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Summary 
 
Seismic angle gathers and spectral seismic attributes offer complementary insights to improve 

understanding of complex subsurface characteristics. However, the labor-intensive process of 

subsurface characterization,  data annotation, limited labeled data, and subsurface complexity make it 

difficult to leverage these insights via supervised learning approaches. 

To overcome such challenges and benefit from the strength of spectral seismic attributes, this study 

introduces a novel hierarchical Self-Organizing Map (SOM) framework to integrate spectral seismic 

attributes like scalograms and spectrograms (joint time-frequency analyses) extracted from angle 

gathers. 

In our current research, firstly,  we trained individual SOMs, as an unsupervised pattern recognition 

algorithm on reflectivity images, angle-gathers, and the spectral seismic attributes extracted from angle-

dependent data. Secondly, we deploy a hierarchical SOM network to combine and analyze  all these 

datasets. Thirdly, we evaluate the hierarchical approach and standalone analyses of clustering quality 

and information content using the binary boundary maps and the performance metrics. Our findings 

indicated that, the scalogram-based hierarchical SOM, containing information of different angles,  

achieves the lowest Quantization Error and Davis-Bouldin Index, indicating optimal feature 

representation and well-separated clusters. The findings stress the potential of hierarchical networks and 

joint time-frequency analyses from angle gathers for robust seismic interpretation workflows. 
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Introduction 

Characterization of subsurface structures is a crucial step in many geo-related projects such as 

geothermal, CCS, and mining projects (Brown, 2022). Advanced machine learning methods have the 

potential to accelerate this step (Lin et al., 2024). Consequently, many researchers have adopted various 

deep learning approaches, primarily supervised learning (Zheng et al., 2019). The main challenge with 

this learning strategy is its dependence on extensive training, requiring large volumes of labeled data. 

Data annotation, as an integral part of this process, poses significant difficulties, such as being time-

consuming and requiring domain expertise to ensure accuracy. Labelling certain structures accurately 

can be subjective (Di and Abubakar, 2022). Thus, unsupervised machine learning algorithms may help 

to overcome these challenges (Mansoor, 2021). A second aspect is that seismic attributes are often 

derived from reflectivity images, neglecting varying angles of incidence (Chopra and Marfurt, 2005; 
Fomel, 2007). Extracting them across multiple angles can provide compre-hensive information (Veeken 

and Rauch-Davies, 2006). In this study, we investigate two key questions: 1. How do different types of 

seismic spectral attributes (scalograms vs. spectrograms), together with angle-dependency, perform in 

SOMs and hierarchical SOM networks? 2. Do hierarchical SOM networks enhance clustering and 

pattern recognition compared to standalone SOMs? 

Theory 

Joint time-frequency analysis methods as a seismic attribute provide additional insights into seismic 

signals. Among seismic attributes, spectrograms, are based on short-time Fourier transforms and offer 

fixed-window frequency representations (Allen and Rabiner, 1977), while scalograms deploy wavelet 

transforms for adaptive time-frequency analysis (Mallat, 1999). These two methods have been widely 

used in seismic spectral decomposition and attribute extraction (Castagna et al., 2003). It is worth 

mentioning that time–frequency analysis of seismic signals are often applied on reflectivity images to 

reveal the local properties. Therefore, in traditional seismic imaging, the information from various 

angles of incidence are usually being neglected (Davydenko and Verschuur, 2017). Incorporating angle 

of incidence information into reflectivity analysis, can enhance resolution and interpretability in seismic 

imaging (Davydenko and Verschuur, 2017; Sava and Fomel, 2003).  

A self-organizing map (SOM), as described by Kohonen (1982), is a powerful nonlinear data 

visualization and clustering technique. This unsupervised neural network approach lowers the 

dimensionality of complex datasets. SOMs address the challenge of interpreting high-dimensional 

seismic attributes by projecting them onto a 2D map, where similar data points are grouped, generating 

the so-called Unified Distance Matrix and Binary boundary maps (BBM) (Yin, 2008). This ability can 

be deployed to identify and cluster patterns in seismic data analysis, which is particularly valuable for 

recognizing subsurface features that are difficult to detect. As a result, SOM analysis simplifies data 

interpretation and uncovers natural organizational structures within seismic attributes, such as clusters 

tied to lithological interfaces or amplitude anomalies. Therefore, SOMs enable robust pattern 

recognition and clustering. This ability assists in forming the foundation for advanced methodologies 

such as hierarchical SOM networks used in this study (Roden et al., 2015). This clustering technique 

iteratively combines pairs of individual observations based on the squared Euclidean distances between 

observations. The algorithm then combines these subclusters containing two observations into larger 

clusters using the same distance metric to assess similarity. For hierarchical networks, we use Ward's 

method to create the clusters (Gong and Richman, 1995), which assures that at each formation of a 

larger cluster, there is a minimum increase in total within-cluster variance after merging.  

 

Methodology 

For this analysis, to generate the geological simulations, a recently-developed Python package called 

pyBarsim, is used . The simulations are composed by a grid of 2x2 m cells where the mass-density and 

p-wave velocity is calculated based on the particular grain size distribution of each cell (Storms, 2003). 

The models were designed to represent geological trends, such as coarsening and thinning upward 

sequences in shallow marine depositional environments, with gradual property changes in every 



 

 

86th EAGE Annual Conference & Exhibition 

direction (Cuesta Cano et al., 2025). To simulate seismic responses, an acoustic 2D finite-difference 

method was applied to these models, incorporating a simple overburden with a few geological layers. 

A target-oriented full wavefield migration technique (Davydenko and Verschuur, 2017) generated both 

reflectivity images and angle gathers along the lateral axis. The angle gathers are divided into four 

groups: zero, near, mid, and far angles (Karimzadanzabi et al., 2024). Further, we compute the 

spectrogram and scalogram for each angle group (Castagna et al., 2003). Figure 1 illustrates a sample 

of the geological model, its associated reflectivity, one angle gather at x=1900 m, and the corresponding 

scalogram for zero angle. 

 

    
a)  P-wave velocity model b) Reflectivity c) Angle gather d) Scalogram 

Figure 1 The sample geological model, its corresponding reflectivity, the angle gather at 𝑥=1900 m, 

and the zero-angle scalogram. 

Additionally, we train individual self-organizing maps (SOMs) on each of these datasets separately (the 

first three rows in the Table 1). Next, the Best Matching Unit (BMU) features from all categories are 

concatenated horizontally to form a unified feature matrix. This matrix is then used to train a second 

SOM, referred to as the hierarchical SOM (Unglert et al., 2016). During this step for each group 

hierarchical networks are trained (the last row in the Table 1). For ease of reference, all categories and 

their corresponding datasets are presented in Table 1.  To enhance readability, the acronyms listed in 

this table will be used consistently throughout the remainder of this paper. 

Table 1 Overview of Dataset Categories, Corresponding Names and Acronyms (the number inside 

bracket presents the dataset number) 
Scalogram (Sc) [1] Far Angle (Sc-F), [2] Mid Angle (Sc-M), [3] Near Angle (Sc-N) 

Spectrogram (Sp) [4] Far Angle (Sp-F), [5] Mid Angle (Sp-M), [6] Near Angle (Sp-N), [7] Zero Angle (Sp-Z) 

Time-Domain (Td) [8] Angle Gather (Td-A), [9] Reflectivity (Td-R) 

Hierarchal (H) [11] Scalogram (H-Sc), [12] Spectrogram (H-Sc), [13] Time-Domain (H-Td), [14]All (H-All) 

 
To evaluate the performance, for each network, we calculate metrics: (1) Binary Boundary maps 

(BBMs) are used to visualize the boundaries between clusters or regions in the map and quantifies the 

presence or absence of boundaries between clusters. (2) Next, the key performance metrics: the 

quantization error (QE), the Silhouette Score (SS),  and, lastly, the Davis-Bouldin Index (DBI) will be 

investigated. The QE is a key measure used to evaluate the performance of the SOM map in representing 

the input data. SS measures cluster cohesion and separation. An SS value close to 1 indicates a well-

separated and cohesive cluster evaluated them at the point level. The SS is more sensitive to overlapping 

clusters. The third metric, DBI, is used to evaluate the clustering quality of different datasets and 

compares clusters at the cluster level, with lower values indicating better-defined and more separated 

clusters. The DBI is more sensitive to differences in cluster compactness (Yin, 2008; Liu et al., 2020). 

Results and discussion 

The results of individual SOMs and hierarchical SOMs were compared using two distinct strategies: 

First, the three best-performing hierarchical SOMs were analyzed in detail through matrix 

representations and corresponding simplified boundary maps. These visualizations provide insights into 

the spatial delineation of subsurface patterns and clusters. Second, to quantify the effectiveness of 

individual and hierarchical SOMs, we evaluated and compared the 3 key performance metrics across 

all datasets presented in Table 1. The simplified BBMs for the three hierarchical networks are shown 

in Figure 2, Panels A to C. In the binary representation, black areas represent boundaries between 

clusters with greater heterogeneity, while white patches indicate closely related data points, implying 

that these areas in the SOM correspond to similar features or categories. For the H-Td dataset, scattered 

pattern of white areas in binary boundary map suggested that clusters were smaller and less distinct, 
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with a moderate level of cluster definition (Figure 2 panel A). While, the binary boundary map for 

dataset H-Sc and H-Sp reveals larger, more cohesive white areas with fewer distinct groupings or more 

homogeneous patterns across different angles. This is in close relation with the fact that scalograms and 

spectrograms are known to provide broader, less fragmented representations of time-frequency 

information, which is reflected in the sparse boundaries (Figure 2 panel B and C).  

              

Panel a) H-Td Panel b) H-Sc Panel c) H-Sp 

Figure 2 The Binary Boundary map (BBM) representations. 

As shown in Figure 3, among the other training data sets, the H-Td and H-Sc have the lowest QE. This 

suggests a better balance between the actual input data and how the SOM's neurons represent it. 

Whereas the H-All has the highest QE, likely due to the heterogeneity and complexity of the combined 

data. Same behaviours are perceived from the H-Sp, which indicates the heterogeneity of the 

spectrogram for different angles. In contrast to scalograms, spectrograms employ fixed window lengths 

for processing rather than adjusting to the structure of the signal. Thus, the H-Sc result in the lowest 

QE, show casing the homogeneous nature of the scalograms. This make the scalogram from different 

angles a good candidate for hierarchical networks, because they require a consistent representation of 

features across varying perspectives to ensure robust learning and accurate feature extraction.  

 
Figure 3 Key performance metrics for all datasets. 

As shown in Figure 3, H-Sc and H-Td, exhibit the highest values among the datasets, indicating more 

robust clustering. Conversely, clusters with an SS value closer to 0, such as H-All, suggest overlapping 

or poorly defined clusters. All other training datasets display similar SS values, emphasizing the 

superiority of hierarchical networks in clustering strength, particularly when each individual training 

dataset used to create them represents a homogeneous pattern, as seen with H-Sc. It is worth noting that 

the closeness of SS values within Sp-F, Sp-M, Sp-N, and Sp-Z does not necessarily demonstrate a 

homogeneous pattern conducive to a well-separated hierarchical network. As shown in this Figure 3, 

H-Sc and H-Td  achieve the lowest DBI values, highlighting their superior clustering performance. This 

suggests that these datasets represent cohesive and well-separated clusters, making them the most robust 

among the evaluated categories (Liu et al., 2020). 

Conclusions 

This study introduces a hierarchical Self-Organizing Map (SOM) methodology for integrating multi-

attribute seismic data, focusing on spectral attributes like scalograms and spectrograms from angle 
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gathers. Our realistic geological simulations are characterised by gradual changes in properties. The 

results demonstrate that hierarchical SOM networks outperform individual SOMs by enhancing 

clustering quality and subsurface pattern recognition. Scalograms emerge as the most effective input, 

yielding homogeneous and well-separated clusters due to their adaptability to time-frequency 

variations, as evidenced by low QE, DBI and high SS values. In contrast, spectrograms and combined 

datasets (H-All) exhibit higher QE and DBI, reflecting greater heterogeneity and overlap in clusters. 

These findings are supported by binary boundary map analyses, which visually confirm the clustering 

patterns. The hierarchical SOMs seem suited for robust and reliable seismic characterization workflows, 

with the scalogram attribute showing the greatest potential for advancing these methodologies. 
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