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Foreword 

This report was written by Johannes Bouman, Ph.D. student at the Faculty of Civil En­
gineering and Geosciences, Delft, The Netherlands under the supervision of DI. Radboud 
Koop and Prof. dI. Roland Klees. 

Two Appendices are included for reference. Appendix A deals with introductory 
functional analysis and in Appendix B spectral decomposition is treated as weil as some 
conventions used in this report. 



Summary 

The solution of ill-posed problems is non-trivial in the sense that frequently applied meth­
ods like least-squares fail. The ill-posedness of the problem is refiected by very small 
changes in the input data which may result in very large changes in the output data. 
Hence, some sort of stabilization or regularization is required. Some examples of (geode­
tic) ill-posed problems are given. 

Several regularization methods exist to compute stabie solutions, along with several 
ways of determining the so-called regularization parameter(s). The idea of the regu­
larization methods is discussed as weil as the determination of optimal regularization 
parameters. Moreover, the different methods are compared, emphasizing the quality or 
accuracy of the methods. 

Finally, the differences between methods and parameter choice rules are illuminated 
by an example from airborne gravimetry. 
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Notation 

Roman upper-case 

A 

Ak 
Aw 
C 
C[a,b] 
D 
E 
F 
G 

H 
HP 
I 
In 
J",(x) 
K 
Kk 
K(x, y) 
L 

N 

1) compact operator mapping an element f from Hilbert space F to an 
element g of Hilbert space G 
2) matrix E IRmxn

, m :2: n 
approximation of A in TSVD and TGSVD 
transformed design matrix, Aw = WA 
signal weight matrix 
class of continuous functions on [a, b] 
diagonal matrix with elements di 
matrix with ones on the anti diagonal 
Hilbert space 
1) Hilbert space 
2) I-A*A 
(semi-)orthogonal matrix in QR factorization 
Sobolev space 
indentity operator 
indentity matrix of dimension n 
function to be minimized with respect to x for fixed a 
(semi- )orthogonal matrix in QR factorization 
Krylov subspace 
integration kemel 
1) differential operator, regularization matrix 
2) strict lower triangular matrix 
Hilbert space of square integrable functions 
1) diagonal matrix with elements Mi in GSVD 
2) square invertible matrix 
3) average operator 
1) size of perturbation E IR 
2) norm al matrix, N = A* A 
natural numbers 
weight matrix of errors [ 
matrix with vectors Pk 
(semi-)orthogonal matrix in QR factorization 
error covariance matrix 
1) upper triangular matrix in QR factorization 
2) R> 1 in discrepancy principle 



xii 

IR 
IRt 
IRmxn 

S 

T 

u 
V 
W 
X 
Z(a) 

real numbers 
positive real numbers, zero included 
space to which matrix A belongs 
1) symmetrie positive definite matrix 
2) Choleski decomposition of C = SST 
1) compact, symmetrie and semi-positive definite operator 
2) upper triangular matrix in QR factorization 
(semi-)orthogonal matrix with singular vectors Uj 

orthogonal matrix with singular vectors Vi 

Choleski decomposition of P = wTW 
nonsingular n-by-n matrix 
function to become zero for a 

Roman lower-case 

Contents 

In generallower-case letters with a roman index (i,j,k,m or n) are real numbers, for 
example di E IR. Printed in bold face, however, lower-case letters with such an index are 
vectors or functions, for example Un 0 

a minimum of interval, K(x, y) : [a, bJ ---+ [a, bJ 
a" Fourier coefficients 
b maximum of interval , K(x , y) : [a, bl ---+ [a, bl 
b b = AT y , b = A*g 
c constant E IRt 
ei positive function 
di i-th diagonal entry of matrix D 
d% stability error af ter k iterations 
ek approximation error af ter k iterations 
f oo-vector with exact solution, f = f(x), a :=:; x :=:; b 
fs any solution of Af = g 
re oo-vector with approximate solution from g', sometimes é is not written 
f~ oo-vector with regularized solution from g', sometimes é is not written 
g oo-vector with exact observations, g = g(x), a:=:; x :=:; b 
g' oo-vector of observations with error ~, sometimes é is not written 
h l)h=h(x),a:=:;x:=:;b 

2) element of Krylov space 
index for finite dimension, x = (Xl, X2,···, Xi,···, xnf 

j index for finite dimension, y = (YI, Y2,· · ·, Yj,···, Ymf 
k 1) perturbation frequency E IN 

2) truncation level for truncated singular value decomposition, number of 
iterations 
distance from x to solution Xs 

m number of measurements < 00, y = (YI, Y2, ... , Ym)T 
n 1) number of unknowns < 00, x = (Xl, X2, ... , Xn)T 

2) index for infinite dimensions, f = (h, h, . .. , fn , .. Y 
o n- p 
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pI) number of generalized singular val ues 
2) index of Sobolev space HP 

Pk general direction 
q m-(n-p) 
rk residual af ter k iterations 
s vector wi th side constraints 
U n singular vector, eigenvector of AA* (column vector) 
V n singular vector, eigenvector of A* A (column vector) 
W n eigenvector of T (column vector) 
x variabie of function, g(x), f(x) 
x n-vector with exact solution 
Xg generalized biased estimate 
Xi column vector of X 
X s any approximate solution of x 
XE n-vector with approximate solution from yE, sometimes é is not written 
x~ n-vector with regularized solution from yE, sometimes é is not written 
x least-squares estimate 
y variabie of function , f(y), y is the integration variabie 
y m-vector with exact observations 
yw transformed observation, yw = Wy 
yE m-vector of observations with error [, sometimes é is not written 
z vector with elements E IR 

Greek upper-case 

l:. diagonal matrix with elements O:i 

l:.x bias 
L; diagonal matrix with singular values (Ji 

n general Tikhonov penalty term 

Greek lower-case 

0: regularization parameter, 0: E IRt or 0:- 1 = k E IN 
f3 relaxation parameter 
"(i generalized singular value 
8 max If - fEl, max Ix - xEI 
8i fil ter factor i 
8ij Kronecker delta 
8x 8x = x~ - x 
[ m-vector or oo-vector with measurement errors or perturbation 

é 11[11 
(i element of z 
'1](0:) log Ilx~112 
Ài eigenvalue 
{ti i-th diagonal element of M in GSYD 
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ç(o) log II Ax~ - y' 112 
(J2 variance of unit weight 
(Ji singular value 
T approximately one, T > 1 

1f; II Ax - yllllxll 

Operations 

AT transpose of A E IRm xn 
A* conjugate or adjoint of operator A 
A -1 inverse of A 
A + generalized inverse of A 
At regularized generalized inverse of A 
D(A) domain of A 
E {y } expectation of y 
N(A) null space of A 
N(A)1- space orthogonal to the null space of A 
R(A) range of A 

R(A) closure of the range of A 
lal absolute value of a E IR 
(a, b) innner product of a and b, (a, b) = bTa 
d(f', f) distance from f to f ', d is the metric defined on F 
f' first derivative of f with respect to its argument 
IlfilF Hilbert space norm of f 
Li lli V[ matrix 
{ v n, lln; (J n} singular system 
(J(T) spectrum of T 

The end of examples, definitions and theorems is marked with a e . 
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BE 
CG 
DGSVD 
DSVD 
GBE 
GCV 
GPS 
gsv 
GSVD 
l.s. 
MSE 
MSEM 
PCG 
SNR 
SST 
SVD 
TGSVD 
TR 
TSVD 

Biased Estimation 
Conjugate Gradients 
Damped Generalized Singular Value Decomposition 
Damped Singular Value Decomposition 
Generalized Biased Estimation 
Generalized Cross Validation 
Global Positioning System 
generalized singular values 
Generalized Singular Value Decomposition 
least-squares 
Mean Square Error 
Mean Square Error Matrix 
Preconditioned Conjugate Gradients 
Signal-to-Noise Ratio 
Satellite-to-Satellite Tracking 
Singular Value Decomposition 
Truncated Generalized Singular Value Decomposition 
Tikhonov Regularization 
Truncated Singular Value Decomposition 



1 

INTRODUCTION 

1.1 Background and problem description 

An accurate and high resolution knowledge of the earth 's gravity field is needed in several 
earth oriented scienees. In geodesy, for example, the gravity field is needed for levelling 
with GPS, in oeeanography it is important for studying ocean eireulation and last but not 
least in geophysies a better knowledge of the earth 's gravity field yields better boundary 
eonditions in the study of the earth 's interior. 

A model of t he earth 's gravity field may be determined by means of satellite observa­
tions. Examples of satelli te measurement techniques for global gravity field determination 
are satellite tracking from stations at the earth 's surface (ranges , range-rates, direetions), 
satellite gradiometry and satelli te-to-satelli te traeking (SST). 

It is weil known that only the long wavelengths (about 600 km at the equator , eorre­
sponding to spherieal harmonie degree 70) of the gravity field are revealed by eurrently 
available satellite traeking data, Nerem et al. (1994) ; Schwintzer et al. (1997). Gravity 
field models from satellite traeking data are called satellite-only modeis. The combi nat ion 
of satellite traeking data with gravimetry and satellite altimetry allows for sol ving shorter 
wavelengths down to about 100 km at the equator, eorresponding to spherieal harmonie 
degree 360, cf. Rapp et al. (1991); Gruber et al. (199 5) . 

The eomputation and the eombination process of the satelli te-only models is hampered 
by the laek of a proper quality description of the solu t ions. On the one hand model 
errors are responsible for this, e.g. insufficient modelling of drag for satellites and datum 
connection problems for gravity data, Nerem et al. (1994); Heck (1990). On the other 
hand there is concern that the quality of the satelli te-only solutions is not described 
properly: although it is generally recognized that the solutions are biased , this bias is not 
aeeounted for, Marsh et al. (1989) ; Xu (1992b). 

In the near future several dedicated gravity fi eld missions might be launched, such as 
Grace using low-low SST, Tapley (1996) , and Gorf' using a combination of high-low SST 
and gradiometry, ESA (1996). The purpose of these missions is to determine very ac-
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curately high resolution gravity field models (Goce), and time-varying gravity signatures 
(Grace). However, as noted above , it is unclear how the accuracy has to be described. 
When the bias is taken into account the accuracy description might be different from 
the conventional (least-squares collo cat ion) accuracy description. Furthermore, colloca­
tion probably is no longer the optimal estimation procedure as it is based on unbiased 
assumptions. Hence, it is of interest to look at other estimation methods that take the 
bias into account. 

1.2 Purpose and limitations 

The purpose of this study is to describe different regularization methods and their conse­
quences for the quality of the solution. By quality we mean the deviation of the estimated 
from the true function. 

In geodesy one type of regularization, Tikhonov-regularization, has been interpreted as a 
kind ofcollocation, Rummei et al. (1979); Moritz (1980); Marsh et al. (1989). Xu (1992a) 
introduced biased estimation in geodesy as an alternative. It is shown here that basically 
Tikhonov-regularization and biased estimation are equivalent with the same description 
of quality, whereas collocation has a different quality description . Other regularization 
methods are studied , most of them have been used in geodesy. 

Although areasonabie amount of geodetic literature on regularization exists, an over­
view of the different methods together with their implications for the quality description 
has to our knowledge not been given yet. This overview is given here and the mean square 
error is considered to be a suitable measure of the quality. For a comparison of methods 
see, e.g. Schwarz (1979) ; Rummei et al. (1979) ; Sanso (1989); Rauhut (1992), concerning 
the quality description cf. Moritz (1980); Xu (1992b); Schwarz (1973); Gerstl and Rummei 
(1981) ; Neyman (1985); Xu (1992a); Xu and Rummei (1994a). For a comparison of 
methods in non-geode tic literature see Louis (1989); Groetsch (1993); Engl et al. (1996) ; 
Hansen (1997); Phillips (1962); Tikhonov (1963b, 1963a); Tikhonov and Arsenin (1977) ; 
Nashed (1976); Groetsch (1984); Wahba (1990) . 

The errors considered in this report are restricted to data errors, that is, model errors are 
not part of the discussion. One reason is that it would unnecessarily complicate matters. 
Moreover, physical modeis, relating the measurements to the unknowns, are usually weil 
known, Wing (1991). Especially when the model error is small compared to the data 
error it causes no real addi tional problems, Morozov (1984). A geodetic example is the 
computation of the geoid height in a certain point from global gravity data using Stokes' 
formula. This relation is valid in spherical, constant radius approximation , which produces 
a model error of less than 1% with respect to a reference ellipsoid. It is assumed that 
model errors can be overcome by iteration if it converges, and these errors are assumed 
to have equal influence on the quality when comparing different regularization methods. 

One important inverse problem th at we have in mind is the determination of the global 
gravity field from satellite gradiometric measurements. Typically, these measurements are 
not sampled on a global basis, since the satellite moves in a non-polar orbit, Blaser et al. 
(1996); ESA (1996). At a first glance one might t hink that the determination of the global 
gravity field from these 'Iocal' measurements has an inherent model error. However, the 
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computation of the second derivatives of the potential a t height h above thc earth 's surface 
in a region 0 ~ À ~ 2 'Ir , pg ~ () ~ 'Ir - pg is perfectly legitimate, there is no model error 
(À stands for longitude, () stands for co-latitude and pg is half the size of the polar gap, 
the region without observations). The inverse computation suffers from , among others, a 
lack of uniqueness. 

Note that aliasing caused by the finite sampling interval has to be dealt with when 
performing practical computations. Aliasing is neglected here, however. 

The observation model used is linear. The regularization of non-linear models can not 
be treated with such generality as that of linear modeis, Engl et al. (1996). Moreover, 
non-linear models are usually linearized , iteration should account for the approximation , 
see for example Van Gelderen (1992). Snieder (1998) discusses problems related to non­
linear inverse pro bie ms. 

1.3 Outline 

In Chapter 2 ill-posed problems are introduced via integral equations and the spectral 
decomposition of the operator equation should further clarify the ill-posedness. Moreover, 
some examples of ill-posed problems are given. Several regularization methods as well as 
their quality are discussed in Chapter 3. With a few exceptions, all these methods have 
had applications in geodesy and they will be compared with each other. In Chapter 4 
the determination of the regularization parameter(s) and other computational aspects are 
discussed. A bet ter idea of similarities of and differences between methods is obtained by 
considering airborne gravimetry, Chapter 5, as an example. Finally, the conclusions and 
recommendations can be found in Chapter 6. 



2 

DEFINITION AND EXAMPLES OF 
ILL-POSED PROBLEMS 

2.1 Introduction 

In th is Chapter it is shown why the linear integral equation 

t K(x, y)f(y)dy = g(x), a::; x ::; b 

or symbolical 
Af = g 

(2.1) 

(2 .2) 

is ill-posed. This becomes especially clear using the spectral decomposition of the compact 
operator A. Ill-posedness is illustrated with some (geodetic) examples. 

Mainly Kress (1989) ; Groetsch (1993) and Tikhonov and Arsenin (1977) are used , but 
see also Hansen (1997) and Rummei et al. (1979) . Two introductory books on inverse 
problems are Wing (1991) and Groetsch (1993). 

Before we proceed some important concepts are treated , cf. Kress (1989) , see also Ap­
pendix A. Equation (2.1) is a Fredholm integral equation of the first kind, where the 
function f is unknown and the Kernel K and the right hand side g are given functions. 
The operator A : F ---+ C in equation (2 .2) is a single valued map ping with domain F and 
whose range is contained in C , that is, for every f E F the mapping A assigns a unique 
element Af E C. The range R(A) is the set R(A) == {Af: fE F} of all image elements. 

Injective, surjective and bijective. If for each g E R(A) there is only one element 
fE F with Af = g then A is said to be injective and its inverse mapping A+ : R(A) ---+ F 
is defined by A+g == f. The inverse mapping has domain R( A) and range F. lt satisfies 
A+ A = I on F and AA+ = I on R(A) where I is the identity operator. If R(A) = C 
then the mapping is said to be surjective. If it is inject.ive and surjective the mapping is 
called bijective, that is, the inverse mapping A+ : C ---+ F exists. 
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Bounded operators. An operator A : F ~ C mapping a linear space F into a linear 
space C is called linea, if 

A(clfl + C2f2) = clAfl + c2 Af2 

for all fl, f2 E F and all Cl , C2 E IR. 

Definition (bounded). A linear operator A : F ~ C from a normed space F into 
a normed space C is called bounded if there exists a positive number c such that 

for all f E F. Each number c for which this inequality holds is called a bound for the 
operator A. • 

Definition (continuous). Consider the mapping A : F ~ C where F and Care 
metric spaces with d and d the metrics defined. The problem of determining the sol ut ion 
fE F from g E G is said to be stabie or continuous on the spaces (F, C) if for every é > 0 
there is a Ó > 0 such that 

(2.3) 

where fl , f2 E F and gl , g2 E C. • 
A linear operator is continuous if and only if it is bounded. Hence, for a linear operator 

boundedness and continuity mean the same. 

Compact operators. A linear operator A : F ~ C is compact if and only if for each 
bounded sequence {fn} in F the sequence {Afn} contains a convergent subsequence in C. 
Compact linear operators are bounded. 

Theorem 2.1. Let F, C, H be normed spaces and let A : F ~ C and B : C ~ H 
be bounded linear operators. Then the product BA : F ~ H is compact if one of the 
two operators is compact. • 

Theorem 2.2. The indentity operator I : F ~ F is compact if and only if F has 
finite dimension. • 

Therefore, the compact operator A cannot have a bounded inverse unless its range is 
finite. (A+ A = I is not compact in infinite dimensions due to Theorem 2.2 and because 
A is compact A + has to be unbounded in view of Theorem 2.1.) For a proof of these 
theorems see (Kress, 1989, Ch. 2). 

2.2 Ill-posed problems 

There are inverse or indirect problems which imply that there are also direct problems: 
given a cause f and a model A find the effect g , g = Af. A is assumed to be linear and 
compact, therefore there is a unique effect g for each cause f (the mapping A is injective) 
and small changes in f result in small changes in g. In addition to the direct problem 
there are two types of inverse problems: 
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causation given A and g , determine f , 

model identification given f and g , determine A. 

One might hope th at the first inverse problem, causation, is the most important one, 
since it is more complicated to determine an unknown model. However, of ten only an 
approximate model is known and with the causation some model parameters should be 
identified as weIl. For example, in the case of determination of the gravity field from 
satellite measurements models for drag and solar-pressure acting on a satellite are not 
always accurate enough. Although this is an interesting subject it is not treated here, as 
stated before, to avoid unnecessary complications. We will concentrate on causation and 
will not look at model identification. 

2.2.1 Existence, uniqueness and stability 

In the direct problem the solution is assumed to exist and to be unique and stabIe. For 
inverse problems some or all of these properties may not hold. When a solution for the 
problem of determining f exists and this solution is unique and stabIe the problem is said 
to be well-posed or properly posed: 

Definition (well-posed, ill-posed). Let A : F ---t G be an operator from a normed 
space F into a normed space G. The equation 

Af= g (2.4) 

with fE F, gE Gis called well-posed if A is bijective and the inverse operator A+ : G ---t F 
is continuous. Otherwise the problem is said to be ill-posed or improperly posed. • 

According to this definition th ree types of ill-posedness can be distinguished. If A is not 
surjective then (2.4) is not solvable for all gE G (nonexistence). If A is not injective then 
(2.4) may have more than one solution (nonuniqueness). Finally, if A+ exists but is not 
continuous then the sol ut ion f of Eq. (2.4) does not depend continuouslyon the data g 
( instability). 

The well-posedness of a problem is a property of the operator A together with the 
solution space F and the data space G incJuding the norms on F and G. Therefore 
maybe, instability could be overcome by changing the spaces F and G and their norms. 
However , this approach is inadequate since the spaces F and G including their norms are 
determined by practical needs , Kress (1989). 

As mentioned above, usually at least one of the conditions is not satisfied in inverse 
problems, therefore inverse problems are usually ill-posed. The problem can for instance 
be unstable, that is small changes in the data gresuit in large changes in the solution f 
and th at is of course undesirable. For example , if one wants to determine a function f 
from measurements g', the solutions f ' should preferably be close to the 'true' function 
f . When the small difference between g and g' causes a large difference between f and 
f' one obviously has aproblem. To overcome this difficulty some type of stabilization or 
regularization is applied , compare the next Chapter. 

The existence of the solution will not be a matter of great concern in this report. 
Naturally, it is an important requirement that a solution exists for exact data, but for 
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perturbed data the problem has to be changed (regularized) and the notion of a solution 
can be relaxed. In practice the existence of an approximate solution is required. As side 
rem ark we note that even in the presence of exact data no solutiof! may exist since every 
model contains simplifications and approximations. 

The amount of data that is available for the determination of the solution f is usually 
fini te. Because this is a continuous function there are infinitely many degrees of freedom, 
and therefore the approximate solution is never unique in practice. Also when continuous, 
exact data is available the null space of A may not be zero. However , we will assume 
injectivity unless stated otherwise, and we will not discuss nonuniqueness due to the 
finite amount of data, see for example Backus and Gilbert (1967, 1968) ; Parker (1994); 
Trampert and Snieder (1996) . 

2.2.2 Inverse problems and integral equations 

Equation (2.1) is a special form of the more general equation with h(x) f(x) added to the 
right-hand side: 

g(x) = t K(x , y)f(y)dy + h(x)f(x). 

If h(x) == 0 then we have an integral equation of the first kind, if h(x) =f 0 for a :s x :s b, 
the equation is of the second kind, and if h(x) vanishes somewhere but not identically, 
the equation is of the third kind, Phillips (1962). Here we consider 

f - A'Af A*g 

f - Tf h 

where T: F -+ F is a compact linear operator. If N(I -T) = {O} , then I -T is injective 
and the solution J E F is unique and depends continuouslyon h, Groetsch (1984); Kress 
(1989). In our case, therefore, the integral equation of the second kind is known to be 
well-posed, a unique and stabie solution exists, Groetsch (1993). This fact will be useful 
later. 

From Theorems 2.1 and 2.2 one knows that a compact operator cannot have a bounded 
inverse. The following example, taken from Tikhonov and Arsenin (1977) , shows the 
instability of (2.1). 

Example. In equation (2.1), f(y) is the unknown function in F,g(x) is a known(or 
measured) function in G. The solution f(y) E C[a, bl, i.e. fis an element of the c1ass C 
of functions that are continuous on t he c10sed interval [a, bJ. Note that the linear space 
C[a, bl of continuous functions defined on an interval [a, bl c IR is complete with respect 
to the maximum norm 

Ilflloo = max If(y) I 
a~y~b 

but not with respect to the mean square norm L2. The Hilbert space L2[a, bJ is the 
completion of C[a, bl with respect to the inner product 
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see Kreyszig (1989) . Therefore, changes in the left-hand member of the equation are 
measured with the L 2-metric 

while changes in f(y) are measured with the metric 

Consider the function fE(y) = f(y) + N sin ky which is a solution of equation (2.1) with 
left-hand member 

gE(X) = g(x) + N t K(x, y) sin kydy 

with k E IN, N E IR. The Riemann-Lebesgue lemma, Groetsch (1993), states that if the 
kemel is square-integrable,l th en 

gk == l b 

K(x, y) sinkydy ~ 0 as k ~ 00 

where the convergence is in the sense of the mean square norm. 
Thus for any N 

lim d(gE, g) = lim INIIIgk Ilc = 0 
k->oo k->oo 

but 

dW,f) = max If(y) - f E(y)1 = max IN sin kyl = INI 
yE[a,b] YE[a,b] 

independent of k. The distance between the solutions f and f E is therefore arbitrarily 
large. This makes the instability fundamental, and not just a consequence of some special 
form of the kemel. Very smal! changes in g(x) can be accounted for by large changes in 
f(y) , Groetsch (1993). • 

2.2.3 Spectral decomposition 

The spectral form of A f is 
oe 

Af = L O"n(f, vn)un 
n=l 

and is cal!ed the singular value decomposition (SVD) of A. The orthonormal eigenvectors 
U n and V n form a complete orthonormal set for R(AA*) and R(A*A) respectively. The 
numbers O"n are called singular values, which decrease towards zero for increasing n if A 
is a compact operator, cf. Appendix B. 

1 Which is the case for the larger majority of integral equations of the first kind in real applications. 
Then the operator on U is compact, Groetsch (1993). 
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Generalized inverse, instability. The operator A+ in A+g = f is also called the 
generalized inverse of A, and A+g is the l.s. solution of min IIAf - gllb, cf. Appendix B. 
The generalized inverse A+ can be written in spectral form as weil. For g E D(A+): 

(2 .5) 

Equation (2.5) shows that the inverse becomes unstable when errors are present. Errors 
in g corresponding to high frequencies, i.e. large n, are amplified by large factors l/an . 

If dim R(A) < 00 the amplification stays bounded, but might be unacceptably large. 
However, if dim R(A) = 00 , then limn->oo an = 0 holds, so that data errors of a fixed size 
(e.g. white noise) can be amplified without bounds. For example, if gE = g + EUn , then 
lig' - gilG = E , but, due to (2.5) 

IIA+g - A+g' IIF = 11 (EU
n

, Un) vnll =!...- --t 00 as n --t 00 . 
an F an 

This also suffices to show that in case of finite dimensional problems we may formally not 
speak about ill-posed problems since the error always stays bounded. However, the error 
may be unacceptably large and the finite dimensional equation is usually derived from the 
original infinite dimensional problem Af = g. With increasing order of approximation 
(with increasing n) the problem of solving Ax = y becomes therefore more and more 
ill-posed: 

lim (Ax - y) = (Af - g). 
n,m-HXJ 

Statistical approach. The considerations so far are primarily based on the determin­
istic approach, the statistical properties of the measurements and the solution were not 
given much attention. A different point of view on the same problem is the statistical 
approach, which classifies the problem of solving min IIAx - Y'II~ as nonorthogonal, that 
is ATA is not nearly an indentity matrix, Hoeri and Kennard (1970). 

Consider the linear regression model y = Ax +~, where it is assumed that A is m x n, 
m ~ n and of rank n, x is n x 1 and unknown, E{Û = 0, and E{ EET} = a2Im. The best 
linear unbiased estimate of x is 

and minimizes the quadratic form 

if>(ie) = (y - Aie)T(y - Aie). (2.6) 

The matrix ATA is said to be in correlation form , Hoeri and Kennard (1970), and we are 
concerned with cases for which it is not nearly a unit matrix. The effe cts of this condition 
on the estimation of x can be demonstrated by considering the error variance-covariance 
matrix of ie and its distance from the expected value. The first is given by 

Let the distance from x to ie be I, then: 

12 = (ie - xf(ie - x) (2.7) 
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and 
E{f} = cr2 trace(ATA)-1 

or equivalently from (2.7) and (2 .8) 

E{xTx} = xT 
X + cr2trace(ATAt l

. 

When the error ~ is normally distributed, then 

11 

(2.8) 

(2.9) 

These properties show the uncertainty in x wh en AT A moves from a unit matrix to an 
ill-conditioned one, if we look at the spectral decomposition of AT A. Let the ordering of 
the eigenvalues be as usual (that is, decreasing, cf. Appendix B), then the average value 
of the squared distance from x to x is given by 

and the variance when the error has a normal distribution is given by 

compare Hoer! and Kennard (1970). Lower bounds for the average and the variance are 
cr2 / Àn and 2cr4 À; respectively. Hence, if AT A has small eigenvalues, the distance from x 
to x tends to be large. The probability that x is close to x is therefore smal!. 

2.3 Examples of ill-posed problems 

To illustrate the above we shalllook at some examples. Many more examples can be found 
in the textbooks of Tikhonov and Arsenin (1977) ; Louis (1989); Wing (1991); Anger et al. 
(1993); Groetsch (1993); Engl et al. (1996). 

Density or mass anomaly. To geodesists perhaps the most famous inverse problem is 
that of determining the Earth's mass distribution from the exterior gravitational potential. 
As Stokes theorem states this is impossible (Rummei, 1992, p. 2.22) : "a function V 
harmonie outside ~ is uniquely determined by its values on the boundary. On the other 
hand, however, there are infinitely many mass distributions, which have the given V as 
exterior potentia!." Hence, the lack of uniqueness makes th is an ill-posed problem. See 
also Parker (1994) . • 

Backwards heat equation. (From Groetsch (1993).) 
Consider a bar of length 'Fr with heat flow in the x-direction. The temperature u(x, t) 

satisfies the partial differential equation 

Bu 
Bt 
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g(x) t=1 

u 

f(x) t=o 

o 1t 

----=>:::;. X 

Figure 2.1: Temperature distribution bet'U·.;en 0 and 7r at t = 0 and t = 1. The temperature 
at bath ends is kept zero. 

Assume the boundary and initial conditions 

u(O, t) = u(7r , t) = 0, u(x, O) = f(x) 

hold , i.e. the temperature at the ends is kept zero and the initial temperature distribution 
is some function f(x) , 0 :::; x :::; Jr . The time interval tof the function u is bounded by 
zero and one: 0 :::; t :::; 1. More generally the upper bound is T , see (Kress, 1989, p. 
222-223) . 

The method of separation of variables leads to 

00 

u(x, t) = L an e-n2t sin nx (2.10) 
n:::::; l 

with coefficients 

210" an = - f(y) sin nydy. 
Jr 0 

(2.11) 

Let g(x) = u(x, 1) , see Figure 2.1. Substituting (2.11) into (2.10) and interchanging the 
summation and integration one arrives at 

g(x) = fa" K(x, y)f(y)dy (2 .12) 

with 

K(x,y) = ~ fe- n2 sinnxSinny 
7r n=l 

compare Kress (1989); Groetsch (1993). 
The inverse problem is to determine the initial temperature distribution f( x) that 

gives rise to g(x). Since the initial temperature distribution f is highly diffused at the 
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later time t = 1, recovering this detailed information from measurements of g wil! be 
extremely difficult. Specifical!y, high frequencies (large n) are severely damped by the 
very smal! factor e-n2

, Groetsch (1993). 
Suppose f and g satisfy (2.12). Let é > 0 (smalI) and N > 0 (large) and let !N(Y) = 

N sin kV. The perturbation fN is arbitrarily large (C-metric) 

max IN sin kyl = INl. 
yE [O,"] 

The perturbation in g becomes 

gN(X) = 10" K(x, y)fN(y)dy 

~ N [" [f: [e -
n2 

sin nx sin ny 1 sin kV] dy 
7r Jo n=l 

~N f: [e-n2 sin nx [" [sin ny sin ky] dY] . 
7r n=l Jo 

The integral in (2.13) is zero for n =I k. If n = k then gN becomes 

which amplitude is 

For large k the amplitude is arbitrarily smal!: 

IgN(x)1 j~~ Ne-
k2 J[fo" sin kXdxf 

N lim e-
k2

1 [" sin kxdxl 
k-->oo Jo 

< N lim 1[" sinkxdxl < é. 
k-->oo Jo 

(2.13) 

sin ce the limit approaches zero (Riemann-Lebesgue lemma) . Hence, a large disturbance 
in the solution f can be accounted for by a smal! disturbance in the measurements g. 
This is therefore an ill-posed problem. • 

This may not be a geodetic example, but it is a nice one and it resembles downward 
continuation which is treated next. 

Downward continuation. The determination of the gravity potential at the earth's 
surface from the potential at satel!ite altitude is an il!-posed problem. Assume that 
one has a sphere at height h above the earth's surface where the potential is observed 
continuously. 
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The gravity potential expressed in spherical harmonics at r = R + h is2 

GM 00 (R )n+l n _ _ _ 
V(Bp,Àp,rp) = RE rp fo (CnmCosmÀ p + SnmsinmÀp) Pnm (cosBp). 

(2 .14) 
The potential at the earth's surface equals (2 .14) with rp = R. The coefficients Cnm and 
Snm are, Rummei (1992) 

Cnm = ~ r V(BQ, ÀQ,R) cosmÀQFnm (cosBQ)dfJQ, 
47f JUQ 

Snm = ~ r V(BQ, ÀQ, R) sin mÀQFnm (cos BQ) dfJQ. 
47f JUQ 

(2 .15) 

Inserting (2.15) into (2.14), interchanging summation and integration and using the ad­
dition theorem, Rummei (1992) 

yields 

where 

n 

(2n + l)Pn (cos wPQ) = L Pnm (cosBp) Fnm (cos BQ) cosm (À p - ÀQ) 
m=O 

V(P) = ~ r K (P - Q) V(Q)dfJQ 
47f JUQ 

00 (R)n+l 
K (P - Q) = ~ rp (2n + I)Pn (cos(P - Q)). 

(2 .16) 

(2 .17) 

Analogous to the previous example high frequencies are damped by the factor (Rlrp t+ 1
. 

Consider a disturbance VN(Q) = NFkk(CosBQ)sinkÀQ. Inserting this in (2.16) and 
rewriting (2 .17) in its extended form to separate Pand Q parts, interchanging summation 
and integration and finally taking all ÀQ terms together, one obtains: 

N 00 (R)n+l n (Ir 
VN(P) = 47f ~ rp 1=0 Fnm(cBp) Jo Fnm(cBQ)Fkk(cBQ) x 

x (cmÀ p fo27r cmÀQskÀQdÀQ + smÀp fo27r smÀQskÀQdÀQ) sBQdBQ 

with the abbreviations c = cos and s = sin. The first integral over À always equals 
zero, the second equals 7f for m = k and 0 for m =1= k. As long as n < kthere are no 
contributions since m runs from 0 to n. Hence 

Because of the orthogonality of the Legendre functions the integral equals 4 if n = k and 
zero if n =1= k. Therefore VN(P) can be written as: 

(2.18) 

2The functions Fnm are fully nonna/ized associated Legendre functions of the first kind and dimen­
sionless. They make the orthogonality relationship fairly simpie, see e.g. Heiskanen and Moritz (1967); 
Rummei (1992). 
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whieh amplitude is 

Since 

IIFkk(x)1112 = II Fkk(X)2dx = 4 

the amplitude of hk is bounded (which we al ready used to arrive at (2.18)). Thus 

lim IVN(P) I < E, 
k ..... oo 

whereas 
max IN Fkk(eos B) sin k,\1 

O,À 

can be made arbitrarily large by ehoosing N large. • 
Laplace equation. (From Tikhonov and Arsenin (1977) and Kress (1989).) 

The initial value or Cauchy problem for the two-dimensional Laplace equation consists 
of finding a solution of the equation llu(x , y) = 0 from the initial data: 

8 
u(. , O) = 0, 8y u(. , 0) = f(x) , -00 < x < 00 

where f(x) is a given eontinuous funetion and u a harmonie funetion . Let the data be 

for k E IN, then one obtains the solution 

1 
udx, y) = k

2 
sin kxsinh ky , k > O. 

Let fo(x) = 0 with sol ut ion uo(x, y) = O. The differenee in the initial dataJs 

whieh ean be made arbitrarily small by taking k suffieiently large. However, for any fixed 
y > 0, the differenee between the solutions 

max IUk(x, y) - uo(x , y)1 
x 

m;x I :2 sin kx sinh ky l = :2 sinh ky 

can be made arbitrarily large for suffieiently large k: sinh ky = (ekY - e- kY )/2 behaves like 
e

ky for large k, whieh goes faster to infinity than k- 2 goes to zero. 
This is somewhat familiar in physical geodesy: the solution of llu = 0 expressed in 

spherieal harmonies has either r n or r-(n+ l) as upward eontinuation term. The additional 
constraint of vanishing potential at infinity turns down the first possibility, which leaves 
us with a properly posed problem. • 
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Figure 2.2: Mapping of a function onto a smaller region. 

o 
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Figure 2.3: Logarithmic plot of c/(P - Po). The coordinates of Po are (1/4'1r, 7/4'1r) , 
c = 0.01 and the coordinates of P vary from 0 - 2'1r and 0 - 'Ir with step size 0.05. 

Polar gap. (See also Tikhonov and Arsenin (1977)) 

Consider the mapping A : E -t R or A : [0, 'Ir] X [0 ,2'1r] -t re , 'Ir - e] x [0 ,2'1r] with 
o < e < 'Ir, compare Figure 2.2. The mapping is from E(arth) to a smaller region R. 
This means that the function is measured not on the entire region but in a limited part. 
Think for example of a satellite in a non-polar orbit , an inclination i #- 90 degrees gives 
two polar gaps of size e = 190 - il. 

Take a point Po on E but not on R with distance llT to R. On the total region E the 
function f l (P) is defined, where the function depends on the location P. Another function 
is f2 (P) = fl(P) +c/(P - Po). These two functions differ by c/(P -Po), which on R does 
not exceed c /1lT. The ratio c /1lT, hence the difference between the two functions, on R 
can be made arbitrarily sm all by choosing a sufficiently small C. However, the difference 
f2(P) - fl(P) = c/(P - Po) is unbounded on the region E as a whole, see Figure 2.3. It 
is therefore an ill-posed problem. • 
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2.4 Summary 

It is inherent to integral equations of the first kind that the determination of the unknown 
function f from the data g is ill-posed . The direct problem, the determination of g from 
f , is continuous if the operator A is compact and bounded. However, the immediate 
consequence is that the inverse operator is not compact and bounded: the solution does 
not continuously dep end on the data, the inverse problem is unstable. 

This becomes especially dear when examining the spectral decomposition of the in­
verse operator A+ For high frequencies the singular values become smaller and smaller, 
which means that their inverses become larger and larger. Therefore, any error at high 
frequencies is greatly amplified and tends to infinity if n , the frequency, goes to infinity. 

The examples of ill-posed problems show that we are indeed dealing with physical 
meaningful problems. Furthermore, it becomes dear that a large variety of ill-posed 
problems exists. Although examples of ill-posed problems have been given whose cause 
is lack of uniqueness or stability, the emphasis in the remainder of th is report is only on 
stability. 
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3 

METHODS OF REGULARIZATION 

3.1 Introduction 

Several methods exist to compute stabie solutions of inverse problems. In th is Chapter 
the methods more or less familiar in geodesy are discussed: 

• Tikhonov-Phillips regularization 

• biased estimation 

• collocation 

• truncated singular value decomposition (TSVD) 

• iteration 

An example ofthe application of Tikhonov-Phillips regularization can be found in Rummei 
et al. (1979) , biased estimation e.g. in Xu (1992a). The principal reference for collocation 
is Moritz (1980). Lerch et al. (1993) apply TSVD and Wenzei (1985) and Schuh (1996) 
apply iteration to compute a (high degree) gravity field solut ion . 

The principle of each method is explained and the distance between the true and 
approximate solution, which is measured in the mean square norm, is derived. We distin­
guish two groups of regularization methods, the direct and the iteration methods. This 
classification is not as strict as it may seem since the computation of a direct solution in­
volves iteration as weil. The computation of the so-called regularization parameter causes 
the iteration, compare Chapter 4. However , an approximate sol ut ion computed with an 
iteration method can be expressed as the previous sol ut ion with some additional terms, 
Section 3.7. 

The differences and similarities of the methods are discussed. Especially it is shown 
that biased estimation and Tikhonov-Phillips regularization are equivalent for the most 
simple case. Both methods are very similar to collocation looking at the formulas , however 
the underlying line of thought is different . 
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Requirements a regularization method should fulfil 

Suppose perfect, continuous measurements gare available. Then one would like that the 
solution f is such that Af = g holds. The generalized inverse A+ provides such a solution. 
Unfortunately, this solution is unstable as was shown in the preceding Chapter. 

Therefore, in presence of measurement errors, the generalized inverse can not be used 
as such, regularization is necessary. This regularization in general looks like 

with 

and if é -+ 0 then ex -+ 0, hence ex = ex(é) . With these two requirements it follows that 
exact data give the exact solution. This can be formalized by the following definition 
given by Kress (1989). 

Definition. The choice ofthe regularization parameter ex = ex(é) depending on the error 
level é for a regularization scheme At, ex > 0 is called regular if for all g E R( A) and all 
g" E G with lig" - gil s:: é there holds 

A+ " A+ 0 o(,,) g -+ g , é -+ . 

• 
In the sequel it is assumed that the linear operator A is injective. This is not a 

principle loss of generality since uniqueness for a linear equation can always be achieved 
by a suitable modification of the solution space F , Kress (1989). 

Regularization scheme in spectral form. We have seen in the preceding Chapter, 
Eq. (2.5), that the ill-posedness of an equation of the first kind with compact operator 
sterns from the behaviour of the singular values an -+ 0, n -+ 00. An obvious idea 
is to filter out the influence of the factor 1/ an . To this end, consider the filter 8 : 
(0, (0) x (0, IIAII] -+ IR which is defined as a bounded function satisfying the conditions: 

1. For each ex > 0 there exists a positive constant c(ex) such that 

(3.1) 

for all 0 < a s:: IIAII . 

2. There holds 
lim 8(ex, a) = 1 
0 ..... 0 

(3.2) 

for all 0 < a s:: IIAII . 

Then the operator At : G -+ F, ex > 0, defined by 
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for all g E C, describes a regularization scheme with 

I IA~II -::; c(a). 

Thus, At is a bounded linear operator with bound c, Kress (1989). It is not allowed 
to use any arbitrary filter since conditions (3.1) and (3.2) have to be satisfied. For all 
regularization methods in this Chapter the filter is derived. 

3.2 Tikhonov-Phillips regularization 

Tikhonov-Phillips regularization was developed independently in the early sixties by (of 
course) Tikhonov (1963b, 1963a) and Phillips (1962) and is also called Tikhonov regular­
ization (TR) for short . 

In geodetic literature Tikhonov regularization has been studied with emphasis on the 
connection with collocation, e.g. Rummei et al. (1979) . However , the regularization 
error is mostly neglected. Tikhonov regularization does not necessarily give an unbiased 
answer, whereas collocation does. 

3.2.1 Principle of the method 

Regularization with signal constraint 

Consider the integral equation of the first kind 

(Af)(x) = t K(x , y)f(y)dy = g(x)x, a -::; x -::; b. 

The kemel K(x, y) is continuous and integrable. As shown earl ier th is is an ill-posed 
integral equation, in the sense that a sm all change or error in g may cause a large change 
in the solution f. Imposing an additional condition on f provides a stabie solution: 

Ilfll~ -::; c < 00 

where c is a constant. This additional condition is also called the constraint or the penalty 
term. Instead of minimizing 

J(f) = IIAf - gll~ 

the functional 

Ja(f) = IIAf - gll~ + allfll~ (3.3) 

has to be minimized, where a is the positive Lagrange multiplier. Whenever a minimiza­
tion problem has the above appearance (3.3) it is said to be in standard farm. Equation 
(3.3) is a short-hand notation of 

Ja(f) = t ((Af)(x) - g(X))2 dx + a t f(x?dx 

t (t K(x, y)f(y)dy - g(x)) 2 dx + a t f(X) 2dx. 
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The minimizer fo of (3.3) is given by the unique solution of the equation 

(A*A + o:1)fo = A*g 

or 
(3.4) 

and depends continuouslyon g , where A* is the adjoint of A. The operator A*A + 0:1 
(for 0: > 0) is bijective, and the inverse is bounded. As 0: -+ 0, fo -+ A+g , Nashed (1976) , 
where A+ is the generalized inverse of A. Note that the above equation is an integral 
equation of the second kind and therefore well-posed, Groetsch (1984) ; Kress (1989), 
which is equivalent to the continuous dependence of fo on g. Hence, an interpretation is 
that the original ill-posed integral equation of the first kind is replaced by a nearby well­
posed integral equation, Tikhonov and Arsenin (1977); Nashed (1976); Groetsch (1993) . 

The above can be summarized by the following theorem which is proven in , for exam­
ple, Kress (1989). 

Theorem (Continuity and uniqueness ofthe regularized solution). Let A: F-+ 
G be a bounded linear operator with F and G Hilbert spaces, and let 0: > o. Then for 
each g EGthere exists a unique fo E F such that 

II Afo - gll~ + o: llfol l ~ = inf {IIAf - g ll~ + o:ll fl l~}· 
fEF 

The minimizer fo is given by the unique solution of the equation 

o:fo + A*Afo = A*g 

and depends continuouslyon g. • 
Spectral decomposition. Since the operator A is compact it has a singular system 
{vn , U n; O"n}. The regularized sol ut ion reads 

00 00 ( t: ) 
f t: ""' O"n ( t: ) ,,", .<: g, U n 
o = ~ -2 -- g , U n V n = ~ Un V n· 

n=1 O"n + 0: n= 1 O"n 
(3.5) 

A comparison with (2.5) shows the stabilization: the errors are not propagated with 0";;-1 

but with bounded factors O"n/(O"~ + 0:), which is a filter 6n : 

0"2 

6n = -2-
n
-. 

O"n + 0: 
(3.6) 

For aspecific n the regularized solution is written as 

I~n = 6n In + 6n En 
, O"n 

(3.7) 

where In is the exact solution from exact data, see (2 .5), and En represents the data errors. 
This, for one thing, shows that an optimal 0: should be as small as possible to obtain a 
solution close to A+g (6n -+ 1) , the first term in (3.7). However, a should be as large as 
possible to reduce the influence of the data error on t he solu tion (6n -+ 0) , represented 
by the second term. More is said in the next Chapter about choosing a regularization 
parameter. 
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General Tikhonov regularization 

First order regularization. In his original paper on integral equations of the first kind 
Tikhonov (1963b) proposed to damp out highly oscillating parts (which are manifestations 
of the instability) in the approximate sol ut ion by inciuding the first derivative into the 
penalty term: 

t ((Af)(x) - g(x)f dx + at (co(X)f(X)2 + Cl(X) f' (Xn dx (3.8) 

where Ci, i = 0, 1 are strictly positive functions, that is co(x) > 0 and Cl (x) > O. Therefore, 
the functional 

(3 .9) 

has to be minimized, where A is a compact operator from a real Hilbert space F into a 
real Hilbert space G, and is also called first order Tikhonov regularization. The minimizer 
fa of (3.9) can be shown to be unique, compare Tikhonov (1963b); Groetsch (1984) ; Kress 
(1989) . 

The norm II.IIF' is associated with Sobolev spaces, which are defined as follows , Kress 
(1989) ; Martensen and Ritter (1997). 

Definition (Sobolev space). Let 0 :::; p < 00 . The space HP [0, 27r] of all functions 
fE L2 [0 , 27r] with the property 

00 

(3.10) 
n=-oo 

for the Fourier coefficients an of f is called a Sobolev space. • 
The Fourier coefficients of f are 

and the Fourier series of f is 

n=-oo 

From (3.10) one sees that the Sobolev spaces HP[0 , 27r] are subspaces of L 2 [0, 27r]. A 
function f can only be an element of HP[O , 27r] when the Fourier coefficients an decay 
quickly enough as Inl -+ 00. Note that HO[O, 27r] coincides with L2 [0 , 27r] . Furthermore, 
note that the interval [0 , 27r] is taken for convenience, the generalization to the interval 
[a, b] is straight forward. 

Higher order regularization. An immediate generalization of first order TR is to 
consider the constraint 

an(p) = a (btCi(X) (dfi(~))2 dx, P E IN 
Ja i=O dx 

where Ci(X) E Ci[a, b] are given positive functions , Tikhonov (1963a) ; Groetsch (1984) . 
The condition 

an(p) :::; c 

can be interpreted as a smoothing condition because the norm of the function and of a 
selected number of its derivatives must be bounded, Schwarz (1979) . 
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Regularization with seminorm 

The above regularization techniques all constrain the derivatives in the HP-norm. Phillips 
(1962) suggested to penalize only by the L2-norm of the derivative, that is, to minimize 

(3.11) 

which differs from general Tikhonov regularization in that the regularization term is a 
seminorm rather than a norm. Also, general TR, in contrast to (3.11), always contains 
a term which tends to minimize the mean of the approximate solution, which may be 
undesirable, Groetsch (1984). 

Equation (3.11) may not have a unique solution if N(A) contains a nonzero linear 
function fs as Af = Afs and f" = f~/. Phillips (1962) minimized a discrete version 
of (3.11) and removed the nonuniqueness by imposing zero boundary conditions on the 
approximate solution. 

Generally, one obtains a regularized solution by minimizing the functional 

Ja(f) = IIAf - gll~ + aIILfII~, fE D(L), (3.12) 

with L a differential operator. If N(A) n N(L) = {O} then the minimizer fa of (3.12) is 
unique and satisfies 

A*Afa + aL*Lfa = A*g (3.13) 

see (Groetseh, 1984, Ch. 3) and (Engl et al., 1996, Ch. 8) . Note that in the finite 
dimensional space of ten A is assumed to have full rank, rank(A) = n. Hence, N(A) = {O} 
and therefore N(A) n N(L) = {O}. 

We may rewrite (3.13) as 

(A*A - aI)f + a(L*L + I)f = A*g. 

As L*L + I has a symmetrie compact inverse E, Groetsch (1984), this is equivalent to 

E(A*A - aI)f + af = EA*g 

which is a Fredholm equation of the second kind with a stabIe solution. 

It is rat her straightforward to show that 

X a (ATA+aLTL) - IATy 

( 
DaE~ 0) T P uT y n T 

= X 0 I U Y = L Oi-. Xi + L Ui yXi 
o i=1 (J, i=p+1 

using the GSVD of (A, L), Hansen (1990), cf. Appendix B. Here Da is a diagonal matrix 
with elements 

Tl . Oi = -2--' Z = 1, ... ,p. 
Ti +a 

Alternatively, this filter can be written as 

with solution 

TUbl + a), i = 1, ... ,p 
i=p+I, ... ,n 

n uTy 
Xa = LOi--Xi. 

i=1 (Ji 

(3.14) 

(3.15 ) 
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3.2.2 Mean square error 

Regularization error 

Because the generalized inverse of (2.2) 

is not a continuous operator such a solution is unstable. Replacing this inverse by a 
continuous approximate solution 

fa = A~g 

is called regularization (under the condition lima .... o A~ = A+). This regularization , how­
ever, introduces a regularization error. Obviously the data are not free of errors and we 
have a data error as weil. The difference between the solution f from the error free data 
g and the regularized solution f,; from erroneous data g< is: 

where At = (A* A + o:L*L) - 1 A*. The first term on the right hand si de is called the data 
error, the second the regularization error, Louis (1989). Later on it is shown that the 
latter term equals the bias as studied in Xu (1992a, 1992b). 

Finite dimensional case. Suppose one has a number of measurements y with weight 
matrix P and the parameters to be determined x , have a signal weight matrix C. This 
is nothing but changing (or describing more properly) the metric of the spaces one works 
with. Minimizing 

l a(x) = IIAx - Y I I ~ + o:ll x ll~ 

gives 

The total error for the finite dimensional case is 

or 
Óx = (ATpA + o:C) - I ATp~ + ( (ATPA + 0:C)-1 - (ATPA) - l) ATpy . 

The expectation yields 

E{óx} = Lh 0+ ((ATPA + o:ct l 
- (ATPA )-I ) ATpAx 

(ATpA + o:C)-I(ATpA + o:C - o:C)x - Ix 

-(ATpA + o:C)- lo:Cx i= O. 

(3.16) 

(3. 17) 

(3.18) 

Hence, the expectation of the total error (and the regularization error) is not zero. Equa­
tion (3.18) is needed in the discussion on biased estimation. 
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Error propagation 

By means of the total error, which is the sum of the data error and the regularization 
error, we wish to assess the quality of the regularization methods. It is always possible 
through proper transformations to consider the standard form , compare Chapter 4 and 
Section B.1.3. Hence, t he total error is derived for th is case only. Unless stated otherwise, 
it is assumed from here on that the measurement errors are normal!y distributed with 
equal variance, ~ cv N(O, a 21) or P = a-2 l and also C = I , yielding 

X a = (ATA + ai1) -lATy 

with a ' = aa2
. We will write a instead of a ' in the sequel. 

Recal! the difference between the approximate and true solution (3.17) , where the first 
term on the right-hand side is the data error and the second the regularization error. In 
spectral form the difference is 

(3. 19) 

with filter 6i defined in (3.6). 
Equation (3 .19) is of course not very useful in practical computations since the dif­

ference between y € and the exact observation y is involved. Instead we wil! look at the 
mean square error (MSE) which is defined as the sum of the trace of the propagated error 
and the squared bias: 

MSE = trace (Qx) + !1xT !1x. 

The MSE is the expectation of the squared distance between the true solution x and its 
estimate X a, compare next Section. 

Error propagation applied to (3.4) in finite dimensions , assuming that Qy = a2 I , leads 
to 

Qx a2(AT A + (1)-l ATA(AT A + ( 1) -l 

a2(V~2VT + aVVT)-lV~2VT(V~2VT + aVVT)- l 

a2V(~2 + (1) -1~2(~2 + (1)- lV T 

or Qx = a2V(1\ + ( 1) -l1\(1\ + ( 1)- lV T wh ere 1\ contains the eigenvalues of ATA. The 
trace of th is matrix is 

) 2;:'" Ài 
trace(Qx = a L.. (À F 

i=1 , + a 
see Xu and Rummei (1994a) ; Bouman (1993). The bias term can be shown to be 

n 2( )2 
!1xT ll.x = L a x , v, 

,=1 (À, + aF 
Thus, the MSE is 

MSE (3 .20) 
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compare with (3 .19). This is still not a very practical equation since x is needed. Using x" 
instead ofx, one can estimate the MSE, although the bias is underestimated, Xu (1992b). 

3.3 Biased estimation 

The idea is to add an arbitrary positive-definite matrix to the system of normal equa­
tions. This matrix is chosen such that the total error , bias and noise, is minima!. Biased 
estimation as studied by Xu(1992a,1992b) is usually called ridge regression, for example 
Vinod and Ullah (1981). Both terms are used here. 

It is shown here that TR and ordinary biased estimation (BE) are equivalent , although 
they originate from different research fields. Consequently, the underlying ideas are dif­
ferent. The point of departure for TR is the integral equation of the first kind and its 
approximate solution by a nearby well-posed integral equation . As we will see in Chapter 
4 the regularization parameter is chosen such that an a priori noise or signal bound is 
not violated, or chosen such that there is a certain compromise between data error and 
regularization error. On the other hand BE directly starts with the normal matrix AT A. 
If this matrix has small eigenvalues then the least-squares solution may fail and one tries 
to get closer to the 'true ' sol ut ion x at the expense of some bias. It is tried to minimize 
the mean square error. 

Trying to minimize th is error then leads to generalized biased estimation. Multiple 
regularization parameters are introduced instead of only one. These parameters are arbi­
trary as long as they produce the smallest error, compare Chapter 4. 

3.3.1 Ordinary ridge regression 

Principle of the method 

Let the unstable least-squares solution of E {y} = Ax be 

One obtains a stabie solution with 

(3.21) 

where Q 2: Q. This method (3.21) is called biased estimation or ridge regression, see also 
Golub and van Loan (1996). Comparing equation (3.21) with (3.4) ones sees that the first 
is the finite dimensional version of the latter. 

Introducing the weight matrix for the observations P , equation (3.21) becomes 

(3.22) 

Taking the difference between the expectation of the biased estimator, E{x,,}, and the 
exact solution, x , gives the magnitude of the bias, Vinod and Ullah (1981) ; Xu (1992b) 

(3.23) 

which resembles the regularization error (3.18). 
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Again, let P = (J -2 J . Then the spectral decompositions of 

A UI;VT 

ATA VI; 2V T = VAVT 

yield for (3 .22) 

since V T = V-I, or 
n ufy Ài 

x" = Lbi172vi' bi = -\-- (cf. 3.6) . 
i=1 À; " i + a 

Some further properties of the ridge estimator. Hoer! and Kennard (1970) derive 
some interesting properties of the biased estimator (3.21). Left multiplication of x" with 
(ATA)-I(ATA + aI) gives the least-squares estimate i and therefore 

(I + a (ATA) - lfl i 

Di 
(3.24) 

assuming that E{EET } = (J2 J. The eigenvalues of D are bi = À;/(Ài + a) where Ài are the 
eigenvalues of AT A. Of course bi is again equal to (3.6) . 

The length of the biased estimator x" for a > 0 is shorter than the length of i: 

which follows readily from (3.24), or 

T Àl -T - 0 
X X < --x x a> . 

" ,, - Àl + a ' 
(3 .25) 

From (3.25) and (3.24) it is seen that D = I for a = 0 and that D approaches 0 as 
a --t 00. 

Let X s be any estimate of t he vector x . Then the residual sum of squares can be 
written as 

cf> (y - Ax s)T(y - Ax s) 

(y - Aif(y - Ai) + (xs - if ATA(xs - i) 

cf>min + cf>( x s) = cf>(i) + cf>o 

see also (2 .6) . Contours of constant cf> are the surfaces of the hyperellipsoids centered at 
i. The value of cf> is the minimum value plus the value of the quadratic form (xs - i), 
Hoer! and Kennard (1970). The biased estimate will therefore give a larger residu al sum 
of squares than the least-squares estimate. However, the worse the conditioning of AT A, 
the more i can be expected to be too long, Section 2.2.3, and the further one can move 
from i without a large increase in the residual sum of squares. In view of (2.9) it seems 
reasonable that if one moves away from the point where the sum of squares is minimal , 
the movement should be in the direction which will shorten the length of the regres sion 
vector, and this is exactly what x" does as shown by Hoeri and Kennard (1970). 
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The problem of minimizing x; X s subject to 

(3.26) 

is equivalent to 

Then 

or 
X s = Xo = (ATA + aI)-IATy 

where a is ehosen sueh th at (3.26) is satisfied. In praetiee it is of course easier to ehoose 
an a ~ 0 and then eompute <Po. The above derivation shows that for a fixed <P a single 
value of X s is ehosen with minimum length. 

Mean square error 

Although the biased estimate gives a sum of squares that is larger than that of the least­
squares estimate, its distanee from x is smaller than the distanee of x from x. The 
distanee from Xo to x as expressed by E { [2 (k)} is defined as the mean square error. 
Straightforward applieation of the expeetation operator and (3.24) gives 

E{z2(k)} E{ (xo - x)T(xo - x)} 

E{(x - xfDTD(x - x)} + (Dx - x)T(Dx - x) 
a 2traee(ATA)-IDTD + xT(D - If(D - I)x 

a2 (traee(ATA + aI)-1 - traee(ATA + aI)-2a ) + a 2xT(ATA + aI)-2x 

n ). . 
a 2 L.: ' + a 2xT(ATA + aI)-2x 

i=1 (Ài + a)2 
(3.27) 

whieh equals (3.20). The first term on the right-hand side of (3 .27) is the sum of the 
varianees of the parameter estimates, see Section 3.2.2. The seeond term is the squared 
distanee from Dx to x. Sinee it equals zero when a = 0 it ean be eonsidered the square of 
the bias. As a inereases the sum of varianees deereases and the bias inereases: the first is 
a monotonie deereasing funetion of a, while the seeond is monotonie inereasing, eompare 
Figure 3.1. It ean be shown that it is always possible to ehoose an a > 0 sueh that the 
mean square error is smaller than that of the least-squares estimate, Hoer! and Kennard 
(1970). 

3.3.2 Generalized ridge regression 

Principle of the method 

Instead of using one ridge parameter a, we eould introduce more parameters in order to 
reduee the total error (see Section 4.3.2): 

(3.28) 
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w 
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Mean square error functions 
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Figure 3.1: Example of the mean square error, the eigenvalues Ài are I/i, n 100, 
a2 = 10-2 and (x, V i) = 1. 

where ~ is a diagonal matrix with positive elements al, ... , an to be determined. The 
eorresponding filter is 

(3 .29) 

Generalized biased estimation (GBE) ean also be written in terms of minimizing the sum 
of noise, and some additional eonstraint on the signa!. Rewrite (3.28) as 

x g V(L;2 + ~)-IL;UTy 
(VL;2VT + V~VT)-IVL;UTy 
(ATA+M)-lATy. 

In general M is a full and positive definite matrix. Therefore, the generalized ridge 
regression solution minimizes 

However, L ean no longer be identified as a differential operator. The elements of 6. 
are arbitrary (as long as they produee the least error) and L eould be a eombination of 
operators. Henee, we ean not direetly eompare generalized ridge regression and Tikhonov 
regularization. Further diseussion of similarities and differenees ean be found in Seetion 
3.8. 

Mean square error 

Again the total error, that is the differenee between the estimated and true funetion, 
should be deseribed by summing the bias and the noise. The propagated error is, Xu and 
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Rummei (1994a): 

The bias term is 

6.x6.xT = V(1\ + 6.t l 6. V T xxTV 6.(1\ + 6. t 1 VT. 

Now the mean square error matrix (MSEM) is Qx + 6.x6.xT . In this case the MSE, which 
is the t race of the MSEM , is: 

MSE 

(3.30) 

3.4 Least-squares collocation 

3.4.1 Principle of the method 

In geodesy least-squares collocation is the technique that gives the best approximation 
of any linear functional of the disturbing potential at any place on or above the earth 's 
surface, given a set of observations being linear functionals of the disturbance potential. 
Best means that any other method would on the average give a larger least-squares differ­
ence with the (unknown) t rue functional. There seems to be therefore no need to consider 
other (regularization) methods. However, l.s. collocation only deserves the label 'best' 
in case of unbiasedness assumpt ions. The ideas of collocat ion wi ll now be elaborated in 
more detail , compare for example Moritz (1980) for a complete treatment. 

Error free data 

Let the disturbing potential T be 
T=V-U 

with V the earth 's gravitational potential and U the reference potential, for example that 
of a reference ellipsoid. Suppose observations y are given which are linear func tionals 
of the disturbance potential T from which one wants to es ti mate unknowns x , linear 
functionals of T as weil. The linear relation between y and x is y = Ax. The condition 
of minimum error leads to the solution 

(3.31) 

where Gij are signal covariance matrices between i and j. These covariances give the 
relation between values at different locations. The signal covariances are related as 

Gxy GxxAT 

Gyy AGxxAT 

see for example Moritz (1980). 
Acondition the signals x and y must fulfil is that their average M over the whole 

sphere is zero: 
M{x} = M{y} = O. 
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Data with observation errors 

Instead of error free observations, consider data y" = y +~. The signal and the noise are 
assumed to be uncorrelated and 

Ca = (52 J = p - l 

which gives 
Cy<y< = C yy + (52 J. 

The noise-equivalent of (3.31) th en becomes 

(3.32) 

which is the fundamental formula for least-squares collocation with noise. 
The collocation equation (3.32) is related to TR as follows , Rummei et al. (1979): 

The lat ter minimizes 

x" CxxAT(ACxxAT + (52 J) - ly" 

((5-2 ATA + C;x1 )-1(5-2 AT y ' 

(AT A + (52C:;x1 )-1 AT y". 

Jo= 1 (x) = IIAx - YII~ + Ilxll ~;rl . 
When a = 1, Tikhonov regularization and least-squares collo cat ion are therefore equal, 
compare equation (3.16) , C = C;x1• The spectral decomposition of the filter therefore is 

o -~ 
• - Ài + 1 

(3.33) 

when Cxx = J. 

3.4.2 Committed error 

The least-squares collocation sol ut ion is equivalent to the least-squares solution of 

E{ ( y )} = ( A ) x, D{ ( Y )} = (P-l 0) 
Yo J Yo 0 Cxx 

(3 .34) 

with Yo zero observations for all unknowns x and Cxx their variance matrix. The least­
squares solution of (3.34) yields the l.s. collocation solution and is unbiased under the 
assumption that x is expected to be zero. The error variance matrix of x simply is 

which follows from error propagation. The trace of Qx is 

n 1 
trace(Qx) = L À / 2 

i=1 i (5 + 1 
(3.35) 

again when Cxx = J. 
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3.5 Truncated singular value decomposition 

3.5.1 Principle of the method 

Let A E IRm xn be a rectangular matrix with m 2: n. The SVD of A is 

n 

A = UEVT = L u ;a;v ; 
;= 1 

33 

where U = (UI,"" un ) and V = (VI, ... , v n ) are matrices with orthonormal columns, 
UTU = VTV = In' and where E = diag(al,"" an) with ai the singular values, see (B.8). 
The condit ion number of A is equal to the ratio al/an . 

The t runcated singular value decomposition (TSVD) is obtained by approximating A 
by Ak 

k 

Ak = LUWi V; , k < n. 
i=1 

The smallest singular values are left out improving the condi t ion number, i.e. making it 
smaller. 

The TSVD solution is given by 

or 

with filter Ói defined as 

Xk = t (y, Ui) Vi 
i=1 ai 

for i = 1, . .. , k 
for i = k + 1, . .. , n 

(3.36) 

This is therefore an ideal lowpass filt er, Oppenheim et al. (1983) . Despite its name, the 
ideal lowpass filter is not optimal , since it does not produce the smallest error, Rummei 
(1997) . 

Using the SVD one obtains the solution x ofmin IIAx-ylb with smallest norm . Hence, 
the TSVD solves the problem 

min IIAkx - yl12 subject to min Ilx112' 

For an application in geodesy cf. Lerch et al. (1993). 

3.5.2 Mean square error 

The difference between the regularized and true parameters is 

xk - x At(yE - y) + (At - A+)y 

~ (yE - y , Ui) . + ~ -(y, Ui) . 
L.. V , L.. V ,. 
i= 1 ai i=k+1 ai 
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The data error stays bounded because the large values (7i-
I

, i = k + 1, ... , n are left out . 
One may have the impression that the regularization error is unbounded, however, the 
last term on the right-hand side equals L~k+1 (x, V i) Vi. 

Comparing (3.19) with (3.20) the MSE for TSVD must be 

MSE = (3.37) 

with filter Ói defined in (3.36), see also Xu (1997). 

3.6 Generalizations of TSVD 

The SVD minimizes IIxl12 subject to min IIAx - ylb whereas truncated SVD is subject 
to min IIAkx - y112' A generalization of the latter method is obviously 

min IILxl12 subject to min IIAkx - yl12 

and this leads to truncated GSVD. 
Both TSVD and TGSVD use filter factors which become either zero or one. A further 

generalization is to intro duce more smooth filter factors and this leads to damped SVD 
and damped GSVD. 

3.6.1 Truncated GSVD 

Recall that the GSVD of the matrix pair (A, L) is 

(3.38) 

with 0 = n - p . It is now easy to show that the regularized generalized inverse At 
associated with the minimization problem min IIAx - yl12 + allLxl12 becomes 

where the filter matrix D = diag(Ói) E IRP xp has elements 

2 
Ó-~ 

t - ,l + a (3.39) 

and U = (Up, Uo ), X = (Xp , X o ) where Up and Xp have p columns. The truncated GSVD 
solution Xk is then obtained by setting k diagonal elements of D, corresponding to the k 
largest singular values, equal to one and the others equal to zero. Thus, Xk = Aty with 

A+ - X (I:t 0) UT X '<'+UT UT 
k = 0 10 = pLJk P + Xo 0 
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with matrix ~t defined by 

"+-d· (0 0 -I - I) LJk = lag , ... , ,ap_k+I, . .. ,ap 

or Et = DkE- I with Dk = diag(O, .. . , 0, lp-Hl ' ... ' lp). The above definition was first 
given in Hansen (1989). In terms of filter factors this is of course 

for i = 1, .. . ,p - k 
for i = p - k + 1, . . . ,p 

(3.40) 

The regularized solution Xk is 

p uTy n 

Xk L Oi-' -Xi + L (Ur Y)Xi 
i=1 ai i=p+ 1 

p uTy n 
L -'-Xi + L (u; Y)Xi 

i=p-k+1 ai i=p+ 1 

with filter factors Oi as defined in (3.40). A rem ark on notation: be aware that Xi is 
the i-th column of X, whereas Xk is the TGSVD solution with truncation index k. The 
second term on the right-hand si de is the component that lies in the nul! space of L, 
Hansen (1997). A slightly different notation of the regularized solution is 

with 
for i = 1, ... , p - k 
for i = p - k + 1, ... ,p 
for i = p + 1, ... , n 

3.6.2 Damped SVD and GSVD 

Principle of the methad 

(3.41 ) 

Instead of the filter factors zero and one as in TSVD and TGSVD, one can also introduce 
more smooth filter factors Oi defined as 

and (3.42) 

These two methods are known as damped SVD and damped GSVD respectively, Hansen 
(1997) . The latter equation in (3.42) can also be written as 

o - "ti 
, - "ti + va (3.43) 

since "ti = ad 11i . Note that these filter factors decay slower than the Tikhonov filter 
factors and therefore introduce less filtering. 
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Mean square error 

The difference between the approximate DSVD solution and true solution is 

n 1 n -,ja. 
x~ - x = L ,ja.(y< - y, Ui)V i + L ,ja. (x, Vi)Vi. 

i=1 ai + a i=1 ai + a 

The total error therefore is 

MSE = t a
2 + a(x, v,)2 

,=1 (a, + ,ja.F 

3.7 Iteration methods 

Several iteration methods exist to solve the norm al equation 

A*Af = A*g. 

(3.44) 

The idea is to make as many iteration steps as necessary to extract the low order com­
ponents and to stop before the solution becomes oscillatory due to magnification of data 
errors. The number of iterations can thus be considered as the regularization parameter. 

The following two iteration methods are considered: 

• Landweber iteration 

• conjugate gradients 

The first method is relatively simple and reveals the basic ideas of iteration. The conjugate 
gradient method is a non-linear method and has been applied by Schuh (1996) to compute 
a low degree gravity field model. 

The combination of for example TR and conjugate gradients is also feasible, that is, 
to solve (A*A + aI)f = A*g iteratively, but this is not discussed here, compare Engl et al. 
(1996); Engl (1997). 

3.7.1 Landweber iteration 

Error free data 

The most straightforward iteration method is that of Landweber. The idea is to rewrite 
the equation A* Af = A'g as 

f = f + (A'g - A* Af) 

which suggests the iterative method 

(3.45) 

As starting value we may take fo = 0, see e.g. Engl et al. (1996). To guarantee convergence 
(3.45) is rewritten as 

(3.46) 
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where (3 is the relaxation parameter. A condition for (3 can be found by considering the 
error in the approximation ek (we use Groetsch (1993)): 

From A* Af = A*g and (3.46), it follows that 

ek+l = (I - (3A*A )ek 

and therefore 
(3.47) 

The nonzero eigenvalues of A* A are IIAI12 = )1) ~ À2 ~ ••• with corresponding eigenvectors 
{Vj}' The system {Vj} is a complete orthonormal system for N(A* A).l = N(A).l, and, 
since eo = - fEN (A).l, eo can be expanded in terms of the eigenvectors {v j }. Then 
from (3.47) 

00 

Ilekll~ = 2:(1- ,8 Àj )2k l(eo , VjW · 
j=1 

If 0 < (3 < 2/ À1 then 

for all j and, by Bessel 's inequality, 

00 

2: I(eo , vjW :<::; I leoll ~· 
j=1 

Since 11 - (3Àj l
2k ---+ 0 as k ---+ 00, for each j, we see that Ilekllb ---+ 0, that is, fk ---+ A+g. 

Data with observation errors 

Consider errors in the observations gE satisfying 

lig - gEil e :<::; é. 

Approximations now are 
fE - fE + (J(A*gE - A* AfE) k+l - k · k . (3.48) 

The parameter k plays the role of a regularization parameter. This means that there is 
some final value k = k(é) with the property that, if the iteration is terminated at step 
k(é), then 

f~(E) ---+ A + g as é ---+ O. 

Or in ot her words for smaller and smaller é, k becomes larger and larger , without giving 
an unstable solution. To see this, define the "stability error" 

hence from (3.46) and (3.48) we deduce 

dk+1 = (1 - (3A* A)dk + (3A* (gE - g) , d~ = O. 
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Since (3 is chosen such that 111 - (3A' All:::; 1, we have 

hence 

Therefore 

1 1f~ - A+gI IF < Ilfk - A+gIIF + Ilf~ - fkl lF 

< Ilfk - A+gIIF + O(kE). 

Because it was shown above that fk -t A+g, a sufficient condition for regularity of f~(é) is 

that the iteration number k = k(E) satisfies kE -t 0 as E -t O. For example if k = C I
/

2
, 

then Ilf~ - A+gIIF = O(y'E) . 

The filtering effect of the iteration. Landweber iteration can also be written in 
terms of filter factors. Rewrite recursion (3.48) as 

fk+1 (3A'g + (I - {JA' A)fk 

b+Gfk 

with b = (3A'g and G = I - (3A' A. If fo = 0 the first few iterations are 

f l b 

f2 Gfl + b = Gb + b 

f3 Gf2 + b = G2b + Gb + b. 

Hence 

j=o 

where the second equality is obtained by multiplying L::J:Ó Gj with I - G which gives 
I - Gk . Rewriting G as 

G = (I - (3A' A) = V(I - (3~2)F' 

and using the fact that V-I = V' one has 

fk V (I - (I - (3~2)k) ~- IU' g 

f= (1 - (1 - (3()~)k ) (g, un ) V n 
n=1 ()n 
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with Ok,n = 1 - (1 - (3 CJ;y. For comparison with conjugate gradients the filter Ok is 
rewritten as 

k 

Ók,n = 1 - TI (1 - (3CJ;). (3.49) 
j=l 

The effect of the filter becomes clear when considering an example. Let (3 = CJ;-2, that is 
the inverse of the largest eigenvalue. Then for small k the filt er value is approximately 
one for the large singular values since (3CJ;' ~ 1. For increasing n the filter factor becomes 
zero since (3CJ;' ~ O. For large k, in contrast, the filter factors are approximately one for 
all n since the filter then is: limk-->oo 1 - "·l = I , with 0 < I < 1. Hence, the number of 
iterations plays the role of the regularization parameter ct = k - 1

• 

Mean square error 

The difference between the true solution x and the approximate solution xi is 

x - x% At(y' - y) + (At - A)y 

t Ok ,i (y' - y , Ui) V i + t(Ok,i - 1) (y , U i) V i 

i= l CJi i= l CJi 

t (1 - (1 - (3d )k) (y' - y , U i) V i + t(1- {JCJl)k (y , U i) V i. 

i= l CJi i=1 CJi 

The propagated error and the bias therefore are 

and 
n 

D.xT Lh = L(1 - Od2 (x , V i)2 

i= l 

respectively with CJ2 the variance of unit weight. Hence, the MSE is 

(3.50) 

3.7.2 Conjugate gradients (CG) 

More generally, iteration methods, such as Landweber iteration, can be written as 

(3.51) 

where b = A'g, N = A'A. In case of Landweber iteration M = (3-11. Other choices for 
Mare M = D (Gauss-Jacobi), M = D-L (Gauss-Seidel) and M = (3-1 D-L (Successive 
over-relaxation), compare Strang (1986) ; Golub and van Loan (1996); Van Kan and Segal 
(1993). Here A* A = D - L - LT , with D diagonal and L strict lower triangular. The 
term rk = b - Nfk in (3.51) is called the k-th residual and one has rk = -Nek. 
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The first few iterations (3 .51) are 

Hence 

The space 

fa fa 

fl fa + lVrlra 

f2 f1 + M-I(b - Nfo - NM-Ira) 

fa + 2M-Ira - M- I N M-Ira. 

Kk(N, ra) = span{ra , Nra , . .. , Nk-Ira} 

is called the Krylov subspace. For the above iteration methods, therefore, f k E fa + 
Kk(M- I N, M-1ra). 

The idea of CG 

Let M = I and fa = 0, so ra = b. Then the iterates are elements of the Krylov space 

The CG method also has its iterates in this Krylov space and tries to minimize the distance 
between the k-th iterate and the true solution, one way or the other. The best one eould 
aehieve is to solve the minimization problem 

min Ilh - fil F 
hEKdN,ro} 

where f is the solution of Nf = band h is an element of the iteration spaee. Sinee this 
is not possible, we are iterating towards f, another strategy is required. It turns out that 
by defining the norm 

the problem 
min Ilh - fil A 

hEKdN,ro} 

is solvable and leads to the CG-method, as is shown below. 

Derivation 

We start with the method of steepest deseent and arrive at. the eonjugate gradient. method 
via A-eonjugate seareh direetions. The material in this section is based on Golub and van 
Loan (1996); Strang (1986); Press et al. (1992); Sehuh (1996); Hansen (1997). 

Steepest descent. Minimizing the funetion 

(3.52) 

where b E IRn and N E IRnxn is symmetrie positive definite, is aehieved by setting 
x = N-1b, Golub and van Loan (1996). Thus, minimizing J and solving Nx = b (or 
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ATAx = ATy ) are equivalent problems (note that we have switched to finite dimensions, 
this is not essential). 

At a current point Xk the function J decreases most rapidly in the direction of the 
negative gradient: -\lJ(Xk) = b - NXk. This is the steepest descent since \lJ(x) gives 
the direction of fastest increase of J. If the residual 

rk = b - N Xk 

is nonzero, then a positive (3 exists such that J(Xk + (3rk) < J(Xk). Minimizing 

T 1 2 T 
J{3 (Xk + (3rk) = J(Xk) - (3rk rk + 2 (3 rk N rk 

gives {Jk = r[ rk / r[ Nrk . 
It can be shown that the method of steepest descent always converges, Golub and 

van Loan (1996). Unfortunately, the rate of convergence may be very slow since it is 
governed by the ratio ()'l - Àn)/()'l + Àn) which is very close to 1 for ill-posed problems. 
Geometrically this means that the level curves of Jare very elongated hyperellipsoids and 
minimizing J leads to travelling back and forth across the valley rather than down the 
valley to the lowest point , Strang (1986); Golub and van Loan (1996). This is visualized 
in Figure 3.2, where the curved lines are contours, J is constant. Perpendicular to the 
contour lines is the direction of steepest descent. 

Figure 3.2: Entering a narrow valley. 

A-conjugate search directions. The disadvantage of the method of steepest descent 
can be avoided by successive minimization of J along a set of directions {PI , P2, ... } not 
necessarily corresponding to the residuals {rO,rl' ... }. A new solution Xk is found by 
taking information of the shape of the space into account, that is a new search direct ion 
Pk is chosen sueh that it is N -conjugate or perpendicular to the previous search directions: 

(Pb N pj ) = 0 V j -=f. k 

or Pk E span{ N ph . .. ' N Pk_d.l. In most textbooks this is called A-conjugate because 
A is the symmetric positive definite matrix. A-eonjugate is applicable here as weil: 

(Pk, Npj) = (PbATApj) 
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(Apk> Apj) 

(Pk, Pj)A. 

Combining steepest descent and A-conjugacy. The new approximate sol ut ion vec­
tor 

Xk = Xk-l + {3kPk 

one obtains by choosing the vector Pk that is A-conjugate to PI, ... ,Pk-l and closest to 
rk-l· 

P •. , 

Figure 3.3: Conjugate gradients (from Schuh (1996)). 

It is the conjugate diameter in the plane spanned by rk-l and Pk-l. The lat ter is 
tangent to the ellipse J(xk-d = const., and the residual vector rk-l, Figure 3.3: 

Schuh (1996) . The factor Îk of the linear combination is determined by the conjugate 
condition and yields 

rL1rk-1 
Îk = T 

r k_2rk-2 

In Golub and van Loan (1996) it is shown that, using the properties of and the relations 
between Pk and rk-l, the conjugate gradient algorithm is as follows: 

Algorithm (Conjugate gradients). 

Xo = 0 ~ ro = b 
k=O 
while rk =1= 0 

k=k+1 
if k = 1 
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end 

else 

end 

PI = ro 

Ik = rL1rk-l/rL2rk-2 (= Il rk - rl I Vl lrk- 21 1 ~) 
Pk = rk-l + IkPk-l 

(Jk = rL1rk- d p[Npk (= I l rk -rll~/llpk l l~) 
Xk = Xk- l + (JkPk 

rk = r k- l + (3k N pk 

43 

The algorithm as such is not directly applicable since we need to find a proper stopping 
value k such that the approximate solution is not overwhelmed by oscillations due to the 
instability. 

Filter factors 

It can be shown that the iterates x% of the conjugate gradient iteration minimize the 
residu al in the corresponding Krylov subspace: 

Consequently, CG requires less iterations than for example the Landweber method, Engl 
et al. (1996). The k-th approximation can be related to the initial values as 

Xk = Xo - Pk_I(ATA) ro 

where Pk - I E TIk-1 is a polynomial of degree k - 1 which depends on y , Louis (1989). 
The CG method is therefore nonlinear. 

Hansen (1997) gives the filter factors for the CG method as 

t5k ,i = 1 - Pk(a;) , i = 1, ... ,n 

where Pk is the Ritz polynomial: 

with (}~ ,j the Ritz values which are the k eigenvalues of AT A = N restricted to the Krylov 
subspace Kk(N, ro l . For small k the Ritz values are approximations to some of the largest 
eigenvalues and the filter therefore equals one. The filter becomes zero for the smaller 
eigenvalues because the eigenvalues are negligible with respect to the Ritz values. For 
increasing k more and more smaller eigenvalues are being approximated resul t ing in a 
solution that includes also higher frequencies. A regularized solu tion one obtains by 
taking knot too large. 

The similarities and differences of the CG and Landweber filter factors are more pro­
nounced when the CG filter is written as 

k 

Ok,i(ai) = 1 - TI (1 - {}J;,Ja?J , i = 1, . . . ,n. (3.53) 
j=l 

Hansen (1997) states that (3 .53) should not. be used as such since it. is extremely sensitive 
to rounding errors. 



44 3. METHODS OF REGULARIZATION 

Mean square error 

Since the CG method is nonlinear, no simple error propagation exists. 

Preconditioned conjugate gradients (peG) 

Although CG has better convergence properties than Landweber iteration, the method 
only works weil on matrices that are either weil conditioned or have just a few distinct 
eigenvalues, Golub and van Loan (1996) . The idea behind PCG is to apply CG to the 
transformed system 

Nx=b 

where N = C-1NC-1 is well-conditioned, x = Cx, b = C- 1b = C-1ATy , and C is a 
symmetrie positive definite. Golub and van Loan (1996) discuss several preconditioners, 
and Schuh (1996) applies CG for gravity field determination. 

3.8 Comparison of regularization methods 

The regularization methods considered in this report are Tikhonov regularization, (gen­
eralized) biased estimation, collocation, truncated (generalized) singular value decom­
position, damped (generalized) singular value decomposition, Landweber iteration and 
conjugate gradients. All these methods minimize 

with constraint 

for the direct methods and 
xE Kk 

for the iteration methods. All regularized solutions can be written as a filtered generalized 
inverse x = A!y: 

with filter factors cSi summarized in Tables 3.1 and 3.2 . Note that the filter equation with 
Vi should be taken for GBE as weil, although L I- In. Furthermore, no te that the filter 
for Landweber iteration could also be written as 

k-l 

""'. k cSk ,i = (3À i L.., (1 - (3À i )1 = 1 - (1 - (3À i ) . 

j=O 

Tikhonov regularization, biased estimation and collocation appear to be equal to a 
large extent. The differences are: 1) the least-squares collo cat ion solution is unbiased, 
assuming that the unknowns to be solved for have zero expectation; 2) the 'a priori' 
information is always a unit matrix in case of biased estimation, no special structure of 
the solution space, like Kaula's rule in satellite geodesy, is assumed; 3) no regularization 
parameter needs to be determined using least-squares collocation although sometimes 
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Table 3 l ' Filter fa ctors for regularization methods with parameter a 

Method Filter Oa,i Eq. Remarks 

TR 
Ài 

(3.6) L = In 
Ài+a 

I; (3.39) L #- In' gsva 

'Y; + a 

BE 
Ài 

À+a 
(3.6) L = In 

GBE 
Ài 

(3.29) L #- In , L is? 
À+a 

collocation 
Ài 

(3 .33) L = In 
À + 1 

DSVD A (3.42) L = In 
A+~ 

DGSVD li (3.43) L #- In , gsv 
l i+Já 

"gsv = generalized singular values 

Table 3.2: Filter factors for regularization methods with parameter k. 

Method Filter Ok,i Eq. Remarks 

TSVD { : for i = 1, ... , k 
(3.36) L = In 

for i = k + 1, ... , n 

0 for i = 1, ... ,p - k 

TGSVD 1 for i = p - k + 1, . .. ,p (3.41 ) L #- In , gsv 

ai for i = P + 1, ... , n 
k 

Landweber 1 - II (1 - ,6Ài ) (3.49) none 
j=l 

k 
CG 1 - II (1 - B;';À i ) (3.53) none 

j=l 
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implicit such a parameter is involved. Schwintzer (1990) for example gives an algorithm 
to determine the a posteriori variance ofunit weight 0-2; 4) Tikhonov regularization explicit 
allows to include constraints on derivatives of the signa!. 

The main difference between all regularization methods is the filter, which results in 
different mean square errors, Table 3.3. Since GBE is designed to give the minimum 
mean square error this might be a very good choice for many problems. However, it is 
not possible to constrain derivatives of the signal which may be desirabie. Furthermore, 
the method does not give good solutions wh en parts of the long wavelengths of the signal 
correspond to smal! singular values, Bouman and Koop (1997). 

For all regularization methods it holds that the regularized solutions have good sta­
bility when Cl! is large or k is smal!. The solutions fit the data weil when Cl! is small or k is 
large. In the next Chapter several methods are discussed that try to find a compromise 
between data fit and stability. 



Table 3.3: The errors of several regular'ization methads 

Method trace(Qx) b..xTb..x MSE 

t a2Ài n a2(x V )2 n a 2À + a2(x V)2 
TR/BE l: " l: 1 , 1-

i-I (Ài + a)2 i-I (Ài + a)2 i- I (Ài + a)2 t a2Ài n 2( )2 n 2 À 2( )2 
GBE l: ai x , Vi l: a i + ai x , Vi 

i-I (Ài + ai)2 i-I (Ài + ay i-l (Ài + ay 
n a2 n a2 

collocation l: - - l:-
i- I Ài + a2 i-I Ài + a 2 

k a2 n 
n [a2J ] TSVD a l: - l: (x, Vi)2 ~ À

i
' + (1 - Oi)(X , vy 

i=1 Ài i=k+1 

DSVD 
n a2 

~ (0\; + y'a)2 
t a(x, v;)2 
i- I (0\; + y'a)2 

t a
2 + a(x, Vi? 

i-l (0\; + y'a)2 
n a2J2 n 

n [ a2J2 ] Landweber l:-k l:(1 - Jd(x, Vi)2 l: T + (1 - Jd(x, Vi)2 
i=1 Ài i=1 a-I t 

--------- ------

"Filter Oi is defined in (3.36) . 

Eq. 

(3.20) 

(3.30) 

(3 .34) 

(3.37) 

(3.44) 

(3.50) 
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SOME COMPUTATIONAL ASPECTS 
OF REGULARIZATION METHODS 

4.1 Introduction 

In the preceding Chapter several regularization methods we re discussed as weil as their 
mean square error for fixed a or a i . It was shown that the regularization methods all 
try to minimize the residual norm IIAy - xi i together with the norm of (derivatives of) 
the signalllLxll. In this Chapter we deal with the problem of computing (an) optimal 
regularization parameter(s) . Furthermore it is much easier to treat regularization in 
standard form , minimize: 

Ja(x) = IIAx - YII~ + al lxll ~ 

as is shown by Eldén (1977) . Here we discuss the transformation to standard form for 
direct and iterative methods. Finally it is sometimes possible to define additional side 
constraints on x , for example when parameters or their sum have to be positive. 

4.2 Transformation to standard form 

It turns out to be a good idea to distinguish between direct and iteration methods when 
considering the t ransformation to standard form , Hansen (1997) . First , the transforma­
tion for the direct methods is discussed in some detail and then the transformation for 
iteration methods is summarized. 

4.2.1 Direct methods 

Consider the problem 

min IlxlIL ' B = {xlllAx - yll w is minimum} 
x EB 



" eg .. - -- - - .IIIIII' III II III I IJI, 

50 4. SOME COMPUTATIONAL ASPECTS OF REGULARIZATION METHODS 

where II.IIL and 11.lIw are the seminorms 

Ilxlli = xT LT Lx, lIyll~v = yTWTWy 

for some matrices Land W. The sol ut ion 

(4.1 ) 

is unique if N(WA) n N(L) = {Ol or equivalently (WAf WA + LTL is positive definite. 
Since WTW = P is the weight matrix of the observations which is positive definite, WA 
has full column rank n. Hence, N(WA) = {Ol and the solution is unique. Equation (4.1) 
is nothing but the weighted least-squares solution, compare Appendix B. Eldén (1982) 
treats the more general case, WA does not have full column rank. 

We may therefore conclude that the weight matrix for the observations poses no ad­
ditional problems and we can further concentrate on the seminorm L. 

As Hansen (1997) argues it is simpIer to treat problems in standard form because 
only one matrix , A , is involved instead of two (A, L). Hence, one would like to have a 
numerically stabIe transformation method to rewrite 

min IIAx - YII~ + allLxll~ x 

as 

mjn IIÄx - YII~ + allxll~· 
x 

(4.2) 

When L is square and invertible, the transformation is simply A = AL -I, Y = y, the 
back-transformation becomes Xo = L -lxo. 

However, when L is the discrete approximation, in the space domain, of some derivative 
operator it is not square and invertible. Typical examples are LI E IR(n - l)xn and L 2 E 
IR(n-2) x n: 

1 -1 -1 2 -1 

1 -1 0 -1 2 -1 0 
L 1 = , L 2 = 

0 1 -1 0 - 1 2 -1 

1 -1 -1 2 -1 

These matrices are approximations of the first and second derivative operators on a uni­
form net, Hansen (1989). 

Now the transformation involves two QR factorizations. Let 0 = n - pand q = 
m - (n - p) . First compute the QR factorizat ion of LT 

(4.3) 
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where K is an orthogonal matrix and Ris upper t riangular , compare Appendix B. Since 
L has full rank p, its generalized inverse is L + = K pR;T. Moreover, the columns of Ko 
form an orthonormal basis for the null space of L , Hansen (1997). For LI and L2 one has 

N (L I ) = span {(I , 1, ... , 1 )T} , N (L2) = span { (1 , 1, .. . , l)T , (1,2 , ... , n f}. 

Secondly, compute the QR factorization of AKo E IRmxo 

Then the transformed quantities are given by 

A 

Y 

HT AL+ = HT AK R - T 
q q p p 

H'{Y . 

Solving (4.2) gives x,,, which is related to X a as 

X a = L+xa + KoTo- I H~(y - AL+xa) 

see Hansen (1989, 1997). 

(4 .4) 

(4.5) 

Relation of TGSVD with TSVD and the transformation to standard form 

One would expect that the SVD of the transformed problem in standard form and the 
GSVD of the original problem in non-standard form are connected one way or the other. 
This turns out to be true. The proof of the relations in this Section are given in Hansen 
(1989). 

Let the SVD of the transformed matrix be A = utvT and the GSVD as in (3 .38). 
Then 

- T - - l -
U = Hq UpE, 1:: = E1::M E , V = V E 

where E = antidiag(l , ... , 1) is the p x p exchange matrix and Hq is as in (4.4). Further, 
let Xk denote the TSVD of (4 .2) 

X k = Aty, At == V diag(O'~ I , ... , O'k l
, 0, ... ,O)UT 

Inserting th is solution in (4.5) gives the desired one. 
In the case of Tikhonov regularization the transformed solution xa is 

xa = A~, A~ == Vdiag (_20'; ) t -I[;T. 
ai +a 

Again, inserting xa in (4.5) gives the proper solution. 
When L is well-conditioned, one can compute the GSVD of (A, L) stably from the 

SVD of A without performing the complicated GSVD computation: 
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where the singular values of Ä and the generalized singular values of (A, L) are related as 

With 

_ ap-i+1 
ai = "Yp-i+1 = --. 

/J-p-i +1 

"Yi 1 
ai = U-:-; ' /J-i = U-:-; ' i = 1, . . . ,p 

v"Yl + 1 v"Yl + 1 
(4.6) 

the matrices L: and M of the GSVD can be computed. The equalities (4.6) fol!ow from 
al + /J-; = 1, 'IJ i, Hansen (1989). 

4.2.2 Iteration methods 

Define the A-weighted generalized inverse of L as follows 

AIso, define the vector 
n 

Xo = L UrYXi 
i=p+1 

which is the part of Xk that lies in the nul! space of L, Hansen (1997). Then the standard 
form quantities Ä and y are defined as 

Ä = AL 1, y = Y - Axo 

and the transformation back to the general-form setting is 

Using the above relations and the fact that the k iterate belongs to the Krylov space Kk , 

Hansen (1997) shows that 

k-I . 

Xk = Lei (L1(L1f ATA)' L1(L1f AT Y + Xo 
i=1 

with c; constants. 

4.3 Determination ofthe regularization parameter(s) 

All regularization methods involve one or more regularization parameter(s) to be deter­
mined. Several methods to choose a single parameter are discussed as weil as one method 
to determine multiple parameters in case of generalized biased estimation. The relation 
of the different parameter choice rules with the (minimum) mean square error is treated 
also. 
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4.3.1 One regularization parameter 

The methods to determine a single regularization parameter discussed here are 

• quasi-solutions, Ivanov (1962), 

• discrepancy principle, Morozov (1984), 

• L-curve, Hansen (1992), 

• generalized cross validation (GCV), Wahba (1990) , 

• quasi-optimality, Morozov (1984). 

These methods can be divided into two groups, the a posteriori methods and the heuristic 
methods. The first two parameter choice rules belong to the first group and the last three 
choice rules to the second. lt can be shown for the a posteriori methods that 0: goes to 
zero as E: goes to zero, whereas this formally is not the case for the heuristic methods, 
Engl et al. (1996); Engl (1997). 

The parameter choice rules are given here with emphasis on Tikhonov regularization. 
The application of these rules to other regularization methods is given in Section 4.3.3. 

A posteriori methods 

Quasi-solutions. The method of quasi-solutions is an a posteriori method for the choice 
of the regularization parameter 0:: given a perturbed gE of g E C, choose 0: such that 

o:f~ + A*Af~ = A*gE (4.7) 

satisfies Ilf~ IIF = c, where cis an a priori bound on the norm of the exact solution, Kress 
(1989) . The method of quasi-solutions is derived here for Tikhonov regularization, the 
application to other regularizations is given in Section 4.3.3. 

Numerically the regularization parameter can be obtained by Newton's method for 
solving 

Z(o:) = Ilf~ll~ - c2 = o. 
Subsequent o:'s are related as 

Z( O:n) 
O:n+! = O:n - Z'(O:n) 

see Press et al. (1992). The derivative of Z is given by 

Z'(o:) = 2(~~, f~) 
since IIf~112 = (f~, f~), and 

(4.8) 

as can be derived from (4.7). 
Provided that IIA+gIIF 'S c, one has the estimate 

o:c'S IIAIIE: 
which may serve as a starting value for the iteration to fino t.he desired 0: for which 
Ilf~IIF = c holds , Kress (1989) . 
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Discrepancy principle. The discrepancy principle is also an a posteriori method to 
find the regularization parameter: given a perturbed g< of g E G with a known error level 
Ilg< - glle ::; c < Ilg<lle, choose a such that II Af~ - g<lle = c. 

The regularization parameter can be obtained by sol ving 

Z(a) = II Af~ - g< ll ~ - c2 = 0 

with Newton's method. Rewriting the above norm as, using (4.7), 

Ilg< - Af~ ll ~ (g< - Af~, g< - Af~) 

one obtains 

and 

(g< - Af~, g<) - (A'(g< - Af~),f~) 

I l g< lI~ - (f~, A'g<) - all f~ ll} 

Z(a) = Ilg< ll ~ - (f~, A'g<) - allf~lI} - c2 

Z'(a) = -(~~, A'g<) - I l f~l l } - 2a(~~, f~) 
where the derivative dfoJda is given by (4.8). 

Provided that Ilg<lle > c (SNR > 1) , one has the estimate 

which may serve as starting value for the iteration (until II Af~ - g<lle = c), see Kress 
(1989) ; Groetsch (1984). 

The discrepancy principle is widely used, Louis (1989) , for example, exciusively applies 
the discrepancy principle as parameter choice rule. It has to be mentioned that of ten the 
criterion IIAf~ - g<l le < Re, with R> 1 is used. 

The method of quasi-solutions and the discrepancy principle are related as follows, Kress 
(1989): 

• For given c > 0 minimize the defect IIAf - gl le subject to the constraint that the 
norm is bounded by Ilfil F ::; c . 

• For given c > 0 minimize the norm IlfilF subject to the constraint that the defect 
is bounded by IIAf - glle ::; c. 

Heuristic methods 

A disadvantage of the above two methods is the necessity of a priori bounds on either 
the signalor the measurement error. Dealing with gravity field determination of t he 
earth, some signal models exist such as Kaula's rule, Kaula (1966) or Tscherning-Rapp, 
Tscherning and Rapp (1974). However, models are always approximate and the power 
of the models differs from one model to another, e.g. Rapp (1972) ; Jekeli (1978); Rapp 
(1979). Consequently, for quasi-solutions the regularization parameter may be too large 
or too smalI, resulting in a too smooth or too rough solution. 
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The information on the noise level mayalso be unreliable. Typically, the worst-case 
bound will be a severe overestimation, while the standard deviation might underestimate 
the true error , Engl et al. (1996). 

Therefore, it is necessary to consider alternative a posteriori parameter choice rules 
th at avoid knowledge of the noise level or the signal energy, and to determine a regulariza­
tion parameter on the basis of the actual performance of the regularization method. Ex­
amples are the L-curve, GCV and the quasi-optimality criterion. Strictly speaking these 
heuristic parameter choice rules cannot provide a convergent regularization method, i.e. 
a = a(c) and limHoA~ = A+, Engl et al. (1996). In practice, however, these methods 
may work weil. 

L-curve. The L-curve is a plot, for all valid regularization parameters, of the (semi)norm 
IILx; 11 2 of the regularized solution versus the corresponding residual norm IIAx; - y ' 11 2' 
For discrete ill-posed problems it turns out that the L-curve, when plotted in log-log scale, 
has an L-shaped appearance with a distinct corner separating the vertical and horizontal 
parts of the curve, Hansen (1997), see Figure 4.l. Originally the use of the L-curve was 
suggested by Lawson and Hanson (1974). 

N 

Cl 
.Q 

~ less filtering, Cl small 

: more filtering, Cl large 
------------~---~---------------------------~ 

log II Ax - Y 11 2 

Figure 4.1: The L-curve in log-log scale (from Hansen (1997)). 

This behaviour can be explained by considering the two error components, that is the 
perturbation error [ and the regularization error 6x. The vertical part of the L-curve 
corresponds to solutions where I ILx~1I2 is very sensitive to changes in the regularization 
parameter because the perturbation error [ dominates x; and because [ does not satisfy 
the discrete Picard condition, Hansen (1997). Stated otherwise, the vertical part corre­
sponds to smaller a. The emphasis ofminimizing J(a) is on IIAx; -y' 112 ' allowing IILx;112 
to become large. The horizontal part of the L-curve corresponds to solutions where the 
residu al norm IIAx~ - y' 112 is most sensitive to the regularization parameter because x; is 
dominated by the regularization error, as long as y satisfies the discret.e Picard condition 
(ibid). 
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The exact location of the corner can be found by maximum curvature. For a continuous 
regularization parameter a one computes the curvature of the curve 

(((a),7J(a)) 

where ((a) = log IIAx~ - y'112 and 7J(a) = log Ilx~1I2, and finds the point of maximum cur­
vature. When the regularization parameter is discrete, e.g. TSVD, one can approximate 
the discrete L-curve in log-log sc ale by a 2D spline and compute the point with maximum 
curvature on the spline. The corner of the L-curve is defined as the point closest to the 
corner of the spline curve, Hansen (1997). 

An alternative for locating the corner of the L-curve is to consider the point C = 
(((ae),7J(ae)) where the L-curve is concave and the tangent at C has slope -1. The 
concave condition is necessary, because the slope mayalso be -1 near the endpoints of 
the curve, compare Figure 4.1. It turns out that point C is a corner of the L-curve if and 
only if the function 

has a local minimum at a = ae , Reginska (1996); Engl et al. (1996). 
Although the L-curve method seems to work weil in a number of applications, it still 

lacks a sound mathematical foundation, see (Engl et al., 1996, Section 4.5) and Vogel 
(1996). 

Generalized cross validation. The idea of GCV is that if an arbitrary element Yi of 
y is left out, then the corresponding regularized solution should predict this observation 
weIl. Moreover, the choice of the regularization parameter should be independent of 
an orthogonal transformation of y, Wahba (1990); Hansen (1997). This leads to the 
minimization of: 

IIAx' - y'112 
J(a) - Q 2 

- (trace(Im - AA~))2' 
(4.9) 

The denominator can be expressed in terms of filter factors: 

p 

trace(Im - AA~) = m - (n - p) - L Oi 
i= 1 

with the filter defined in (3.14), see Hansen (1997). 
The range of the operator, R(A) , has finite dimension, since the foundation of gen­

eralized cross-validation originates from statistical considerations and depends on the 
assumption that the data perturbation is discrete white noise, Engl et al. (1996): 

E{y - y'} = 0 and E{(y - y')(y - y'l} = a2 I. 

This implies that E{lly - y'IID = ma2
, hence é = ..;ma. 

The assumption of white noise is indeed essential as Hansen and O'Leary (1993) show. 
In case of coloured noise no minimum is found with the GCV method whereas the L-curve 
works weIl. 
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Quasi-optimality. The third heuristic parameter choice rule we discuss is the quasi­
optimality method, Morozov (1984); Engl et al. (1996); Hansen (1997). This rule also 
tries to compromise between the data error and the regularization error by minimizing 
the change in the regularized solution with respect to 0:. The idea is that if 0: is too small, 
fo is dominated by the data error which now is sensitive to small changes in 0: . On the 
other hand, if 0: is too large, fo is dominated by the regularization error which now is 
sensitive to small changes in 0:. The optimal 0: is obtained when both errors are about 
equal. Hence, the L-curve and quasi-optimality are alike. 

Let us follow the line of Morozov (1984) to derive the quasi-optimality equations. Let 
fOl be the solution of the problem of minimizing 

(4.10) 

where usually we have fa = O. Since 0 < 0: < 00 the minimizer fOl is also called a family 
of solutions, specifically the primary family. As a second step consider the minimization 
of the same functional (4.10) for fa = fOl : 

( 4.11) 

The solutions of (4.11) are denoted fo, and are called two-fold regularized families, Moro­
zov (1984) . 

This two-fold regularized family can be expressed in terms of the primary family: 

fOl (A* A + o:I)-I(A*g + o:fo) = fo 

f02 (A* A + o:I) - J(A*g + o:fol ) = (A* A + o:I)-I(A*g + o:fo + o:(fol - fa)) 

fOl - o:(A*A + o:I)-I(fo - fO l) 

f - 0: dfa (4.12) 
o do: ' 

The equality 

dfa = (A* A + o:I)-I(fo - fa) 
do: 

can be checked by straightforward calculation. 
The next step is to choose a mesh in the parameter 0:, that is , O:j, j = 0,1, .. . , N in 

a neighbourhood of the optimal 0: . Two consecutive o:/s are almost equal and therefore 
O:j+l = TO:j, T ~ 1, V j (and T > 1) . The derivative of fa with respect to 0: can now be 
approximated by 

which gives for (4.12) 

f . _ fO,j - fa ,j+ l 
a ,) 1 - T 

fal,j(1 - T) - fal,j + fal,Hl 
1 - T 

fal ,)+1 - Tfal,j 
1-T 
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The above formula shows that the elements of the two-fold regularized family can be 
approximately computed using the elements of the initial family. 

Intuitively, it seems reasonable to choose a value j = jo for which 

(4.13) 

is minimized, which should correspond to balancing t he data error and the regularization 
error. The value ajo is called the quasi-optimal value of the regularization parameter. 

Minimizing the distance (4 .13) means minimizing a[[df"jda[ [ or in finite dimensions 

( 
2)1~ 

all dx" 11 = t (6i (1 - 6i ) u
Ty) 

da 2 i=1 ,. 

evaluated at the (generalized) singular values, Hansen (1997) . Note that dx"j da in spec­
tral form simply is d6;jda, compare equations (3.5) and (3.6): 

Initial value of a 

d6i a­
da (À i + a)2 

-6;(1 - 6;). 

Ài Ài + a - Ài 
---

Ài +a Ài + a 

For the a posteriori parameter choice rules initial values were already given. Press et al. 
(1992) suggest to firstly use 

trace(AT A) 
a = --'--::::--"­

trace(FL) 

which tends to make the two parts of the minimization have comparable weights. 

Relation between the parameter choice rules and the mean square error 

It is demonstrated in for example Golub et al. (1979) ; Wahba (1990) that the GCV 
criterion is expected to give a regularization parameter that results in a MSE close to 
the minimum MSE. Wahba (1990) remarks that the discrepancy principle does not give a 
minimum MSE but is likely to give too smooth solutions. Kitagawa (1987) showed that 
the a which minimizes a[ [dx"jda [[ seeks to minimize the mean square error, compare also 
Hansen (1992). The relation of the L-curve with the (minimum) MSE is not weil solved, 
although of ten it gives too smooth solutions, Xu (1997). We expect that the corner of the 
L-curve is related to the MSE as follows. The horizontal and vertical part correspond to a 
large change in data error and regularization error respectively. The corner of the L-curve 
is defined as the point where the change in both errors is about equal. Translated to the 
quantities trace(Qx) and t::.xT t::.x this means that one seeks a such that the derivative of 
these two components with respect to a is equal but with opposite sign, and this a does 
not necessarily lead to a minimum MSE. The L-curve therefore is not expected to give 
the minimum MSE beforehand, but might be close to it. 
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4.3.2 Multiple regularization parameters 

The GBE solution involves the determination of multiple regula rization parameters. Hoer! 
and Kennard (1970) show that, starting from the l.s. solution, one can iterate towards a 
set of o:/s with minimum MSE. Later , Hemmerle (1975) found an explicit expression for 
the set of optimal regularization parameters with respect to the least-squares solution. 

Minimum MSE. The set of ai with minimum MSE is obtained by differentiating the 
MSE with respect to ai (see for example Xu and Rummei (1994a)): 

àMSE 2Ài (ai(x, v;)2 - 0"2) 

àai (Ài + ai)3 

The minimum is obtained for O:i = 0"2 / (x , V i)2 . With this the MSE now becomes 

n 0"2 
min(MSE)=L

À 
2/( )2· 

i=1 i + 0" x , V i 

The above equation is not very useful for practical purposes since the Xi that appear 
are unknown. Having gravi ty field determination in mind one could for example use 
approximate coefficients from an existing gravity model such as OSU91A, Rapp et al. 
(1991) , instead of the true coeffi cients x. Iteration gives IIpdated ai's until the change in 
the a's is considered to be sm a ll enough. 

Hoer! and Kennard (1970) suggest to use the least-squares solut ion as ini t ial value for 
the iteration: 

êr2 

ai,O = -(A )2 
X , V i 

where êr2 and i are least-squares values. However, it may occur in practice that because 
of numerical instability it is impossible to compute a least-squares solut ion. Otherwise, 
one can start the iteration from any (stabie) BE solution. The first part on the right­
hand side of (3.30) is a continuous, monotonically decreasing function of al, a2, ... , a n , 

whereas the second part on the right-hand side is continuous, monotonically increasing 
with respect to O:i, Xu and Rummei (1994a) . The choice of the initial MSE solution is 
therefore unimportant . 

4.3.3 Explicit application to the regularization methods 

The application of the parameter choice rules to the regularization methods is rather 
straightforward but some additional remarks are necessary. The five parameter choice 
rules were given above for Tikhonov regularization and can be directly applied to ordinary 
biased estimation. Applying collocation, no parameter choice has to be made since 0: = l. 
However, Schwintzer (1990) does give an algorithm to determine 0: in the framework of 
collocation. Schwintzer 's idea is as follows. In a least-squares context we have 

E { êT Pê} = m - n (4.14) 

with ê = y - Ai the vector of estimated residuals, i the least-squares estimate, P the 
weight matrix of the observations y, m the number of observations and n the number 
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of unknowns, m > n. General!y, equation (4.14) does not hold when instead of ê the 
residuals e", = y - Ax", are used. The correct a now is assumed to be that a for which 

is true. See also Bouman (1993) for further discussion. 
One difficulty associated with the application of the parameter choice rules to TSYD 

and the iteration methods is that some of the choice rules are defined for a continuous 
parameter only. As we wil! see here af ter this problem can be solved. 

TSVD 

First an a priori method is considered. Suppose that A+y E R(ATA) and that Ily-y'112 ~ 
ê. The truncation level k is chosen such that 

that is, the smal!est singular values are above the level of the error variance. For larger 
k the singular values are below the measurement noise and reveal no signal information. 
Hence k plays the role of the regularization parameter, k = k(ê) . The difference between 
the regularized solution and the exact solution is Ilxk - A+y112 = O(Jf), wh ere y are the 
error free observations, Groetsch (1993). 

Obviously this is an a priori method when the error level and the singular values can 
be calculated in advance. If ê is estimated from the actual measurements it becomes 
an a posteriori method, the measurements then play no further role in determining the 
regularization parameter, however. 

The method of quasi-solutions can be formulated as: minimize IIAkXk - yll subject to 
the constraint Ilxkll ~ c. Louis (1989) gives the application of the discrepancy principle 
to TSYD. Suppose that the measurement signal is above the noise. Subtract from the 
total power in the observed signal the most dominant contributions as given by the largest 
singular values and singular vectors Ui. At a certain moment the remaining power becomes 
less than the noise, the SYD should be truncated. In formulas this is: suppose 

then subtract from Ily'll~ the term 
(y',Ui)2 

until a number ~ (&)2 is found. The corresponding index i = k gives the a posteriori 
parameter choice 

a = a(ê, y') = O"k. 

The computation of the corner of the L-curve by maximum curvature is somewhat prob­
lematic since the curve is not continuous for k. Hansen and O'Leary (1993) propose to fit 
a cubic spline through the discrete point set and use this continuous spline. It is probably 
easier to use 'ljJ(a) because no derivatives are involved. 

The generalized cross validation method causes no difficulties and equation (4.9) may 
be directly minimized for k. 
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The quasi-optimality method is not defined for a discrete regularization parameter. 
However, with some approximations one can use this method for T(G)SVD as weIl. Let 
a = Cfk and use the approximation 

to obtain 
(y , Uk) 

ICfk - Cfk- d· 

Hansen (1997) further introduces the approximation I.0.Cfk I ~ Cfk- l which is valid when 
Cfk-I» Cfk· If the constraint is a differential operator, L i- I , then in the above formula 
the singular values have to be replaced by generalized singular values. 

DSVD 

The damped singular value decomposition is a continuous fUllction of a and the parameter 
choice rules can be applied almost in t he same manner as with TR. 

Iteration methods 

If the discrepancy principle is used to determine the regularization parameter, then the 
iteration should be terminated when the defect 

IIAf: - g' llc < RE 

for the first time. Since the defect is monotonically decreasing this is a proper a posteriori 
parameter choice Louis (1989). 

As far as the other choice rules are concerned, the remarks made in the section about 
TSVD are valid here too, except for quasi-solutions which cannot be applied here. 

4.3.4 Approximation of some parameter choice rules 

So far the discussion of parameter choice rules fully relied on the SVD. In some applications 
however , it might be virtually impossible to compute the SVD of A since the dimensions of 
A are large. In gravity field determination of the Earth, the Moon etc. by satellite tracking 
the number of unknowns is typically of the order 103 , while the number of observations 
is 106 . Furthermore, usually the design matrix nor the observations are accessible but 
the inverted matrix (AT A + aK)-l is, as weil as the solution x~ . If one wishes to assess 
the quality of these gravity models or wants to compute a regularization parameter not 
on the basis of trial-and-error, which is common practice, then one can approximate the 
observations and some of the parameter choice rules as described hereafter. 

Suppose the solution x~ and the error covariance matrix (AT A + a K)-l are available. 
Although this error description is based on assumptions of unbiasedness, the variances of 
x~ as described by (AT A + aK)-l may serve as a firs t approximation. Take x~ as 'ground 
truth' , that is x = x~ and consider the observations 

y e = Axe 
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with xe = X + e, where e is O(ai-
1

) and ai are the singular values. Then the regularized 
solution reads 

x~ (ATA + aK)-1 AT y 

(ATA + aKt1ATAxe 

showing that y and A are not needed explicitly. The singular values could be obtained by 
computing the eigenvalues of AT A which requires little computation time compared to a 
SYD but the results can be unreliable. Note that y e E R(A) which is not true in general 
for observations y', and the least-squares solution is 

X (AT A) -1 AT ye 

(ATA)-1 ATAxe 

Xe. 

In theory the l.s. sol ut ion should therefore exactly be x = xe. In practice, however, this 
is not true since the inverse of AT A is numericaIly unstable and cannot be computed. 
Moreover, xe has errors behaving like the inverse of the singular values amplify noise. 

Since we assume we do not have y ' and A, the norm 

IIAx~ - y'lb (4.15) 

needed for several parameter choice rules, cannot be computed. Because of our choice of 
ye , we can approximate (4.15) by 

IIAx~ - yelb II A(x~ - xe)112 
< IIAllllx~ - xel12 

Ftllx~ - xel12 

and À1 is the largest eigenvalue of AT A which can easily be obtained with the power 
method, Kreyszig (1988). 

4.4 Regularization with additional side constraint 

In addition to the usual problem of minimizing Jo:(x) it is possible to define a (linear) 
side constraint of the form 

Cx ~ s 

where C is an i x n matrix and s a known i vector. When for instance Xi is a physical 
parameter that should be positive then for C a diagonal matrix, eii = 1 and Si = 0, that 
is, Xi ~ O. Think for example of the light intensity of a pixel in a picture or of the distance 
between two points. The problem of minimizing J(x) , the least-squares problem, with 
linear inequality constraint and a computation algorithm is treated by Lawson and Hanson 
(1974). Hemmerle and Brantle (1978) discuss GBE with linear inequality constraint, while 
(Engl et ai., 1996, Section 5.4) characterize the solution as an element of a convex set . 

An application in geodesy might be gradiometric analysis. It is weIl known that the 
observation of solely the elements of the gravity gradient tensor results in badly deter­
mined low order gravitational potential coefficients (coefficients of a spherical harmonic 
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expansion of the potential), Van Gelderen and Koop (1997). This problem might partially 
be overcome by fixing the sign of the coefficients. One could for example adopt the sign 
of an existing gravitational potential model when the SNR of aspecific coefficient of this 
model is larger than some threshold. 

4.5 Summary 

The implementation of the regularization methods for actual computations becomes eas­
ier when it is possible to consider one standard form. This is possible indeed and the 
transformation to standard form is especially simple for norms weighted with a positive 
definite matrix, like the error variance matrix of the observations. With some additional 
effort semi-positive definite matrices, like the matrix corresponding to a seminorm, can 
be handled as weIl. 

Several methods exist to determine (an) optimal regularization parameter(s). Some 
of those are directly linked to the minimum mean square error whereas others are not ex­
pected to give a minimum mean square error. The explicit application of these parameter 
choice rules to the regularization methods is rather straightforward although some of the 
parameter choice rules are defined for continuous methods only. 

The major part of th is report is devoted to the mathematics of the inverse problems 
but sometimes it is possible to include additional side constraints on the solution based on 
the physics of the corresponding problem. Whenever such a situation occurs it is probably 
wise to use these side constraints. 
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5 

EXAMPLE: AIRBORNE 
GRAVIMETRY 

5.1 Introduction 

In the two preceding Chapters se ver al regularization methods were discussed , as weil 
as different methods to choose the regularization parameter(s). It was shown that all 
regularization methods are in fact low pass filters, and that the filters make the difference 
between methods. Consequently, the regularized solution and the corresponding mean 
square error differ from one method to another. 

These theoretical comparisons in th is Chapter are exampled with airborne gravimetry, 
th at is, scalar gravity is measured at some height h above the earth's sUl'face, for instance 
in an airplane. A gradiometric example can be found in Bouman and Koop (1998). Also 
Xu and Rummei (1994b) compare several biased estimators using gradiometric observ­
ables. 

The outline of the current Chapter is as follows . First , the measurements themselves 
are discussed as weil as their relation with gravity at the earth's surface. Secondly, the 
Tikhonov regularization method is examined in detail for several parameter choice rules. 
Then the results for the SVD methods are summarized, since they resem bie each other to 
a great extent. 

5.2 Measurement setup and spectral relation 

5.2.1 Planar approximation and Fourier series 

Consider gravity measurements (magnitude only) at height h above the earth's surface, for 
example measurements collected in a fiying airplane. Then the relation between gravity 
anomalies at the earth 's surface and at height h is given by the convolution equation 

6.gh (x, y, h) = P(x, y, h) * 6.go(x, y) 
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where 
1 h 

P(x, y, h) = 271" (x2 + y2 + h2)3/2 

is the Poisson kemel in planar approximation, Hirsch (1996) . In the example discussed 
here the observations lie on a single line, hence y = 0, which is equivalent to the assump­
tion that .6.g is constant perpendicular to the measurement line (cross-track), Haagmans 
(1988) . 

The Fourier series coefficients of .6.g are 

1 ~ ·k2~ 
F{.6.g}=ak = N ~ .6.g(x)e-J "N

x, k=0, .. . ,N -1 
x=<N> 

~ L .6.g(x)e-jkwx , k = 0, ... , N - 1 
x=<N> 

where w is the fundamental frequency, hence .6.g is assumed to be periodic with period 
N . The relation between the spectra at h = ° and h = h is, Haagmans (1988) 

(5.1) 

or 

(5.2) 

5.2.2 Measurement synthesis 

The ground truth we use is derived from 28 or 256 ship measurements in the Indonesian 
waters. In total three different profiles are used and the end of the profiles are matched 
with each ot her so no 'jumps' occur. To achieve periodicity, the values at the beginning 
and the end of the profile are forced towards zero. The mean is -1.136 mGal, other 
numbers of interest are listed in Table 5.1. The average spacing between subsequent 
observations is 1 km, therefore the total length of the profile is approximately 255 km. 
Figure 5.1 displays the profile. 

Table 5.1: Minimum maximum and rms of gravity anomalies in mCal. , 

mean min max rms 

.6. go -1.136 -76. 5 139.6 57.8 

.6.gh -1.136 -71.5 105.9 52.3 

The true gravity anomalies at height hare computed as follows . First , the Fourier 
series of .6.go is computed. With (5.1) the Fourier coefficients of .6.gh are obtained and 
the inverse Fourier transform of these coefficients gives .6.gh . The mean of .6.gh is -1.136 
mGal, the other numbers are listed in Table 5.1 also. To these true anomalies random 
generated noise is added. The noise has zero mean and a standard deviation of 2.5 mGal. 
Both the true and noisy observations at height hare displayed in Figure 5.2. The height 
h = 2000 m. 
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gravity at height 0 
150,------,-------,-------,-------,------,-------, 

100 

50 

-50 

_100L-----~------~-------L-------L------~----~ 
o 50 100 150 200 250 300 

Figure 5.1: Gravity anomalies along profile at ground level. 

Because the rms difference between true and noisy anomalies is 2.3 mGal (computed) 
and the rms of the total signal at 2000 m is 52.3 mGal , the best approximation one can 
expect at ground level is (inverse SNR) 

2.3 x 100% = 4.4% 
52.3 

accurate with respect to rms(6go). As is shown in Figure 5.3 the least-squares solution 
certainly does not provide areasonabie answer. The rms difference between the l.s. 
solution and the true data with respect to the rms of the true solution is 617%. 

5.3 Solution with Tikhonov regularization 

As we have seen in the previous Section, regularization is obviously necessary because 
least-squares fails: we are dealing with an ill-posed problem. But how is the least-squares 
solution computed? Actually, it is the exact inverse of the algorithm sketched above. 
Thus, compute the Fourier series of 6gt;, compute the Fourier coefficients at h = 0 
through application of the downward continuation factor é [w[h and finally the solution is 
obtained by inverse Fourier. The observation equation is 

E{y}=Ax 

with least-squares solution 
x = (ATA)-lATy 

where x and y are the Fourier coefficients at h = 0 and h = h respectively and A is a 
diagonal matrix with elements e - k[w[h . 
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Figure 5.2: Gravity anomalies along profile at 2000 m. 

Tikhonov regularization is therefore applied in the frequency domain. Three examples 
wil! be discussed, that is, regularization with zeroth , first and second derivative constraint. 

Regularization with signal constraint 

The regularization matrix is an identity matrix, Figures 5.4 - 5.8 show the different reg­
ularized solutions. The only difference between the Figures is the determination of the 
regularization parameter. Shown are the true solution together with the regularized solu­
tion as wel! as their differences. Table 5.2 summarizes these differences in terms of relative 
norm. The closer a certain percentage is to 4.4%, the bet ter the parameter choice rule 
performs. Also shown are the various regularization parameters cx. 

From the Figures and the Table one can conclude that four of the parameter choice 
rules give approximately the same result (quasi-solution, discrepancy principle, general­
ized cross validation and quasi-optimality). The regularized solution is acceptable and 
no further improvement is likely to occur. The L-curve method underestimates cx. The 
regularized solution is a factor of two worse with regard to the other solutions. However, 
the solution is an order of magnitude bet ter than the least-squares solution (Tabie 5.2). 

A difficulty associated with the discrepancy principle and the quasi-solution method 
is how to choose RIlEli and RIlxii properly. For the current example it holds 

(

256 ) 1/2 

llell = t; 2.32 ~ 37 mGal 

and 

Ilxll = 116gl1 ~ 924 mGal. 
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Figure 5.3: Least-squares solution derived frorn noisy observations. 

A priori there is not much information about the norm of the signal, whereas the norm 
of the error is known approximately. Assume th at the signal norm is known with some 
accuracy, even then it is not dear beforehand how to choose R. In the examples above we 
found th at the values of Ras given in Table 5.2 yield the best approximation. However, 
this is only possible when the true solution is known, which usual!y is not the case. Hence, 
one has to decide on basis of previous experience, comparison with other solutions or for 
example visual inspection of solu tion plots, whether a certain R is acceptable or not . Since 
these are al! subjective methods, we shal! not use them in the remainder of th is report. 

Regularization with first derivative constraint 

The regularization with a derivative constraint requires of course the computation of the 
derivative of the signa!. So far only the derivative in the space domain was discussed , but 
now we need the derivative in the frequency domain since the Fourier coefficients are the 
estimated signa!. Here we use the derivative with respect to the height variabie , which is 

Bak 
"""""§h = -klwlak' 

Hence, the regularization matrix LT L has diagonal elements k2 1wl 2 One slight inconve­
nience now is that this matrix does not have the proper dimension because k starts at 
0, the GSVD cannot be computed with the standard procedure. A way out of trouble is 
to give the corresponding zero element of LT L a smal! posit ive value (smal! wit h respect 
to the same element of ATA). We tested values of 10- 2 , 10- 4 and 10-6 and compared 
the values for the regularization parameter determined with GCV, the L-curve and quasi­
optimality. For al! three methods the variation in a stays below 7%, which we considered 
to be satisfactory enough. 
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Figure 5.4: Solution determined with Tikhonov regularization and quasi-solution as pa­
rameter choice rule (signal constraint). 

The results of Tikhonov regularization with first derivative constraint are summarized 
in Table 5.2 . All three heuristic methods perform weil and apparently the result is not 
very sensitive with respect to a. 

Regularization with second derivative constraint 

The second derivative in the frequency domain corresponds to diagonal elements k41wl4 

of LT L. Again, the three smal! values replaced the zero diagonal element and now the 
solutions were the same. The results of Table 5.2 show that the L-curve and GCV 
perform equally weil. The quasi-optimality method did not found a solution, the curve 
(a, Iladxojdall) is monotonical!y decreasing. So, the stopping value is arbitrary but larger 
values would give solutions more and more equal to a straight line. It therefore makes no 
sen se to seek for larger a's. 

5.4 Summary of the SVD solutions 

TSVD 

The truncated (generalized) singular value decomposition works wel! in al! cases except 
for the signal constraintj L-curve method, and the second derivativejquasi-optimality 
method, which give t.oo rough and too smooth solutions respectively. Also here tests 
with L(l , 1) = 10-1, 10- 2 and 10-3 gave similar k's . 



Table 5.2: Results for the regularization methads 

Method Choice rule Signal First derivative Second derivative Remark 

ct or k 
IIt.gÖ - t.goll 

ct or k 
IIt.gÖ - t.goll 

ct or k 
IIt.gÖ - t.goll 

IIt.gQIl IIt.goll IIt.goll 
quasi-sol. 0.197 7.6% +a - - - - R = 10.8 

discrepancy 0.181 7.6% + - - - - R = 13.5 

Tikhonov L-curve 0.047 23.4% ± 0.485 4.3% + 1.032 4.1% + -

GCV 0.093 11.6% ± 0.281 5.3% + 0.351 5.5% + -

quasi-opt. 0.147 9.0% + 0.998 5. 7% + ±103 80.9% t -

L-curve 64 22.0% ± 22 4.9% + 16 6.7% + -

T(G)SVD GCV 36 9.0% + 36 9.0% + 36 9.0% + -

quasi-opt. 19 5.7% + 19 5.7% + 2 77.0% t -

L-curve 0.006 211% t 0.260 8.3% + 1.302 5.0% + -

D(G)SVD GCV 0.006 211% t 0.107 14.7% ± 0.305 6.3% + -

quasi-opt. 0.203 23.8% ± 103 97.6% t ±103 73.5% t -
- - ---

aT he symbol + denotes a correct solution, ± is an 'about right' solution (percentage between 10 and 25), Î is a too smooth solution (IX too large) and .j. 
indicates that the solution is too rough (IX too smalI). 
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Figure 5.5: Solution determined with Tikhonov regularization and the discrepancy princi­
ple as parameter choice rule (signal constraint). 

DSVD 

The damped (generalized) singular value solutions are not satisfactory in genera!. They 
become better, however, for higher derivative constraints. One explanation is that the 
DSYD introduces less filtering with respect to TR and that in this case the signal con­
straint is not enough. Constraints on the first and second derivative yield smoother 
solutions compensating for the weaker filtering. 

Conclusions 

The regularization of airborne gravimetrie data with first derivative constraint gives the 
best solutions, followed closely by the second derivative solutions. The signal constraint 
does not give many good solutions (using the heuristic choice rules) nor does the DSYD 
method. Tikhonov regularization and TSYD perform equally weil, while TR is maybe 
slightly bet ter. 

The quasi-optimality method gives smoother solutions than the L-curve and GCY 
method in genera!. Of ten the regularization parameter is too large (or k is too smalI). 
In many cases the L-curve gives somewhat bet ter results than GCY but the L-curve 
underestimates Cl! more frequently. We do not recommend to use the a posteriori parameter 
choice rules because some arbitrary scale factor R has to be eh os en which may be difficult 
in practice. 

The most important conclusion probably is that one should not rely on one single 
regularization method or parameter choice rule but to use several parameter choice rules, 
different constraints and regularization methods instead. A comparison of thedifferent 
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Figure 5.6: Solution determined with Tikhonov regularization and the L-curve as param­
eter choice rule (signal constraint). 

solut ions may give an idea of those solutions that are clefini tely too smooth or too rough. 
Elimina ting these leaves us with 'acceptable' solutions. 

lt has to be stressed that the results in this Chapter are just one example. lt illustrates 
that differences do exist between regularization methods and parameter choice rules . How­
ever, in other circumstances (other inverse problems) the above conclusions may not be 
valid . Also, we did not show resul ts for all regularization methods. lt is therefore not 
legit imate to draw any far-reaching conclusions from the above example. 
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Figure 5.7: Solution determined with Tikhonov regularization and generalized cross vali­
dation as parameter choice rule (signal constraint). 
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Figure 5.8: Solution determined with Tikhonov regularization and quasi-optimality as 
parameter choice rule (signal constraint). 



6 

CONCLUSIONS AND 
RECOMMENDATIONS 

Many relations in geodesy and other (earth) sciences can be formulated as Fredholm 
integral equations of the first kind with a compact operator. The compactness of the 
operator has the advantage that the integral may be approximated by a finite sum without 
giving a large discretization error. This is reftected by the fact that the singular values (the 
spectral representation of the operator) tend to zero for bet ter and bet ter approximations. 
Consequently, the inverse of th is operator, which is associated with inverse problems, 
becomes unstable. The inverse of the singular values tends to infinity, amplifying noise 
arbitrarily much. 

The solution of inverse problems, therefore , requires some sort of stabilization or regu­
larization. The regularization methods in this report all can be written as a least-squares 
solution with a filter dam ping out the high frequencies. The specific form of the filter is 
distinct from one method to another. Translated to the space domain the regularization 
corresponds to constraints on the si ze of (derivatives of) the signa!. 

The quality of the solution obtained by regularization should not only take into ac­
count the data error but the regularization error or bias as wel!. The expectation of the 
regularized solution is no longer the 'true' solution because of the filtering. A sufficient 
measure for the quality description seems to be the mean square error which is the sum 
of the data error and the bias. This mean square error can be derived for all regulariza­
tion methods except for conjugate gradients which is a nonlinear method. We have only 
given the mean square error for regularization with signal constraint but constraints on 
derivatives of the signal are of interest as wel!. The mean square error of these solutions 
can be obtained by straightforward error propagation or by first transforming the original 
problem to the standard form (with signal constraint). 

A disadvantage of these equations is that the computation of the mean square error 
involves the true unknowns , which is not feasible of course. The mean square error could be 
approximated by using the regularized unknowns instead of the true unknowns, although 
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this may lead to too optimistic estimates of the mean square error, see for example Xu 
(1992a). We did not compare the exact differences of Chapter 5 with those implied by 
the formulas in Chapter 3. Further research concerning this comparison is of interest. 

All regularization methods require the determination of a regularization parameter 
which is responsible for the balance between bias and data error. A number of param­
eter choice rules exists and they can be divided in the a posteriori and the heuristic 
rules. Although the first group has the theoretical advantage that the regularized solu­
tion converges to the 'true' solution for decreasing measurement error, they require some 
(arbitrary) sealing factor on the norm of the solution or the measurement error which are 
assumed to be known. We therefore prefer the heuristic parameter choice since they do 
not have this disadvantage. One should always be aware, however, that the solution one 
obtains is subjective, even when a heuristic parameter choice rule is used (sinee regularized 
solutions which are considered 'too smooth' or 'too rough' will not be accepted). 

Although the regularization methods are not expected to give the same mean square 
error and although the heuristic parameter choice rules are not expected to give the same 
regularization parameter, it is shown that for an airborne gravimetrie example several 
regularization methods and choice rules yield valuable solutions. It is therefore recom­
mended not to rely on one regularization method and parameter choice rule but to use 
several of them in order to compare solutions. 



A 

INTRODUCTION TO FUNCTIONAL 
ANALYSIS 

Some background on functional analysis may be necessary for reading th is report. Inverse 
problems involve finding unknown functions , inverse mapping etc. This Appendix should 
make the report more self contained and easier to read for those not too familiar with 
functional analysis. Geodetic references concerning functional analysis are Meissl (1975, 
1976); Tscherning (1978, 1986). Here Kreyszig (1989) is the prime source, but we want 
to mention Akhiezer and Glazman (1981) and Groetsch (1980) as weU. 

In the first part definitions of spaces and properties are given with special attention 
to operators and finite dimension. In the second part the spectral theory of operators 
is discussed , especially with respect to compact operators. The lat ter are more simple 
to deal with. Fortunately the operators usually are compact in geodetic applications, 
Rummei et al. (1979). 

Since Kreyszig (1989) is the main reference, his notation is used in Appendix A. It 
differs from adopted notation elsewhere in this report , but this should cause no difficulties. 

A.I Spaces, definitions and properties 

Chapters one to three of Kreyszig (1989) are summarized here. The line followed runs 
from abstract to more concrete. Proofs are omitted, cf. Kreyszig (1989); Groetsch (1980) ; 
Akhiezer and Glazman (1981). 

A.1.l MetrÏc space 

Consider the abstract set X, the nature of the elements is left unspecified. They could for 
example be real numbers or functionals . A distance function on X is defined as follows: 
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Definition (Metric space, metric). Ametrie spa ce is a pair (X, d), where X is a set 
and d is a metric on X, th at is, a function defined on X x X (the set of all ordered pairs 
of elements of X, i.e. an order can be assigned) such that V x, y, zE X 

d E IR, 0 ::; d < 00 

d(x , y)=O <=} x=y 

d(x , y) = d(y , x) 

d(x , y) ::; d(x, z) + d(z, y) 

The last property is the triangle inequality, d(x, y) is called the distance from x to y. • 

Examples of metric spaces 

Euclidean space IRn. The n-dimensional Euclidean space IRn is obtained by taking 
the set of all ordered n-tuples of real numbers written 

and the Euclidean metric defined by 

Function space C[a, blo The set X is the set of all real-valued functions x, y, ... which 
are functions of an independent real variabie tand are defined and continuous on a given 
closed interval [a, blo The metric defined by 

d(x , y) = max Ix(t) - y(t)1 
tE [a,b] 

where max denotes the maximum and 1.1 the absolute value, leads to the metric space 
C[a , bl o Note that a function becomes a point in a large space. 

Continuous mapping and closure 

Definition (Continuous mapping). Let X = (X, d) and Y = (Y, d) be metric spaces. 
A mapping T : X --t Y is said to be continuo us at a point Xo E X if for every ê > 0 there 
is a 6 > 0 such that 

d(Tx, Txo) < ê for all x satisfying d(xo , x) < 6. 

T is said to be continuo us if it is continuous at every point of X. • 
Closure. Let M be a subset of ametrie space X. Then a point Xo of X (which mayor 
may not be a point of M) is called an accumulation point of M if every é-neighborhood 
of Xo contains at least one point y E M distinct from xo. The set consisting of the points 
of Mand the accumulation points of M is called the closure of Mand is denoted by M, 
compare also Figure A.I. 
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Figure A.1: Half open set Mand its closure M. 
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Definition (Dense set, separable space). A subset M of a metric space X is said 
to be dense in X if 

X is said to be separable if it has a countable subset which is dense in X. • 
For example the real line IR is separable since the set Q of all rational numbers is 

countable and is dense in IR. 

Convergence, Cauchy sequence and completeness 

An important property a metric space may have is that of completeness. This means that 
every Cauchy sequence in a space has a limit which is an element of that space, i.e. every 
Cauchy sequence converges. 

Luetinition (Convergence of a sequence, limit). A sequence (xn) in ametrie space 
X = (X, d) is said to converge if there is an x E X such that 

lim d(xn , x) = 0 
n->oo 

x is called the limit of X n and we write 

or X n -+ x, X n converges to x. 

lim X n = X 
n->oo 

• 
Definition (Cauchy sequence, completeness). A sequence (xn) in a metric space 
X = (X, d) is said to be Cauchy if for every é > 0 there is an N = N(é) such th at 

d(xm , xn ) < é for every m, n > N. 

The space X is said to be complete if every Cauchy sequence in X converges, that is, has 
a limit which is an element of X. • 

For example the real line IR is complete. An example of an incomplete metric space 
is X = (0 , 1] with metric d(x, y) = Ix - yl, and the sequence X n , where X n = l/n and 
n = 1,2, .... This is a Cauchy sequence, but it does not converge since the point 0 to which 
it wants to converge is not a point of X . Another example is the space Q of all rational 
numbers also with metric d(x, y) = Ix-yl . The sequences (2.7, 2.71 ,2. 718,2.7182, ... ) and 
(3 .1, 3.14,3.141,3.1415, . . . ) want to converge to e and 7r respectively but this is impossible 
since these two numbers are not elements of Q. 
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Theorem (Complete subspace). A subspace M of a complete metric space X is in 
itself complete if and only if the set M is closed in X . 

A.1.2 Normed space 

A normed space is a vector space with a metric defined by a norm. Therefore, first a 
vector space has to be defined. 

Definition (vector space). A vector spa ce over a field K is a nonempty set X of ele­
ments x, y, ... (called vectors) together with vector addition and multiplication of vectors 
by scalars, that is, byelements of K. • 

Here we take K = IR, the real numbers. 
Vector addition is a mapping X x X --+ X, whereas multiplication by sc al ars is a 

mapping K x X --+ X. For example 

z x+y 

z Cl!X 

where x, y, z E X and Cl! E IR a scalar. 
A subspace of a vector space X is a nonempty subset Y of X such that for all Yl, Y2 E Y 

and all sc al ars a, f3 we have aYI + f3Y2 E Y. Hence Y itself is a vector space. A special 
subspace of X is the improper subspace Y = X. Every other subspace of X (# {O}) is 
called proper. 

A linear combination of vectors Xl, ... ,Xm of a vector space X is an expression of the 
form 

Cl!IXI + a2x2 + ... + Cl!mXm 

where the coefficients al, ... ,Cl!m are any scalars. 

Definition (Linear independence, linear dependence). Linear independence and 
dependence of a given set Mof vectors Xl, ... , X T (r 2 0) in a vector space X are defined 
by means of 

(A. I) 

where al, ... , aT are scalars. If the only r-tuple of scalars for which (A.I) holds is al = 
... = aT = 0, the set M is said to be linearly independent, else M is linearly dependent. 

• 
Definition (Finite and infinite dimensional vector spaces). A vector space X 
is said to be finite dimensional if there is a positive integer n such that X contains a 
linearly independent set of n vectors whereas any set of n + I or more vectors of X is 
linearly dependent. n is called the dimension of X, written n = dim X. If X is not finite 
dimensional, it is said to be infinite dimensional. • 

If dim X = n, a linearly independent n-tuple of vectors of X is called a basis for 
X. If {el, ... , en} is a basis for X, every X E X has a unique representation as a linear 
combination of the basis vectors: 



A.1. Spaces, definitions and properties 81 

Definition (Normed space, Banach space). A normed spa ce X is a vector space 
with a norm defined on it . A Banach space is a complete normed space (complete in the 
metric defined by the norm) . Here a norm on a vector space X is a real-valued function 
on X whose value at x E X is denoted by 

Ilxll 
and which has the properties 

Ilxll > 0 (A.2) 

Ilxll = 0 {:} x=o (A.3) 

Ilaxll lalllxll (A.4) 

Ilx+yll < Ilxll + Ilyll· (A.5) 

Here x and y are arbitrary vectors in X and a is any scalar. 
A norm on X defines a metric d on X which is given by 

d(x, y) = Ilx - yll 

and is called the metric defined by the norm. • 
A seminorm on a vector space X is a mapping p : X -+ IR satisfying (A.2), (A.4), 

(A 5). For (A.3) only the relation from right to left is valid. When the converse is also 
true, then p is a norm. 

An example of a complete normed space (Banach space) is the Euclidean space IRn 
with norm defined by 

li xil = (tçJr /2 = Jç?+ ... +(;. 

Thus the norm can be associated with the length of a vector here. 
A sequence (xn) in a normed space X is convergent if X contains an x such that 

lim Ilxn - xii = O. 
n .... oo 

Then we write X n -+ x and call x the limit of (xn). A sequence (xn) in a normed space X 
is Cauchy if for every é > 0 there is an N such that 

IIxm - xnll < é for all m,n> N. 

Let (Xk) be a sequence in a normed space X . The sequence (sn) of partial sums is 

where n = 1,2, .... If (Sn) is convergent, Sn -+ s, then the infinite series 

is said to be convergent, s is called the sumo If IIXIII + II.T211 + ... converges, th is series is 
said to be absolutely convergent. 
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If a normed space X contains a sequence (en) with the property that for every X E X 
there is a unique sequence of scalars (an ) such that 

then (en) is called a (Schauder) basis for X. The expansion of x with respect to (en) is 

The above implies that only aseparabIe space X can have a basis and a normed space X 
which possesses a spanning countable sequence is called separable, Meissl (1976). Also a 
basis is complete in X (since it is the basis of a Banach space), Akhiezer and Glazman 
(1981). 

Linear operators 

In functional analysis metric spaces are considered, and mappings of these spaces. In the 
case of vector spaces and normed spaces a mapping is called an operator. 

Definition (Linear operator). A linear operator T is an operator such that 

(i) the domain D(T) of T is a vector space and the range R(T) lies in a vector space 
over the same field, 

(ii) for all x, y E D(T) and any scalar a, 

T(x + y) 
T(ax) 

Tx+Ty 

aTx 

The null space of T is the set of all x E D(T) such that Tx = 0, denoted as N(T). 

Theorem (Range and null space). Let T be a linear operator. Then: 

(i) The range R(T) is a vector space. 

(ii) If dim D(T) = n < 00, then dim R(T) ~ n. 

(iii) The null space N(T) is a vector space. 

• 

• 
Theorem (Inverse operator). Let X , Y be vector spaces and T : D(T) ~ Y be a 
linear operator with domain D(T) eX and range R(T) c Y. Then: 

(i) The inverse T- 1 
: R(T) ~ D(T) exists if and only if 

Tx = 0 ~ x = o. 
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(ii) If T- 1 exists, it is a linear operator. 

(iii) If dim D(T) = n < 00 and T-1 exists, then dim R(T) = dim D(T). 

• 
This means that the inverse of a linear operator exists if and only if the nul! space of 

the operator consists of the zero vector only. 

Definition (Bounded linear operator). Let X and Y be normed spaces and T : 
D(T) --+ Y a linear operator, where D(T) c X. The operator T is said to be bounded if 
there is a real nu mb er c such that for all x E D(T) , 

IITxll::; cl lxll· (A.6) 

• 
In (A.6) the norms are on Y and X respectively. Formula (A.6) shows that a bounded 

linear operator maps bounded sets in D(T) onto bounded sets in Y. The smallest number 
c for which IITxl1 ~ cllxll is true for all x out of the domain of T, is called the norm of T 
and denoted by IITII: 

IITxl1 1 
IITII = sup -11 -11 ' x #- Q. 

xED(T) X 

If a normed space X is finite dimensional , then every linear operator on X is bounded. 

Theorem (Continuity and boundedness). Let T : D(T) --+ Y be a linear operator, 
where D(T) c X and X, Y are normed spaces. Then T is continuous if and only if T is 
bounded. • 

Thus, for a linear operator continuity and boundedness become equivalent concepts. 

A linear functional is an operator w hose range lies on the real line IR (or in the complex 
plane Cl. 

A.1.3 Inner product space 

Definition (inner product space, Hilbert space). An inner product spa ce is a vector 
space X with an inner product defined on X. A Hilbert space is a complete inner product 
space. Here, an inner product on X is a mapping of X x X into the scalar field K of X; 
that is, with every pair of vectors x and y there is an associated sc al ar which is written 

(x, y) 

and is called the inner product of x and y, such that for all vectors x, y, zand scalars a 

(x+y,z) (x, z) + (y, z) (A.7) 

(ax , y) a(x,y) (A.8) 

(x, y) (y, x) (A.9) 

(x, x) > 0 (A.IO) 

(x, x) 0 {=> x=o 

1 Let E be a nonempty subset of IR. A number a E IR is caJled the supremum of E, written sup E, if 
(i) a is an upper bound of E; (ii) if b < a then b is not an upper bound of E. 
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An inner product on X defines a norm on X given by 

Ilxll = J(x, x) 

and a metric on X given by 

d(x,y) = IIx - yll = J(x - y,x - y) 

• 
Hence, inner product spaces are normed spaces, and Hilbert spaces are Banach spaces. 

A concept th at can be defined in inner product spaces is that of orthogonality of functions. 

Definition (Orthogonality). An element x of an inner product space X is said to be 
orthogonal to an element y E X if 

(x,y)=O 

x and y are orthogonal, x ..1 y. The zero vector is orthogonal to all x E X. • 
An inner product and the corresponding norm satisfy the Schwarz inequality 

l(x,y)l::::: IIxllllyll 
where the equality sign holds if and only if {x, y} is a linearly dependent set, and the 
triangle inequality 

IIx + yll ::::: IIxll + lIyll 
where the equality sign holds if and only if y = 0 or x = cy (c 2: 0). 

The orthogonal complement of a Hilbert space H is 

y.L = {z E Hlz ..1 V}, 

which is the set of all vectors orthogonal to Y. For every x E H there is a y E Y such 
that x = y + z , z E Z = y.L. Y is called the orthogonal projection of x on Y. 

Definition (compact). A metric space X is said to be compact if every sequence in 
X has a convergent subsequence. (Remember that inner product and normed spaces are 
metric spaces, therefore, this definition is valid for these spaces as weil.) • 

Akhiezer and Glazman (1981) proof the following theorem which is a criterion for 
(strong) compactness. 

Theorem. Let X be aseparabie space, and let (en), n = 1, ... ,00 be an orthonormal 
basis in X. Let M be a bounded set of elements x from X, and suppose that, for any 
é > 0, there is a natural number n = n(c) such that for any x E M, 

Then the set M is compact. • 
The key in the pro of is th at M is bounded, and therefore one can pick out from an 

arbitrary sequence (xn ) C M a weakly convergent subsequence, Akhiezer and Glazman 
(1981). We think that the practical relevance is that a bounded element, gravitational 
potential for example, can be approximated by a finite series, a truncated spherical har­
monics series for example. 
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Corollary (Maximum and minimum). A continuous mapping T of a compact subset 
M of a metric space X into IR, T : M -+ IR, assumes a maximum and a minimum at 
some points of M. • 

Definition (Hilbert-adjoint operator). Let T : Hl -+ H2 be a bounded linear oper­
ator, where Hl and H2 are Hilbert spaces. Then the Hilbert-adjoint operator T* of T is 
the operator 

such that for all x E Hl and y E H2' 

(Tx,y) = (x,T*y). 

• 
If T is self-adjoint , that is T = T*, and also Hl = H2 ' then (Tx , y) = (x , Ty). 

Let T be a continuo us linear operator from a Hilbert space Hl into a Hilbert space H2. 
Recall that the range, R(T), and null space, N(T), of a linear operator with domain D(T) 
are defined by R(T) = {Txlx E D(T)} and N(T) = {x E D(T)ITx = O} respectively. 
Then the following Theorem holds. 

Theorem. If T : Hl -+ H2 is a ~ontinuous linear operator, then R(T)J. = N(T*) and 
N(T)J. = R(T*). Since T = T** we also have R(T*)J. = N(T) and N(T*)l. = R(T). • 

A.2 Spectral theory of linear operators in normed 
spaces 

The spectral representation of the operator T gives a great deal of c1arity and insight. 
We begin with finite dimensional vector spaces, which is much simpier than the spectral 
theory of operators in infinite dimensional spaces. These operators are not considered in 
general, only compact linear operators are discussed. Their properties c10sely resembie 
those of operators on finite dimensional spaces. Finally, we look at bounded self-adjoint 
linear operators. These operators can be associated with the normal matrix T*T. 

The subsequent Sections summarize Chapters 7, 8 and 9 of Kreyszig (1989) respec­
tively. Compare also (Akhiezer and Glazman, 1981, Ch. 5), (Groetsch, 1980, Ch. 4) for 
example. Again, proofs are omitted in genera!. Since the spectral decomposition is an 
important tooi it is elaborated in detail in Appendix B. 

A.2.1 Finite dimensional normed spaces 

For a given n x n matrix A eigenvalues and eigenvectors are defined tn terms of the 
equation 

Ax = Àx (A.Il) 

as follows. 
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Definition (Eigenvalues, eigenvectors, eigenspaces, spectrum). An eigenvalue 
of a square matrix A is a number À such that (A.ll) has a solu tion x =I o. This x is called 
an eigen vector of A corresponding to that eigenvalue À. The eigenvectors corresponding 
to that eigenvalue À and the zero vector form a vector subspace of X which is called 
eigenspace of A corresponding to that eigenvalue À. The a(A) of all eigenvalues of A is 
called the spectrum of A. • 

Theorem (Eigenvalues of a matrix). The eigenvalues of an n-rowed square matrix 
A are given by the solutions of the characteristic equation 

det (A - À1) = 0 

of A . A has at least one eigenvalue and at most n different eigenvalues. • 
Theorem (Eigenvalues of an operator). All matrices representing a given linear 
operator T : X -+ X on a finite dimensional normed space X relative to various bases for 
X have the same eigenvalues. • 

Therefore, one can speak of the (unique) spectrum etc. of the linear operator T . 

Remark: If X is infinite dimensional , then T may have spectral values which are not 
eigenvalues, cf. (Kreyszig, 1989, Ch. 7). 

A.2.2 Compact linear operators on normed spaces 

Compact linear operators play a central role in the theory of integral equations. Their 
properties closely resembie those of operators on finite dimensional spaces. 

Definition (compact linear operator) Let X and Y be normed spaces. An operator 
T : X -+ Y is called a compact linear operator if T is linear and if for every bounded su bset 
M of X the image T( M) is relatively compact , that is , the closure T(M) is compact. • 

It is not required that T is continuous. However, compact linear operators are always 
continuous and are therefore also called completely continuous linear operators, Groetsch 
(1980). 

Lemma (Continuity). Let X and Y be normed spaces. Then every compact linear 
operator T : X -+ Y is bounded, hence continuous. Prooj. If T : X -+ Y is compact and 
Bis the closed unit ball in X, then T(B) is compact and therefore bounded. Therefore 
there is an M > 0 such that Ilyll ::; M for all y E T(B) . It follows that IITxl1 ::; M for 
Il xl l ::; 1, t hat is, IITII ::; M . • 

Theorem (Adjoint operator). Let T : X -+ Y be a linear operator . If T is compact, 
so is its adjoint operator T* : Y -+ X; here X and Y are Hilbert spaces. • 
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Theorem (Eigenvalues, null space and range). Let T : X -t X be a compact 
linear operator on a normed space X . Then: 

1. the set of eigenvalues is countable, and the only possible point of accumulation is 
..\ = 0, 

2. for every ..\ =1= 0 the null space N(TA) of TA - ..\I is finite dimensional, 

3. for every ..\ =1= 0 the range of TA - ..\1 is closed. 

• 
A.2.3 Bounded self-adjoint linear operators 

Let T : H -t H be a bounded linear operator on a complex Hilbert space H. T is said to 
be self-adjoint if T = T* or 

(Tx,y) = (x,Ty). 

All the eigenvalues of T (if they exist) are rea!. Eigenvectors corresponding to (numeri­
cally) different eigenvalues of T are orthogona!. 

A compact self-adjoint operator T =1= 0 has at least one eigenvector x corresponding to 
a non-zero eigenvalue ..\ , Akhiezer and Glazman (1981). Further properties of bounded 
self-adjoint linear operators, not directly relevant to this work, can be found in (Akhiezer 
and Glazman, 1981 , Ch. 6) and (Kreyszig, 1989, Ch. 9). 
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B 

CONVENTIONS AND SPECTRAL 
DECOMPOSITION 

In th is Appendix the adopted conventions are explained. Furthermore, the spectral de­
composition of compact operators between Hilbert spaces is given, which is an important 
tooI. 

B.1 Adopted conventions 

B.l.1 Finite and infinite dimension 

A dear distinction should be made between finit e dimensional spaces and infinite dimen­
sional spaces. The first are related to real world observations and solved parameters, 
while the latter have to do with 'experiments of thought' and theoretical foundation of 
methods. 

The basic relation to be studied is 

g = Af (B.1) 

where A : F ~ C , F and Care Hilbert spaces , f E F , gE C (in Appendix A some results 
from functional analysis are given). The operator or mapping A is assumed to be linear 
and compact (and therefore bounded) , and relates the measurement g to the unknown f . 
Equation (B.1) is a short hand notation of the integral equation of the first kind 

g(x) = t I«x, y)f(y)dy, a s: x s: b 

where I« x, y) is the kemel of the integral operator A. The intervals, wh ere the functions 
g and f are defined, are equal, which can always be realized by appropriate scaling, Wing 
(1991) . 
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When t he nu mb er of parameters to be determined and the data are fini te, one is 
restricted to fini te dimensional spaces. Instead of (B.1) 

y=Ax (B.2) 

is written. Now A is a matrix of dimension m x n, where the number of observations m 
is always larger than or equal to the nu mb er of unknowns n: m 2: n. This is not strictly 
necessary but avoids underdetermination as long as A has full column rank, rank(A) = n , 
cf. Lanczos (1961) . 

The functions f and g as weil as the vectors x and y are assumed to be rea!. 

B.1.2 Measurement errors, norm and generalized inverse 

Relations (B.1) and (B.2) only hold when the data are exact , that is there are no mea­
surement errors (note that the models are assumed to be free of errors) . Of course in 
reality these errors can not be avoided. Measurement errors are denoted with 10: 

gê Af+~= g +~ 

yê Ax+~=y+~ 

where lig - gêll e = 1I ~ ll e ~ 10 and Ily - yêl1 2 = 11 ~1I2 ~ 10 and the norms 

Ilgl le (l g(X?dX ) 1/2 

Ilylb ~ (~yJ r 
These norms are called L2[a, b] and [2-norm respectively or 2-norm for short. 

The measurements have the property 

E{gê} g 

E{yê} y . 

The superscript 10 is frequently dropped since it wil! be clear from the context whether 
error-free data or not are considered. 

Because of the errors, g and y may not be in the range of A and no solution would 
exist (the redundant system is not compatible). Then, it seems natural to minimize the 
distance 

IIAf - gl le 

or 

instead. Minimization with the 2-norm(s) gives the least-squares solution. Minimizing 

J(x) = IIAx - YII ~ (B.3) 

results in 
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It ean be shown that the same solution is obtained by the generalized inverse of A, A+ 

(B.4) 

As long as A is a regular matrix, i.e. rank(A) = n, the solution is unique, Lanczos (1961). 
When A is not regular, i.e. rank(A) < n, then (B.4) gives the minimum solution with the 
smallest norm itself, that is IIxl12 < Ilxs 112 where X s is any other solution of (B.3) . 

The generalized inverse exists for the continuous case as weil. 

B.1.3 Weighted norm 

When the errors in the measurements are described by a variance-covariance matrix, it is 
better to compute a weighted least-squares solution as follows: 

where P is the weight matrix of the observations. The corresponding weighted norm ean 
be written as 

IIAx - YII~· 
Since P is positive definite its Choleski decomposition is 

with W an upper triangular matrix. The transformations 

Aw=WA 

and 
Yw =WY 

lead to the minimization problem 

J(x) = IIAwx - Ywll~ 

with solution 
(B.5) 

or 

x = A~yw 
and (B.5) equals the weighted least-squares solution. One can therefore eonclude that P 
eauses no additional problems, see also Section 4.2 . 

B.2 Introduction to spectral decomposition 

An important tooi when dealing with inverse problems is the spectral decomposition of 
the operator. A spectrum gives clear insight in the behaviour of the operator for different 
frequeneies and further illuminates the ill-posedness of the problem at hand. The main 
referenees here are Lanczos (1961); Groetsch (1980); Kreyszig (1989), compare also Nashed 
(1976); Golub and van Loan (1996); Louis (1989); Groetsch (1993); Engl et al. (1996) . 
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Definition (eigenvalues, spectrum). Let T : F -+ C be a compact, symmetrie (or 
self-adjoint, T = T*) and semi-positive definite «(Tf, f) ~ 0 V f E F) linear operator. 
Then T has a fini te or countably infinite number of eigenvalues Àn; in the lat ter case 
Àn -+ 0 as n -+ 00 (the only possible point of accu mulat ion is zero which follows from 
the compactness of the operator, e.g. (Kreyszig, 1989, Sec. 8.3». The eigenvalues can be 
arranged in a sequence converging to zero 

(B.6) 

with corresponding (nonzero) orthonormal eigenvectors WI, W2 , "' , W n ,"': 

The set of eigenvectors {wn : Àn =1= O} is a Schauder basis for R(T).I 
The set a(T) of numbers À for which the operator T - Àl has no bounded inverse is 

called the spectrum of T. In the case of a compact, symmetrie, semi-positive definite op­
erator the spectrum is real, nonempty and every nonzero member of a(T) is an eigenvalue 
of T. The corresponding eigenspace N(T - À1) is finite dimensional. • 

The norm of T is equal to the spectra I radius: 

IITII = maxp: À E a(T)} = ÀI' 

For every f E F we may write 

00 

Tf = L Àn (f, wn)wn-
n = l 

Definition (singular values, singular system). Now consider the compact operators 
A : F -+ C, A*A : F -+ F and AA* : C -+ C . The lat ter two are self-adjoint and have 
the same nonnegative eigenvalues, similar to the operator T from above. The spectra of 
both operators are the same a(A*A) = a(AA*). 

Denote the eigenvectors of A*A as vn , and the eigenvectors of AA* as Un0 The eigen­
values, equal for both operators, are Àn ' the ordering is as in (B.6). Let an = A and 
U n = a;; I AVn- Then 

and 

The numbers an are called the singular values for the operator A, the system {vn , un ; an } 

is called a singular system for A. • 

Note that sometimes the singular values are defined as 1/ A. 

From the last two equations above it follows that V n and U n are indeed eigenvectors of 
A*A and AA* respectively. The eigenvectors V n are a complete orthonormal system or 
basis for 

R(A*) = R(A*A) = N(A).l 

I A basis is complete and R(T) might not be complete. Thus the completion of R(T) is needed. 
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and U n are a complete orthonormal system for 

R(A) = R(AA*) = N(A*).L (B.7) 

with N(A).L the space perpendicular to the null-space of A. 
lf, and only if, A has a finite-dimensional range, A has only finitely many singular 

values. If A is an integral operator with infinitely many singular values, they accumulate 
(only) at 0 

Iim an = 0 
n-too 

as was the case for the eigenvalues. If there are finitely many singular values the kem el 
of the integral operator is degenerate. 

Again equivalent to the norm of T we can write 

IIAII =0'1 

where, obviously, al is the largest singular value. 

Theorem (Picard condition). T he representation 

00 

Af = L an(f, vn)un (B.8) 
n= l 

of the operator A is called a singular value decomposition (SYD). T he equation of the first 
kind Af = g has a solution if gE R(A) and 

00 

L a;;-21(g , UnW < 00. (8.9) 
n=1 

This is called the Picard condition. • 
The Picard condition is a 'smoothness condition ' for the right-hand side g . Since g E R(A) 
one can write g = L ngnun, see equation (B.7). Because 0';;2 -+ 00 for n -+ 00 the 
coefficients gn of L n a;;2g;, have to decay fast enough with respect to the singular values 
in order to fulfil (B .9). The solution 

f 
_ ~ (g, Un ) 
- 6 Vn 

n = l an 

is not unique since any solution fs = f + h where h E N(A) is also a solution of Af = g. 
For a degenerate or finit e dimensional operator the sums become finite . 

Singular value decomposition with finite dimensions. Let A E IRmxn, with m 2:: 
n. The singular value decomposition of A is then A = U~VT (Figure 8.1) . 

The matrices U and Vare orthogonal, which means UTU = UUT = Im and VTV = 
VVT = In respectively. Since the last m - n rows of ~ only contain zeros, the last m - n 
columns of U could be cancelled. This is called the thin singular value decomposition , 
Golub and van Loan (1996) . The resulting smaller matrix U becomes semi-orthogonal, 
UTU = In' UUT #- Im ' compare also Lanczos (1961). The range of A is spanned by 
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mxn mxm 

(mxn) 
mxn 
(nx n) 

nxn 

Figure B.l: Singular value decomposition, the thin singular value decomposition is denoted 
by the dashed lines. 

the first n columns of U, provided th at all singular values are non-zero. The domain 
of A is spanned by the columns of V. Therefore, the large singular values denote the 
combination of unknowns Xi that is weil represented by a combination of measurements 
Yj. In contrast, the small singular values reveal which linear combination of unknowns 
are hardly recoverable from the measurements. 

Generalized singular value decomposition 

For later use it is necessary to define the generalized singular value decomposition (GSVD). 
Here Hansen (1997) and Golub and van Loan (1996) are followed, compare also Hansen 
(1989). Firstly, the generalized eigenvalues for a pair of symmetric (positive definite) 
matrices (5, T) are defined, af ter which the generalized singular values are discussed. 

Generalized eigenvalues. Given a symmetric matrix S E lRn xn and a symmetric 
positive definite matrix TE lRn xn . The symmetric-definite generalized eigenvalue problem 
is to find a nonzero vector x and a scalar À such that 5x = ÀTx, À is a generalized 
eigenvalue Golub and van Loan (1996). The set of generalized eigenvalues À(5, T) is 
determined by 

À(5, T) = Pldet(5 - ÀT) = Ol. 
Remark: The prove of the existence of the generalized eigenvalue decomposition involves 
the condition that the (weighted) sum of the matrices S and T must be non-negative 
definite (= positive semi-definite). When at least one of these matrices is positive definite 
this condition is fulfilled. Here we are concerned with matrices AT A and LT Lof which the 
first is assumed to be positive definite (it has full column rank). More on the mathematical 
background can be found in (Golub and van Loan, 1996, Sec. 8.7). 

Generalized singular values. The GSVD of the matrix pair (A , L) is a generalization 
of the SVD of A in the sense that the generalized singular values of (A, L) are the square 
roots of the generalized eigenvalues of the matrix pair (ATA, LTL) , Hansen (1997). Thus, 
going from generalized eigenvalues to generalized singular values resembles the step from 
eigenvalues to singular values. 



B.2. Introduction to spectra1 decomposition 95 

Let A E IRm x n and L E IRPx n wit h m ~ n ~ p . Then the GSVD is a decomposition 
of A and L in the form 

(

I: 
A =U 

On-p x p 

Opxn-p ) X - I L = V ( ) X-I , Af Op xn-p 

In - p 

where U E IRmxn , V E IRPXP and UTU = I n , VTV = l p. XE IRnxn is nonsingular, and 
L; and Af are p x p diagonal matrices with elements: 

o ::; (TI ::; ... ::; (Tp ::; I , 1 ~ PI ~ . .. ~ Pp > 0 

which are normalized such that 

I:TI: + Af TAf = l p. 

Then the generalized singular values 'Yi of (A , L) are defined as 

'Yi = (T;jPi' i = 1, .. . ,p 

and they appear in non-decreasing order (opposite to the singular value orde ring for 
historical reasons, Hansen (1997)). 

The first p columns of X = (XI, ... , x n ) satisfy 

P; ATAx i = (T; LTLxi, i = I , ... ,p 

hence AT AXi = 'YT LTLx i . Thus, the x i are called the generalized singular vectors of the 
pair (A , L ). For p < n the matrix L E IRPx n always has a nontrivial null-space N( L) , 
Hansen (1997) . The last n - p columns X i of X satisfy 

LXi = 0, i = p + 1, ... , n 

and they are therefore basis vectors for the null-space N( L ). 

Relation with SVD. Only when L is the indentity matrix I n, the matrices U, L; and 
V in the GSVD of (A , L) are identical to U, L; and V of the SVD, except for the ordering 
of the sin gul ar values and vectors, since p = n, X-I = Af-I V T and A = UI:Af - 1 VT . In 
general there is no connection between the singular values and vectors of SVD and GSVD. 
However, when Lis well-conditioned (has a 'small ' condit ion number, the smallest possible 
number is one) it can be shown that the matrix X is also well-conditioned, Hansen (1997). 
The diagonal matrix L; displays therefore , the ill-conditioning of A. 

Discrete Picard condition. Hansen (1990) introduces the Picard condition for finite 
dimension. The unperturbed y in a discrete ill-posed problem with regularization matrix 
L satisfies the discrete Picard condition if the Fourier coefficients luT yl on the average 
decay faster than the generalized singular values 'Yi .2 A visual inspection of a plot of the 

2The (discrete) Picard condition is usually not satisfied because the spectrum of the measurement 
errors, or perturbation of y , does not decrease fast enough. Hence, the least-squares solution, which 
involves a;;-l, 'blows up '. The idea of regularization then might be to impose a constraint on the unknown 
signal: IILxl12 has to be fini te , where L is the regularization matrix. See Chapters 2 and 3 for further 
details. 
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Figure B.2: QR factorization, the thin factorization is denoted by the dashed lines. 

Fourier coefficients lur yl and the generalized singular values 7i could reveal the faster 
decay. Alternatively, one may define the ratio 

Pi == 7i- 1 (rr luhl) 1/ {2

Q

+1}, i = q + 1, ... ,n - q 
J=I-Q 

which is the moving geometrie mean, with q a small integer, Hansen (1990). This ratio 
should decay monotonically to zero. 

QR factorization 

Although the QR factorization is not aspectral decomposition we need to ment ion it 
briefiy, since it is used in the transformation to standard form , Chapter 4. The QR 
factorization of an m-by-n matrix A is given by 

A=QR 

where Q E lRm x m is orthogonal and RE lRmxn is upper triangular. If A has full column 
rank then the first n columns of Q form an orthonormal basis for R(A). Also in this case 
a th in version exists, Golub and van Loan (1996); Strang (1988). See Figure B.2 for a 
visualization of the QR factorization. 

B.3 Summary 

The subject of th is study are integral equations of the first kind , represented by a linear, 
compact operator A mapping a function f from a Hilbert space F to a function g from 
a Hilbert space C, as weil as their discrete counterparts A, x and y, where A is a matrix 
and x and y are vectors . The model , A, is assumed to be exact. The measurements y' 
and g', however, are not exact, leading to the (weighted) least-squares minimization of 
the error. It can be shown that the generalized inverse A+ of A gives the same solution. 

A generalized singular value decomposition exists of the matrix pair (A , L), which can 
be derived from the generalized eigenvalue problem of the symmetrie (positive definite) 
matrix pair (S, T). If Lis the identity matrix then the usual singular value decomposition 
is obtained, which in turn can be derived from the eigenvalue problem of the symmetrie 
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semi-positive definite matrix (or operator) T. The singular values , together with the 
eigenvectors , completely describe the operator A. The singular values form the spectrum 
or, in ot her words, they are the coefficients with respect to the basis (the eigenvectors). 
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