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André Miguel Simões Dias Vieira
born in Loures, Portugal

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl
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Abstract

Domain-specific Languages (DSLs) are languages specifically tailored for an ap-
plication or expert domain. These can be implemented as compilers, which check the
correctness of an input program and translates it to a target language. Manual testing
of compilers is a time consuming and labor intensive task. This motivates the develop-
ment of approaches to facilitate the quality assurance process.

In this thesis we present an automatic and generic test strategy for the generation
of test cases for Spoofax developed compilers. We use a program generator to gen-
erate large syntactically correct programs from Syntax Definition Formalism (SDF)
grammars. Additionally, we improve the program generator with an expansion of our
generation algorithm to use Name Binding Language (NaBL) modules to generate par-
tial name correct programs. We also provide a DSL to define error fixes that are used to
attempt the repair of static semantic errors reported after compilation. After program
generation we use a partial oracle to automatically detect failures during the invoca-
tion of the compiler. Finally, we provide a heuristic to reduce the size of generated
programs, whilst preserving their failure inducing behavior.

This test strategy was used to generate test cases for WebDSL, a DSL targeting the
domain of developing dynamic web applications with a rich data model. The generated
test cases unveiled eleven unique faults in the analysis phase of compilation. These
were reported together with the programs reduced by our program shrinking heuristic
and they were positively received by the WebDSL development team.
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Chapter 1

Introduction

Domain-specific Languages (DSLs) are languages specifically tailored for an application
or expert domain. They offer substantial gains in expressiveness and ease of use compared
with general-purpose programming languages in their domain of application [30]. DSLs
are becoming increasingly popular lately and the number of small customer base DSLs has
been growing rapidly.

DSLs can be implemented as compilers, which check the correctness of the input pro-
gram and translate it to a target language. Figure 1.1 illustrates the traditional compiler
pipeline and its three components [1]: the parser, the analyzer and the generator. The parser
checks whether the input program is well-formed, that is syntactically correct. If this is the
case, the parser transforms the input program into a corresponding tree structure and passes
it on to the analyzer, otherwise it reports the detected parse errors. This is called the parsing
phase. Parsers are traditionally generated from the language’s grammar. In contrast to the
two succeeding components, the analyzer and generator, which are traditionally hand writ-
ten. The analyzer analyzes names and types in the program and checks whether a program

Parser Analyzer GeneratorProgram Program

Compiler

Tree
Structure

Tree
Structure 

+
Names & Types 

Parse Errors Name and Type 
Errors

Figure 1.1: The generic layout of a compiler and its three components: parser, analyzer
and generator. These are respectively responsible for the parsing, analysis and generation
phases of compilation.

1



1. INTRODUCTION

is well-named and well-typed. Such a program will be passed on to the generator together
with the gathered names and types. Otherwise name and or type errors are reported. This
phase is called the analysis phase. The next and last phase is the generation phase. In this
phase, the generator translates the input program into a program in the target language.

Compilers are programs and, like any other program of significant size, they are prone
to contain faults. These faults jeopardize the quality of the compiler, which would diminish
the interest in a DSL. To validate compilers, just as for any other software, engineers resort
to two methods: formal proofs and testing. We will focus on the latter of the two, which
involves the execution of the compiler with various inputs and in different states with the
goal to reveal failures.

Exhaustive testing, that is running the compiler through all possible input-output com-
binations, is unfortunately impossible for non-trivial compilers due to the infinite domain of
possible combinations. Instead, the quality assurance process involves exercising software
to the extent of achieving an accepted coverage of input-output combinations. Reaching an
accepted coverage without finding failures increases the confidence in the software [3].

Language workbenches have been used to facilitate development of DSLs providing a
range of tools to define syntax, semantics and editor features. This enabled smaller devel-
opment teams to develop such languages. Though these smaller teams, smaller customer
bases and lack of testing facilities can lead to a poor quality assurance process. In contrast,
general-purpose languages such as Java and wider used DSLs such as HyperText Markup
Language (HTML), a DSL for text markup in world wide web pages, have larger devel-
opment teams, larger testing teams and larger customer bases. Lately the need for better
testing of these smaller scoped languages has been recognized and research has been turned
towards approaches to enrich these workbenches with testing tools [27, 17].

Since manual testing is often a time consuming and labor intensive task, especially
when your program is a compiler [4], we focus on fully automated test case generation to
extend testing of DSLs. Automated testing should provide the test suite with additional
test cases, strengthening the DSL quality assurance process at a low cost. Building such an
automated test case generator for every DSL compiler would increase this cost significantly,
invalidating the solution. This is why we need a language independent, that is generic,
testing strategy for test case generation.

Generic automated test case generation requires automated generation of input data.
This input data can be classified into four embedded subsets [23]:

1. chains of terminal symbols,

2. syntactically correct programs, that is the programs which are well-formed and should
pass the parsing phase,

3. statically correct programs, that is the programs that should pass the analysis phase,

4. programs that should pass all phases of compilation.

Due to the staged nature of compilers, each set specifically targets different parts of
the compiler. The first set consists of both parsable and non-parsable programs, whereas
the second set should only contain parsable programs. Distinction between these is thus

2
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essential for testing parsers. The third set contains programs for which analysis should
never report errors. Distinguishing between sets two and three is ideal for testing the anal-
ysis phase of the compiler. Finally, set four contains programs which the generator should
translate the program flawlessly. These can be used to test the generator.

Parser generators do not suffer from the same testing deficiencies as our target DSL
compilers, since they are re-used among compilers, have a larger customer base and are
exposed to more intensive testing. This leads us to focus on the two later phases of compi-
lation, making our system under test the analyzer and generator. Consequentially, we focus
on the generation of input data belonging to sets two, three and four.

Summarizing, the main goal of this thesis is to research test strategies to generically
and automatically test the analyzer and generator of DSL compilers. We present such a test
strategy and implement it for languages developed with Spoofax [18], a workbench for lan-
guage development. Finally, we use the test strategy to automatically generate test cases for
WebDSL [38]. WebDSL is a DSL targeting the domain of developing dynamic web appli-
cations with a rich data model. WebDSL consists of several sub-languages for data models,
web pages, business logic, access control and work-flow. The WebDSL compiler ensures
consistency across its sub-languages [9]. The compiler currently consists of approximately
25.000 lines of Stratego code and 15.000 lines of Java code and has been developed on
since 2007 with stable Year-Over-Year commits. The work of its small development team
amounts to an average of 2.0 fte per year. This small development team and complexity of
the language and compiler make WebDSL an ideal test subject for our test strategy.

1.1 Research Questions

In this thesis we aim to answer several research questions, all originating from this main
question: How can we generically automatically generate test cases for DSL compilers?
Our goal is to test hand written parts of the compiler through generation of input from
existing language artifacts. We now discuss these research questions in detail.

RQ1: How can syntactically correct programs be generated generically from language
specifications?

Our goal is to generically test hand written components of a compiler and since parsers
are traditionally generated from a language’s grammar, syntactically incorrect programs are
of no use and generation of these is counterproductive. To force generation of syntactical
correct programs the generator requires knowledge of the language’s syntax. Moreover,
the generator should be language independent since we require it to generate programs for
different languages using only a declarative specification of the language, readily available.
The logical decision for such a specification is the language’s grammar, sharing the same
source for both parser generation and program generation.

RQ2: How can big programs be generated generically whilst avoiding combinatorial
explosion?

3



1. INTRODUCTION

Testing involves finding failures and failure finding likelihood is presumed to be related
to the size of programs used as test input [40]. Encouraged by this presumption we aim
to generate big programs in a random manner. This involves choosing production rules
randomly. However, non-trivial grammars contain cyclic/recursive definitions and iteration
operators which can lead to exploding recursion during generation. We must thus limit
generation to avoid combinatorial explosion whilst generating large programs. At the same
time, due to our goal to have a generic approach, generation must be language independent
and not embed any language specific heuristics.

RQ3: How can statically semantically correct programs be generated generically?

Our goal is to test all hand written parts of a compiler. The previous questions cov-
ered the generation of syntactically correct programs which should always pass the parsing
phase, thus reaching the analysis phase. In order to reach the generation phase we require
the generation of statically semantically correct programs. If program generation only uses
the language’s syntax definition, the probability of generating statically semantically correct
programs is too low and the compiler’s generator will never be tested. Moreover, we argue
that generating (partially) statically semantically correct programs would improve testing
of the analysis phase too, especially when dealing with languages with a complex analysis
phase.

To guarantee generation of statically semantically correct programs the generator re-
quires knowledge of the language’s static semantics. Again with language independence
in mind we refrain from using language bound heuristics and require the existence of a
language artifact describing these static semantics.

RQ4: How can test runs be evaluated to determine success or failure when testing
compilers in a generic automated manner?

Automation of testing entails the automation of determining whether a test passes. This
requires the existence of an oracle. Such an oracle is composed by a generator for the
expected result and a comparator to compare it to the actual result. In the case of a generic
automatic test strategy, the oracle would have to be able to generate an expected result for
each generated program. The traditional approaches to this problem, differential testing
or an extra computational model, are often not applicable. There is typically only one
implementation and no computational model is available, due to small developer teams.

RQ5: How can we assist the language engineer in relating failures found automatically
to faults in the compiler?

A language engineer should easily be able to understand a failing test and to locate
its cause in the implementation. This encourages the use of the test strategy and greatly
increases testing productivity. However, our goal to randomly generate big programs will
most likely make the failure inducing programs harder to read. This negatively influences
the effort required by the language engineer to relate the failure back to the causing fault.
The goal to remain generic prevents us from using language specific reductions and forces
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us to find generic approaches. This leads us to research a generic program shrinking heuris-
tic for reducing a failure inducing program whilst preserving its failure inducing behavior.

1.2 Contributions

Our contributions consist of a fully automated and generic test strategy for generation of
syntactically correct and partial name correct programs using a grammar and a declarative
name binding definition, the application of partial oracles to test DSL compiler robustness
and data regarding the application of this test strategy to WebDSL. We show that for lan-
guages with strong static semantics, generation of even partial name correct programs leads
to an higher failure finding likelihood than the generation of syntactically correct programs.

We also contributed to both Spoofax and WebDSL projects with a a code coverage tool
for the Stratego java back-end compiler, a program shrinking heuristic that preserves failing
behavior, valuable data regarding coverage achieved by WebDSL’s existing test suite and
reports of new failures for the WebDSL project.

1.3 Thesis Outline

This thesis is organized as follows. We establish the terminology of testing, programming
languages and compilers used throughout this thesis and describe Spoofax, the language
workbench we use to implement our approach, in Chapter 2. In Chapter 3, we present our
automated and generic test strategy for DSL compiler test case generation. In Chapter 4, we
describe the implementation of our test strategy for Spoofax developed compilers, together
with the coverage measurement tools we developed for grammar and code coverage. We
used this implementation to generate test cases for WebDSL and to evaluate the test strategy,
we present the results in Chapter 5. In Chapter 6, we give an overview of the related work
and we conclude this thesis with conclusions and future work in Chapter 7.

5





Chapter 2

Preliminaries

Testing is the subject of software engineering covered by this thesis, whereas program-
ming languages and compilers are the domain testing is applied to. This chapter establishes
the terminology used throughout this thesis. The last section of this chapter introduces
Spoofax [18], a language workbench for the development of DSLs which we used to realize
and evaluate the developed strategy,.

2.1 Testing

This section is based on Binders’s terminology for testing found in “Testing object-oriented
systems: models, patterns, and tools.” [3].

Software testing is the practice of executing an implementation using various combina-
tions of input and states attempting to reveal failures. A failure is the manifested inability
of a system or component to perform a required function within specified limits. A failure
can vary from incorrect output, abnormal termination, or unmet time and space constraints.
These failures originate from a software fault, which is either missing or incorrect code.
The implementation being tested or System Under Test (SUT) in this case is a compiler,
in particular the hand written parts of a compiler. Testing a compiler, or any other piece
of software, entails running a test suite. A test suite is a collection of test cases, typically
related by a testing goal or implementation dependency. The test suite’s effectiveness is
classified by its ability to find a failure, whereas its efficiency is classified by the cost, that
is the amount of man-hours devoted to create them. The test cases that compose a test suite
specify the pretest state of the SUT and its environment, the test inputs or conditions, and
the expected result. The expected result specifies what the SUT should produce from the test
inputs. When these are equivalent to the actual results of the SUT’s execution, the test case
is said to pass, otherwise it is a no pass. These expected results are provided by an oracle,
the trusted source of expected results. The oracle can be a program specification, a table of
examples, or simply the programmer’s knowledge of how a program should operate [31].

In the case of manual testing, test cases are created by testers. For compilers, this entails
creating programs to run through the compiler, providing the expected output according
to the language specification and developing a comparator to verify that this output and
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actual results are equivalent. The goal of this thesis is to propose a test strategy to raise
the effectiveness of the manually developed test suite by expanding it with failure inducing
input through automated test case generation without reducing the efficiency. A test strategy
is an algorithm or heuristic to create test cases from a representation, an implementation or
a test model. In our case the developed test strategy for generic and automatic compiler
testing consists of an automatic program generator and an automated oracle.

As the test suite is expanded with failure inducing test cases, developers track down their
causing faults and make a decision to correct them or not, depending on various variables.
The size of a such a test suite is no indicator on how well the SUT is tested. Since exhaus-
tive testing is almost always impossible for non-trivial SUTs, software engineers agreed to
assign confidence to software through achieving acceptable levels of coverage. Coverage is
an abstraction of the measure of tested input-output scenarios usually represented by a per-
centage. For compilers the two most observed coverage metrics are compiler code coverage
and input domain coverage. Compiler code coverage is a percentage of the compiler code
exercised by the test suite. This is a white-box method, since it requires knowledge about
the internals of the implementation. The input domain coverage, which is the percentage
of possible inputs used in the test suite, is a black-box method requiring no access to the
implementation. In the case of compilers an abstraction is used since the input domain, the
set of all possible programs, is usually infinite.

2.2 Programing Languages and Compilers

This section is based on Aho’s terminology for programming languages and compilers
found in “Compilers: Principles, Techniques, and Tools” [1]. The focus lies on textual
languages and any reference to a programming language will assume it has a textual repre-
sentation. In Figure 2.1 we illustrate the relation between language aspects, a compiler, a
language workbench and the compiler’s source code.

Programming languages are specified through syntax and semantics. The syntax of a
programming language describes the proper form of its programs, that is what words and
in what order they need be written to be accepted as a program of the corresponding pro-
gramming language. Semantics describe the program’s meaning. Syntax is traditionally
specified by context-free grammars or grammars for short. These consist of productions,
terminals, non-terminals and start-symbols. Productions specify the manner in which ter-
minals and non-terminals are combined to represent a non-terminal. Non-terminals are
syntactic variables that denote sets of words and terminals, also called lexicals, are the ba-
sic symbol from which words are formed, e.g. keywords, delimiters, operators, constants
or names. A non-terminal that denotes a complete program is called a start-symbol. The
following production shows how a non-terminal Stmt, to the right of the → , is defined for
an if-then-else statement combining non-terminals and terminals, on the left of the → :

"if" "(" Expr ")" "then" Stmt "else" Stmt → Stmt

The non-terminals Expr and Stmt, denote expressions and statements respectively and the
terminals if, then, else and parentheses are defined in between quotation marks. Context-
free grammars are not sufficient to ensure well-formed programs, since programming lan-
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Figure 2.1: An illustration of the relations between language aspects, a compiler, a language
workbench and the compiler’s source code.

guages have context-sensitive parts such as name binding, types and other constraints. Static
semantics describes these context-sensitive restrictions on a language. The meaning of the
program is defined by the language’s dynamic semantics. Dynamic semantics can be ex-
pressed in different manners, in this thesis the focus lies on translational semantics, these
translate the input program to a target language. DSLs are usually translated to general-
purpose programming languages, such as Java or C.

A compiler is a program that reads a program in one language - the source language -
and translates it into an equivalent program in another language - the target language. Com-
pilers are implementations of the syntax, static semantics and translational semantics of a
programming language. This translation is traditionally performed by three components
as illustrated in Figure 1.1, which use transformations to sequentially execute the three
corresponding compiler phases: parsing, analysis and generation. A transformation is the
automatic generation of a target program from a source program, according to a transfor-
mation definition. A transformation definition is a set of transformation rules that together
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"program" Stmt+ → Program
"var" Type Id ";" → Stmt
Id "=" Expr ";" → Stmt
Expr "+" Expr → Expr
"int" → Type
Id → Expr
Num → Expr

program
var int x;
x = y + 1;

Program

Stmt

"var" Type

"int"

Id

"x"

";"

Stmt

Id

"x"

"=" Expr

Id

"y"

"+" Num

"1"

";"

Figure 2.2: Simple context-free productions(top left) for a simple grammar, where the defi-
nitions of the Id and Num symbols are [A-Za-z0-9_]+ and [1-9][0-9]* respectively. And a
program in concrete syntax (top right) and corresponding tree representation(bottom).

describe how a program in the source language can be transformed into a program in the
target language. A transformation rule is a description of how one or more constructs in the
source language can be transformed into one or more constructs in the target language [21].

The parsing phase, responsible for enforcing syntax, entails checking whether the pro-
gram is syntactically well-formed or reporting parse errors otherwise. If the program is syn-
tactically well-formed the parser transforms it from its original concrete syntax, a sequence
of words, into a Parse Tree (PT) or a more abstract version, the abstract syntax tree (AST).
PTs and ASTs represent the hierarchical syntactic structure of the source program. The dif-
ference between the two is that PTs contain complete productions, whereas ASTs abstract
over these using constructors to represent a production and omit any context-free terminal,
such as keywords and delimiters. This hierarchical representation of the program facilitates
future transformations, since tree structures are a more efficient data structure for machines
than their textual representation. The corresponding transformation definition of this phase
is the language’s grammar, where the transformation rules are production rules. These def-
initions are often used to generate parsers or parse tables, providing the implementation of
this phase.

In the top left of Figure 2.2 we show six simple context-free productions. The definitions
of the Id and Num symbols are [A-Za-z0-9_]+ and [1-9][0-9]* respectively. These charac-
ter sets represent alphanumeric and integer sets. On the top right of Figure 2.2 we show a
textual representation of a program belonging to the language defined by this grammar and
on the bottom we show the program in its corresponding parse tree representation.

The next two phases, analysis and generation, are responsible for the language’s seman-
tics. The first checks whether the tree is statically semantically correct in which case the
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Program

Stmt

"var" Type

"int"

Id

"x"

";"

Stmt

Id

"x"

"=" Expr

Id

"y"

"+" Num

"1"

";"

Figure 2.3: The same tree representation of the program used in the previous example in
Figure 2.2. Using traditional name binding conventions, names have been color coded to
link declarations, which are underlined, to corresponding references. The variable y in not
defined and a static semantic error would be reported.

tree and gathered semantic information, such as name resolutions and types, is passed on
to the next phase, otherwise semantic errors are reported. The second transforms the tree
into a program in the target language’s concrete syntax. Both transformations are defined
by program transformations and are often hand-written by developers. One of the static se-
mantic transformations performed by the analyzer is name resolution. This transformation
resolves the implicit static semantic links connecting definitions of names to the nodes that
represent their use, yielding a graph with explicit links. However, these connections are
more commonly represented in a separate data-structure thus preserving the original tree
structure.

In Figure 2.3 we show the tree structure of the program in the previous example and
we highlight the names that would be linked by name resolution. The declaration of the
variable name x is defined in the first statement, where it is underlined, and used by the
second statement as a variable reference. The use of variable y in the second statement
would lead to a static semantic error report, since the variable y is never defined.

2.3 Spoofax

Spoofax [18] is a language workbench that provides language engineers with tools to de-
velop compilers for textual DSLs and to develop Eclipse editor plugins with features such
as syntax highlighting, error highlighting and content completion. Figure 2.4 illustrates how
the different Spoofax components relate to the implementation of compilers, as explained
in the previous section. Spoofax encompasses several meta-languages to define DSLs. This
includes the Syntax Definition Formalism (SDF) and the transformation language Stratego.
Lately, new research towards declarative semantics has led to the development of Spoofax’
Name Binding Language (NaBL), a declarative DSL for name semantics. We will now
discuss these meta-languages in more detail.
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Figure 2.4: An illustration of the Spoofax language workbench in relation to language spec-
ifications.

2.3.1 Syntax Definition Formalism (SDF)

SDF [37] enables language engineers to describe syntax in a declarative and highly modular
manner, combining lexical and context-free syntax into one formalism. SDF grammars
are transformed into parse tables by the parse table generator PGEN and used as input
for the Scannerless Generic LR parser SGLR. ASTs resulting from parsing using parsers
generated from SDF grammars are composed of Annotated Terms (ATerms). These are
representations of productions or terminals and can be composed of: strings, integers, lists,
tuples, constructor applications and annotations.

SDF essentially describes syntax using two different syntax types: lexical and context-
free. Lexical syntax describes the allowed format of terminals which upon parsing are
included in the AST. Rules describing these terminals have a format that resembles regular
expressions, using character sets and ranges. Context-free syntax rules are used to describe
non-terminals and how they are combined to represent accepted words. These rules are
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composed of symbols representing either terminals or non-terminals, strings representing
literals or keywords and structural operators to indicate optionality or iteration. SDF pro-
ductions take the form p1...pn → s { Annotations } and specify that a symbol s can
represent a sequence of strings matching symbols p1 to pn. Also, productions can be anno-
tated with extra properties.

In Figure 2.5 we show some parts of the WebDSL’s SDF modules on the top followed
by three representations of the same WebDSL program. The first is a concrete syntax rep-
resentation, also often referred to as source code. The second is the corresponding tree rep-
resentation of the AST and the third is the textual representation of the AST using ATerms.
In the last two we show ATerms representing productions in a tree structure. For instance,
ApplicationDefs with two sub-trees is the abstract representation of the application pro-
duction in the first module. These production abstractions are called constructors and are
described using a simple "constructor" annotation in the language’s grammar.

SDF also enables declarations of disambiguation rules. These are required to disam-
biguate over multiple AST representations for the same concrete syntax. Take the expres-
sion 1+2*3, this could be parsed either as Mul(Add(1,2),3) or Add(1,Mul(2,3)). Such op-
erator precedence is specified in SDF through context-free priorities using the > operator,
which is transitively closed, that is if A > B and B >C, then A >C. In Figure 2.6 we show
a part of the WebDSL’s SDF grammar for expressions. There we see disambiguation rules
that enforce the operator precedence of multiplication and division over addition and sub-
traction. These would thus disambiguate the previous expression and parsing would yield
the correct Add(1,Mul(2,3)).

For operators with the same precedence, such as addition and subtraction, parsing order
can be determined using operator associativity. SDF defines three associativities:

• left-associativity, which parses left-to-right and is defined with the left or assoc

keywords,

• right-associativity, which parses right-to-left and is defined with the right keyword,

• non-associativity, which prohibits associativity and is defined with the non-assoc

keyword.

In Figure 2.6 we see operator associativity rules for single productions with the key-
words as production annotations, and for groups of productions, with the keywords at the
beginning of the group. These rules define addition and subtraction as left-associtative in re-
lation to each other and themselves. These rules allow the correct parsing of the expressions
1+2-3 and 1+2+3 as Sub(Add(1,2),3) and Add(Add(1,2),3) respectively.

SDF provides more disambiguation means through the prefer and reject keyword.
The first can be used to disambiguate between two possible interpretations, where a produc-
tion annotated with the prefer keyword will take precedence over the other. The second
will remove productions from the set of possible interpretations, leaving hopefully a single
interpretation.
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module WebDSL

imports WebDSL-DataModel WebDSL-Lexical
...

hiddens context-free start-symbols Unit

exports context-free syntax
Application -> Unit
SimpleSort -> Sort
Id -> SimpleSort {"SimpleSort"}

"application" Id Definition+ Section*
-> Application {"ApplicationDefs"}

module WebDSL-DataModel
...
exports context-free syntax
"entity" Id "{" EntBodyDecl* "}" -> Entity {"Entity"}
Property -> EntBodyDecl
Id PropKind Sort -> Property {"Property"}
Id PropKind Sort ":=" Exp -> Property {"DerivedProperty"}
"::" -> PropKind {"Simple"}

module WebDSL-Lexical
...
exports lexical syntax

[a-zA-Z][a-zA-Z0-9\_]* -> Id

application ExampleApp
entity Person {
FirstName :: String

}

ApplicationDefs

"ExampleApp" [ ]

Entity

"Person" [ ]

Property

"FirstName" Simple SimpleSort

"String"

Applicationdefs("ExampleApp",
[Entity("Person",
[Property("FirstName",Simple(),SimpleSort("String"))])])

Figure 2.5: Some parts of WebDSL SDF modules(top), concrete-syntax of an example
WebDSL application(second from the top) and its corresponding AST in tree format(second
from the bottom) and textual format(bottom).
14



Spoofax

module WebDSL-Action
...
exports context-free syntax

Exp "+" Exp -> Exp {"Add", left}
Exp "-" Exp -> Exp {"Sub", left}
Exp "*" Exp -> Exp {"Mul", left}
Exp "/" Exp -> Exp {"Div", left}
Int -> ConstValue {"Int"}
ID -> Exp {"Var"}

context-free priorities
{left:

Exp "*" Exp -> Exp
Exp "/" Exp -> Exp }

> {left:
Exp "+" Exp -> Exp
Exp "-" Exp -> Exp }

concrete-syntax 1+2*3 1+2-3 1+2+3

AST
Add

Int

"1"

Mul

Int

"2"

Int

"3"

Sub

Add

Int

"1"

Int

"2"

Int

"3"

Add

Add

Int

"1"

Int

"2"

Int

"3"

Figure 2.6: An illustration of SDF’s disambiguation rules with a part of the WebDSL-
Action SDF module(top) and three example expressions and their corresponding correct
ASTs (bottom). The first example illustrates operator precedence, the second group operator
associativity and the third single operator associativity.

2.3.2 Name Binding Language (NaBL)

Spoofax’ Name Binding Language (NaBL) [22] is a declarative language to specify name
binding and scope rules of programming languages in a declarative style. Name binding is
used to establish relations between a definition that binds a name and a reference that uses
that name. Languages typically distinguish several namespaces, that is different kinds of
names, such that an occurrence of a name in one namespace is not related to an occurrence
of that same name in another. These names live within scopes, which restrict the visibility
of definitions. Scopes can be nested and name resolution typically looks for definition sites
from inner to outer scopes.

A NaBL rule is composed of a term pattern, followed by a list of clauses. The term pat-
tern describes the term the clauses apply to and is composed of variables(x) and wildcards(_).
A clause specifies either a definition, a reference or a scope and can use variables bound by
the pattern.
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module names

namespaces Entity Property

rules

ApplicationDefs(a, _ , _) :
scopes Entity

Entity(t, body) :
defines Entity t of type SimpleSort(t)
defines Property "this" of type SimpleSort(t) in body
scopes Property

SimpleSort(t) :
refers to Entity t
refers to Entity "Bool"
refers to Entity "Int"
refers to Entity "String"
refers to Entity "Text"
refers to Entity "Email"

Property(f, _, t) :
defines Property f of type t

DerivedProperty(f, _, t, _) :
defines Property f of type t

Var(x) :
refers to Property x

Figure 2.7: A part of the WebDSL NaBL module with name binding rules for the Entity

and Property namespaces.

In Figure 2.7 we show a part of the NaBL module for WebDSL. It shows that the
namespace Entity is scoped by the ApplicationDefs constructor and that the Property

namespace is scoped by the Entity constructor. The Entity namespace has the Entity

constructor as its only definition site and the namespace Property can be defined by either
the Entity, Property or DerivedProperty constructors. It also shows various references for
both namespaces. In Figure 2.8 we show an AST representation of an example WebDSL
application. Using the previously mentioned NaBL module we color coded name resolution
by giving the same colors to definitions and corresponding references, where definitions are
underlined. We see that the Entity constructor defines the entity Person and contains three
constructors that define the following properties: FirstName, Surname and FullName. The
last is a derived property and uses references to properties FirstName and Surname.
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application ExampleApp
entity Person {
FirstName :: String
Surname :: String
FullName :: String := FirstName + Surname

}

ApplicationDefs

"ExampleApp" [ ]

Entity

"Person" [ ]

Property

"FirstName" Simple SimpleSort

"String"

Property

"Surname" Simple SimpleSort

"String"

DerivedProperty

"FullName"

Simple

SimpleSort

"String"

Add

Var

"FirstName"

Var

"Surname"

Figure 2.8: An example WebDSL application in concrete syntax(top) and its corresponding
AST(bottom), where ATerms involved in name binding are highlighted. Colors link the use
of names to their definition sites, which are underlined. The corresponding NaBL module
is shown in Figure 2.7.
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module typechecker
...
rules
type-of:

DerivedProperty(pName, Simple(), type, exp) → type
where

type’ := <type-of> exp
; <eq> (type’,type)

type-of:
Property(pName,Simple(),type) → type

annotate-type:
term → term{type}
where

type := <type-of> term

Figure 2.9: Simplified type checking code in Stratego for WebDSL.

2.3.3 Stratego

Stratego [18] is a DSL for program transformation using rewrite rules to specify local
transformations and strategies to specify orchestration of local transformations. Stratego
supports the development of program transformation infrastructures, domain-specific lan-
guages, compilers, program generators and a wide range of meta-programming tasks.

Stratego rewrite rules are composed of a name, a pattern, a rewrite term and clauses.
Such a rewrite rule, when invoked using its name, will try to match the input term to the
pattern. If this succeeds it proceeds to evaluate the clauses, which in turn are composed of
Stratego statements. If all these succeed, the input term is rewritten with the rewrite term.
Stratego rewrite rules have two possible outcomes, either success resulting in a rewrite or
failure. Stratego allows multiple definitions for the same rewrite rule name, these are applied
one at a time, in an undefined order, until one succeeds or if all fail, the invocation of the
rule fails.

In Figure 2.9 we show two definitions for the rewrite rule type-of. Now assume the
following Stratego statement:
<type-of> Property("FirsName", Simple(), "String")

This statement represents an invocation of type-of with the FirstName property of the pre-
vious WebDSL example program, see Figure 2.8 as input. The execution of this statement
would eventually lead to the execution of the second definition of type-of. Even if the exe-
cution first tries to apply the first definition, it would fail and proceed to attempt to execute
the second. The pattern of the second definition of type-of, the Property(pName,Simple(),type),
matches the input term and binds the variables pName and type to "FirstName" and "String"

respectively. This definition has no clauses and rewrites the input term with the type vari-
able yielding the "String" value.
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type-of:
|[ e_1 + e_2 ]| → type
where
t1 := <type-of> e_1

; t2 := <type-of> e_2
; <eq> (t1, t2)
; type := t1

Figure 2.10: An additional definition of type-of using concrete object syntax as a pattern
match. Assuming meta language is available where e_INT is defined as an object of the Exp

sort.

A Stratego strategy is defined by a strategy name and a list of statements. As an example
we show a strategy to try to apply annotate-type to all of the input’s elements in a topdown
manner:
type-of-all = topdown(try(annotate-type))

If applied to the tree of the example WebDSL program in Figure 2.8, the result would be a
similar tree with type annotated Property constructors. The DerivedProperty constructor
would not be annotated, because the clause of the first rewrite rule would fail due to the
absence of a type-of definition for the Add constructor.

Stratego also offers a feature to define concrete object syntax instead of using ATerms.
This enables the use of concrete-syntax of the source language to be used for either pattern
matches or term writing. In Figure 2.10 we show a type-of definition for the Add con-
structor using concrete object syntax |[ e_1 + e_2 ]|, which is equivalent to the pattern
match in ATerm format: Add(e_1,e_2). The application of the earlier mentioned strat-
egy type-of-all would still yield the same result. Though, the type-of definition for the
DerivedProperty constructor would now enter the new type-of definition for the Add con-
structor, binding the variables e_1 and e_2 to Var("FirstName") and Var("Surname") re-
spectively. After which the rule would fail when attempting to invoke type-of with the
term Var("FirstName") as input.

Another Stratego feature is the extension of rewriting rules with scoped dynamic rewrite
rules to achieve context-sensitive rewriting without the added complexity of local traver-
sals and without complex data structures. Dynamic rules are normal rewrite rules that are
defined at run-time and that inherit information from their definition context [5]. These
dynamic rules can be used to store and retrieve information, using various patterns such as
value stores or even key-value pairs.

In Figure 2.11 we show five new rewrite rules for simple renaming of entities, properties
and variables for the example WebDSL grammar. Here we see the use of dynamic rules for
the storing of entity and property declarations. Now lets assume we define a new strategy
called analyze in which we will first try to apply rename to all the input elements in a
topdown manner and then apply the earlier defined type-of-all strategy:
analyze = topdown(try(rename)) ; type-of-all
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rename:
Entity(eName, properties) → Entity(eName, properties’)
where
rules( EntDecl :+ eName → Entity(eName, properties) )

; properties’ := <map(rename-property(|eName)> properties

rename-property(|eName):
Property(pName, typeSort, type) →
Property(pName’, typeSort, type)
where

pName’ := <concat-strings> [eName, ".", pName]
; rules( PropertyDecl :+ pName’ →

Property(pName’, typeSort, type) )

rename-property(|eName):
DerivedProperty(pName, typeSort, type, value) →
DerivedProperty(pName’, typeSort, type, value’)
where

pName’ := <concat-strings> [eName, ".", pName]
; value’ := <topdown(try(rename-var(|eName)))> value
; rules(PropertyDecl :+ pName’ →

Property(pName’, typeSort, type))

rename-var(|eName):
Var(vName) → Var(vName’)
where

vName’ := <concat-strings> [eName,".",vName]

type-of:
Var(x) → type
where

property := <PropertyDecl> x
; type := <type-of> property

Figure 2.11: Stratego code for renaming and typing using rewrite rule parameters and dy-
namic rewrite rules.
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Upon invocation with the AST of the WebDSL example program in Figure 2.8, rename
will succeed for the entity Person in the input tree. This leads to the storing of the declara-
tion of this entity in the EntityDecl dynamic rewrite rule with the key "Person". Execution
then continues to invoke rename-property with the list of properties in this entity as in-
put. Note that here we use the term eName as a rewrite rule parameter. These parameters
are ATerms that can be given to a rewrite rule as extra input. For all three properties the
PropertyDecl will store their definitions using the concatenation of the entity name and the
corresponding property name separated by a dot as key. The rename-property definition
for the derived property will further attempt to rename the variables within its definition.
Upon completion the property constructors are rewritten with their new names and value,
completing the renaming of the program. The next step in execution is the invocation of
type-of-all, which now will be able to evaluate the type of every typed constructor in the
tree. For the Var constructor, the invocation of the PropertyDecl dynamic rewrite rule will
look up the property’s declaration and return it. In Figure 2.12 we show the resulting AST
with annotated types.
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ApplicationDefs

"ExampleApp" [ ]

Entity

"Person" [ ]

Property{"String"}

"Person.FirstName" Simple SimpleSort

"String"

Property{"String"}

"Person.Surname" Simple SimpleSort

"String"

DerivedProperty{"String"}

"Person.FullName"

Simple

SimpleSort

"String"

Add{"String"}

Var{"String"}

"Person.FirstName"

Var{"String"}

"Person.Surname"

Figure 2.12: The result of the application of the analyze strategy to the AST in Figure 2.8.
This strategy adds annotations in between curly brackets with the type of the constructor as
resolved by the rewrite rules and strategies given as an example throughout this section.
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Chapter 3

Generic and Automatic Compiler
Testing

Manual testing of compilers is stressful on the development budget of software. To ease the
burden and improve the quality assurance process we propose a language independent test
strategy to automatically expand existing test suites with failure inducing test cases. This
should increase the effectiveness of the test suite without reducing the efficiency, whilst
these new found failing test cases may lead to the unveiling of previously unknown faults
in the compiler under test.

The basic setup of the test strategy consists of a random program generator using the
language’s grammar as input and a partial oracle to perform the pass / no pass evaluation.
Figure 3.1 shows this basic setup where test case generation begins with the generation
of syntactically correct programs using the language’s grammar as input. The generated
program is then used as input for the compiler in step ¬. The outcome of this compilation
is forwarded to the partial oracle for a pass/no pass evaluation in step ­. The compilation
results together with the generated program and pass/no pass evaluation are stored in step
® creating the test case.

In Section 3.1 we describe the algorithm for random generation of big syntactically
correct programs, in Section 3.2 we describe two approaches that pave the way towards
static semantically correct program generation, in Section 3.3 we discuss the partial oracle
approach to automated pass/no pass evaluation and in Section 3.4 we describe the program
shrinking heuristic to facilitate the understanding of randomly generated failure inducing
programs.

3.1 Generating Big Syntactically Correct Programs

In this section we present our algorithm for generation of big syntactically correct programs.
First we present the running example used to illustrate the workings of the algorithm then
we start to explain the algorithm with the basic version, followed by the expansions made
to ensure correctness, termination and an uniform generation.

23



3. GENERIC AND AUTOMATIC COMPILER TESTING

Random
GeneratorGrammar

Compiler
SUT

Generated
Programs

Pass / No 
PassPartial Oracle

1

2

Generated
Program

Pass/ No Pass 

Compilation
Results

3

3

Generated
Program

Compilation
Results3

Compilation
Results

Test Strategy
Test Case Data
Input

Legend:

Figure 3.1: Basic test strategy setup for automatic language independent DSL compiler
testing. The round corner blocks represent data, input has a white background, test strategy
components have a light gray background and the output a darker gray background. In
step ¬ the random program generator generates a large syntactically correct program and
invokes the compiler with it. In step ­ the compilation results are passed on to the partial
oracle for a pass/no pass evaluation. Finally step ® stores the generated program, pass / no
pass evaluation and compiler output, creating the test case.

3.1.1 Running Example

Throughout this section we use the following running example to illustrate the proposed al-
gorithm. The example consists of a simple arithmetic expression language with the terminal
symbol Num, the non-terminal Exp and the productions shown on the left and the priorities
and group associativity on the right of Figure 3.2.

The presented algorithm generates programs by first generating a PT and applying the
pretty-print operation, transforming it into concrete syntax. Using PTs enables us to en-
sure the use of brackets where necessary, whereas if ASTs are used a parenthesized pretty-
printing transformation has to be available.

Figures 3.3 and 3.4 contain PTs used later on by examples to illustrate the generation
algorithm.
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Generating Big Syntactically Correct Programs

context-free syntax
1: Exp "+" Exp -> Exp {"Add", left}
2: Exp "-" Exp -> Exp {"Sub", left}
3: Exp "*" Exp -> Exp {"Mul", left}
4: Exp "/" Exp -> Exp {"Div", left}
5: Num -> Exp {"Num"}
lexical syntax
6: [0-9]+ -> Num

context-free priorities
{left:
Exp "*" Exp -> Exp
Exp "/" Exp -> Exp

} >
{left:
Exp "+" Exp -> Exp
Exp "-" Exp -> Exp

}

Figure 3.2: Context-free and lexical productions(left) and set of priorities and associativities
(right) for the simple arithmetic language.

Exp

Num

"1"

Exp

Num

"2"

Exp

Exp

Num

"1"

"+" Exp

Num

"2"

Figure 3.3: PTs belonging to the simple arithmetic language. Note that to generate the
rightmost PT, the first two are returned by the generation algorithm’s recursive invocations.

Exp

Exp

Exp

Num

"1"

"+" Exp

Num

"2"

"+" Exp

Exp

Num

"3"

"+" Exp

Num

"4"

Exp

Exp

Exp

Exp

Num

"1"

"+" Exp

Num

"2"

"+" Exp

Num

"3"

"+" Exp

Num

"4"

Figure 3.4: Example of tree generation using generatePT leading to a conflict with parsing
priorities. The leftmost PT could be a result when associativities are not taken into account.
A non-parenthesized pretty-print transformation would yield 1+2+3+4 as concrete syntax,
which when parsed would yield the rightmost PT, which is not equivalent to the left one.
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3. GENERIC AND AUTOMATIC COMPILER TESTING

Input: N : set of all non-terminal symbols.
T : set of all terminal symbols.
P : set of all productions.
S : set of all start symbols.
nTerminals : number of terminals to generate per terminal symbol.

Output: Returns a syntactically correct program according to grammar G.
1: function generateProgram(N,T ,P,S,nTerminals)
2: for s ∈ T do
3: for j = 1..nTerminals do
4: t j := generateTerminal(s);
5: end for
6: GT (s) := [t1, . . . , tterminalN ];
7: end for
8: startSymbol := chooseRandomly(S);
9: PT := generatePT(startSymbol,N,GT,P);

10: return prettyPrint(PT );
11: end function

Figure 3.5: The base version of the main random generation function that returns a syn-
tactically correct program given the language’s grammar and the number of terminals to
generate per terminal symbol. The help function prettyPrint(PT ) is used to transform a
PT into concrete syntax by joining its elements, to pretty-print an AST a pretty-print table
would have been required.

3.1.2 Basic Algorithm

Our test strategy for automatic language independent compiler testing uses a program gener-
ator to provide test input. This generator should yield syntactically correct programs, since
syntactically incorrect programs would only test the parser which is traditionally gener-
ated. Generating syntactically correct programs ensures the testing of hand-written parts of
the compiler, making generation more productive. Generation is also biased towards larger
sized programs since we assume these to have an higher likelihood of inducing failures [40].

The program generation starts with the generateProgram function, see Figure 3.5. This
function has two main inputs, the language’s grammar, G, and the number of terminals to
generate per terminal symbol, terminalN. The function begins program generation by gen-
erating these terminalN large pools of terminals. Later on during generation any terminal
in the PT is chosen from these pools randomly. This promotes name binding links in the
generated programs, thus enhancing the coverage achieved of partially static semantic cor-
rect programs. The next step is to randomly choose a start-symbol and generate a PT by
invoking the function generatePT . This function grows a PT from the start-symbol, its root.

Example 3.1.1. For a simple arithmetic grammar the generateProgram function is called
with N = [Exp], T = [Num], P is the set of production in lines 1 through 6 from Figure
3.2, S = [Exp], its corresponding pretty-print table and nTerminals = 5. The function first
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Generating Big Syntactically Correct Programs

Input: s0 : non-terminal symbol.
N : set of all non-terminal symbols.
GT : collection of generated terminals for every terminal symbol.
P : set of all productions.

Output: PT : a syntactically correct PT with root s0.
1: function generatePT(s0,N,GT ,P)
2: productions := {p ∈ P | rhs(p) = s};
3: s1 . . .sn→ s0 := chooseRandomly(productions);
4: for i := 1..n do
5: if si ∈ N then
6: pti := generatePT(si,N,GT,P);
7: else
8: pti := chooseRandomly(GT (si));
9: end

10: end for
11: return constructPT(s0, [pt1, . . . , ptn]);
12: end function

Figure 3.6: Base version of the algorithm for syntactically correct generation of big PTs.
The algorithm generates a syntactically correct PT for the non-terminal input symbol by
expanding it with randomly chosen productions. Note furthermore that rhs(P : . . .→ s) = s,
constructPT(s, [pt1, . . . , ptn]) constructs a PT with s as root and [pt1, . . . , ptn] as sub-trees
and getTerminal(s) will either return a literal, if s describes one, or randomly choose a
pre-generated terminal accepted by the regular expression in s.

randomly generates five terminals for the symbol Num using its production [0-9]+ creating
GT(Num) = ["1","2","3","4","53"]. The next step is to choose a start symbol and since
S only has one element the choice naturally falls to Exp. The function then invokes the
generatePT with parameters Exp, N, GT and P, pretty-prints the result of this invocation
and returns it.

The basic version of the generatePT function takes four inputs: a non-terminal symbol
as the root of the PT, a set of all non-terminal symbols, a dictionary containing sets of
generated terminals per terminal symbol and a list of productions. The function starts by
collecting all productions from the input grammar that represent the input symbol, that is
productions with the input symbol on the right hand side. One of these is randomly chosen
to expand the PT by branching the input symbol with the symbols in the left hand side of
the chosen production. Next the function recursively invokes itself to construct sub-trees for
all non-terminal symbols in the left hand side of the chosen production. Eventually these
invocations will return PTs and are used to construct a syntactically correct tree where all
leafs are terminal symbols. Note that the generation algorithm assumes the grammar to
be complete, such that at any point in the generation productions must exist for any non-
terminal used as input for the generatePT function. The absence of a such a production is
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3. GENERIC AND AUTOMATIC COMPILER TESTING

treated as a smell and reported as a failure.

Example 3.1.2. Continuing the previous example, the generatePT function is first invoked
with s0 =Exp, N = [Exp], GT (Num ) = ["1","2",3","4",53"] and P is the set of produc-
tion in lines 1 through 6 from Figure 3.2. The first step is to get all productions p ∈ P for
which their right hand side rhs(p) is the non-terminal symbol Exp. These are productions
1 through 5 in P and from these a production is randomly chosen, lets assume the function
chooses production 1. The algorithm then loops through the left hand side of the produc-
tion, s1 = Exp, s2 = "+" and s3 = Exp, to construct pt1...3. For s1 and s3 the generatePT
recursively invokes itself with s1 and s3 as the new s0, thus constructing correct sub-trees
for these non-terminal symbols. As for s2 the algorithm uses the fact that GT("+") ="+"

and thus pt2 ="+". For the recursive invocations lets assume both choose production 5 and
the random choice for GT(Num) falls to "1" and "2" respectively, this leads to the genera-
tion of the left and middle trees in Figure 3.3 respectively, after which the first generatePT
invocation will return the rightmost tree in Figure 3.3.

3.1.3 Incorporating parsing priorities

Grammar’s often contain declarations of parsing priorities for disambiguation. These dictate
the order in which to parse nested productions or forbid nesting altogether. A priority dec-
laration is a relation between productions or set of productions and an operator describing
this relation as left-,right-, non-associative or higher priority. Note that the higher priority
property is transitive, that is if A > B and B > C then A > C where > translates to: higher
priority than. Priority declarations have to be taken into account during the generation of a
program to ensure syntactically correct generation.

Example 3.1.3. Using the productions of Figure 3.2 the function generatePT may lead to
the generation of a tree as the left tree in Figure 3.4, which after pretty-printing will yield
1+2+3+4 as concrete syntax. However, due to the left-associative property of addition the
parsing of this concrete syntax will yield the rightmost tree in Figure 3.4, which is not equiv-
alent to the previous one. Thus to ensure that generated trees are correct and equivalent to its
pretty-print-parsed versions, the generation algorithm must take into account associativities
and priorities.

The generatePT function is expanded to use such declarations of priority to reject the
choice of certain productions for certain branches. Left- and right-associativity forbid pro-
ductions as direct children of the most right and left branches respectively, whereas non-
associativity and higher priority forbid them as direct children of any branch. The func-
tion now passes on these rejections which are then removed from the list of productions
to choose from. Figure 3.7 shows the expanded generatePT function. This expanded ver-
sion uses the getRejections function to acquire a list of lists with rejections per non-terminal
branch. All productions with a non-associativity or lower priority relation to the chosen pro-
duction are rejected for every non-terminal branch; the productions with a left-associativity
relation are rejected for the right most branch whereas those with right-associativity are
rejected for the most left one. These lists of rejected productions are passed on to the corre-
sponding recursive call of generatePT to be filtered from the choice of possible productions.

28



Generating Big Syntactically Correct Programs

Input: s0 : non-terminal symbol.
R : set of rejected productions.
N : set of all non-terminal symbols.
GT : collection of generated terminals for every terminal symbol.
P : set of all productions.
A : set of association and priority properties.

Output: PT : a syntactically correct PT with root s0.
1: function generatePT(s0,R,N,GT ,P,A)
2: productions := {p ∈ (P\R) | rhs(p) = s0};
3: s1 . . .sn→ s0 := chooseRandomly(productions);
4: R1 . . .Rn := getRejections(s1 . . .sn→ s0,A);
5: for i := 1..n do
6: if si ∈ N then
7: pti := generatePT(si,Ri,N,GT,P,A);
8: else
9: pti := chooseRandomly(GT (si));

10: end
11: end for
12: return constructPT(symbol, [pt1, . . . , ptn]);
13: end function

Figure 3.7: generatePT function of Figure 3.6 expanded with priority obeying statements
(new code in blue) for syntactically correct generation of large PTs. The new help function
getRejections(p : s1 . . .sn → s0,G) returns the collection of branch wise rejections for the
production p according to the grammars priority and associativity definitions.

Note that again the assumption is made that even with rejections there should always be a
production available for expansion of the tree, otherwise this will again be treated as a fail-
ure.

Example 3.1.4. Using the earlier example, the generatePT function is now also given a set
of associativity and priority declarations A. For the simple arithmetic grammar this means
that addition and subtraction are left-associative to each other and themselves, the same
holds for multiplication and division and the latter have an higher priority. This will cause
the choice of an addition production to prompt the generation R1 = [production3,production4]
and R3 = [production1,production2,production3,production4], which are passed on to the
generation of the two branches of the addition. This will lead to the filtering out of produc-
tions 1,2,3 and 4 when generating the rightmost branch of an addition production as the red
Exp in the left tree of Figure 3.4. Leaving production 5 as the only valid choice, preventing
the malformed generation we saw in the previous example.
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Input: s0 : non-terminal symbol.
R : set of rejected productions.
path : set of a symbols generated thus far.
maxRec : maximum recursion.
N : set of all non-terminal symbols.
GT : collection of generated terminals for every terminal symbol.
P : set of all productions.
A : set of association and priority properties.

Output: PT : a syntactically correct PT with root s0.
1: function generatePT(s0,R, path, maxRec,N,GT ,P,A)
2: path′ := symbol · path;
3: if countDuplicateOccurences(path′)> maxRec then
4: productions := (TP(s0)\R);
5: s1 . . .sn→ s0 := chooseRandomly(productions);
6: else
7: productions := {p ∈ (P\R)} | rhs(p) = s0};
8: s1 . . .sn→ s0 := chooseRandomly(productions);
9: end

10: R1 . . .Rn := getRejections(s1 . . .sn→ s0,A);
11: for i := 1..n do
12: if si ∈ N then
13: pti := generateProgram(si,Ri,path′,maxRec,N,GT,P,A);
14: else
15: pti := chooseRandomly(GT (si));
16: end
17: end for
18: return constructPT(symbol, [pt1, . . . , ptn]);
19: end function

Figure 3.8: generatePT function of Figure 3.7 expanded with a maximum recursion control
mechanism to ensure termination(new code in blue). The TP(s) function returns a set of
minimally depthed syntactically correct PTs with s as the non-terminal root symbol, see
Figure 3.9 for the algorithm used to pre-compute these depths and paths.

3.1.4 Ensuring Termination

Grammars with cyclic definitions may lead to recursive use of symbols during generation,
especially in cases where the probability of choosing a cyclic production outweighs others.
The arithmetic language used in the example, see Figure 3.2, has such a grammar that would
probably lead to an infinite generation cycle.

To ensure termination a maximum recursion mechanism is added to the generatePT
function, see Figure 3.8. This mechanism keeps a branch-wise record of symbols used. If
the duplication of symbols reaches a configurable maximum, dubbed maxRec, the mecha-
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Input: N : set of all non-terminal symbols.
T : set of all terminal symbols.
P : set of all productions.

Output: TP : a dictionary for terminating paths for every non-terminal symbol.
DT : a dictionary for the distance to a terminal symbol from any
non-terminal symbol.

1: function computeTPDistance(N,T ,P)
2: ∀s ∈ N | DT(s) :=−1;
3: ∀s ∈ T | DT(s) := 0;
4: distance := 1;
5: repeat
6: toAdd := [];
7: for ∀p ∈ P do
8: if {DT(rhs(p))< 0} & {∀si ∈ lhs(p)|DT(si)≥ 0} then
9: toAdd := toAdd . p;

10: end
11: end for
12: for ∀p ∈ toAdd do
13: DT(rhs(p)) := distance;
14: TP(rhs(p)) := TP(rhs(p)) . p;
15: end for
16: distance++;
17: until toAdd 6= []
18: end function

Figure 3.9: Algorithm to compute distance to a terminal for every production and save the
corresponding terminating path.

nism forces termination of the branch by replacing the symbol with a syntactically correct
minimal depth sub-tree with the symbol as root. These minimal depth trees are dubbed
terminating paths and are computed prior to the invocation of the generatePT function.

Terminating paths are computed by finding the productions that are the closest to termi-
nal symbols. The distance to a terminal symbol is determined by the amount of non-parallel
rewrites required to expand a non-terminal to a sub-tree where all leafs are terminals. A
sequence of productions with the shortest distance to a terminal form a terminating path.
The distance and their corresponding productions are calculated using the algorithm seen in
Figure 3.9. It starts by assigning distance zero to all productions containing only terminals,
these are called the level 1 productions. The next step is to raise this level to 2 and loop
through all productions to check whether these can be assigned a level. A production can
only be assigned a level if it has no previously assigned level and only contains terminals
and non-terminals that can be rewritten with a lower leveled production than the current
level. These steps are repeated until no new production is assigned a level.
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Example 3.1.5. Prior to the generation of a program the random generator runs the
computeTPDistance function to compute the shortest paths to a terminal from every non-
terminal symbol. For the previously used grammar the function will assign production 5

distance 1 in the first loop, since it is the only production with a non-terminal on the right
hand side and all symbols on the left for which DT ≥ 0, thus assigning DT(Exp) = 1 and
TP(Exp) = production5. During generation the function generatePT has a 4

5 probability of
choosing a production with recursive Exp symbols. If this happens more than the allowed
amount of times for the same branch of generation, the maximum recursion mechanism will
detect it and choose a terminating path to terminate the branch. As previously computed,
this is production 5 and it will lead to the generation of a sub-tree with depth 1.

3.1.5 Uniform and Realistic Tree Generation

The current random generation algorithm imposes no limits on iteration operators and due to
the random production choice, generation is strongly influenced by the grammar’s structure.
To prevent generation from creating unrealistically and unfeasible large iterations and to
distort the grammar’s influence on the generation procedure we introduce two new control
mechanisms, maximum iteration and maximum size, into the generatePT function as seen
in Figure 3.10.

The maximum iteration mechanism, lines 12 to 21 of the generatePT function in Fig-
ure 3.10, is used to prevent the random generation of unrealistic large iterations. Symbols
with unbound multiplicity may lead to the generation of for example a function call with
tens of thousands of arguments or a program with tens of thousands of functions. The input
parameter maxIt limits the maximum of the random number chosen for the multiplicity of
iteration operators.

The last control mechanism, the maximum size mechanism, limits the size of generated
programs with two goals in mind: prevent combinatorial explosion when high recursion and
iteration maxima are chosen leading to memory problems and to distort the influence the
grammar’s structure has on generation. The input parameter maxSize denotes the amount
of symbols the generation procedure is allowed to generate. The algorithm randomly dis-
tributes this number for every branch it generates and decreases it with each symbol it adds
to the tree, passing the decreased number to the next recursive call. At the beginning of
each call the function checks whether this number has reached zero and if so it returns a ter-
minating path for the current symbol, in the same manner as when the maximum recursion
limit is reached.

Apart from the three mandatory control mechanisms, recursion, iteration and size, the
strategy offers the possibility to define weights per production to enhance the possibility
of it being chosen. This might prove useful for promoting the generation of new language
constructs for testing increments of the DSL. These weights are taken into consideration by
the chooseRandomly function on lines 5 and 8 of the generatePT function in Figure 3.10.
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Input: s0 : non-terminal symbol.
R : set of rejected productions.
path : set of a symbols generated thus far.
maxRec : maximum recursion.
N : set of all non-terminal symbols.
maxSize : maximum amount of nodes to add to tree.
maxIt : upper bound for cardinality of symbol iteration.
GT : collection of generated terminals for every terminal symbol.
P : set of all productions.
A : set of association and priority properties.

Output: PT : a syntactically correct PT with root s0.
1: function generatePT(s0,R,path,maxRec,maxSize,maxIt,N,GT ,P,A)
2: path′ := s0 · path;
3: if countDuplicateOccurences(path′)> maxRec

V maxSize≤ 0 then
4: productions := (TP(s0)\R);
5: s1 . . .sn→ s0 := chooseRandomly(productions);
6: else
7: productions := {p ∈ (P\R) | rhs(p) = s0};
8: s1 . . .sn→ s0 := chooseRandomly(productions);
9: end

10: R1 . . .Rn := getRejections(s1 . . .sn→ s0,A);
11: for i := 1..n do
12: mi := randomNumber(0,maxSize);
13: maxSize-= mi;
14: if L(si) = 0 V (L(si) = 1 & U(si)> 1) then
15: n := randomNumber(L(si),min(U(si),maxIt)) ;
16: pti := [ ];
17: for j := 1..n do
18: maxS′ := randomNumber(0,mi);
19: maxSize-=maxS′;
20: pti := pti · generatePT(si,Ri,path′,maxS′,maxIt,N,GT,P,A);
21: end for
22: else if si ∈ N then
23: pti := generatePT(si,Ri,path′,mi--,maxIt,N,GT,P,A);
24: else
25: pti := chooseRandomly(GT (si));
26: end
27: end for
28: return constructPT(symbol, [pt1, . . . , ptn]);
29: end function

Figure 3.10: Expansion of the generatePT function to include the maximum iteration and
maximum size mechanisms(new code in blue). The help functions L(s) and U(s) return the
lower and upper bounds respectively of the symbol’s cardinality.
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Figure 3.11: Expansion of our test strategy to enable static semantically correct generation.
The random generator now generates not only styntactically correct programs but (partially)
statically syntactical correct programs and invokes the compiler. Step ¬ invokes the com-
piler with this generated program and step ­ passes it on to the partial oracle. The partial
oracle now does not only store static semantic errors but if present sends them to the Error
Fix Algorithm in step ®. This algorithm attempts to fix these static semantic errors and
invokes the compiler again in step ¯ and the steps ­®¯ are repeated exhaustively.

34



Generating Static Semantically Correct Programs

3.2 Generating Static Semantically Correct Programs

Generation of syntactically correct programs ensures the execution of the analysis phase.
However, the generation phase of the compiler, also hand written, is only executed when
the analyzing phase succeeds and finds no static semantic errors. In other words this phase
is only executed when static semantically correct programs are compiled.

This led us to expand our test strategy to enable the generation of (partial) static seman-
tically correct programs programs, which should result in better test coverage. Furthermore,
if fully static semantic correctness is guaranteed the partial oracle can be expanded recog-
nizing that statically correct programs should lead to program generation, whereas incorrect
programs should lead to static semantic errors.

To achieve static semantic correctness we use two approaches, the first is an expan-
sion of the previous algorithm for syntactically correct generation and the second is ap-
plying quick fix suggestions post compilation to mend remaining static semantic errors.
Figure 3.11 shows our expanded test strategy to include static semantic correct generation
techniques.

In this Section we first present a running example, which builds upon the running ex-
ample from Section 3.1, then we explain the two approaches mentioned above.

3.2.1 Running Example

To better explain our approach towards static semantic correct generation we expand our
earlier running example of Section 3.1 in two ways. First we present a small function def-
inition grammar that uses the simple arithmetic language of the previous example. The
expanded language’s grammar now includes the terminals: Type and String; the non-
terminals: FunDef, Param and Stat; and the productions in Figure 3.12. Together with
the corresponding name binding declarative model, shown in Figure 3.13, this is used to
illustrate name binding.

Secondly, we show a set of transformation rules for type-checking and expression eval-
uation. These are used to illustrate how the name binding language can help induce certain
compiler executions and how the error fixing algorithm could be used to generate more
static semantic correct programs.

During this running example we will use constructors and ASTs instead of the earlier
PT to describe a syntax tree. Moreover, we will show a table representation of scope and
name information gathered and used during program generation. Scopes are kept for each
namespace and are composed by an URI describing the scoping hierarchy visible for the
current node. Examples of such ASTs and corresponding name tables can be found in
Figures 3.14 and 3.15.

Figure 3.16 shows transformation rules for type checking and evaluation of the addition
rule of the new language.

3.2.2 Random Generation Using Static Semantic Definitions

The first approach is inspired by Hanford’s Syntax Machine [11] which uses dynamic gram-
mars during generation. These grammars are dynamic such that they can be shrunk and
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context-free syntax
7: Id "(" { Param "," } ")" ":" Type "{" Stat* "}" -> FunDef { "FunDef" }
8: Type ":" Id -> Param { "Param" }
9: Type ":" Id ";" -> Stat { "VarDef" }

10: Id ":" Exp ";" -> Stat { "VarAssign" }
11: "return" Exp ";"-> Stat { "Return" }
12: Id -> Exp { "Var" }
13: String -> Exp { "String" }
lexical syntax
14: "\"" ˜[\"\n\\]* "\"" -> String
15: "int" -> Type
16: "string" -> Type

Figure 3.12: Grammar of the language used as the running example for this section, which
uses the grammar of the running example of Section 3.1.

FunDef(f, p*, t, _) : defines Function f of type (t*, t)
where p* has type t*

scopes Variable

VarDef(t,x) : defines unique Variable x of type t
Param(t,x) : defines unique Variable x of type t
Var(x) : refers to Variable x
VarAssign(x,_) : refers to Variable x

Figure 3.13: Name binding declarations for the language used in this running example.
Note that these declarations refer to productions by their constructor, to facilitate notation.

expanded to limit the choice of productions during AST generation such that these obey the
language’s static semantics. Our approach distinguishes itself from Hanford’s whenever the
filtering of productions yields an empty list. Where Hanford would backtrack to the previ-
ous production, treating the current one as unfeasible, we use an injection procedure. This
procedure assumes it is possible to inject a sub-tree that triggers the expansion of the gram-
mar such that productions become available to finish the current sub-tree. This is needed to
preserve the original non-backtracking behavior of our generation algorithm, allowing us to
detect malformed grammars.

We distinguish between name binding and type semantics and to obey to either the
algorithm requires declarative definitions of these. Since during the development of the
implementation we only had access to declarative definitions of name binding semantics we
will treat these in more detail than type semantics.

Using the same terminology as Konat et al. [22] we assume declarations of name bind-
ing to have the following or equivalent format: Pattern ":" BindingClause*. Where
Pattern represents a production or its corresponding tree node with optional bindings to
distinguish identifiers and types and BindingClause describes a name binding property of
the production, which may be: scoping, referring, defining or importing. Since our test
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Program

... FunDef

"power2" ... ... ...

Scopes
Function -> Program("test")

Variable -> Program("test")/FunDef("power2")

Values
NS Scope Value
Function Program("test") "power2"

Figure 3.14: Intermediate tree (top) resulting of a program generation where a FunDef is
being generated, thus far only the first child has been constructed and the generation algo-
rithm chose "power2" as the function’s name. We also show the list of scopes and values
(bottom) corresponding to the generation.

Program

... FunDef

"power2" [ ]

Param

"int" "x"

... ...

Program

... FunDef

"power2" [ ]

Param

"int" "x"

"int" [ ]

Return

Mul

Var

"x"

Var

"x"

Scopes
Function -> Program("test")

Variable -> Program("test")/FunDef("power2")

Values
NS Scope Value
Function Program("test") "power2"

Variable Program("test")/FunDef("power2") "x"

Figure 3.15: Intermediate tree (top left) following the generation of the tree in Figure 3.14,
where the next element of FunDef is generated and the algorithm chose to generate a Param

with type "int" and name "x". The next tree (top right) is later in the generation where the
algorithm has chosen to use an existing name for the namespace Variable in the current
scope in both two branches of the Mul production and the choice falls to the only name
"x". We also show the updated list of scopes and values (bottom) corresponding to the
generation.
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1 type-check=
2 ?|[ ~x + ~y ]|
3 ; <eq> (<type-of> x , Int())
4 ; <eq> (<type-of> y, String())
5 ; <report-error> ( y, "Incompatible type, expected int")
6

7 type-check=
8 ?|[ ~x + ~y ]|
9 ; <eq> (<type-of> x , String())

10 ; <eq> (<type-of> y, Int())
11 ; <report-error> ( y, "Incompatible type, expected string")

1 eval:
2 |[ ~x + ~y ]| → Int(z)
3 where
4 <eq> (<type-of> x, Int())
5 ; <eq> (<type-of> y, Int())
6 with
7 x_e := <eval> x
8 ; y_e := <eval> y
9 ; z := <add> (x_e,y_e)

10

11 eval:
12 Num(x) → x

13 eval:
14 |[ ~x + ~y ]| → String(z)
15 where
16 <eq> (<type-of> x, String())
17 ; <eq> (<type-of> y, String())
18 with
19 x_e := <eval> x
20 ; y_e := <eval> y
21 ; z := <conc-strings> (x_e,y_e)
22

23 eval:
24 String(x) → x

Figure 3.16: Type checking rules for the expression language (top). Evaluation rules for the
addition or concatenation operator in the expression language (bottom).

ErrorFixRule1:
"Incompatible type, expected int", $_1 → change to Int(1)

ErrorFixRule2:
"Incompatible type, expected string", $_1 → change to String("something")

1+"a"
> error: (String("a"), "Incompatible type, expected int")
-- Apply ErrorFixRule1 --
1+1
>2

Figure 3.17: Error fix rules (top) to deal with the errors defined in the type-check strategy
of Figure 3.16. Example expressions and output (bottom) when type-check and eval are
applied after another.
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strategy currently does not offer support for multiple file generation we will not treat the
case of name importing.

Scopes restrict the visibility of definitions such that referrals may only refer to defini-
tions within the same scope or outer scopes, never inner scopes. To keep track of these
incremental scopes we propagate an URI per namespace. Every time a new scope is created
for a namespace the URI is appended with this new scope and passed on accordingly. If
the scope is horizontal the new scope is propagated to the production’s siblings whereas a
vertical scope is propagated to the production’s children. Note that this requires a change
in the generation algorithm in Figure 3.10 such that the loops in lines 11 and 17 have a
threaded behavior, passing on new scopes where needed to their siblings.

Productions with defining properties are responsible for introducing names into the cor-
responding namespace’s scope. The binding clause defines NS id will trigger the algo-
rithm to add a randomly chosen terminal id to a dictionary with a key composed by the
namespace and a scope belonging to it. The scope used here is nothing more than the tail
element of the URI for the current scope of NS. Note that a defining clause may have op-
tional properties that will change this behavior. A name may be required to be unique,
triggering the generation algorithm to randomly choose a value from the terminal pool that
does not occur in the current scope of the namespace or generate a new terminal. Also, the
optional in subsequent scope may be used to restrict names from being used before their
definitions. This triggers the algorithm to create an horizontal scope, which is passed on to
the right siblings of the production and the name is added to this scope.

The referral property is represented by the binding clause refers to NS id. This trig-
gers the algorithm to look up all values for visible scopes of NS and randomly choose one
to replace id. The visible scopes here are by default all values in all the elements of the
URI for the current scope of NS. Again here optional attributes may be added to specify the
scope which the production refers to. If no name has been defined for the namespace NS

in the visible scopes then the algorithm uses the injection mechanism. A definition is thus
created, added to a randomly chosen injectable scope and a definition term is queued for
injection.

The injection algorithm developed uses the randomly chosen scope of the namespace we
wish to inject a definition into to find alternatives for injection. First it finds the AST node
responsible for the chosen scope and then using that node and namespace as input it calls
the function getAlternative in Figure 3.18. This function randomly chooses an injection
alternative by traversing the sub-tree of the scoping node in a top-down manner. At every
node that corresponds to a list, that is a node with a parent sort which has a cardinality
higher than 1, it gets all definition paths starting with the same sort and belonging to the
namespace at hand. A definition path is a generation path from a sort to a term defining the
given namespace, such that the generation never goes through a node that scopes the same
namespace. These paths are pre-computed using the algorithm in Figure 3.19.

Example 3.2.1. Using the grammar and name binding declarations in Figure 3.12 lets as-
sume the algorithm during generation chooses to generate a FunDef with the randomly cho-
sen name "power2". According to the name binding declarations this will trigger the name
binding expansion to add a new scope for the namespace Variable. Assuming the ear-

39



3. GENERIC AND AUTOMATIC COMPILER TESTING

Input: node : the current node, starts with the node scoping the scope we will
insert into.
namespace : the namespace we are inserting for.
path : the path we need to follow to get to the node we will insert at.

Output: A randomly chosen alternative for insertion containing a path to lead the
insertion algorithm from the scoping node to the list to insert into and the
definition construction term.

1: function getAlternatives(node,namespace,path)
2: if isList(node) & length(node)<U(node) then
3: DefPaths := DefinitionPaths(getSort(node),namespace);
4: for i := 1 . . . |DefPaths| do
5: Alts(i) := (path · i,DefPaths(i));
6: end for
7: end
8: N := children(node);
9: for i := 1 . . . |N| do

10: if not(N(i) scopes namespace) then
11: Alts := Alts∪getAlternatives(N(i),namespace,path · i);
12: end
13: end for
14: return randomlyChoose(Alts);
15: end function

Figure 3.18: The getAlternative algorithm, used by the injection algorithm to randomly
find an alternative for injection. Note that we only inject definitions or trees containing
definitions into lists in the tree. The global DefinitionPaths is constructed by the algorithm
in Figure 3.19.

lier scope was the root it self, the existing scope Program("test") will be appended with
FunDef("power2") thus yielding the new scope Program("test")/FunDef("power2"). The
corresponding intermediate tree, scope and values lists are shown in Figure 3.14.

Example 3.2.2. Continuing with the previous example the generation algorithm chooses
to generate a single Param for the second child of FunDef. The generated Param has the
randomly chosen name x and type "int", yielding the intermediate tree shown in the top left
of Figure 3.15.This generation triggers the algorithm to add a new value to the namespace
Variable in its current scope, which can later be used when the generation chooses to use
an existing name for Var in both branches of the Mul production, yielding the tree shown in
the top right of Figure 3.15.

The approach for type semantics is similar and the component has two responsibilities:
keeping track of known static types for names and productions and enforcing static type
restrictions. The algorithm is altered to log type information after generation of a type
inferring production. Also to enforce correct static typing, each branch of generation is
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1: function preComputeDefinitionPaths
2: AllDefinitions := getAllDefinitions();
3: for ∀def ∈ AllDefinitions do
4: DefPaths := DefPaths · ([getSort(def )],def );
5: end for
6: for ∀(path,def ) ∈ DefPaths do
7: getAndSaveDefinitionPath(path,def );
8: end for
9: end function

Input: path : the path from the defining term to the parent sort for which it will be
saved.
def : the defining term as declared in the name binding definition of the
language.

Output: A globally accessible dictionary containing key-value pairs where
DefinitionPath(s,ns) contains all the paths from sort s to the defining
terms of namespace ns.

1: function getAndSaveDefinitionPath(path,def )
2: ns := getNamespace(def );
3: DefinitionPath(path0,ns) := DefinitionPath(path0,ns)cot(path,def );
4: parents := getParentSorts(path0);
5: PSorts := PSorts∪{∀p ∈ parents | p /∈ path & not(p scopes ns)};
6: for pSort ∈ PSorts do
7: getAndSaveDefinitionPath(pSort ·path,def );
8: end for
9: return DefinitionPath;

10: end function

Figure 3.19: The preComputeDefPaths algorithm used in the initialisation of the generator
to pre compute all the paths from defining terms to any parent sort for every namespace,
assuming the path does not cross a term scoping the same namespace. These paths and
corresponding defining term are storedin the globally accessible DefinitionPaths. Note that
the getParentSorts takes priority and associativity properties into consideration such that no
paths are created that are syntactically invalid.
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provided with a list of type restrictions that is passed on accordingly as an extra parameter
of the generatePT function. For instance, a language might have type semantics that only
allow integers to be added to integers and floats to floats. Whenever an addition production
is chosen, the generation of the left branch will restrict the generation of the right branch.

3.2.3 Error Fixing Algorithm

Having covered name binding and type semantics, the second algorithm was implemented
to further explore the set of (partially) static semantically correct programs. This algorithm
exploits the existence of Quick Fixes to attempt to fix any static semantic errors reported
by the compilation procedure of the generated program. Quick fix suggestions are an often
offered feature by IDE’s, like in the case of the Eclipse Java plugin 1.

In contrast to the earlier shown setup the partial oracle now forwards the static semantic
error reports to the Error Fix Algorithm in step ®. This algorithm uses any existing quick fix
suggestions to fix the reported errors. These suggestions are expected to be described in two
parts, one which should match the error it is supposed to fix and the other the transformation
that fixes it. One at a time, the algorithm tries to match the actual set of errors to the
matching part of the quick fix and if a match is found it attempts to apply the corresponding
transformation. If this transformation succeeds, yielding a syntactically correct program, the
algorithm invokes the compiler with the fixed program in step ¯. Steps ­®¯ are repeated
exhaustively during which any static semantic errors, fixes used and fixed programs are
stored in the test case.

Example 3.2.3. Take the language described in the running example with a compiler con-
taining the rules shown in Figure 3.16. If the concrete syntax shown in the first line of the
bottom part of Figure 3.17 was to be compiled, the results would be the error shown on
the second line. This would prevent the execution of the evaluation rules. If the error fixes
described in the top part of Figure 3.17 were provided, the algorithm would match the error
to the first rule and apply it, resulting in the concrete syntax 1+1, yielding the value 2 after
evaluation. Thus reaching a compiler transformation rule that would not be reached if the
error persisted.

3.3 Partial Oracle

Having generated input for testing, the test strategy invokes the compiler with the generated
program. We choose to use the concrete syntax to invoke the compiler with, going through
the parsing phase instead of bypassing this phase and using the generated PT for the invoca-
tion of the analyzer. This guarantees the generated program is indeed syntactically correct
and that the parser accepts it. This way, we guarantee that any failure encountered in the
analysis phase is not caused by an syntactically incorrect PT.

After invocation the strategy sends the compilation results to the test oracle for a pass/no
pass evaluation. The challenge of this evaluation lies in the fact that an automatic oracle is
pragmatically unattainable. Traditionally, automated compiler testing solves this problem

1Eclipse FAQ: What is a QuickFix? http://wiki.eclipse.org/FAQ_What_is_a_Quick_Fix%3F
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Figure 3.20: The partial oracle and how it disntiguishes between the various recognized
compilation results and its pass / no pass evaluation.

through differential testing comparing the execution of two compilers for the same language
with the same input. This approach can not be used for most DSLs, since they have only one
compiler. Instead we use a partial oracle, this is an oracle that is able to state with assurance
that a result is incorrect without actually knowing the correct answer [39].

The partial oracle used distinguishes between five scenarios. The first two detectable
scenarios are when the execution of the compiler does not get through the parsing phase.
Since we guarantee syntactically correct program generation any parse error must be due to
a malformed or incomplete grammar. We distinguish two types of failures during parsing:
ambiguities and other parse errors. Ambiguities are caused by missing disambiguation
rules, whereas parse errors can be caused by malformations of the grammar or discrepancies
between the grammar and the pretty-print table.

The next two detectable scenarios are detected when the compiler execution halts at the
analysis phase and are the reporting of static semantic errors or compiler crashes. The first
is treated as a pass, whereas the second is naturally treated as a no pass.

The last of the detectable scenarios occurs when the generated program is static seman-
tically correct and passes the analysis phase, thus leading to the generation of a program in
the target language and it is treated as a pass. It is however very unlikely that the random
syntactically correct generator will yield such programs, however we hope the expansions
proposed in Section 3.2 pave the way towards enabling such static semantic correct gener-
ations.

Example 3.3.1. Assume the language we are testing is the same as in the running example
in Subsection 3.1.1. However, the language developers failed to add the left-associative
property to the addition operation. Upon generation of a program with either PTs in Fig-

43



3. GENERIC AND AUTOMATIC COMPILER TESTING

ure 3.4, the parser would interrupt compilation and report an ambiguity. Our partial oracle
would then classify this as a failure and save it as such.

Example 3.3.2. Take the transformation rules described in the running example in Subsec-
tion 3.2.1. If the language developers had forgotten to add the conditional where clauses
that distinguish between the two functions of the overloaded + operator, the execution of
the eval rule would depend on which of the two rules it would try to match first, poten-
tially causing a crash for either a concatenation of strings or an addition of strings. Such a
crash would be detected by our partial oracle, which would classify it as a failure, save the
concrete syntax causing it and the stack-trace.

3.4 Shrinking Heuristic

The generation of big programs may lead to an higher likelihood of finding failure inducing
programs but it makes the generated programs harder to understand. This complicates the
task of language engineers to trace the failure back to its causing fault. To facilitate this
task we offer a program shrink heuristic that attempts to reduce the program’s size whilst
preserving its failure inducing behavior. Note however that we do not concern ourselves
with efficiency.

The heuristic is based on the hierarchical delta debugging algorithm [32] and is shown
in Figure 3.21. It begins by parsing the input program and saves the original behavior
produced by the compiler when invoked with the input program. Then it traverses the AST
in a top-to-bottom manner applying transformations to reduce the size of the sub-tree under
each node it passes through. After each transformation the compiler is invoked and the
compiler behavior compared to the original behavior. If the transformed program does not
yield an equivalent behavior the transformation is undone. We identify the behavior of a
failing compiler by the exception and the corresponding stack trace. Due to the top-to-
botton approach whenever a node is substituted by smaller sub-tree, all of its m children are
no longer treated for shrinking, thus saving m compiler runs. Moreover, the runtime of the
heuristic is only N compiler runs, where N is the number of nodes in the original AST, if
no shrinking ever takes place.

We propose two transformations for size reduction. The first transformation is used in
case the current node is a list and thus corresponds to an iteration in the grammar. The trans-
formation is shown in Figure 3.22 and it attempts to reduce the list’s size to its minimum
cardinality. For lists with a minimum cardinality of zero the transformation first attempts
to remove all items. If this fails or for any other minimum cardinality the transformation
removes one item at a time rerunning the compiler and comparing behaviors in between.
The second transformation attempts to replace each sub-tree with a smaller, still syntacti-
cally correct, tree. It does so by replacing these sub-tree’s by terminating paths whenever
the depth of such a terminating path is lower than the depth of the sub-tree in question. A
terminating path is a minimal depth syntactically correct tree with a non-terminal root and
these are computed for every non-terminal in the grammar. The algorithm to compute these
is explained in Section 3.1.
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Input: program : the program to shrink.
P : the set of all productions.
ppTable : pretty-print table.

Output: Returns a program with the same failure inducing behavior as the input
program, however it is at least smaller than the input.

1: function shrinkProgram(program,P,ppTable)
2: AST := parse(program);
3: originalBehavior := runCompiler(AST );
4: for ∀node ∈ AST do
5: if L(ASTnode) 6=U(ASTnode) then
6: ASTnode := reduceList(AST,node,originalBehavior,P) ;
7: else if depthOfTree(ASTnode)> DT(ASTnode) then
8: old := ASTnode;
9: ASTnode := TP(ASTnode) ;

10: if runCompiler(AST ) 6≡ originalBehavior then
11: ASTnode := old;
12: end
13: end
14: end for
15: return prettyPrint(AST,ppTable);
16: end function

Figure 3.21: Algorithm for shrinking an AST whilst preserving its failure inducing behavior.
Two transformations are used to reduce the size of the AST in a top-to-bottom approach. If
the current node is a list, the algorithm attempts to reduce the size of the list. Whereas if the
node is a non-terminal it attempts to replace it with a smaller sub-tree.
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Data: AST : a tree representation of the program
originalBehavior : a representation of the original compiler behavior
node : the list to reduce.
P : set of all productions, used to determine cardinality.

1: function reduceList(AST,node,originalBehavior,P)
2: if L(ASTnode) = 0 then
3: ASTnode := [ ];
4: if runCompiler(AST )≡ originalBehavior then
5: return AST ;
6: end
7: i := 1;
8: while length(ASTnode)> i & length(ASTnode)> L(ASTnode) do
9: old := ASTnode;

10: ASTnode := removeIthItemFromList(ASTnode, i);
11: if runCompiler(AST ) 6≡ originalBehavior then
12: ASTnode := old;
13: else
14: i++;
15: end
16: return AST ;
17: end function

Figure 3.22: Algorithm for reducing list size whilst preserving behavior. If the list’s
minimum cardinality is zero the transformation to an empty list is first attempted,
otherwise items are removed once at a time. length(s) returns the length of a list,
removeIthItemFromList(list, i) removes the ith item from the list and L(symbol) returns the
minimum cardinality for symbol.
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Chapter 4

Testing Spoofax Developed
Compilers

In the previous chapter we presented a test strategy to generically and automatically gener-
ate test cases using language artifacts for DSL compilers. These test cases are created using
a random generator that yields syntactically correct programs, with the optional ability to
adhere to static semantics if declarative descriptions of these are available. A partial oracle
is then used to categorize the behavior of the compiler, where program generation or static
semantic error reporting is categorized as a pass and crashes or parse errors, including ambi-
guities, are categorized as a no pass. After execution of the compiler any existing quick fixes
are used to fix potentially reported static semantic errors thus yielding a new program and
creating a slightly different test case. Post test case generation a shrink heuristic is available
to shrink failure inducing programs thus making them potentially easier to comprehend.

To put our test strategy to the practice and evaluate it we implemented this test strategy
specifically targeting compilers developed with Spoofax. In this chapter we first describe the
implementation specifics in Section 4.1, followed by a description of the coverage metrics
we measured and the system developed to measure Stratego code coverage in Section 4.2.

4.1 Implementation Specifics

We implemented the test strategy described in the previous chapter for generic automatic
compiler testing specifically targeting DSL compilers developed with the language work-
bench Spoofax. This restricts the compilers it can accept, however, it is still generic to the
point that it can test any compiler implemented with Spoofax. Furthermore, this restriction
provides us with a common ground between compilers enabling us to focus on one spe-
cific sort of grammar formalism, SDF, a common way of invoking compilers, a common
paradigm for error reporting and a declarative name binding language, NaBL.

The test strategy was implemented using Spoofax’s transformation language Stratego,
enabling the use of the native parsers to parse the language’s grammar and name binding
declarations, the use of the same native building blocks used by compilers to build ASTs
called ATerms, the native pretty-print transformation and the tree traversal and transforma-
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tion paradigms which proved to be useful during AST generation. Note that we do not gen-
erate PTs since AST generation is easier to implement and traditionally pretty-print-tables
are available for Spoofax developed languages. However, we do not assume the existence of
a correct parenthesize strategy and generate tree’s whilst respecting associativity and prior-
ity properties. Also any parenthesizing productions are given a specially created constructor
that is later pretty-printed accordingly, including the parenthesizes. Our implementation of
the test strategy requires a configuration file which regulates the strategy, its control mech-
anisms and defines the error fixes, Figure 4.1 shows an example of such a configuration
file. It has two main sections, the automatic test section containing the main testing in-
puts and the error correction section containing all Error Fixes explained in Subsection
4.1.3. In the automatic test section essential settings such as the target language, target
strategy, location of jar to invoke, the input required to invoke the jar, optional cache folders
that need to be removed and number of generated test cases are set. Control mechanisms
can also be adjusted, such as maximum term count per test, maximum recursion depth,
maximum iterations per single operator, number of generated terminals per terminal sort
and terms to ignore during generation. Note that we also implemented a minimum itera-
tion control, this is to help us force creation of larger programs. The next three subsections
describe the specifics involved in the implementation of the random generator, the partial
oracle and the error fixing algorithm.

4.1.1 Random Generator

The random generator in our test strategy takes the control mechanism parameters defined
in the configuration file and the language’s SDF module as main input for program gener-
ation. SDF defines a grammar through productions for lexical and context-free syntax and
context-free priorities. The lexical productions are used for the terminal generation proce-
dure of the generateProgram function in Figure 3.6. The parameter terminal pool size
determines how many terminals are generated per lexical sort. To generate these in a random
manner we use a third party Java random generator for regular expressions called Xeger 1.
The lexical productions are translated to regular expressions accepted by Xeger with the
restriction that any character generated is in the character set accepted by SDF.

The random generator then proceeds to choose a start-symbol and starts AST generation
using the context-free productions, associativities and priorities to yield a syntactically cor-
rect tree. We construct these trees using ATerms, Stratego’s data format for the structured
representation of programs. These can either be constructors representing a context-free
production, a string representing a terminal or a list representing a non-single cardinality
context-free sort. Note that any productions in SDF marked with a rejected or deprecated
property are ignored by our generator and are not included in the generation. Furthermore,
our generator supports the use of the ast keyword in SDF which is used to manually define
constructors for productions, these are parsed and used as normal constructors throughout
generation.

1Xeger - A Java library for generating random text from regular expressions. http://code.google.com/
p/xeger/
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Implementation Specifics

automatic test
target language: WebDSL
file extension: app
target strategy: "webdslc-main"
invoked jar:
"file:/home/andre/Documents/Stratego/bin/WebDSL/bin/webdsl.jar"
invocation input:
["test", "-i", @PROGRAMPATH , "--verbose" , "2", "--servlet"]
cache folders: ".webdsl-parsecache"
test tag: Test
nr# runs: 500
terminal pool size: 50
max term count: 5000
max recursion: 30
max iteration: 50
min iteration: 0
test folder: "TestFolder"
ignore sorts:
"ExternalScopeVar", "GenericSort", "Module", "Imports"

error correction // for WebDSL

noRoot:
"no root page root() defined.", _ →

insert once DefinePage([],"root",[], None() ,[])
@ ApplicationDefs(_,$here,_)

or insert once Section("rootFixSection",
[DefinePage([],"root",[], None() ,[])])

@ Application(_,$here)

Figure 4.1: Configuration file for the automated test strategy. @PROGRAMPATH is an internal
keyword representing the location of the generated program.

The random generator has an extra option to accept NaBL modules to adhere to name
binding semantics. NaBL describes name binding by assigning constructors of the language
name binding properties, our current prototype accepts three: scoping, defining and referral.
This prototype for name binding correct generation also supports the optional unique/non-
unique property of names, however no support is offered for horizontal scoping, scope
importing or import of scopes and values from other files. Note also that the WebDSL NaBL
module used is an old outdated and incomplete version, since during the development of the
strategy NaBL was also in its early phases of development.

4.1.2 Partial Oracle

After generating the AST, the random generator uses the native pretty-print transformation
to transform the AST into concrete syntax. The first partial oracle step is to parse this
concrete syntax using the native parser and the language’s parse-table. This step may lead
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to three possible outcomes. The first is the reporting of ambiguities, these are caused by
missing disambiguation rules. Spoofax’ parsers return ambiguities as a list of possible
ATerm interpretations of the ambiguous concrete syntax. We store each ambiguity and
its corresponding concrete syntax in the test case and log it as a no pass. The second
possible outcome is the report of other parse errors, which are caused by inconsistencies
between the language’s grammar and pretty-print table. Our partial oracle saves both the
concrete syntax, original AST and parse error message and logs the test case as a no pass.
The last possible outcome is the transformation of the concrete syntax into a syntactically
correct AST, green lighting the next step, the invocation of the compiler with the generated
program.

To invoke of the compiler with the generated program we developed a custom Java
library using Spoofax’ Java API. The generated concrete syntax is printed to a file and this
location is passed on to the compiler in an ATerm as described by the configuration of the
input term. The compiler then either returns an ATerm or a Java Exception. The ATerm
may contain either static semantic errors or not, the last indicates the program cleared the
analysis phase and generation took place. Either of which are classified as a pass by the
partial oracle that stores the compiler console output, the returned ATerm and input program
as the test case. Java Exceptions indicate the compiler crashed, this is obviously treated as
a no pass and the exception, stack trace, console output and input program are stored as the
test case.

4.1.3 Error Fixing Algorithm

Spoofax currently does not offer support for development of a QuickFix suggestion feature.
This led us to develop a prototype for an Error Fix DSL to provide testers with the possibility
to define quick fixes. The goal of this language is to test our approach in using these to
achieve better coverage or find new failures and not to provide Quick Fixes for Spoofax.

The language is composed of error fixing rules, which in turn have an error matching
side, to the left of the right arrow(→) and an error correction side to its right. The error
matching part is again composed of a message matching pattern and a term matching pat-
tern. The actual error reported by the compiler is also composed by two parts: a message
and an ATerm. The message returned to the compiler must contain the words in the defined
message pattern and the ATerm has to succeed a Stratego pattern match defined by the term
matching pattern in the rule. We also offer the functionality to bind variables in the term
matching pattern to use later in the error correcting action.

For this prototype only a set of error correcting actions have been implemented, see
figure 4.2 for the implemented grammar of the error correcting actions. The AddCorrection

actions are designed to insert new ATerms into the AST where the first inserts it at the end
of the list and the second at the beginning of the list. The DeleteFromListCorrection action
is designed to remove an ATerm from any list in the AST. The ChangeCorrection action is
designed to swap an ATerm for another.
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context-free syntax

InsertOperation Fix "@" DestMatch
-> Action{"AddCorrection"}

InsertOperation Fix "first@" DestMatch
-> Action{"AddCorrectionFirst"}

DeleteOperation { ErrorMatch "or"}+ "from" "list"
-> Action{"DeleteFromListCorrection"}

Fix "change" "to" Fix -> Action{"ChangeCorrection"}
"change" "all" "to" Fix -> Action{"ChangeAllCorrection"}

"insert" -> InsertOperation{"Insert"}
"insert" "once" -> InsertOperation{"InsertOnce"}
"insert" "once" "for" "(" ErrorMatch ")"
-> InsertOperation{"InsertOnceFor"}

"delete" -> DeleteOperation{"Delete"}
"delete" "for" "(" ErrorMatch ")"
-> DeleteOperation{"DeleteFor"}

"$concat" "(" Fix "," Fix ")" -> Fix{"Fix_Conc"}
ID "(" {Fix ","}* ")" -> Fix{"Fix_Cons"}
ID -> Fix
STRING -> Fix{"Fix_String"}
"[" "]" -> Fix{"Fix_EmptyArray"}
"[" Fix+ "]" -> Fix{"Fix_Array"}
"$_"INT -> Fix{"Fix_Var"}
INT -> Fix{"Fix_Int"}

ID "(" { ErrorMatch ","}* ")" -> ErrorMatch{"ErrMatchCons"}
"$_"INT -> ErrorMatch{"ErrMatchParamBind"}
"@_"INT -> ErrorMatch{"ErrMatchParam"}
STRING -> ErrorMatch{"ErrMatchString"}
INT -> ErrorMatch{"ErrMatchINT"}
"_" -> ErrorMatch{"ErrMatchWildCard"}

ErrorMatch -> DestMatch
"$here" -> DestMatch{"TargetNode"}

Figure 4.2: Grammar for Error Correcting Actions.

4.2 Coverage Measuring

Coverage is the measurement used during software testing to describe to what extent the
software has been tested. We will measure two types of coverage to compare our generated
test cases to the existing test suite. These two types are code and grammar coverage and
they were chosen since they are easy enough to measure and cover the different states of the
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some_strategy =
__coverage_point_entry_some_strategy_01__
statement1

; statement2
; . . .

__coverage_point_exit_some_strategy_01__

some_rule :
patternToMatch → patternToWrite
__coverage_point_entry_some_rule_01__
where

statement1
; statement2
; . . .
__coverage_point_exit_some_rule_01__

some_rule :
patternToMatch → patternToWrite
__coverage_point_no_condition_some_rule_02__

Figure 4.3: Points of instrumentation of Stratego code with Coverage Points.

compiler and input domain respectively.

4.2.1 Code Coverage

Code coverage measures which statements have been executed during execution for the
given input. In this case it will log which statements have been executed when analyzing
and transforming the program. Spoofax has no such native system thus we developed one to
be able to measure code coverage. Our extended Stratego compiler can be given an option
to enable coverage instrumentation during compilation. This instrumentation occurs after
the parsing phase in the Stratego’s compiler pipeline. All strategies and rules in the compiler
being compiled are instrumented with Coverage Points to log both the entering and exiting
of these rules and strategies.

A coverage point is represented by a special ATerm that is inserted at the beginning
and end of a strategy and rule. For a strategy this means a point is inserted in between a
strategy’s call and first statement, denoting the entering of a strategy, and a point is inserted
in between the last statement and return of the strategy, denoting the exiting. As for rules
the points are inserted in between the pattern match and optional where/with clauses and in
between the end of these clauses and rewriting. If the rule has no clauses these two points
are the same and such a point is called a no condition point. See Figure 4.3 for an illustration
of these points. Note that a rule or strategy are partially covered when only the entry point is
passed and fully covered if the exit or no condition point is passed. All coverage points are
identified by an unique identifier and the following information is stored for each identifier:

• File Path, the path of the file containing the strategy or rule being instrumented;
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// code coverage key: type_of_rule_01
type-of:
|[ ~e1 + ~e2 ]| → "int"
where

<type-of> e1 => "int"
; <type-of> e2 => "int"
// code coverage key: type_of_rule_02
type-of:
|[ ~x ]| → "int"
where
<is-int> x

1+"not a number"

Covered points
Entry point for type_of_rule_01
Entry point for type_of_rule_02
Exit point for type_of_rule_02

Figure 4.4: An example of Stratego code coverage. On the left is the code being mea-
sured with the keys commented in for better understanding. The first rule is assgiend the
type_of_rule_01 key and the second type_of_rule_02. These rules are applied to the sim-
ple example program on the top right yielding the coverage of the points in the bottom right
table. These indicate that the second rule is completely covered, since both entry and exit
points are covered. Whilst the first is only partially covered, since the rule will fail on the
second statement in the where clause, never reaching the exit point.

• Strategy Name, the name of the strategy or rule being instrumented;

• Coverage Type, a predefined constant which categorizes the coverage point as being
one belonging to either a strategy or rule and whether its an entry, an exit or a no
condition point;

• Origin Location, file positioning information indicating where the strategy or rule is
defined in the file. Currently not supported due to the unavailability of a Java-based
Stratego-to-Java compiler, this function is not supported for C-based compilers.

The inserted ATerms denoting the coverage points contain the unique identifier whereas the
rest of the information is stored for later use.

During the generation phase of the Stratego compiler the special coverage point ATerms
are transformed into Java calls to a method called beenHere which is given the unique iden-
tifier as a parameter. This method is included in our Java library dubbed Coverage and
upon invocation increments a zero initialized counter for the corresponding identifier, thus
logging which and how often each coverage point is passed. After generation all coverage
points and their information are stored in files that are later used to construct code coverage
reports. See Figure 4.4 for an example of code coverage.

4.2.2 Constructor Coverage

We measure grammar coverage with an abstraction we dubbed Constructor Coverage. This
abstraction measures the coverage of SDF constructors, where each constructor with a spe-
cific number of children is treated as an unique element. Measuring this coverage for exist-
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Exp "+" Exp -> Exp {"Add"}
Exp "-" Exp -> Exp {"Sub"}
Exp "*" Exp -> Exp {"Mul"}
Exp "/" Exp -> Exp {"Div"}
Num -> Exp {"Num"}
[0-9]+ -> Num

Mul

Add

Num

"1"

Num

"2"

Num

"3"

Covered Keys
Mul2, Add2, Num1
Coverage
3/5

Figure 4.5: Example of constructor coverage. On the left a simple arithmetic grammar. In
the center an AST of a program belonging to the simple arithmetic grammar. On the right
the corresponding constructor coverage achieved by the AST in the middle.

ing test suite programs is easier than branch coverage of productions. For constructor cov-
erage it suffices to look at the AST and analyze the constructors it is composed f, whereas
production branch coverage would require logging during the parsing phase.

To use this constructor coverage first the grammar is parsed and keys are created for each
constructor-number-of-children combination. We simply concatenate the constructor string
and the number of children to create an unique key. The collection of these keys represents
the set of all constructor coverage keys. During generation of a new or after parsing an
existing test case, each constructor in the AST is transformed into its corresponding key
and stored. This represents the coverage achieved by the given test case. If this set is equal
to the set of all constructor coverage keys then full constructor coverage is achieved. Note
that this is not the same as full branch coverage, since productions with no constructors
are not measured by the constructor coverage and duplicate construction names with the
same amount of children branches share the same key. See Figure 4.5 for an example of
constructor coverage.
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Chapter 5

Evaluation

We evaluate our test strategy by using it to generate test suites for WebDSL, a Spoofax built
DSL. In this evaluation we answer the following questions:

• EQ1: What failures do our generated test cases unveil?

• EQ2: How frequently can our test strategy generate failure inducing programs?

• EQ3: How does the generated test suite cover the grammar and implementation of
the language under test?

• EQ4: Do the expansions enabling partial static semantic generation improve failure
finding likelihood and coverage?

• EQ5: Does our program shrink heuristic yield helpful programs?

Throughout this chapter we show our test strategy is able to find ambiguities and lead
the WebDSL implementation to crash for valid input; that the generated test suites achieve
better grammar coverage than the existing test suite but do significantly worse for code
coverage; and that the program shrink heuristic proved to be a very useful tool in identifying
the faults causing the induced crashes. We continue as follows: in Section 5.1 we present
our research method, in which we explain the variants of the test strategy we evaluated,
describe the test subject, elaborate on what data we collected and finally show how it was
collected. We then proceed by presenting the results in Section 5.2 and interpret these in
Section 5.3. To conclude this chapter we present an analysis of the threats to the validity of
the performed evaluation in Section 5.4.

5.1 Research Method

In this section we present how we evaluated our test strategy to answer the questions posed
above.
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5.1.1 Test Strategy

To evaluate our test strategy we generated a test suite by applying the following variants:

Basic this variant uses the basic generation algorithm to guarantee syntactically correct
generation using only the language’s grammar as input,

Name this variant uses the name binding expansion to the basic version using both a NaBL
module and the grammar as input,

ErrorFix this variant uses the error fixing algorithm post generation and requires both a
set of error fixing rules and the grammar as input,

Name-ErrorFix this variant uses both the name binding expansion to the generation algo-
rithm and the post generation error fix algorithm and requires the NaBL module, a set
of error fixing rules and the grammar as input.

The differences between these variants allow us to analyze the different effects of the dif-
ferent expansions and aid us in better exploring the domain of possible inputs for compiler
testing. Moreover, any variant using the name binding expansion will be used twice, once
always adhering to the definitions in the NaBL module and once adhering to these defi-
nitions in only 75% of the times. This is done to partially cover the name binding rules,
potentially exploring other input-output scenarios of the compiler.

Finally we execute the program shrinking heuristic for a collection of failing test cases
to evaluate the shrinking power of our approach.

5.1.2 Subjects

To evaluate our approach we ran the mentioned variants of the test strategy to generate test
suites for WebDSL [38]. WebDSL is a DSL targeting the domain of developing dynamic
web applications with a rich data model. WebDSL consists of several sub-languages for data
models, web pages, business logic, access control and work-flow. The WebDSL compiler
ensures consistency across its sub-languages [9]. We generated test suites for two revisions
of the WebDSL compiler, revisions r5579 and r5739 found in WebDSL’s SVN repository 1.

WebDSL’s compiler currently consists of approximately 25.000 lines of Stratego code
and 15.000 lines of Java code and has been developed on since 2007 with stable Year-
Over-Year commits. Figure 5.1 shows the number of sorts, productions and modules that
compose the grammars for both revisions of WebDSL used during evaluation. WebDSL’s
development team is mainly composed of researchers in the Software Engineering Research
group at Delft University of Technology. Masters students often contribute with smaller
projects. The combined efforts of both reach an average of approximately 2.0 fte per year.

The NaBL module used for the name correct generation algorithm is based on an early
version of NaBL which is a prototype and thus incomplete.

1WebDSL’s SVN repository: https://svn.strategoxt.org/repos/WebDSL.
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Non-terminal Terminal Context-free
Revision Sorts Sorts Productions Modules

r5579 250 54 872 22
r5739 251 54 839 19

Figure 5.1: Grammar attributes for the two tested revisions of WebDSL.

5.1.3 Data collection

We apply the different variants of the test strategy to generate test suites for both revisions
using a set of control mechanism settings. For each generated test suite we analyze how
many and what failures were found, the achieved coverage and the average size of the
generated programs.

Our partial oracle can identify three different types of failures: ambiguities, other parse
errors and compiler crashes(see Section 3.3 and Figure 3.20). The first occurs when the
parser can not distinguish between possible interpretations of the concrete syntax, thus
yielding multiple possible ASTs. This is caused due to malformations in the grammar in
the form of missing or erroneous disambiguation rules. The partial oracle stores both the
concrete syntax and ASTs for such ambiguous programs. Other parse errors occur due to
either erroneous generation or discrepancies between pretty-print table and syntax defini-
tion. The partial oracle stores the concrete syntax, parse error and generated AST for such
programs. Failures originating from the parsing phase are counter-productive to finding
failures originating from the analyzer and generator, since compilation never reach these
components.

The last possible type of failure is a compiler crash. These occur due to unexpected
terminations of the compilation process due to faulty compiler implementations. The partial
oracle stores the concrete syntax, AST, error message, stack trace and console output for
such programs. Since the probability of our generator yielding programs that reach the
generation phase of the compiler is too low, all compiler crashes occur during the static
analysis phase. We manually analyze each crash to determine in which stage of the analysis
phase it takes place. WebDSL’s static analysis phase has three stages:

• the global declare stage, where all global names are resolved and their declaration
information saved,

• the local rename stage, where all local names are renamed uniquely and their decla-
ration information saved,

• the type- and constraint-checking stage, where all type- and constraint-semantics are
checked.

We measure how each generated test case covers both the input domain and compiler
implementation, through constructor coverage and Stratego strategy coverage respectively.
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Constructor coverage measures the number of unique constructors that compose the pro-
gram used to execute the compiler with. Whereas the Stratego strategy coverage measures
how many of the Stratego strategies(and rules) are invoked and completed during the exe-
cution of the compiler. For more information on these metrics and how they are measured
see Section 4.2.

For comparison, we also measure the coverage achieved by the existing WebDSL test
suite. This test suite was manually constructed by the WebDSL development team and is
used to test each new revision. Within this test suite there is a set of test cases that test the
detection of static semantic errors. These tests never reach the generation phase and we shall
refer to this set as the WebDSL Fail Tests. To fairly compare the Stratego strategy coverage
of the generated test suites to the manually constructed WebDSL test suite we decided to
measure the results achieved by this set of failing tests in isolation. These tests never reach
the generation phase and are thus a better benchmark for analysis phase coverage.

5.1.4 Analysis Procedure

To answer evaluation question EQ1 (types of failures), we analyze the failures found during
generation and determine at which stage of the partial oracle they are detected. There are
three types of failures our partial oracle can detect: ambiguities, parse errors and compiler
crashes. Additionally, we examine the stack traces in the detected compiler crashing test
cases and WebDSL code to determine the stage of analysis the crash-failure occurs in and
to try and trace the fault causing the encountered failure.

To answer evaluation question EQ2 (occurrence of failures), we count the number of
occurrences of each type of equivalent failure for the generated test suites.

To answer evaluation question EQ3 (coverage) we measure both constructor and Strat-
ego strategy coverage for the generated test suites, for WebDSL’s existing manually con-
structed test suite and for WebDSL Fail Tests, a selection of test cases from the manually
constructed test suite that test the static semantic error reporting. This data is then com-
pared and explained using insight and knowledge of the WebDSL language and compiler.
Also, we analyze the coverage achieved by the generated test suites to determine whether
new parts of the grammar or compiler implementation are covered by these and not by the
manually constructed test suite.

To answer evaluation question EQ4 (expansions) we compare the failure finding rate
and coverage achieved for the different variants of the test strategy to evaluate their added
value.

To answer evaluation question EQ5 (shrinking power), we compare the size of some of
the failure inducing generated programs to their corresponding shrunken versions. Further-
more, we use the feedback provided by the WebDSL language developers and time-to-fix
after reporting the found failures on WebDSL’s issue tracker, YellowGrass1.

5.2 Results

In this section we present the gathered data from the test suite generation for both WebDSL
revisions r5579 and r5739. We reported all encountered crash-failures to the WebDSL lan-
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Parameter r5579 r5739-1 r5739-2

Number of Test Cases 500 500 500
Max Node Count 3000 5000 250000
Min Iteration 0 0 200
Max Iteration 50 50 1500
Max Recursion 15 30 400
Terminal Pool Size 50 50 100

Figure 5.2: The parameters used in the generation of the test suites for the two tested revi-
sions.

guage developers using the project’s issue tracker2. These issues can be found under a
special category tagged as randomtesting. In Appendix A we included a small report for
every specific failure found during the testing of the two revisions together with its corre-
sponding shrunk program. Figure 5.2 shows the parameters used for test suite generation
for both WebDSL revisions.

5.2.1 WebDSL r5579

In this subsection we present the data gathered from the generated test suites for the previ-
ously mentioned variants and for the existing test suite.

We counted the occurrences of each type of failure in the test suites generated with each
of the test strategy variants, the results are shown in Figure 5.3. Each test suite consists of
500 generated test cases. The detected failures originate from either ambiguous programs,
programs containing other parse errors or programs that caused the compiler to crash. We
also show the number of fixes applied by the error fixing algorithm and the average size of
the generated programs in the test suite.

We detected a total of 363 compiler crashes crashes throughout the generation of these
test suites. We identified eight unique crashes and present them here with a clarification.
This clarification either explains the fault causing the crash or merely presents a shallow
description of the failure if the fault has not yet been traced. These clarifications or descrip-
tions are fruit of interaction with WebDSL developers and our own insight into WebDSL.

F1: Type inference. During the type-checking phase a strategy is used to infer the type of
the initialization part of a variable declaration with no defined type. The fault was caused by
the code responsible for handling the type inference of untyped expressions such as empty
lists and sets. The code responsible for assigning these expressions the type“unknown” was
executed too late causing the compiler to crash for not being able to infer the type of such
expressions. This failure had been reported earlier in issue #563 and we revived the issue
by reporting a shrunken generated application causing the same failure. The fault was fixed

2YellowGrass’ Issue Tracker page for WebDSL project: http://yellowgrass.org/project/WebDSL
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Parse Average
Ambiguous Errors Crashes Fixes Size(kB)

Basic 55 0 42 NA 2,63
Name 299 21 77 NA 91,43
75Name 291 13 75 NA 82,86
ErrorFix 58 1 43 2759 2,45
Name-ErrorFix 311 35 61 777 99,17
75Name-ErrorFix 297 16 65 929 76,15

Figure 5.3: For WebDSL r5579: Number of occurrences of failing test cases in the generated
test suites for the different test strategy variants. Each test suite contains 500 test cases.
The failing test cases are either Ambiguous, exert other Parse Errors or cause compiler
Crashes. We also show the number of Fixes applied and the Average Size of the generated
programs.

in revision r5731 by moving the code responsible for assigning untyped expressions the
“unknown” type inside the strategy responsible for inferring types.

F2: Type pretty-printing during error reporting. During the reporting of error mes-
sages a strategy is used to pretty-print types. The expected input for this strategy is a type
sort constructor. In this case the failure is caused by unexpectedly using a plain string as
input for this pretty-print strategy. The failure originates from the execution of code for a
constraint check for variable declarations in the constraint check stage of the analysis phase.
This failure was reported in issue #463.

F3: Detecting duplicate declarations. During the constraint-check stage a strategy is
used to check whether there are no duplicate definitions. The strategy fails because it tries
to access a declaration that does not exist. This failure was reported in issue #674.

F4: Local renaming of pre-fetched variables. During the rename stage a strategy is
used to rename pre-fetched variables. The failing behavior was caused by faulty code that
contained a type check that was too strong. Whenever the pre-fetched variable did not have
a type this type check would lead to the compiler exiting unexpectedly. Instead this check
was softened, leading to an error report. This failure was reported in issue #729 and fixed
in revision r5732.

F5: Template redefinition with undefined arguments. During the constraint check stage
the signatures of local template redefinitions are compared to the original template defini-
tions. The failure occurs whenever the arguments in this redefinition are entities that have
no declaration. This failure was reported in issue #677.
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F1 F2 F3 F4 F5 F6 F7 F8

Basic 17 14 5 3 1 1 1 0
Name 29 28 2 10 2 1 3 1
75Name 43 22 1 5 1 0 3 0
ErrorFix 22 7 6 1 2 0 0 0
Name-ErrorFix 33 16 3∗ 6 0 0 3 0
75Name-ErrorFix 40 16 3 2 3 0 1 0

Fixed 3 7 7 3 7 3 3 7

Figure 5.4: For WebDSL r5579: Number of occurrences of failures and whether they were
fixed before revision r5739.∗: these three failures were found after the application of error
fixes.

F6: Checking function extensions. During the type- and constraint-checking stages a
strategy is used to verify that a function extension extends an existing function or report an
error otherwise. The failure was being caused whenever the language construct for function
extension was nested in itself, e.g. extend extend function a( ) .... Such a construct
was allowed syntactically, but bared no meaning semantically and the strategy did not expect
such input. This was reported in issue #731 and fixed in revision r5734 by disallowing the
recursive use of the extend keyword for function extension.

F7: Cyclic definitions. During the declaration and constraint-check stages various strate-
gies were used to get entity and property declarations. However, these were unable to deal
with cyclic definitions of either entities or properties and would enter an infinite loop lead-
ing to memory or stack overflows. This was reported in issue #733 and fixed in revision
r5735 by including checks for cyclic definitions.

F8: Type resolution of partial function call reference. During the renaming of actions
in the rename stage, type resolution occurs and types are stored for later use during type-
checking. This failure originates from a strategy that attempts to resolve the type of a partial
function call reference. This was reported in issue #739.

We present the number of occurrences of these failing strategies in Figure 5.4. The most
occurring failure in the generated test suites is failure F1 followed by failure F2. Whereas
failure F8 occures the less often.

In Figure 5.5 we show the coverage achieved by our generated test suite and by the ex-
isting test suite for WebDSL. The maximum constructor coverage is 625 and the maximum
code coverage is 3887. Furthermore, we show both the number of strategies that have been
at least partially covered and the number of those that have been fully covered, any fully
covered strategy is naturally included in the partially covered count.
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Constructor Stratego Strategy Coverage

Test Suite Coverage Partially Fully

# of Total # of Total # of Total

WebDSL Test Suite 393 63% 3258 84% 2742 71%
WebDSL Fail Tests 174 28% 2440 63% 1821 47%
Basic 311 50% 1207 31% 757 19%
Name 470 75% 1221 31% 785 20%
75Name 474 76% 1216 31% 781 20%
ErrorFix 331 53% 1193 31% 749 19%
Name-ErrorFix 484 77% 1208 31% 776 20%
75Name-ErrorFix 473 76% 1208 31% 785 20%

Figure 5.5: For WebDSL r5579: Constructor and Stratego Strategy coverage achieved by
WebDSL’s existing manually constructed test suite, a selection of this test suite containing
only the test cases targetting static semantic error reporting and all generated test suites
using the variants of our test strategy.

All generated test suites combined achieve a constructor coverage of 520 and a code
coverage with 828 fully and 1262 partially covered strategies respectively corresponding to
21% and 32% of the total code coverage. We also compared the coverage achieved by the
combined generated test suites and the existing test suite and learned that the generated test
suites covered 78 coverage points that the existing test suite did not.

5.2.2 WebDSL r5739

For the generation of the test suites for this revision we use the parameters shown in Fig-
ure 5.2. The first set of parameters, r5739-1, are used for the generation of the Simple,
Name and ErrorFix variants, whereas the second r5739-2 are used for the generation of the
larger test suites. We noticed the earlier used parameters were too restrictive to generate
large programs for the basic variant. The name variants do not suffer as much due to the
terms injected to adhere to name binding properties. These terms are injected regardless of
whether the maximum iteration or tree size has been reached. We generated test suites with
these parameters for the Simple and Name-ErrorFix variants.

In this revision of WebDSL the faults causing the failures F1, F4, F6 and F7 were
fixed. Also, we added some disambiguation rules to the WebDSL’s grammar to diminish
the frequency of ambiguous generation. Finally, we added a parsing timeout to deal with
the excessive parser times due to large amounts of ambiguities. This is categorized as a
parse error.

The types and number of occurrences of the failures encountered in the generated test
suites are shown in Figures 5.7 and 5.8. Between these failing strategies we identified three
new crash-failures and we describe them below.
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Shrunken

Failure Original Size (kB) Size (bytes) LOC

F1 5,8 123 7
F2 5,9 176 8
F3 5,3 81 5
F4 7,4 172 10
F5 6,2 78 3
F6 2,4 72 3
F7 for strategy type-of-property 34,1 78 7
F7 for strategy extends-check 7,2 159 13
F7 for strategy is-property 3,2 185 10

Figure 5.6: For WebDSL r5579: The original and shrunken file sizes of failure inducing
programs. The LOC column shows the number of Lines Of Code in the shrunken program
files for an indication of the size of the shrunken programs. These have been manually
formatted since pretty-printing is not always pretty and the program was sometimes over-
indented.

Parse Average
Ambiguous Errors Crashes Fixes Size(kB)

Basic 39 0 18 NA 3,09
Basic Large 4 29 58 NA 101,97
ErrorFix 49∗ 1 41 3287 2,63
Name 75 7 297 NA 88,65
75Name 66 8 336 NA 120,50
Name-ErrorFix Large 66 10 352∗ 192 148,74

Figure 5.7: For WebDSL r5739: Number of occurrences of failing test cases in the generated
test suites for the different test strategy variants. Each test suite contains 500 test cases.
The failing test cases are either Ambiguous, exert other Parse Errors or cause compiler
Crashes. We also show the number of Fixes applied and the Average Size of a generated
program .∗: one was found after applying an error fix.
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F3 F4 F8 F9 F10 F11

Basic 2 1 0 15 0 0
Basic Large 8 1 0 43 0 6
ErrorFix 7 3 0 30 1 0
Name 0 1 1 284 11 0
75Name 4 0 0 317 15 0
Name-ErrorFix Large 5∗ 1 0 334 12 0

Figure 5.8: For WebDSL r5739: Number of occurrences of failing strategies for the different
generated test suites. ∗: a failure occured after the application of an error fix.

F9: Type pretty-printing during error reporting. This is a similar failure to F1, how-
ever, the failure now originates from a strategy trying to pretty-print types during the dec-
laration of functions in the declaration stage of analysis. This failure was reported in issue
#737.

F10: Renaming of access control rules. During the renaming of access control rules the
main rename strategy fails. This was reported in issue #736.

F11: Cyclic definitions. This is the same failure as failure F7. The strategy causing this
failure was forgotten when the fix for cyclic definitions was applied. The failure was re-
ported again in issue #740.

In Figure 5.9 we show the coverage achieved for the existing and generated test suites
for revision r5739. The maximum constructor coverage is 584 and the maximum Stratego
strategy coverage is 3874. Partially covered strategies are strategies that are at least entered
and the fully covered strategies are completely executed.

All generated test suites covered 468 constructors, 1244 strategies of which 811 were
fully covered. This amounts to 80% constructor coverage, 32% partial and 22% full Stratego
strategy coverage. In comparison to the existing WebDSL test suite, the generated test suites
covered 65 new coverage points.

5.3 Interpretation

We used the gathered results to answer our evaluation questions.

EQ1: What failures do our generated test cases unveil?

The generated test suites for both revisions were able to identify ambiguities and eleven
unique compiler crashes spread through all stages of WebDSL’s static analysis phase. The
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Constructor Stratego Strategy Coverage

Test Suite Coverage Partially Fully

# of Total # of Total # of Total

WebDSL Test Suite 408 70% 3373 87% 2876 74%
WebDSL Fail Tests 191 33% 2478 64% 1873 48%
Basic 307 53% 1201 31% 762 20%
Basic Large 360 62% 1180 30% 749 19%
ErrorFix 330 57% 1197 31% 784 20%
Name 436 75% 1224 32% 797 21%
75Name 434 74% 1204 32% 824 21%
Name-ErrorFix Large 431 74% 1210 31% 793 20%

Figure 5.9: For WebDSL r5739: Constructor and strategy coverage achieved by the follow-
ing WebDSL test suites: the existing manually constructed test suite, a selection of all error
reporting test cases in the manually constructed test suite and the test suites generated using
the mentiond variants.

generated programs never lead the compiler to reach the generation phase of compilation
though.

EQ2: How frequently can our test strategy generate failure inducing programs?

As we can observe in Figure 5.3, most failures detected in the first revision are ambiguities.
After we implemented several extra disambiguation rules in revision r5739 the generated
test suites contained severely less ambiguous programs, see Figure 5.7. More than 83%
of generated programs reached the analysis phase and name variants crashed the compiler
with a probability between 59% and 70%. Among these, the strategy responsible for pretty-
printing types in error messages was the origin of more than 80% of the crashes.

EQ3: How does the generated test suite cover the grammar and implementation of
the language under test?

The obtained results show that our program generation achieves at least 50% constructor
coverage. In addition, the name variant reaches a constructor coverage higher than 75%
which is higher than the constructor coverage achieved by the existing WebDSL test suite.
The basic generated test suite for revision r5739 achieves a constructor coverage of 53%,
whereas the larger basic test suite achieves a constructor coverage of 62%. We argue that
this rise in constructor coverage can be credited to larger program generation. Random
generation of larger programs leads to an higher probability of including any specific con-
structor and thus consequentially of covering more constructors in the same number of
generated test cases. The name variant, with an average program size close to that of the
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larger basic test suite, achieved a constructor coverage of 75%. We argue that the name
variant achieves an higher percentage than the basic generation due to the injection of def-
initions. By forcing the generation of these terms we raise the probability of generating
productions involved in the generation of these terms. Consequentially, the generation of
these productions enable the generation to easier reach parts of the grammar that were not
reached by the basic generation. We conclude from these findings that the basic generation
algorithm has trouble reaching certain parts of the grammar due to the uniform probability
of production selection.

The strategy coverage achieved by our generated test suites is significantly lower than
the coverage of the existing manually constructed test suite. Even when compared to the
coverage achieved by the set of test cases that test error reporting(WebDSL Fail Tests), the
generated test suites achieve only half of the existing test suite’s strategy coverage. We
argue that this low coverage can be explained in two ways. First, the current program
generation is not able to generate name correct programs, since the name variant currently
does not support all name binding properties and the name binding declarations used as
input are incomplete. This causes the generated programs to never lead to the execution of
the generation phase nor do they reach all strategies in the analysis phase. Secondly, only
84% of the programs generated with the name variant pass the parsing phase and 74% of
those lead to crashes. A crash causes the compilation to be terminated prematurely and this
prevents the execution of more strategies and thus contributes to the low strategy coverage
achieved.

EQ4: Do the expansions enabling partial static semantic generation improve failure
finding likelihood and coverage?

The results we obtained from the generation of test cases for the first revision were not suf-
ficient to properly compare the failure finding likelihood of the different variants. The high
rate of ambiguous generation and the small size of the programs generated with the basic
generation algorithm prevent this comparison. To lower the rate of ambiguous generation
we expanded WebDSL’s grammar with new disambiguation rules before testing revision
r5739. Additionally, we generated a test suite using the basic generation algorithm but with
higher control mechanism limits to enable the generation of programs with sizes equivalent
to those generated by the name variant. This enabled us to fairly compare the basic gener-
ation to the name variant and conclude that the name variant has an higher failure finding
rate than the basic generation algorithm. The generated test suites for revision r5739 have a
13% and 71% crash inducing rates for the basic large and name variants respectively. This
shows that for WebDSL, the generation of more name correct programs leads to an higher
probability of hitting faulty code during compilation.

For both revisions we did not observe a difference in failure finding likelihood between
the full obedient name variants and the 75% ones. We reason that this is due to the fact
that the full obedient name variant did not generate fully name correct programs due to its
prototypical nature and incomplete name declarations.

We were unable to provide sufficient evidence to justify the use of the Error Fix ex-
pansion algorithm. Throughout both revisions it was only able to find five failures after
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applying a fix. Moreover, the error fixes were not enough to yield statically semantically
correct programs and reach the generation phase of compilation.

EQ5: Does our program shrink heuristic yield helpful programs?

We show that the program heuristic is able to greatly reduce the size of failure inducing
programs in Figure 5.6. Additionally, the positive feedback we received from the language
developers after posting the shrunk programs on the issue tracker for WebDSL confirm
that these were indeed much easier to understand than their original versions. The shrunk
programs facilitated the tracing of the faults causing the encountered failures. Four of the
first six reported failures were fixed within two days. One of which, failure F1, had been
reported earlier by an user and had remained untreated for a year. The renewed interest in
the failure and the provided shrunk program proved crucial in discovering the fault causing
this failure and in fixing it.

5.4 Threats To Validity

We present our perceived threats to the validity of our results and evaluation. These are
presented per type of threat and discussed.

External Validity

Threats to external validity threat the generalizability of the results. A major threat to the
external validity is that we only applied our test strategy to WebDSL, diminishing our abil-
ity to show its generic nature. Though due to WebDSL’s composition, being made up of
three main types of sub-languages: an action definition language, an UI template definition
language and a data model language; we argue that applying our test strategy to WebDSL
shows it is capable of generating test cases for different types of languages. Moreover,
our test strategy uses no language bound heuristic and the control parameters offer the lan-
guage developer a comprehensible influence on generation to deal with differently struc-
tured grammars. Different efficiency might be experienced with different languages de-
pending on their structure, maturity and size.

Another threat to the external validity is the choice of generation parameters. These
are chosen such that the generator is ensured termination without running out of memory
and they influence the structure of the generated trees. The parameters are sufficiently
transparent in how they influence generation and can be adequately chosen by language
developers to fit their language. Our experiences show that the parameters chosen for our
evaluation give the generator sufficient freedom to yield large programs. Consequentially,
language developers can adequately choose these parameters to fit the language under test,
for example functional languages tend to be more recursive in nature and thus an higher
recursive limit would be advised.
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Internal Validity

Threats to internal validity are factors that allow for alternative explanations or interpreta-
tions of the result. Detected parse errors threaten the internal validity, as we ensured correct
AST generation. The origin of these parse errors has been traced back to discrepancies be-
tween the language’s grammar and pretty-print entries, parser timeouts and OutOfMemory
exceptions caused by the disambiguator. The first should be fixed by the language devel-
opers as we believe a malformed pretty-print table may cause harm to IDE features such as
pretty-printed error messages or refactoring and is thus correctly categorized as a failure.
The second is a smell of a malformed grammar, since ambiguities should not be present
altogether and the fact that the parser times out trying to solve them means that the pro-
gram contained an alarming amount of ambiguities. This should be solved by correcting
the grammar to prevent ambiguities. Another threat to internal validity is the random nature
of our approach and the size of the generated test suites in number of test cases. The combi-
nation of these two raise questions as to whether observed behavior can indeed be explained
by assumed logical explanations or is simply a random coincidence. Though, we argue that
the chosen number of test cases per test suite is sufficiently large and the observed behavior
was explained logically.

Construct Validity

Threats to construct validity threat the suitability of the used metrics for the evaluation goal.
A major threat to the construct validity of our results is the way the compiler pipeline works
and how code coverage is measured. Failure inducing programs either never execute the
compiler, in case of ambiguities and parse errors, or terminate execution early, in case of
crashes. Hence, the code covered by failing test cases will never be higher than non-failing
test cases. This makes the for an unfair comparison between our generated test suites with a
fail rate higher than 60% and the the never failing existing test suite. After fixing the faults
causing the generated programs to fail, the generated test suites should achieve an higher
code coverage than they do now.
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Related Work

In this chapter we relate our work to research in the field of automated compiler testing.
We start with our assessment of our test strategy according to Boujarwah and Saleh [4]
in Section 6.1. Then we relate our work to stochastic test case generation in Section 6.2
and combinatorial-coverage test case generation in Section 6.3. Stochastic test case gener-
ation [29, 40, 28, 15, 33, 7], involves generating programs using a random approach, such
generation is biased towards fewer but larger programs. Combinatorial-coverage test case
generation [25, 12, 34, 14] focus on generating sets of programs that completely cover a
domain or a combination of domains of coverage. This method is biased towards genera-
tion of larger sets with smaller programs. Our approach is a generic stochastic generation
method biased towards generation of larger programs using only language artifacts. In Sec-
tion 6.4 we present work related to the test-oracle problem for compiler testing, that is how
to automatically evaluate the result of the compiler execution to determine pass or no pass.
In Section 6.5 we present approaches to reduce failure inducing programs whilst preserving
failure inducing behavior.

6.1 Classification According to Boujarwah and Saleh

Boujarwah and Saleh [4] identified different types of testing methods, techniques for gener-
ating test data and developed assessment criteria. We assessed our test strategy using their
criteria and the results are shown below

Type of grammar In theory all grammars containing definitions of terminals, non-terminals
and productions can be used. The implementation of our test strategy targeting
Spoofax uses SDF grammars for program generation. Additional declarative infor-
mation of static semantic rules and quick fixes can be used to improve semantic cov-
erage. The current implementation supports NaBL and a prototype DSL for error fix
definitions.

Data definition Not possible.
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Complete Syntax Coverage Not possible since generation yields only syntax correct pro-
grams, when provided with a correct grammar. The test strategy achieves high gram-
mar coverage.

Complete Semantic Coverage In theory, provided sufficient static semantic declarations
high semantic coverage can be achieved. Though complete coverage is unlikely due
to the random nature of the generation.

Extent of automation Fully automated.

Application: Functional vs Procedural Any type of language is supported.

Implementation/Efficiency The test strategy is implementable and was implemented tar-
geting compilers developed with Spoofax. Its application to WebDSL lead to the
discovery of eleven crash inducing test cases over two different revisions. The test
strategy proved to be efficient in finding failure inducing test cases for WebDSL.

Test Case Correctness Partially guaranteed. The generated test cases do not contain the
traditional expected output. Instead a partial oracle is used to determine whether
the generated program causes the compilation to end prematurely classifying this as
a failure and if not the test case is said to pass. Though further correctness is not
checked.

Concurrency No special support to test concurrency properties.

6.2 Stochastic Test Case Generation

There are various stochastic test case generation approaches: some use controlled random
generation [20], others use language specific heuristics to guide generation [40] and others
use attribute grammars or other forms of static semantic declarations [11, 33, 10].

The “Syntax machine” proposed by Hanford [11] is able to generate syntactically cor-
rect programs in a pseudo-random manner. The syntax machine reads grammars in a BNF
format and stores those in an internal format to be used by the production algorithm. This al-
gorithm generates pseudo-random input following the grammar of the language by rewriting
non-terminals. This generation algorithm is given a recursion limit to ensure termination.
The grammar used during generation is dynamic, this means that it can be changed through-
out generation. This is required to handle context-sensitive syntax, such as name binding,
together with the use of syntax-generators. These are appended to production rules to rep-
resent context-sensitive rules such as the declaration of a variable. A syntax-generator is
activated whenever the production is chosen for generation. A typical syntax-generator for
a production defining a variable declaration would expand the dynamic grammar with a
production to use the defined variable. To deal with use-before-declarations Hanford uses a
delay qualification. The writing of terms with a delay qualification is delayed until the terms
at its right have been written formalizing the declaration it points to. Such declarations can
be used to represent return types of functions. This generation method will fail if the gen-
erator can not find a production to choose from. In such a case the generator backtracks

70



Stochastic Test Case Generation

to the last production choice and chooses another. Requiring the declaration of variables
before generating productions with variable referrals most probably leads to generation of
variable-poor programs.

Guilmette presented TGGS [10], a commercial generator test case generator system.
TGGS Hanford’s backtracking generation algorithm with their own language for defining
syntax and static semantics instead of using attribute grammars. This language should make
the definition of these static semantics easier than Hanford’s syntax generators.

Klein and Findler [20] present a randomized property-based tester for PLT Redex, in-
spired by QuickCheck [15]. PLT Redex is a DSL for formalizing operational semantics.
This property-based tester allows testers to write predicates to represent properties or facts
of their language implemented in PLT Redex. The generator then generates programs in
an attempt to falsify these predicates. Their generator uses the defined syntax as input and
gradually generates larger programs by relaxing limits on the depth of ASTs, the maximum
recursive use of productions, the maximum cardinality of iterations, the character set from
which string terminals are generated and the complexity of generated numbers. Generation
will eventually bias its production choices by randomly choosing a preferred production
for each non-terminal. This gradual increase of program size generation approach does not
require predefined control parameters. We propose an approach like this one as future work
in Section 7.2.

The generation method proposed by Palka et al. [33] is a variation of Hanford’s. First a
list of applicable generation rules is generated and one is randomly chosen. If the generation
fails, due to malformed rules, then the generator backtracks and another rule is used. To
improve Hanford’s naı̈ve form of backtracking they introduced special rules to diminish the
odds of backtracking by ”guessing” types of sub-trees that will be generated.

Yang et al. [40] used stochastic generation in their automated testing tool CSmith.
Csmith is a random generator for programs belonging to a subset of C based on Randprog 1.
The two main design goals of Csmith are for all generated programs to be well formed and
have a single meaning according to the C standard and to maximize expressiveness while
still obeying the first goal. Their generator embeds C specific heuristics and enforces them
during random generation. Their generated programs will for instance always include a ran-
dom number of declarations at the beginning of the generated C program which are saved
and used during the generation of the rest of the program.

Our test strategy uses an approach similar to the approach used by Hanford [11], Palka
et al. [33] and Guilmette [10]. Though we decided to use an injection algorithm to provide
name correct program generation, instead of Hanford’s backtracking algorithm. Whenever
the generator attempts to write a term that requires a declaration for which none is available,
the algorithm writes this term as if such a declaration was available and queues the injec-
tion of a definition. After the generation of the program the queued definitions are created
and injected accordingly. We argue that our approach will yield programs with more non-
terminals involved in static semantics, since our generator does not need to wait for these
syntax generators to be triggered and can instead inject the terms that would trigger these

1A random program generator by B. Turner.https://sites.google.com/site/brturn2/
randomcprogramgenerator
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into the tree. E.g. a variable usage needs not to wait for its definition to have been generated
and can instead be used throughout generation pending the injection of its definition. Like
Yang et al. [40] in CSmith, we bias our generator to large program generation using control
mechanisms to limit generation. The main difference is that our test strategy is generic and
uses no language bound heuristics. This makes it applicable to any language using its gram-
mar as input. Klein and Findler’s [20] gradual increase of program size generation could
improve our coverage of the input domain in favor of finding different failures.

Yang et al. also discuss the relevance of failures encountered in randomly generated
code. Some of the failures occurred originate from a random structure which the odds of
actually ever being written by a human being or generated by a translation or optimization
are so remote that fixing the fault behind it would actually be considered counter-productive.
Even more so if taken into account that the fixing of a fault usually introduces other faults.
Their results however indicate that many previously unknown failures found are indeed
useful and lead them to, among others, 25 faults ranked the highest priority for C compilers.
We are of the opinion that a detected failure is always welcome, regardless of whether the
fault behind it should be fixed. Knowledge of the existence of a fault in an implementation
should always lead to a better quality assurance process.

6.3 Combinatorial-Coverage Test Case Generation

Combinatorial-coverage test case generation aims at exhaustively achieving complete cover-
age of a domain of coverage criteria through generation of many small test cases. Combinatorial-
coverage approaches deal with the infinite domain of combinatorial-coverage by using
approximations or abstractions of the otherwise infinite domain of input-output scenar-
ios [34, 12] or by using control mechanisms to prune this domain [25, 14].

Purdom [34] presented a sentence generator to test parsers. This generator was capable
of generating a small set of short sentences in a short time and for which every production
in the grammar had been used at least once. This method may work well for parser test-
ing, though as Lämmel and Harm point out [24] grammar branch coverage is too weak to
sufficiently test the analysis and generation phases of compilation. Harm and Lämmel [12]
present a two-dimensional approximation combinatorial approach. They propose approx-
imations of coverage for both syntax and semantics and join these. This joined approx-
imation of coverage is then used by their generation algorithm to construct a test suite.
The algorithm uses a best-first search aiming to find minimal cases that increase the suite’s
coverage in the two-dimensional domain. The semantic domain is represented by attribute
grammars which are syntax definitions with annotated static semantic declarations. This
approach requires static semantic declarations to prune the domain of possible inputs. If
declarations of the full static semantics of the language is available this approach can lead
to generation of the domain required to exhaustively test a compiler. Though lack of such
a complete set of static semantics may lead to the generation of test cases that never test
any non-declared static semantic. Furthermore, the absence of any declaration of static se-
mantics will yield a search domain usually too large to exhaustively generate for non-trivial
languages.
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Lämmel and Schulte [25] extend Purdom’s [34] approach with configurable control
mechanisms to prune the domain of combinatorial-coverage completeness. These mecha-
nisms control the depth of ASTs, the maximum recursive depth of a term, the balance of
ASTs such that their generation is more uniform, the generation of terms which depend
on each other for static semantic meaning and finally a mechanism that provides control
in the form of correct static semantic generation reminiscent of generation using attribute
grammars [11]. This approach was implemented in the C#-based test-case generator Geno.
Lämmel and Schulte show that their approach scales well for their baseline grammar which
has 21 non-terminals and 34 productions. WebDSL poses a combinatorial challenge with
its 251 non-terminals and 839 productions.

Hoffman et al. [14] proposed a similar approach though they define control mechanisms
per production or sort using an attribute language.For complex languages this requires a
large set of control parameters, though at the same time a fine granularity of influence in
generation.

6.4 Test-oracle problem

The test-oracle problem is the question of how to evaluate the execution of a test case
to determine pass or no pass. To solve this problem some apply differential testing [29,
40, 25, 6, 14, 10, 36], this relies on implementations of the same specifications and the
principle that these should yield equivalent outputs when given the same input. In the
case of compilers, this requires multiple language implementations to be available for the
language being tested.

Even though there are a few well known DSLs with multiple implementations such as
SQL, CSS and HTML, our target DSLs will rarely have more than one compiler. This
prohibits the use of differential testing as a viable test validation approach.

Another option is to use an oracle, an extra computational model to verify the outcome
of each test. This approach requires either the construction, derivation or generation of an
extra model.

Daniel et al. [6] use oracles for Java to check certain invariants before applying differen-
tial testing. These oracles vary in complexity from simple oracles, that check that compilers
do not crash, to more complicated oracles, that take the language’s semantics into consid-
eration. These simple oracles are very reminiscent of Weyuker’s partial oracles [39]. A
partial oracle is an oracle that knows whether an outcome is incorrect without knowing the
correct answer, i.e. the results of a partial oracle may not always detect a fault, but if a
fault is detected it is definitely present. QuickCheck uses partial oracles in the form of the
defined properties for the function being tested. One or more properties can be defined, but
they rarely cover the whole behavior of the function under test. Just and Schweiggert [16]
tested the applicability of partial oracles in integrated environments, what these are is not
relevant, however, they concluded that even though partial oracles were not complete they
did prove suitable for automated testing with satisfying results for both Integration and Unit
testing. Concluding, it can be useful to know that a test case induces a failure, without
exactly knowing what its correct behavior should have been.
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We use a partial oracle to verify the generic expected behavior of compilers: given
a valid input, a compiler should be able to parse, perform analysis and if no errors are
found transform or interpret the source code. We classify a valid input to a compiler as a
syntactically correct program, i.e. a parsable program. To verify this behavior we require a
flawless execution of the compiler resulting in either the reporting of static semantic errors
or a compilable, interpretable or runnable output. Any other behavior is treated as a failure.
Our oracle is however unable to detect wrong error reports or erroneous generated code.

Oracles come in many forms and formal proofs are sometimes used to derive such a
trusted source of expected behavior. Formal proofs can be used to implement a verified
compiler [26], that can be used to produce the correct answer for an input, or they can be
used to derive formal models [36, 20, 19], that predict expected behavior.

Leroy’s [26] CompCert is a verified compiler for a subset of the C language that trans-
lates this subset into PowerPC instructions. Such a verified compiler can be used as a trusted
source of output generation. Sirer and Bershad [36] derive certificates from formal proofs
over a grammar to validate certain language properties. They also provide a language to
define grammar annotations from which more certificates are generated.

As mentioned earlier Klein and Findler [20] present a randomized property-based tester
for PLT Redex, inspired by QuickCheck [15]. QuickCheck is Hughes’ property-based test
generator. QuickCheck provides the tester with a language in which to define a property to
test. This property defines input classes and output invariants. QuickCheck then randomly
generates test data based on the input’s definition, invokes the method and checks whether
the output adheres to the invariants. PLT Redex infers these inputs from the language’s oper-
ational semantics and uses tester defined properties to check invariants. These properties are
defined through predicates which too can use the language’s operational semantics. Klein
et al. [19] used this randomized property-tester to validate operational semantics described
in nine research papers. This resulted in faults being found in every of the nine papers.

Additional language artifacts describing semantic properties could be used to enable our
oracle to validate test cases according to more properties or invariants. We discuss this in
our future work in Section 7.2.

6.5 Program Size Reduction

Reducing the size of failure inducing programs is crucial to facilitate the tracing of the fault
causing it, especially when the generated programs causing the failure are very large.

Hildebrand and Zeller [13] first introduced the delta debugging algorithm ddmin, this
algorithm aims at shrinking the input of a crashing program whilst preserving this crashing
behavior. The algorithm reduces the input by partitioning it and running it excluding one
partition at a time. If this succeeds, the new and smaller failure inducing partition of the
input is again partitioned and reduction is again attempted. If it fails the granularity of the
partitioning is increased and these steps are repeated until the granularity can no longer
be increased. Misherghi et al. [32] introduced the Hierarchical Delta Debugging(HDD)
algorithm, a variation of the Hildebrand and Zellers ddmin for structured input. They showed
that for input that is highly structured taking advantage of this structure can greatly improve
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the efficiency of the algorithm. Regehr et al. [35] further built upon this idea and took
advantage of language specific semantics to improve test case reduction for C compilers.
For example, whenever an argument is removed from a function definition, its occurrences
in the function body is removed and all function calls are adapted. Our program shrinking
heuristic is based on the HDD algorithm and uses the language’s grammar to aid in the
reduction of the program. In contrast to Regehr et al.’s approach our heuristic is language
independent and we focus on two grammar specific shrinking opportunities: replacement of
sub-trees with minimally depthed trees with an equivalent non-terminal as root and list size
reduction.
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Chapter 7

Conclusions and Future Work

In Section 7.1 we summarize our answers to our research questions using the evaluation and
experiences gained during the development of the test strategy, testing and writing of this
thesis. We then present our recommendations for future work in Section 7.2

7.1 Conclusions

RQ1: How can syntactically correct programs be generated generically from language
specifications?

In Section 3.1 we present a generation algorithm that, given a grammar and a set of
control mechanism limits, generates syntactically correct programs. The results presented
in Chapter 5 show that our generation algorithm is able to generate syntactically correct
programs.

We also observed the generation of various ambiguous programs, which is counterpro-
ductive for our test strategy. Generation of ambiguous programs is credited to ambiguous
grammars, that is grammars with missing disambiguation rules. Other grammar deficiencies
and discrepancies between it and the available pretty-print table lead to other parse errors.
This highlights our test strategy’s dependency on a correct grammar.

Our assumption that a parser did not require further testing failed to account for faulty
grammars. We advise the use of specific ambiguity detection methods [2] and the fix of
ambiguities within the grammar prior to the application of our test strategy. Regarding
the issue of discrepancies between pretty-print tables and grammars, we propose a new
implementation of the generator to enable generation of PTs instead of ASTs. Since pretty-
printing a PT can be done by correctly concatenating all terminals, which yields concrete
syntax that is less pretty, but always correct.
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RQ2: How can big programs be generated generically whilst avoiding combinatorial
explosion?

To handle combinatorial explosion during program generation we put in place a set of
control mechanisms as described in Section 3.1. These mechanisms are iteration maximum,
recursion maximum and a maximum node count per tree. Whenever these mechanisms de-
tect a configurable limit has been reached they use pre-computed terminating paths to finish
the tree in a syntactically correct manner. These terminating paths are minimal depth trees
for a given root node, computed for every non-terminal sort in the grammar. In Chapter 5 we
show that the name binding adhering generation algorithm was able to generate programs
with an average size of approximately 80 kB and the basic syntactical correct generation
algorithm was able to generate programs with an average size of 100 kB when given higher
control mechanism parameters.

RQ3: How can static semantically correct programs be generated generically?

In Section 3.2 we present an adaption to the generation algorithm to adhere to name
binding rules described in a declarative model. Since such a model can be constructed
for every language this adaption remains generic. Unfortunately, for other static semantics
such as type or constraint checking no declarative models are yet available. Hence, we were
unable to research the feasibility of incorporating such restrictions into the generation al-
gorithm. In Chapter 5 we present results that show that expanding the syntactically correct
generation algorithm to adhere to name binding properties does raise the failure finding rate
for the WebDSL language. With this finding we conclude that the set of partial or full stat-
ically semantic correct programs is a valuable generation heuristic for automatic random
testing.

RQ4: How can test runs be evaluated to determine success or failure when testing
compilers in a generic automated manner?

We implemented a partial oracle to evaluate test runs, by checking that the compiler does
terminate compilation prematurely. Our oracle was able to detect 1465 compiler crashes
leading to the report of eleven unique compiler crashes, four of which were fixed within
two days. This oracle is however unable to detect faulty error reporting.

As mentioned in RQ1, generation yields a large amount of ambiguous programs, when
ambiguous grammars are provided. Our oracle detects these and reports them as ambiguous
programs before executing the compiler. The oracle does this for all parse errors. The
absence of false positives, that is compiler crashes that would never occur in production, is
guaranteed since we invoke the compiler with concrete syntax instead of directly using the
generated AST as input to the analysis phase.

The use of other test run evaluation methods such as differential testing or the use of
computational models is currently not supported. We argue that development of multiple
implementations for DSLs with such small development teams is unlikely. Computational
models can however be derived from declarative static semantic models, such as NaBL. We
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discuss the use of NaBL to provide extra oracle checks in Section 7.2.

RQ5: How can we assist the language engineer in relating failures found automatically
to faults in the System Under Test?

Larger generated programs have an higher likelihood of inducing failures than smaller
ones, however they also tend to be difficult to read due to their excessive size and random
nature. To aid language developers in the tracing of the fault causing the failure we provide
a program shrink heuristic that attempts to reduce the size of the generated program whilst
preserving the failure inducing behavior.

Language developer’s experience with our program shrinker was very positive and thus
far the program shrinker was able to reduce failure inducing programs to no more than 15
lines of code. The failures found and their corresponding shrunk programs with our test
strategy were reported on the WebDSL issue tracker with Two of the eleven found issues
older issues were revisited with shrunk generated programs that induced the same failure,
one of which was fixed after a day of posting the shrunk code while it had been open for
over an year.

7.2 Future work

In this section we present our recommendations for future work and directions in which the
current solution can be further extended.

Following the path towards static semantic correct generation. Further development
and research should be done to enable generic and automatic generation of statically seman-
tically correct programs. The following two steps are necessary to enable this:

1. further development of the name variant to support more NaBL features, including
support for multiple-file generation, the use of imports, horizontal scoping and any
future features of NaBL,

2. a language must be developed to define type and constraint semantics in a declarative
manner and the generation algorithm must be expanded to support and enforce these,

Additionally, the ability to guarantee statically semantically correct generation will further
enable the addition of new properties to be checked by the partial oracle:

• statically semantically correct programs should reach and pass the generation phase,

• statically semantically incorrect programs should result in error reports,

• if a statically semantically correct program passes the generation phase, the generated
code should be either compilable or executable.
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Development of such languages to describe static semantics can lead to the generation
of the analysis phase of compilation, like parser/parsetable generators are generated for the
parsing phase. Testing could then be replaced by formal proofs of such systems and the
future of such a test strategy as we describe would shift towards testing of the generation
phase and potentially testing of optimizations or features not covered by the formal proofs.

Development of support for a quick fix IDE feature could also help reach statically
semantically correct generation. These could be used to replace the currently manually
defined error fixes used by the error fixing algorithm proposed for our test strategy.

Automatic gradual increase of program size generation. Reminiscent of Klein and
Findler’s [20] method to gradually increase program size generation we propose an al-
ternative to our current parametric control mechanism. Instead of predefining the limits
for the control mechanisms we could allow generation to gradually raise these, gradually
increasing the size of generated programs. The ceiling of these control mechanism limits
could be determined by either detection of a too high probability of the compiler running
into memory issues, or maybe even the detection of high frequency of equivalent crashes.
For the latter we would require an automatic crash comparison method. Currently we com-
pare crashes manually, by analyzing the resulting stack trace, though pattern recognition
techniques could be used to determine a level of similarity.

Oracle enhancement of with derived properties. Our oracle could be enhanced by en-
abling it to accept declarative property definitions or models derived from formal proof
systems. These could provide additional checks to evaluate test runs with and potentially
expand the type of compiler failures detectable by our oracle. New research could lead to
development of property-based testing tools [15] or formal proof systems [20] for Spoofax,
motivating such enhancements to our automated oracle.

Lenient Grammar Coverage Driven Generation. Productions that have parent non-
terminals that occur with less frequency in other productions have a lower probability of
being generated. To counter this syntax definition induced bias we propose the use of a
lenient grammar driven generation. Using a set of incremental grammar coverage to raise
the weight of productions less covered should lead to more uniform production generation.
First a simple branch coverage could be used to slowly reassign weights to productions and
later a context-sensitive abstract grammar coverage, as proposed by Harm and Lämmel [12],
could be used to improve combinatorial grammar coverage.

Grammar-based White Box Fuzzing. Intrigued by the grammar-based white box fuzzing
approach proposed by Godefroid et al. [8] we propose work towards such an approach for
Spoofax developed compilers.

Grammar-based white box fuzzing uses a symbolic execution method that keeps track of
branching during evaluation. Such a system does not exist for Stratego, the transformation
language used in Spoofax, and would need to be developed. Such a system would keep
track of the execution path of the compiler whilst making a record of which AST nodes
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would be involved in the execution of strategies. Conform coding traditions in Stratego it
would be interesting to keep track of what ATerms originating from the tree would match
patterns in strategies. These could then be mutated or swapped to generate new test cases.
Such an approach could be an alternative to Stratego code coverage driven generation, as we
expect such a drive to miss out on faults caused by missing strategies. Whereas mutation
of ATerms in the AST that are matched within strategies would probably lead to a better
input-strategy combination coverage and thus potentially find such cases of missing code.
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Appendix A

Failures Found

We identified eleven unique compiler crashes and present them here with a clarification.
This clarification either explains the fault causing the crash or merely presents a shallow
description of the failure if the fault has not yet been traced. These clarifications or descrip-
tions are fruit of interaction with WebDSL developers and our own insight into WebDSL.
We reported all encountered crashes to the WebDSL language developers using the project’s
issue tracker1.

F1: Type inference

During the type-checking phase a strategy is used to infer the type of the initialization part
of a variable declaration with no defined type. The fault was caused by the code responsible
for handling the type inference of untyped expressions such as empty lists and sets. The
code responsible for assigning these expressions the type“unknown” was executed too late
causing the compiler to crash for not being able to infer the type of such expressions. This
failure had been reported earlier in issue #563 and we revived the issue by reporting a
shrunken generated application causing the same failure. The fault was fixed in revision
r5731 by moving the code responsible for assigning untyped expressions the “unknown”
type inside the strategy responsible for inferring types.

application v75_44M_cW6

section pf } oqqo
var GKY_dO := {}

predicate UC ( ) {
GKY_dO

}

1YellowGrass’ Issue Tracker page for WebDSL project: http://yellowgrass.org/project/WebDSL
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F2: Type pretty-printing during error reporting

During the reporting of error messages a strategy is used to pretty-print types. The expected
input for this strategy is a type sort constructor. In this case the failure is caused by unex-
pectedly using a plain string as input for this pretty-print strategy. The failure originates
from the execution of code for a constraint check for variable declarations in the constraint
check stage of the analysis phase. This failure was reported in issue #463.

application uKNw3_RRf9d

section pG }
var dN4 := [ false | h7 : Tw5 in global.Tw5 ]

section >qow
enum eH212_5 { }

request var j7 : h7

F3: Detecting duplicate declarations

During the constraint-check stage a strategy is used to check whether there are no duplicate
definitions. The strategy fails because it tries to access a declaration that does not exist.
This failure was reported in issue #674.

application nx

native class L__bF_3_R24.KD4_I7PP__7 {
constructor ( )

}

F4: Local renaming of pre-fetched variables

During the rename stage a strategy is used to rename pre-fetched variables. The failing be-
havior was caused by faulty code that contained a type check that was too strong. Whenever
the pre-fetched variable did not have a type this type check would lead to the compiler ex-
iting unexpectedly. Instead this check was softened, leading to an error report. This failure
was reported in issue #729 and fixed in revision r5732.

application eX_B_1_5

section P%~p pyUd
session H9VN {
function I ( ) : Void {
prefetch-for OE_GB2jpo_ delete from I;

}
}
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F5: Template redefinition with undefined arguments.

During the constraint check stage the signatures of local template redefinitions are compared
to the original template definitions. The failure occurs whenever the arguments in this
redefinition are entities that have no declaration. This failure was reported in issue #677.

application IeLPH__3

define lXq ( ) = g__1c4_JX_(*, g_7CEX2_)

F6: Checking function extensions

During the type- and constraint-checking stages a strategy is used to verify that a function
extension extends an existing function or report an error otherwise. The failure was being
caused whenever the language construct for function extension was nested in itself, e.g.
extend extend function a( ) .... Such a construct was allowed syntactically, but bared
no meaning semantically and the strategy did not expect such input. This was reported
in issue #731 and fixed in revision r5734 by disallowing the recursive use of the extend

keyword for function extension.

application f_Po5__2B8V

extend extend function Kyk_b ( ) : Void { }

F7: Cyclic definitions

During the declaration and constraint-check stages various strategies were used to get entity
and property declarations. However, these were unable to deal with cyclic definitions of
either entities or properties and would enter an infinite loop leading to memory or stack
overflows. This was reported in issue #733 and fixed in revision r5735 by including checks
for cyclic definitions.

application S_5sqX6W_S1

section YaSzpqA
principal is S_5sqX6W_S1 with credentials S_gGS_2Mvn5

section pq p v[-*
native class S_5sqX6W_S1 : S_5sqX6W_S1 { }
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F8: Type resolution of partial function call reference

During the renaming of actions in the rename stage, type resolution occurs and types are
stored for later use during type-checking. This failure originates from a strategy that at-
tempts to resolve the type of a partial function call reference. This was reported in issue
#739.

application t821NT

extend entity p16S___ {
validate( function() : Void {
append ( pS9QM5, w3_E [ ] {
var D_6_2g03 := function.uQ_O():Void(*,function.uQ_O():Void());

} );
}, I2Q78KX_Ojk)

}

F9: Type pretty-printing during error reporting.

This is a similar failure to F1, however, the failure now originates from a strategy trying
to pretty-print types during the declaration of functions in the declaration stage of analysis.
This failure was reported in issue #737.
application ys_UR

access control rules
rW____c_oP_
predicate h0qO3V__Vf3 () {
function ( ) : Void {
append ( externalscope . wf__H_ , QY___7LVJ with {
v6 ( ) { define PjqK2 (G : HI, I755_5a_C_ : G ){} }

});
}

}

F10: Renaming of access control rules.

During the renaming of access control rules the main rename strategy fails. This was re-
ported in issue #736.
application O

access control rules
yye
rule action D__6 ( function ( ) : Void { } * ) {
externalscope . Le8Nfm8

}
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F11: Cyclic definitions.

This is the same failure as failure F7. The strategy causing this failure was forgotten when
the fix for cyclic definitions was applied. The failure was reported again in issue #740.
application cH_Y__5U

enum V8UG { }

section LpzWyow;
entity V : g {
}

section q+ DoDq
entity U1_ : V {
}

section CRou
entity wKi4fKn__d2 : U1_ {
}

section
entity c {
B7_PZQ <> wKi4fKn__d2 ( ) := false

}

entity g : wKi4fKn__d2 {
}
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Quick Fixes for WebDSL

noRoot:
"no root page root() defined.", _ →
insert once DefinePage([],"root",[], None() ,[])
@ ApplicationDefs(_,$here,_)

or
insert once Section("rootSection",[DefinePage([],"root",[], None() ,[])])
@ Application(_,$here)

bool:
"expression should be of type Bool", $_1 →
@_1 change to SimpleSort("Bool")

typeNotDefined:
"Type not defined:", SimpleSort($_1) →
insert once for (@_1) EntityNoSuper(@_1,[])
@ ApplicationDefs(_,$here,_)

or
insert once for (@_1)
Section($concat("typeNotDefSection",@_1),EntityNoSuper(@_1,[]))
first@ Application(_,$here)

multiDefVar1:
"defined multiple times.", VarDeclInit($_1,_,_) →
delete for (@_1)
VarDeclInit(@_1,_,_) or VarDeclInitInferred(@_1,_) from list

multiDefVar2:
"defined multiple times.", VarDeclInitInferred($_1,_) →
delete for (@_1)
VarDeclInit(@_1,_,_) or VarDeclInitInferred(@_1,_) from list

multiDefSecurityEntity:
"Entity ’SecurityContext’ is defined multiple times.", _ →
delete AccessControlPrincipal(_,_) from list
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indexNotInt:
"Index must be of type Int,", $_1 → @_1 change to Int(1)

wrongPlaceForRefArgument:
"only allowed in formal parameters of pages, templates, or ajax templates",
Ref($_1) → Ref(@_1) change to @_1

typeEmptyList1:
"Type cannot be determined for empty untyped list creation.", $_1 →
@_1 change to ListCreation([Int("1")])

typeEmptySet1:
"Type cannot be determined for empty untyped set creation.", $_1 →

@_1 change to SetCreation([Int("1")])

functionReturn1:
"Return statement missing in function", Function($_1,_,_,_) →
insert once for (@_1)
Return(Int("0")) @ Function(@_1,_,_,Block($here))

functionReturn2:
"Return statement missing in function", StaticEntityFunction($_1,_,_,_) →
insert once for (@_1)
Return(Int("0")) @ StaticEntityFunction(@_1,_,_,Block($here))

entityCapital:
"Entity name: should start with a Capital", EntityNoSuper($_1,_) →
change all to $concat("C_", @_1)

derivedPropertyType1:
"The expression of the derived property should have type",
DerivedPropertyNoAnno($_1, $_2, SimpleSort($_3),$_4) →
DerivedPropertyNoAnno(@_1,@_2,SimpleSort(@_3),@_4)
change to

DerivedPropertyNoAnno(@_1,@_2,SimpleSort(@_3),ObjectCreation(@_3,[]))

derivedPropertyType2:
"The expression of the derived property should have type",
DerivedProperty($_1, $_2, SimpleSort($_3),$_4,$_5) →
DerivedProperty(@_1,@_2,SimpleSort(@_3),@_4,@_5)
change to

DerivedProperty(@_1,@_2,SimpleSort(@_3),@_4,ObjectCreation(@_3,[]))

ExpectedSimpleType1:
"Expected: Simple type. Encountered:",
DerivedPropertyNoAnno($_1,Simple(),SimpleSort($_2),$_3) →
DerivedPropertyNoAnno(@_1,Simple(),SimpleSort(@_2),@_3)
change to

DerivedPropertyNoAnno(@_1,Simple(),SimpleSort("String"),@_3)
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ExpectedSimpleType2:
"Expected: Simple type. Encountered:",
DerivedProperty($_1,Simple(),SimpleSort($_2),$_3,$_4) →
DerivedProperty(@_1,Simple(),SimpleSort(@_2),@_3,@_4)
change to

DerivedProperty(@_1,Simple(),SimpleSort("String"),@_3,@_4)

ExpectedSimpleType3:
"Expected: Simple type. Encountered:",
PropertyNoAnno($_1,Simple(),SimpleSort($_2)) →
PropertyNoAnno(@_1,Simple(),SimpleSort(@_2))
change to

PropertyNoAnno(@_1,Simple(),SimpleSort("String"))

ExpectedSimpleType4:
"Expected: Simple type. Encountered:",
Property($_1,Simple(),SimpleSort($_2),$_3) →
Property(@_1,Simple(),SimpleSort(@_2),@_3)
change to

Property(@_1,Simple(),SimpleSort("String"),@_3)

cannotInstantiateString1:
"Cannot instantiate built-in type ’String’", ObjectCreation($_1,$_2) →
ObjectCreation("String",@_2)
change to

String("Some string!")
or
ObjectCreation(@_1,@_2)
change to

String("Some string2!")

cannotInstantiateString2:
"Entity object instantiation syntax is only supported
for entity types, found type: ’String’",
ObjectCreation($_1,$_2) →
ObjectCreation("String",@_2)
change to

String("Some string!")
or
ObjectCreation(@_1,@_2)
change to

String("Some string2!")
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