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ABSTRACT

The relationship between microstructure features and mechanical properties

plays an important role in the design of materials and improvement of prop-

erties. Hole expansion capacity plays a fundamental role in defining the

formability of metal sheets. Due to the complexity of the experimental proce-

dure of testing hole expansion capacity, where many influencing factors con-

tribute to the resulting values, the relationship between microstructure features

and hole expansion capacity and the complexity of this relation is not yet fully

understood. In the present study, an experimental dataset containing the phase

constituents of 55 microstructures as well as corresponding properties, such as

hole expansion capacity and yield strength, is collected from the literature.

Statistical analysis of these data is conducted with the focus on hole expansion

capacity in relation to individual phases, combinations of phases and number of

phases. In addition, different machine learning methods contribute to the pre-

diction of hole expansion capacity based on both phase fractions and chemical

content. Deep learning gives the best prediction accuracy of hole expansion

capacity based on phase fractions and chemical composition. Meanwhile, the

influence of different microstructure features on hole expansion capacity is

revealed.
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GRAPHICAL ABSTRACT

16 22 24 26 30 33 35 40 42 44 47 49 56 67 71 73 79 84

All specimens with incresing HEC order

P
ha

se
 v

ol
um

e 
fra

ct
io

n 
an

d 
H

E
C

 v
al

ue
0

50
10

0

M
F
TM
UB
LB
CFB
B
P
RA
HEC0

50
10

0

Experimental
uncertainty

Machine Learning

Phase
volume

fraction &
Chemical
content

Hole Expansion
Capacity of steel

Hole Expansion
Capacity of steel

Physical 
Understanding

Training Predicting

Introduction

Advanced high-strength steels are widely used in

industrial applications. Besides high strength and

good ductility, stretch-flangeability is an important

mechanical property which controls the quality of

shaping many metallic components. Hence, the hole

expansion capacity (HEC), which describes the

formability and edge cracking resistance of sheet

metals, is one of the most important mechanical

properties in for instance the automotive industry.

Figure 1 shows the most common test procedure for

the determination of HEC following standard ISO

16630 [1]. The sheet metal is first punched with an

initial hole of diameter D0 of 10 mm. The punched

hole is then widened with a conical punch (60� angle)

until the first through-thickness crack appears, at the

final hole diameter Dh. The hole expansion capacity

(k) is then calculated with

k ¼ Dh �D0

D0
: ð1Þ

The results are considered useful when the thickness

of the sheet material is below 2.5 mm, even though

the standard allows thicknesses up to 6 mm. Due to

the complexity of determining the hole expansion

capacity, many testing factors, such as punch edge

quality [2–4] and crack determination [5], could

influence the testing result.

The HEC is not yet well understood in terms of its

relationship with the microstructure of the metal.

Many studies have been performed on the relations

between HEC and microstructure features, process-

ing parameters and other mechanical properties, such

as tensile strength and hardness [3, 5–8], but results

either are not convincing due to the limited number

of data or do not give an overall picture on the effects

of multiple phases due to the specific materials

choices. Meanwhile, recent progress in the field of

HEC of multi-phase steels results in a better under-

standing of the relation between HEC and fracture

toughness, which can be related to microstructure

features through damage and fracture models [9, 10].

It has been shown that HEC is closely related to the

capacity to resist the initiation of micro-cracks and

their propagation [11–13]. The connection of fracture

behavior and microstructure features and hetero-

geneities can then be extended to the understanding

of the HEC behavior [14–17]. The study from de Geus

et al. [15] shows that fracture initiation correlates

strongly with the local microstructural morphology.

Meanwhile, the laminography observations per-

formed by Kahziz et al. [18] reveal the damage evo-

lution on both the punched and machined edges,
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which indicates the possibility of building predictive

models based on physical understanding.

Table 1 summarizes the present interpretation in

the literature on the influence of different phases on

the HEC from various studies on multi-phase steels.

Except for ferrite and possibly austenite, all phases

are reported to have a negative effect on the hole

expansion property. These effects are often explained

by the hardness difference between the hard phases

and the soft phases, but with no clear physical

explanation [2, 6, 19].

The information obtained from Table 1 is rather

limited and qualitative, since the trends of changing

HEC on different phases are always gathered from a

very limited number of data points (i.e., less than 10).

Besides, the results shown in Table 1 only concern

the relation of a single microstructure feature with

hole expansion capacity. When dealing with

complex-phase steels, the combined effect of the

phases has not been studied yet.

In order to study the relations between hole

expansion capacity and microstructure features in

more detail, 55 groups of data containing the com-

position of phases and chemical content corre-

sponding to the HEC values are collected, as shown

in Table 4 (see Appendix A), from a final report of a

research project of the Research Fund for Coal and

Steel [20]. As the original report does not make full

use of these data, it is valuable to have a deep look

into these data and to derive more comprehensive

understanding in addition to Table 1. In the present

paper, HEC is fully investigated on its relation to

phase fractions individually, to the combination of

phases and to the number of phases. To quantify the

relations, different statistical regression methods are

applied to enable prediction of the HEC on the basis

of both phase fractions and chemical content, while

also giving the importance ranking of different

microstructure features.

Data analysis

As shown in Table 4 (see Appendix A), the studied

dataset contains 55 complex-phase steel specimens’

results. For each specimen, the hole expansion

capacity (HEC, %) with phase fractions in volume

percentage and chemical composition in weight per-

centage are collected. The identified phases are

martensite (M), ferrite (F), tempered martensite (TM),

upper bainite (UB), lower bainite (LB), carbide-free

bainite (CFB), bainite (B), pearlite (P) and retained

austenite (RA). For these microstructures, ferrite,

martensite and bainite can be present as matrix

phases, while pearlite and retained austenite are

always secondary phases. The average standard

deviation of measuring HEC three times on the same

steel grade is �9%, which is calculated from the work

by Chen et al. [22]. Meanwhile, there is also research

showing a standard deviation of 15% on HEC values

for martensitic steels [23].

HEC in relation to volume fraction of phases

Volume fraction of individual phases

Based on the obtained data, the individual influence

of phase volume fractions on hole expansion capacity

Figure 1 Schematic illustration of HEC test after ISO 16630. The

standard prescribes D0 ¼ 10 mm.

19230 J Mater Sci (2021) 56:19228–19243



is shown in the scatter plots in Fig. 2. Figure 2a and b

show the scatter plot of martensite (without tem-

pered martensite) and ferrite fraction in relation to

hole expansion capacity, while Fig. 2c and d show the

total bainite (the sum of upper bainite, lower bainite,

carbide-free bainite and bainite) and retained

austenite volume fractions in relation to hole expan-

sion capacity. The straight line in Fig. 2b is a linear

fitting of all data points of ferrite volume fraction and

hole expansion capacity. All curved lines in Fig. 2 are

based on the scatter.smooth function in R [24], which

uses the loess (local polynomial regression fitting)

function [25]. The lines are merely a guide to the eye

for the main trends.

As shown in Fig. 2a, there is a clear valley in the

plot of the relation between HEC and martensite

volume fraction, which indicates either low marten-

site volume fraction (lower than 20%) or high

martensite volume fraction (higher than 80%) tends

to have the possibility to reach relatively high HEC.

Meanwhile, HEC is always low when the martensite

volume fraction falls between 20% and 70%. For fer-

rite in Fig. 2b, the relation is not as clear as for

martensite, but a very distinct observation is that only

low HEC values are found above 50%. When ferrite

volume fraction is lower than 50%, there is no clear

relation between HEC and ferrite volume fraction.

Low HEC values occur in the region where ferrite

volume fraction is higher than 50%, with only one

exception: No. 23 in Table 4, that consists of a large

volume fraction of ferrite and secondary phase

pearlite. An opposite trend to martensite is shown in

Fig. 2c when looking into the relation between the

total bainite volume fraction and HEC. High HEC

values are found only between 30% and 40% bainite.

Figure 2d shows the relation between HEC and the

secondary phase retained austenite. There are obvi-

ously two stages in the relation of HEC with retained

austenite volume fraction in Fig. 2d. The lower vol-

ume fraction of retained austenite shows higher HEC

than the group of higher volume fraction. In Fig. 2d,

the bainite fractions are also indicated for the

microstructures. Relating these values to Fig. 2c, the

relation between HEC and bainite fraction, it shows

that the microstructures with low RA fractions all lie

in the optimum range of bainite fraction. The values

of HEC for zero retained austenite fraction, with the

average on the green line, lie within the shaded area

in Fig. 2d, at the level of the values for 2–4% RA. The

present data therefore do not give a conclusive view

on the influence of retained austenite on HEC.

The dataset is unfortunately very limited on pear-

lite. Only three microstructures contain pearlite, of

which one is the exceptional No. 23. The other two

are No. 26 (15% P, 84% F, 1% M, k = 48%) and No. 29

(10% P, 80% F, 10% M, k = 28%). The difference

between these two HEC values is therefore primarily

the result of the difference in martensite and pearlite

fractions. The reduction from k = 48% for 1%

martensite to k = 28% for 10% martensite is stronger

than the general trend in Fig. 2a, which points at a

positive effect of pearlite on the HEC.

Table 1 Reported influence of different phases on HEC for several multiphase steels

Features Influence on the HEC

Ferrite Positive Polygonal ferrite is especially good. Higher strength of the ferritic matrix is positive to HEC.

[3, 7, 19]

Martensite Negative Higher martensite volume fraction lowers the HEC. HEC decreases from 30% to 15%, when

martensite volume fraction increases from 16% to 18%. [7, 19]

Bainite Negative Better than martensite and pearlite, but still negative; more bainite gives rise to a lower HEC.

[6, 7]

Grain boundary

cementite, pearlite

Negative Microcracks often observed at the interface of elongated pearlite or grain boundary cementite. [6]

Retained austenite Ambiguous The stable or carbon-enriched retained austenite films enhance the HEC due to the reduction of

the surface damage on hole-punching and the promotion of the TRIP effect on hole expansion.

[21]

Voids and other

impurities

Negative Voids and other irregularities found on the edge surfaces lower the HEC. [3]
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Difference between volume fraction of phases

Many researchers proposed that the HEC is closely

related to the difference in mechanical behavior

between hard and soft phases [2, 6, 7, 19]. Here, we

assume that the ferrite and retained austenite are soft

phases, while martensite, bainite and pearlite are

hard phases. The relation between HEC and the

volume fraction difference is shown in Fig. 3a. The

scatter plot shows an increase of HEC when the hard

phase volume fraction is increasing. When the data-

set is divided into two groups, as the boxplot in

Fig. 3b shows, the microstructures in the group with

more than 50% volume fraction of hard phase have

significantly higher HEC than the group with more

than 50% volume fraction of soft phase. This indicates

that HEC displays a relation with the strength of

materials. The lack of high HEC values for

microstructures with a higher fraction of soft phases

coincides with the observation in Fig. 2b.

The one exception mentioned in ‘‘Volume fraction

of individual phases’’ section, No. 23 in Table 4, is

also marked in Fig. 3. It clearly shows that this No. 23

sample is an outlier with exceptionally high HEC

while containing more soft phase, which is consid-

ered to be an artifact of the testing procedure. Hence,

in the following statistical analysis, this No. 23 sam-

ple is deleted from the dataset.

HEC in relation to combinations of phases

As discussed in the previous section, certain phases

(ferrite and martensite) have a distinct impact on

HEC. The phase compositions with the increasing

order of HEC are plotted in Fig. 4 with both com-

bined and non-combined fractions of similar phases

(applied for martensite and for bainite). Considering

samples which have relatively high HEC, two kinds

of phase composition are occurring frequently, either

fully or nearly fully martensite, or a combination of

ferrite, martensite and bainite with the volume ratio

around 2:1:1. This indicates the significant contribu-

tion of martensite and bainite to HEC. It is also found

that most two-phase martensite/ferrite microstruc-

tures, especially with a high ferrite fraction, have low

HEC values.

HEC in relation to number of phases

Figure 5 shows the boxplot of HEC in relation to

number of phases. In order to quantify this relation-

ship, a linear regression model with the number of

phases as explanatory variable and the HEC as the

response variable is introduced. The number of

phases is recognized as a factor, i.e., categorical

variables. The number of phases has either 5 or 4

categories, corresponding to the non-combined phase

fractions or the condition of combining all bainite and
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Figure 2 HEC relation with

martensite (a), ferrite (b), total

bainite (c) and retained

austenite (d) volume fractions.

The numbers in (d) given with

the data points are the total

bainite fraction in percent. The

green line shows the average

HEC value, while the green

shaded region shows the

standard deviation, of the

microstructures without RA.
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all martensite. In Table 2, the t-value is the estimate

(second column, the coefficient for each input vari-

able) divided by its standard error (third column). By

comparing this t-value to the Student’s t distribution,

the p-value can be calculated [26]. A small p-value

(typically below 0.05) indicates that there is a relation

between the explanatory variable and the response

variable. The intercept of the linear model is at the

one-phase category, which indicates that the one-

phase category is set as the baseline. The model

shows the change of HEC values of increasing

number of phases based on the one-phase category.

Figure 5 shows that the one-phase category has the

highest HEC values, while in Table 2, the p-values

(last column) for one, two, three and four phases in

non-combed phase fractions (a) and one, two and

three phases in combining all bainite and all

martensite conditions (b) are all below 0.05, which

indicates that it is highly unlikely that the coefficient

is equal to zero instead of the current value of the

estimate [27, 28]. Since the values of the estimate are

all negative except for the one-phase condition, it

indicates that the one-phase category has the highest

HEC. In this dataset, only the pure martensite struc-

ture appears in the one-phase category; hence, the

result suggests that for pure martensite structure, the

hole expansion capacity is significantly higher with

respect to HEC values for microstructures with two,

three or four phases, as shown in Fig. 5 and Table 2.

Only the five phases without combining and four

phases with combining have increased HEC, since

these structures belong to the ones mentioned in

‘‘HEC in relation to combinations of phases’’ section

which have the combination of ferrite, martensite and

bainite with the volume ratio around 2:1:1. These

microstructures all have a low volume fraction of

retained austenite, and both martensite and tempered

martensite are present.

LASSO selection of importance phases

Because of the large number of phases and a single

target variable, hole expansion capacity, a statistical

method called least absolute shrinkage and selection

operator (LASSO) is employed as described com-

prehensively in previous work [29] and in

Appendix B.1.

The LASSO regression is performed on only the

matrix phases, i.e., martensite, ferrite and bainite. In

order to avoid the collinearity, the samples with only

ferrite and martensite phases are excluded in this

regression. Collinearity is a condition where two or

more independent variables are highly correlated,

which tends to inflate the coefficient for one variable

and hence leads to wrong estimates of the coefficients

[26]. In Fig. 6, with the decrease of the LASSO penalty

parameter logðkeÞ [29], more input variables (phases)

are included in the linear regression. The first four

phases showing up in Fig. 6 from the high-ke side of

the graph are lower bainite, martensite, upper bainite

and ferrite. Since in the LASSO analysis just a linear

function between HEC and the phase volume frac-

tions is adopted, LASSO is not sufficient to fully

explain the relationships, but LASSO does give an

indication of certain phases which make the most

significant contribution to the influence on HEC,

namely lower bainite, martensite, upper bainite and

ferrite. Meanwhile, LASSO shows that lower bainite

and upper bainite have a clear positive effect on hole

expansion capacity and martensite has a negative

effect. Here, the negative effect from martensite

seems to be different from the trend shown in Fig. 2a.

This is because the samples with only martensite and

ferrite have more than 50% of martensite, which are

not included in the LASSO regression. Hence, the

negative effect of martensite from LASSO only shows

the effect for 0–50% martensite, which is therefore the

same as the trend shown in Fig. 2a.
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Figure 3 HEC relation with

difference between hard and

soft phase fractions (a) and

HEC difference for two groups

with respect to the volume

fraction of hard and soft phase

(b).

J Mater Sci (2021) 56:19228–19243 19233



Prediction of HEC with both phase fraction
and chemical contents

Machine learning has been widely adopted in various

applications in materials science due to its powerful

data processing and high prediction performance

[30–36]. In order to predict the HEC with both phase

fractions and chemical content based on the data

gathered in Table 4, we selected five different

machine learning methods:

1. Linear regression (lm),

2. Linear regression with Elastic Net regularization

(glmnet),
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Figure 4 Phase composition with increasing HEC order, a: all the

individual phases are present, b: combining all the martensite

together and all the bainite together.
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Figure 5 HEC relation with

number of phases (a) and with

number of phases while

combining all bainite and all

martensite (b).

Table 2 Summary of results for linear regression between number

of phases and HEC for both non-combing phase (a) and

combining all bainite and all martensite (b), corresponding to

Fig. 5

(a) Number of phases Estimate Std. error t value P([jtj)

1 (Intercept) 74 7.3 10.04 0.0000

2 � 31 8.3 � 3.70 0.0005

3 � 39 9.3 � 4.16 0.0001

4 � 27 9.5 � 2.87 0.0060

5 � 14 9.7 � 1.39 0.1698

(b) Number of phases Estimate Std. error t value P([jtj)

1 (Intercept) 74 7.3 10.14 0.0000

2 � 30 8.2 � 3.72 0.0005

3 � 36 8.5 � 4.19 0.0001

4 � 14 9.2 � 1.56 0.1253
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3. Conditional inference tree regression (ctree2),

4. Random forest regression (cforest),

5. Deep learning (keras).

Detailed information on these methods is given in

Appendix B. The first four methods are applied using

the ‘caret’ library [37], adopted in the R [24] envi-

ronment. For the first four methods, tenfold cross-

validation is repeated five times. There is no tuning

parameter in lm. For glmnet, the tuning grid for

mixing percentage a is ten grids from 0 to 1 and 50

grids from 0.0001 to 50 for regularization parameter

k. For ctree2, the tuning grid for max tree depth

maxdepth is five grids from 1 to 5 and ten grids from 0

to 1 for (1 minus p-value) threshold mincriterion. For

cforest, the tuning grid for randomly selected pre-

dictors mtry is 15 grids from 1 to 15. Deep learning is

applied using the ‘keras’ library [38], which uses

TensorFlow [39] as backend in python. The network

consists of two hidden layers. Both hidden layers are

dense layers with 100 and 50 neurons, respectively.

Both hidden layers use the activation function relu

[40]. The model compiles with optimizer Adam [41].

The training epoch is 600 with batch size of 32 and

validation split of 5%. The modeling process follows

a route consisting of five steps:

1. data partitioning into training and testing set

(random: 90% of the data in the training set and

10% in the testing set);

2. feed training data to train the model,

3. predict testing target (HEC) using the trained

model;

4. calculate the performance (calculate RMSE on

both training and testing data);

5. repeat steps 1–4 ten times (tenfold cross-valida-

tion) and calculate the mean performance, i.e., the

average RMSE on both training and testing data

over ten repeated runs.

In step 4, the RMSE is calculated on both training

dataset and testing dataset based on the predicted

hole expansion capacities kp;i, the real hole expansion

capacities kr;i and number of samples N in the dataset

as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1ðkp;i � kr;iÞ2

N

s

: ð2Þ

Machine learning model performance

The performance of all five machine learning models

is shown in Fig. 7. The two linear regression methods

(1 and 2) and the conditional inference tree regression

(3) clearly perform the worst with a high RMSE (root

mean square error) on the testing dataset. The deep

learning model shows the best performance with the

lowest RMSE. The HEC prediction accuracy of the

deep learning model is �16%. Comparing the hole

expansion testing error range of the experimental

data acquired by Chen et al. [22], where the average

standard deviation of testing three times on the same

steel grade is �9%, and the 15% standard deviation of

experimental HEC values for martensitic steels [23],

due to various testing conditions, such as edge sur-

face quality and first crack determination timing, it

can be concluded that deep learning predictions

reach a similar degree of accuracy as experiments,

where the 9% accuracy for the training dataset indi-

cates an experimental accuracy of that magnitude. In

Fig. 8, the deep learning-predicted HEC is plotted

against the experimental HEC, with the experimental

test error shown in the bottom-right corner. It can be

seen that based on the learning from the training data

points, deep learning can give confident prediction of

the testing data points. With the improvement in the

experimental data quality and increase in quantity of

the data, the authors believe that the prediction

accuracy can be further enhanced.

Machine learning model interpretation

The conditional inference tree regression model and

random forest regression model both give rise to a
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Figure 6 LASSO plot on the influence of different phase

fractions on HEC.
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ranking of importance of the independent variables,

which is shown in Fig. 9. The feature importance

based on the conditional inference tree is calculated

by the sum of the reduction of variance to the parent

node weighted by the probability of reaching that

node caused by the certain feature. A higher value

indicates high importance. Random forest averages

the importance of each feature from each tree to

obtain the rank of importance of all features.

Ferrite, martensite and lower bainite are the three

most important phases that affect the HEC, while Mn

and Cr are the two chemical elements that most

strongly affect the HEC. The possible reason why Mn

and Cr are the most important chemical elements is

that both have a positive effect on the phase fraction

of lower bainite (with a Pearson correlation coeffi-

cient of 0.31). The Pearson correlation coefficient can

theoretically range from -1 to 1. A value of 1 means

total positive linear correlation, a value of -1 means

total negative linear correlation, and a value of 0
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Figure 7 Performance

comparison of all five machine

learning methods.
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Figure 8 Deep learning prediction on hole expansion capacity.
Figure 9 Variable importance plot for both conditional inference

tree regression model and random forest regression model. Phases

are depicted in blue and chemical elements in red.
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means no linear correlation [27, 42]. The effect of Mn

and Cr is also shown by Guo et al. [43] who state that

Mn improves strength to certain extent, while Cr

improves ductility of bainitic steels. Higher ductility

has positive effect on hole expansion capacity [44],

while higher strength leads to lower hole expansion

capacity [22].

With the conditional inference tree regression

model, a decision tree can be built as shown in

Fig. 10. At each node of the decision tree, one specific

input variable is selected, according to algorithms

mentioned in Appendix B.2, to separate the dataset

into two subsets. For each node, the separation cri-

terion, the root mean square error of samples in the

node, the number of samples and the mean HEC

value of all samples in the node are shown in the

node box. The left arrow from the node box indicates

the condition for separation is true, while the right

arrow indicates it is false. Node 0 contains all 54

samples; its criterion is a martensite phase fraction

smaller than 97.5%. This criterion is true for 48 sam-

ples with an average HEC of 45%, as shown in node

1, and it is false for six samples with an average HEC

of 74%, as shown in node 16. The samples of each of

these nodes are further separated on the basis of

subsequent criteria. The color of the node indicates its

average HEC values.

From the decision tree, the trend of the influence of

different independent variables is evidenced. It

shows that the change in HEC with different vari-

ables is not monotonic. Table 3 summarizes the

information from the decision tree based on the range

of the HEC values corresponding to the phase frac-

tions and chemical contents. Node 13 and node 18 in

Fig. 10 classify the highest HEC with either fully

martensitic structure or the combination of marten-

site, lower bainite and ferrite. Meanwhile, node 8 in

Fig. 10 classifies the lowest HEC with more than

31.5% ferrite, less than or equal to 13.7% lower bainite

and a martensite volume fraction between 11.5% and

97.5%.

Discussion

Comparing the summary in Table 1 and the statistic

analysis in ‘‘HEC in relation to volume fraction of

phases’’ section, there are some clearly contradictory

node #0
M  97.5

rmse = 21
samples = 54
value = 48

node #1
LB  13.7

rmse = 19
samples = 48
value = 45

True

node #16
Cr  0.2

rmse = 12
samples = 6
value = 74

False

node #2
F  31.5

rmse = 16
samples = 41
value = 40

node #9
F  33.3

rmse = 15
samples = 7
value = 70

node #3
Nb  0.0

rmse = 15
samples = 18
value = 49

node #6
M  11.5

rmse = 14
samples = 23
value = 33

node #4
rmse = 14
samples = 5
value = 63

node #5
rmse = 12
samples = 13
value = 44

node #7
rmse = 14
samples = 12
value = 41

node #8
rmse = 7

samples = 11
value = 25

node #10
F  15.0

rmse = 2
samples = 2
value = 48

node #13
RA  0.6

rmse = 4
samples = 5
value = 79

node #11
rmse = 0

samples = 1
value = 49

node #12
rmse = 0

samples = 1
value = 46

node #14
rmse = 2

samples = 3
value = 77

node #15
rmse = 0

samples = 2
value = 84

node #17
rmse = 10
samples = 3
value = 66

node #18
rmse = 9
samples = 3
value = 81

Figure 10 The conditional

inference tree regression

model plot, phase fractions in

percentage and chemical

content in weight percent.

Colors indicate the magnitude

of the average HEC in the

node.

Table 3 Summary of the

conditional inference tree

based on the range of HEC

values

No. HEC (%) Phase fraction (%) and chemical content (wt%) Node

I 25 11.5 \fM 6 97.5; fLB 6 13.7; fF [ 31.5 Node 8

II 40–50 fM 6 97.5; fLB 6 13.7; fF 6 31.5; cNb [ 0 Node 5

fM 6 11.5; fLB 6 13.7; fF [ 31.5 Node 7

fM 6 97.5; fLB [ 13.7; fF 6 33.3 Node 10

III 60-70 fM 6 97.5; fLB 6 13.7; fF 6 31.5; cNb ¼ 0 Node 14

fM [ 97.5; cCr 6 0.2 Node 17

IV Over 70 fM 6 97.5; fLB [ 13.7; fF [ 33.3 Node 13

fM [ 97.5; cCr [ 0.2 Node 18
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results. The summary in Table 1 shows that only

ferrite has a positive effect on hole expansion capac-

ity, while all other phases have a negative effect. But

the analysis from a large number of data, as pre-

sented in the present paper, shows more complicated

effects due to varying volume fractions of different

phases, other than simply positive or negative. This is

mainly due to the limitation of the range of data in

studies in Table 1. Most of the studies only observe a

certain fraction range of certain phases, which is not

representing the effect on HEC across the whole

volume fraction range. The effect of phase fractions

on HEC is complicated and cannot be expressed by

simple monotonic functions.

Taking into account the analysis in ‘‘Data analysis’’

section, in whichever way the data are looked at, the

most important phases which contribute to HEC are

ferrite, martensite and lower bainite. Considering

that many studies relate the HEC to the difference in

hard/soft phases, these three phases actually take the

most important role in hard/soft phases in steels,

especially ferrite and martensite, which are most

commonly seen the softest phase and the hardest

phase. Statistics show that the higher the fraction of

the hard phase is, the higher the HEC is. This reflects

that the HEC is a strength-related mechanical prop-

erty. The HEC value shows a valley at the interme-

diate volume fraction of martensite which is possibly

related to the minimum fracture stain in dual-phase

steels with the similar condition of martensite

[45, 46]. This can be explained by damage nucleation

and crack growth mechanics being favored by

strength mismatch and the related increase in the

local stress triaxiality. Meanwhile, certain combina-

tions of phases also give high HEC, such as the

combination of ferrite, martensite and bainite with

the volume ratio around 2:1:1. This high HEC can be

accounted for by the accommodation of stress by this

specific volume combination of hard and soft phases,

where the hard phase gives the overall strength and

soft phase gives ductility for expansion under stress

without cracking. But the ferrite/martensite combi-

nations do not perform very well. Although with the

analysis in this paper, the complicated relations

between HEC and microstructure features are clearly

shown, it is not possible to give a simple relation.

However, with the help of deep learning, a reliable

prediction (with an accuracy of �16% on HEC, which

is similar to the experimental accuracy) can be made

with the combination of the volume fraction of each

phase and chemical content. Still, the accuracy of the

prediction model highly depends on the amount of

the data gathered and the accuracy of the data. Even

though the dataset used in this study is a large

dataset in the context of materials science, it is defi-

nitely limited and small in the field of so-called big

data and traditional machine learning. Nevertheless,

the present study shows that meaningful results can

also be achieved with limited datasets. The authors

believe that significant improvement in the predic-

tion model can be made if the data will be enhanced,

both in the amount and in the quality.

In this study, since the obtained dataset only contains

the phase volume fractions and the chemical composi-

tion, the data analysis and prediction of HEC are only

based on these two microstructure features. Even with-

out considering many other microstructure features,

such as grain size distribution, texture and grain mor-

phology,which are normally considered tohavedistinct

impact on mechanical behavior, this study shows valu-

able results with limited materials information.

Conclusions

This study focuses on data acquired from the litera-

ture to investigate the relation of phase volume

fractions and chemical compositions with hole

expansion capacity. The findings in this paper can

guide some new physical investigations to unravel

the root causes of the HEC behavior and conse-

quently to the development of better steels. The fol-

lowing conclusions are drawn based on the analysis

from different perspectives.

– The effect of phase fractions on HEC is compli-

cated and cannot be expressed by simple mono-

tonic functions. For martensite, volume fractions

between 20% and 70% will lead to a low HEC.

HEC slightly decreases with an increasing volume

fraction of ferrite. Around 30% bainite gives a

high HEC.

– Certain phases make significant contribution to

the HEC, most prominently, ferrite, martensite

and lower bainite.

– The higher the volume fraction of harder phases

is, the higher the HEC is.

– Purely martensitic microstructure or microstruc-

ture with lower bainite tends to have higher HEC

compared to other combinations of phases. High
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HEC can also be achieved with the combination of

ferrite, martensite and bainite with the volume

ratio around 2:1:1.

– The applied deep learning model has better per-

formance (with the prediction accuracy of�16% on

HEC) over the linear regression models and tree

regression models on the prediction of HEC based

on phase fraction and chemical content.
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Appendix

Raw data from literature

The collected and organized data from the work of

Ryde et al. [20] about the hole expansion capacity

with chemical composition and phase fractions are

shown in Table 4.

Principles of regression methods

Linear regression with Elastic Net
regularization (glmnet)

The Elastic Net regression of the target mechanical

property f at the point x is

f̂ElasticNetðxÞ ¼ b̂0 þ
X

p

j¼1

b̂jxj; ð3Þ

where xj is the jth variable in the prediction point x

and p is the number of independent variables. The

estimate b̂j is the corresponding coefficient in the

Elastic Net which minimizes the objective function:

Lðb0; b1; . . .; bpÞ ¼
X

n

i¼1

ðyi � b0 �
X

p

j¼1

bjxijÞ2

þ ke
X

p

j¼1

ðajbjj þ ð1� aÞb2j Þ:
ð4Þ

Here, n is the number of the data points, xij is the ith

observation corresponding to the jth variable and yi is

the target mechanical property corresponding to the

data point xi. Different from the LASSO method

which is used in the previous work [29], here the

shrinkage penalty has two parts [47], namely LASSO

penalty (magnitude a) and Ridge penalty (magnitude

1� a). The LASSO penalty is indifferent while solv-

ing the problem among a set of strong but correlated

variables. The Ridge penalty, on the other hand,

tends to shrink the coefficients of correlated variables

toward each other. The Elastic Net penalty is a

combination of the two, also a compromise [48]. The

two regularization parameters (a and ke) are opti-

mized within a certain tuning grid during the train-

ing process.

Conditional inference tree regression
(ctree2)

A decision tree is a model in the form of a tree

structure, which breaks the dataset into smaller and

smaller subsets; hence, the tree structure is built up.

In order to build a tree structure, the most important

two main steps are needed: to choose the feature and

to find the condition to split, i.e., the partitioning

algorithm. The most popular implementations of the

recursive partitioning criteria, such as ‘CART’ [49]

and ‘C4.5’ [50], have the problem of overfitting and a
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Table 4 Raw data from the literature [20] with hole expansion
capacity (HEC, %) with phase fractions in percentage and chemical
content in wt%, the phases are martensite, ferrite, tempered martensite,

upper bainite, lower bainite, carbide-free bainite, bainite, pearlite and
retained austenite.

No. HEC M F TM UB LB CFB B P RA C Mn Si Cr Mo Nb

1 52 100.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

2 67 80.0 20.0 0.0 0 0.0 0 0.0 0 0.0 0.135 1.50 0.50 0.0 0.00 0.015

3 88 100.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0.140 1.70 0.18 0.3 0.15 0.000

4 73 100.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

5 51 94.0 6.0 0.0 0 0.0 0 0.0 0 0.0 0.135 1.50 0.50 0.0 0.00 0.015

6 87 100.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0.140 1.70 0.18 0.3 0.15 0.000

7 72 100.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

8 33 95.0 5.0 0.0 0 0.0 0 0.0 0 0.0 0.135 1.50 0.50 0.0 0.00 0.015

9 69 100.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0.140 1.70 0.18 0.3 0.15 0.000

10 42 70.0 30.0 0.0 0 0.0 0 0.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

11 33 60.0 40.0 0.0 0 0.0 0 0.0 0 0.0 0.135 1.50 0.50 0.0 0.00 0.015

12 83 82.0 18.0 0.0 0 0.0 0 0.0 0 0.0 0.140 1.70 0.18 0.3 0.15 0.000

13 33 67.0 33.0 0.0 0 0.0 0 0.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

14 26 61.0 39.0 0.0 0 0.0 0 0.0 0 0.0 0.135 1.50 0.50 0.0 0.00 0.015

15 73 86.0 14.0 0.0 0 0.0 0 0.0 0 0.0 0.140 1.70 0.18 0.3 0.15 0.000

16 29 83.0 17.0 0.0 0 0.0 0 0.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

17 23 66.0 34.0 0.0 0 0.0 0 0.0 0 0.0 0.135 1.50 0.50 0.0 0.00 0.015

18 44 94.0 6.0 0.0 0 0.0 0 0.0 0 0.0 0.140 1.70 0.18 0.3 0.15 0.000

19 38 33.0 60.0 0.0 0 0.0 7 0.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

20 24 19.0 79.0 0.0 0 0.0 2 0.0 0 0.0 0.135 1.50 0.50 0.0 0.00 0.015

21 22 47.0 37.0 0.0 0 0.0 16 0.0 0 0.0 0.140 1.70 0.18 0.3 0.15 0.000

22 24 36.0 62.0 0.0 2 0.0 0 0.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

23 84 0.0 86.0 0.0 0 0.0 0 0.0 14 0.0 0.135 1.50 0.50 0.0 0.00 0.015

24 16 41.0 54.0 0.0 5 0.0 0 0.0 0 0.0 0.140 1.70 0.18 0.3 0.15 0.000

25 71 10.0 40.0 0.0 20 0.0 30 0.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

26 48 1.0 84.0 0.0 0 0.0 0 0.0 15 0.0 0.135 1.50 0.50 0.0 0.00 0.015

27 59 10.0 0.0 0.0 90 0.0 0 0.0 0 0.0 0.140 1.70 0.18 0.3 0.15 0.000

28 46 7.0 30.0 0.0 0 33.0 30 0.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

29 28 10.0 80.0 0.0 0 0.0 0 0.0 10 0.0 0.135 1.50 0.50 0.0 0.00 0.015

30 49 5.0 0.0 0.0 5 80.0 10 0.0 0 0.0 0.140 1.70 0.18 0.3 0.15 0.000

31 19 13.0 37.0 2.6 0 0.0 42 5.4 0 0.0 0.170 1.70 0.18 0.3 0.15 0.000

32 17 13.0 37.0 2.6 0 0.0 42 5.4 0 0.0 0.170 1.70 0.18 0.3 0.15 0.000

33 56 15.0 12.0 0.0 0 0.0 29 44.0 0 0.0 0.170 1.70 0.18 0.3 0.16 0.000

34 47 4.0 42.0 15.0 0 0.0 27 12.0 0 0.0 0.110 2.10 0.15 0.0 0.20 0.020

35 58 7.0 36.0 0.0 0 0.0 57 0.0 0 0.0 0.140 2.10 0.20 0.3 0.00 0.020

36 35 0.0 76.0 24.0 0 0.0 0 0.0 0 0.0 0.144 1.52 0.48 0.0 0.00 0.018

37 30 0.0 20.0 80.0 0 0.0 0 0.0 0 0.0 0.172 1.59 0.51 0.0 0.00 0.017

38 71 0.0 30.0 70.0 0 0.0 0 0.0 0 0.0 0.170 1.63 0.47 0.0 0.00 0.017

39 44 0.0 3.5 96.5 0 0.0 0 0.0 0 0.0 0.178 1.41 0.44 0.0 0.00 0.016

40 40 0.0 14.0 86.0 0 0.0 0 0.0 0 0.0 0.135 1.53 0.18 0.0 0.00 0.015

41 25 0.0 72.0 28.0 0 0.0 0 0.0 0 0.0 0.125 1.52 0.20 0.0 0.00 0.015

42 34 0.0 46.0 54.0 0 0.0 0 0.0 0 0.0 0.125 1.52 0.20 0.0 0.00 0.015

43 23 0.0 84.0 16.0 0 0.0 0 0.0 0 0.0 0.125 1.52 0.20 0.0 0.00 0.015

44 44 0.0 45.0 40.0 0 0.0 0 15.0 0 0.0 0.130 1.00 0.20 0.0 0.00 0.015

45 48 0.0 49.0 10.0 0 0.0 0 41.0 0 0.0 0.130 1.00 0.20 0.0 0.00 0.015

46 75 2.0 49.8 20.6 0 27.4 0 0.0 0 0.2 0.140 2.10 0.20 0.3 0.00 0.020

47 84 1.0 44.0 19.4 0 34.6 0 0.0 0 1.0 0.140 2.10 0.20 0.3 0.00 0.020

48 83 1.5 45.0 20.8 0 32.0 0 0.0 0 0.7 0.140 2.10 0.20 0.3 0.00 0.020

49 76 1.0 36.6 24.1 0 37.9 0 0.0 0 0.4 0.140 2.10 0.20 0.3 0.00 0.020
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selection bias toward covariates with many possible

splits [51]. Therefore, the conditional inference tree

regression, also known as unbiased recursive parti-

tioning, was introduced [51]. Unlike selecting the

variable and deciding split criteria based on Gini

Impurity [49] or Information Gain [50], it uses a sig-

nificance test procedure, e.g., permutation tests [52].

Conditional inference tree is proved to be well suited

for both explanation and prediction.

Random forest regression (cforest)

A random forest is a meta-estimator (i.e., it combines

the result of multiple predictions) which aggregates

many decision trees. It is a bagging technique, i.e.,

bootstrap aggregation, which is done with random

sampling with replacement and aggregation of the

outputs at the end without preference to any model.

Therefore, the cforest model used in this paper is the

conditional random forest which can be simply seen

as averaging multiple conditional inference tree

results [48, 51, 53].

Deep learning (keras)

Deep Learning refers to deep neural networks. It is an

artificial intelligence function involving multiple

units, called neurons, which are connected to each

other like a Web, to make the data processing in a

nonlinear approach. The 15 input neurons build up

the input layer, while the output layer, in this study,

is just one neuron, i.e., hole expansion capacity. The

hidden layers are in the middle. The kind of fully

connected neural network is called multilayer per-

ceptron. Data flow from the input layer through the

hidden layers and finally arrive output layer. The

mathematics for calculating the value Y of each

neuron from the neurons in the previous layer is

[48, 54]:

Y ¼ Fðbþ
X

n

i¼1

wixiÞ; ð5Þ

where wi is the weight for the neuron with value xi,

n is the number of neurons and b is the bias of each

layer, which is a constant for each layer. F is the

activation function, and relu is used in this study,

which adds complexity and dimensionality to the

neuron network. While the network is trained by

feeding it with input data, the weight and bias will be

learned to correct themselves to minimize the loss

function by the technique called back propagation.

The loss function, in this case, is the mean squared

error between the network calculated HEC and the

real HEC corresponding to the input microstructure.
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Perlade A, Bréchet Y, Pardoen T (2015a) Damage and

fracture of dual-phase steels: Influence of martensite volume

fraction. Mater Sci Eng, A 646:322–331
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