresis
can be observed. The noise can be attributed to the excitation
of Eigenfrequencies of the four-bar mechanism by the driver,
and to sensor noise.
The measurements of the second positive revolution are iso-
lated and plotted on top of the Simscape and Euler-Bernoulli
model, shown in Figure 20. To account for fabrication tol-
erances, deviations in material properties and measurement
inaccuracies, parameter relaxation is applied to the Euler-
Bernoulli model. This is done using a Monte-Carlo simulation
[20]. Relaxation of all parameters was recorder in 50 runs.
The region between the upper and lower bounds of the graph

Fig. 19: Experimental results; four revolutions in the positive
direction and four revolutions in the negative direction, show-
casing hysteresis.

represents the bandwidth.

Fig. 20: Parameter relaxation. Young’s modulus of 200 ± 5%
GPa, Shear modulus of 75±5% GPa, Misalignment of 5◦±2◦,
azimuth joint A of 210◦ ± 10◦, azimuth in joint B of 48◦ ±
10◦ and θ2,0 of 30◦ ± 5◦. Blue line corresponds to physical
experiment including one positive and one negative revolution.

Another given configuration is plotted in figure 21. Again, the
Simscape and Euler-Bernoulli model are in close agreement.
The experiment has a similar curve; it lies within the band-
width. Four consecutive rotations of θ2 where measured, out
of which the second revolution is considered.
Up to this point, the four-bar mechanism is considered in an
unloaded situation. The compliant coupler link is part of the
kinetic chain; forces will be transferred through the compliant
beam. As result, the beam will be subjected to compressive or
tensile loadings, depending on the configuration. In reality, the
beam’s tensile strength and compressive strength, are reduced
by bending as result of the misalignments. The effect of a
loaded output link is modeled in Simscape. By applying a
positive torque to the output link, the compliant beam will be
subjected to compressive forces. The effect of load is plotted
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Fig. 21: Parameter relaxation. Young’s modulus of 200 ± 5%
GPa, Shear modulus of 75±5% GPa, Misalignment of 5◦±2◦,
azimuth joint A of 210◦ ± 10◦, azimuth in joint B of 48◦ ±
10◦ and θ2,0 of 30◦ ± 5◦. Blue line corresponds to physical
experiment including one positive revolution.

in figure 22. The discrepancy between the loaded misaligned
model, and the superimposed unloaded aligned and unloaded
misaligned models could be attributed to two factors. First,
variation in length of the coupler link due to bending, results in
a deviated mechanical advantage of the four-bar. This confirms
the orange line is positioned above the purple line in figure 23.
In addition, due to second-order bending as result of the pre-
bent compliant beam, a reduction in axial stiffness is observed
[21]. This geometrical nonlinearity is not taken into account
by Simscape.

Fig. 22: Loaded and unloaded configuration modeled in Sim-
scape. The blue line represents the four-bar with aligned over-
constraints and a positive loading of 0.4 Nm. The orange line
represents misaligned configuration, with a 0.4 Nm positive
loading to the output link. The green line represents misaligned
unloaded four-bar mechanism. Purple line is the superposition
of the green line with the Blue line.

Fig. 23: Simscape comparison between superimposed model
(orange) and integrated misaligned and loaded configuration
(purple).

B. Parameter study

In this section, the influence of different parameters of the
misaligned over-constraint four-bar mechanism on the load-
displacement characteristics will be presented. Parameters with
a significant influence are; beam lengths and length ratios,
compliant beam properties (flexural and torsional rigidity),
azimuth and polar angles of both joints, initial stress-free
angle of θ2,0 and open versus cross-configuration of the
four-bar mechanism. A continuous combination of varying
parameters can be chosen. As a result, infinitely many different
load-displacement curves can be obtained. To systematically
assess the impact of each parameter, its effect on the load-
displacement characteristics will be analyzed at multiple dis-
crete values while keeping all other parameters constant. This
is done for all parameters except for beam length ratios. Due to
the wide variety of possible configurations, a limited number
of plots would not be sufficient to comprehensively capture
all cases and is therefore disregarded. It can be concluded
that the relationship between link lengths determine whether a
mechanism functions as a crank-rocker, rocker-crank, double
crank or double rocker. Furthermore, it influences a mecha-
nism’s mechanical advantage, motion, stability and singularity
positions [22]. To investigate the influence of beam length
ratios in relation to over-constraint misalignments, several
key insights can be derived. In a double crank mechanism,
both azimuth angles of the misaligned joints, make a full
revolution. In a crank-rocker mechanism, the azimuth angle of
the rocker completes only a partial revolution. When the input
link reaches zero, the load-displacement behavior is influenced
solely by the misalignment in joint A.

1) Azimuth angles in joint A and B: The azimuth angle
represents the horizontal angle of a misalignment in a spherical
coordinate system. For both azimuth angles, the values lie
within a 2π domain. The azimuth angles in the initial stress-
free configuration of joint A and B can be interchanged.
These selected values are independent of the selected initial
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configuration at θ2,0, and do not influence the stress-free initial
condition. For five distinct values, evenly spaced over the
defined range, the load-displacement characteristics have been
plotted. An azimuth of 2π rad equals an azimuth of zero.
For misalignment A, the results are shown in figure 24. The
azimuth of joint A completes a full revolution, exerting a more
significant influence on the load-displacement characteristics
compared to the azimuth of joint B, shown in figure 25. The
azimuth at joint B does not alter the overall shape of the
load-displacement curve, as the number of peaks and valleys
remains unchanged. However, their positions along the θ∗2-axis
exhibit slight shifts, and their magnitudes are affected. The
valley in between 3π

2 and 2π is almost unaffected.

Fig. 24: Azimuth angle of joint A from zero to 8
5π rad. 2π rad

corresponds to 0 rad. Azimuth b is fixed at 0 rad, θ2,0 = 1
2 rad,

L1 = 0.20 m, L2 = 0.08 m, L3 = 0.23 m, L4 = 0.15 m
.

Fig. 25: Azimuth b from zero to 8
5π rad in 5 steps. Azimuth

a = 0 rad, θ2,0 = 1
2 rad, L1 = 0.20 m, L2 = 0.08 m, L3 = 0.23

m, L4 = 0.15 m
.

2) Magnitude of misalignment in joint A & B: The
magnitude of a misalignment is represented by the polar angle;
the angle between the positive x3-axis to the unit position

vector, as indicated with θa and θb in figure 4 and 5. In contrast
to the azimuth, the polar angle remains constant throughout a
revolution of θ2. The effect of the magnitude of a misalignment
on the load-displacement curve is shown in figure 26. For
this plot, the polar angle in joint B remained constant, at 5◦.
The result shows that a larger polar angle in joint A stretches
the load-displacement curve vertically. The location-changes
of the crossings between different curves are insignificant
compared to the magnitude of polar angle in joint B, shown
in figure 27. An increasing polar angle results in a shift to the
right of the curve. The shape remains similar; i.e. the number
of peaks and valleys remains the same. For this configuration
of the four-bar, the influence of the polar angle magnitude
in joint B is more pronounced on the left side of the load-
displacement curve, whereas the magnitude of the polar angle
of joint A has significant influence over the entire curve.

Fig. 26: Polar angle in a in 5 steps: θa = [0◦ 2◦ 4◦ 6◦ 8◦].
ϕa = ϕb = 0 rad, θ2,0 = 1

2 rad, L1 = 0.20 m, L2 = 0.08 m, L3
= 0.23 m, L4 = 0.15 m. Polar angle of joint B is maintained
at 5◦.

3) θ2,0, in open and cross configuration: The initial angle
of the input link with respect to the ground link is indicated
with θ2,0. In this position, the four-bar is stress free; i.e., the
compliant coupler link is in its undeformed state. As shown in
figure 2, there is an open and cross configuration of the four-
bar. The influence of θ2,0 on the load-displacement curves is
shown in figure 28 and 29 for the cross and open configuration
respectively. This showcases the significant influence of θ2,0 on
the load-displacement characteristics.

4) Compliant beam properties: Various modifications can
be applied to the compliant coupler link to tailor its me-
chanical properties, thereby influencing the load-displacement
response. Adjustments to the cross-sectional geometry alter the
second moment of inertia, directly affecting bending stiffness.
Additionally, material properties such as Young’s modulus,
shear modulus, and beam length play a significant role in
the overall mechanical behavior. Modifying the cross-sectional
shape or employing an anisotropic compliant beam influences
the relative contributions of bending and torsion to the load-
displacement curve. A cross-section with reduced torsional
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Fig. 27: Polar angle in b in 5 steps θb = [0◦ 2◦ 5◦ 8◦ 10◦].
ϕa = ϕb = 0◦, θ2,0 = 1

2 rad, L1 = 0.20 m, L2 = 0.08 m,
L3 = 0.23 m, L4 = 0.15 m. The polar angle at joint B is
maintained at 5◦.

.

Fig. 28: Varying initial configuration four-bar mechanism in
the cross configuration. Polar angles are 5◦ in joint A & B.
Both azimuth angles are maintained at zero radians. L1 = 0.20
m, L2 = 0.08 m, L3 = 0.23 m, L4 = 0.15 m.

stiffness decreases the torsional load peaks, whereas a stiffer
torsional response enhances them. These design modifications
enable precise control over the beam’s deformation charac-
teristics, optimizing its performance for specific applications.
In Figure 30, the beam radius is varied, resulting in vertical
stretching of the load-displacement curve. No significant shift
in height is observed by peaks corresponding to bending and
torsion strain energy, despite the dissimilar scaling of bending
and torsion stiffness by an increasing radius as indicated by
equation 20.

kb

kt
=

GJ
EI
=

2G
E
= 0.75 (20)

C. GUI

To discover the wide variety of load-displacement character-
istics, a Graphical User Interface (GUI) was programmed.

Fig. 29: Varying initial configuration four-bar mechanism in
the open configuration. Polar angles are 5◦ in joint A & B.
Both azimuth angles are maintained at zero radians. L1 = 0.20
m, L2 = 0.08 m, L3 = 0.23 m, L4 = 0.15 m.

Fig. 30: Compliant beam varying radius: R =

[0.5 1.0 1.5] mm. ϕa = ϕb = 0 rad, θa = θb = 5◦,
θ2,0 =

1
2 rad, L1 = 0.20 m, L2 = 0.08 m, L3 = 0.23 m,

L4 = 0.15 m
.

This GUI features sliders that allow users to adjust param-
eters influencing the load-displacement curves of the four-bar
mechanism. Figure 31 shows how sliders can be dragged and
dropped into the demanded position. Also the beam lengths
can be varied as long as the input link is a crank. Otherwise,
the LED indicator will turn red. If the input link is a rocker,
the input link angle (θ2) should be bounded to the specific
configuration of the four-bar mechanism to ensure proper
functionality of the GUI. The GUI provides the option to
investigate parameter combinations that would otherwise re-
main unnoticed. Two unique load-displacement characteristics
have been found. A significant region of constant torque and
sinusoidal load-displacement curves. These will be elaborated
in the next section.
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Fig. 31: Graphical User Interface (GUI) with interchangeable
initial values. Azimuth a and azimuth b are the initial values
for misalignment starting position for joints a and b respec-
tively. θ2 is the initial stress-free position of the input link.
Misalignment is the polar angle of misalignment. The length
of the links can be adjusted. The direction inverts the function
in horizontal and vertical direction.

D. Unique load-displacement characteristics

The GUI provided the ability to change many parameters si-
multaneously and see how it influences the load-displacement
curves. As a result, two unique load-displacement curves have
been found. First, a significant region of constant torque
was achieved, for more than one configuration of four-bars.
Furthermore, a sinusoidal torque-angle curve is obtained.

1) Constant torque: Constant torque or constant force are
unique properties that are often only observed during plastic
deformation of materials. In these regions, large displacement
can occur at an (almost) constant torque value. It can have
many different applications, examples are; power assistance
or torque stabilization [23]. A constant-torque configuration,
thoroughly analyzed in the previous sections, is illustrated in
Figure 13. It shows a region of constant torque for θ∗2 ranging
from π

4 to π. The region of constant torque is a result of the
sequence between torsion and bending strain energy, as shown
previously in Figure 12.

2) Sine wave torque function: Many industry application
involve cyclic loading and unloading of an actuator, i.e. sinu-
soidal load-displacement characteristics. Numerous sinusoidal-
like load-displacement curves have been obtained. In certain
cases, segments of the curves exhibit a nearly perfect sinu-
soidal shape, as shown in Figure 32. Besides, a sinusoidal
curve can be observed when the input-to-output link ratio is
such that the input link is significantly shorter than the output

link, as shown in figure 33.

Fig. 32: Partially sinusoidal load-displacement function. θ∗2 =
θ2−θ2,0, where θ2,0 = 1

2 rad. The azimuth angles are ϕa,0 = 5.8
rad, ϕb,0 = 3 rad, the mi salignments are θa = 0, θb = 4◦ and
beam lengths are L1 = 0.20 m, L2 = 0.08 m, L3 = 0.23 m and
L4 = 0.15 m.

Fig. 33: Sinusoidal load-displacement function as result of
short input link. θ∗2 = θ2 − θ2,0, where θ2,0 = 4.7 rad. The
azimuth angles are ϕa,0 = 4.7 rad, ϕb,0 = 4.7 rad, the
misalignments are θa = 5◦, θb = 5◦ and beam lengths are
L1 = 0.20 m, L2 = 0.01 m, L3 = 0.23 m and L4 = 0.15 m.

IV. Discussion

This research contributes to the design and analysis of tai-
lorable, nonlinear compliant mechanisms. Several aspects of
the study could be enhanced, beginning with refinements to the
physical model. First, the 2 mm diameter compliant coupler
link is force-closed to the joints rather than shape-closed,
limiting the use of a thicker compliant beam to improved
highlighting of load-displacement characteristics from external
influences as bearing friction and gravity. Second, an improved
reading of the azimuth angles should be implemented, to
improve configuration precision. Finally, an experiment with
a load applied to the output link to see where the beam would
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buckle, and where geometric stiffening/softening occurs, is
deemed to have significant added value to this research.
Besides improvements to the physical model, both computer
models could be enhanced too. First would be to include
stress simulations of the compliant beam, to showcase at what
misalignment plastic deformation would occur. Furthermore,
an effort to geometric stiffening/softening as result of the
curved compliant beam could be implemented in the Euler-
Bernoulli model to include the load-displacement character-
istics once the system is subjected to external loading. This
would have significant added value, because it would have the
same performance of the current model, without the simulation
time needed for a finite element analysis (FEA). Finally,
to verify the enhanced Euler-Bernoulli model, an FEA that
does take into account geometric nonlinearities would have
signficant added value. In addition to potential improvements,
this study could serve as a foundation for further research.
Compliant joints constrain motion in specific directions; there-
fore, they could also function as misaligned over-constraints.
The replacement of traditional ball bearings with compliant
joints presents a promising avenue for further exploration.
Additionally, optimizing the load-displacement characteristics
to meet specific requirements — such as achieving a plateau
of constant force — could enhance their applicability. This op-
timization could lead to advancements in various applications,
including suspension systems, mass-balancing mechanisms,
and the prevention of singularities through misaligned over-
constraints. Next, implicit assumptions — such as having only
the coupler link be compliant, the specific joints that are
misaligned, an initially straight coupler link, and the use of
a circular and constant cross-section — could be relaxed and
investigated further. Furthermore, the integration of misaligned
over-constraints into other over-constraint mechanisms, such
as the Sarrus mechanism, may be of interest. Looking further
ahead, the implementation of this technology in unit cells of
mechanical metamaterials represents a potential area for future
research.

V. Conclusion

Misaligned over-constraints and precision engineering may
seem contradictory; however, this study demonstrates the
diverse load-displacement characteristics that can be achieved
through misaligned over-constraints in four-bar mechanisms.
While only a subset of these possibilities has been explored,
this paper serves as a foundation for engineers seeking novel
load-displacement behaviors in mechanisms. Notably, two dis-
tinct characteristics were observed: a region of nearly constant
force and a sinusoidal response, both of which have promising
applications in constant torque transmission and precision
motion control.
The Simscape and Euler-Bernoulli beam models exhibit strong
agreement in the unloaded state. However, under external
loading, the Simscape model provides a more accurate rep-
resentation due to fewer simplifying assumptions, albeit at the
cost of increased computation time. The complementary use
of both models enhances the identification of desired load-

displacement characteristics by leveraging their respective
strengths. Future improvements could incorporate geometric
stiffening and softening effects induced by the curved com-
pliant coupler link to the Euler-Bernoulli model, allowing
for a more precise response to external loads. Additionally,
the Simscape model could be enhanced by integrating finite
element analysis (FEA) that accounts for geometric nonlineari-
ties, enabling the inclusion of buckling behavior and geometric
stiffening/softening.
Experimental results were largely within the margin of error,
reinforcing the validity of the models and highlighting the
impact of real-world behavior on the system.
More broadly, four-bar mechanisms with misaligned over-
constraints present a promising approach for passively bal-
ancing masses, reducing reliance on high-torque actuators.
As a result, typically essential components such as springs
and dampers could be minimized or eliminated in specific
applications, offering a more efficient and lightweight design
alternative.
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3
Conclusion

This report presents a comprehensive study on the use of misaligned over-constraints in four-bar mech-
anisms with a compliant coupler link. The work combined theoretical modeling, numerical simulation
and experimental validation. Themain body of work is included in the form of a research paper (Chapter
2), which details the concept, methodology and findings.

In a broader context, this project demonstrates the potential of strategical positioning of misaligned
over-constraints as a functional design tool for achieving tailorable load–displacement characteristics
in a wider range of mechanisms. As a result, it offers an alternative to the use of conventional elements
in mechanisms, such as springs, damper and (strong) actuators.

The development of the GUI in MATLAB’s app designer added value by enabling rapid exploration
of design parameters, which may be useful for future design studies. While this study focuses on a
single compliant link with two misaligned over-constraints, future work could extend the approach to
other types of mechanisms. Possible directions include the integration of compliant joints, increasing
the number of compliant links, incorporating variable or non-circular cross-sections to the compliant
link(s), considering geometric nonlinearities of the compliant link, and exploring initially curved com-
pliant links. Additionally, the functionality of the GUI could be expanded, and optimization strategies
could be introduced to tailor the mechanism’s response to specific load–displacement requirements.

Beyond the nonlinear load-displacement characteristics of four-bar mechanisms, this report highlights
the nonlinear progression of the design process, where adjustments, experimentation and reflection
played a crucial role. Overall, this project highlights a promising direction for tailorable load-displacement
characteristics of mechanisms through intelligent misaligned over-constraint placement. This works in-
vites further exploration into the design space of compliant, misaligned over-constraint mechanisms.
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A
Appendix A - Euler-Bernoulli beam

theory in MATLAB

1

2 %%%% --- SOLVE VECTOR LOOP EQUATIONS NUMERICALLY --- %%%%%%
3

4 % Parameters
5 E = 200e9; % Young's modulus, Pa (Steel)
6 d = 2e-3; % Diameter of compliant beam in [m]
7 I = 1/64*pi*d^4; % Moment of inertia for bending, m^4
8 J = 1/32*pi*d^4; % Moment of inertia for torsion, m^4
9 G = 77e9; % Shear modulus

10 L1 = 0.2; % Ground link length
11 L2 = 0.01; % Input link length
12 L3 = 0.23; % Coupler link length
13 L4 = 0.15; % Output link length
14 theta2_initial = deg2rad(270); % Initial angle of theta2
15 misalignment_a = deg2rad(5); % Polar angle joint A
16 misalignment_b = deg2rad(5); % Polar angle joint B
17 manual_azimuth_a = deg2rad(270);% Adjustable azimuth angle of misalignment A
18 manual_azimuth_b = deg2rad(270);% Adjustable azimuth angle of misalignment B
19 steps = 200; % Number of steps
20

21 % Generate theta2 array
22 theta2 = linspace(theta2_initial, (theta2_initial + 2*pi), steps);
23 theta2_star = theta2 -theta2_initial;
24

25 % Preallocate arrays for theta3 and theta4
26 theta3 = zeros(1, steps);
27 theta4 = zeros(1, steps);
28

29 % Define the vector loop equation
30 loop_equation = @(x, theta2_val) [
31 L2*cos(theta2_val) + L3*cos(x(1)) - L4*cos(x(2)) - L1;
32 L2*sin(theta2_val) + L3*sin(x(1)) - L4*sin(x(2));
33 ];
34

35 x3 = L2*cos(theta2_initial); % x-coordinate of coupler
36 y3 = L2*sin(theta2_initial); % y-coordinate of coupler
37 theta3_guess = deg2rad(30); % Approximate theta3, modify for open/cross config.
38 theta4_guess = deg2rad(89); % Approximate theta4, Modify for open/cross config.
39 x0 = [theta3_guess, theta4_guess]; % Initial guess for fsolve
40

41 options = optimoptions('fsolve','Display','iter');
42

43 % Solve for each theta2 value
44 for i = 1:steps
45 theta2_val = theta2(i);
46 solution = fsolve(@(x) loop_equation(x, theta2_val), x0, options);
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22

47 theta3(i) = solution(1);
48 theta4(i) = solution(2);
49 x0 = solution; % Use the previous solution as the next initial guess
50 end
51

52 % Get the initial angles for theta3 and theta4
53 theta3_initial = theta3(1);
54 theta4_initial = theta4(1);
55

56

57 %%%%%%% ---- CREATE ARRAYS OF AZIMUTH ANGLES NEEDED FOR BENDING AND TORSION FUNCTIONS ----
%%%%%%%

58 % Mechanism the joints connected to compliant link are 'a' and 'b'.
59

60 % In joint a: Angle between L2 and L3 is calculated at each position of
61 % theta2 ranging from [theta2_initial, theta2_initial + 2*pi]. This angle
62 % will be the azimuth angle of the misalignment in 'a' corresponding to theta2
63 % with the offset that ensures zero initial position (perpendicular to complaint beam).
64 azimuth_a_offset = (pi - theta2_initial + theta3_initial);
65 azimuth_a = -(pi - theta2 + theta3) + azimuth_a_offset + manual_azimuth_a;
66

67 % In joint b: Angle between L3 and L4 is calculated at each position of
68 % theta2 ranging from [theta2_initial, theta2_initial + 2*pi]. This angle
69 % will be the azimuth angle of the misalignment in 'b' corresponding to theta2.
70 azimuth_b_offset = (pi - theta4_initial + theta3_initial);
71 azimuth_b = -(pi - theta4 + theta3) + azimuth_b_offset + manual_azimuth_b;
72

73

74 %%%%%% ---- BENDING IN JOINT A AND B ---- %%%%%%%%
75 % Bending angle of a and b stored in an array. Calculated as the projection
76 % of the spherical coordinate system on the YZ plane.
77 % Bending angle in 'a'. Should start at zero due to offset.
78 bending_a_offset = atan2((sin(misalignment_a) * sin(manual_azimuth_a)), cos(misalignment_a));
79 bending_a = -atan2((sin(misalignment_a) * sin(azimuth_a)), (cos(misalignment_a))) +

bending_a_offset;
80

81 % Bending angle in b as opposite minus sign due to chosen orientation of
82 % spherical coordinate system.
83 bending_b_offset = atan2((sin(misalignment_b) * sin(manual_azimuth_b)), cos(misalignment_b));
84 bending_b = -atan2((sin(misalignment_b) * sin(azimuth_b)), (cos(misalignment_b))) +

bending_b_offset;
85

86 %From bending angles in a and b, the moments can be calculated and
87 %subsequently the bending energy
88 bending_energy = zeros(1, steps);
89 Ma_values = zeros(1, steps);
90 Mb_values = zeros(1, steps);
91

92 for i = 1: steps
93 %Calculate Ma and Mb at each step
94 Ma = -2*E*I*(2*bending_a(i) + bending_b(i))/L3;
95 Mb = 2*E*I*(bending_a(i) + 2*bending_b(i))/L3;
96

97 Ma_values(i) = Ma;
98 Mb_values(i) = Mb;
99

100 %The moment function:
101 M = @(x) ((Mb - Ma) / L3) * x + Ma;
102

103 %Integrate the squared moment function from 0 to L3
104 bending_energy(i) = (1 / (2 * E * I)) * integral(@(x) M(x).^2, 0, L3);
105 end
106

107 %%% PLOT MA AND MB
108 hfig = figure;
109 plot(theta2_star, Ma_values, 'color',[0 0.5 0.5], 'DisplayName', 'Bending␣moment␣in␣joint␣A',

'LineWidth', 1.5);
110 hold on;
111 plot(theta2_star, Mb_values, 'color',[0.85 0.33 0.1],'DisplayName', 'Bending␣moment␣in␣joint␣

B', 'LineWidth', 1.5);
112
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113 xticks(0:pi/2:2*pi); % Set tick marks from 0 to 2*pi in steps of pi/2
114 xticklabels({'$0$', '$\frac{1}{2}\pi$', '$\pi$', '$\frac{3}{2}\pi$', '$2\pi$'}); % Label the

tick marks
115

116 xlabel('$\theta_2^*$␣(rad)');
117 ylabel('Bending␣moment␣$M_a$␣and␣$M_b$␣($N␣\cdot␣m$)');
118 % legend('Ma', 'Mb');
119 title('$\theta_2$␣vs.␣Bending␣moment␣induced␣by␣joint␣A␣and␣B');
120 grid on;
121 legend('show', 'Location', 'northwest', 'Interpreter', 'latex');
122

123 xlim([-0.2 2*pi+0.2]); % Adds a small buffer before the first tick at 0
124 ax = gca;
125

126 % xlabel('Angle $\theta_2$ (rad)');
127 % ylabel('Torque (N$\cdot$m)');
128 % title('Torque vs. $\theta_2$');
129 fname = 'Bending␣moments␣in␣a␣and␣b,␣theta2_star';
130 grid on;
131

132 picturewidth = 20; % set this parameter and keep it forever
133 hw_ratio = 0.65; % feel free to play with this ratio
134 set(findall(hfig,'-property','FontSize'),'FontSize',17) % adjust fontsize to your document
135 set(findall(hfig,'-property','Box'),'Box','off') % optional
136 set(findall(hfig,'-property','Interpreter'),'Interpreter','latex')
137 set(findall(hfig,'-property','TickLabelInterpreter'),'TickLabelInterpreter','latex')
138 set(hfig,'Units','centimeters','Position',[3 3 picturewidth hw_ratio*picturewidth])
139 pos = get(hfig,'Position');
140 set(hfig,'PaperPositionMode','Auto','PaperUnits','centimeters','PaperSize',[pos(3), pos(4)])
141 % print(hfig,fname,'-dpdf','-painters','-fillpage')
142 print(hfig,fname,'-dpng','-painters')
143

144

145 %%%%%% ---- TORSION IN COMPLIANT BEAM ---- %%%%%%%%
146 torsion_a_offset = atan2((sin(misalignment_a) * cos(manual_azimuth_a)), cos(misalignment_a));
147 torsion_a = atan2((sin(misalignment_a) * cos(azimuth_a)), (cos(misalignment_a))) -

torsion_a_offset;
148

149 torsion_b_offset = atan2((sin(misalignment_b) * cos(manual_azimuth_b)), cos(misalignment_b));
150 torsion_b = atan2((sin(misalignment_b) * cos(azimuth_b)), (cos(misalignment_b))) -

torsion_b_offset;
151

152 % Combined torsion angle for Torsion formula
153 relative_torsion = (torsion_b - torsion_a);
154

155

156 % Compute torsion as a vector
157 torsion = relative_torsion .* J .* G ./ L3;
158

159 % Compute torsion energy as a vector
160 torsion_energy = (torsion.^2 .* L3) ./ (2 .* G .* J);
161

162

163 %% PLOTS OF TORSION
164 hfig = figure;
165 plot(theta2_star, torsion_a, 'color',[0.3 0.6 0], 'DisplayName', '$\phi_{T,a}$', 'LineWidth',

1.5);
166 hold on;
167 plot(theta2_star, torsion_b, 'color', [0.7 0.1 0.4],'DisplayName', '$\phi_{T,b}$', 'LineWidth

', 1.5);
168 hold on;
169 plot(theta2_star, relative_torsion, 'color', [0.3 0.3 0.7], 'DisplayName', '$\phi_T$', '

LineWidth', 2);
170 xlabel('$\theta_2^*$␣(rad)');
171 ylabel('Torsion␣angle␣(rad)');
172 % legend('torsion angle a', 'torsion angle b', 'relative torsion angle');
173 title(['Torsion␣analysis:␣$\theta_2$␣vs.␣Angles␣of␣position␣vectors' newline...
174 'projected␣on␣the␣$x_3$-$x_1$-plane']);
175 grid on;
176

177 xticks(0:pi/2:2*pi); % Set tick marks from 0 to 2*pi in steps of pi/2
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178 xticklabels({'$0$', '$\frac{1}{2}\pi$', '$\pi$', '$\frac{3}{2}\pi$', '$2\pi$'}); % Label the
tick marks

179

180 xlim([-0.2 2*pi+0.2]); % Adds a small buffer before the first tick at 0
181 ax = gca;
182

183 legend('show', 'Location', 'northwest', 'Interpreter', 'latex');
184 h = legend; % Store legend handle
185 % set(h, 'Position', [0.43, 0.4, 0.2, 0.1]); % Manually adjust position
186 % xlabel('Angle $\theta_2$ (rad)');
187 % ylabel('Torque (N$\cdot$m)');
188 % title('Torque vs. $\theta_2$');
189 fname = 'Torsion␣angles';
190 grid on;
191

192 picturewidth = 20; % set this parameter and keep it forever
193 hw_ratio = 0.65; % feel free to play with this ratio
194 set(findall(hfig,'-property','FontSize'),'FontSize',17) % adjust fontsize to your document
195 set(findall(hfig,'-property','Box'),'Box','off') % optional
196 set(findall(hfig,'-property','Interpreter'),'Interpreter','latex')
197 set(findall(hfig,'-property','TickLabelInterpreter'),'TickLabelInterpreter','latex')
198 set(hfig,'Units','centimeters','Position',[3 3 picturewidth hw_ratio*picturewidth])
199 pos = get(hfig,'Position');
200 set(hfig,'PaperPositionMode','Auto','PaperUnits','centimeters','PaperSize',[pos(3), pos(4)])
201 % print(hfig,fname,'-dpdf','-painters','-fillpage')
202 print(hfig,fname,'-dpng','-painters')
203

204

205

206

207 %%
208

209 %%%%%%%%%% ----- COMBINED BENDING ENERGY AND TORSION ENERGY ----- %%%%%%%
210

211 total_energy = bending_energy + torsion_energy;
212

213 % Calcute the derivative of total energy wrt theta2
214 d_total_energy_d_theta2 = gradient(total_energy, theta2);
215

216 % Plot total energy in compliant beam
217 hfig = figure;
218 plot(theta2_star, total_energy, 'color',[0 0.7 0.7], 'DisplayName','Total␣strain␣energy' ,'

LineWidth', 2);
219 hold on;
220 plot(theta2_star, bending_energy, 'color',[0.6 0.6 0], 'DisplayName', 'Bending␣strain␣energy'

, 'LineWidth', 1.5);
221 hold on;
222 plot(theta2_star, torsion_energy, 'color',[0.7 0 0.7], 'DisplayName', 'Torsion␣strain␣energy'

, 'LineWidth', 1.5);
223 xlabel('$\theta_2^*$␣(rad)');
224 ylabel('Total␣strain␣energy␣$U_{\mathrm{tot}}(\theta_2)$␣in␣(J)', 'Interpreter', 'latex');
225 % legend('Total strain energy', 'Bending strain energy', 'Torsion strain energy');
226 % title('Total strain energy (Bending + Torsion) Vs. Input Angle \theta_2');
227 grid on
228

229

230 xticks(0:pi/2:2*pi); % Set tick marks from 0 to 2*pi in steps of pi/2
231 xticklabels({'$0$', '$\frac{1}{2}\pi$', '$\pi$', '$\frac{3}{2}\pi$', '$2\pi$'}); % Label the

tick marks
232

233 xlim([-0.2 2*pi+0.2]); % Adds a small buffer before the first tick at 0
234 ax = gca;
235

236

237 legend('show', 'Location', 'northwest', 'Interpreter', 'latex');
238 % xlabel('Angle $\theta_2$ (rad)');
239 % ylabel('Torque (N$\cdot$m)');
240 title('$\theta_2$␣vs.␣Total␣strain␣energy␣(Bending␣+␣Torsion)');
241 fname = 'energy␣comparison';
242 grid on;
243
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244 picturewidth = 20; % set this parameter and keep it forever
245 hw_ratio = 0.65; % feel free to play with this ratio
246 set(findall(hfig,'-property','FontSize'),'FontSize',17) % adjust fontsize to your document
247 set(findall(hfig,'-property','Box'),'Box','off') % optional
248 set(findall(hfig,'-property','Interpreter'),'Interpreter','latex')
249 set(findall(hfig,'-property','TickLabelInterpreter'),'TickLabelInterpreter','latex')
250 set(hfig,'Units','centimeters','Position',[3 3 picturewidth hw_ratio*picturewidth])
251 pos = get(hfig,'Position');
252 set(hfig,'PaperPositionMode','Auto','PaperUnits','centimeters','PaperSize',[pos(3), pos(4)])
253 % print(hfig,fname,'-dpdf','-painters','-fillpage')
254 print(hfig,fname,'-dpng','-painters')
255

256

257

258 %% Constant torque profile d_total_energy_d_theta2
259

260

261 % Plot the derivative of Energy function to obtain torque
262 hfig = figure;
263 plot(theta2_star, d_total_energy_d_theta2 , 'Color', 'r', 'LineWidth', 1.5);
264

265 xlabel('$\theta_2^*$␣(rad)');
266 ylabel('Torque␣in␣$(N␣\cdot␣m)$');
267 grid on
268

269 xticks(0:pi/2:2*pi); % Set tick marks from 0 to 2*pi in steps of pi/2
270 xticklabels({'$0$', '$\frac{1}{2}\pi$', '$\pi$', '$\frac{3}{2}\pi$', '$2\pi$'}); % Label the

tick marks
271

272 xlim([-0.2 2*pi+0.2]); % Adds a small buffer before the first tick at 0
273 ax = gca;
274

275

276 % legend('show', 'Location', 'best', 'Interpreter', 'latex');
277 % xlabel('Angle $\theta_2$ (rad)');
278 % ylabel('Torque (N$\cdot$m)');
279 title('$\theta_2$␣vs.␣Torque␣at␣input␣link␣$(N␣\cdot␣m)$');
280 fname = 'Sinus␣V3';
281 grid on;
282

283 picturewidth = 20; % set this parameter and keep it forever
284 hw_ratio = 0.65; % feel free to play with this ratio
285 set(findall(hfig,'-property','FontSize'),'FontSize',17) % adjust fontsize to your document
286 set(findall(hfig,'-property','Box'),'Box','off') % optional
287 set(findall(hfig,'-property','Interpreter'),'Interpreter','latex')
288 set(findall(hfig,'-property','TickLabelInterpreter'),'TickLabelInterpreter','latex')
289 set(hfig,'Units','centimeters','Position',[3 3 picturewidth hw_ratio*picturewidth])
290 pos = get(hfig,'Position');
291 set(hfig,'PaperPositionMode','Auto','PaperUnits','centimeters','PaperSize',[pos(3), pos(4)])
292 % print(hfig,fname,'-dpdf','-painters','-fillpage')
293 print(hfig,fname,'-dpng','-painters')
294 % xlabel('\theta_2 (rad)');
295 % ylabel('Torque in N*m');
296

297

298

299

300

301

302 %% Plot FEM and Euler-Bernouilli beam theory results
303

304

305 % Plot the derivative of Energy function to obtain torque
306 hfig = figure;
307 plot(theta2_star, d_total_energy_d_theta2 , 'Color', 'r', 'LineWidth', 1.5, 'DisplayName','

Euler-Bernouilli');
308 hold on
309 plot(x_trimmed-deg2rad(30), y_trimmed, 'b', 'LineWidth', 1.5, 'DisplayName','FEM␣in␣SimScape'

);
310

311 xlabel('$\theta_2^*$␣(rad)');
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312 ylabel('Torque␣in␣$(N␣\cdot␣m)$');
313 grid on
314

315 xticks(0:pi/2:2*pi); % Set tick marks from 0 to 2*pi in steps of pi/2
316 xticklabels({'$0$', '$\frac{1}{2}\pi$', '$\pi$', '$\frac{3}{2}\pi$', '$2\pi$'}); % Label the

tick marks
317

318 xlim([-0.2 2*pi+0.2]); % Adds a small buffer before the first tick at 0
319 ax = gca;
320

321 legend('show', 'Location', 'southwest', 'Interpreter', 'latex');
322 title({'Model␣comparison␣Euler-Bernouilli␣and␣Simscape:'},{'$\theta_2$␣vs.␣torque'});
323 fname = 'Model-Comparison';
324 grid on;
325

326 picturewidth = 20; % set this parameter and keep it forever
327 hw_ratio = 0.65; % feel free to play with this ratio
328 set(findall(hfig,'-property','FontSize'),'FontSize',17) % adjust fontsize to your document
329 set(findall(hfig,'-property','Box'),'Box','off') % optional
330 set(findall(hfig,'-property','Interpreter'),'Interpreter','latex')
331 set(findall(hfig,'-property','TickLabelInterpreter'),'TickLabelInterpreter','latex')
332 set(hfig,'Units','centimeters','Position',[3 3 picturewidth hw_ratio*picturewidth])
333 pos = get(hfig,'Position');
334 set(hfig,'PaperPositionMode','Auto','PaperUnits','centimeters','PaperSize',[pos(3), pos(4)])
335 % print(hfig,fname,'-dpdf','-painters','-fillpage')
336 print(hfig,fname,'-dpng','-painters')
337 % xlabel('\theta_2 (rad)');
338 % ylabel('Torque in N*m');
339

340 %%
341 ts_interp = interp1(ts_angle, theta2_star, 'linear');
342

343 %x2_scale = linspace(1.51844, 7.80162, )
344 p = 4; % Percentage of data to hide (e.g., 10% hidden)
345 startIndex = round(p/100 * length(ts_interp));
346

347 hfig = figure; % save the figure handle in a variable
348 %t = 0:0.02:10; x = t.*sin(2*pi*t)+ 2*rand(1,length(t)); % data
349 plot(theta2_star, d_total_energy_d_theta2 ,'Color',[1 0.38 0.53],'LineWidth',1.5,'DisplayName'

,'Euler-Bernouilli');
350 hold on
351 plot(theta2_star, ts_interp, 'Color', [0, 0.7 0.7], 'LineWidth', 1.5, 'DisplayName', 'FEM␣in␣

SimScape');
352 hold on
353 % plot(fliplr(x2_subset), y2_subset, 'Color',[1, 0.5, 0], 'LineWidth ',1.5, 'DisplayName','

Physical Experiment ')
354 % plot(ts_angle, ts_torque, 'Color', [0, 0.7 0.7], 'LineWidth', 1.5, 'DisplayName', 'FEM in

SimScape');
355 legend('show', 'Location', 'southwest', 'Interpreter', 'latex');
356 xlabel('Angle␣$\theta_2$␣(rad)');
357 ylabel('Torque␣(N$\cdot$m)');
358 title('Torque␣vs.␣$\theta_2$');
359 fname = 'comparitive_methods';
360 grid on;
361

362 picturewidth = 20; % set this parameter and keep it forever
363 hw_ratio = 0.65; % feel free to play with this ratio
364 set(findall(hfig,'-property','FontSize'),'FontSize',17) % adjust fontsize to your document
365 set(findall(hfig,'-property','Box'),'Box','off') % optional
366 set(findall(hfig,'-property','Interpreter'),'Interpreter','latex')
367 set(findall(hfig,'-property','TickLabelInterpreter'),'TickLabelInterpreter','latex')
368 set(hfig,'Units','centimeters','Position',[3 3 picturewidth hw_ratio*picturewidth])
369 pos = get(hfig,'Position');
370 set(hfig,'PaperPositionMode','Auto','PaperUnits','centimeters','PaperSize',[pos(3), pos(4)])
371 % print(hfig,fname,'-dpdf','-painters','-fillpage')
372 print(hfig,fname,'-dpng','-painters')
373

374

375 %% MONTE CARLO SAMPLING
376

377 num_samples = 50; % Number of Monte Carlo samples
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378

379 % Preallocate storage for results
380 d_total_energy_d_theta2_samples = zeros(num_samples, steps);
381

382 % Define parameter variation ranges
383 theta2_initial_range = deg2rad([30-5, 30+5]);
384 misalignment_a_range = deg2rad([5-3, 5+3]);
385 misalignment_b_range = deg2rad([5-3, 5+3]);
386 E_range = [0.95*E, 1.05*E];
387 G_range = [0.95*G, 1.05*G];
388 manual_azimuth_a_range = deg2rad([210-10, 210+10]);
389 manual_azimuth_b_range = deg2rad([48-10, 48+10]);
390

391 % Monte Carlo Sampling
392 for k = 1:num_samples
393 % Randomly sample parameters
394 theta2_initial_sample = rand() * diff(theta2_initial_range) + theta2_initial_range(1);
395 misalignment_a_sample = rand() * diff(misalignment_a_range) + misalignment_a_range(1);
396 misalignment_b_sample = rand() * diff(misalignment_b_range) + misalignment_b_range(1);
397 E_sample = rand() * diff(E_range) + E_range(1);
398 G_sample = rand() * diff(G_range) + G_range(1);
399 manual_azimuth_a_sample = rand() * diff(manual_azimuth_a_range) + manual_azimuth_a_range

(1);
400 manual_azimuth_b_sample = rand() * diff(manual_azimuth_b_range) + manual_azimuth_b_range

(1);
401

402 % Compute theta2 range for this sample
403 theta2 = linspace(theta2_initial_sample , (theta2_initial_sample + 2*pi), steps);
404 theta2_star = theta2 - theta2_initial_sample;
405

406 % Solve for theta3 and theta4 (same fsolve approach as original code)
407 x0 = [theta3_guess, theta4_guess];
408 for i = 1:steps
409 theta2_val = theta2(i);
410 solution = fsolve(@(x) loop_equation(x, theta2_val), x0, options);
411 theta3(i) = solution(1);
412 theta4(i) = solution(2);
413 x0 = solution;
414 end
415

416 % Compute dependent variables
417 azimuth_a = -(pi - theta2 + theta3) + (pi - theta2_initial_sample + theta3(1)) +

manual_azimuth_a_sample;
418 azimuth_b = -(pi - theta4 + theta3) + (pi - theta4(1) + theta3(1)) +

manual_azimuth_b_sample;
419

420 bending_a = -atan2(sin(misalignment_a_sample) .* sin(azimuth_a), cos(
misalignment_a_sample)) + atan2(sin(misalignment_a_sample) * sin(
manual_azimuth_a_sample), cos(misalignment_a_sample));

421 bending_b = -atan2(sin(misalignment_b_sample) .* sin(azimuth_b), cos(
misalignment_b_sample)) + atan2(sin(misalignment_b_sample) * sin(
manual_azimuth_b_sample), cos(misalignment_b_sample));

422

423 for i = 1:steps
424 Ma = -2*E_sample*I*(2*bending_a(i) + bending_b(i))/L3;
425 Mb = 2*E_sample*I*(bending_a(i) + 2*bending_b(i))/L3;
426 M = @(x) ((Mb - Ma) / L3) * x + Ma;
427 bending_energy(i) = (1 / (2 * E_sample * I)) * integral(@(x) M(x).^2, 0, L3);
428 end
429

430 torsion_a = atan2(sin(misalignment_a_sample) * cos(azimuth_a), cos(misalignment_a_sample)
) - atan2(sin(misalignment_a_sample) * cos(manual_azimuth_a_sample), cos(
misalignment_a_sample));

431 torsion_b = atan2(sin(misalignment_b_sample) * cos(azimuth_b), cos(misalignment_b_sample)
) - atan2(sin(misalignment_b_sample) * cos(manual_azimuth_b_sample), cos(
misalignment_b_sample));

432

433 torsion = (torsion_b - torsion_a) .* J .* G_sample ./ L3;
434 torsion_energy = (torsion.^2 .* L3) ./ (2 .* G_sample .* J);
435 total_energy = bending_energy + torsion_energy;
436
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437 % Compute derivative
438 d_total_energy_d_theta2_samples(k, :) = gradient(total_energy, theta2);
439 end
440

441 % Compute statistics (mean, min, max)
442 d_total_energy_d_theta2_mean = mean(d_total_energy_d_theta2_samples , 1);
443 d_total_energy_d_theta2_min = min(d_total_energy_d_theta2_samples , [], 1);
444 d_total_energy_d_theta2_max = max(d_total_energy_d_theta2_samples , [], 1);
445

446 % Plot results
447 hfig = figure;
448 hold on;
449 fill([theta2_star, fliplr(theta2_star)], [d_total_energy_d_theta2_max , fliplr(

d_total_energy_d_theta2_min)], ...
450 [0.8, 0.8, 0.8], 'FaceAlpha', 0.3, 'EdgeColor', 'none', 'DisplayName','Bandwidth'); %

Shaded bandwidth
451 % plot(theta2_star, d_total_energy_d_theta2_mean , 'b', 'LineWidth', 2); % Mean curve
452 hold on
453 plot(x1_range_scaled, -y1_range, 'b', 'LineWidth', 1.5, 'DisplayName','Experimental␣data');
454 hold on
455 plot(x_trimmed-deg2rad(30), y_trimmed+0.0002, 'r', 'LineWidth', 1.5, 'DisplayName','FEM␣in␣

Simscape');
456 hold on
457 plot(theta2_star, d_total_energy_d_theta2 , 'g', 'LineWidth',1.5, 'DisplayName','Euler-

Bernouilli');
458

459 legend('show', 'Location', 'southwest', 'Interpreter', 'latex');
460 xlabel('Angle␣$\theta_2^*$␣(rad)');
461 ylabel('Torque␣$(N␣\cdot␣m)$');
462

463 xticks(0:pi/2:2*pi); % Set tick marks from 0 to 2*pi in steps of pi/2
464 xticklabels({'$0$', '$\frac{1}{2}\pi$', '$\pi$', '$\frac{3}{2}\pi$', '$2\pi$'}); % Label the

tick marks
465

466 xlim([-0.2 2*pi+0.2]); % Adds a small buffer before the first tick at 0
467 ax = gca;
468

469 title({'Torque␣bandwidth␣under␣parameter␣relaxation:'},{'Validation'});
470 fname = 'TRILOGYPT';
471 grid on;
472

473 picturewidth = 20; % set this parameter and keep it forever
474 hw_ratio = 0.65; % feel free to play with this ratio
475 set(findall(hfig,'-property','FontSize'),'FontSize',17) % adjust fontsize to your document
476 set(findall(hfig,'-property','Box'),'Box','off') % optional
477 set(findall(hfig,'-property','Interpreter'),'Interpreter','latex')
478 set(findall(hfig,'-property','TickLabelInterpreter'),'TickLabelInterpreter','latex')
479 set(hfig,'Units','centimeters','Position',[3 3 picturewidth hw_ratio*picturewidth])
480 pos = get(hfig,'Position');
481 set(hfig,'PaperPositionMode','Auto','PaperUnits','centimeters','PaperSize',[pos(3), pos(4)])
482 % print(hfig,fname,'-dpdf','-painters','-fillpage')
483 print(hfig,fname,'-dpng','-painters')
484

485 %% Difference of Simscape and Euler/Bernoulli
486 x_trimmed_interp = interp1((x_trimmed-deg2rad(30)), y_trimmed, theta2_star, 'linear'); % You

can also use 'spline' or 'pchip'
487

488 % Subtract the datasets
489 y_different = d_total_energy_d_theta2 -x_trimmed_interp;
490

491 hfig = figure;
492 hold on;
493 plot(theta2_star, y_different, 'm', 'LineWidth',1.5);
494

495 % legend('show', 'Location', 'southwest', 'Interpreter', 'latex');
496 xlabel('Angle␣$\theta_2^*$␣(rad)');
497 ylabel('Torque␣$(N␣\cdot␣m)$');
498

499 xticks(0:pi/2:2*pi); % Set tick marks from 0 to 2*pi in steps of pi/2
500 xticklabels({'$0$', '$\frac{1}{2}\pi$', '$\pi$', '$\frac{3}{2}\pi$', '$2\pi$'}); % Label the

tick marks
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501

502 xlim([-0.2 2*pi+0.2]); % Adds a small buffer before the first tick at 0
503 ax = gca;
504

505 title({'Residual␣plot:'},{'Simscape␣minus␣Euler-Bernouilli'});
506 fname = 'Residual␣plot';
507 grid on;
508

509 picturewidth = 20; % set this parameter and keep it forever
510 hw_ratio = 0.65; % feel free to play with this ratio
511 set(findall(hfig,'-property','FontSize'),'FontSize',17) % adjust fontsize to your document
512 set(findall(hfig,'-property','Box'),'Box','off') % optional
513 set(findall(hfig,'-property','Interpreter'),'Interpreter','latex')
514 set(findall(hfig,'-property','TickLabelInterpreter'),'TickLabelInterpreter','latex')
515 set(hfig,'Units','centimeters','Position',[3 3 picturewidth hw_ratio*picturewidth])
516 pos = get(hfig,'Position');
517 set(hfig,'PaperPositionMode','Auto','PaperUnits','centimeters','PaperSize',[pos(3), pos(4)])
518 % print(hfig,fname,'-dpdf','-painters','-fillpage')
519 print(hfig,fname,'-dpng','-painters')
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Appendix B - Simscape Multibody

1 % System parameters of compliant beam
2 E_mod = 200*10^9; % E-modulus in [Pa]
3 rho = 900; % Density in [kg/m^3]
4 R = 1e-3; % Cross-sectional radius in [m]
5 J = 1/32*pi*(2*R)^4; % Moment of inertia in torsion
6 I = 1/64*pi*(2*R)^4; % Moment of inertia in bending
7 G_mod = 77*10^9; % Shear modulus of hardened steel
8 manual_azimuth_a = deg2rad(210); %deg2rad(75); % Azimuth angle of misalignment in a
9 manual_azimuth_b = deg2rad(48); %deg2rad(35); % Azimuth angle of misalignment in b

10 misalignment_a = deg2rad(5); % Polar angle of misalignment in a
11 misalignment_b = deg2rad(5); % Polar angle of misalignment in b
12 theta2 = deg2rad(30);
13 direction = 1; % Direction of input link
14 runtime = 20;
15

16 % Number of bars
17 num_bars = 4;
18

19 % Manual beam lengths in [m]
20 % Assign the lengths directly instead of normalized values
21 % Ensure the lengths are within the desired range
22 beam_lengths = [0.2, 0.08, 0.23, 0.15]; % Replace these with your desired lengths
23

24 % Check whether the number of lengths matches the number of bars
25 if length(beam_lengths) ~= num_bars
26 error('The␣number␣of␣beam␣lengths␣must␣match␣the␣number␣of␣bars.');
27 end
28

29 % Validate lengths against minimum and maximum constraints
30 l_min = 0.00001; % Minimum length in [m]
31 l_max = 0.30; % Maximum length in [m]
32

33 for i = 1:num_bars
34 if beam_lengths(i) < l_min || beam_lengths(i) > l_max
35 error('Beam␣length␣%d␣is␣out␣of␣the␣allowed␣range␣[%.5f,␣%.2f]␣m.', i, l_min, l_max);
36 end
37 end
38

39 % Assign lengths to specific bars
40 ground = beam_lengths(1);
41 input = beam_lengths(2);
42 coupler = beam_lengths(3);
43 output = beam_lengths(4);
44

45 % Display beam lengths
46 disp('Beam␣lengths␣in␣[m]:');
47 disp(beam_lengths);
48

49 %Check inequality condition to ensure mechanism can exist.

30



31

50 function checkTriangleInequality(beam_lengths)
51

52 ground = beam_lengths(1);
53 input = beam_lengths(2);
54 coupler = beam_lengths(3);
55 output = beam_lengths(4);
56

57 condition1 = (ground + input + coupler > output);
58 condition2 = (ground + input + output > coupler);
59 condition3 = (ground + coupler + output > input);
60 condition4 = (input + coupler + output > ground);
61

62 %Display results
63 if condition1 && condition2 && condition3 && condition4
64 disp('Mechanism␣can␣exist.');
65 else
66 disp('Mechanism␣can␣NOT␣exist.');
67 error('Invalid␣linkage␣configuration␣due␣to␣triangle␣inequality␣violation.');
68 end
69 end
70

71 checkTriangleInequality(beam_lengths);
72

73

74 % Grashof theorem states relative motion between two beams is possible when
75 % longest + shortest < sum of remaining two
76

77 function checkGrashof(beam_lengths)
78 % Sort the link lengths to easily identify the shortest and longest links
79 sorted_lengths = sort(beam_lengths);
80

81 S = sorted_lengths(1); % Shortest link
82 L = sorted_lengths(4); % Longest link
83 P = sorted_lengths(2); % Second shortest link
84 Q = sorted_lengths(3); % Third shortest link
85

86 % Display the identified links
87 fprintf('Shortest␣link:␣%.2f␣cm\n', S);
88 fprintf('Longest␣link:␣%.2f␣cm\n', L);
89 fprintf('Remaining␣links:␣%.2f␣cm␣and␣%.2f␣cm\n', P, Q);
90

91 % Check Grashof's condition
92 if S + L <= P + Q
93 disp('Grashof␣condition␣is␣satisfied,␣continuous␣rotation␣is␣possible.');
94 else
95 disp('Grashof␣condition␣is␣NOT␣satisfied,␣continuous␣rotation␣is␣NOT␣possible.');
96 end
97

98

99 end
100

101 % Check Grashof condition
102 checkGrashof(beam_lengths);
103

104

105

106

107 %Remaining parameters
108 k = 0; %spring stiffness in (N*m/deg)
109 c = 0; %Damping coefficient (N*m/(deg/s))
110

111

112

113

114 L1 = ground;
115 L2 = input;
116 L3 = coupler;
117 L4 = output;
118

119 %Angles of links
120 theta2_max = 360;



32

121 theta1 = deg2rad(0);
122

123

124 %Angular velocities and accelerations
125 w2 = 1; %rad/s
126 alpha2 = 0;
127

128 %End positions of coupler link end points
129 Bx = [];
130 By = [];
131

132 %Solve the unknows values
133 K1 = L1/L2;
134 K2 = L1/L4;
135 K3 = (L2^2 - L3^2 + L4^2 + L1^2)/(2* L2* L4);
136 K4 = (L1/L3);
137 K5 = (L4^2 - L1^2 - L2^2 - L3^2)/(2* L2* L3);
138

139 A = cos(theta2) - K1 - K2.*cos(theta2) + K3;
140 B = -2.*sin(theta2);
141 C = K1 - (K2 + 1).*cos(theta2) + K3;
142 D = cos(theta2) - K1 + K4.*cos(theta2) + K5;
143 E = -2.*sin(theta2);
144 F = K1 + (K4-1).*cos(theta2) + K5;
145

146 %Open configuration
147 theta3 = 2.*atan((-E - sqrt(E.^2 - 4.*D.*F))./(2.*D));
148 theta4 = 2.*atan((-B - sqrt(B.^2 - 4.*A.*C))./(2.*A));
149 theta5 = acos((L1 - L2*cos(theta2)-L3*cos(theta3))/L4);
150

151

152 w3 = (L2*w2*sin(theta4 - theta2)) ./ (L3*sin(theta3 - theta4));
153 w4 = (L2*w2*sin(theta2 - theta3)) ./ (L4*sin(theta4 - theta3));
154

155 A = L4*sin(theta4);
156 B = L3*sin(theta3);
157 C = L2*alpha2*sin(theta2) + L2*w2^2*cos(theta2) + ...
158 L3*w3^2*cos(theta3) - L4*w4^2*cos(theta4);
159 D = L4*cos(theta4);
160 E = L3*cos(theta3);
161 F = L2*alpha2*cos(theta2) - L2*w2^2*sin(theta2) - ...
162 L3*w3^2*sin(theta3) + L4*w4^2*sin(theta4);
163

164 alpha3 = (C*D - A*F)/(A*E - B*D);
165 alpha4 = (C*E - B*F)/(A*E - B*D);
166

167 %In polar complex form
168 R1 = L1*exp(theta1*1j);
169 R2 = L2*exp(theta2*1j);
170 R3 = L3*exp(theta3*1j);
171 R4 = L4*exp(theta4*1j);
172

173 % %Misalignment of joint 2
174 % gamma = deg2rad(5); %rad
175 % epsilon = deg2rad(0); %rad
176 %
177 %
178 % %Misalignment of joint 3
179 % zeta = deg2rad(5); %rad
180 % psi = deg2rad(0); %rad
181

182

183 %% Simout 1: No misalignment with load
184

185 simOut1 = sim('Four_bar_misalinged.slx');
186 %% Simout 1 code
187

188 ts_angle1 = simOut1.angle.Data;
189 ts_torque1 = simOut1.torque.Data;
190

191 % Define the index to start from (4% into the dataset)
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192 start1_idx = round(0.02 * length(ts_torque1)) + 1;
193

194 % Extract the remaining data
195 x1_trimmed = ts_angle1(start1_idx:end);
196 y1_trimmed = ts_torque1(start1_idx:end);

Figure B.1: Mechanics Explorer of Simscape model. Compliant coupler link is indicated in blue. The Mechanics Explorer lets
users visualize and explore multi-body models. This tool allows for validating the mechanism’s configuration and deformation

modes of the compliant coupler link.

Figure B.2: Figure of the scope in Simscape. The scope displays output signals with respect to simulation time. ODE23t (mod.
stiff/ Trapezoidal solver) is used as solver.
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Appendix C - Graphical User Interface

(GUI) in MATLAB App Designer

1 classdef Misalignment < matlab.apps.AppBase
2

3 % Properties that correspond to app components
4 properties (Access = public)
5 UIFigure matlab.ui.Figure
6 RotationDirectionSwitch matlab.ui.control.Switch
7 RotationDirectionSwitchLabel matlab.ui.control.Label
8 CrankMechanismLamp matlab.ui.control.Lamp
9 CrankMechanismLampLabel matlab.ui.control.Label

10 OutputLinkEditField matlab.ui.control.NumericEditField
11 OutputLinkEditFieldLabel matlab.ui.control.Label
12 CouplerLinkEditField matlab.ui.control.NumericEditField
13 CouplerLinkEditFieldLabel matlab.ui.control.Label
14 InputLinkEditField matlab.ui.control.NumericEditField
15 InputLinkEditFieldLabel matlab.ui.control.Label
16 GroundLinkEditField matlab.ui.control.NumericEditField
17 GroundLinkEditFieldLabel matlab.ui.control.Label
18 Theta2initialSlider matlab.ui.control.Slider
19 Theta2initialSliderLabel matlab.ui.control.Label
20 AzimuthbSlider matlab.ui.control.Slider
21 AzimuthbSliderLabel matlab.ui.control.Label
22 AzimuthaSlider matlab.ui.control.Slider
23 MisalignmentbSlider matlab.ui.control.Slider
24 MisalignmentbSliderLabel matlab.ui.control.Label
25 MisalignmentaSlider matlab.ui.control.Slider
26 MisalignmentaSliderLabel matlab.ui.control.Label
27 AzimuthaSliderLabel matlab.ui.control.Label
28 UIAxes matlab.ui.control.UIAxes
29 end
30

31

32 properties (Access = private)
33 E = 200e9;
34 d = 2e-3;
35 % L1;
36 % L2;
37 % L3;
38 % L4;
39 G = 77e9;
40 steps = 200;
41 I;
42 J;
43

44 end
45

46

34
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47

48 % Callbacks that handle component events
49 methods (Access = private)
50

51 % Code that executes after component creation
52 function startupFcn(app)
53 app.I = 1/64 * pi * app.d^4;
54 app.J = 1/32 * pi * app.d^4;
55

56

57 end
58

59 % Button down function: UIAxes
60 function UIAxesButtonDown(app, event)
61 L1 = app.GroundLinkEditField.Value;
62 L2 = app.InputLinkEditField.Value;
63 L3 = app.CouplerLinkEditField.Value;
64 L4 = app.OutputLinkEditField.Value;
65

66 T1 = L1 + L3 - L2 - L4;
67 T2 = L4 + L1 - L2 - L3;
68 T3 = L4 + L3 - L2 - L1;
69

70 if T1 < 0 && T2 < 0 && T3 > 0
71 app.CrankMechanismLamp.Color = 'g';
72 elseif T1 > 0 && T2 > 0 && T3 > 0
73 app.CrankMechanismLamp.Color = 'g';
74 else
75 app.CrankMechanismLamp.Color = 'r';
76 end
77

78

79 if app.RotationDirectionSwitch.Value == "+"
80 direction = 1;
81 else
82 direction = -1;
83 end
84

85

86

87 %Generation of array of theta2
88 theta2 = linspace(deg2rad(app.Theta2initialSlider.Value), deg2rad(app.

Theta2initialSlider.Value) + direction * 2*pi, app.steps);
89 theta3 = zeros(1, app.steps);
90 theta4 = zeros(1, app.steps);
91

92

93 loop_equation = @(x, theta2_val) [
94 L2*cos(theta2_val) + L3*cos(x(1)) - L4*cos(x(2)) - L1;
95 L2*sin(theta2_val) + L3*sin(x(1)) - L4*sin(x(2));
96 ];
97

98 % Initial geometric approximation
99 x3 = L2*cos(deg2rad(app.Theta2initialSlider.Value)) + L1; % x-coordinate of

coupler
100 y3 = L2*sin(deg2rad(app.Theta2initialSlider.Value)); % y-coordinate of

coupler
101 theta3_guess = deg2rad(30); % Approximate theta3
102 theta4_guess = deg2rad(89); % Approximate theta4
103 x0 = [theta3_guess, theta4_guess]; % Initial guess for fsolve
104

105

106 options = optimoptions('fsolve','Display','none');
107

108 for i = 1:app.steps
109 theta2_val = theta2(i);
110 solution = fsolve(@(x) loop_equation(x, theta2_val), x0, options);
111 theta3(i) = solution(1);
112 theta4(i) = solution(2);
113 x0 = solution; % Use the previous solution as the next initial guess
114 end
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115 theta3_initial = theta3(1);
116 theta4_initial = theta4(1);
117

118 azimuth_a_offset = (pi - deg2rad(app.Theta2initialSlider.Value) + theta3_initial);
119 azimuth_a = -(pi - theta2 + theta3) + azimuth_a_offset + deg2rad(app.

AzimuthaSlider.Value);
120

121 azimuth_b_offset = (pi - theta4_initial + theta3_initial);
122 azimuth_b = -(pi - theta4 + theta3) + azimuth_b_offset + deg2rad(app.

AzimuthbSlider.Value);
123

124 bending_a_offset = atan2((sin(deg2rad(app.MisalignmentaSlider.Value)) * sin(
deg2rad(app.AzimuthaSlider.Value))), cos(deg2rad(app.MisalignmentaSlider.Value
)));

125 bending_a = -atan2((sin(deg2rad(app.MisalignmentaSlider.Value)) * sin(azimuth_a)),
(cos(deg2rad(app.MisalignmentaSlider.Value)))) + bending_a_offset;

126

127 bending_b_offset = atan2((sin(deg2rad(app.MisalignmentbSlider.Value)) * sin(
deg2rad(app.AzimuthbSlider.Value))), cos(deg2rad(app.MisalignmentbSlider.Value
)));

128 bending_b = -atan2((sin(deg2rad(app.MisalignmentbSlider.Value)) * sin(azimuth_b)),
(cos(deg2rad(app.MisalignmentbSlider.Value)))) + bending_b_offset;

129

130 bending_energy = zeros(1, app.steps);
131 Ma_values = zeros(1, app.steps);
132 Mb_values = zeros(1, app.steps);
133

134 for i = 1: app.steps
135 %Calculate Ma and Mb at each step
136 Ma = -(2*app.E*app.I*(2*bending_a(i) + bending_b(i)))/(L3);
137 Mb = (2*app.E*app.I*(bending_a(i) + 2*bending_b(i)))/(L3);
138 % Ma = -2*app.E*app.I*(4*bending_a(i) - bending_b(i)) / (5*L3);
139 % Mb = -2*app.E*app.I*(7*bending_a(i) + 2*bending_b(i)) / (5*L3);
140

141 Ma_values(i) = Ma;
142 Mb_values(i) = Mb;
143

144 %The moment function:
145 M = @(x) ((Mb - Ma) / L3) * x + Ma;
146

147 %Integrate the squared moment function from 0 to L3
148 bending_energy(i) = (1 / (2 * app.E * app.I)) * integral(@(x) M(x).^2, 0, L3);
149

150 end
151

152 torsion_a_offset = atan2((sin(deg2rad(app.MisalignmentaSlider.Value)) * cos(
deg2rad(app.AzimuthaSlider.Value))), cos((deg2rad(app.MisalignmentaSlider.
Value))));

153 torsion_a = atan2((sin(deg2rad(app.MisalignmentaSlider.Value)) * cos(azimuth_a)),
(cos(deg2rad(app.MisalignmentaSlider.Value)))) - torsion_a_offset;

154

155 torsion_b_offset = atan2((sin(deg2rad(app.MisalignmentbSlider.Value)) * cos(
deg2rad(app.AzimuthbSlider.Value))), cos((deg2rad(app.MisalignmentbSlider.
Value))));

156 torsion_b = atan2((sin(deg2rad(app.MisalignmentbSlider.Value)) * cos(azimuth_b)),
(cos(deg2rad(app.MisalignmentbSlider.Value)))) - torsion_b_offset;

157

158 torsion_energy = zeros(1, app.steps);
159 torsion = zeros(1, app.steps);
160

161 for i = 1: app.steps
162 absolute_torsion = abs(torsion_b(i) - torsion_a(i));
163 torsion(i) = absolute_torsion * app.J * app.G / L3;
164 torsion_energy(i) = torsion(i)^2 * L3 / (2 * app.G * app.J);
165 end
166

167 total_energy = bending_energy + torsion_energy;
168 d_total_energy_d_theta2 = gradient(total_energy, theta2);
169

170 if app.RotationDirectionSwitch.Value == "-"
171 app.UIAxes.XDir = 'reverse';
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172 else
173 app.UIAxes.XDir = 'normal';
174 end
175

176

177 plot(app.UIAxes, theta2, d_total_energy_d_theta2);
178 end
179 end
180

181 % Component initialization
182 methods (Access = private)
183

184 % Create UIFigure and components
185 function createComponents(app)
186

187 % Create UIFigure and hide until all components are created
188 app.UIFigure = uifigure('Visible', 'off');
189 app.UIFigure.Position = [100 100 654 606];
190 app.UIFigure.Name = 'MATLAB␣App';
191

192 % Create UIAxes
193 app.UIAxes = uiaxes(app.UIFigure);
194 title(app.UIAxes, 'Theta2␣vs.␣torque')
195 xlabel(app.UIAxes, 'Theta2␣[rad]')
196 ylabel(app.UIAxes, 'Torque␣[N*m]')
197 zlabel(app.UIAxes, 'Z')
198 app.UIAxes.XGrid = 'on';
199 app.UIAxes.YGrid = 'on';
200 app.UIAxes.ButtonDownFcn = createCallbackFcn(app, @UIAxesButtonDown, true);
201 app.UIAxes.Position = [14 305 615 290];
202

203 % Create AzimuthaSliderLabel
204 app.AzimuthaSliderLabel = uilabel(app.UIFigure);
205 app.AzimuthaSliderLabel.HorizontalAlignment = 'right';
206 app.AzimuthaSliderLabel.Position = [14 251 58 22];
207 app.AzimuthaSliderLabel.Text = 'Azimuth␣a';
208

209 % Create MisalignmentaSliderLabel
210 app.MisalignmentaSliderLabel = uilabel(app.UIFigure);
211 app.MisalignmentaSliderLabel.HorizontalAlignment = 'right';
212 app.MisalignmentaSliderLabel.Position = [356 202 86 22];
213 app.MisalignmentaSliderLabel.Text = 'Misalignment␣a';
214

215 % Create MisalignmentaSlider
216 app.MisalignmentaSlider = uislider(app.UIFigure);
217 app.MisalignmentaSlider.Limits = [0 8];
218 app.MisalignmentaSlider.MajorTicks = [0 2 4 6 8];
219 app.MisalignmentaSlider.MinorTicks = [1 2 3 4 5 6 7 8];
220 app.MisalignmentaSlider.Position = [463 211 96 3];
221 app.MisalignmentaSlider.Value = 4;
222

223 % Create MisalignmentbSliderLabel
224 app.MisalignmentbSliderLabel = uilabel(app.UIFigure);
225 app.MisalignmentbSliderLabel.HorizontalAlignment = 'right';
226 app.MisalignmentbSliderLabel.Position = [355 159 87 22];
227 app.MisalignmentbSliderLabel.Text = 'Misalignment␣b';
228

229 % Create MisalignmentbSlider
230 app.MisalignmentbSlider = uislider(app.UIFigure);
231 app.MisalignmentbSlider.Limits = [0 8];
232 app.MisalignmentbSlider.MajorTicks = [0 2 4 6 8];
233 app.MisalignmentbSlider.MinorTicks = [1 2 3 4 5 6 7 8];
234 app.MisalignmentbSlider.Position = [463 168 96 3];
235 app.MisalignmentbSlider.Value = 4;
236

237 % Create AzimuthaSlider
238 app.AzimuthaSlider = uislider(app.UIFigure);
239 app.AzimuthaSlider.Limits = [0 360];
240 app.AzimuthaSlider.Position = [93 260 150 3];
241

242 % Create AzimuthbSliderLabel
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243 app.AzimuthbSliderLabel = uilabel(app.UIFigure);
244 app.AzimuthbSliderLabel.HorizontalAlignment = 'right';
245 app.AzimuthbSliderLabel.Position = [13 181 59 22];
246 app.AzimuthbSliderLabel.Text = 'Azimuth␣b';
247

248 % Create AzimuthbSlider
249 app.AzimuthbSlider = uislider(app.UIFigure);
250 app.AzimuthbSlider.Limits = [0 360];
251 app.AzimuthbSlider.Position = [93 190 150 3];
252

253 % Create Theta2initialSliderLabel
254 app.Theta2initialSliderLabel = uilabel(app.UIFigure);
255 app.Theta2initialSliderLabel.HorizontalAlignment = 'right';
256 app.Theta2initialSliderLabel.Position = [300 263 73 22];
257 app.Theta2initialSliderLabel.Text = 'Theta2␣initial';
258

259 % Create Theta2initialSlider
260 app.Theta2initialSlider = uislider(app.UIFigure);
261 app.Theta2initialSlider.Limits = [0 360];
262 app.Theta2initialSlider.Position = [394 272 216 3];
263

264 % Create GroundLinkEditFieldLabel
265 app.GroundLinkEditFieldLabel = uilabel(app.UIFigure);
266 app.GroundLinkEditFieldLabel.HorizontalAlignment = 'right';
267 app.GroundLinkEditFieldLabel.Position = [28 98 71 22];
268 app.GroundLinkEditFieldLabel.Text = 'Ground␣Link';
269

270 % Create GroundLinkEditField
271 app.GroundLinkEditField = uieditfield(app.UIFigure, 'numeric');
272 app.GroundLinkEditField.Position = [114 98 100 22];
273

274 % Create InputLinkEditFieldLabel
275 app.InputLinkEditFieldLabel = uilabel(app.UIFigure);
276 app.InputLinkEditFieldLabel.HorizontalAlignment = 'right';
277 app.InputLinkEditFieldLabel.Position = [41 53 58 22];
278 app.InputLinkEditFieldLabel.Text = 'Input␣Link';
279

280 % Create InputLinkEditField
281 app.InputLinkEditField = uieditfield(app.UIFigure, 'numeric');
282 app.InputLinkEditField.Position = [114 53 100 22];
283

284 % Create CouplerLinkEditFieldLabel
285 app.CouplerLinkEditFieldLabel = uilabel(app.UIFigure);
286 app.CouplerLinkEditFieldLabel.HorizontalAlignment = 'right';
287 app.CouplerLinkEditFieldLabel.Position = [276 98 73 22];
288 app.CouplerLinkEditFieldLabel.Text = 'Coupler␣Link';
289

290 % Create CouplerLinkEditField
291 app.CouplerLinkEditField = uieditfield(app.UIFigure, 'numeric');
292 app.CouplerLinkEditField.Position = [364 98 100 22];
293

294 % Create OutputLinkEditFieldLabel
295 app.OutputLinkEditFieldLabel = uilabel(app.UIFigure);
296 app.OutputLinkEditFieldLabel.HorizontalAlignment = 'right';
297 app.OutputLinkEditFieldLabel.Position = [281 53 68 22];
298 app.OutputLinkEditFieldLabel.Text = 'Output␣Link';
299

300 % Create OutputLinkEditField
301 app.OutputLinkEditField = uieditfield(app.UIFigure, 'numeric');
302 app.OutputLinkEditField.Position = [364 53 100 22];
303

304 % Create CrankMechanismLampLabel
305 app.CrankMechanismLampLabel = uilabel(app.UIFigure);
306 app.CrankMechanismLampLabel.HorizontalAlignment = 'right';
307 app.CrankMechanismLampLabel.Position = [488 98 102 22];
308 app.CrankMechanismLampLabel.Text = 'Crank␣Mechanism';
309

310 % Create CrankMechanismLamp
311 app.CrankMechanismLamp = uilamp(app.UIFigure);
312 app.CrankMechanismLamp.Position = [597 98 20 20];
313
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314 % Create RotationDirectionSwitchLabel
315 app.RotationDirectionSwitchLabel = uilabel(app.UIFigure);
316 app.RotationDirectionSwitchLabel.HorizontalAlignment = 'center';
317 app.RotationDirectionSwitchLabel.Position = [503 28 101 21];
318 app.RotationDirectionSwitchLabel.Text = 'Rotation␣Direction';
319

320 % Create RotationDirectionSwitch
321 app.RotationDirectionSwitch = uiswitch(app.UIFigure, 'slider');
322 app.RotationDirectionSwitch.Items = {'-', '+'};
323 app.RotationDirectionSwitch.Position = [530 55 45 20];
324 app.RotationDirectionSwitch.Value = '-';
325

326 % Show the figure after all components are created
327 app.UIFigure.Visible = 'on';
328 end
329 end
330

331 % App creation and deletion
332 methods (Access = public)
333

334 % Construct app
335 function app = Misalignment
336

337 % Create UIFigure and components
338 createComponents(app)
339

340 % Register the app with App Designer
341 registerApp(app, app.UIFigure)
342

343 % Execute the startup function
344 runStartupFcn(app, @startupFcn)
345

346 if nargout == 0
347 clear app
348 end
349 end
350

351 % Code that executes before app deletion
352 function delete(app)
353

354 % Delete UIFigure when app is deleted
355 delete(app.UIFigure)
356 end
357 end
358 end
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Appendix D - Physical model

The physical model was machined out of 6000-series aluminium. 9x4x3 mm bearings were used in the
joints. All bearings were glued into reamed H7 holes. The compliant beam was 200 mm in length with a
2 mm diameter. The cylinders that hold the misaligned revolute joints (figure D.4), were hold into place
with M4 set-screws. A Thorlabs structure was attached to the ground link (figure D.3). This structure
provided unrestricted motion of the four bar mechanism while maintaining the connection between the
frame and the torque sensor. Two coupler links were used to prevent jamming as result of a possible
misalignment between axis of driver and axis of input link, as shown in figure D.1.
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Figure D.1: Physical model. Input link is connected to two coupler links to prevent misalignment between constant velocity
driver and axis of input link. Parts are hold into place using set screws, resulting in a modular design allowing for adjusting

lengths, misalignment magnitudes and initial configuration.
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Figure D.2: Physical model with Thorlabs structure to make connection between driver and torque sensor without limiting
motion of four bar mechanism.
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Figure D.3: Technical drawing of ground link. Three different length options: 175, 200 or 225 mm. Bearings were glued into
place using Locktite.
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Figure D.4: Technical drawing of joint misalignment cylinders. Ball bearings were glued into place using locktite. Machined out
of 6000-series aluminium. Ball bearings were glued into place using locktite.
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Figure D.5: Input and output link, both with three different options for misalignment cylinders. Cylinders are hold into place
using set-screws.
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Figure D.6: Coupler part that connects the misaligned joints with the compliant coupler link. Laser engravings of 5◦ increments
ensured positioning accuracy of azimuth angles.
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Appendix E - Concepts

Figure E.1: Concept of four-bar with misaligned over-constraints. Possibility of misaligning all over-constraints. Concept has
four compliant links which length is not adjustable once printed.
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Figure E.2: Adjustable misalignment of a revolute joint. Two ball bearings have to be inserted on each side if the C-shaped
part. Small pins can be inserted in the holes to make misalignment fixed. The four-bar has the ability to have a initial stress free

configuration with a modular design.

Figure E.3: Iteration of adjustable misaligned joint. The idea is that the end parts of the two compliant links can slide in the slots
with their pins (not shown). Once the demanded misalignment is set, the screws can be tightened to fixate the misalignment.
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Figure E.4: Concept of Sarrus mechanism with similar misaligned revolute type as shown in Figure E.3.

Figure E.5: Sarrus mechanism concept based on misaligned joint type used from physical prototype of research paper.
Bottom and top plate are additional parts. Furthermore, all parts of the misaligned over-constraint four-bar mechanism from the
research paper can be re-used. A. Bottom plate; B. Misaligned revolute joint; C. Compliant link; D. Top plate; E. Compliant link;

F. Misaligned revolute joint.
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Figure E.6: Connection between output link and compliant coupler link could be a compliant joint when it replaces the joint that
makes a reciprocating motion. In addition, this joint could be positioned with a misalignment too. Note that this compliant joint
type does introduce joint stiffness to the system. This can be modeled in Simscape by assigning a value to the joint stiffness. A.

Input link; B. Misaligned revolute joint; C. Compliant coupler link; D. Compliant joint; E. Output link; F. Ground link.

Figure E.7: Close-up of compliant joint of figure E.6, that allows for one DOF over a bounded angle. It forms the connection
between the compliant coupler link and the output link.
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