
Designing a Software Receiver for Gesture Recognition with
Ambient Light

by

Dimitar Barantiev
Responsible Professor: Qing Wang

Supervisors: Ran Zhu, Mingkun Yang

Embedded & Networked Systems Group
EEMCS, Delft University of Technology, The Netherlands

A Dissertation
Submitted to EEMCS faculty
Delft University of Technology,

In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

June 19, 2022

1



Abstract
There is a growing need for touch-free interaction with
public utilities such as coffeemakers and vending ma-
chines that will help prevent the spread of diseases
such as COVID-19. One solution is the integration of
embedded gesture recognition systems relying on am-
bient light. However, existing work so far is found to
be inefficient in terms of size, cost and recognisable
gestures. This research is part of the development
of a smaller and more economical machine learning-
powered gesture recognition system using only 3 pho-
todiodes and an Arduino microcontroller. The goal
is to design the software for sensor reading, gesture
detection and data preprocessing. The resulting re-
ceiver samples at 100 Hz, uses an adaptable threshold
for identifying gesture endpoints and a mix of FFT,
maximum division and Linear Interpolation for signal
processing. It is evaluated in two lighting conditions
on two distinct gestures and is found to provide a
good trade-off between simplicity, real-time process-
ing within milliseconds and robustness against envi-
ronmental changes. This is achieved with a small
RAM memory footprint of only 2 KB and indepen-
dence of classification backend. The existing design
can be further improved in the future through soft-
ware optimisation and extended environment dynam-
ics support.

1 Introduction
Recent years have seen an increase in the need for
touch-free interaction with public utilities such as cof-
feemakers and vending machines because of their con-
tribution to the spread of many diseases, including
COVID-19 [1]. One solution to this problem is the de-
velopment of embedded gesture recognition systems
that can be integrated into those utilities. As a result,
people would be able to use mid-air hand movements,
reducing the chance of infection.

A class of gesture recognition systems suitable for
this purpose are those utilising unmodulated ambi-
ent light. They include a set of light detectors which
sense the illumination coming from the sun or light
bulbs and then track how different gestures’ dynamic
shadows create a unique change in the sensor read-
ings. Unmodulated ambient light is already in abun-
dance around people every day (see Section 2). Con-

sequently, those systems would require little addi-
tional setup or resources after being installed in ex-
isting infrastructure and could operate independently,
thus providing low cost and ease of integration.

However, existing gesture recognition systems of
this kind seem to lack efficiency in terms of hardware
cost, size and recognisable gesture set. In order to
use ambient light, they require either a solar cell [2],
floor-deployed light sensors [3] or a photodiode array,
where the number of components ranges from 9 to
more than 50 [4, 5, 6]. In all these cases there is a
high chance the overall system becomes expensive and
infeasible in practice for mass production and integra-
tion. In addition, most of those systems’ light-sensing
and computational hardware is too large. As an ex-
ception, one specific system manages to use only a
small amount of resources but fails to support more
than 4 simple swiping gestures, which does not pro-
vide enough flexibility for practical applications [7].

This research is part of the development of a small-
scale and cost-efficient embedded ambient light ges-
ture recognition system that uses only 3 photodiodes
and a small Arduino microcontroller. Its aim is to de-
sign and implement a software-based receiver pipeline
that collects real-time gesture data and processes it
for classification by a Machine Learning (ML) model.
To this end, the research answers the following ques-
tion:

How to design a receiver for the detection of visible
light signals with one Arduino Nano 33 BLE and two
or three OPT101 photodiodes, and how to proceed the
signals efficiently?

The main challenges associated with this question are
as follows:

1. The time it takes to perform gestures varies
greatly. Generally, different hand motion speeds are
used among users and sometimes even by the same
user. As a result, the collected gesture data is of vari-
able length but the target system’s ML model requires
all input to have a fixed size.

2. Static ambient light intensity in the environ-
ment can change dynamically. A room’s illumina-
tion level can suddenly change, the system can be
moved from one building premise to another or the
light source can change position. This in turn changes
the stable photodiode readings, making the detection

2



of gesture start and end more difficult.
3. Gesture data can be noisy because of moving

objects in the background. For example, the motion of
other people behind the user can lead to fluctuations
in the normal gesture signal. In turn, those may cause
ML misclassification if not sufficiently suppressed.

4. Gesture data differs in dynamic range depend-
ing on ambient light conditions. Changing the static
light intensity also affects the maximum and the min-
imum read values during a gesture significantly. Con-
sequently, there is more variance between gesture data
obtained in different illumination settings, making it
harder for the ML model to be trained on it.

5. The receiver pipeline has to provide a fast end-
to-end process. In order to be suitable for a prac-
tical embedded system, the receiver has to conduct
its computations from data collection to final output
within milliseconds to avoid stalling the final gesture
recognition system.

1.1 Contributions of This Research
The research presented in this paper makes the fol-
lowing contributions:

1. An ambient light receiver design which provides
a good trade-off between simplicity, real-time
processing, and robustness against environment
changes.

2. An ambient light receiver design that is inde-
pendent of gesture classification backend.

3. A fast and memory-efficient receiver implemen-
tation based on that design.

1.2 Research Paper Structure
This paper is structured as follows. Section 2 dis-
cusses the technical background of this project. The
overall gesture recognition system is laid out in Sec-
tion 3, together with a further discussion on the re-
search question addressed in the paper. The research
methodology and the chosen receiver design are de-
scribed in Section 4, followed by a brief discussion
of specific implementation aspects in section 5. In
Section 6 the final receiver is evaluated based on ex-
perimental results. Section 7 focuses on the repro-
ducibility aspect of this research. Existing work in

the domain of gesture recognition is detailed in sec-
tion 8. Finally, Section 9 makes conclusive remarks
and suggests possible future work related to the am-
bient light receiver.

2 Background

2.1 Ambient Light
Ambient light is any light in the environment that is
not deliberately set up or controlled [8]. This research
is based on the use of only ambient light associated
with the visible spectrum. This includes, amongst
others, sunlight, light bulb illumination, street lamp
illumination, etc. The advantage is that all these type
of lighting cannot pass through opaque objects, in the
case of this project - human hands, and are not so
prone to reflections causing multipaths from source to
destination as opposed to other types of waves, which
makes them a better medium for use in the domain
of gesture recognition than radio frequency or sound
waves [9].

2.2 Photodiodes
The main project this research is part of utilises pho-
todiodes for gesture recognition. A photodiode is a
small semiconductor device which, when operating in
its so-called photoconductive mode [10], at any point
in time outputs a voltage proportional to the amount
of light that is cast on it. As a result, when a hand
is, for example, swiped above a photodiode, the light
falling on it and thus its output first start to decrease,
then reach a bottom value at some point when the
hand is directly between the light source and the pho-
todiode, and finally increase back to their initial state.

The change in the photodiode’s output signal de-
pends also on its sensitivity, which is the ratio be-
tween output signal magnitude and amount of inci-
dent light. This can be adjusted using a feedback
loop [11] with a resistor. The value of that resis-
tor determines how sensitive the photodiode is, and a
higher resistance leads to a smaller sensitivity/ratio.

3



Figure 1: Gesture Recognition Prototype: Arduino
Nano 33 BLE (Top) and 3 Photodiodes (Up, Left and
Right)

3 System Overview

3.1 System Hardware Setup
As mentioned in Section 1, this research is part of a
larger project that tries to implement a small-scale
gesture recognition embedded system. The project
is done by a team of five people. The target sys-
tem relies on 3 OPT101 photodiodes for sensing the
incident light and an Arduino Nano 33 BLE micro-
controller as the computational platform for both the
receiver pipeline and the machine learning model. In
addition, based on the research work done by another
team member, it also makes use of passive elements
such as resistors and capacitors, together with a set
of transistors to facilitate hardware adjustment of the
photodiode sensitivity (see Figure 1).

3.2 System Operation Overview
The final embedded system works in the following
way:

1. Continuously reads the photodiode sensors based
on a sampling period.

2. Detects when a gesture starts and ends. Col-
lects the photodiode readings between these two
time points as the gesture data.

3. Pre-processes the gesture data.

4. Passes the gesture data to a trained machine
learning model that determines the input ges-
ture.

3.3 Research Methodology
As part of the overall project, the purpose of this re-
search is to develop the software-based pipeline that
reads the photodiodes and handles the edge detec-
tion(identifying when the gesture starts and ends),
gesture data collection, and signal processing stages of
the gesture recognition system. In order for all chal-
lenges outlined in Section 1 to be clearly addressed,
the research question was divided into the following
sub-questions:

1 What sampling frequency should be used for the
continuous reading of the photodiodes?

2 How to detect the start and end of a gesture
while reading the photodiodes?

3 How to remove noise from the collected gesture
data?

4 How to normalise the gesture data?

5 How to convert the gesture data to a fixed length?

6 How to adjust to changes in static light inten-
sity?

Sub-questions 1 and 5 address the first listed chal-
lenge. The chosen sampling frequency has to provide
a trade-off between data sufficiency for variable ges-
ture speeds(between half a second and two seconds)
and lack of gesture data redundancy. Solving sub-
question 2 must result in an edge detection algorithm
designed for real-time processing. Sub-questions 3 re-
flects challenge 3 where fluctuations in the data have
to be sufficiently reduced. Sub-question 4 is meant
to deal with challenge 4, because through normalisa-
tion to a fixed value range the receiver output data
will be better suited for ML training and classifica-
tion. Finally, sub-question 6 relates to challenge 2
and solving it will allow the receiver to operate in
dynamically changing light conditions.

4



4 Receiver Design

4.1 Design Methodology
In order to address the sub-questions laid out in the
previous section, a literature review of various ex-
isting gesture recognition systems’ papers was con-
ducted. The sampling frequency, edge detection, noise
reduction and normalisation algorithms they use were
assessed based on their time performance and mem-
ory footprint. This was done in order to determine
if they are suitable for the small-scale nature, real-
time processing needs and intended use cases of this
research target system.

After existing work’s documentation was inspected,
a few algorithms were considered for the noise removal
and normalisation stages. The edge detection algo-
rithm was derived and adapted from that of the Ges-
tureLite system [4]. The techniques investigated for
noise removal were the Fast Fourier Transform (FFT)
[12] and the Discrete Wavelet Transform (DWT) [13]
which provide low-pass filtering, as well as the Ham-
pel Identifier [14] that is normally used to detect out-
liers in time series.

Eventually, only the FFT was incorporated in the
final receiver design. This decision was based on its
relatively small amount of required calculations for
short signals, which meant real-time processing would
be easier to achieve. Another benefit of using it was
the high availability of already existing libraries pro-
viding its efficient computation.

Due to time constraints, the DWT could not be
implemented and tested as part of the receiver pipeline,
and because of its overall complexity it was discarded
as a suitable candidate for noise reduction.

The Hampel Identifier was implemented and tested
on real-time collected gesture data. Its performance
was found to be of low value because in practice the
gesture data did not include visible outliers caused
by hardware or environmental noise. In addition, the
algorithm was tested to see if it can provide robust-
ness against static light intensity changes during a
gesture, but with no success. As a result, the Hampel
Identifier was also rejected.

For data normalisation, the considered techniques
were the Z-transform [15] and simple division by the
maximum of the data series. The former is consti-
tuted of two steps - first subtraction of the mean from
the data and then division by its standard deviation.

However, because photodiode readings were going to
be positive integers and the Z-transform could result
in negative values, it was deemed more unsuitable for
the needs of the system for data variance removal.
Consequently, the second approach was chosen. A
further discussion on it is provided in Section 4.5.

The final receiver pipeline became a combination
of basic techniques, one part based on adapted exist-
ing projects’ approaches and another based on simple
signal-processing algorithms.

4.2 Sampling Frequency
It was established that a sampling frequency of 100
Hz is the best choice for the ambient light receiver. It
provides an efficient trade-off between enough data for
different gesture speeds and worst-case required mem-
ory space. Lower sampling frequencies like 50 Hz can
potentially result in gesture data of length less than
20 sampling, which seems to lack enough features for
accurate machine learning classification. On the other
hand, higher sampling frequencies like the one used by
GestureLite can lead to too much data redundancy,
resulting in as much as a total of 14000 data points
for a single gesture [4], and this wastes much more
computational and memory resources than actually
needed.

4.3 Edge Detection
The final receiver’s edge detection algorithm uses a
threshold value per photodiode. It then relies on the
fact that when a gesture is being performed, at least
one photodiode signal will go under its correspond-
ing threshold, effectively indicating the start point.
Similarly, the end point occurs when all photodiode
signals return above their thresholds. The data from
all photodiodes between those time points is stored
as the gesture data.

There were two problems this algorithm had to
account for. Firstly, environment noise could cause
a sudden drop in one of the photodiodes’ signals and
lead to a false positive gesture start. Secondly, some
gestures like clockwise finger hand rotation were ex-
perimentally found to contain intermediate periods of
no cast shadow on any photodiode, which could po-
tentially lead to a false positive gesture end.

In order to deal with those issues the algorithm
was adjusted to use multiple consecutive samples per

5



photodiode when determining if its signal has gone
below or above its corresponding threshold when de-
tecting gesture start and end. That avoided noise in
the photodiode data to be classified as a gesture start.
Also, the end detection length was chosen to be a few
times longer to provide enough time for intermediate
zero-shadow periods and prevent misclassified gesture
ends. Lastly, to further guarantee that background
noise is not seen as an actual gesture, gestures less
than 100 milliseconds are rejected by the receiver.

4.4 Threshold Computation
The receiver computes the photodiode thresholds for
edge detection in one of two ways. In the first case,
it waits until no gesture is performed for one whole
second and then uses the median of every individual
photodiode time series during that period multiplied
by a coefficient between 0 and 1 as the corresponding
diode’s new threshold. In the second case, if a gesture
takes longer than three seconds than it is considered
to not be a gesture but a change in static light inten-
sity and then the collected ’gesture data’ is used the
same way as in the first case to update the thresholds.
As a result of this approach, the receiver allows very
fast adapting to changes in light conditions with low
computational cost.

4.5 Preprocessing
After the gesture data is collected, it is further pro-
cessed to reduce environment noise, followed by nor-
malisation.

The former stage relies on the use of FFT to re-
move noisy frequencies. The FFT is an algorithm that
maps a time series signal of length N to its frequency
domain representation, where the output is also an
array of length N but every value reflects how one
specific frequency is present in the time series (mag-
nitude and phase). The inverse operation is called
inverse FFT (iFFT) and maps back to the time do-
main.

The preprocessing is comprised of 6 basic steps
which require minimum computational time and so
provide a high degree of real-time processing support.
All steps are performed on each photodiode data se-
ries independently:

1. Cut off values in each independent data series

which are above the corresponding current pho-
todiode threshold multiplied by a coefficient be-
tween 0 and 1, separate from the one used for
edge detection.

2. Trim the data series on the right while all pho-
todiodes are equal to the threshold, effectively
decreasing the gesture length.

3. Time-stretch the data series up or down to a
power of 2.

4. Convert to frequency domain with FFT, keep
only low gesture-related frequencies, zero-out ir-
relevant high frequencies and then convert back
with iFFT.

5. Cut off values in each independent data series
which are above the corresponding current pho-
todiode threshold.

6. Normalise each data series using its minimum
to the range (0,1).

By removing values higher than the gesture thresh-
old in a signal, the receiver leaves only the part of its
waveform influenced by the user-cast dynamic shadow.
A second cutting off in Step 5 is needed because the
FFT introduces small bumps in the flat regions of the
original signal that it processes.

The FFT requires its input to have a length that
is a power of 2 so step 4 is required and uses Lin-
ear Interpolation (see next subsection) to adjust the
length accordingly. The FFT stage keeps frequencies
no larger than 5 Hz, it being the highest frequency
people normally use in hand gestures. As a conse-
quence, the signals are smoothed significantly, reduc-
ing data variance and making them better suited for
machine learning classification.

The final step scales individual signals based on
their minimum so that it is mapped to 0. In essence,
each signal is first flipped vertically, then the max-
imum is found in the resulting data, followed by a
division by that maximum, switching the value range
from (0, threshold) to (0, 1), and finally the signal
is flipped back. The results are two: the peaks of
the separate photodiode signals are all mapped to
the same value of 0, providing a more environment-
independent way gesture data looks; the output value
range is suitable for machine learning models.

6



Figure 2: Linear Interpolation technique applied to
an example time-series signal. Each output value is
computed as the linear interpolation of two values in
the input based on the index of the output value.

4.6 Final Receiver Output
As the final receiver stage, the gesture data of all pho-
todiodes is again time-stretched to a pre-established
fixed length using Linear Interpolation. Figure 2 pro-
vides an example signal transformation based on this
approach. Not only is this technique extremely fast
and flexible, but it also keeps all important signal in-
formation intact provided the output length is large
enough, making it a particularly good choice for real-
time processing systems like the target of this re-
search.

5 Receiver Implementation
This section provides some additional details in terms
of the receiver’s software tool basis and parameter
tuning for the different stages described above.

5.1 Software Tools
The code base of the receiver was written in C++
combined with the standard framework for Arduino
microcontrollers. In addition, three third party Ar-
duino libraries were used: QuickMedian1, offering a
fast, in-place computation of the median of a data se-
ries; SimpleTimer2, providing a basic timer interrupt
routine functionality allowing the receiver to achieve
sampling time accuracy; and arduinoFFT3, imple-

1https://www.arduino.cc/reference/en/libraries/quickmedianlib/
2https://playground.arduino.cc/Code/SimpleTimer/
3https://www.arduino.cc/reference/en/libraries/arduinofft/

menting the FFT and iFFT computations for floating
point numbers.

5.2 Pipeline Parameters
The edge detection algorithm uses a window of 10
samples to identify a gesture start, which was found to
provide enough robustness against background noise
fluctuations. For end detection, it uses a window of
50 samples, providing support for gestures of long in-
termediate lack of shadow. For threshold adjustment,
the algorithm takes the median of the collected data
as described above and uses 70% of it as the new
threshold value, while also using 110% of that thresh-
old for the first cutting-off stage of the preprocessing
pipeline. Finally, the current receiver implementation
uses an FFT length of 128 and outputs a fixed-width
signal of length 100, which is considered to be both
space-efficient and not compromising on data suffi-
ciency.

6 Receiver Evaluation
Evaluation Setup: After implementation, the re-
ceiver was tested on multiple combinations of gestures
and light intensity conditions. In all cases, the set-
ting was indoors, both sunlight and lamp illumination
were present as ambient light, and a fixed photodiode
sensitivity with a 330kΩ resistor was used. The Ar-
duino microcontroller provided external power with
3.3V to the photodiodes, and their maximum digital
output value (the value read by software) was around
800.

Signal Processing Efficiency: Figure 3 shows
how the receiver performs for four pairs of gesture
and illumination level. It can be easily seen that af-
ter processing, fluctuations in the photodiodes signals
are suppressed significantly. In addition, the data is
converted to a more uniform condition-independent
representation with equal scaling in both axes and a
common baseline for all photodiode signals.

Time and Memory Efficiency: The end-to-end
run of the receiver processing pipeline takes around
20 ms, which in theory satisfies any gesture recog-
nition system’s real-time constraints. The software
uses small buffers for all its operations based on the
assumption that, in practice, all gestures will take at
most two seconds. Consequently, its RAM memory

7



Figure 3: Gesture signals for Left Swipe and Clock-
wise Hand Rotation passed through the receiver
pipeline in 100 Lux (row 1 and 3) and 700 Lux (row
2 and 4). On the left the signal is in the range
(0, threshold). On the right the signal is in the range
(0, 1).

footprint is around only 2 KB and its machine code
takes around 10 KB. Because embedded systems usu-
ally have a few hundred kilobytes of both RAM and
ROM available in hardware, the receiver software is
deemed sufficiently small for usage in this domain.

Optimal Operating Conditions: After testing
in the aforementioned setup, the results showed that
the receiver is able to operate sufficiently well in the
presence of as little as 100 Lux and up to at least
700 Lux. It is expected that in conditions out of this
range it can still achieve the same performance but it
is required that the photodiode sensitivity be adjusted
accordingly to allow gesture shadows to cause enough
variation in sensor readings so that threshold-based
edge detection is possible.

Disadvantages: The receiver version at the time
of writing this paper has the following drawbacks:

1. It does not provide robustness against changes
in light conditions during a gesture.

2. It cannot, in general, operate correctly in ex-
tremely fast changing lighting conditions.

3. It performs computations even while no actual
gesture recognition occurs.

The processing pipeline outlined in the previous sec-
tion does not account for irregularities like sudden
signal drops and rises happening while gesture data
is being collected. This can result in gesture output
data as the one shown in Figure 4.

In addition, if static light intensity changes at
least once every 2 seconds (like in the case of clouds
constantly influencing the ground surface shadowing),
the receiver does not update its threshold fast enough
to allow new gestures to be inputted and efficiently
processed.

Lastly, the threshold adjustment procedure takes
place at least once every second the overall system
is inactive, which wastes some amount of computa-
tional resources and power. However, the operation
takes only a few tens of microseconds so this is still
considered acceptable for the practical use case.

8



Figure 4: Example of a sudden change in the pho-
todiodes’ signals when static light intensity increases
right in the middle of a gesture

7 Responsible Research
The results of this research are easily reproducible
provided one has the code base4 and installs the afore-
mentioned Arduino libraries. In addition, one should
make sure the light intensity conditions match or are
between the ones shown in Section 6.

On the other hand, for the purposes of full dis-
closure on how the research was conducted, it must
be mentioned here that not all possible receiver so-
lutions were tested. In particular, Section 4 already
mentioned that the DWT was not implemented due
to lack of time. Another algorithm discarded for the
same reasons was B-spline interpolation [16], which
could provide robustness against variations in light
intensity during a gesture but its existence was dis-
covered too late, making it hard for proper evaluation
to begin. Finally, some of the existing work-used edge
detection approaches were not investigated as part of
the receiver once the currently used approach proved
to work with reasonable efficiency.

8 Related Work
Many gesture recognition systems using unmodu-
lated ambient light have been developed during the
past decade. This section summarises some of them,
namely GestureLite [4], LiGest [3], SolarGest [2], Vi-
Hand [5], LightDigit [6] and 4-LDR [7].

All systems rely on a large microcontroller like
Arduino Due or Uno for computations, and in par-
ticular GestureLite even performs the actual prepro-
cessing on a laptop. With respect to light sensing,

4https://github.com/StijnW66/CSE3000-Gesture-
Recognition

one of four types of hardware is used - floor-deployed
light sensors, which are found in LiGest, a solar cell,
used in SolarGest, light dependent resistors, part of
4-LDR, and finally GestureLite, ViHand, and Light-
Digit make use of a photodiode array.

For edge detection, the solutions either use a dy-
namically adjustable threshold which is constantly
updated by the new sensor readings, as is the case for
GestureLite, LiGest, 4-LDR, or a sliding window edge
detection, where only the most recent readings deter-
mine if a gesture edge is contained in them, which is
the approach taken by SolarGest.

In terms of data processing, LiGest and SolarGest
use the Discrete Wavelet Transform for noise reduc-
tion before edge detection, while ViHand combines a
Hampel Identifier for outlier removal with a low-pass
Butterworth filter to isolate only frequencies present
in a human gesture signal. A common technique for
data normalisation among most listed projects is the
Z-score transform, which results in data having a nor-
mal distribution with zero mean and variance of one.
One exception is GestureLite which divides by the
maximum of the data.

9 Conclusion
This paper presented a design for a software-based
ambient light receiver using photodiodes and running
on an Arduino Nano 33 BLE microcontroller that
handles gesture detection, data collection and data
processing for suppression of environmental influence
and normalisation. The design was evaluated in mul-
tiple conditions and found to provide a fast and mem-
ory efficient end-to-end process with sufficient pho-
todiode signal cleaning performance and condition-
agnostic output representation. It can therefore be
facilitated by an embedded gesture recognition sys-
tem designed for real-time processing.

There are two opportunities for improvement of
the existing receiver design and implementation by
future work. The first one suggests the code can be
optimised by switching from FFT/iFFT filtering to
convolution with a low-pass filter which is expected
to have a polynomially smaller time complexity but
requires its coefficients to be adjusted based on the
cutoff gesture signal length. The other idea is ex-
tending the signal processing pipeline to provide sup-
port for additional environment dynamics like light

9



changes in the middle of a gesture.

References
[1] EY Knowledge, “In a touchless world, how

will you embrace technology?” Tech. Rep.,
2020. [Online]. Available: https://www.ey.com/
en_gl/innovation/in-a-touchless-world-how-
will-you-embrace-technology

[2] D. Ma, G. Lan, M. Hassan, W. Hu, M. B.
Upama, A. Uddin, and M. Youssef, “So-
largest: Ubiquitous and battery-free gesture
recognition using solar cells,” in The 25th
Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’19.
New York, NY, USA: Association for Com-
puting Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3300061.3300129

[3] R. H. Venkatnarayan and M. Shahzad, “Gesture
recognition using ambient light,” Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol.,
vol. 2, no. 1, mar 2018. [Online]. Available:
https://doi.org/10.1145/3191772

[4] M.-D. A. Kaholokula, “Reusing ambient light to
recognize hand gestures,” 2016.

[5] Q. Hu, Z. Yu, Z. Wang, B. Guo, and C. Chen,
“Vihand: Gesture recognition with ambient
light,” in 2019 IEEE SmartWorld, Ubiquitous In-
telligence Computing, Advanced Trusted Com-
puting, Scalable Computing Communications,
Cloud Big Data Computing, Internet of People
and Smart City Innovation, 2019, pp. 468–474.

[6] H. Liu, “Lightdigit: Embedded deep
learning empowered fingertip air-writing
with ambient light,” Jan 1970. [Online].
Available: https://repository.tudelft.nl/
islandora/object/uuid:afc5471f-c2a3-4ecf-b15e-
6edf43a9d22b?collection=education

[7] G. V, S. Salvi, P. Sahoo, M. Dodiya, and
S. Gupta, “A shadow based low-cost hand move-
ment recognition system for human computer in-
teraction,” in 2021 6th International Conference
for Convergence in Technology (I2CT), 2021, pp.
1–4.

[8] R. Provost, “What is Ambient Light â Lighting
Techniques Explained,” 12 2021. [Online].
Available: https://www.studiobinder.com/blog/
what-is-ambient-light-definition/

[9] Q. Wang and M. Zuniga, “Passive visible
light networks: Taxonomy and opportunities,”
in Proceedings of the Workshop on Light Up
the IoT, ser. LIOT ’20. New York, NY,
USA: Association for Computing Machinery,
2020, p. 42â47. [Online]. Available: https:
//doi.org/10.1145/3412449.3412551

[10] R. Teja, “What is a Photodiode?
Working, V-I Characteristics, Appli-
cations,” 09 2021. [Online]. Available:
https://www.electronicshub.org/photodiode-
working-characteristics-applications/

[11] W. Storr, “Negative Feedback and Negative
Feedback Systems,” 07 2020. [Online]. Avail-
able: https://www.electronics-tutorials.ws/
systems/negative-feedback.html

[12] Wikipedia contributors, “Fast Fourier trans-
form,” 05 2022. [Online]. Available: https://
en.wikipedia.org/wiki/Fast_Fourier_transform

[13] ——, “Discrete wavelet transform,” 04 2022.
[Online]. Available: https://en.wikipedia.org/
wiki/Discrete_wavelet_transform

[14] “Filter outliers using Hampel identifier -
Simulink - MathWorks Benelux.” [Online].
Available: https://nl.mathworks.com/help/dsp/
ref/hampelfilter.html

[15] H. Lohninger, “z-Transform.” [Online].
Available: http://www.statistics4u.info/
fundstat_eng/ee_ztransform.html

[16] Wikipedia contributors, “B-spline,” 06 2022.
[Online]. Available: https://en.wikipedia.org/
wiki/B-spline

10

https://www.ey.com/en_gl/innovation/in-a-touchless-world-how-will-you-embrace-technology
https://www.ey.com/en_gl/innovation/in-a-touchless-world-how-will-you-embrace-technology
https://www.ey.com/en_gl/innovation/in-a-touchless-world-how-will-you-embrace-technology
https://doi.org/10.1145/3300061.3300129
https://doi.org/10.1145/3191772
https://repository.tudelft.nl/islandora/object/uuid:afc5471f-c2a3-4ecf-b15e-6edf43a9d22b?collection=education
https://repository.tudelft.nl/islandora/object/uuid:afc5471f-c2a3-4ecf-b15e-6edf43a9d22b?collection=education
https://repository.tudelft.nl/islandora/object/uuid:afc5471f-c2a3-4ecf-b15e-6edf43a9d22b?collection=education
https://www.studiobinder.com/blog/what-is-ambient-light-definition/
https://www.studiobinder.com/blog/what-is-ambient-light-definition/
https://doi.org/10.1145/3412449.3412551
https://doi.org/10.1145/3412449.3412551
https://www.electronicshub.org/photodiode-working-characteristics-applications/
https://www.electronicshub.org/photodiode-working-characteristics-applications/
https://www.electronics-tutorials.ws/systems/negative-feedback.html
https://www.electronics-tutorials.ws/systems/negative-feedback.html
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform
https://nl.mathworks.com/help/dsp/ref/hampelfilter.html
https://nl.mathworks.com/help/dsp/ref/hampelfilter.html
http://www.statistics4u.info/fundstat_eng/ee_ztransform.html
http://www.statistics4u.info/fundstat_eng/ee_ztransform.html
https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/B-spline

	Introduction
	Contributions of This Research
	Research Paper Structure

	Background
	Ambient Light
	Photodiodes

	System Overview
	System Hardware Setup
	System Operation Overview
	Research Methodology

	Receiver Design
	Design Methodology
	Sampling Frequency
	Edge Detection
	Threshold Computation
	Preprocessing
	Final Receiver Output

	Receiver Implementation
	Software Tools
	Pipeline Parameters

	Receiver Evaluation
	Responsible Research
	Related Work
	Conclusion

