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Abstract: The phenomenon of seawater intrusion is becoming increasingly problematic,
particularly in low-lying coastal regions and areas that rely heavily on aquifers for their
freshwater supply. It is, therefore, vital to address the causes and consequences of this
phenomenon in order to ensure the security of water resources and the sustainable use of
water. The objective of this paper was twofold: firstly, to delineate zones with different
salinization levels over time; secondly, to investigate the factors controlling seawater in-
trusion of the Nile Delta aquifer. Aquifer data were collected in Sharkia governorate,
Egypt, over three historical periods of years: 1996, 2007, and 2018. The dataset used to
create the linear model of coregionalization consisted of hydrogeological (water level),
hydrodynamic (pH, EC, Na, Mg, K, Ca, HCOs, SOs), and auxiliary (distances from salt
and freshwater sources) variables. Cokriging was applied to produce spatial thematic
maps of the studied variables for the three years of the survey. In addition, factorial
cokriging was applied to understand the processes beyond the change in the aquifer water
quality and map the zones with similar characteristics. Results of mapping the first factor
at long range over the three years indicated that there was an increase in seawater intru-
sion, especially in the northeastern part of the study area. The main cause of aquifer sali-
nization over time was the depletion of the groundwater resource due to overexploitation.

Keywords: seawater intrusion; Nile Delta aquifer; multivariate geostatistics;
groundwater salinity modeling

1. Introduction

Coastal aquifers represent an important source of water, especially in arid and sem-
iarid regions. Stresses on coastal aquifers are related to salinization due to seawater intru-
sion (SWI) [1-5]. The main causes of SWI are the over-pumping of groundwater [6-8], sea
level rise as a result of climate change and its subsequent global warming [9-12], and
overpopulation along coastal areas [13-15]. Accordingly, SWI is seriously damaging the
groundwater quality as well as soil, cultivation, and ecosystem [6,16-18]; therefore, the
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management of SWI and the resulting environmental problems have become of research
interest [19-21]. SWI in coastal areas has been assessed through different methodological
approaches, such as hydrogeochemical investigations [7,22], geophysics [23,24], isotope
hydrogeology [25,26], data analysis and numerical modeling [27-30], machine learning
algorithms [31,32], and geostatistical modeling [33,34].

The majority of soils within the designated study area are classified as clay soils,
which are characterized by their low hydraulic conductivity. These soils are particularly
vulnerable to the deleterious effects of saline irrigation water, particularly when such wa-
ter contains high concentrations of sodium and chloride ions. The presence of these ions
has been shown to have a detrimental impact on the physical and chemical properties of
soils, including alterations to soil structure and increased salinity [35]. The high sodium
content of irrigation water reacts with soil particles, resulting in the exchange of sodium
in the soil complex. This process leads to a dispersal effect, which, in turn, contributes to
poor physical conditions in the soil. Additionally, the presence of chloride ions, in con-
junction with sodium ions, contributes to elevated soil salinity, which has a detrimental
effect on the water and nutrient uptake necessary for plant growth, given the increase in
osmotic pressure of the soil solution. The repercussions of irrigating with saline water can
be detrimental, potentially diminishing the potential yield of cultivated crops or con-
straining the range of cultivable crops. For instance, wheat yield exhibits a decline begin-
ning at an irrigation water salinity of 4 dS/m and soil salinity of 6 dS/m [36].

The Nile Delta aquifer in Egypt is one of the most important aquifers in the world;
however, it suffers from SWI in the coastal parts of the Mediterranean Sea as a result of
anthropogenic impacts [7,37,38].

Due to the complexity of spatially and temporally variable processes that determine
the salinity of subsurface aquifers, a reliable assessment of salinity-related risks is highly
dependent on the ability of statistical tools to accurately capture spatial variability and to
estimate the spatial relationships between salinity and other indicators of groundwater
quality such as chloride and sodium content and electrical conductivity. The spatial asso-
ciation of the estimates of all these indicators at non-sampled locations with multivariate
interpolation methods also makes it possible to delineate homogeneous areas by saliniza-
tion level to be submitted to site-specific (differential) management. For these reasons, in
this study, we used multivariate geostatistics as a branch of applied spatial statistics,
which is based on a spatial dependence model to provide the prediction of indicators and
the uncertainties of these predictions [39]. Above all, it is capable of combining different
types of data with different physical and statistical properties, taking into account their
proximity both over space and time and the different support of the measurements [40,41].

The objective of this paper was to delineate zones with different salinization levels
over time and investigate the factors controlling seawater intrusion of the Nile Delta ag-
uifer, using multivariate geostatistics compared with the classical analysis of the raw
chemical data, with the perspective also to design effective groundwater management
policies.

2. Materials and Methods
2.1. Site Location and Sampling Points

Figure 1 shows the location of the study area with the main freshwater/saltwater bod-
ies and sampling points during the 1996, 2007, and 2018 surveys. The study area is sur-
rounded by two freshwater bodies, i.e., Damietta branch and Ismailia Canal, and two salt-
water bodies, which are the Suez Canal and Manzala Lake. The region’s climate is typified
by hot, arid summers and mild winters, with an annual precipitation level of 90-125 mm.
The mean temperature in January and August in Zagazig, as measured over a 34-year
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period from 1983 to 2016, was 13.0 and 29.3 °C, respectively. The relative humidity levels
were recorded as 57% and 43% in January and August [42].
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Figure 1. Locations of the study area with the main freshwater/saltwater bodies and sampling points
during 1996, 2007, and 2018 surveys.

2.2. Hydrogeological Setting

The Nile Delta aquifer of Egypt is one of the most promising freshwater aquifers in
the world. However, it suffers from saltwater intrusion from the north, where it is directly
in contact with the Mediterranean coast. During the past 30 years, the aquifer has been
severely pumped for domestic and irrigation purposes, which has been causing a direct
impact on groundwater levels and its drawdown. This overexploitation of groundwater
resources has caused significant salinization and successive well abandonment, especially
in the central and northern parts of the Nile Delta.

The aquifer system is mainly represented by the sandy-gravelly Pleistocene aquifer
with interbedded clay lenses (Mit Ghamr Formation) (Figure 2). This aquifer is overlaid
by the upper Holocene sandy clay aquiclude layer (Bilgas Formation) and underlaid by
the aquiclude Pliocene clays in some places and the Miocene limestone and marl in others
[32,43](Figure 2a). The upper sandy clay cap layer is composed of Nile silty clay, silt, and
sandy clay with varying thicknesses from about 20 m in the southern and central parts to
about 70 m in the northern part [44]. The thickness of the Pleistocene aquifer increased
towards the coastal area [7,45,46], where it usually varies between 250 (southern portion)
and 900 m (northern portion). The Pleistocene aquifer varies between the unconfined con-
ditions in the southeastern parts, from semi to unconfined conditions in most eastern and
northern parts, and confined conditions in central and western parts of the study area.
This variation in the aquifer nature is related to the lithological composition and/or miss-
ing of the upper Holocene cap cover, which serves in some areas as an aquitard layer of
coarser grains, allowing upward leakage or downward flow [37,43]. The distributed fresh-
water canals (Figure 2b) on the River Nile, which dissect the Holocene cap layer, represent
the main source for the aquifer recharge in addition to the contribution of irrigation return
flow [37,47].

The hydrogeological setting summarized above, combined with the fact that all the
wells analyzed are limited to a maximum depth of 130 m (with an average of 57 m), allows
us to consider a study volume contained in a single multilayer aquifer mostly developed
between Holocene sandy clays and Pleistocene clayey sands. This assumption is
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corroborated by the presence of intervals of clayey sands within the Holocene succession
and sandy clays within the Pleistocene succession. Groundwater levels in the Pleistocene
aquifer decrease towards the northern parts and range from 8 to 14 m above sea level (m
asl) in the southern parts of the Nile Delta to less than 1 m asl in the northern parts
[43,44,46,48].
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Figure 2. (a) Hydrogeologic cross section in the eastern Nile Delta aquifer [44]; (b) River Nile fresh-

water canals.

2.3. Data Collection

Hydrochemical and hydrogeological data of the Nile Delta aquifer in the study area
of three sampling campaigns of years, 1996, 2007, and 2018, were used, which considered
different monitoring networks (Table 1) and whose sampling points had variable total
depths. The monitoring networks also included hand dug wells (18-45 m depth), irriga-
tion wells (35-90 m wells), and drinking wells (100-120 m depth).

Table 1. Description of the sampling campaigns.

Year Number of Points Depth Range Reference
1996 56 20-140 m [48,49]
2007 67 10-120 m [46]

2018 60 18-120 m [32]

Before collecting groundwater samples (the year 2018), each well was purged for at
least 30 min to remove stagnant water. Total dissolved solids (TDS), pH, and electrical
conductivity (EC) were measured in the field prior to the sample collection by using cali-
brated field Orion portable meters (Thermo Scientific, Singapore). The collected samples
were stored in iceboxes and sent to the central laboratories of the Productive Sufficiency
Institute (PSI) at Zagazig University for different hydrochemical analyses. The data were
used to construct a detailed database of the aquifer water quality over time.

Ion chromatography (Dionex ICS-1100) was used to analyze the major cations and
anions (Mg?, K*, Ca%, Na*, SO+, and CI-), while HCOs~ was determined by titration using
H2S04 (0.01 N).

2.4. Raw Chemical Data

In order to characterize the hydrogeochemical structure of the aquifer and to com-
pare the geostatistical approach with the traditional one, geostatistical calculations were
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supported by analysis techniques typical of hydrochemistry. For this purpose, the hydro-
chemical data set was processed, classified, and compared for each year of the survey us-
ing the Schoeller-Berkaloff graph.

The Schoeller Berkaloff graph can be used both to classify a single water sample and
to classify and compare more than one sample. It consists of a graph with the main cations
and anions dissolved in water (Ca, Mg, Na + K and Cl, SOs, HCOs + COs) positioned on
the horizontal axis and the concentrations of the ions, expressed in meq/l, on the logarith-
mic vertical axis. Each water sample will, therefore, be represented by a broken line join-
ing the concentrations, which will highlight the presence of dominant, secondary, and
minor ions. The analysis of two or more broken lines (groups of broken lines) will allow
us to perform comparisons between the represented waters based on chemistry. In this
type of graph, waters with the same concentration but different chemistry will then be
easily distinguishable. The graph can also show the relationships between various ions in
a water sample or a group of water samples. The raw water chemistry data were also
analyzed with regard to their spatial distribution with various geospatial techniques to
provide spatial distribution maps for each ion and each survey year, which will be dis-
cussed in Section 2.4. The analysis of the chemistry of the waters with the Schoeller Berka-
loff graph allowed us to select the dominant ions of the waters, which, together with sa-
linity (represented by Electrical Conductivity), were used in the creation of the spatial
distribution maps. To verify any piezometric and groundwater flow variations, the maps
of water levels over the three years were also estimated and compared with hydrochemi-
cal ones.

The evolution of water chemistry over time was analyzed with the Schoeller Berka-
loff graphs and the Q-Q plots of water level, EC, Cl, Na, and Ca for the pairs of contiguous
surveys 1996-2007 and 2007-2018. The Q-Q Plot graphs (which relate the quantiles of a
physical or chemical property in two different surveys) were not created with raw data
but from the geostatistical estimations due to the non-congruence of measurement loca-
tions among different surveys. The graphs compare two data distributions, and if there is
no perfect consistency, the data depart from the bisector of the first quadrant.

2.5. Data Processing

Exploratory analysis was aimed at describing statistically the data distributions of
the variables. Conventional basic statistics, including maximum, minimum, mean, me-
dian, standard deviation (SD), skewness, and kurtosis, were calculated.

A Q-Q plot was used to compare the data distribution of the same variable over time.
Although the interpolation techniques of geostatistics are not parametric, in the case of
strongly skewed distributions, to facilitate the variogram fitting process and produce an
estimate of uncertainty [50], it was preferred to transform all variables characterized by
measurement unit and magnitude different into standardized Gaussian variables with
zero mean and unit standard deviation. For this purpose, Gaussian anamorphosis was
performed by using an expansion of Hermite polynomials truncated at the first 100 terms
[40,51].

Multivariate Geostatistical Analysis

For a detailed description of the multivariate techniques of geostatistics, references
are made to the many textbooks on the subject [39,51, 52]. Only those techniques most
closely specific to the case study will be briefly mentioned here. For each survey date
(1996, 2007, and 2018), a coregionalization dataset was created as follows: at each well
location, together with the hydrochemical sample data, three auxiliary raster variables
were collocated by migration of the pixel to the nearest sampling point. The auxiliary var-
iables were the minimum distance from the Damietta branch, which is a branch of the Nile
River located in the west-northern part of the study area as an indicator of freshwater
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resources; the distance from the Manzala lake located in the northeastern part of the study
area and the Suez Canal, located in the eastern part of the study area, as an indicator of
saltwater resource (Table 2). The distances of the three auxiliary variables were calculated
using the Near tool, which is available in the ArcGIS Pro 2.7.0 software developed by
ESRI. The tool calculates the distance and additional proximity information between the
input features and the closest features in another layer or feature class using the tools
available in ArcGIS Pro 2.7.0, USA.

Table 2. Point sample variables and auxiliary variables were used to create the LMC in the three

sampling dates.

Number Number of Auxiliary Varia-
Year of Point Point Sample Variables bles Points Based on 1000 m Auxiliary Variables
Samples x 1000 m Grid
Minimum distances from Dami-
1996 56 Water level, pH, EC, Na, K, Ca, 4322 etta branch, lake Manzala and
Mg, Cl, HCOs, SOs
Suez Canal
Minimum distances from Dami-
2007 67 Water level, pH, EC, Na, K, Ca, 4322 etta branch, lake Manzala and
Mg, Cl, HCOs, SOs
Suez Canal
Mini dist f Dami-
Water level, pH, EC, Na, K, Ca, inimum distances from Dami
2018 60 4322 etta branch, lake Manzala and
Mg, Cl, HCOs, SO4
Suez Canal

The whole set of both experimental direct and cross-variograms was fitted to a Linear
Model of Coregionalization (LMC) [53], which considers all the studied variables as the
result of the same independent physical processes acting over different spatial scales. All
direct and cross semi-variograms of the variables are then modeled as a linear combina-
tion of standardized semi-variograms of the unit sill, each one corresponding to an iden-
tified spatial scale.

The sills of the direct and cross variograms of each scale constitute a matrix called
coregionalization matrix, which must be a symmetric positive semi-definite matrix. Each
coregionalization matrix can be interpreted as a variance-covariance matrix specific to a
given spatial scale [54].

Multi-Collocated Cokriging

Ordinary cokriging (OCK) is one of the most basic multivariate geostatistical meth-
ods of interpolation, where the local mean is assumed to be constant but of unknown
value. A way of integrating secondary finer resolution grid information into primary
sparse variable modeling is multi-collocated cokriging [55]. It is a technique that is very
similar to ordinary cokriging, but the only difference is the neighborhood search. Since
using all the secondary exhaustive information contained in the neighborhood can lead to
an intractable solution due to too much information, the secondary variable is used only
at the target location and also at all locations where the primary variable is defined. It is
less accurate than full cokriging because it does not use all the auxiliary information con-
tained within the neighborhood, but it is much less computationally intensive. Neverthe-
less, as the colocated secondary datum tends to screen out the influence of more distant
secondary data, there is actually little loss of information.

Cross-validation

This involves deleting each sample in turn and then kriging it (z*) independently of
all other points in the estimation neighborhood [56].

Two statistics [55], defined as follows, were used to evaluate the performance of the
LMC using cross-validation:



AgriEngineering 2025, 7, 34

7 of 21

L
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=

where N is the number of active observations and oi the cokriging standard deviation of
the estimate z;.

For an unbiased and accurate estimate, ME should be near 0 and MSSE near 1 because
the latter approximately represents the ratio of an experimental and a theoretical variance

[57]. However, if MSSE is different from 1 but within the tolerance interval (1 — 3 \/%; 1+

3 \g ,) [51], the estimation may be considered accurate.

Factor cokriging analysis (FCA)

To synthesize the complex multivariate variation of the study area in a limited
number of roughly homogeneous macro-zones, which could, therefore, be subjected
to differential management, factor cokriging analysis (FCA) was applied using the
same LMCs previously estimated for each sampling date.

FCA is quite similar to the traditional Principal Component Analysis (PCA) but
with the difference that each coregionalization matrix (corresponding to a given spa-
tial scale) is broken down into the eigenvalues and eigenvector matrices [52,58,59]. In
FCA, only the eigenvectors, called regionalized factors (FC), corresponding to eigen-
values greater than one, were retained because they describe a larger portion of the
spatial variance than that of each variable standardized to variance 1. The regional-
ized factors corresponding to the nugget effect were omitted, as they are mostly af-
fected by measurement errors.

Mapping the estimated retained regionalized factors provides a synthetic illustration
of the behavior and relationships among variables at different spatial scales. The interpo-
lation of the FCs is performed by solving a modified cokriging system, as described by[60].

3. Results

3.1. Exploratory Data Analysis

Table 3 shows the descriptive statistics of the whole dataset for the three different
surveys. This has been performed to investigate the shape of the data distributions before
carrying out the geostatistical analysis. The skewness values reported in Table 3 indicate
that most of the study variables for each survey are skewed either positively or negatively
except for total depth in 1996 and 2007 and water level in 2018. Therefore, all variables
were transformed using the Gaussian anamorphosis prior to geostatistical analysis.

Table 3. Descriptive statistics of studied parameters in 1996, 2007, and 2018.

Statistic Samplin Total Depth Water p EC Ion Concentration in mg/1

| g Year (m)  Level (m) dSm? K  Na Mg Ca Cl SO:  HCOs
Mean 76.5 6.85 84 278 11 377 78 131 643 362 267
STD | 32.2 2.62 06 526 17 721 167 287 1675 1017 175
Variance 1039.6 6.88 04 2766 299 519,669 27,985 82,401 2,805,187 1,033,34530,593
Kurtosis | 1996 -0.6 -1.53 45 1484 15 13 15 17 18 32 6.6
Skewness -0.17 0.02 -1.8 38 37 3.6 39 4 4.2 5.4 2.3
Minimum | 20 1.8 63 034 1 27 8 10 18 10 19
Maximum 140 1075 97 2675 90 3620 850 1623 9500 6900 1006
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Count | 56 56 56 56 56 56 56 56 56 56 56
Mean 50.2 5.53 75 238 8 325 45 113 46l 202 295
STD | 23.9 1.78 03 370 6 460 91 166 1118 207 85
Variance 572.4 3.16 0.09 1369 42 211,539 8331 27,707 1,250,96842,795 7311
Kurtosis | 2007 -1.17 0.00 11 2092 107 16 24 21 24 3 0.01
Skewness 0.15 0.80 1 451 3 38 49 44 49 18 -0.41
Minimum | 15 25 70 040 17 28 36 12 178 10 65
Maximum 105 10 85 2073 39 2560 545 1020 6560 887 480
Count | 67 67 67 67 67 67 67 67 67 67 67
Mean 48.7 411 757 543 24 734 146 227 1459 654 227
STD | 31.2 1.45 038 814 26 1131 242 366 2556 1147 129
Variance 975.4 2.12 0.15 66.18 702 1,279,57158,457 134,023 6,535,520 1,315,862 16,709
Kurtosis | sorg 002 -052 308 235 88 23 38 4 3.7 43 5.8
Skewness 112 -0.02 155 194 28 19 22 22 22 2.3 1.9
Minimum | 18 0.75 69 0389 45 16 13 15 30 15 72
Maximum 120 6.7 89 3003 146 4350 960 1554 10,120 4560 810
Count | 60 60 60 60 60 60 60 60 60 60 60

3.2. Raw Hydrochemical Data

The chemical analyses of all samples for each survey, processed through the
Schoeller—Berkaloff diagrams (Figure S1), show the presence of two main groups of water:
predominantly calcium and/or sodium bicarbonate (Figure S1B,E,H) and predominantly
sodium chloride (Figure S1C,F,I). The first group includes waters with chemical formula:

Na, Ca, Mg-HCOs, Cl, SO4; Ca, Na, Mg-HCOs, Cl, SO4; Mg, Ca, Na-HCOs, Cl, SOs.

The second group includes waters with chemical formula:

Na, Ca, Mg—Cl, SO, HCOs; Na, Mg, Ca—Cl, SO4, HCOs; Na, Ca, Mg—Cl, HCOs, SOs.

The cations of the first group (bicarbonate—calcium/sodium waters) do not show the
prevalence of a particular ion, but moving from the first to the last sampling campaign,
they show a decrease in the samples with high Na and K contents. Regarding anions, the
HCO:s content remains constant over time, while variability in the Cl and SOs contents is
observed. Concentrations are between 1 and 10 meq/1.

In the second group (sodium chloride waters), the concentrations are higher and vary
from 1 to over 100 meq/l and, therefore, more than 10 times the concentrations of the first
group. This situation is clearly visible in the Scholler Berkaloff diagrams, which show the
water types of the second group located in the upper part of the graph. The concentrations
also show a slight increase in values over time and a high variation in SOs content, so
much as to highlight the presence of some sulfate—alkaline samples.

3.3. Geostatistical Results

Linear model of Coregionalization

Three linear models of coregionalization of the transformed Gaussian variables were
applied for three periods: 1996, 2007, and 2018 (Tables S1, S2, and S3, respectively)

Since it was not possible to check whether any anisotropy existed given the small
number of samples, it was preferred to fit an isotropic model of spatial dependence. LMC
developed for the dataset collected in 1996 involves three spatial structures: a nugget ef-
fect, a spherical model with a range of 1200 m, and a Bessel-K model with a range of
100,000 m; the one from 2007 involves three spatial structures: a nugget effect; a spherical
model with a range of 10,000 m and a Bessel-K scale with a range of 100,000 m (Table 4);
the one from 2018 involves three spatial structures: a nugget effect; a spherical model with
a range of 1000 m and an isotropic Bessel-K scale with a range of 100,000 m.
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Table 4. Linear Model of Coregionalization of the variable sets is shown in Table 2. For each year, a

nugget effect was included.

Year Structures Range
Spherical 1200
1996 oBesel 100000 m
Spherical 10000
2007 CBessel 100000 m
Spherical 1000
2018 Bessel 100000 m

As can be seen, the spatial structures, apart from absolute values of the parameters,
remain invariant enough over time, especially those related to the long-range, most likely
associated with hydrogeological characteristics that do not change over time. On the con-
trary, it is different for the shorter-range structure, which has a variable range over time
because it is more related to anthropogenic activity and possible movements of ground-
water flows (saline water intrusion and/or freshwater adductions).

3.4. Spatial Distribution

The multi-collocated cokriging based on the LMC allowed for estimating the spatial
distribution of water levels (Figure 3), EC, Cl, Na, and Ca. Pumping-induced water level
variation is usually considered the main anthropogenic cause of SWI, whereas the four
physicochemical variables can be considered as hydrogeochemical proxies of aquifer sal-
inization, as they describe the increase in groundwater salinity and water type [61].

In Figure 4, the water level evolution is reported from which it is possible to note the
following:

- In 1996, a regular piezometric distribution with almost homogeneous gradients and
flow lines perpendicular to the coastline and parallel to the Damietta Branch of the
Nile was established.

- In 2007, less regular distribution of the piezometric surface was observed, with a low-
ering of the water level in the central and southern parts and the presence of concen-
trated recall zones in the central part.

- In 2018, a further generalized reduction in water level was observed in the southern
and northern portions of the study area, and there was a greater number of water
recall areas than in 2007. In the central part, however, a recovery in the water level
was observed, which gave rise to a lobed shape of the piezometric surface (encircled
in red in Figure 3), which indicates an alternation of areas of probable attenuation of
the pumping.
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Figure 3. Cokriged maps of water level during the three surveys (1996, 2007, 2018). In 2018, the red
ellipse encircles a lobed shape piezometric surface that indicates a recovery in the water level.

The thematic maps of groundwater salinity (expressed in EC) are shown in Figure 4,
where a clear trend of increasing salinity towards the coastal area can be seen in the 1996
survey. In the 2007 survey, the level of salinization increased even further, especially
nearer the Manzala Lake. The pattern of salinity in the 2018 survey is somewhat similar
to that of 2007, with salinity increasing towards the northwest part of the study area. It is
worth noting that in the 2018 survey, two zones of groundwater salinity less than 2 dS/m
appeared in the eastern part of the study area, corresponding to the lobate shape of the
piezometric surface described above.
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Figure 4. Cokriged maps of EC during the three surveys (1996, 2007, 2018).

The spatial distribution of chloride (Figure 5) during the reference years was con-
sistent with the EC one. The lower concentrations of chloride in the southwestern part
might be attributed to the proximity of freshwater sources, such as the Damietta branch
and the Ismailia canal. It is worth noting that in 2007, chloride concentrations in the north-
ern part increased dramatically from around 1000 mg/1 to more than 1500 mg/l, compared
to the chloride concentrations on the 1996 map. This evidence likely relates to groundwa-
ter overexploitation for crop irrigation in this cultivated area. This interpretation is further
supported by the decrease in water level between 1996 and 2007 (Figure 3).
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Figure 5. Cokriged maps of chloride during the three surveys (1996, 2007, 2018).

The sodium spatial distributions (Figure 6) show that in 2007, sodium concentrations
increased from the northern part towards the southwestern part, covering about 40% of

the study area and reducing the water quality of the wells.
For both chlorides and sodium in 2018, there was a slight decrease in the areas with

the highest concentrations. Furthermore, the spatial distribution shows some zones lo-
cated in the northeastern part with lower sodium concentrations of less than 100 mg/l,
once again at the lobate piezometric surface.
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Figure 6. Cokriged maps of sodium during the three surveys (1996, 2007, 2018).

Figure 7 shows the spatial maps of calcium, where an opposite pattern to that of EC,
Cl, and Na was observed. Its concentration decreased, especially in the northern part, in
2007. Comparing the calcium concentrations between 2007 and 2018, an increase in cal-
cium concentrations can be seen in the northeastern part. New zones of high calcium con-
centrations appeared in the central part of the 2018 map, corresponding to the lobed zone

of the piezometric surface.
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Figure 7. Cokriged maps of calcium during the three surveys (1996, 2007, 2018).

Considering the spatial distribution obtained from the Cokriged maps described
above and to better describe the evolution of chemistry over time, the Q-Q plot graphs
(Figures 8 and 9) describing the evolution of the estimated EC, Cl, Na, and Ca are shown
below in relation to the water level.

Moreover, to analyze the evolution of SWI at a regional scale and over the considered
period, we took advantage of Q-Q plots to compare the estimated proxy variables (i.e.,
water level, EC, Cl, Na, and Ca) and interpret the results from a hydrogeological and hy-
drogeochemical standpoint (Figure 8).

As for the estimated water levels between 2 and 4 m a.s.l,, no significant changes were
observed between 1996 and 2007. However, for values between 4 and 10 m a.s.l., there
was a significant decrease in 2007 compared to 1996, indicating a decrease in the water
level.

In the second period, from 2007 to 2018 (Figure 9), the water levels decreased but in
a less evident way. This probably means a decrease in pumping rates compared to the
previous period.

For groundwater salinity, the estimates for up to 5 dS/m remained almost the same
for both the years 1996 and 2007 (Figure 8). However, there was an increase in water sa-
linity, especially for the estimates between 5 and 25 dS/m in 2007, indicating that the water
salinity level increased during the period 1996-2007. When comparing 2007 and 2018, no
significant changes were observed. The only change was the increase in salinity for values
above 23 dS/m in 2018. A similar trend to that observed for salinity was observed for chlo-
ride, which shows that it increased between 1996 and 2007 (Figure 8), whereas it remained
slightly higher in 2007 than in 2018 up to the value of 8000 mg/L, beyond which the trend
reversed.
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Figure 8. Q-Q plots for water level, EC, and CI (1996 vs. 2007 and 2007 vs. 2018).

There was an increase in sodium concentration in 2007 compared to 1996 (Figure 9),

whereas an opposite pattern was observed in 2018 compared to 2007, indicating a decreas-

ing Na concentration during the period 2007-2018, quite similar to the behavior of Cl.
Regarding the calcium content, the Q-Q plot (Figure 9) of 1996 vs. 2007 shows that there
was a decrease in its concentration in 2007 compared to 1996, especially for the values of

120 mg/L and above. Differently, calcium concentration increased in 2018 compared to

2007.
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Figure 9. Q-Q plots for sodium and calcium (1996 vs. 2007 and 2007 vs. 2018).

Ultimately, the Q-Q plot graphs graphically render what is already evident in the
analysis of the spatial distributions in the three study periods. However, it is a concise
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though non-spatial way of characterizing the entire distribution of waters at the three sur-
vey dates.

Delineation of homogenous zones based on factorial kriging

Tables S4-S6 show the structure of the regionalized factors whose eigenvalue is
greater than 1 by spatial scale and survey. In 1996 (Table S4), on the first long-range factor
with an eigenvalue greater than 1, which explained 46.56% of the spatial variance at that
scale (100,000 m), the distance from the freshwater source (Damietta branch), EC and Cl
weigh more and positively, whereas the distances from the saltwater sources (distance
from Lake Manzala and the Suez Canal (Table S1) negatively. This factor could, therefore,
be interpreted as an indicator of the salinity level of the waters resulting from the equilib-
rium of lateral fresh and saltwater supplies. On the second long-range factor with an ei-
genvalue greater than 1, which explained 21.18% of the spatial variance at this scale, cal-
cium, potassium, and distance from the Suez Canal primarily contribute positively,
whereas total depth and distance from the Damietta branch contribute negatively. This
factor could, therefore, be interpreted as an indicator of water quality, particularly for cal-
cium and potassium content. On the third long-range factor with an eigenvalue greater
than 1, which explained only 14.5% of the spatial variance at this scale, the distances from
the Damietta branch and Lake Manzala, bicarbonate, and water level weigh negatively.
Indeed, giving a physical interpretation to this factor is rather difficult, showing an inverse
relationship between water table depth and bicarbonate content. The fourth long-range
factor with an eigenvalue greater than 1 explained a variance rate of less than 10%, so it
was decided to neglect it. In the short range, there were no factors with eigenvalues
greater than 1.

In 2007 (Table S5), the first short-range factor with an explained variance of 35.87%
was positively correlated with Ca and Mg and, to a lesser extent, with Cl and EC and
negatively correlated with pH. It could then be interpreted as an indicator of the level of
solutes in the waters. The retained second short-range factor, with an explained variance
percentage of 28.55, was negatively correlated with Cl, EC, Na, pH, and total depth. It
could then be assumed as an inverse indicator of the salinization level and then of the
water quality.

In the same survey, there were two regionalized long-range factors with eigenvalues
greater than one. The first factor explained 64.7% of the variance at this scale and was
positively correlated with Cl and Na and negatively correlated with distance from Lake
Manzala and water level. It could then be assumed to be an indicator of saline water in-
trusion from Lake Manzala. The second factor, which explained only about 28% of the
spatial variance, was positively correlated with distance from the Suez Canal (saltwater)
and negatively correlated with distance from the Damietta branch (freshwater). Therefore,
this factor could also be interpreted as an indicator of the salinization level of the waters
(an inverse indicator of water quality) resulting from the balance of saline and freshwater
supply.

Finally, in the 2018 survey (Table S6), the first long-range factor, which explained
71.9% of the scale variance, was mostly positively correlated with Cl, EC, Na, Mg, and SOx
and negatively correlated with distance from Lake Manzala. It is then a clear indicator of
the salinity of the waters resulting from the proximity of the salty lake. The second factor
explained 20.55% of the scale variance and was positively correlated with distance from
the Suez Canal and negatively correlated with bicarbonate content, which could be taken
as an inverse indicator. The third factor explained less than 10% of the scale variance and
was then omitted. In the short range, there were no factors with eigenvalues greater than
1.
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Mapping the first factors in the three surveys

It was, therefore, decided to take the first long-range factor for the three surveys as a
scale-consistent indicator of the level of salinization of the waters. A partition of the study
area into three macro-areas of equal size, each comprising approximately 33% of the total
number of pixels, was made for each survey. Although the level of salinization and its
gradient change in the three surveys (the three color scales are not the same), as it is evi-
dent also from the previous investigations, there was a consistent downward trend in sa-
linity in the NE/SW direction during the whole period 1996-2018 of study. This decrease
is manifested in a compact southwestern area and in a more irregular central-eastern area
with alternations of zones with different salinity (Figure 10).
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Figure 10. First Factor (LMC at long range): (a) 1996; (b) 2007; (c) 2018.
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4. Discussion

The chemical classification of groundwater represented in the Schoeller Berkaloff di-
agrams (Figure S1) generally shows an increase of sodium chloride over time and a related
increase in total salinity (graphs C, F, and I in Figure S1). Furthermore, they show a de-
crease in calcium bicarbonate over time (graphs B, E, and H in Figure 51). The comparative
analysis with the spatial distribution (Figures 3-7) and with the variation over time of the
main chemical parameters represented in the Q-Q plots (Figures 8 and 9) allows us to
affirm that the increase in sodium chloride water occurred due to migration towards the
southwest at the expense of volumes of calcium bicarbonate water. The comparative anal-
ysis with the reconstruction of the piezometric surface over time (Figure 3) also allows us
to ascribe the aforementioned variations to a general decrease in the water level, starting
from a situation of equilibrium in 1996 up to a situation of general pumping with the
presence of localized pumping areas capable of drawing brackish water from Lake Man-
zala.

In general, it is possible to note that over 22 years, there has been an increase in so-
dium chloride, a general increase in the total salinity of the waters, and a migration of
water salinization towards the southwest.

Compared to this general trend, the central band, approximately 35 km wide and
extending approximately 10-20 km north of the Ismailia Canal, presents piezometric and
chemical structures between 2007 and 2018 that are peculiar and different from the general
structure described above. The piezometric surface from 2007 to 2018 evolves into a lobed
shape, which highlights the alternation of piezometric highs and lows, which testify to the
decrease, albeit not homogeneous, in pumping. In this area, we also observe the following:
- in2018, the appearance of two zones of groundwater salinity less than 2 dS/m (Figure

4);

- a decrease in the concentration of Cl and Na (Figures 5 and 6);
- an increase in Ca concentration in 2018 (Figure 7).

The Ca concentration shows an inverse trend compared to that of Na and Cl. In 2007,
the Ca concentration decreased compared to that of 1996 because the sodium chloride
waters replaced the bicarbonate ones with an increase in salinity due to the decrease in
the hydraulic load, which draws salt/brackish water from Manzala Lake. In 2018, at the
same time as the uneven decrease in pumping, a recovery in the concentration of Ca and
a slight decrease in Cl and Na were observed, probably due to the recall of bicarbonate
surface water (i.e., not sodium chloride) from the Ismailia channel. The piezometric sur-
face reconstructed in 2018, in fact, shows a water flow from the Ismailia canal towards the
northern area.

The analysis of the raw chemical data and their spatial distribution estimated in
three-time windows show, therefore, a generalized decrease in the water level with a con-
sequent increase in salinity and Na and Cl content over time and towards the southwest.
This trend appears to be mitigated in the central part of the study area, where the decrease
in pumping rates (even if not in a homogeneous way) and the recall of surface water from
the Ismailia Canal attenuate salinization and generate an increase in Ca content.

The above-described geospatial and multi-temporal distribution of ion concentra-
tion, salinity, and water level (piezometric surface) was implemented with the identifica-
tion of homogeneous zones based on the kriging factorial analysis that considered the
distance from the salty (Suez Canal and Manzala Lake) and fresh (Damietta Branch and
Ismailia Canal) surface water bodies as auxiliary variables. The result of such analysis
clearly highlights the influence of the above-mentioned surface water bodies in the evo-
lution of the chemistry of the groundwater both over time and space. In fact, a general
increase in water salinity from the northeast to the southwest was shown (Figure 10) due
to the lowering of the water level (Figure 3) and the consequent recall of water from
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Manzala Lake in the period from 1998 to 2007. Differently, a decrease in salinity in 2018
(Figure 10) was estimated due to probable decreases in pumping rates, which caused a
slight decrease in salinity in the southwestern part and an irregular decrease in salinity,
Cl, and Na concentration in the central-eastern part (Figures 4-6 referred to 2018). This
was probably due to the decrease in pumping rates and the recall of freshwater from Is-
mailia Chanel, as highlighted by the distribution of water levels (Figure 3).

As demonstrated in Figure 5, the northern region of the study area exhibits symp-
toms of SWI, characterized by an average water salinity level of 6-8 dS/m in 1996. How-
ever, a comparatively smaller area in the northernmost region demonstrates levels exceed-
ing 10 dS/m. Furthermore, in 2007 and 2018, the area affected by water salinity levels
greater than 10 dS/m expanded, indicating a significant escalation in this phenomenon.
This rise in water salinity, particularly from 6 dS/m, is anticipated to have a deleterious
effect on soil and crop yield in the regions where these levels are present. The study area
is predominantly cultivated with field crops, including wheat, barley, maize, rice, sor-
ghum, tomato, lettuce, cabbage, cucumber, and beans. The continued increase in ground-
water salinity is anticipated to have a deleterious effect on the yield of these crops, partic-
ularly those of wheat, rice, and maize, which are considered to be of strategic importance.
It is important to note that the ongoing utilization of groundwater for irrigation in the
northern region, particularly in areas where salinity levels exceed 10 dS/m, may result in
a significant reduction in crop yield, ranging from 20% to 100%, for the aforementioned
crops. Additionally, the ongoing use of high-salinity groundwater for irrigation purposes
is likely to have a detrimental effect on the stability of soil aggregates. The results obtained
in this study largely align with previous studies in the area, which indicated that there is
a prolonged increase in groundwater salinity due to continuous over-pumping from the
Nile Delta aquifer for different purposes [7,32,43,62].

5. Conclusions

The proposed multidisciplinary approach, based on the chemical analysis of raw data
and their spatial interpolation using multivariate geostatistical techniques, allowed the
evaluation of the temporal evolution and the extent of saltwater intrusion in the eastern
portion of the Nile Delta.

In particular, the dependence of the groundwater chemical parameters on the dis-
tance between salt and fresh surface water bodies was introduced for the first time. The
distances to salt and freshwater bodies in the Linear Model of Coregionalization, as aux-
iliary variables, made the spatial distribution of key variables obtained by Ordinary
Cokriging more reliable and physically based.

Factorial Kriging analysis using Gaussian estimates of Ordinary Cokriging provided
the multi-temporal distribution of the aquifer salinization process.

Among the limitations of the analysis carried out, which have conferred uncertainty
in the evaluation of the space-time variability, it is worth highlighting the chemical low-
frequency monitoring campaigns that have not allowed a continuous recording of the
phenomenon and the non-coincidence of the monitoring locations in the three survey
campaigns.

A more accurate analysis with more robust results would make it possible to define
an optimal uniformly distributed network of survey points, coupled with regular and
more frequent monitoring of groundwater even along the vertical dimension. Hopefully,
continuous monitoring of salinity at least should be foreseen. Equal importance would be
the monitoring of the flow rate and chemical-physical characteristics of the Nile canals,
which can interact with the groundwater both naturally and through irrigation.

Such a monitoring network would allow for physically-based management of
groundwater and surface water resources with the possibility of modulating demand with
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availability, considering the risk of salinization but also the possibility of blunting the sal-
inization phenomenon through irrigation with fresh water from canals. The availability
of data in space and time would enable the use of density-dependent mathematical mod-
eling aimed at rational and efficient deep and surface water management.

Supplementary Materials: The following supporting information can be downloaded at
www.mdpi.com/xxx/s1, Figure S1. Schoeller Berkaloff Diagram. A, D, and G: all samples analyzed
in 1996, 2007, and 2018, respectively. B, E, and H: only samples with predominantly calcium or so-
dium bicarbonate chemistry in 1996, 2007, and 2018, respectively; C, F, and I: sodium chloride chem-
istry samples in 1996, 2007, and 2018, respectively. Table S1. Linear model of coregionalization of
the transformed Gaussian variables in 1996. The coregionalization matrices are reported (sills of
variograms). Table S2. Linear model of coregionalization of the transformed Gaussian variables in
2007. The coregionalization matrices are reported (sills of variograms). Table S3. Linear model of
coregionalization of the transformed Gaussian variables in 2018. The coregionalization matrices are
reported (sills of variograms). Table S4. Structure of the regionalized factors whose eigenvalue is
greater than 1 by spatial scale in 1996. Table S5. Structure of the regionalized factors whose eigen-
value is greater than 1 by spatial scale in 2007. Table S6. Structure of the regionalized factors whose

eigenvalue is greater than 1 by spatial scale in 2018.
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