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Abstract. This article describes the development of a high order finite volume method for
the solution of transonic flows. The high order of accuracy is achieved by a reconstruction
procedure similar to the weighted essentially non-oscillatory schemes (WENO). On the
contrary to the WENO schemes, the weighted least square (WLSQR) scheme is easily
extensible to the case of complex geometry.

1 INTRODUCTION

This article deals with the numerical solution of the Euler or the Navier–Stokes equa-
tions describing the motion of compressible inviscid or viscous gas
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where ρ is the density, vi are the components of the velocity vector, p is the pressure, E
is the total energy per volume unit, τij is the stress tensor, and qj are the components of
heat flux1.

The solution can be obtained with a standard finite volume method. However, the basic
method of Godunov type often suffers from low accuracy. One possibility how to improve
the accuracy of such method is the application of an interpolation procedure which tries
to reconstruct pointwise values of the solution from their cell averages. The main problem
of such interpolation procedures is their applicability for data with discontinuities and/or
strong gradients. The so called ENO (i.e. essentially non-oscillatory) reconstruction has
been developed2;3 and transformed to finite volumes by many researchers at the end of
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last century. Nevertheless, the standard finite volume version of ENO or weighted ENO
method4;5 is relatively complicated for general meshes. On the other hand, the proposed
WLSQR interpolation is simply extendible also for 3D (see last section of this article for
an example).

The reconstruction procedure based on the least square method combined with data
dependent weights for avoiding interpolation across a discontinuity has been developed6.
The article6 presents several applications of the original weighted least square method
with piecewise linear reconstruction namely for inviscid transonic flows in 2D channels
and turbine cascades. The extension to the piecewise parabolic interpolation for scalar
test case has been done later7 and the analysis of the stability of proposed interpolation
method has been studied in the articles8;9.

The aim of this article is to present some numerical experiments concerning the choice
of the weights in the reconstruction and to test the method in 2D and 3D both for flows
with complex structure (2D Riemann problem), and for flows in complex geometries.

2 THE HIGH ORDER FINITE VOLUME SCHEME

As a base for the numerical method the standard finite volume method with data
located in centers of polygonal cells has been chosen. The basic low order semi-discrete
method can be written as1

dui(t)

dt
= −

∑
j∈Ni

F(ui(t), uj(t), ~Sij). (4)

Here ui(t) is the averaged solution over a cell Ci, Ni denotes the set of indices of neigh-
borhoods of Ci (i.e. if j ∈ Ni, then cells Ci and Cj share an edge in 2D or a face in 3D),
~Sij is the scaled normal vector to the interface between Ci and Cj (oriented to Cj) and
F denotes the so called numerical flux approximating physical flux through the interface
between cells Ci and Cj. The Osher’s10 or AUSMPW+11 fluxes were chosen in this work,
nevertheless the other choice of the numerical flux (e.g. Roe’s flux etc) is possible.

A higher order method can be obtained by introducing a cell-wise interpolation P (~x; u) =
Pi(~x; u) for x ∈ Ci into the basic formula. The higher order method is then formally

dui(t)

dt
= −

∑
j∈Ni

F(Pi(~xij; u), Pj(~xij; u), ~Sij), (5)

where ~xij is the center of interface between Ci and Cj.
The semi-discrete is then solved either by explicit Runge-Kutta method, either by

implicit backward Euler method12;7.

3 THE WEIGHTED LEAST SQUARE RECONSTRUCTION

The very important part of the above mentioned method is the high order reconstruc-
tion (or interpolation). The reconstruction should satisfy following requirements:
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1. Conservativity, i.e. the mean value of the interpolant P (x; u) over any cell Ci

should be equal to cell average of u, in other words∫
Ci

P (~x; u) d~x = |Ci|ui. (6)

2. Accuracy, i.e. for a given smooth function ũ(~x) with cell averages ui the interpolant
P (~x; u) should approximate ũ:

P (~x; u) = ũ(~x) +O(ho), (7)

where h is a characteristical mesh size and o is the order of accuracy. This accuracy
requirement is reformulated in the following way: let Mi denotes a set of indices of
cells in the vicinity of Ci (the Mi will be described later). Then the prolongation
of Pi(~x; u) over cells given by Mi should satisfy∫

Cj

Pi(~x; u) d~x = |Cj|uj, ∀j ∈Mi. (8)

3. Non-oscillatory, i.e. the total variation of the interpolant should be bounded for
h → 0.

As soon as the set Mi contains sufficient number of cell indices, the system becomes
overdetermined and it is solved by the means of least square method. The interpolant
Pi(~x; ) is therefore obtained by minimizing error in (7) for j ∈ Mi respect to constraint
(6). In order to mimic weighted ENO method the data dependent weights are introduced:

Pi(~x; u) = arg min
∑
j∈Ni

[
wij

(∫
Cj

P̃ (~x; u) d~x− |Cj|uj

)]2

, (9)

where minimum is take over all linear polynomials P̃ satisfying (6), in other words, Pi is
defined as a polynomial satisfying (6) and minimizing errors in (8) in L2 norm. Weights
wij should depend on u and they should be high when u is smooth and small when there
is a discontinuity in u. This behavior is similar to ENO reconstruction which can be for
piecewise linear polynomials in 1D written as WLSQR reconstruction with weights being
either 1 or 0. In this case, the weights

wij =

√
h−r∣∣ui−uj

h

∣∣p + hq
, (10)

with p, q, and r being constants (e.g. p = 4, q = −2, r = 3) were chosen.
Another question is the choice of fixed stencil (denoted here by Mi). The two types

of stencils were used in this work for piecewise linear interpolations:
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the compact stencil - Mi = Mc
i is the set of cells sharing with Ci an edge (or face in

3D), and

the wide stencil - MiMw
i is the set of cells sharing at least one vertex with Ci.

For a picewise parabolic reconstruction the stencils are

the compact stencil - Mi = ∪j∈Mc
i
Mc

j, and

the wide stencil - Mi = ∪j∈Mw
i
Mw

j .

Note, that for system of equation the polynomial reconstruction is made component-
wise.

3.1 Analysis of weights in WLSQR interpolation

The complete analysis of this three-parametric family of weights is very difficult task,
therefore we investigate here only effects of p and q. The value of r was kept constant
r = 3 in this work.

The theoretical analysis of 1D piecewise linear reconstruction using a regular mesh has
been done in9 following results:

Theorem 1 Assume a sufficiently smooth function u(x) having cell averages ui and
weights w 6= 0. Then the piecewise linear WLSQR interpolation polynomial approximates
u(x) with second order of accuracy, i.e.

P (x; u) = u(x) +O(h2). (11)

In the case of discontinuous data the total variation of the interpolant for u(x) defined as
u(x) = 1 for x < xshock and u(x) = 0 for x ≥ xshock has been analyzed and the following
estimate has been proven for p + q ≥ 0 and p > 1:

TV (P (x; u)) ≤ TV (u) + 6h1+q/p. (12)

This yields the following lemma:

Theorem 2 Assume weights with

p + q ≥ 0, (13)

p > 0. (14)

Then the total variation of the interpolant of data given by a single shock with constant
states at both sides will be bounded independently of h as h → 0.

Several numerical experiments for piecewise linear WLSQR method were described in13

with the conclusion that the choices p, q, r = 4,−2, 3 or 4,−3, 3 are appropriate at least
for inviscid transonic flows in test channel.
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4 THE APPLICATIONS FOR COMPRESSIBLE FLOWS

4.1 Inviscid transonic flow through 2D test channel

As a first test of high order WLSQR scheme the flows through 2D channel with circular
bump with 10% height was solved. This is well known GAMM channel and it is used by
many authors for validation. The flow is characterized by the ratio of outlet static pressure
and inlet stagnation pressure pout/p0,in = 0.737 corresponing to the outle isentropic Mach
number M2i = 0.675. Several calculations using the same Osher’s numerical flux10 and:

• base scheme without any reconstruction,

• scheme with piecewise linear WLSQR reconstruction, and

• scheme with piecewise parabolic WLSQR reconstruction

were performed. Each calculation has been done on three different structured meshes: the
coarse mesh with 75× 25 cells, intermediate mesh with 150× 50 cells, and fine mesh with
300 × 100 cells. No mesh refining has been used, so the mesh spacing ∆x was constant
over whole mesh and ∆y was constant at each grid line. Steady state solution was reached
in all cases in less than 300 iterations of backward Euler semi-implicit method (see fig. 1).
Note, that the norm of residual goes down to the level of machine zero which is usually
not the case of methods with limiters (e.g. the Barth’s limiter). In order to test the
applicability for the case of complex geometries another calculation with unstructured
mesh with 22544 triangles refined near leading and trailing edges and in the vicinity of
the shock was performed.
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Figure 1: Coarse and unstructured meshes and convergence history for 2D test channel.

Figure 2 shows distribution of Mach number end entropy s = ln(p)− γ ln(ρ) along the
lower wall. One can see that the scheme without any reconstruction underestimates the
maximal Mach number and moves the position of the shock little-bit upstream even in
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the case of fine mesh. On the other hand, both second and third order schemes give very
similar results. Very interesting comparison is the distribution of entropy along lower
wall. The first order scheme shows very intensive non-physical growth of entropy at the
leading and trailing edges of the bump due to strong numerical dissipation. This entropy
growth is much smaller for second and third order scheme. The third order scheme with
refined unstructured mesh shows almost no sources of entropy near leading and trailing
edges.
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Figure 2: Distribution of Mach number and entropy along lower wall of GAMM channel; first order
(dotted), second order (dashed) and third order (solid) scheme; coarse (75, rectangles), intermediate
(150× 50 triangles), fine (300× 100, circles), and unstructured (diamonds) mesh.

In order to estimate numerically order of convergence we compute norms of ||ρh −
P h

h/2ρh/2||1 and ||ρh/2 − P
h/2
h/4 ρh/4||1 where ρh is the density obtained on coarse mesh, ρh/2

on the intermediate mesh, and ρh/4 on the fine mesh. Projection P h
h/2 transfers solution

from intermediate to coarse mesh and P
h/2
h/4 from fine to intermediate mesh. The order of

convergence is then estimated as

p = log2(||ρh − P h
h/2ρh/2||1)− log2(||ρh/2 − P

h/2
h/4 ρh/4||1). (15)

Table 1 shows estimated orders of convergence for this case. The parabolic reconstruction
(i.e. the so-called third order scheme) gives numerically only order p = 1.3. Nevertheless,
the magnitude of the difference is still smaller than for the second order scheme. Similar
deficit of order of convergence was already found in simple scalar case7, although here it
can be caused also by the fact, that the boundary was approximated by simple straight
segments. This simplification introduces error of the order h2 into the method.
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Reconstruction ||ρh − P h
h/2ρh/2||1 ||ρh/2 − P

h/2
h/4 ρh/4||1 order

None 6.779 · 10−3 3.620 · 10−3 0.90
Linear 1.353 · 10−3 4.895 · 10−4 1.46
Parabolic 1.079 · 10−3 4.378 · 10−4 1.30

Table 1: Estimated orders of convergence for GAMM channel benchmark

4.2 Two-dimensional Riemann problem

The two-dimensional Riemann problem defined by its initial state

ρ, u, v, p =


1.5, 0.0, 0.0, 1.5, for x ≥ 0.8, y ≥ 0.8,
0.532258, 0.0, 1.206045, 0.3, for x ≥ 0.8, y < 0.8,
0.532258, 1.206045, 0.0, 0.3, for x < 0.8, y ≥ 0.8,
0.137993, 1.206045, 1.206045, 0.029032, for x < 0.8, y < 0.8,

(16)

has been chosen as a very complicated test of the stability and accuracy of the WLSQR
method. It is one of the two-dimensional Rimeann problems studied by Kurganov and
Tadmor14 Dobeš and Deconinck15 and others. The flow structure is very complex, the
interaction of the shocks generates two symmetric lambda-shaped couples of shocks and a
downward moving normal shock. A pair of very strong slip lines emanate from the lower
triple points and interact with one of the branches of the lambda-shocks, while a jet of
fluid is pushed from the right-upper corner against the normal shock (see fig. 3).

The problem is time-dependent and therefore the third order TVD Runge-Kutta has
been chosen for discretization in time. The solution was computed using two unstructured
meshes, coarse one with 79024 triangles and fine with 316864 triangles inside a rectangular
domain Ω = [0, 1] × [0, 1]. It corresponds to the average edge lenghts h = 1/200 and
h = 1/400 respectively.

The “standard” choice of the weight in WLSQR scheme (i.e. weights given by (10)
with p, q, r = 4,−2, 3) was not apropriate for this case. The solution given at the figure
3 was obtained using the weights

wij =

√
h−r∣∣ui−uj

h

∣∣p + εhq
, (17)

with p = 2, q = −1, r = 2, ε = 10−6.

4.3 Turbulent flow through a 2D turbine cascade

As an example of industrial application of the WLSQR method the turbulent transonic
through 2D turbine cascade has been solved. The RANS equations are equipped by the
two-equation TNT k − ω model of Kok16. The values of the stagnation pressure, the
stagnation temperature, the angle of attack, the turbulent intensity, and the turbulent
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(a) coarse mesh, no reconstruction (b) coarse mesh, piecewise linear reconstruction

(c) fine mesh, no reconstruction (d) fine mesh, piecewise linear reconstruction

Figure 3: Isolines of density for 2D Riemann problem at time t = 0.8.
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lenght scale are given at the inlet. The mean pressure corresponding to the isentropic
outlet Mach number M2i = 1.162 is given at the outlet. The Reynolds number related to
the blade chord and outlet density and velocity is Re = 848000.

The piecewise linear WLSQR reconstruction has been used both the conservative vari-
ables ρ, ρu, ρw, e as well as for the turbulent quantities ρk, and ρω. The discretisation
in time was carried out by the linearized backward Euler method.

The figure 4 shows the isolines of Mach number obtained with the above mentioned
method with standard weights given by eq. (10). The hybrid mesh consists of 14812
quadrilaterals inside the boundary layer and the mixing region and of 9275 triangles in
the rest of the domain. It can be seen, that the WLSQR method performs very well even
for this complicated mesh topology.

he

4.4 3D inviscid flow around a wing

In order to asses the performance of the WLSQR method in 3D the flow around the
NACA 0012 wing has been solved. The wing is defined by two NACA 0012 profiles with
chord length c = 1 at the root of the wing and with chord c = 0.5 at maximum span z = 3.
The straight outlet edge is normal to the symmetry plane (see fig. 5 for the sketch of the
wing). The flow is inviscid with angle of attack α = 0◦ and inlet Mach number M∞ = 0.85.
The problem is considered in a rectangular domain Ω = [−5, 5]× [−5, 5]× [0, 6] with the
inlet at the plane x = −5 and the outlet at x = 5 and with the symmetry at z = 0, z = 6,
y = ±5. Since the wing is symmetric ant the angle of attack is zero, the calculation has
been performed only in the upper part of domain Ω with y > 0 ant the symmetry was
applied at y = 0 (the red domain at the fig. 5). A very simple single-block structured
mesh with 100× 50× 25 hexahedral cells created by P. Furmánek17 has been used for the
calculations since it allows us to make the calculation also by other methods.

Figure 7 shows the isolines of pressure coefficient cp obtained with:

• The one-dimensional MUSCL reconstruction with minmod limiter, where

uL
i+1/2,j,k = ui,j,k + 1

2
minmod(∆i−1/2,j,ku, ∆i+1/2,j,ku), (18)

uR
i+1/2,j,k = ui+1,j,k − 1

2
minmod(∆i+1/2,j,ku, ∆i+3/2,j,ku), (19)

where ∆i+1/2,j,ku = ui+1,j,k − ui,j,k, u
L/R
i+1/2,j,k are the interpolated values of the so-

lution at the left and right hand side of the face i + 1/2, j, k and minmod(a, b) =
sign(a) max(0, min(|a|, sign(a)b)).

• The one-dimensional WLSQR reconstruction, where

uL
i+1/2,j,k = ui,j,k + 1

2
σi,j,k (20)

uR
i+1/2,j,k = ui+1,j,k − 1

2
σi+1,j,k, (21)
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(a) Isolines of the Mach number (b) Hybrid mesh (two periods)

(c) Mesh around the leading edge (d) Mesh around the trailing edge

Figure 4: Hybrid mesh and isolines of Mach number in the 2D turbine cascade of Škoda Plzeň, M2i =
1.162, Re = 848000.
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Jǐŕı Fürst

(a) Geometry of the NACA 0012 wing (b) Computational domain

Figure 5: Geometry of the 3D NACA 0012 wing and the computational domain.

Figure 6: Isolines of the pressure coefficient cp obtained with 3D WLSQR method.

where σi,j,k = (w2
i+1/2,j,k∆i+1/2,j,ku+w2

i−1/2,j,k∆i−1/2,j,ku)/(w2
i+1/2,j,k +w2

i−1/2,j,k), and

wi+1/2,j,k = 1/[(∆i+1/2,j,ku)4 + 1].

• The multidimensional WLSQR reconstruction desribed in this article.

The discretization in time was achieved by the backward Euler method with factorized
linearization.

One can se that there is very small difference between those methods in the distribution
of cp. Figure 7 documents small overshoot at the shock wave generated by the WLSQR
method, hovewer, the overshoot is small and the method seems to be stable. On the
other hand, the 3D WLSQR method outperforms both MUSCL and 1D WLSQR in the
convergence to steady state (see fig. 7). The steady residual is evaluated here as the L2

norm of the time derivative of density.

5 CONCLUSION

This article documents several properties of the WLSQR method. First of all, the
method is simply extensible even for picewise parabolical reconstructions with unstruc-
tured meshes (see the 2D GAMM channel example). Moreover, the method can be used
for the solution of industrial problems such as turbulent flows with shock waves in complex
geometry. Some preliminary results for 3D flows has been also presented.

On the other hand, the choice of the weights is not universal for all types of flow
problems. For example, in order to be able to solve complicated 2D Riemann problem, it
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(a) Pressure coefficient obtained with WLSQR. (b) Distribution of cp for z = 0.5, 1.5, and 2.5 for
three different interpolations.

(c) 3D mesh around the wing.
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Figure 7: The pressure coefficient cp obtained with the 3D WLSQR method, the comparison of distribu-
tion of cp at three cuts z = 0.5, z = 1.5, and z = 2.5 for three different interpolation techniques, mesh
around the wing and the convergence history for time derivative of the density.
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was necesary to change a bit the definition of the weights. Nevertheless, the weights were
chosen using the same principles as for the original weights.
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