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I want to give special thanks to a large number of people that helped me with this last part of my study
program. First of all the track coordinators Mr. Tighe and Mr. Noomen and the study advisors, who helped
me to set up the double degree program, in which the general combined thesis subject and regulations to
participate to the double degree program were clariϐied. Another special thanks to the exam committees
of both faculties to give me the approval to follow my interests. Also, I want to express my gratitude to my
friends around me, who made me relax when I needed it. And lastly, the most important people for this re‐
search, my two supervisors who agreed to supervise me. They helped me in ϐinding an overlap to satisfy the
double degree requirements. And most importantly, they helped me learn key features to improve myself in
doing research.

J. A. Reijne
Delft, January 2022
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Abstract
The spaceplane vehicle is a promising concept for the future of spaceϐlight. What makes the spaceplane at‐
tractive is the possibility to reuse the transport system for multiple missions. This will lower the costs and
satisϐies the demands for more frequent transportation to space. For such a vehicle it is necessary to ful‐
ϐil the ϐlying qualities for a safe, stable and controlled ϐlight. But, this is easier said than done, because the
spaceplane vehicle has to endure many different ϐlight conditions. While re‐entering the atmosphere, the
speeds and therefore the temperatures become so high that the vehicle design has to be devoted to this hy‐
personic ϐlight phase. This phase results in the distinctive spaceplane design that contains a blunt nosecone
and blunt wing leading edges, which detaches the shockwaves and therefore lowers the wall temperatures
for materials to withstand. The downside of these design features is that when the operating speeds are
lower, the reduced streamlined shape creates instability in the ϐlow, which results in ϐlight instability. This
especially occurs in the range of Mach 2.5 until 0.8, what is called the terminal area energy management
(TAEM) phase of the re‐entry. Improving the ϐlying qualities in this ϐlight phase is important to make sure
that the spaceplane is operating safely. This subject is leading to the main research question:

Which HORUS‑2B shape modiϔications can improve the ϔlying qualities in the supersonic till subsonic ϔlow
regime of the re‑entry trajectory, without exceeding the thermo‑mechanical loads of higher ϔlow regimes?

To investigate the ϐlying qualities of a spaceplane, the equations of motion are derived and linearized.
These equations contain many input variables including the aerodynamic characteristics of the spaceplane.
The linearized equations are converted to a state‐space form, which creates the opportunity to derive the
eigenmotions of the spaceplane. These eigenmotions are showing the dynamic stability of the spaceplane
for certainmanoeuvres, among ofwhich the longitudinal short period oscillation, the phugoid and the lateral
short period oscillation. For these eigenmodes there are military requirements to make sure that the ϐlight
is safe and controllable.

To optimise the shape for these eigenmodes a model is created which is able to generate shapes depend‐
ing on input parameters which are dimensions of the spaceplane. The generated shape is used in an aero‐
dynamic simulation, that requires a mesh grid around the spaceplane which deϐines points representing the
air, where the ϐlow properties can be determined. To reduce computational time there is looked into the
efϐiciency and accuracy performance of the mesh and computational ϐluid dynamic (CFD) simulations. The
ϐluid model and mesh quality combination is optimised to stay within 60 seconds of simulation time for one
simulation and resulted into an average deviation of approximately 20%. The aerodynamic characteristics
of each spaceplane are determined by adjusting the attitude or velocity with ϐlow conditions along the ref‐
erence trajectory. The whole process is automated and driven by the program Matlab which determines the
eigenmodes and visualizes the results.

Themost unstable eigenmotion is the phugoidmanoeuvre, which can be improved by: lowering the fuse‐
lage height, increasing the fuselage width, increasing the wing span, enlarging the winglets upwards and
make the wingspan larger. Hereby the phugoid motion becomes less unstable with the downside that the
longitudinal short period oscillation becomes a little less stable. Overall, the phugoid eigenmode is difϐicult
to make stable with the available parameters and there scopes. The lateral short period oscillation is within
the level 3military requirement and is slightly improved in the supersonic regime aswell as in the hypersonic
regime. With amore advanced optimisingmethod it is likely that a level 2 requirement will be achieved. The
other eigenmodes are negligible small and are mostly stable. The static stability of the yawmoment affected
of the side‐slip‐angle, which is also unstable for the original spaceplane shape, is improved (but still unsta‐
ble) by the same shape modiϐications used for improving the eigenmodes. Other smaller modiϐications such
as: the wing thickness or changing the corner of the wing did not inϐluence the results much.

For further research a better optimisation algorithmwould increase the performance capabilities of each
modiϐication parameter. Andmore computational capacity would likely increase the accuracy of the aerody‐
namic characteristics. For a full investigation of the ϐlying qualities, the controllability performance should
be investigated, to show the capability to artiϐicially stabilize the spaceplane for a safe and controllable ϐlight
back from space.

v



vi



List of Symbols

Symbol Description Units
A System matrix ‐
B Control matrix ‐
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1
Introduction

Spaceplanes are becoming part of the next generation vehicles in the spaceϐlight industry. The idea of com‐
bining the features of an aircraft with a spacecraft has led to these new designs. The spaceplane can operate
similarly as a normal spacecraft in space. But, when re‐entering an atmosphere, it uses the lift force for a
slow and controlled descent. A spaceplane is a safe, reusable and efϐicient transportation system. The ability
to steer the vehicle towards the desired runway creates the possibility for a quick inspection and re‐fuel that
is required for the nextmission. This lowers themission costs and creates the opportunity formore frequent
ϐlying. Overall the re‐usability makes the spaceplane concept very innovative and sustainable.

There is a demand for inexpensive vehicles that can reach Earth’s orbit. Such that resupplying, satellite
reparation or de‐orbiting, futuristic rocket re‐fueling and space tourism become cheaper. That is also the
reason why commercial companies are joining the spaceϐlight industry [Heracleous et al., 2019]. A fully
re‐usable vehicle will be likely to dominate this ϐield of technology. Hence, the spaceplane concept is very
promising. But, the re‐entry trajectory of the spaceplane vehicle has difϐiculties to guarantee a safe and
controlled descent. Therefore, the ϐlying qualities of the spaceplane has to be satisϐied by comparing them
with military standards to make sure the re‐entry is safe. This thesis will investigate those ϐlying qualities
and improve these in critical areas.

To investigate these ϐlying qualities a study and evaluation of the stability and control characteristics has
to be performed. Those qualities ensure that the ϐlight is safe and controllable in steady ϐlight and during
ϐlight manoeuvres. Thus, by satisfying the ϐlying qualities associatedwith vehicle type, it can be ensured that
the mission will be a success. These qualities change depending on the ϐlight conditions and therefore the
phases of the re‐entry trajectory. The qualities involve the following aspects [Mooij, 1985]:

• The ability to generate manoeuvres or maintain steady equilibrium states over the whole ϐlight range.

• The capability to create control forces to induce a state change.

• These forces are linked to the manoeuvrability from one steady‐state condition to another.

• The reaction speed of the system after a command response, i.e., response characteristics.

• The capability to maintain equilibrium conditions with constant speed and angle‐of‐attack if the con‐
trol system is not operating.

1.1. Problem statement
The ϐirst analysis of the ϐlying qualities dates back to the ϐirst manned ϐlight with a motorised airplane. To
understand how to balance, steer and control the airplane appeared to be important from the very ϐirst
moment. A similar approach to determine the ϐlying qualities of the spaceplane concept, because the vehicles
are more or less the same. The only difference is that the spaceplane performs an unpowered descent and is
therefore gliding. However, this is not effecting the fundamentals to describe the motion of the vehicle.

Whereas different re‐entry vehicles, like capsules, descent semi‐ballistically, spaceplanes perform a glid‐
ing re‐entry trajectory. The gliding trajectory is complex, because the spacecraft has to stay within the limits
of the entry corridor during the descent. The lower limit in the entry corridor is deϐined by the maximum
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thermo‐mechanical loads. This constraint indicates that the spaceplane’s velocity cannot be too high, be‐
cause the heat ϐlux or the mechanical stresses will have disastrous consequences. If the velocity at a certain
altitude is too low, the upper limit will be exceeded. This upper limit is called the equilibrium glide, which
deϐines the limit before the spaceplane will perform a skipping ϐlight trajectory. This basically means that
the spaceplane is bouncing off the atmosphere, because the lift force exceeds the gravity force, resulting in an
upwards acceleration. Skipping ϐlight trajectory is considered unsafe and therefore undesired. The re‐entry
trajectory contains different phaseswhere the objectives are different. The thermo‐mechanical loads are the
number one priority in the beginning of the descent. However, later when these loads are less in magnitude,
the landing accuracy becomes more important.

To staywithin these boundaries, spaceplanes use a guidance, navigation and control (GNC) system [Roen‐
neke and Cornwell, 1993]. (This system changes for different phases of the re‐entry.) By changing the mag‐
nitude and direction of the forces acting on the vehicle, the spaceplane can be steered and the velocity con‐
trolled. To change the aerodynamic forces, the system adjusts the spaceplane’s attitude. Which is possible by
actuating the attitude control thrusters and the deϐlection surfaces. The thrusters create an additional force,
whereas the deϐlection surfaces adjust the pressure distribution in a certain area around the vehicle which
creates the force. By this action the force/moment equilibrium is disturbed and the state (attitude) changes
to a new equilibrium. This leads to the following deϐinitions: stability and controllability.

The dynamic and static stability of a vehicle is very important. Static stability is indicating that the space‐
plane creates amoment (when at an unsteady state) forcing the spaceplane’s attitude to the desired attitude
state. The dynamic stability is indicating that perturbations around the steady state are damped. When
the attitude is changed to stay within the entry corridor limits or to perform a manoeuvre, the spaceplane
must become stable afterwards. This means that the perturbations in the forces are damped and the sys‐
tem moves to a steady equilibrium. The stability characteristics of a vehicle are mostly determined by the
stationary spaceplane shape. The controllability is the ability to perform the manoeuvres. In other words,
being able to steer the vehicle as desired at all ϐlight conditions. These control characteristics are indirectly
determined by the deϐlection surfaces relative to the main body. (Or determined by the thrusters in space.)
Because the induced force in combination with the spaceplanes inertia and the control system determines
the controllability. These two deϐinitions are the basics for the ϐlying qualities of the spaceplane.

From hypersonic aerodynamics it is known that to counter the heat problems in the beginning of the
re‐entry, the nosecone and the leading edges of the spaceplane have to be blunt [Detra and Hidalgo, 1961].
Otherwise the heat ϐlux will be too high to withstand for present‐day materials. Increasing the bluntness of
the nosecone will result in an increasing distance between the shockwave and the nose tip. The detached
shockwave will result in more energy staying within the airϐlow and less energy dissipation into the ma‐
terials of the spaceplane. Therefore a blunt nosecone and blunt leading edges are required features of the
spaceplane concept. However, the blunt nose creates ϐlow separation and therefore dynamic instability. This
makes a safe and controlled re‐entry harder to accomplish. These two aspects of the spaceplane concept are
counteracting and thereforemake its design very complex. Thus, the nosecone feature to withstand the heat
ϐlux in the beginning of the re‐entry inϐluences the ϐlying qualities at the end of the re‐entry. Leading to a
compromised vehicle shape to fulϐill the requirements of the whole re‐entry ϐlight.

One great example of such a designed vehicle is the retired Space Shuttle, which will be used to explain
relevant fundamentals, because of its rich history and available literature. However, there are also smaller
vehicles with such an aerodynamically controlled re‐entry. One of those is the HORUS‐2B (abbreviation
for Horizontal Upper Stage) conceptual design. This spaceplane has been studied since the 1960s by the
Messerschmitt‐Bölkow‐Blohm (MBB). The HORUS‐2B spaceplane was initially designed to be an unpow‐
ered reusable spaceplane as a second stage of the Ariana 5 rocket. Later it was redesigned with a rocket
propulsion system and it became a potential second stage of the Sänger hypersonic aircraft. The HORUS‐2B
is equipped with both reaction‐control thrusters and aerodynamic‐control surfaces. The control surfaces
comprise two rudders, two elevons and one body ϐlap. The elevons combine the elevator and the ailerons.
By symmetrically or asymmetrically deϐlecting them, they can introduce a pitch or roll motion respectively.
Furthermore, a deϐlection of the rudders will introduce a yaw motion. The limitation of the rudders is that
they can onlymove outwards, whichmeans that for the yawmotion only one rudder is active. This limitation
results inweak yaw control capabilities, because the rudder deϐlection angle is quicklymaximised (saturated
rudder deϐlection) [Mooij, 2018]. Therefore the assisting yaw thrusters are necessary over the whole ϐlight
domain, which is not desired.

Previous studies have also shown that the controllability and stability of the HORUS‐2B vehicle are poor
[Viavattene andMooij, 2019]. These controllability and stability problems originate from the vehicle design.
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The shape restrictions due to the thermo‐mechanical load limits leads to sensitive controllability and bad
stability. The lack of stability is most important in the lower ϐlight velocity regime where the dynamic pres‐
sure is low. At this moment, a robust control system needs to be applied to make the system as insensitive
to uncertainties as possible. By means of a double‐sensitivity analysis, the presence of uncertainties can be
counteracted to minimise the performance inϐluence.

Thus, the aerodynamic coefϐicients of the vehicle body shape and control‐surfaces should be enhanced.
This might eliminate the need for the reaction thrusters over the whole ϐlight domain, and cause improve‐
ment in the control performance and stability. Which is important for achieving a safe ϐlight to the planned
landing location. This leads us to the main research objective. The research objective is to improve the ϐly‐
ing qualities, which involve the controllability and stability performance, of the HORUS‐2B spaceplane while
re‐entering the Earth’s atmosphere, by investigating the aerodynamic behaviour of different vehicle shapes
in the subsonic and supersonic ϐlow regime, given that the thermo‐mechanical loads from the beginning of
the re‐entry phase (where a higher ϐlow velocity regime is valid) are not exceeded.

In this study, the controllability and stability performance of this speciϐic vehicle are analysed. Moreover,
this study can also be applied to spaceplanes in general. The impact of the shape modiϐications will give in‐
sights that will be useful for designing spaceplanes, whereby the original HORUS‐2B vehicle is a reference
vehicle to validate the data. Besides the investigation of the ϐlying qualities, a complete aerodynamic simu‐
lation study, which is required for determining the aerodynamic characteristics, is also performed. Finally,
the aerodynamics are determined in an efϐicient manner.

1.2. Research questions
Based on the research objective, the main research questions are formulated and stated below.

WhichHORUS‑2B shapemodiϔications can improve the ϔlying qualities in the supersonic till subsonic ϔlow regime
of the re‑entry trajectory, without exceeding the thermo‑mechanical loads of higher ϔlow regimes?

1. What are the vehicle shape limitations and their consequences due to the thermo‐mechanical load
constraints in the beginning of the re‐entry trajectory?

2. Which vehicle shapemodiϐications can be applied andwill improve the controllability and stability for
the lower Mach regimes?

3. What are the effects of the subsonic and supersonic improved shape on the ϐlying qualities in the hy‐
personic regime?

To answer the main research question and sub‐research questions the thesis report is structured in the
following way. In Chapter 2, the foundation of the research study is stated. Starting with a solving strategy,
giving a road map of how the problem will be solved. Followed by an investigation of previous designed
spaceplanes with respect to shape, stability and controllability. To give insight in the design trade offs that
have been made in the past. But, the mission heritage will also show methods to analyse the aerodynamics,
controllability and stability. This will lead to the mission design, restrictions and requirements. In Chap‐
ter 3, the ϐlight mechanics are explained. The ϐlight mechanics is one of the key elements to determine the
researchquestions. Startingwith the equations ofmotionwhich are required todescribe themotionof anob‐
ject. These mathematical descriptions of the equations of motion require reference frames which is another
subsection of this chapter. With the equations of motion a state‐space model is created, which determines
the ϐlight qualities of the spaceplane. This chapterwill endwith the ϐlightmodes and stability characteristics.
In Chapter 4, the aerodynamic theory is explained, which is another key aspect of this study. This chapter
starts with explaining atmospheric inϐluence and the required assumptions necessary for the determination
of the ϐlow ϐield. Followed by ϐlow phenomena which occur during the re‐entry. All the features of the dif‐
ferent Mach regimes are explained. Besides the theoretical explanation of these ϐlow regimes, the ϐield of
numerical simulations is used to verify the observations. The small side study gives conϐirmation of the abil‐
ity to simulate the different ϐlow regimes with the chosen software. After which the HORUS simulation setup
and ϐlow observations are explained. These simulations also require a more in dept explanation of the mesh
creation. In Chapter 5, the architectural design is discussed. The architectural design is a road map which
describes how the different elements are connected and automated to perform thewhole analysis. The focus
is on the software which creates the possibility for automation. Besides the main elements; determination
of the ϐlying qualities and aerodynamics, the tools required before, in between and after those analysis are
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explained. Leading to an overview of software which leads to a model which can generate the results of this
research. In Chapter 6, a validation and veriϐication of themodel are discussed. With the use of the reference
aerodynamic data of the HORUS‐2B and the relevant studies about the ϐlying quality, the validation of the
model is investigated. In Chapter 7, the results of the model are explained in full detail. These results con‐
tain the aerodynamic characteristics, stability performance, effects on the ϐlying qualities and a comparison
with military requirements of different spaceplane shapes. In the last chapter, Chapter 8, the conclusions
and recommendations of this research are expressed and discussed.



2
Mission heritage

In this chapter the mission heritage of the spaceplane concept, the shape and involved ϐlying qualities, con‐
trollability andmethodologies to investigate this problemwill be discussed. Startingwith previous designed
vehicles, which give more insight in the purpose of the vehicle shape. The spaceplane shape in combination
with the aerodynamic characteristics will help understand the general ϐlying qualities of this vehicle type.
Some speciϐic shape features which are necessary for this type of vehicle will be analysed in more depth.
Also, relevant spaceplane shape optimisation studies will be discussed, which creates a solid foundation for
this research. Another important aspect of this study are the aerodynamic simulations. These simulations
require research to generate optimal, efϐicient and accurate results. This chapter ends with the reference ve‐
hicle and the mission and system requirements. These requirements are stated to deϐine the speciϐications
which the model should comply with to be able to answering the research question.

2.1. Solving Methodology
The strategy to solve this problem starts with the heritage of the spaceplane concept. To study how pre‐
vious engineers have designed spaceplanes based on aerodynamics due to the main body and the control
surfaces, combined with the related subject of the controllability and stability performances. The design
phase is an iterative process, because if something in the shape is changed, other related properties such as
the controllability and stability are also adjusted. This leads to new shape adjustments and therefore the
process repeats itself. Hence, this design process is very difϐicult. It is very helpful for this research to in‐
vestigate whichmethods previous studies have used for analysing these features. One important spaceplane
is the Space Shuttle (SSO) which was very successful and rich in available literature. There are also other
spaceplanes such as the HERMES (concept) and X‐38, these are smaller designs with less payload capacity
compared to the Space Shuttle. Still, they will also provide insights in the shape contours and related ϐlying
qualities. Themore different spaceplane shapes, control deϐlection surfaces, and control and stability perfor‐
mances are discussed, the more insight in possible improvements can be found. Based on these ϐindings in
themission heritage of spaceplanes, the system requirements of the reference vehicle and themission of this
research can be deϐined. When the mission requirements and restrictions are well stated, the aerodynamic
performance can be speciϐied for the mission.

2.2. Space Shuttle Orbiter design
For the Americans the foundation of the spaceplane concept started with the X‐series, which were exper‐
imental aircraft created by governmental institutions. These aircraft were experiments that investigated
how to deal with different ϐlight speeds, heat related issues, stability and controllability demands. Among of
which hypersonic vehicles, which created the foundation of the Space Shuttle (visualisation in Figure 2.1).
The Space Shuttle operated from 1981 till 2011 and was designed to deliver huge volumetric payloads into
space. There was a demand to put large satellites and a residence (ISS and Mir) into Earth’s orbit. Because
mankind wanted to study, such as, deep space and the harsh space environment. To do so, a more frequent
space transportation vehicle was required. Hence, the partly reusable Space Shuttle became the ϐirst step
towards re‐usability.

5
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Figure 2.1: Space Shuttle design [Weiland, 2014].

2.2.1. Nosecone influence
A lot of research was required to design the Space Shuttle. A compilation of analytical studies, experimental
wind tunnel testing and vehicle data (X‐series) were used in the design considerations [Camarda, 2014].
The X‐15 was conceived to understand and overcome the hypersonic related thermal barrier. Because the
materials could (and still can) not withstand the heat load. In these tests it became clear that for hypersonic
speeds the heating ratewas a function of the radius. To decrease the stagnation heat ϐlux, the radii of the nose
caps and leading edges had to be increased. Because this feature increases the distance between the shock
and the vehicle itself. As a result of this, most energy stays within the airϐlow instead of dissipating inside
the materials. Another idea to decrease the stagnation heat ϐlux is to increase the angle‐of‐attack, which
increases the lift coefϐicient and therefore lowers the descent speed. For that reason, the angle‐of‐attack of
the Space Shuttle is roughly 40 degrees at the beginning of the re‐entry . (The blunt nose feature and coming
back into the atmosphere with high angle‐of‐attack is used on all spaceplanes.)

However, as already brieϐly indicated, the blunt nosecone creates a negative effect on the dynamic sta‐
bility in the lower velocity regimes (between high subsonic and low supersonic). This effect is extensively
described in [Kazemba et al., 2012]. In supersonic ϐlow about a blunt body, a bow shockwave follows the
nose of the vehicle. Flow downstream of the bow shock stagnates on and accelerates around the forebody.
The large turning angle of the shoulder induces the formation of expansion waves and leads to separation
of the ϐlow. This creates a low‐pressure region behind the body characterized by an unsteady recirculation
region in the near wake. Further downstream, the wake ϐlow converges, stagnates and forms a trailing re‐
compression shock. The core of the wake is viscous and often partially subsonic, while the outer wake is
typically inviscid and supersonic. These factors combine to result in a ϐlow with a time‐varying pressure
ϐield and is a function of axial and radial position relative to the forebody. This ϐlow phenomenon is visu‐
alised in Figure 2.2. Thus, the dynamic instability occurs, because the ϐlow separation induced force on the
aft body is dependent upon the crossϐlow at the separation source, which originated at an earlier time instant
[Ericsson and Reding, 1969]. For instance, if the spaceplane returns to zero angle‐of‐attack, it has a residual
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Figure 2.2: Flow separation at the aft body of a blunt object [Kazemba et al., 2012].

generated pitch motion force that is lacking behind. If the separation inducted force is statically stabilising
(nose downwards), the effect will continue to drive the motion at zero angle‐of‐attack and therefore results
in undamped stability effects.

The phenomenon described above has the opposite effect on the static stability. The static stability be‐
comes stronger in the subsonic and transsonic regime. This is due to the separation and subsequent reat‐
tachment of the ϐlow on the body, resulting in increased static stability. This has a positive effect on the
stable and steady ϐlight aspect of the ϐlying qualities, but the downside is that there is more effort necessary
for manoeuvres.

The dynamic pitching coefϐicient as a function of Mach number is plotted in Figure 2.3 for two blunt
objects [Ericsson and Reding, 1969]. These two objects have two different radii at the shoulder and are os‐
cillating free around an angle‐of‐attack of zero degrees. The dynamic pitching coefϐicient consists of two
parts (𝐶𝑚𝑞 and 𝐶𝑚�̇�), these are the moment coefϐicient due to the pitch rate and the moment coefϐicient due
to the rate of change of angle‐of‐attack. In the hypersonic regime, the damping remains relatively constant
and is typically stable or neutrally stable. After hypersonic speeds, into supersonic the damping becomes
stronger and therefore more dynamically stable. Then, as can be seen in the graph, the peak with lowest
dynamic damping occurs around the transonic speeds. At this point the object tends to become unstable
because the positive pitching damping coefϐicient shows instability. Next, the damping increases again as
the vehicle decelerates through subsonic speeds. Similar results can be seen for a ϐlared cylinder shape. The
instability is related to the pressure coefϐicient. When the vehicle is decelerating fromMach 2.5 or higher, the
aftbody pressure coefϐicient decreases at a faster rate compared to the forebody pressure coefϐicient. How‐
ever, from Mach 2.5 or lower this phenomena reverses. This crossover point is the reason for the instability
peak. In Figure 2.4 the inϐluence of the angle‐of‐attack on the damping coefϐicient is plotted for a ϐlared cylin‐
der with different oscillating ranges (at a constant Mach number of 0.65). With increasing angle‐of‐attack
the damping increases and therefore the body becomes more dynamically stable. These ϐigures show the
general effects of a blunt nosecone.

2.2.2. Aerodynamic characteristics
During major portions of the ϐlight, the Space Shuttle is longitudinally and laterally statically stable [Young
et al., 1981]. In ϐlight regimeswhere the Space Shuttle is unstable, stability is artiϐicially provided by the ϐlight
control system. This means that the control system uses the deϐlection surfaces or attitude control thrusters
to stabilize the spaceplane. In the case of the yaw motion, the deϐlection surface (mainly rudder) was not
sufϐicient for maneuvering and therefore yaw thrusters were necessary. These yaw thrusters also create an
additional roll moment, which requires a counter moment from the ailerons and roll thrusters. (The thrust
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Figure 2.3: Effect of the Mach number on the dynamic pitch motion of two different base
shoulder objects (𝛼 = 0∘) [Ericsson and Reding, 1969].

moment required from the roll thrusters is relatively small compared to the thrust from the yaw thrusters.)
The yaw thrusters are used from the entry interface till Mach 1, which is obviously undesired because of
additional propellant mass.

A fewstatic longitudinal stability parameters canbedetermined fromFigure2.5which canbe found in the
source [Hirschel and Weiland, 2009]. The upper left ϐigure shows that the 𝑑𝐶𝐿/𝑑𝛼 shows linear behaviour
until an angle‐of‐attack of 20 degrees. With increasing Mach number the gradient reduces substantially.
This behaviour is usual for all spaceplanes. An increase of angle‐of‐attack creates more lift force, because
the spaceplane defelcts the air more downwards. The highest line is for Mach 1.1, which is inside the tran‐
sonic regime. The reason for this behaviour is the induced wave drag due to the fundamental changes in the
pressure distribution. In the upper right ϐigure of Figure 2.5, the 𝑑𝐶𝐷/𝑑𝛼 is shown. The drag quadratically
increases with increasing angle‐of‐attack, because the spaceplane is deϐlecting more air. In both graphs the
coefϐicient decreases with increasing Mach number (after the transonic regime). The reason for these char‐
acteristics is that in fully supersonic/hypersonic ϐlow, the shock wave becomes stronger and the change in
density is dominant and makes it easier for the spaceplane to squeeze through. In the bottom right ϐigure,
the pitchmoment coefϐicient (𝑑𝐶𝑚/𝑑𝛼) shows the strongest static stability atMach 1.1 for all angle‐of‐attack
lower than 18 degrees. The conϐiguration becomes unstable when the Mach number is higher than 3. At
Mach 3 the spaceplane is only statically stable with an angle‐of‐attack of 12 degrees or higher. The angle‐
of‐attack increases to 23 degrees for higher Mach numbers to become statically stable. These curves are the
untrimmed aerodynamic behaviour.

The lateral static stability coefϐicients of the Space Shuttle Orbiter are presented in Figure 2.6a and 2.6b
which can be found in [Weiland, 2014]. In these ϐigures the coefϐicient is plotted against the Mach number.
The angle‐of‐attack is 0 for both graphs and the sideslip angle is linearised between 0 and 6 degrees. The yaw
moment derivative (static directional) 𝐶𝑛𝛽 is positive for Mach numbers below 8, which indicates static sta‐
bility. For good ϐlight characteristics it is desirable to have static stability, because than the angle‐of‐sideslip
causes a moment about the top axis trying to reduce the sideslip. Above Mach 8 the derivative is slightly
below 0 and therefore not stable. This characteristic explains why the controller is continuously using the
deϐlection surfaces and thrusters to control the yaw motion. The roll moment derivative (effective dihedral)
𝐶𝑙𝛽 is negative over the whole Mach regime, which indicates static stability because a negative 𝐶𝑙𝛽 causes a
rolling moment trying to return to an even keel.
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Figure 2.4: Effect of the angle‐of‐attack number on the dynamic pitch motion of blunt
Flared cylinder (M = 0.65) [Ericsson and Reding, 1969].

2.2.3. Shape optimisation
From this point, the understanding in the aerodynamic characteristics and related stability is established,
and the next step is the shape optimisation. The design of a spaceplane is very complex. In 1969 the ϐirst
studies of the Space Shuttle shape were conducted. Many concept iterations were made based on manufac‐
turing possibilities, costs, payload capacities, counteracting heat related shape features and ϐlying qualities
[Scott, 1978]. Subsequently, the main shape was largely determined. In [Surber and Olsen, 1978], more
speciϐic aerodynamic shape features are investigated with the use of wind tunnel testing. These different
aerodynamic shape trade‐offs are summarised in Table 2.1. Some of these results are discussed below, to
give a better understanding and context:

Vertical tail design The different conϐigurations: vertical tail, vertical tail plus ventral (small wings on the
bottom of the fuselage), wing tips and butterϐly conϐiguration are investigated. For the Space Shuttle
design, the vertical tail was chosen, which from the aerodynamic data in the previous section resulted
in weak yaw static stability. In this decision making the minimum weight is more important than the
yaw stability. The extensive attitude thrusters implemented in the Space Shuttle create artiϐicial con‐
trolled stability and is preferable above the extra weight of the additional or enlarged wings. Thus,
the propellant mass required for creating this artiϐicial stability while re‐entering is less than the extra
wingweight. With a point of viewwhere the ϐlying qualities are desired to be improved this spaceplane
shape part has potential.

This vertical tail feature is debatable looking at different spaceplane designs. The smaller X‐20,
Hermes andHORUS design havewing tips, whereas X‐37 has the butterϐly conϐiguration. And themore
recent spaceplanes, the X‐38 and the dream chaser (descendant of the HL‐20), have the horizontal
wings mounted at an angle, which give partial yaw stability. In these designs the fuselage is more
integrated and combined with the wings which leads to a larger surface area to create the required lift
force. In the case of the dream chaser there is an additional vertical tail on top of the fuselage. Hence,
these wing conϐigurations give multiple options for creating yaw stability. The deϐlecting surface area
needs to be sufϐicient to stabilize the yaw motion.

Nose camber Instead of designing the Space Shuttle with a relatively large nose camber, the bottom shape
contour from the fuselage till the nosecone is almost linear (see Table 2.1). This shape feature reduces
the lift created by the nose and therefore results in a smaller needed elevon size to provide the desired
trim range. Another effect is that this nose is less blunt and affects the heat load.

Nose cross section For the nose cross section, the triangular shape was selected. This improves the hyper‐
sonic directional stability and reduces sidewall heating. For the heating this result is logical, because
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Figure 2.5: Untrimmed aerodynamic characteristics of the Space Shuttle Orbiter [Hirschel and Weiland, 2009].

with increasing angle‐of‐attack the side walls move away from the incoming air ϐlow. The hypersonic
(also subsonic) directional stability is improved, because there is more air deϐlection on the nose if
there is a non zero angle‐of‐sideslip. Therefore the spaceplane is forced to reduce the sideslip. Also
the center of pressure is displaced which helps to meet the trim requirements.

Wingbody integration For the vehicle to be stable and trimmable for both hypersonic and subsonic ve‐
locities, it is necessary that the wing is located such that for the required center of gravity range the
elevens can provide enough center of pressure control to meet the upper and lower attitude require‐
ments at both the fore and aft centers of gravity. With the wing in this location, it is also required that
the subsonic aerodynamic center can still provide longitudinal stability.

The lateral characteristics of the Space Shuttle Orbiter are presented in Figure 2.7, for corresponding
angle‐of‐attack and surface deϐlection angles along the trajectory. The static stability derivatives are similar
as the ones presented in Figure 2.6. The difference is due to the angle‐of‐attack and the slightly changed
pressure distribution caused by the deϐlection surface. Now, with this conϐiguration the directional stability
derivative (𝐶𝑛𝛽) is worse and only stable at Mach 2 or lower. However, the dihedral stability derivative (𝐶𝑙𝛽)
is sufϐiciently negative (stable) that the dynamic derivative (𝐶𝑛𝛽dyn) is positive along the entire trajectory.
The parameters is indicating the change in the yaw moment coefϐicient due to the yaw rate. This dynamic
derivative is required to be positive for adequate stability in the Dutch roll ϐlight mode.
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(a) Yaw coefϐicient (b) Roll coefϐicient

Figure 2.6: The lateral coefϐicients of the Space Shuttle Orbiter at a constant angle‐of‐attack of 0 degrees and linearised sideslip angle
between 0 and 6 degrees [Weiland, 2014].

Table 2.1: Summary of aerodynamic trade‐off studies of the Space Shuttle Orbiter [Surber and Olsen, 1978].
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Figure 2.7: Lateral static and dynamic characteristics along the nominal trajectory [Surber and Olsen, 1978].



2.3. Hermes spaceplane 13

2.3. Hermes spaceplane
The Hermes spaceplane was designed by the Centre National D’Études Spatiales (CNES) in 1975. The max‐
imum payload capacity to low earth orbit (LEO) is approximately 3,000 kg, which is much lower compared
to the 29,000 kg of the Space Shuttle. This vehicle looks similar to the HORUS spaceplane and is therefore
very relevant for this research. The Hermes spaceplane comprises two elevons, a body ϐlap and two rud‐
ders. The rudders can deϐlect 35° outward and 5° inward. The nose is very blunt and the wings propagate
immediately from the nose. Hereby, the wings surface has a relatively big size compared to the fuselage (a
conϐiguration of the vehicle is visualised in Figure 2.9). This design results in a relative high 𝐿/𝐷 ratio similar
to the SSO, which is observable in the left bottom ϐigure of Figure 2.8. In this same ϐigure, the curvature of
the pitching coefϐicient (bottom right ϐigure), looks very similar to the SSO. Only the magnitude is slightly
different. Thus, the magnitude of the pitchmoment derivative (𝐶𝑚𝛼) is higher. For lower angle‐of‐attack and
high Mach number the spaceplane is unstable and visa versa at high angle‐of‐attack.

2.3.1. Design process
A study of the Hermes design process shows the decision making process, based on ϐlying qualities [Raillon
et al., 1992]. Themission design gave 15 control points, that have been evaluatedwhile iterating the shape of
the spaceplane. A couple of relevant control points are the thermal behaviour, subsonic instability and con‐
trollability. The computational tools thatwere used for the iterative process used the Eulermodel, whichwill
be discussed in Chapter 4. Eventually, the Hermes 1.0 design has fulϐilled several constraints. The difference
is visualised in Figure 2.9. For the longitudinal stability criteria, the only problems occur at a Mach number
of 2 with low angle‐of‐attack values. To counteract these problems, there is a restriction on the angle‐of‐
attack. With an angle‐of‐attack higher than 6 degrees, there will be sufϐicient lift variation capabilities for
the guidance.

2.3.2. Aerodynamic modeling
Another study focused on the aerodynamic modeling of the Hermes spaceplane also uses the Euler equa‐
tions with real gas effects [Mallet et al., 1992]. The real gas effects are necessary formodeling the high veloc‐
ity regimes (larger then Mach 5). The study shows that the gap of aerodynamic quantities between reality
and simulations depends on three aspects. Firstly, the physical model, which can be viscous/inviscid, lam‐
inar/turbulent or non‐reactive/reactive. Secondly, the accuracy of the numerical formulation. And thirdly,
the choice of mesh and level of convergence. Ideally, for validation purposes the sensitivity of each of these
parameters should be investigated. For the prediction of the aerodynamics forces in every ϐlight condition,
a lot of simulations need to be conducted, for amongst others different: Mach numbers, angles‐of‐attack,
sideslip angles, attitudes of control deϐlections surfaces. Therefore, the unit cost of each simulation has to be
low.

The mesh is generated by a global mesh which covers the whole spaceplane but does not account for
details such as elevon/rudder gaps. In order to obtain sufϐiciently accurate solutions at reasonable com‐
putation costs, local meshes are implemented in the global mesh. Because of the complexity of the shape,
the study uses unstructured mesh consisting of tetrahedras, prisms and hexahedras elements for the skin
of the spaceplane. The volume around the spaceplane is ϐilled with a front marching technique. A uniform
ϐlow boundary condition is initiated at the freestream condition. For the numerical solver the Galerkin ϐinite
volume method is used for the ϐirst approach, in which the inviscid ϐluxes are upwindend using an Osher’s
Riemann solver. For the second approach the Galerkin least square solver is used. Whereby the stability
is taken care of by discontinuities capturing operator, which noticed the strong gradients in the ϐlow ϐield.
The solutions are obtained in less than 200 timesteps which satisϐied the accuracy demands. Overall this
study shows that with an Euler equation model in combination with a mesh of 180,000 nodes, the simula‐
tion can take up to 40 hours of computation time (on a NEC SX3). The computers nowadays are better, but
still these features are a very important aspect of this study. Thus, the determination of the many different
aerodynamic conditions requires an efϐicient simulation plan.
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Figure 2.8: Untrimmed aerodynamic characteristics of the Hermers spaceplane [Hirschel and Weiland, 2009].

Figure 2.9: The difference between 0.0 design and 1.0 iteration design of the Hermes spaceplane [Raillon et al., 1992].
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2.4. Reference vehicle and mission
As already indicated in chapter 1, the reference vehicle for this research is the HORUS‐2B. This vehicle is one
of the smaller designed spaceplaneswith a vehicle length of 25m [Cucinelii andMüller, 1988]. Themaximum
fuselage width and height are 5.4 and 4.5 m, respectively. The wingspan is 13 m and the wing area is 110
m². When re‐entering the atmosphere the mass of the HORUS spaceplane is 26 tons. The inertia tensor of
the HORUS landing conϐiguration is 119,000, 769,000 and 806,000 kgm² for the 𝐼𝑥𝑥 , 𝐼𝑦𝑦 and 𝐼𝑧𝑧 respectively.
A visualisation of the HORUS design is presented in Figure 2.11. As can be seen, the vehicle consists of a
fuselage, nosecone and wings with relatively big winglets.

The same literature source shows the possible deϐlection range for which the aerodynamic data is sim‐
ulated. A visualisation of the deϐlection surfaces is presented in Figure 2.10. The rudders can operate from
0 till 40 degrees and the deϐlection for both rudders is deϐined positive outboard. The elevons have a range
from ‐40 till +40 degrees. A positive change is angle is a downwards deϐlection. At subsonic speeds these are
symmetrically used for trim. Lastly, the body ϐlap has a range from ‐20 till +30 degrees, similar as the elevons
a positive deϐlection is downwards relative to the top view shown in Figure 2.10. In the subsonic regime the
body ϐlap is set to ‐20 degrees to trim the spaceplane. The aerodynamic data is available for these ϐlap deϐlec‐
tion ranges and for a Mach range of 1.2 till 20. The untrimmed aerodynamic characteristics of the original
HORUS‐2B design are partly presented in Figure 2.12. The aerodynamic data will be used for validation and
an aerodynamic baseline for the optimisation. The aerodynamic database is constructed based on several
assumptions. The ϐirst assumption is that the vehicle is a rigid body, thus no aeroelasticity phenomena are
modelled, and there is no interference effects of the ϐlaps. A second assumption is that the aerodynamic
coefϐicients are a function of the Mach number𝑀, angle‐of‐attack 𝛼, altitude ℎ, angle‐of‐sideslip 𝛽, and the
deϐlection surface angles. Hence, the deϐinition of the aerodynamic coefϐicients are the following:

𝐶𝐷 = 𝐶𝐷0 + Δ𝐶𝐷𝑟,𝑙 + Δ𝐶𝐷𝑤,𝑙 + Δ𝐶𝐷𝑏 + Δ𝐶𝐷𝑤,𝑟 + Δ𝐶𝐷𝑟,𝑟 − Δ𝐶𝐷ℎ (2.1)

𝐶𝑆 = Δ𝐶𝑆𝑟,𝑙 + Δ𝐶𝑆𝑤,𝑙 + Δ𝐶𝑆𝑤,𝑟 + Δ𝐶𝑆𝑟,𝑟 + [(
𝜕𝐶𝑆
𝜕𝛽 )0

+ Δ(𝜕𝐶𝑆𝜕𝛽 )𝑤,𝑙
+ Δ(𝜕𝐶𝑆𝜕𝛽 )𝑤,𝑟

] 𝛽 (2.2)

𝐶𝐿 = 𝐶𝐿0 + Δ𝐶𝐿𝑤,𝑙 + Δ𝐶𝐿𝑏 + Δ𝐶𝐿𝑤,𝑟 (2.3)

𝐶𝑙 = Δ𝐶𝑙𝑤,𝑙 + Δ𝐶𝑙𝑤,𝑟 + (
𝜕𝐶𝑙
𝜕𝛽 )0

⋅ 𝛽 (2.4)

𝐶𝑚 = 𝐶𝑚0 + Δ𝐶𝑚𝑤,𝑙 + Δ𝐶𝑚𝑏 + Δ𝐶𝑚𝑤,𝑟 (2.5)

and 𝐶𝑛 = Δ𝐶𝑛𝑟,𝑙 + Δ𝐶𝑛𝑤,𝑙 + Δ𝐶𝑛𝑤,𝑟 + Δ𝐶𝑛𝑟,𝑟 + [(
𝜕𝐶𝑛
𝜕𝛽 )0

+ (𝜕𝐶𝑛𝜕𝛽 )𝑟,𝑙
+ Δ(𝜕𝐶𝑛𝜕𝛽 )𝑟,𝑟

] 𝛽 (2.6)

where the aerodynamic force coefϐicients are the drag coefϐicient 𝐶𝐷 , the side‐force coefϐicient 𝐶𝑆 , and
the lift coefϐicient 𝐶𝐿 , while the aerodynamic moments coefϐicients are the roll 𝐶𝑙 , the pitch coefϐicient 𝐶𝑚 ,

Figure 2.10: The HORUS deϐlection ϐlaps [Mooij, 1995].
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Table 2.2: Aerodynamic coefϐicients [Cucinelii and Müller, 1988].

Drag coefϐicients Sideforce coefϐicients Lift coefϐicients
𝐶𝐷0 = 𝑓(𝑀, 𝛼) Δ𝐶𝑆𝑟,𝑙 = 𝑓 (𝑀, 𝛼, 𝛿𝑟,𝑙) 𝐶𝐿0 = 𝑓(𝑀, 𝛼)

Δ𝐶𝐷𝑟,𝑙 = 𝑓 (𝑀, 𝛼, 𝛿𝑟,𝑙) Δ𝐶𝑆𝑤,𝑙 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑙) Δ𝐶𝐿𝑤,𝑙 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑙)
Δ𝐶𝐷𝑤,𝑙 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑙) Δ𝐶𝑆𝑤,𝑟 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑟) Δ𝐶𝐿𝑏 = 𝑓 (𝑀, 𝛼, 𝛿𝑏)
Δ𝐶𝐷𝑏 = 𝑓 (𝑀, 𝛼, 𝛿𝑏) Δ𝐶𝑆𝑟,𝑟 = 𝑓 (𝑀, 𝛼, 𝛿𝑟,𝑟) Δ𝐶𝐿𝑤,𝑟 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑟)
Δ𝐶𝐷𝑤,𝑟 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑟) (𝜕𝐶𝑆𝜕𝛽 )0

= 𝑓(𝑀, 𝛼)

Δ𝐶𝐷𝑟,𝑟 = 𝑓 (𝑀, 𝛼, 𝛿𝑟,𝑟) Δ (𝜕𝐶𝑆𝜕𝛽 )𝑤,𝑙
= 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑙)

𝐶𝐷ℎ = 𝑓(𝑀, ℎ) Δ (𝜕𝐶𝑆𝜕𝛽 )𝑤,𝑟
= 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑟)

Roll coefϐicients Pitch coefϐicients Yaw coefϐicients
Δ𝐶𝑙𝑤,𝑙 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑙) 𝐶𝑚0 = 𝑓(𝑀, 𝛼) Δ𝐶𝑛𝑟,𝑙 = 𝑓 (𝑀, 𝛼, 𝛿𝑟,𝑙)
Δ𝐶𝑙𝑤,𝑟 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑟) Δ𝐶𝑚𝑢,𝑙 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑙) Δ𝐶𝑛𝑤,𝑙 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑙)
(𝜕𝐶𝑙𝜕𝛽 )0

= 𝑓(𝑀, 𝛼) Δ𝐶𝑚𝑏 = 𝑓 (𝑀, 𝛼, 𝛿𝑏) Δ𝐶𝑛𝑤,𝑟 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑟)
Δ𝐶𝑚𝑤,𝑟 = 𝑓 (𝑀, 𝛼, 𝛿𝑤,𝑟) Δ𝐶𝑛,𝑟 = 𝑓 (𝑀, 𝛼, 𝛿𝑟,𝑟)

(𝜕𝐶𝑛𝜕𝛽 )0
= 𝑓(𝑀, 𝛼)

Δ (𝜕𝐶𝑛𝜕𝛽 )𝑟,𝑙
= 𝑓 (𝑀, 𝛼, 𝛿𝑟,𝑙)

Δ (𝜕𝐶𝑛𝜕𝛽 )𝑟,𝑟
= 𝑓 (𝑀, 𝛼, 𝛿𝑟,𝑟)

Table 2.3: Symmetry conditions of the left and right elevons and rudders [Cucinelii and Müller, 1988].

Zero derivatives
right elevon

First derivative
right elevon

Zero derivatives
right rudder

First derivative
right rudder

𝐶𝐷𝑤,𝑟 = 𝐶𝐷𝑤,𝑙 (𝜕𝐶𝑆𝜕𝛽 )𝑤,𝑟
= (𝜕𝐶𝑆𝜕𝛽 )𝑤,𝑙

𝐶𝐷𝑟,𝑟 = 𝐶𝐷𝑟,𝑙 (𝜕𝐶𝑛𝜕𝛽 )𝑟,𝑟
= (𝜕𝐶𝑛𝜕𝛽 )𝑟,𝑙

𝐶𝑆𝑤,𝑟 = −𝐶𝑆𝑤,𝑙 𝐶𝑆𝑟,𝑟 = −𝐶𝑆𝑟,𝑙
𝐶𝐿𝑤,𝑟 = 𝐶𝐿𝑤,𝑙 𝐶𝑛𝑟,𝑟 = −𝐶𝑛𝑟,𝑙
𝐶𝑙𝑤,𝑟 = −𝐶𝑙𝑤,𝑙
𝐶𝑚𝑤,𝑟 = 𝐶𝑚𝑤,𝑙
𝐶𝑛𝑤,𝑟 = −𝐶𝑛𝑤,𝑙

and the yaw coefϐicient 𝐶𝑛 . The functional arguments of the components of the aerodynamic coefϐicients are
listed in Table 2.2. The two elevons and two rudders are located symmetrically with respect to the XZ‐plane
of the vehicle. Since they have identical shape, the components of the aerodynamic coefϐicients of the right
actuator are the same as the left one, while others are equal in module and opposite in sign, as presented in
Table 2.3. This is known as the symmetry condition.

This study revolves around the terminal area energy management (TAEM) phase of the re‐entry trajec‐
tory, because in this phase the ϐlight velocity is in the range where optimisation of the ϐlying qualities is
desired. The objective in the TAEM re‐entry phase is to extend the ϐlight range. Therefore, the controller is
designed (and different compared to the other phases) to use the vehicle kinetic and potential energy as op‐
timal as possible, which results in a minimized drag. This research requires a reference trajectory to obtain
the corresponding ϐlight conditions such as ambient pressure, density and temperature at different points
along descent. In [Powers, 1986], the TAEM interface of the Space Shuttle Orbiter is at an altitude of 25 km,
and a velocity of 760ms−1. The Mach number at that altitude is 2.55 based on the U.S. Standard Atmosphere
of 1976, which is in the high supersonic regime. The end of the TAEM phase, just before the landing phase of
the re‐entry trajectory, is in between an altitude of 3 and 3.7 km, and a velocity of approximately 190 ms−1

[Moore, 1991]. Which corresponds to a Mach number of 0.58 (for a 3 km altitude) and is in the mid sub‐
sonic regime. The HORUS‐2B design was later further developed by the European Space Agency (ESA) and
therefore the landing location is assumed to be in Kourou (French Guiana).
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Figure 2.11: Design drawing of the HORUS‐2B vehicle [Cucinelii and Müller, 1988].

For the validation of the dynamic stability and therefore the ϐlight modes of the vehicle, the study by
Mooij [2015] can be used. In this study a GNC system is used to guide the vehicle from the atmospheric
interface until the TAEM interface. At the last point, the TAEM interface of the trajectory (Mach 2.5), the ϐlight
modes of the HORUS are determined along with the current ϐlap conϐiguration and the vehicle’s attitude.
This reference point is used as validation for the ϐlight modes. When the ϐlying qualities are improved in
the lower Mach regime by changing the vehicle shape, the qualities have to be investigated for the higher
Mach regime (hypersonic ϐlow). For these dynamic stability characteristics the same literature can be used.
Additionally, the research by Viavattene and Mooij [2019], gives a relation between the dynamic stability
characteristics and the military requirements for aircraft. In this study, the ϐlying qualities of the HORUS
re‐entry are investigated for Mach 5, 10, 15 and 20. Thus, hereby the modiϐied HORUS spaceplane can be
compared and validated with the original spaceplane.
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Figure 2.12: The aerodynamic coefϐicients of the HORUS for different Mach numbers and angle‐of‐attack.
(plotted from data published in [Cucinelii and Müller, 1988].)

2.5. Mission and System Requirements
Before starting with the core chapters of this research, the mission and system requirements have to be de‐
termined and stated. Themission and system requirements are set based on the discoveries and conclusions
of themission heritage. Themission requirements give detailed information aboutwhich analyses have to be
conducted to answer themain research questions, and the system requirements explainwhich speciϐications
the model should comply with.

2.5.1. Mission Requirements
The mission requirements that are necessary to answer the main research objective are stated below.

1. A geometry shall be createdwhichmust bemodiϐiable for the desired shape changes and ϐlapdeϐlection
conϐigurations.

1.1. The spaceplane shape shall have an adoptable fuselage, wing, winglets and nosecone tip height.
This chapter showed that the different attached wings to the fuselage conϐigurations create op‐
portunities in generating different spaceplane ϐlight characteristics.

1.2. The generation of different geometries must not lead to unrealistic shapes, which means that
different parts of the body have to move along with the desired shape modiϐication.

1.3. The ϐlap deϐlection conϐiguration must be generate‐able for all the desired shape dimensions and
also combinations of these different dimensions.

2. A CFD simulation must be performed to determine the aerodynamic characteristics of the original
HORUS‐2B and modiϐied spaceplane versions. These simulations must determine the forces and mo‐
ments depending on different attitudes and Mach numbers.

3. An analysis of the aerodynamic characteristics shall be performed to investigate the static stability
derivatives of the different spaceplanes.
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3.1. The attitude andMach ranges shall be focused on realistic conditions in the TAEMphase of the re‐
entry trajectory. Which is in between Mach 2.5 and 0.8, a sideslip angle between 0 and 2 degrees
and an angle‐of‐attack lower than 20 degrees. The nominal HORUS TAEM trajectory, described in
this chapter, will be discretized based on altitude and shall be simulated with the corresponding
atmospheric properties.

3.2. The static stability derivatives must be determined to investigate if the spaceplane is statically
stable. These stability derivatives can be compared with the benchmark (original HORUS space‐
plane). The comparison shows if the spaceplane creates sufϐicient counter‐force when the atti‐
tude is off its stable point.

4. An analysis regarding the dynamic stability of the spaceplanes at ϐlight conditions along the TAEM tra‐
jectory must be performed. By using the obtained aerodynamic characteristics of the different space‐
planes.

4.1. The aim is to achieve dynamic stability of level 3 deϐined by the military in MIL‐F‐8785C [1980]
and MIL‐HDBK‐1797 [1997], which implies that the vehicle has sufϐicient stability for a safe and
controllable return from space.

4.2. The level 3 (and also level 1 and 2) dynamic stability requirements are deϐinedwith the variables:
damping ratio and halve time for different eigenmotions, which will be explained in Chapter 3.
These characteristics will be the outcome of the model and show the difference in the dynamic
stability compared to the original HORUS spaceplane. The comparison will answer the research
question: if the HORUS spaceplane’s ϐlying qualities are improved in the lower Mach regimes.

5. A static and dynamic stability analysis of the ϐinalmodiϐied spaceplane, at higherMach regime and con‐
ditions along the reference trajectory by Mooij [2015], to ensure the stability at higher velocities. The
improved shape may not deteriorate the ϐlying qualities at higher altitudes such that the spaceplane is
unstable.

2.5.2. System Requirements
The system requirements follow from the mission requirements as they are needed to satisfy the mission
requirements. The following enumeration gives important requirements thatmust be satisϐied by themodel.

Reference vehicle and ϐlight conditions related:

• The dimensions of the reference vehicle HORUS‐2B shall be in compliance with the known dimensions
deϐined by Cucinelii and Müller [1988].

• The mass and inertia properties of the reference vehicle shall be in compliance with the known prop‐
erties by Cucinelii and Müller [1988].

• The environmental conditions along the ϐlight trajectory of the spaceplane shall be used.

Simulation model related:

• An individual CFD simulation must be in the accuracy range of 30% and be completed within 60 sec‐
onds of computation time. This chapter showed that the demands for accuracy can not be too high,
because the computation time would increase drastically. For this research it is important to investi‐
gate and look into the low accuracy and low computation time ϐluid models.

• The different software packages must be able to connect with each other for automation purposes.

• Each shape dimensionmodiϐicationmust have a high and low value to see the inϐluence of that individ‐
ual dimension. Afterwhich an optimisation study of dimension variableswill be conducted to optimize
the ϐlying qualities of the spaceplane.

• Generation of the geometry with corresponding ϐlap conϐiguration and mesh creation may not exceed
120 seconds.
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From this point the ϐirst insight in the ϐlying qualities of the spaceplane concept are obtained. The ref‐
erence vehicle and relevant ϐlight characteristics are discussed, which are the necessary ingredients for the
shape optimisation. The mission is to achieve a safe and controllable re‐entry by a re‐usable modiϐied HO‐
RUS spaceplane. The shape will be optimised for the TAEM phase and afterwards checked if the changed
shape does not have disastrous stability effects in other phases of the re‐entry ϐlight. In the next couple of
chapters different aspects: ϐlight mechanics, aerodynamics and the architectural design of the model will be
explained, to achieve the mission target.



3
Flight mechanics

The motion of a body under the effects of external forces and torques is one of the most fundamental prob‐
lems in physics. An example of such a problem is the ϐlight of a spaceplane in Earth’s atmosphere. In this
case, the vehicle is the HORUS‐2B spaceplane, or amodiϐied version of it, and the external forces and torques
acting on it are generated by the gravitational ϐield of Earth, and the aerodynamic forces andmoments due to
the passage of the vehicle through air. Usually, the thrust force generated by the engines is included, but in
this study only the gliding trajectory is investigated. The control of the vehicle is directly linked to themotion
of the spaceplane. The ϐlight mechanics are based on the well‐known Newton’s laws of motion and law of
gravitation, from which the equations of motion of the vehicle can be derived. To completely determine the
motion, it is important to deϐine the reference frames and the state variables, on which the description of
the motion is dependent. Moreover, since sometimes it is convenient to deϐine forces in different reference
frames, it is required to transform one frame to another.

3.1. Reference frames
To properly discuss ϐlight mechanics it is important to clearly deϐine the reference frames that are used. The
choice of reference framedepends on the scope of the investigation. This research focuses on the ϐlowaround
the vehicle and the resulting effects on the stability and control while performing a gliding re‐entry. The
important reference frames for this study are the inertia reference frame, which is the basis for describing a
motion, the planetocentric rotating reference frame for the derivation of the equations of motion, the body
ϐixed reference frame to relate the forces to the orientation of the spaceplane and the aerodynamic reference
frame for the more conventional used forces such as drag, side and lift force.

3.1.1. Rotating Earth fixed reference frame
The rotating Earth ϐixed reference frame is ϐixed to the Earth (indicated with the subscript I) and rotates
with the Earth’s rotation rate (𝜔) around the 𝑍𝑅‐axis [Mooij, 2013]. The origin of the reference frame is
located in the Earth’s centre of mass shown in Figure 3.1. The 𝑋𝑅‐axis of the reference frame is ϐixed to
the prime (Greenwich) meridian. (Also named zero longitude.) The 𝑌𝑅‐axis is as in a Cartesian coordinate
system, perpendicular to the 𝑋𝑅 and 𝑍𝑅‐axis. Hence, the radius vector (R𝑠) towards the centre of mass of the
spaceplane. This position vector can also be described by the scalar radius (𝑅), longitude (𝜏) and latitude (𝛿),
which is more convenient to point towards a location on Earth. The longitude angle is deϐined in the 𝑋𝑅 and
𝑌𝑅 plane, from the prime meridian positive around the 𝑋𝑅‐axis (0°≤ 𝜏 < 360°). The latitude angle is deϐined
in the 𝑍𝑅 plane, from the Earth’s equator positive around the longitude line (‐90°≤𝛿 ≤ 90°). The connection
between the rotating Earth ϐixed reference frame and the body ϐixed frame, is deϐined by the local horizontal
plane, which is a plane perpendicular to the radius vector. The angle between the velocity vector (V𝑠) of the
spaceplane and the local Horizontal is the ϐlight‐path angle (𝛾), with a range of ‐90° ≤ 𝛾 ≤ +90°. The angle
between the local north and local horizontal is the heading angle𝜒, with a range of ‐180°≤𝜒 <+180°. Hereby,
the position and velocity of the spaceplane with respect to Earth can be deϐined. The reference frame with
respect to the vehicle’s local horizon is visualised in Figure 3.2.

21
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Figure 3.1: Inertial plus rotating reference frame [Mooij, 1994].

3.1.2. Body fixed reference frame
The body ϐixed reference frame is ϐixed on the spacecraft. It remains ϐixed to the body in all cases. The
choice of axes is rather arbitrary, an often used deϐinition can be seen in Figure 3.3. The origin of the frame
is located at the centre of mass of the spaceplane. The 𝑋, 𝑌 and 𝑍‐directions are respectively directed in the
longitudinal, lateral and vertical direction. With the roll (ℒ), pitch (ℳ) and yaw (𝒩) moment around the 𝑋,
𝑌 and 𝑍‐axis.

3.1.3. Aerodynamic reference frame
The origin of the aerodynamic reference frame is also located in the centre of mass of the spaceplane. The
angles between the body ϐixed reference frame and the aerodynamic reference frame are the angle‐of‐attack
(𝛼) and the sideslip angle (𝛽) [Mooij, 2013]. To translate between the aerodynamic reference frame and the
planetocentric reference frame, the bank angle (𝜎) is used. The range of the angles are the following. For
the bank angle −180° ≤ 𝜎 < +180° (banking towards the right is positive). For the angle‐of‐attack −180°
≤ 𝛼 < +180° (nose‐up is is positive angle‐of‐attack). Lastly, the angle of sideslip range is −90° ≤ 𝛽 ≤ +90°
(nose‐right is positive angle of sideslip). The aerodynamic reference frame is shown in equation (3.4).

The transformation from the body ϐixed reference frame towards the aerodynamic reference frame is
required for the CFD simulation. The reason for this is to improve the efϐiciency of the aerodynamic simula‐
tions, which will be explained in Section 4.5. Because the rotations are small and therefore no singularities
occur, Euler rotations can be used. To rotate the forces from the body ϐixed frame (𝑋, 𝑌 and 𝑍‐force) to the
forces of the aerodynamic frame (𝐷, 𝑆 and 𝐿‐force) the following rotation matrix is required. To obtain the
rotation matrix written in equation (3.1.3), there is rotated around the Y and Z‐axis of the body ϐixed frame,

(
𝐹𝐷
𝐹𝑆
𝐹𝐿

) = [
cos𝛼 cos𝛽 − sin𝛽 sin𝛼 cos𝛽
cos𝛼 sin𝛽 cos𝛽 sin𝛼 sin𝛽
− sin𝛼 0 cos𝛼

](
𝐹𝑋
𝐹𝑌
𝐹𝑍
)

(3.1)



3.1. Reference frames 23

Figure 3.2: Rotating Earth ϐixed reference frame [Mooij, 2013].

Because the ϐlowwill be rotated in the CFD simulation, the velocity vector has to be decomposed in differ‐
ent components. Hence, a simple vector translation from the aerodynamic frame to the body ϐixed reference
frame is determined. Here, the same angles are required namely; the angle‐of‐attack (𝛼) and sideslip angle
(𝛽). The equations of the velocity components in the body ϐixed reference frame are stated in equation (3.2)
till (3.4),

𝑉𝑋 = |𝑉| cos𝛼 sin𝛽 (3.2)

𝑉𝑌 = |𝑉| sin𝛼 (3.3)

and 𝑉𝑍 = |𝑉| cos𝛼 cos𝛽 (3.4)
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Figure 3.3: The body ϐixed reference frame [Cucinelii and Müller, 1988].

Figure 3.4: Aerodynamic reference frame [Mooij, 2013].
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3.2. Equations of motion
The equations of motion are formulated using the theory of classical mechanics, more speciϐied by Newton’s
well‐known three laws of motion. The motion of a rigid body, such as a spaceplane, can be divided into
the motion of its centre of mass and the rotation around the centre of mass. In total there are 6 degrees of
freedom of which 3 for translational motion and 3 for the rotational motion. The equations of translational
motion describe the position and velocity of the body and the equations of rotational motion describe the
angular rate and attitude of the vehicle.

3.2.1. Equations of transitional motion
FromNewton’s second law, the transitionalmotionwith respect to the inertial Earth‐centred reference frame
is determined as follows:

F̃I = FI = 𝑚
𝑑2rcm
𝑑𝑡2 (3.5)

where F̃I is the pseudo external force vector [N] andFI is the sum of the external forces acting on the vehicle

[N]. These two forces are equal because the Coriolis force and relative force are zero. The term 𝑚𝑑2rcm
𝑑𝑡2 , is

the acceleration of the vehicle’s centre of mass with respect to the inertial reference frame [m/s²], where
rcm = (𝑥𝑐𝑚 , 𝑦𝑐𝑚 , 𝑧𝑐𝑚) represents the position of the vehicle’s centre of mass with respect to the inertial
frame’s origin in Cartesian components [m].

Describing the vehicle’s motion with respect to the inertial reference frame is not convenient in case of
control systemdesign, and for the stability and controllability analyses. In this case, it is preferable to express
the equations of motion with respect to the rotating Earth ϐixed reference frame. These can be derived from
the general equation for the translational motion (3.5). In this case it is considered that the Earth ϐixed
reference frame rotates with respect to the inertia Earth centered reference frame with an angular velocity
equal to the Earth’s angular velocity𝝎𝐑 = (0, 0, 𝜔𝑐𝑏)

𝑇 .
Mooij [1994] states the full set of translationalmotion equations. For a vehiclewith constantmass𝑚 that

is subjected to external forces of aerodynamic, propulsion and gravity, written in the spherical coordinates
in the rotation Earth ϐixed reference frame. In these equations the effects of the wind are not considered and
because there is no propulsion required in the re‐entry phase, the equations are slightly rewritten:

�̇� = −𝐷𝑚 − 𝑔 sin 𝛾 + 𝜔2𝑐𝑏𝑅 cos 𝛿 (sin 𝛾 cos 𝛿 − cos 𝛾 sin 𝛿 cos𝜒) (3.6)

𝑉�̇� =𝐿 cos𝜎𝑚 − 𝑔 cos 𝛾 + 2𝜔𝑐𝑏𝑉 cos 𝛿 sin𝜒 +
𝑉2
𝑅 cos 𝛾

+ 𝜔2𝑐𝑏𝑅 cos 𝛿 (cos 𝛾 cos 𝛿 + sin 𝛾 sin 𝛿 cos𝜒)
(3.7)

and 𝑉 cos 𝛾�̇� =𝐿 sin𝜎𝑚 + 2𝜔𝑐𝑏𝑉 (sin 𝛿 cos 𝛾 − cos 𝛿 sin 𝛾 cos𝜒)

+ 𝑉
2

𝑅 cos2 𝛾 tan 𝛿 sin𝜒 + 𝜔2𝑐𝑏𝑅 cos 𝛿 sin 𝛿 sin𝜒
(3.8)

Whereas the kinematic position equations are given by:

�̇� = ℎ̇ = 𝑉𝑔 sin 𝛾𝑔 (3.9)

�̇� =
𝑉𝑔 sin𝜒𝑔 cos 𝛾𝑔

𝑅 cos 𝛿 (3.10)

and �̇� =
𝑉𝑔 cos𝜒𝑔 cos 𝛾𝑔

𝑅 (3.11)

In these equations the 𝐷, 𝑆 and 𝐿 are the aerodynamic forces, i.e., the drag force, side force, and lift force,
respectively [N]. The position is given by the distance 𝑅, longitude 𝜏 and latitude 𝛿. The symbol 𝑉 is the
groundspeed and there are two direction angles, i.e., ϐlight‐path angle 𝛾 and heading angle 𝜒. From the kine‐
matic equations a singularity for the latitude 𝛿 = ±90∘ exists (which is the north and south pole). However,
these conditions are not encountered in our ϐlight conditions.
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3.2.2. Equations of rotational motion
The rotational motion is deϐined as follows:

M̃cm =Mcm = ∫
𝑚
r̃ × (𝑑𝝎𝑑𝑡 × r̃)𝑑𝑚 +∫𝑚

r̃ × [𝝎 × (𝝎 × r̃)]𝑑𝑚 (3.12)

where M̃cm is the pseudo external moment about the vehicle’s centre of mass [Nm] andMcm is the sum
of external moments about the vehicle’s centre of mass [Nm]. These two moments are again equal because
the Coriolis and relative moment are equal to zero. The ϐirst term on the right‐hand side of equation (3.12)
is the apparent moment due to the angular acceleration of the body with respect to the Earth ϐixed reference
frame and the second term is the apparent moment due to the angular velocity of the body with respect to
the Earth ϐixed reference frame.

Solving the equation of the rationalmotion stated in equation (3.12), can be expressed in the components
along the body axes. The resulting set of non‐linear equations are the Euler equations. This set of equations
describes the rotational motion of the vehicle with respect to the body ϐixed reference frame.

Thus, the vehicle moves with respect to the Earth rotating reference frame. The vehicle has a constant
mass, located at rcm from the Earth’s centre of mass. The spaceplane moves with a velocityVR with respect
to the Earth’s reference frame, with an angular velocity 𝝎 with respect to the inertial reference frame and
is subjected to external forces FR and moments M̃cm. The rational motion of this vehicle can be described
through the Euler equations, deϐined as:

�̇� = I−1 (M̃cm −𝝎× I𝝎) (3.13)

with,

I = [
𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑦𝑥 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧𝑧

] (3.14)

being a symmetric matrix that contains the products of inertia of the vehicle. The sum of external mo‐
ments about the centre of mass is expressed in M̃cm = (𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧)𝑇 . The 𝝎 = (𝑝, 𝑞, 𝑟)𝑇 , represents the
angular rotation vector of the body ϐixed reference frame with respect to the inertial frame. The Euler equa‐
tions can bewritten showing the relation between the �̇�, �̇�, �̇� on 𝑝, 𝑞, 𝑟 and the inertiamoments and products.

Assuming that the body is rotational symmetric in mass, the Euler equations can be simpliϐied because
the products of inertia are zero, i.e., I = diag [𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧]. This assumption is valid for our reference vehicle
since the products of inertia are much smaller than the moments of inertia. Thus, the rotational equations
of motion become:

�̇� = 𝑀𝑥
𝐼𝑥𝑥

+
𝐼𝑦𝑦 − 𝐼𝑧𝑧
𝐼𝑥𝑥

𝑞𝑟 (3.15)

�̇� =
𝑀𝑦
𝐼𝑦𝑦

+ 𝐼𝑧𝑧 − 𝐼𝑥𝑥𝐼𝑦𝑦
𝑝𝑟 (3.16)

and �̇� = 𝑀𝑧
𝐼𝑧𝑧

+
𝐼𝑥𝑥 − 𝐼𝑦𝑦
𝐼𝑧𝑧

𝑞𝑝 (3.17)

From here on, equation (3.6) till (3.8) represent the translational motion in spherical components in the
rational Earth ϐixed reference frame. For the rotational motion, the Euler equations are used, describing the
orientation and its evolution in time of the vehicle. These steps result in equation (3.15) till (3.17), which
describe the rotational motion in aerodynamic angles, and roll, pitch, yaw rate with respect to the body ϐixed
reference frame. These equations are essential for the linearisation and the deϐinition of the state‐space
model, which is necessary for the control system design and stability and controllability analyses. The state‐
space model is provided in the next section.
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3.3. Statespace form
The equations of motion are derived based on the reference frames in the previous section. These equations
describe the motion of the spaceplane and therefore connect the aerodynamic forces and moments with the
velocity and angular rates. The stability of a vehicle can be analysed by studying these equations of motion.
The characteristic motion of a vehicle can be determined by evaluating the eigenvalues and eigenvectors of
state‐space form.

However, the eigenvalues and eigenvectors can only be obtained when the time derivatives of the states
are given as linear combinations of the states. Thus, the non‐linear equations of motion derived in the previ‐
ous section have to be linearised. By linearising and discretising the equations of motion, the overall system
is transformed into a sequence of so‐called linear time‐invariant (LTI) systems. The linearised equations of
motion describe the cation of the state variables as function of the parameters that inϐluence the system, i.e.,
state variables and control variables. These equations are generally written in matrix form, which is known
as the state‐space form equations. Before deriving the formulas for the control algorithm, the assumptions
that are used to determine the state‐space equations need to be discussed.

• The Earth will be considered to be non‐rotating (𝜔𝑐𝑏 = 0 rad/s), which is allowed since the angular
velocity of the Earth’s atmosphere is negligible compared to the velocity of the spaceplane. Whereby,
the Coriolis and centrifugal accelerations are zero as well.

• The atmospheric winds will not be implemented in the equations of motion.

• The HORUS‐2B is mass symmetrical in body ϐixed 𝑥 and 𝑦 plane. Whichmeans that the inertia (𝐼𝑥𝑦 and
𝐼𝑦𝑧) is equal to zero. Another related assumption is that the 𝐼𝑥𝑧 is approximately equal to zero, because
the vehicle is rotationally mass symmetric around the x‐axis of the body‐ϐixed frame. This assumption
is also valid for the modiϐied spaceplanes.

• A spherical Earth is assumed.

The ϐirst assumption is valid because the rotational rate of Earth is much smaller than the rotational rate
of the vehicle. The second assumption can be justiϐied, since the products of inertia are much smaller than
the moments of inertia. With these assumptions the equations for 𝜒, 𝜏 and 𝛿 are decoupled from the other
equations, so the linearised equation of motion in state‐space form can be deϐined by 9 equations for 𝑉, 𝛾,
𝑅, 𝑝, 𝑞, 𝑟, 𝛼, 𝛽 and 𝜎. For the linearisation procedure of the non‐linear equations of motion, the derivation
is derived by Mooij [1998]. The resulting simpliϐied and linearised equations are stated in equation (3.18)
through (3.26),

Δ�̇� = −Δ𝐷𝑚 + 2𝑔0𝑅0
sin 𝛾0Δ𝑅 − 𝑔0 cos 𝛾0Δ𝛾 (3.18)

Δ�̇� =(−�̇�0 +
2𝑉0
𝑅0

cos 𝛾0)
Δ𝑉
𝑉0
+ (2𝑔0𝑅0

− 𝑉
2
0
𝑅20
) cos 𝛾0

𝑉0
Δ𝑅 − (𝑉

2
0
𝑅0
− 𝑔0)

sin 𝛾0
𝑉0

Δ𝛾+

− 𝐿0
𝑚𝑉0

sin𝜎0Δ𝜎 +
cos𝜎0
𝑚𝑉0

Δ𝐿 − sin𝜎0
𝑚𝑉0

Δ𝑆
(3.19)

Δ�̇� = sin 𝛾0Δ𝑉 + 𝑉0 cos 𝛾0Δ𝛾 (3.20)

Δ�̇� = Δ𝑀𝑥
𝐼𝑥𝑥

(3.21)

Δ�̇� =
Δ𝑀𝑦
𝐼𝑦𝑦

(3.22)

Δ�̇� = Δ𝑀𝑧
𝐼𝑧𝑧

(3.23)

Δ�̇� =Δ𝑞 − 1
𝑚𝑉0

Δ𝐿 − 𝑔0𝑉0
cos 𝛾0 sin𝜎0Δ𝜎 + (

𝐿0
𝑚𝑉20

− 𝑔0𝑉20
cos 𝛾0 cos𝜎0)Δ𝑉+

− 𝑔0𝑉0
sin 𝛾0 cos𝜎0Δ𝛾 −

2𝑔0
𝑅0𝑉0

cos 𝛾0 cos𝜎0Δ𝑅
(3.24)
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Δ�̇� = sin𝛼0Δ𝑝 − cos𝛼0Δ𝑟 −
Δ𝑆
𝑚𝑉0

− 𝑔0𝑉0
cos 𝛾0 cos𝜎0Δ𝜎 +

𝑔0
𝑉20

cos 𝛾0 sin𝜎0Δ𝑉+

+ 2𝑔0
𝑅0𝑉0

cos 𝛾0 sin𝜎0Δ𝑅 +
𝑔0
𝑉0

sin 𝛾0 sin𝜎0Δ𝛾
(3.25)

and Δ�̇� = − cos𝛼0Δ𝑝 − sin𝛼0Δ𝑟 − (
𝐿0
𝑚𝑉0

− 𝑔0𝑉0
cos 𝛾0 cos𝜎0)Δ𝛽 +

𝐿0
𝑚𝑉0

sin𝜎0Δ𝛾+

+ tan 𝛾0
𝑚𝑉0

(sin𝜎0Δ𝐿 + cos𝜎0𝐿0Δ𝜎 + cos𝜎0Δ𝑆 −
𝐿0
𝑉0

sin𝜎0Δ𝑉)
(3.26)

The initial states of𝑉, 𝛾,𝑅,𝛼,𝛽 and𝜎 are known. But, the initial states for the body roll, pitch and yaw rate
(𝑝0, 𝑞0 and 𝑟0) are not known yet. However, the relations can be determined from the equilibrium angular
rates, because for the nominal control no perturbations are desired. Resulting in the following equations:

𝑝0 =
𝑔0
𝑉0

cos 𝛾0 sin𝜎0 sin𝛼0 +
𝐿0
𝑚𝑉0

tan 𝛾0 sin𝜎0 cos𝛼0 (3.27)

𝑞0 =
𝐿0
𝑚𝑉0

− 𝑔0𝑉0
cos 𝛾0 cos𝜎0 (3.28)

and 𝑟0 = −
𝑔0
𝑉0

cos 𝛾0 sin𝜎0 cos𝛼0 +
𝐿0
𝑚𝑉0

tan 𝛾0 sin𝜎0 sin𝛼0 (3.29)

These equations of motion can be written in state‐space form (ẋ = Ax+Bu). Whereby the x is the state
vector and u the control vector, andA andB the system and the control coefϐicient matrix. Before obtaining
the ϐinal system and control coefϐicient matrix, the force and moment variations need to be evaluated. For
example, the change in drag force can be expressed as dependencies of the drag forces (stated in equation
(3.30)). Whereby the smaller contributions can be neglected, resulting in equation (3.31). For these deriva‐
tives it is also assumed that higher order derivatives are negligible. These relations describing the forces and
moments in most relevant dependencies are fully explained by Mooij [1998],

Δ𝐷 = 𝜕𝐷
𝜕𝑀Δ𝑀 +

𝜕𝐷
𝜕𝛼 Δ𝛼 +

𝜕𝐷
𝜕ℎ Δℎ +

𝜕𝐷
𝜕𝛿𝑒

Δ𝛿𝑒 +
𝜕𝐷
𝜕𝛿𝑎

Δ𝛿𝑎 +
𝜕𝐷
𝜕𝛿𝑟

Δ𝛿𝑟 +
𝜕𝐷
𝜕𝛿𝑏

Δ𝛿𝑏 (3.30)

Rewritten to, Δ𝐷 = 𝜕𝐷
𝜕𝑀Δ𝑀 +

𝜕𝐷
𝜕𝛼 Δ𝛼. (3.31)

The full state‐space description is stated below. All the full expressions of 𝑎𝑖𝑗 and 𝑏𝑖𝑘 terms are repre‐
sented in Appendix A. The reason why the body ϐlap deϐlection is not visible in the equations is because the
body ϐlap is only used for trim, so it has a nominal deϐlection angle (Δ𝛿𝑏 = 0),

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

Δ�̇�
Δ�̇�
Δ�̇�
Δ�̇�
Δ�̇�
Δ�̇�
Δ�̇�
Δ�̇�
Δ�̇�

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎𝑉𝑉 𝑎𝑉𝛾 𝑎𝑉𝑅 0 0 0 𝑎𝑉𝛼 0 0
𝑎𝛾𝑉 𝑎𝛾𝛾 𝑎𝛾𝑅 0 0 0 𝑎𝛾𝛼 𝑎𝛾𝛽 𝑎𝛾𝜎
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0 0 0 0 0 0 0 𝑎𝑟𝛽 0
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𝑎𝜎𝑉 𝑎𝜎𝛾 0 𝑎𝜎𝑝 0 𝑎𝜎𝑟 𝑎𝜎𝛼 𝑎𝜎𝛽 𝑎𝜎𝜎
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⎝
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0 0 0 0 0 0
0 𝑏𝑝𝑎 0 𝑏𝑝𝑥 0 0
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0 𝑏𝑟𝑎 𝑏𝑟𝑟 0 0 𝑏𝑟𝑧
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0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜

⎝

Δ𝛿𝑒
Δ𝛿𝑎
Δ𝛿𝑟
Δ𝑇𝑥
Δ𝑇𝑦
Δ𝑇𝑧

⎞
⎟
⎟

⎠

.

(3.32)
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Overall the state‐space form describes the equations of motion of the spaceplane, with respect to the
deϐined reference frames and is thereby the plant of the control system. With this representation themotion
and aerodynamic forces due to the shape and deϐlection surfaces are related to each other.

3.4. Stability
With the explained vehicle dynamics, the static and dynamic stability can be discussed. The static stability
depends only on the aerodynamic most relevant derivatives and the dynamic stability can be analysed by
investigating the eigenvalues and eigenvectors of the vehicle dynamics and therefore the ϐlight modes.

3.4.1. Stability and controllability coefficients
There are several aerodynamic derivatives that indicate the static stability/instability of the vehicle. The
most relevant are already used in the state‐space form stated above. In these derivatives, the 𝐶𝐷 , 𝐶𝐿 and 𝐶𝑆
represent the drag, lift and sideslip coefϐicients. The 𝐶𝑙 , 𝐶𝑚 and 𝐶𝑛 indicate the roll, pitch and yaw moment
coefϐicients. And, the 𝛿𝑎 , 𝛿𝑒 and 𝛿𝑟 are the deϐlection angles for the ailerons, elevons and rudder.

• The coefϐicients only dependent on the base vehicle:
𝐶𝐷𝑀 =

𝜕𝐶𝐷
𝜕𝑀 , 𝐶𝐷𝛼 =

𝜕𝐶𝐷
𝜕𝛼 , 𝐶𝑆𝛽 =

𝜕𝐶𝑆
𝜕𝛽 , 𝐶𝐿𝑀 =

𝜕𝐶𝐿
𝜕𝑀 , 𝐶𝐿𝛼 =

𝜕𝐶𝐿
𝜕𝛼 , 𝐶𝑙𝛽 =

𝜕𝐶𝑙
𝜕𝛽 and 𝐶𝑛𝛽 =

𝜕𝐶𝑛
𝜕𝛽 .

• The coefϐicients based on the base of the vehicle combined with the body ϐlap and the elevons deϐlec‐
tions:
𝐶𝑚𝑀 =

𝜕𝐶𝑚
𝜕𝑀 and 𝐶𝑚𝛼 =

𝜕𝐶𝑚
𝜕𝛼 .

• The coefϐicient based on only the elevons deϐlection:
𝐶𝑙𝛿𝑎 =

𝜕𝐶𝑙
𝜕𝛿𝑎

, 𝐶𝑚𝛿𝑒 =
𝜕𝐶𝑚
𝜕𝛿𝑒

and 𝐶𝑛𝛿𝑎 =
𝜕𝐶𝑛
𝜕𝛿𝑎

.

• The coefϐicients based on the rudder deϐlection:
𝐶𝑛𝛿𝑟 =

𝜕𝐶𝑛
𝜕𝛿𝑟

.

The ϐirst bullet point shows the stability indicators of the base part of the spaceplane. The second bullet
point is a combination of the base, the body ϐlap and the elevons and is therefore a combination of a stability
and controllability derivative. The body ϐlap and elevon are set to the trim condition. The last two bullet
points are the control derivatives which indicate the effectiveness of the attitude deϐlection surfaces. Each
implemented derivative in the state‐space form will be chronologically explained below:

𝐶𝐷𝑀 This derivative is the drag coefϐicient depending on the Mach number. Because there is no rotation
between the body ϐixed reference frame and the aerodynamic reference, the X‐force is aligned with the
drag force. The sign will be positive because an increment in velocity will lead to more drag force.

𝐶𝐷𝛼 This coefϐicient deals with the effect of the angle‐of‐attack on the drag coefϐicient (which is along the
X‐axis of the aerodynamic reference frame). A change in angle‐of‐attack is obtained by varying the
velocity direction in the aerodynamic simulation, and the X, Y and Z‐forces will be converted to the
drag, side and lift force by equation (3.1.3). An increase in angle‐of‐attack will lead to an increase in
the drag coefϐicient, thus the sign of this derivative is positive.

𝐶𝑆𝛽 The derivative 𝐶𝑆𝛽 shows the effect of the side force with respect to the angle‐of‐sideslip. An increase
sideslip angle causes an increase in the side force and the coefϐicient is negative because of the deϐini‐
tion of the reference frames. Similar as the𝛼 variation, the sideslip anglewill be simulated by changing
the direction of the velocity vector with the use of equation (3.2) till (3.4).

𝐶𝐿𝑀 This is the lift coefϐicient effected by the Mach number. In this case, because there is no rotation be‐
tween the body ϐixed reference frame and aerodynamic reference frame, the lift force is aligned with
the Z‐force of the body ϐixed frame. The lift force is perpendicular to the ϐlow direction. The sign of
the coefϐicient depends on the geometry. At zero angle‐of‐attack the sign is negative for the HORUS.
Therefore a positive angle‐of‐attack is required to create lift.

𝐶𝐿𝛼 This coefϐicient indicates the effect of the angle‐of‐attack on the lift coefϐicient. The sign of this coefϐi‐
cient is positive with a positive angle‐of‐attack until stall occurs. At the moment of stall the lift force
decreases rapidly with increasing angle‐of‐attack.
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𝐶𝑙𝛽 This is a moment coefϐicient around the X‐axis (roll moment) of the body ϐixed reference frame. The
coefϐicient deals with the roll moment due to change of variation in the angle‐of‐sideslip. For static
stability, a negative sign for this coefϐicient is preferred, because in that case the sideslip generates an
opposite moment. This means that the spaceplane wants to rotate back towards zero degree sideslip
angle after a disturbance in angle‐of‐sideslip. The largest contributions to the 𝐶𝑙𝛽 are the dihedral and
sweep angle of the wing, and the wing‐fuselage interaction with the ϐlow. This coefϐicient is one of the
primary lateral stability derivatives.

𝐶𝑛𝛽 The 𝐶𝑛𝛽 coefϐicient is the moment about the Z‐axis of the body ϐixed reference frame due to a change in
the angle‐of‐sideslip. Also known as the static directional or weathercock suitability derivative. This
derivative is another important stability indication parameter, and is preferred to be positive. A posi‐
tive value indicates that there is amoment created for non‐zero sideslip angle thatwants to rotate back
towards zero degrees. Hence, there is a resistance against the yaw rotation.

𝐶𝑚𝑀 Thisderivative is thepitchmomentdue to the change inMachnumber. Themoment is around theY‐axis
of the body ϐixed reference frame. The pitch moment should increase with increasing Mach number
because the forces are increased by the increasing Mach number. As already explained above, this
derivative is a contribution of the main body, body ϐlap and elevons. These ϐlaps are set at the trim
condition.

𝐶𝑚𝛼 The 𝐶𝑚𝛼 is one of the most important stability coefϐicients, as it expresses the pitch moment (which is
the moment around the Y‐axis of the body ϐixed reference frame) inϐluenced by the angle‐of‐attack. If
stability is not achieved for this parameter, an increase in pitch moment would increase the angle‐of‐
attack and this process would be repeated until stall occurs, because the lift force is not in equilibrium
with the gravity force anymore. Thus, the condition𝐶𝑚𝛼 < 0 is very important. This can be achievedby
placing the aerodynamic centre behind (negative x‐axis) the centre of mass. The aerodynamic centre
is the position where the lift force will not produce a moment around the y‐axis. Hereby, the increase
in angle‐of‐attack, will have amoment balancing the lift force. Thus, for longitudinal static stability the
derivative needs to be negative.

𝐶𝑙𝛿𝑎 This is the roll moment due to the aileron deϐlection angle. Hence, the effectiveness of the aileron. The
function of the aileron is to create an additional moment around the X‐axis of the body ϐixed reference
frame. In this reference frame the coefϐicient is negative and changing for different Mach numbers
because of the change in the lift force.

𝐶𝑚𝛿𝑒 With symmetrical moving the left and right ϐlaps, i.e. elevons, are creating an additional pitch mo‐
ment. This derivative describes the pitch moment due to the elevon deϐlection angle and is negative
based on the reference frame. According to [Cucinelii and Müller, 1988] the effectiveness increases
with decreasing Mach number in the supersonic ϐlight regime.

𝐶𝑛𝛿𝑎 This derivative is the aileron (asymmetrically moving of the left and right ϐlaps) effectiveness on the
yaw moment . The sign is negative based on the deϐined axis.

𝐶𝑛𝛿𝑟 The 𝐶𝑛𝛿𝑟 is the effectiveness of the rudders. The primary task of the rudder is to create an additional
yaw moment . An increase in rudder deϐlection angle will increase the yaw moment and therefore the
sign is positive.

𝐶𝑚𝛿𝑏 Lastly, the pitch moment due to the body ϐlap deϐlection. This derivative is not in the state‐space form
because this is included in the pitch moment effected by the angle‐of‐attack. In the TAEM phase of the
re‐entry the body ϐlap is set to ‐20 degrees for trim purposes. The sign of the derivative is negative.

3.4.2. Dynamic stability
Next, the dynamic stability can be investigated by analysing the ϐlight modes. The modes of motion of a
hypersonic spaceplane are similar to those of a subsonic aircraft, presented by [Etkin and Reid, 1996], with
one additional ϐlight mode because of the hypersonic ϐlight regime. By using the ẋ = Ax without the B
matrix (control part) the ϐlight modes can be investigated, which is called the open‐loop behaviour. The
longitudinal modes are the short‐period and phugoid mode (which is long period). For hypersonic ϐlight
another longitudinal long‐period mode, called height mode is added. For the lateral directions there are the
lateral oscillation (or Dutch roll), the rolling convergence and the spiral mode. For these modes a general
description of each mode of motion is provided:
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• Phugoid (longer period) oscillations: Performing the phugoid manoeuvre large amplitude variations
in the velocity, pitch angle, altitude, but almost no angle‐of‐attack variation. The manoeuvre is a slow
interchangeof kinetic energy andpotential energy about an equilibriumenergy level, as the spaceplane
attempts to re‐establish the level ϐlight condition from which it has been disturbed.

• Short period oscillations: The short period oscillations mode is basically the shorter period version of
the longer period oscillations. The motion is a rapid pitching movement about the centre of gravity of
the spaceplane which is essentially an angle‐of‐attack variation. Whereby themotion becomes heavily
damped in a short period of time. The initial HORUS‐2B design has two aperiod modes at a Mach
number below 3 and a bank angle of 55 degrees of which one of them is unstable according to [Mooij,
1998].

• Height mode: The height mode is a lightly damped aperiodic motion in which the altitude is changed.
This mode is relevant from Mach 3 and higher. It includes drag changes by means of variations in
the speed and altitude. This is different compared to the phugoid mode because the phugoid mode is
mainly dependent on altitude variations.

• Lateral oscillation: The lateral oscillationmode is based on a strong roll rate and yaw rate of the space‐
plane. The roll rate does not effect the motion that much. For this mode the velocity and ϐlight path
angle have almost constant values. As already known, this mode is unstable for the initial HORUS de‐
sign due to the lack in yaw motion capabilities. But for the TAEM phase of the re‐entry this is very
important to steer the vehicle to the right location.

• Aperiodic roll motion: For the roll manoeuvre there are two versions: a fast and a slow onewhich both
have the bank angle as main contributor to the motion. Hence, the motion is a pure rotation around
the X‐axis of the aerodynamic reference frame. The motion is aperiodoc because it is only dependent
on one moment.

• Spiral mode: This mode consists mainly of the yawing motion and has almost a zero sideslip angle.
This mode is a slow motion that is aperiodic and is present mostly when ϐlying with a non‐zero bank
angle.

All the ϐlying qualities are valued by the response characteristics. Which consist of the damping ratio,
halving time and natural frequency or the eigenvectors as explained in the next section. These modes can be
conducted at certain points along the trajectory to have different ϐlight conditions.

3.5. Response Characterisation
The response characteristics of the state‐space form can be valued by eigenvectors. The different response
outputs are represented in Figure 3.5. As can been seen in the ϐigure, if the eigenvalue has a positive real part,
the the solution becomes unstable. The imaginary part results inmore oscillation behaviour, and is therefore
less desired. If the eigenvalue is located on the imaginary axis, the response will not increase nor decrease
[D’Souza, 1988]. Another representation is expressing the eigenvalues with an angle and magnitude,

𝑧 = √𝑅𝑒(𝜆)2 + lm(𝜆)2, (3.33)

and 𝜃 = arctan( Im(𝜆)
Re(𝜆)) . (3.34)

The eigenmotions can also be characterized by the following parameters: the period (𝑃), halving time
(𝑇1/2), doubling time (𝑇2), damping ratio (𝜁) and the natural frequency (𝜔𝑛). The period indicates what
the period is of the output frequency response and is represented in equation (3.35). The half time gives a
time interval when the amplitude of the motion has become half its original value (equation (3.36)). If the
halving time has a positive real part, the halving time becomes negative. Therefore, the formula changes to
the doubling time equation of the diverging motion (equation (3.37)). The damping ratio is an important
indication of dynamic stability. If the 𝜁 is positive the eigenmotion is damped. If the 𝜁 is not deϐined (because
the real part is zero) the motion is aperiodic. The formula for the damping ratio is expressed in equation
(3.38). Furthermore, as can be seen in equation (3.5), if the eigenvalue has an imaginary part there is a
frequency in the signal, this natural frequency can be calculated with equation (3.39),
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Figure 3.5: Impulse responses for various eigenvalues with different real and imaginary part [D’Souza, 1988].

𝑃 = 2𝜋
Im(𝜆) =

2𝜋
𝜔𝑛√1 − 𝜁2

, (3.35)

𝑇1/2 =
ln 1/2
Re(𝜆) , (3.36)

𝑇2 =
ln 2
Re(𝜆) , (3.37)

𝜁 = − Re(𝜆)
√Re(𝜆)2 + Im(𝜆)2

, (3.38)

and 𝜔𝑛 = √Re(𝜆)2 + Im(𝜆)2. (3.39)

3.6. Military requirements
By Viavattene and Mooij [2019], ϐlight manoeuvres/modes are preformed and investigated by comparing
them with military speciϐications. Because the ϐlying qualities of aircraft were very important for the U.S.
military, multiple studies were conducted. By MIL‐F‐8785C [1980], the qualities are presented for subsonic
aircraft and the report was later adapted and extended because of the development of more advanced air‐
craft technology. Thus, a more complete version was published in [MIL‐HDBK‐1797, 1997]. The MIL‐spec
requirements are considered as a starting point for identifying the ϐlying qualities of the spaceplanes. These
requirements differ depending on the vehicle type and ϐlight phase category. Aircraft are classiϐied in four
groups depending on size, weight andmanoeuvrability. Group three consists of large, heavy, low‐to‐medium
manoeuvrability aircraftwhich presents characteristics that are similar to those of vehicles ϐlying in the high‐
supersonic and hypersonic regime. So, the ϐlying characteristics of group three aircraft will be used.

There are different levels of ϐlying qualities in the MIL‐requirements. The levels of ϐlying qualities are
stated by MIL‐HDBK‐1797 [1997] and presented here:

Level 1: The ϐlying qualities clearly adequate for the mission ϐlight phase.

Level 2: Flying qualities adequate to accomplish the mission ϐlight phase, but some increase in pilot work‐
load or degradation in mission effectiveness, or both, exists.

Level 3: Flying qualities such that the aircraft can be controlled safely, but pilotworkload is excessive ormis‐
sion effectiveness is inadequate, or both. However, Category B ϐlight phases can be completed. Which
is deϐined as: ”non‐terminal ϐlight phases that are normally accomplished using gradual manoeuvres
and without precision tracking, although accurate ϐlight‐path control may be required”.
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Table 3.1: Phugoid damping requirements [MIL‐HDBK‐1797, 1997].

Phugoid
Level 1 𝜁𝑝ℎ ≥ 0.04
Level 2 𝜁𝑝ℎ ≥ 0
Level 3 𝑇2𝑝ℎ ≥ 55𝑠

Table 3.2: Short period damping ratio limits [MIL‐HDBK‐1797, 1997].

Short period
Level 1 0.30 ≤ 𝜁𝑠𝑝 ≤ 4.00
Level 2 0.20 ≤ 𝜁𝑠𝑝 ≤ 2.00
Level 3 0.15 ≤ 𝜁𝑠𝑝¹

Table 3.3: Lateral oscillation requirements with undamped natural frequency𝜔𝑛𝑑
and damping ratio 𝜁𝑛𝑑 [MIL‐HDBK‐1797, 1997].

Lateral Oscillation
Min. 𝜁𝑛𝑑 Min. 𝜁𝑛𝑑𝜔𝑛𝑑 [rad/s] Min. 𝜔𝑛𝑑 [rad/s] ²

Level 1 0.08 0.15 0.4
Level 2 0.02 0.05 0.4
Level 3 0 Not speciϐied 0.4

An aircraft must be designed to satisfy the level 1 requirements when all the systems operate normally.
The probability of failure of the system is related to the probability of degradation of the ϐlying quality levels.
The MIL‐requirements establish this criteria by deϐining level 2 and level 3 which corresponds with failure
less than 10−2 and 10−4 respectively in operating ϐlight envelope. In service envelope, the probability of fail‐
ure should be less than 10−2 for level 3. When the aircraft meets theMIL‐requirements, the aircraft provides
a suitable control effort to stabilise and control the vehicle.

3.6.1. Longitudinal requirements
In MIL‐F‐8785C [1980] and MIL‐HDBK‐1797 [1997] the ϐlying quality requirements for the longitudinal di‐
rection are presented. As mentioned before, the phugoid is a long‐period airspeed oscillation that is experi‐
enced when there is a sudden disturbance during a stable airspeed ϐlight. The requirement for the phugoid
damping ratio or thedoubling timeof the amplitude is presented inTable 3.1. The time tohalve the amplitude
is an important parameter and is already deϐined in equation (3.36), but can be rewritten as:

𝑇1/2𝑝ℎ =
ln 1

2
−𝜁𝑝ℎ𝜔𝑛𝑝ℎ

. (3.40)

When the damping ratio is negative, the eigenmotion is ampliϐied and the equation changes to the dou‐
bling time presented in equation (3.37).

The short period mode requirements are also deϐined and these are presented in Table 3.2. To have ade‐
quate ϐlight performance, the short period oscillation hasmore strict requirements compared to the long lon‐
gitudinal oscillation. The necessary damping ratio for this ϐlight mode is higher, resulting in higher damped
oscillation.

3.6.2. Lateral requirements
MIL‐F‐8785C [1980] and MIL‐HDBK‐1797 [1997] also specify the lateral requirements for adequate ϐlying
quality. Oneof the lateral directionmodes is the lateral oscillation, as explainedabove. TheMIL‐requirements
for the lateral oscillation can be expressed by the undamped natural frequency 𝜔𝑛𝑑 , the damping ratio 𝜁𝑛𝑑
and their product. The values are presented in Table 3.3.

From this point all the ϐlight mechanics features are discussed. This involved the derivation of the equa‐
tions of motion, linearisation of these equations and creating the state‐space form. This system lead to the

¹The limit can be reduced for altitude higher than 6.1 km.
²This requirement (and deϐined levels) may not be valid for class three.
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static and dynamic stability of the spaceplane. The importance of static stabilitywhich is deϐined by the aero‐
dynamic characteristic parameters and the investigation of the ϐlight modes was shown. The different ϐlight
modes which represents the eigenmotion of the vehicle, lead to the analysis of the eigenvalues and eigenvec‐
tors. For the dynamic motion there are military requirements which give reference values for a stable and
controlled ϐlight.

The control analysis initiated one important subject of this research namely: the aerodynamics. To con‐
duct this control analysis the aerodynamic behaviour of the spaceplane needs to be determined. For each
spaceplane the relevant aerodynamic parameters are required to complete the dynamic stability analyses.



4
Aerodynamics

The stability and control of any ϐlying vehicle are determined indirectly by the airϐlow around the vehicle, i.e.,
aerodynamics. How the ϐlow behaves in different Mach regimes is very important because it inϐluences the
shape. This chapter begins with explaining the assumptions related to themediumwhich is atmospheric air.
Secondly, the analytical formulation of ϐluid dynamics will be expressed. Followed by simpliϐication assump‐
tions which are required to derive the ϐlow ϐield in an efϐicient manner. Next, the mathematical relations in
combination with different ϐlow phenomena will be discussed. Then, because the analytical formulation is
limited for complex ϐluid dynamics, the conversion is made to numerical simulation. This will be the start of
showing ϐlow behaviour, simulation establishment and accuracy of an example CFD object. The importance
of mesh generation in combination with ϐluid models and discretisation schemes is highly relevant and will
be explained in detail. Lastly, these features of CFD simulation will be applied to the complex HORUS space‐
plane.

4.1. Assumptions and validity
The aerodynamics described in this chapter rely on a number of assumptions. The assumptions will also be
noted when appropriate in this chapter, but in this section the most important assumptions will be stated:

No chemical reactions The ϐlow will not be chemically reactive. By Dobrov et al. [2021], the inϐluence of
chemical reactions are simulated by ANSYS Fluent and studied. The chemical reactions inϐluence the
aerodynamic results and are highly relevant in the region of the shock layer. The effects become more
important with increasing Mach number in the hypersonic regime. In the TAEM phase of the re‐entry
these effects can be neglected.

Flow is a continuum The ϐlow is assumed to be a continuum. A continuum ϐlow can be treated as con‐
tinuous, even though, on a microscopic scale, they are composed of molecules. With the continuum
assumptions, the macroscopic properties such as density, pressure and temperature are assumed to
be deϐined at inϐinitesimal volume. This assumption is related to the Knudsen number 𝐾𝑛, which is a
dimensionless number that deϐines the ratio of themolecular mean free path length to the representa‐
tive physical length scale. (The length scale in this case is the length of the spaceplane.) For𝐾𝑛 < 0.01
continuum ϐlow can be assumed. If the number increases, the regime will change to slip ϐlow, transi‐
tional ϐlow and free‐molecular ϐlow. The assumption is true for altitudes lower than 75 km [Brykina
et al., 2009]. Because the TAEMphase is lower than 25 km this assumption is true, but in the beginning
of the hypersonic re‐entry this assumption is invalid. The equation for the Knudsen number is stated
here,

𝐾𝑛 = 𝑘B𝑇
√2𝜋𝑑2𝑝𝐿

(4.1)

with 𝑘B the Boltzmann constant, 𝑇 the thermodynamic temperature, 𝑑 the particle hard‐shell di‐
ameter, 𝑝 the total pressure and 𝐿 the representative length scale.

35
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Figure 4.1: The U.S. Standard atmosphere model of 1976 [NASA, 1976].

Atmospheric properties For the atmospheric properties the U.S. standard atmosphere of 1976 is used.
The ambient pressure, density, temperature and speed of sound are deϐined by that model. For the
CFD model the same values will be used. The values of the ambient properties are visualised against
the altitude in Figure 4.1. The corresponding properties along the re‐entry trajectory are stated in
Table 4.1. These discrete points with their ambient conditions will be used for the simulations.

Ideal gas The ideal gas law assumes that the medium behaves as a perfect gas. This means that the gas
particles interact elastically when they collide [White, 1974]. To check the validity of this assumption,
a graphical method is visualised in Figure 4.2. When the compressibility factor (𝑍) is approximately
equal to 1 the ideal gas assumption is valid. If 𝑍 is higher then 1, oxygen dissociation, nitrogen disso‐
ciation and ionization occur. The ideal gas law is deϐined as: 𝑝 = 𝜌𝑅𝑇, with pressure 𝑝, density 𝜌, gas
constant 𝑅 and temperature 𝑇.

To determine the compressibility factor, the pressure reduction factor (𝑝𝑟 = 𝑝𝑡/𝑝𝑐) and temper‐
ature reduction factor (𝑇𝑟 = 𝑇𝑡/𝑇𝑐) need to be determined (the subscript letter 𝑡 stands for the total
quantity which is the sum of the dynamic and static values). The critical pressure and temperature for
air are 132.2 K and 3.688×10⁶ Pa, respectively. The total pressure and temperature during ϐlight are in
the order of 1.8×10⁶ Pa and 650 K by using the NASA simulation calculators¹. Resulting in a 𝑝𝑟 = 0.48
and 𝑝𝑟 = 4.9, which leads to a Z value of approximately 1. Thus, the ideal gas law is valid.

¹NASA AtmosModeler Simulator, website: https://www.grc.nasa.gov/www/k‐12/airplane/atmosi.html, accessed on 05/03/2021.
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Table 4.1: Atmospheric conditions along the re‐entry trajectory.

𝑀 [‐] ℎ [m] 𝑃 [Pa] 𝑇 [K] 𝑀 [‐] ℎ [m] 𝑃 [Pa] 𝑇 [K]
25 75000 2.06792 206.650 2.5 25000 2511.02 221.650
20 70000 4.63422 217.650 2.0 22500 3699.54 219.150
15 60000 20.3143 245.450 1.5 20000 5474.89 216.650
10 53000 51.8668 265.050 1.2 18000 7504.84 216.650
7.5 48000 97.7545 270.650 1.0 16000 10287.5 216.650
5.0 38000 365.455 245.450 0.8 13000 16510.4 216.650

Figure 4.2: Compressibility factor for gasses left graph for the low reduced pressure range
(0 ≥ 𝑝𝑟 ≥ 5) and right graph the high range (0 ≥ 𝑝𝑟 ≥ 50) [White, 1974].

Figure 4.3: The compressibility factor due to dissociation and ionization of air [White, 1974].

In the hypersonic regime, the ideal gas law is no longer valid, because the amount of energy driving
chemical reactions is signiϐicant [Filippone, 2006]. In this regime dislocation and ionization occur be‐
cause the temperatures become extremely high. For the chemical components in atmospheric air the
dislocation and ionization and their inϐluence on the compressibility factor as a function of tempera‐
ture are visualised in Figure 4.3.
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4.2. Governing equations
The ϐield of ϐluid dynamics is described by three conservation equations: conservation ofmass, conservation
of momentum and conservation of energy. These equations are derived and stated in the book Kundu et al.
[2016], or in any other ϐluid dynamics book for that matter. These governing equations are vector differ‐
ential equations, and are still analytical unsolvable, unless the problem is extremely simpliϐied. Therefore,
a numerical approach is required to solve the ϐlow ϐield for most general cases. However, the calculation
time needed to solve the ϐlow ϐield exceeds present computing capabilities. To perform these simulations in
a reasonable time frame, it is necessary to simplify the governing equations.

The equation of mass conservation for ϐluid ϐlows, also known as continuity equation, is expressed in
equation (4.2). The ϐirst term represents the time rate of change of the ϐluid density. The second term is a
ϐlux divergence term, also called a transport term. The equation indicates that the result ofmass ϐlowchanges
is equal to zero, i.e. conservation,

𝜕𝜌
𝜕𝑡 +

𝜕
𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0 (4.2)

The Navier‐Stokes (NS) vector equation describes the conservation of momentum for a Newtonian ϐluid
and is expressed in equation (4.3). In essence, the NS momentum equation is a form of Newton’s second
law (𝐹 = 𝑚 ⋅ 𝑎). The term on the left‐hand side indicates the change in momentum. The ϐirst term on the
right‐hand side of the equation indicates the change of pressure over the distance of the volume. The second
term is the change of momentum due to the gravity. The last term is the change of momentum due to the
deformations in the ϐluid. Whereby the 𝛿𝑖𝑗 is the Kronecker delta, which is equal to 1 if 𝑖 = 𝑗 and equal to 0
if 𝑖 ≠ 𝑗. The 𝜇 and 𝜇𝑠 are the dynamic viscosity and bulk viscosity respectively.

𝜌 (
𝜕𝑢𝑗
𝜕𝑡 + 𝑢𝑖

𝜕𝑢𝑗
𝜕𝑥𝑖

) = − 𝜕𝑝𝜕𝑥𝑗
+ 𝜌𝑔𝑗 +

𝜕
𝜕𝑥𝑖

[𝜇 (
𝜕𝑢𝑗
𝜕𝑥𝑖

+ 𝜕𝑢𝑖𝜕𝑥𝑗
) + (𝜇𝑠 −

2
3𝜇)

𝜕𝑢𝑚
𝜕𝑥𝑚

𝛿𝑖𝑗] (4.3)

The last equation, the energy conservation law is stated in equation (4.4). This equation is derived from
the ϐirst law of thermodynamics. Which states that the change in energy of a system equals the work put
into the system minus the heat lost by the system. The term on the left‐hand side is the change in time of
internal energy per unit of mass. The ϐirst term on the right‐hand side is the contribution of the pressure
change to the energy change of the system. The second and third term indicate the dissipation of energy due
to viscous stresses. The last term expresses the heat ϐlow into or out of the system. In the equation 𝑒, 𝑆𝑖𝑗 and
𝑘 represent the internal energy, strain rate tensor and ϐluid’s thermal conductivity.

𝜌𝐷𝑒𝐷𝑡 = −𝑝
𝜕𝑢𝑚
𝜕𝑥𝑚

+ 2𝜇 (𝑆𝑖𝑗 −
1
3
𝜕𝑢𝑚
𝜕𝑥𝑚

𝛿𝑖𝑗)
2
+ 𝜇𝑣 (

𝜕𝑢𝑚
𝜕𝑥𝑚

)
2
+ 𝜕
𝜕𝑥𝑖

(𝑘 𝜕𝑇𝜕𝑥𝑖
) (4.4)

These ϐield equations and thermodynamic equations provide: 1 + 3 + 3 = 7 scalar equations. The depen‐
dent variables in these equations are 𝜌, 𝑒, 𝑝, 𝑇, and 𝑢𝑗 , a total of 1 + 1 + 1 + 1 + 3 = 7 unknowns. The number
of equations is equal to the number of unknown ϐield variables; therefore, solutions are in principle possible
for suitable boundary conditions.

4.3. Euler equations
Because solving the full governing equations is too time consuming, the equations are simpliϐied. If the vis‐
cous effects are negligible, which is commonly true in exterior ϐlows away from solid boundaries, the equa‐
tions are simpliϐied to the Euler equations [Kundu et al., 2016]. Themass conservation law in equation (4.2),
can be rewritten with the use of the material derivative expressed in equation (4.5) and the mathematical
rule stated in equation (4.6). Furthermore, the mass equation has no viscous terms and therefore stays as it
is.

𝐷𝜌
𝐷𝑡 ≡

𝜕𝜌
𝜕𝑡 + 𝑢𝑖

𝜕𝜌
𝜕𝑥𝑖

(4.5)

and
𝜕 (𝜌𝑢𝑖)
𝜕𝑥𝑖

= 𝑢𝑖𝜕𝜌
𝜕𝑥𝑖

+ 𝜌𝜕𝑢𝑖𝜕𝑥𝑖
(4.6)
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The momentum equation displayed in equation (4.3), has one major viscous term, the one between
square brackets. The term will be equal to zero and disappears from the equation. Finally, the energy equa‐
tion from equation (4.4), also has viscous terms. The second and the third term will be equal to zero. The
inviscid assumption leads to the Euler equations stated in equation (4.7) till (4.9). Instead of using the index‐
based notation, the Euler equations are presented with the more recognizable bold vector notation,

𝐷𝜌
𝐷𝑡 = −𝜌∇ ⋅ u (4.7)

𝐷u
𝐷𝑡 = −∇(

𝑝
𝜌) + g (4.8)

and 𝜌𝐷𝑒𝐷𝑡 = −𝑝∇ ⋅ u+ ∇ ⋅ (𝑘∇𝑇) (4.9)

As already stated above, these equations are accurate for non‐viscous ϐlows, which is ϐlow far away from
the solid boundaries. However, these equations also become appropriate for high‐Reynolds‐number ap‐
plications, where inertial forces tend to dominate the viscous forces. Since this is the case for high‐speed
aerodynamic analysis like this one, the Euler equations become applicable. Here, the pressure forces on the
body will dominate the viscous forces. Hence, an inviscid analysis will give a quick estimate of the primary
forces acting on the body [ANSYS, 2009]. After the body shape has beenmodiϐied to optimize the ϐlying quali‐
ties, anothermore accurate viscous analysis can be performed to include the effects of the ϐluid viscosity and
turbulent viscosity on the lift, drag and side forces. Such a more accurate simulation model, which includes
viscous effect, is possiblewith the Spalart‐Allmarasmodel. This is applicable for low‐Reynolds‐number ϐlows
and is very useful for aerospace applications. However, more advancedmodels will not be discussed further,
due to the simulation time considerations. The inviscid approach is also a must because of the complicated
vehicle geometry, because for these simulations the numerical solver has difϐiculties converging and the in‐
viscid model is sometimes the only way to get the calculation started. However, the viscous effects in the
boundary layers result in an unavoidable error.

4.4. Flow regimes
To give a better understanding of the ϐlow types that are involved while re‐entering the Earth’s atmosphere,
the different ϐlow regimeswill be explained. Not only the subsonic, transonic and supersonic regimeswill be
discussed, but also thehypersonic regimebecause of sub‐researchquestion3. The shapemaynot deteriorate
the ϐlying qualities such that the spaceplane becomes unstable and uncontrollable in the beginning of the re‐
entry.

4.4.1. Subsonic flow
The subsonic ϐlow regime itself is divided into two parts, the incompressible and compressible ϐlow. The
incompressible ϐlow is much easier to work with due to the disappearing density derivative from the gov‐
erning equations. It disappers because for incompressible ϐlow, the density is constant in time and space.
The incompressible condition is only applicable up to aMach number of 0.3. AboveMach 0.3 the ϐlow is gen‐
erally considered compressible, which means that the ϐluid density changes throughout the ϐlow. The upper
limit of the subsonic ϐlow is approximately Mach 0.8. The major difference between subsonic ϐlow and other
ϐlow regimes is the absence of discontinuities in the form of shocks. Because the ϐlow velocity is lower than
the speed of sound, disturbances propagate in all directions. In the case of incompressible ϐlow this would
happen at the same velocity in all directions, while for compressible ϐlow the velocities would be different.

If the viscosity effects are neglected, the ϐlow is also isentropic, or an adiabatic reversible process. Adia‐
batic means that there is no heat added or distracted from the surroundings into the process. The only heat
source that can occur is heat due to friction from the ϐluid ϐlow itself. However, because the ϐlow is inviscid
there is no friction and therefore it is an adiabatic process. A reversible process is a process in which the
entropy does not increase, which means that in an enclosed system with adiabatic walls the direction of the
process can be reversed after any change of state. In subsonic ϐlow there are no non‐isentropic shockwaves
and because there is no entropy production trough friction, the ϐlow is reversible.
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Thus, in inviscid subsonic ϐlow the ϐlow is also isentropic. Thus, the isentropic ϐlow equations can be
used to relate different quantities throughout the ϐlow. In equation (4.10), the ratio between static and total
pressure is expressed as a function of Mach and speciϐic heat ratio. Similarly, the ratio for temperature and
density are expressed in equation (4.11) and (4.12),

𝑝
𝑝𝑡
= (1 + 𝛾 − 12 𝑀2)

−𝛾
𝛾−1

(4.10)

𝑇
𝑇𝑡
= (1 + 𝛾 − 12 𝑀2)

−1
(4.11)

and
𝜌
𝜌𝑡
= (1 + 𝛾 − 12 𝑀2)

−1
𝛾−1

(4.12)

Because in the subsonic ϐlow regime the Reynolds number (due to the decrease in velocity) is lower, the
accuracy of CFD results with the use of the Euler inviscid method becomes less. The viscous forces located
in the boundary layer will be neglected, resulting in a deviation. To visualise these effects an aerodynamic
simulation of the ϐlow around a sphere is performed. By Loth et al. [2021], the drag coefϐicient of a sphere is
determined by different means such as experimental wind tunnel tests and CFD simulations. This data will
be used as comparison and validation of the CFD model settings.

A steady compressible CFD model is made of a sphere with similar ϐlow conditions as the reference data
[Loth et al., 2021]. To reduce the computation time, the mesh structure has been carefully handled. Instead
of making a three dimensional sphere, a two dimensional semicircle geometry is used. Combined with the
axis symmetric ϐlow assumption, this converts to a sphere. The only difference is that the number of mesh
elements is signiϐicantly reduced, allowing ϐlow simulation with more advanced ϐluid models, discretisation
schemes and posting more mesh elements in important ϐlow regions. The mesh density is higher closer
to the cylinder and lower in outer regions. These improvements increase the computation time, but also
the accuracy of the results. Shortly, these settings make the simulation efϐiciently and as accurately as the
computational capabilities allow.

The inlet, outlet and upper boundaries are placed 5, 15 and 7 times the diameter of the sphere away of
the sphere (visually displayed in Figure 4.4). Therefore, the boundaries have a negligible inϐluence on the
ϐlow. The solver is density‐based, which will be explained in more detail later in this chapter in Section 4.5.
The mesh quality is sufϐicient to use more advanced and accurate turbulence models by checking the 𝑦+
value. The 𝑦+ is a dimensionless number, which deϐines the number of mesh elements close to the wall
boundary. The deϐinition of y plus is stated in equation (4.13). Where the 𝑦 is the absolute distance from the
wall, the 𝑢𝜏 the friction velocity and the 𝜈 kinematic viscosity. The physical interpretation of this formula is
that, if the value is satisϐied, there are enoughmesh elements inside the viscous dominant boundary layer for
the ϐluid model to determine ϐlow properties accurately. The required 𝑦+ differs for different ϐluid models.
Furthermore, the ϐlow is assumed to be an ideal gas as explained in Section 4.1,

𝑦+ = 𝑦𝑢𝜏
𝜈 (4.13)

In Figure 4.4, the dynamic pressure of a Mach 0.5 ϐlow around the sphere is visualised. In this ϐigure, and
all other sphere ϐlow visualization ϐigures, the ϐlowmoves from the left to the right side. In front of the sphere
there is a stagnation point and therefore the velocity is low and the stagnation pressure is high. Between
45 and 95 degrees of the sphere a boundary layer starts to arise where the ϐlow velocity and dynamics are
increasing. At theback, ϐlowseparationoccurs, whichhas lowdynamicpressure andvelocity ϐlowproperties.
When the Mach number increases, and therefore also the ϐlow velocity, the wake increases. This behaviour
is typical for subsonic ϐlow.

In Figure 4.5, the drag coefϐicient is plotted for different Reynolds numbers at a constantMach number of
0.5 [Loth et al., 2021]. The line shows the numerical behaviour and the icons indicate different experiments
as validation. In Figure 4.6 a similar presentation is used for Mach 0.8. The Reynolds number equation is
stated in equation (4.14), and is deϐined by the velocity 𝑢, diameter 𝐷, density 𝜌 and dynamic viscosity 𝜇.
Or rewritten towards the kinematic viscosity 𝜈, with the use of the density and dynamic viscosity relation.
The Reynolds number from the simulation at different Mach numbers of 0.5 and 0.83 is roughly equal to
5.8×105 and 9.6×105 respectively. The corresponding drag coefϐicients from the ϐigures are 0.5 and for
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Figure 4.4: Flow around a sphere at Mach 0.5 and Reynolds number of 6×105 .

Figure 4.5: Drag coefϐicient of a sphere for different Reynolds numbers at Mach ∼0.5 [Loth et al., 2021].

Mach 0.83 slightly higher approximately 0.75. In Table 4.2 the simulation results for different ϐluid models
can be found. The inviscid method has for both Mach numbers a lower estimation of the drag coefϐicient
because it neglects the viscous drag. The error is within the 30%, which is the requirement of this research.
The turbulence model k‐omega has a better estimation of the drag coefϐicient, but still a deviation of 0.1
(and slightly better accuracy), a more dense mesh and advanced model gives a better estimation of the drag
coefϐicient as expected,

𝑅𝑒 = 𝑢𝐷𝜌
𝜇 = 𝑢𝐷

𝜈 (4.14)

4.4.2. Transonic flow
The transonic regime is the transition between the subsonic and supersonic ϐlow. The range of the transonic
regime is approximately in between Mach 0.8 and 1.2. The ϐlow is characterised by partly subsonic ϐlow
and in other areas supersonic ϐlow. Thismeans that the shock associatedwith the supersonic ϐlowwill occur
somewhere on the body because locally along the body theMach numberwill be higher than 1 [Mooij, 2015].
This causes the formation of subsonic and supersonic pockets, leading to large pressure gradients. This
phenomenon causes an increase in drag. At the regions where the Mach number is lower than 1, there is
parasitic drag. For the regions where the Mach number is higher than 1, shock waves start to occur. The
parasitic drag which is driven by the shape, is dependent on viscosity. Whereas the wave drag due to the
shock waves is independent on viscosity. The shock wave patterns are strongly dependent on the state of
the boundary layer [Liepmann, 1946]. For instance a change from laminar to turbulent boundary layer at
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Figure 4.6: Drag coefϐicient of a sphere for different Reynolds numbers at Mach ∼0.83 [Loth et al., 2021].

Table 4.2: Drag coefϐicient results of subsonic CFD simulations around a sphere.

Fluid
model

discretisation
scheme

Number
of mesh

elements [#]

Reynolds
[]

Mach
[]

Maximum
𝑦+ []

Drag
coefϐicient []

Inviscid
Second order

upwind 15526 N.D.² 0.5 N.D. 0.43

Standard
k‐omega

Second order
upwind 15526 577372 0.5 0.047 0.47

Inviscid
Second order

upwind 15526 N.D. 0.83 N.D. 0.55

Standard
k‐omega

Second order
upwind 15526 957957 0.83 0.038 0.65

the same free stream Mach number, changes the ϐlow pattern and pressure distribution considerably. The
shockwaves can interact with the boundary layer in a similar manner as in a reϐlection of the shock wave
from a free surface. In contrast with the boundary layers of the subsonic ϐlow, the pressure gradient normal
to the boundary layer is of the same order as the pressure gradient parallel to the boundary layer.

The transonic ϐlow is difϐicult to simulate because of the formation of these pockets. An automatic mesh
reϐinement is added to the CFD sphere simulation. This reϐinement checks theMach gradient in between the
mesh elements while iterating the governing equations. At every 50 iterations the mesh will be reϐined in
areas where the gradient exceeds 0.05 Mach. Hereby, the mesh elements located in the shock wave, which
have similar mesh density as the free stream ϐlow, will be reϐined. This increases the accuracy of the results
because the ϐlow properties are determined more reϐined. A visualisation example of such a mesh element
reϐinement can be seen in Figure 4.7. This reϐinement feature contributes to the efϐiciency and accuracy of
the CFD simulations.

The sonic condition (Mach equal to 1) is simulated. Even with the use of the automatic mesh reϐinement,
converging the governing equations is difϐicult. A step by step approach is required to get converging results.
Startingwith the ϐirst order discretisation scheme and followed by a second order discretisation scheme, this
gives a better start solution for the more advanced scheme. And similarly from the inviscid model towards a
turbulent model. The Reynolds number for these conditions is equal to 1.3×106, which is just outside of the
graph presented in Figure 4.8. However, the regression seems to behave linear for a higher Reynolds number.
The corresponding drag coefϐicient for Mach 1 is approximately 0.8 based on Loth et al. [2021]. The inviscid
method, with a second order upwind discretisation scheme, resulted in a simulated drag coefϐicient of 0.77
(error of 3.75%). This result is well within the required accuracy demands, the reason for the accuracy

²N.D. is short for not deϐined. The Reynolds number and y‐plus are not deϐined because there is no viscosity (dividing by zero).
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Figure 4.7: Visualisation example of the automatic mesh reϐinement. The mesh elements
that are exceeding a Mach gradient of 0.05 are shown.

Figure 4.8: Drag coefϐicient of a sphere for different Reynolds numbers at Mach ∼1 [Loth et al., 2021].

improvement compared to Mach 0.5 is that the Reynolds number is slightly increased and the model has an
adapted andmore advancedmesh (higher density mesh). The standard k‐omega, with second order upwind
scheme ϐluid model resulted in approximately 0.80. The accuracy in the drag coefϐicients becomes closer
with more advanced ϐluid models.

4.4.3. Supersonic flow
In the supersonic ϐlow regime, theMachwaves combine and create a so called shockwave. This occurs when
the velocity of the ϐlow is higher than the velocity of sound. The supersonic ϐlow regime is from Mach 1.2
until Mach 5, at Mach 5 the ϐlow becomes hypersonic. Flow across the shock wave strongly differs in ϐluid
properties. In the supersonic ϐlow regime the ϐlow is irreversible and thereby not isentropic due to these
shock waves. The shock wave will arise from the leading edge of the sphere and the shock will be detached.
If the shock wave is perpendicular to the ϐlow direction, the shock wave is called normal shock wave. If
there is an inclination angle with respect to the upstream ϐlow, the shock is called an oblique shock wave.
Such a bow shock wave is also clearly visible in the CFD simulation of the sphere. In Figure 4.9, the dynamic
pressure is visualised for a ϐlow of Mach 3. For the oblique bow shock the following ϐluid property equations
are derived by Kundu et al. [2016],

𝑀22 =
(𝛾 − 1)𝑀21 + 2
2𝛾𝑀21 − (𝛾 − 1)

(4.15)
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Figure 4.9: Flow around a sphere at Mach 3 and Reynolds number of 3.5×106 .

𝑝1
𝑝0
= 2𝛾𝑀21 − (𝛾 − 1)

𝛾 + 1 (4.16)

𝑇1
𝑇0
= [2𝛾𝑀21 − (𝛾 − 1)] [(𝛾 − 1)𝑀21 + 2]

(𝛾 + 1)2𝑀21
(4.17)

and
𝜌1
𝜌0
= (𝛾 + 1)𝑀21
(𝛾 − 1)𝑀21 + 2

(4.18)

The sphere CFD simulation in betweenMach 1.5 and 2 had a slight over estimation of the drag coefϐicient.
This is due to the converging issues, similar as in the transonic regime. If there is less convergence, the ϐlow
properties are less accurately determined, which interferes with the pressure distribution and therefore the
drag coefϐicient. However, at Mach 3 and again a slightly higher Reynolds number, the inviscid method and
the turbulent models both became more accurate. The drag coefϐicient is approximately 1 at this condition
shown in Loth et al. [2021], and the simulated inviscid method had 0.99 whereas the k‐omega had 1.05.
Overall, with increasing Reynolds number the inertial force becomesmore important than the viscous force.
Still, the inviscid method is well within the accuracy demands of the model.

4.4.4. Hypersonic flow
For this research the subsonic till supersonic regime is the most important. However, because of research
question 3., the ϐlying qualities in the hypersonic regime also have to be satisϐied after optimizing the ϐlying
qualities for the lower regimes. From the assumptions stated in Section 4.1, it became clear that hypersonic
ϐlow is difϐicult to simulate because the chemical reactions occur. In this regime the temperatures become
extremely high leading to dissociation and ionization of the molecules (as shown in Figure 4.3). The hyper‐
sonic regime starts from Mach 5 until re‐entry speeds Mach 25.

Because a real gas simulation requires too much research time, a simulation with the current settings is
performed to see the deviation. For a Mach 10 simulation at altitude and therefore ϐlow conditions along
the re‐entry trajectory of the HORUS, the converging process has difϐiculties. The discretisation scheme is
lowered to a ϐirst order upwind scheme, the mesh elements are decreased and the automatic reϐinement is
not initiated. For the inviscid method, after 5000 iterations the drag coefϐicient is equal to 1.0258. There
are somemesh elements which have outliers in the ϐlow properties which create difϐiculty for the solution to
converge. These outliers can be seen in Figure 4.10 and create an error in the solution. To make the solution
converge, a hypersonic solution steering option is required which starts initiation of the ϐlow ϐield with a
hypersonic ϐlow. This reduces the iteration number and results in a less deviated start solution. (More details
about solution steering will be explained later in this chapter.) The more advanced CFD setting resulted in a
converged drag coefϐicient of approximately 0.95 (Figure 4.11). (This results in an accuracy error of 12%.)
Both simulations with or without enabling the solution steering setting result in the same outcome, the only
difference is that less often divergence occurs and less computation power is required. The error between
the literature and the simulated hypersonic results is overseeable, but the difϐiculty is the converging part
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Figure 4.10: Flow around a sphere at Mach 10 and Reynolds number of 12.1×106 .

Figure 4.11: Drag coefϐicient of a sphere for different Reynolds numbers at Mach ∼ 10 [Loth et al., 2021].

of the hypersonic simulation and this is even with a very simplistic geometry. Thus, creating accurate and
converging hypersonic solutions for the complex three dimensional HORUS geometry will be challenging.

At this high Mach number, the ϐlow separates at just upstream of 90 degrees and leads to a weak recom‐
pression shock at this location. At higher Mach numbers where the ϐlow is hypersonic, the standoff shock
becomes very close to the particle; it begins to interact with the boundary layer and to create a shock layer.
Further downstream, a oblique shock with a very shallow angle forms while the ϐlow separation shear layer
becomes steadier, because it is more controlled by gas dynamics than turbulent instabilities. The result of
this compressibility is a higher contribution of the pressure drag generally leading to a higher drag coefϐicient
[Loth et al., 2021]. In Figure 4.12, the difference between supersonic ϐlow and hypersonic ϐlow is visualised,
these results correspond to the ϐlow ϐields features of the CFD simulations shown in Figure 4.9 for Mach 3
and Figure 4.10 for Mach 10. The shockwave becomes more narrow with increasing Mach number. In the
ϐigures it is also visible that the separation occurs further downstream.
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Figure 4.12: Shadowgraphs showing ϐlow around spheres, the left ϐigure is at supersonic conditions (𝑀 ∼ 2.5), and the right ϐigure
hypersonic conditions (𝑀 ∼ 7.6) [Loth et al., 2021].

4.5. HORUS simulation
From this point the ϐlow assumptions, analytical formulation, ϐlow regimes and numerical simulation are
discussed and studied. In this section the simulation of the HORUS‐2B will be performed. The section starts
with the geometry, followed by the mesh generation and ϐinally there are the CFD simulation settings.

4.5.1. Geometry
To satisfy the system requirements, the HORUS dimensions should correspond with the reference sketch
of Figure 2.11. With the use of the program SolidWorks the HORUS‐2B design is created, the solid body is
presented in Figure 4.14 and thedesign drawing is shown in Figure 4.13. Themost complex part of the design
is the curvature of the wing, winglet and nosecone, and the intersection between the wing and the fuselage.
Because the three dimensional contours require more dimensions to fully deϐine the curves. Especially the
creation of thewinglet which has no clear reference coordinates due to the already three dimensional curved
wing. The only straight part of the body is the fuselage until the start of the nosecone. That iswhy the creation
of this complex body starts bymaking the fuselage. To create the smoothwing andwinglet the choice ismade
to create them as one solid part, which leads to a smooth transition of curves between the wing and winglet.
The intersection between the wing and the fuselage, more speciϐically the intersection between the wing
and the nosecone, is challenging because the different parts are three dimensional curved and need to align
perfectly. The program requests fully aligned pieces with no gaps to create a single solid body. A solution is
found by making the parts overlap and trim the overlapping volume.

Thus, the starting point of the creation of the HORUS geometry is making the fuselage, which is refer‐
enced by the origin. Because the geometry is symmetrical in the XZ‐plane of the body ϐixed reference frame,
the choice is made to create only halve the body and use the mirroring feature to generate the whole body.
This tool reduces the time required to design the HORUS spaceplane. Usually for simplifying the CFD simula‐
tion the boundary condition symmetry is used. Therefore, only half the body and mesh volume/elements is
required leading to a signiϐicantly decrease in simulation time. Similarly, as the axis‐symmetric function to
simulate the sphere in the previous section. However, these features assume that the ϐlow is plane‐symmetric
or axis‐symmetric, and because the aerodynamic simulations require angle‐of‐attack and angle‐of‐sideslip
variations this assumption does not hold. If only the longitudinal forces/moments were required, the plane‐
symmetric CFD function could be used and would simplify the problem signiϐicantly. The simulations could
be separated into twomodels, whereby the longitudinal requires halve the mesh volume, but a separate cre‐
ation of such an automatic model requires more time than the increase in simulation time.

After the creation of halve the fuselage, the nosecone is attached by creating a three dimensional design
drawing which curved contours are approximately the same as in the reference sketch. The next part is
the nose tip which is axis‐symmetrical around the x‐axis and is therefore pretty simple to design by a two
dimensional sketch. The following part is the creation of the wing and winglet in one piece. To be able to
do so, one design sketch is created with in total more than 150 elements, which consist of reference lines,
design lines and curved three dimensional lines. These lines are all fully deϐined by dimensions and relation
constraints between lines and nodes. This sketch is the most computational power demanding part of the
design. With the function boundary boss/base the outer curvature lines are used to create a solid part. The
ϐinal part that has to be created is the body ϐlap which is mostly straight and easy to implement. For the
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Figure 4.13: The HORUS‐2B design drawing based on the reference sketch.

elevons and rudders, the bodies are cut out of the wing/winglet and are deϐined as a part on their own,
to create a smooth overlap between these parts (similarly as the reference sketch). The parts have some
additional volume in the area where the rotation‐axis of the deϐlection surfaces are located, which makes
sure that there is no gap when rotating. Overall, the creation of HORUS‐2B geometry is almost identical as
the reference sketch.

The HORUS generated body is subtracted from the ϐluid volume, because there is no investigation re‐
quired of the stresses acting on the vehicle itself. This leads to a volume without the vehicle volume, which
is basically the space where the ϐluid is ϐlowing. At this point the volume and surfaces are named because
they are identiϐied as boundary conditions and type of volume (ϐluid/solid) later. One important aspect of
deϐining the ϐluid volume is the size. There should be enough space in front and after the object related to
the ϐlow direction, because the ϐlow initiation at the boundary conditions may not affect the ϐlow ϐield and
therefore the aerodynamic forces. For the sphere simulation in the previous section, similar dimensions as
the literature where used. For the HORUS simulations, the distance between the boundary conditions and
the centre of the spaceplane is 30 meter upwards and sidewards (Z and Y‐axis body ϐixed reference frame).
In front of the spaceplane 40meters and afterwards 80meters (X‐axis body frame). Thismakes sure that the
ϐlow is not forced in a certain direction due to the boundary layer. These volume dimensions are validated by
simulating an oversized volume and comparing the aerodynamic forces, to make sure that the mesh volume
is efϐicient. An even more efϐicient mesh volume can be generated by changing the beam‐shaped volume
into a coned volume which is aligned with the shockwave leading to less required mesh elements. However,
in that case the mesh volume needs to be modiϐied for each Mach number, because these variations lead to
variations in shock angle. This adds unnecessary complexity andmore computation time would be required
for generation of the mesh volume than the decrease of computation time due to the CFD simulation.

4.5.2. Mesh generation
Mesh generation is a complex process. A mesh can be structured or unstructured or a combination of both
which makes it essentially structured but until a certain level. The difference is that a structured mesh has
settings which create more or less mesh elements in speciϐic areas. This is a more efϐicient way to generate
a mesh, because important areas where large gradients in the ϐield variables are located will be determined
more detailed and vice versa. Leading to a relatively low number of mesh elements required to visualise and
determine the important details. This is important because more accuracy in the ϐlow properties leads to
more accuracy in the aerodynamic characteristics. A choice was made for the combination, any structured
mesh feature that can be applied is used given that the automation process will not be interfered (more
details in Chapter 5). Hereby, the mesh is as efϐicient as possible for this research. Before going into the
details of the mesh functions applied at themesh generation process, the difϐiculties of mesh generation will
be explained. To be able to generate a mesh, the volume must satisfy the following requirements:
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Figure 4.14: The HORUS‐2B design in SolidWorks based on the reference sketch.

• The ϐluid volume must not contain small cracks. If there are small cracks, the mesh is not able to gen‐
erate mesh elements inside the inϐinite small areas. Hence, these cracks need to be ϐilled up with solid
material. Or, if it is desired to have ϐluid in that area, the crack needs to be increased until a reasonable
sized space is created (relative to the body). Filling up the crack is allowed, because a small area like
that creates a negligible inϐluence on the ϐlow ϐield properties. If the area is increased, the initiated
mesh element size needs to be small enough to place mesh elements in that area.

The HORUS design has such cracks in the area of the deϐlection surfaces. When rotating the ϐlaps
these difϐicult areas arise. Because many simulations of different ϐlow conditions and shapes are re‐
quired, it was chosen to make the areas larger. Thus, making sure the mesh elements can be placed
inside the cracks. Due to the fact that the mesh generation needs to be automated, there is no time to
adjust every single geometry (ϐilling up the cracks). This automated process will be explained exten‐
sively in Chapter 5.

• Another mesh feature is that mesh generation does not prefer (almost) inϐinite sharp edges. This is
because the surface mesh of the spaceplane cannot create good mesh elements around the edge. This
can be solved by cutting of a bit off the edge, leading tomore blunt edges which solves this problem. At
the trailing edge these effects are small, but in the direction of the incoming ϐlow this affects the results
signiϐicantly. Another solution to this problem is to tune the edge proximity valuewhichmakes smaller
mesh elements in these critical areas.

Again the HORUS design has many of these areas. The winglets for instance have sharp edges on
both the leading and trailing edges. Also, the transition from the fuselage to thewing has a really sharp
corner. Another area is the trailing edge of the wing. The choice was made to solve these mostly with
the proximity value which can be seen clearly in Figure 4.15, but also with less sharp corners.

If the mesh requirements above are satisϐied, the focus can be shifted to the mesh efϐiciency. As already
brieϐly indicated, the mesh is efϐicient when there is a high density of mesh elements in the areas where high
gradients in the ϐlow ϐield properties are likely to occur. This would be in the area of the boundary layers,
which is around the spaceplane, in the shockwave area, especially at the nose tip and in the wake of the
spaceplane. In Figure 4.16, the left image is the total mesh volume and the right side is an enlarged version
of the area where the spaceplane is located. In the ϐigure the small elements are indicating the highly dense
mesh and visa versa. Themesh quality is not perfect because in the shockwave area, except for the nosecone
region, the mesh density is not that high. Similarly for the wake, further downstream the number of mesh
elements decreases. In the perfect world the number of mesh elements would be high downstream behind
the spaceplane and also in the shockwave region. And, ideally, rotating and area increasing/decreasing with
angle‐of‐attack variation (for the wake region) and changing with shock angle with increased/decreasing
velocity (for the shockwave region). The regionwhy this mesh is a compromise is due to the limitation of the
automation possibilities, see Chapter 5. However, in the boundary layer region, nosecone, nose tip and in the
beginning of the wake this is accomplished. Also, a low density of mesh elements in less important regions
is accomplished. Lastly, for accuracy reasons it is preferable that the mesh elements are aligned. If the mesh
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Figure 4.15: The surface mesh of the HORUS spaceplane design.

Figure 4.16: A cross section in the XZ‐plane of the body ϐixed reference frame of the ϐluid volume mesh.
(The right picture is an enlarged visualisation of the spaceplane area.)

elements are stacked as ϐine and consistent as possible, there are less peaks in the ϐlow properties between
different mesh nodes because of varying mesh note distance.

To obtain the mesh visualised in Figure 4.16, the following settings are used. The poly‐hexcore mesh
element type is used. This type is specialised in generating the best quality mesh elements in the shortest
generation time by using the relatively newMosaic meshing technology³. It accelerates themeshing process
with a reduced face count, higher quality cells and efϐicient parallel scalability. Several settings are used for
the cracks and sharp edges. In the settings the proximity for curves is initiated and special features to create
elements in the gap are used. After which the creation of the surface mesh is generated with a deϐined mesh
surface element size (Figure 4.15). From this point, the named of boundary conditions are used to deϐine a
reϐinement at the wall (which is the spaceplane). There are 10 layers applied at the wall boundary and an
increase in layers in the nose tip area. Lastly, the bulk volume mesh is generated after deϐining the mesh
element size.

4.5.3. CFD simulation
The CFD simulation basically solves the governing equations in a numerical manner by iteration. As ex‐
plained in the beginning of this chapter, certain simpliϐications are applied. Based on the purpose of this

³The ANSYS Fluent ofϐicial website: https://www.ansys.com/products/ϐluids/ansys‐ϐluent/mosaic‐meshing, accessed at 29/11/2021.
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research and the results shown in the example sphere simulation, the choice was made to use the most sim‐
plistic available models. All the settings for the HORUS simulation are stated below:

• Density‐based solver: Traditionally thedensity‐based solver is preferredover thepressure‐based solver
for compressible ϐlows. Nowadays the schemes are updated and both can be used for a wide range of
conditions. However, because in this research the velocities are extremely high, the density‐based
solver is selected. The difference is that the density‐based solver solves the coupled set of equations
such as continuity, momentum, and energy in a coupled manner. This is slower and more memory
intensive to solve because it solves all equations in one iteration. The pressure‐based solver solves
them in a segregated approach. First it decouples the equations, then it solves the pressure‐velocity
coupling problem by applying various models.

• Steady solution: The governing equations will be iterated until a steady converged solution is found.
In time the wake will ϐluctuate behind the spaceplane, but this is not relevant for this research.

• Euler modes: The Euler equations are selected for the ϐluid model, which is explained extensively.
Therefore, the viscous effects are neglected which is one of the most simplistic ϐluid models.

• Energy equation: The energy equation is added to the governing equations because the ϐlow has com‐
pressibility effects due to the high simulation Mach numbers.

• Fluid properties: The chemical composition of air is selected, with constant molecular weight. For the
speciϐic heat 𝐶𝑝 a piecewise‐polynomial is selected, the temperature slightly changes the speciϐic heat.
For the density the ideal‐gas is selected, which is explained in Section 4.1.

• Boundary conditions: Obviously the spaceplane surface is a wall boundary. The inϐlow boundary con‐
ditions are selected as pressure‐far‐ϐield boundary conditions which is specialised for aerodynamic
simulations with high Mach numbers. These boundary conditions require ambient temperature, pres‐
sure and the free stream Mach number. The direction of the ϐlow is initialised by a vector notation,
which is deϐined by equation Equation 3.2 till 3.4, which requires the implemented angle‐of‐attack and
angle‐of‐sideslip. There is also a pressure outlet boundary condition as a ϐlow outlet.

• Spatial discretisation method: Gradients are needed not only for constructing values of a scalar at the
cell faces, but also for computing secondary diffusion terms and velocity derivatives. For the gradient
the Least Squares Cell‐Based method is used instead of the Green Gauss Cell‐Based method, because
the accuracy is slightly better. On the other hand, it requires a bit more computation power. This
is combined with the ϐirst order Upwind discretisation scheme, which is required to make sure the
solutions converge. The downside is however the lower accuracy compared to a second order scheme.

• Solution steering initialisation: The FMG initialisation solves the problem on the coarsest grid ϐirst,
then interpolates that onto the next ϐiner grid, solves that, and so on. The basic idea here is to give
successively better initial guesses to the solver, making the systems easier and faster to solve. This
initialisation process is enabled to improve the convergence. This initialisation process is key to create
convergence for complex shapes like the HORUS, given that there is not much available simulation
time. Normally, for high Mach numbers a step‐by‐step increase of the Mach number is required to
reach convergence. However, FMG initialisation helps this process signiϐicantly.

• Iterations and convergence: For the HORUS simulations in the TAEM phase around 75 iterations are
required to converge. The simulation settings are set tomaximum100 iterations before the simulation
is terminated.

• Aerodynamic output: The aerodynamic forces in the body ϐixed reference frame are translated to the
forces in the aerodynamic reference frame by Equation 3.1.3. The moments require the aerodynamic
reference point which is implemented. Both the forces andmoments are converted to coefϐicients with
the use of the reference values (referencevehicledata). The equations are state below:

M𝐵 = (
ℒ
ℳ
𝒩

) = �̄�𝑆𝑟𝑒𝑓 (
𝑏𝑟𝑒𝑓𝐶𝑙
𝑐𝑟𝑒𝑓𝐶𝑚
𝑏𝑟𝑒𝑓𝐶𝑛

) , (4.19)
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Figure 4.17: HORUS CFD simulation for a Mach 2.5 ϐlow. With an additional cross section at the XZ‐plane of the body ϐixed reference
frame to give a better ϐlow visualisation. On the left side the local Mach number. In the picture there can be seen that at the nosecone a
stagnation point arises, large deviations in ϐluid properties in the shockwave and an increase in velocity in between the fuselage and

the winglet. The wake is another larger stagnation point in the ϐlow where ϐlow separation occurs.

and F𝐴 = (
𝐷
𝑆
𝐿
) = �̄�𝑆𝑟𝑒𝑓 (

𝐶𝐷
𝐶𝑆
𝐶𝐿

) . (4.20)

with �̄� the dynamic pressure, 𝑆𝑟𝑒𝑓 the reference area, 𝑏𝑟𝑒𝑓 the width reference and the 𝑐𝑟𝑒𝑓 the
length reference.

As anexample, the simulationofMach2.5 is simulatedwith conditions along the trajectory. In Figure4.17,
the local Mach number in the ϐlow ϐield can be seen. In this view an XZ‐plane is added to see the ϐlow around
the HORUS spaceplane. As expected there is a stagnation point at the nose tip and just after the fuselage.
From the nose tip there is a shockwave similarly as in the simulations of the sphere. The local Mach number
starts to increase at the back of the wing because of the low pressure. Further away from the spaceplane the
properties are less accurate because themesh density is low. This is visible in Figure 4.18where the dynamic
pressure is visualised, in the wake of the vehicle the gradients between elements increase and the solution
is less smooth.

4.5.4. Mesh density influence
From thismoment all the settings to performaCFD simulation, aswell as the difference between ϐluidmodels
and their accuracy, have been explained. However, for this study an optimisedmeshwith the desired balance
between computation time and accuracymust still be achieved. The system requirements state that one CFD
simulationmust not exceed 60 seconds of simulation time and achieve themost optimal result accuracy. This
last part is already established with the most optimal mesh settings given the automation requirement. For
this shortmesh study, which is already a small validation of the CFDmodel, 4 conditions for differentmeshes
will be simulated. TheMach number is varied between 1.5 and 2.5, and the angle‐of‐attack is varied between
0 and 20 degrees. The used CFD settings for this study and for all the HORUS simulations in the future are
stated in Subsection 4.5.3 unless indicated otherwise.

The results are presented in Table 4.3. The ϐirst twomeshes arewith the settings used in Subsection 4.5.2
and the last mesh is with slightly modiϐied geometry andmeshwhichwas required for the automation of the
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Figure 4.18: HORUS ϐlow simulation for a Mach 2.5 ϐlow. With an additional cross section at the XZ‐plane of the body ϐixed reference
frame to give a better ϐlow visualisation. On the left side the local dynamic pressure. In this visitation the shockwave and the wake

region becomes more clear. There are large deviations in dynamic pressure visualised by the blue colored area.

model (see Chapter 5). The meshes are from high density and quality till low. Even lower meshes are cre‐
ated but resulted to less convergence and therefore a lower accuracy. The simulation time for each iteration
decreases with mesh density which is as expected. The mesh used for the ϐinal model is below 0.5 seconds
(fourth row of the table) and leads to a total simulation time for 100 iterations of 50 seconds. Thus, the
system requirement is satisϐied.

The results are compared with the reference data from Cucinelii and Müller [1988], the last two rows in
the table represent the relative error between the reference and simulation results. For the ϐirst twomeshes
the accuracy does not differ much, for some conditions the ϐirst mesh is better and for other conditions the
second mesh is better. Only for 0 angle‐of‐attack the high density is slightly better. This is logical because
the cell number is still in the same order, the mesh elements are structured slightly different, and the ϐinal
iteration number can be different (because every mesh is unique). However, from this comparison it can be
concluded that the high density mesh is unnecessary (in this order of mesh elements) because the accuracy
improvement is small. Lastly, themeshused in the automationmodelwith even lessmeshnodeshas a slightly
worse accuracy and lower simulation time. In this simulation the mesh element size and the mesh element
type is changed due to the change in software program that is required for the automation process explained
in Chapter 5. The objective of this section is to show that the target CFD simulation time is achieved and
what the effects are on the accuracy of the aerodynamic characteristics due to the number of mesh elements.
Overall, the result accuracy is reasonable given the initiated mesh, CFD settings and simulation time. Only at
zero angle‐of‐attack (last two rows and, ϐirst and third columns of each mesh grid), the results deviate more
than desired, a deviation of approximately ‐200% for the lift coefϐicient and 40% for the drag coefϐicient.
The reason for the deviation is due to the details in the design. The nosecone design and the wing leading
edge bluntness, are not deϐined accurately in the reference sketch, a small deviation in nosecone tip height is
leading to large deviations in the lift coefϐicient. The SolidWorks nosecone tip height should have been lower
leading to more lift, this is especially important at zero angle‐of‐attack. With a non‐zero angle‐of‐attack the
air is ϐlowing at the correct side (over and under the fuselage), and is less inϐluenced by the correct point
direction of the nosecone. In Chapter 7, this behaviour is observed and therefore validatedwhen inϐluencing
the nosecone height dimension parameter. For the drag coefϐicient it is due to the slight deviation of the
nosecone bluntness, which is also not perfectly deϐined, shown in Figure 2.11. When increasing the angle‐
of‐attack, the bottom reference area becomes more important and the fuselage bluntness is less dominant.
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Table 4.3: Mesh optimisation results for three different mesh grids.

Mesh 1 Mesh 2 Mesh 3⁴
# Cells 406264 147207 160731
# Faces 1744804 875817 326801
# Nodes 1016472 684151 225162
𝑡 [s] 1.596 0.839 0.494
𝑀 [‐] 1.5 1.5 2.5 2.5 1.5 1.5 2.5 2.5 1.5 1.5 2.5 2.5
𝛼 [deg] 0 20 0 20 0 20 0 20 0 20 0 20
𝐶𝐷𝑠𝑖𝑚 [‐] 0.11 0.34 0.07 0.23 0.13 0.35 0.08 0.23 0.13 0.35 0.09 0.24
𝐶𝐿𝑠𝑖𝑚 [‐] 0.02 0.66 ‐0.02 0.46 0.02 0.68 ‐0.02 0.47 0.03 0.67 ‐0.02 0.47
𝐶𝐷𝑟𝑒𝑓 [‐] 0.09 0.36 0.08 0.26 0.09 0.36 0.08 0.26 0.09 0.36 0.08 0.26
𝐶𝐿𝑟𝑒𝑓 [‐] ‐0.02 0.79 ‐0.04 0.44 ‐0.02 0.79 ‐0.04 0.44 ‐0.02 0.79 ‐0.04 0.44
𝐶𝐷𝑒𝑟𝑟 % 24.5 6.7 2.6 12.8 41.8 1.7 1.0 10.9 47.8 2.2 10.5 6.2
𝐶𝐿𝑒𝑟𝑟 % 191.6 16.4 48.3 4.7 214.1 14.3 48.5 6.2 236.0 15.6 47.0 6.8

⁴The mesh that has been used for the automation process is explained in Chapter 5.
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5
Architectural design

The architectural design that will fulϐill the system requirements and therefore the needs of this research is
presented in this chapter. The ϐlightmechanics and aerodynamicswill be integrated and automated such that
the system requirements are satisϐied. The architectural design will be explained step‐by‐step in chronolog‐
ical order. In the explanation of the model, the focus is on the inputs and outputs of each individual part.
Wherefore, the ϐiles or parameters of the in and outϐlow of each program in the block chain become clear.

5.1. Geometry
As explained in the Section 2.5, the objective is to automate the process of aerodynamic modeling such that
different spaceplane shapes can be easily implemented. After determining the aerodynamics, the ϐlying qual‐
ities have to be determined by investigating the ϐlightmodes. Thus, thewhole sequence startswith the space‐
plane shape. There are certain requirements for the shape design:

• The spaceplane shape has to be adjustable, as a result of which different designs can be investigated.

• The design ϐile has to be implementable by the meshing software program.

• The geometry and adjusted geometries have to be suitable for mesh generation.

• A feedback connection has to be established, such that the shape can be optimised.

5.1.1. SolidWorks
These requirements are satisϐied by the software programSolidworks. This software package hasmany extra
functions, which makes the creation of the design easier. Also for connection purposes the program offers
opportunities. Thus, the starting point is a geometry ϐile created by SolidWorks that deϐines the contours
of the spaceplane shape. The geometry used in Section 4.5, needs to be adjusted so that the requirements
stated above are met. The adjustable feature of the geometry is complex, because if there is an adjustment
in some dimension, the whole design and therefore multiple drawings have to be adjusted. These drawings
contain hundreds of constraints each which also have to be satisϐied. Additionally, there are also curved
three dimensional lines, because of the smooth curvatures in the HORUS design, which are less convenient to
move along with the changing shape. Lastly, themost difϐicult demand, a combination of multiple dimension
modiϐications. There are many possible combinations and checking for design errors is a time consuming
process.

To be able to perform these shape adjustments, the different drawings had to be connected to each other
by themeans of equations and dimensions deϐined by the origin. Some adjustable dimensions required extra
dimension features, which are solved by simple equations. For instance, for the fuselage lengthmodiϐication,
the wing attached to the fuselage has to move along with the fuselage. Otherwise unrealistic designs will be
made, where the wing sticks out in front of the fuselage. The small overlap of the different bodies (nose,
fuselage and wing) are trimmed away.

55
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Table 5.1: Adjustable spaceplane parameters and there ranges.

Parameter name Original value Upper limit Lower limit
1. Fuselage width 2.5 m >4.5 m 2 m
2. Fuselage height 1.57 m >3 m 1 m
3. Nosecone height 1.5 m 2.0 m 1.0 m
4. Fuselage length 10 m >15 m 5 m
5. Fuselage bottom curvature width 5.5 m 6.6 m 4.5 m
6. Fuselage bottom curvature height 1.5 m 2 m 1 m
7. Wing width 3.1 m 3.9 m 2.8 m
8. Wing corner width 1.5 m 2.5 m 1.2 m
9. Wing corner length 4.8 m 5.5 m 4.6 m
10. Wing thickness 0.2 m 0.3 m 0.18 m
11. Winglet bottom length 4.5 m 4.7 m 4 m
12. Winglet top length 2.5 m 3.5 m 2.2 m
13. Winglet length 3.2 m 4.5 m 2.5 m
14. Winglet angle 12 deg 25 deg 5 deg
15. Winglet angle back 20 deg 30 deg 10 deg
16. Elevon length 1.4 m 2 m 1.3 m
17. Rudder length 1.2 m 1.4 m 1.1 m
18. Rudder height bottom 0.8 m 1.2 m 0.6 m
19. Bodyϐlap length 2 m 2.5 m 1.8 m

Thus, the input of the geometry ϐile are parameters which are shape dimensions. These adjustable pa‐
rameters and their range are stated in Table 5.1. These adaptable dimensions are assumed to have no impact
on the thermo‐mechanical load limits in the beginning of the re‐entry trajectory. Most of the parameters are
straightforward, but some parameters need extra explanation. The fuselage bottom curvature width and
height, are indirectly related to the angle at which thewing is positioned. For example, if there is zero height,
the wings and fuselage are horizontally aligned. The wing corner width and length are parameters related
to the location of the corner in the wing. The winglet bottom and top length, deϐines the wideness of the
winglet, at the bottom where the winglet is attached to the wing and at the tip. The winglet angles are the
orientation of thewinglet, deϐined backwards andoutwards. The parameters related to the base of the space‐
plane are presented in Figure 5.4 till 5.18 and the parameters related to the deϐlection surfaces are presented
in Figure 5.19 till 5.22. A visualisation of these adjustable parameters inside the SolidWorks drawings are
shown in Figure 5.1 for thewing, and in Figure 5.2 for the fuselage parameters. In these ϐigures the adjustable
dimensions have a pink color for clarity.

5.1.2. ANSYS DesignModeler
The output of the SolidWorks program is a computer aided design (CAD) ϐile. This ϐile contains the main
body and ϐive smaller bodies which are the deϐlection surfaces (rudders, elevons and body ϐlap). To be able
to use the ANSYS environment, the bodies have to be implemented by a geometry program named ANSYS
DesignModeler. In this program the mesh geometry will be created. However, ϐirstly, the orientation angles
of the deϐlection surfaces will be deϐined and added to the input parameters. The following parameters were
added: body ϐlap deϐlection angle 𝛿𝑏𝑓 , left elevon deϐlection angle 𝛿𝑒,𝑙 , right elevon deϐlection angle 𝛿𝑒,𝑟 , left
rudder deϐlection 𝛿𝑟,𝑙 and right rudder deϐlection 𝛿𝑟,𝑟 . After deϐining the orientation of the deϐlection sur‐
faces, the bodies are attached to each other and overlapping parts are trimmed away. This body is subtracted
from the desired beam‐shaped volume which represents the mesh. The output of this program is also a CAD
ϐile which contains a volume in which the mesh will be created. A visualisation of the volume subtracted by
the spaceplane design is presented Figure 5.23.

5.1.3. ANSYS Meshing
The next program in the sequence is the meshing program. Instead of using the Fluent meshing program,
which has been used in Section 4.5, the standard meshing program of ANSYS is selected. The reason for this
choice is that the Fluent meshing program cannot be automated as desired. The standard meshing program
is also developed for ϐluidmodels and does not impose any restrictions. To fulϐill the demands of automation



5.1. Geometry 57

Figure 5.1: Wing design of the adjustable spaceplane. All the pink colored dimensions
are the changeable parameters stated in Table 5.1.

anddecreasing the simulation time, the choicewasmade for anunstructuredmesh. Somespecial features are
added such as reϐinement and alignment of mesh elements. What is different compared to the two meshes
in Subsection 4.5.4, is that the element type here is tetrahedron, because in this program the poly‐hexcore
elements are not available. The reϐinement of mesh elements is used on the leading edges of the vehicle to
improve the accuracy. Whereas, the automatic alignment of mesh elements reduces the distance alteration
between mesh elements, and therefore also improves the accuracy of the results. Because otherwise small
ϐluctuations will be present in the quantities of the ϐluid properties leading to small deviations in the aerody‐
namic characteristics. For every simulation themesh settings will be the same. Themesh is obviously a little
bit different for each geometry, but this is unavoidable with the adjustable shape. By using the same mesh
settings, the mesh qualities will not differ very much, and therefore it is assumed that the result accuracy
difference is negligible.

The automatic mesh generation is very closely connected with the geometry. To create the three dimen‐
sional mesh around the complex spaceplane shape is not simple. Because as explained before, if there are
small cracks, the mesh can often not be generated. These cracks needs to be big enough to create mesh el‐
ements inside or the cracks need to be closed. However, due to the adaptable deϐlection angles, the cracks
change and this makes it more complicated. The reference HORUS‐2B sketch in Cucinelii and Müller [1988],
has deϐlection surfaces that cannot rotate in a real‐life scenario. Because the rotation axes of the elevons and
rudders are at an anglewith respect to the fuselage, the deϐlection surfaceswould intersect with the fuselage
or the wings (based on this sketch). When the shape intersects itself, the mesh can also not be generated.
Both problems are solved by iterating the geometry of the spaceplane until themeshing program is satisϐied.
The ϐinal spaceplane geometry is changeable, but the shape is slightly altered from the original design to
overcome these problems. The altered spaceplane version is visible in Figure 5.3. The fuselage and wings
have small cuts in the ϐlap areas to make the deϐlection surfaces rotational. Also, the transition between the
wing and the fuselage and the complex curvature in the wing is simpliϐied. The sharp trailing edges of the
wing are slightlymore blunt, tomake sure that themesh can be generated. These are all slightmodiϐications,
that will only result in small aerodynamic errors.
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Figure 5.2: Fuselage design of the adjustable spaceplane. All the pink colored dimensions
are the changeable parameters stated in Table 5.1.

(a) Fuselage modiϐication (b) Elevon and body ϐlap modiϐication

Figure 5.3: The design changes compared to the MBB reference sketch.

(a) Fuselage width high (b) Fuselage width low

Figure 5.4: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).
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(a) Fuselage height high (b) Fuselage height low

Figure 5.5: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Nosecone height high (b) Nosecone height low

Figure 5.6: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Fuselage length high
(b) Fuselage length low

Figure 5.7: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Bottom curvature width high (b) Bottom curvature width low

Figure 5.8: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).
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(a) Bottom curvature height high

(b) Bottom curvature height low

Figure 5.9: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Wing width high (b) Wing width low

Figure 5.10: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Wing corner width high (b) Wing corner width low

Figure 5.11: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Wing corner length high (b) Wing corner length low

Figure 5.12: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).
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(a) Wing thickness high
(b) Wing thickness low

Figure 5.13: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Winglet bottom length high
(b) Winglet bottom length low

Figure 5.14: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Winglet top length high (b) Winglet top length low

Figure 5.15: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Winglet height high (b) Winglet height low

Figure 5.16: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).
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(a) Winglet angle sidewards high (b) Winglet angle sidewards low

Figure 5.17: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Winglet angle backwards high
(b) Winglet angle backwards low

Figure 5.18: Adjustable spaceplane geometry parameter upper and lower limits
(corresponding with Table 5.1).

(a) Elevon length high (b) Elevon length low

Figure 5.19: Adjustable deϐlection surface parameter upper
and lower limits (corresponding with Table 5.1).
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(a) Rudder length high (b) Rudder length low

Figure 5.20: Adjustable deϐlection surface parameter upper
and lower limits (corresponding with Table 5.1).

(a) Rudder bottom height high
(b) Rudder bottom height low

Figure 5.21: Adjustable deϐlection surface parameter upper
and lower limits (corresponding with Table 5.1).

(a) Bodyϐlap length high (b) Bodyϐlap length low

Figure 5.22: Adjustable deϐlection surface parameter upper
and lower limits (corresponding with Table 5.1).
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Table 5.2: Adjustable CFD simulation parameters.

Input parameters Unit Output parameters Unit
Ambient pressure [Pa] Drag force coefϐicient [‐]

Ambient temperature [K] Side force coefϐicient [‐]
Free stream Mach number [‐] Lift force coefϐicient [‐]

Angle‐of‐attack [deg] Roll moment coefϐicient [‐]
Angle‐of‐sideslip [deg] Pitch moment coefϐicient [‐]
Reference width [m] Yaw moment coefϐicient [‐]
Reference length [m]
Reference Area [m²]

Moment reference center
x‐distance [m]

Moment reference center
z‐distance [m]

5.2. ANSYS Fluent
After themeshprogram, the programANSYSFluentwill perform theCFD simulations. This process is already
described in Section 4.5. The settings in the Fluent program will not be altered, hence every simulation has
the same accuracy. In the program Fluent there are several parameters that will be added to the input list.
These parameters are related to the ϐlow conditions and reference values to perform the calculations of the
coefϐicients. Also, the orientation parameters of the spaceplane are added which are required to determine
the stability derivatives. The input andoutput parameters of ANSYSFluent are stated inTable 5.2. The reason
why the orientation is adjusted in this program is to make the simulations faster. Changing the orientation
in the geometry programwould lead to amesh generation for each of the orientations, thus rotating the ϐlow
in ANSYS Fluent is faster. The change in ϐlow orientation only required a vector rotation calculation with
the use of a rotation matrix combined with the angle‐of‐attack and angle‐of‐sideslip. Additionally, the total
mesh volume needs to be increased to make sure that the ϐlow is not inϐluenced by the boundary conditions
if relatively large angle variations are used. However, this is much faster compared to geometry generation
in ANSYS DesignModeler and a mesh generation in ANSYS Meshing for every desired orientation.

5.3. Result processing
The aerodynamic results from the CFD datawill be implemented byMatlab. There, the ϐlying qualitieswill be
determined. As described in Chapter 3, a state‐space model can be made by using the equations of motion.
This investigates the response characteristics by of the different ϐlight modes. The output variables are the
response characteristics, which include the natural frequency, damping ratio and halve time or converted in
imaginary and real values. By comparing the spaceplane shapeswith eachother, an iterative optimisation can
be performed. Also, to see if a stable, safe and controllable ϐlight is performed, the results will be compared
with the military requirements. By evaluating these results the research questions can be answered. The
processdonewith theuseofMatlabwill becomemore clear in thenext section,where the automationprocess
will be described. Matlab is not only for data processing and visualisation, but also as a driver of the CFD part
of this model.
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5.4. Automation
All the individual parts with their respective in and outputs have been explained. In this section, the automa‐
tion and connection between all these programswill be described. The key of the automation is the efϐiciency
of the programs. Similar as the spaceplane orientation which is transferred from the geometry towards the
CFD simulation by not changing the geometry, but the orientation of the ϐlow. This makes the inner loop
smaller and much more efϐicient.

5.4.1. Connections
ANSYS programs
The overarching program of all the ANSYS programs is ANSYS Workbench. This program is used to make
connections between the individual programs. By using a ϐluid ϐlow building block, the programs: Design‐
Modeler, Meshing and Fluent are connected. When the run command is triggered, all the programs will run
subsequently. Each generated ϐilewill be pushed forward to the next program. The in and output parameters
of each of the individual programs are exported to ANSYS Workbench. In this case, the only output parame‐
ters are the aerodynamic characteristics. And the input parameters are the ϐlow conditions, reference values,
the orientation of the spaceplane and the ϐlaps. The parameters are merged and a table of design points can
be made.

SolidWorks with ANSYS
The SolidWorks geometry parameters are connected with ANSYS DesignModeler. In ANSYS DesignModeler,
an inner loop is made with SolidWorks. The parameters of SolidWorks are exported to ANSYS DesignMod‐
eler. In this program, if the value is adjusted, SolidWorkswill be started. The program changes the shape and
checks if the modiϐication of the dimensions is allowed. This means that all the constraints of the sketches
and the usage of the features and functions are satisϐied. Then the CAD ϐile will be implemented in ANSYS
DesignModeler and the sequence continues. The parameters that are exported to ANSYS DesignModeler are
exported again to the overarching program ANSYS WorkBench.

ANSYS with Matlab
Because Matlab is desired to be the driver of the model, because Matlab is preferred for data processing and
result visualisation capabilities. Therefore, a connection has to be established between ANSYS Workbench
andMatlab. To establish the connection, the batch mode of ANSYS is used, instead of using the ANSYSWork‐
bench interface. In this window a simple command line sends a ϐile with a task list that has to be executed
by ANSYS Workbench. This command combined with another command in the Matlab script, which starts
the ANSYS Workbench and delivers that task command, make the connection.

A task can be given toANSYSWorkbenchwith the use of a journal ϐile. This ϐile contains code in theANSYS
language that speciϐies what ANSYSWorkbench needs to do. In this case, the task for ANSYS is pretty simple.
The task is to ϐill the table of design points with the desired values and starts the sequence of programs
for each of the design points. By making multiple design points, the command of starting ANSYS has to be
used only once for each spaceplane design. After the imported aerodynamic data and determining the ϐlying
qualities, another spaceplanedesign canbe createdbasedon theobservations. By creating the table of design
points, the efϐiciency of the model is improved. There is another Matlab script that automatically writes the
task journal with the desired values for the parameters.
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5.5. Overview
To make the model more structured and visual, a schematic block chain is presented in this section. The
ϐirst ϐigure shows the Matlab part which is data processing, directing the model and determining the ϐlying
qualities. The second ϐigure is the CFD simulation block chain.
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Figure 5.23: The Matlab block chain.
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Figure 5.24: The ANSYS block chain including SolidWorks.



6
verification and validation

In this chapter the veriϐication and validation of the model are executed. It starts with a veriϐication of the
geometry used in Chapter 4 and the adjustable geometry created in Chapter 5. Followed by the aerodynamic
characteristics of the ϐinal HORUS spaceplane, which are determined by the aerodynamic simulation part of
the model. The aerodynamic veriϐication and validation will have two parts, one in the supersonic regime
and one in the hypersonic regime. The second part is the veriϐication and validation of the eigenmotion and
therefore the ϐlight dynamics i.e. the dynamic stability.

6.1. Geometry verification
In Subsection 4.5.4 the mesh optimisation was presented. The mesh density variation made sure that the
best accuracy was obtained with the constraint of maximum simulation time. This section covers the vali‐
dation of the geometry, which is slightly changed compared to the original design in Chapter 4, as explained
in Chapter 5. To see the inϐluence of the adapted geometry, both geometries are simulated with the same
mesh settings. A comparison in aerodynamic characteristics is performed for the TAEM phase ϐlight condi‐
tions: Mach 1.5, 2.0 and 2.5. The aerodynamic characteristics are for the nominal condition, whichmeans all
the deϐlection surfaces are set to zero angle of deϐlection. In Figure 6.1 the results are visualised for the lift
and drag coefϐicients as a function of angle‐of‐attack. For the sideforce, roll moment, pitch moment and yaw
moment coefϐicients see Appendix B. The results show that there is a small offset between the two geome‐
tries. The offset increases at zero angle‐of‐attack, and is based on the validation between the aerodynamic
database which will be explained in the next section an improvement [Cucinelii and Müller, 1988]. Thus
the aerodynamic results are slightly artiϐicially improved at zero angle‐of‐attack. This has to be taken into
consideration when discussing the ϐinal results of this research.

Looking at the variables in the ϐlow ϐield, the increased deviation at zero angle‐of‐attack can be clariϐied.
Because at zero angle‐of‐attack the small changes in the bluntness of the wing leading edge and nosecone,
create slightly more airϐlow downwards or upwards. The wing of the original design is smoother compared
to the wing of the modiϐiable geometry, and therefore guides more air downwards, leading to an increase
in lift. For the drag, this is due to the thicker and more curved wing in the original design, which blocks
more air compared themodiϐiable geometry. When the angle‐of‐attack is increased till 20 degrees, the slight
bluntness deviation of the geometries do not inϐluence the ϐlow very much. Because in this condition, the
ϐlow deϐlection is more determined by the bottom area, which is identical to each other. Thus, the decreasing
offset in aerodynamic characteristics is clariϐied. For the lateral direction (angle‐of‐sideslip related) a similar
explanation can be found, only now other parts of the wing (for example the corner in the wing) also lead
to small deviations. The deviation in the lateral direction and moment in longitudinal direction are shown
in Figure B.1 and B.2 in Appendix B. For the lateral direction the accuracy is slightly worse, because the
determination of lateral forces is more sensitive to lower order ϐield variables variations.

69
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(a) Nominal drag coefϐicient (b) Nominal lift coefϐicient

Figure 6.1: The comparison between the original (most similar to reference sketch) and modiϐiable geometry.

6.2. Aerodynamic characteristics verification
In the previous section there is established that there is not much difference in aerodynamic characteristics
due to the change in geometry (for automation purposes). In this section the aerodynamic data will be com‐
pared with the reference data. The ϐirst intermediate results are presented in this section. For the lower
ϐlight regime, Mach 1.2 till 3, aerodynamic reference data are available from Cucinelii and Müller [1988] and
Mooij [1995]. The reference data is discretized for the followingMach numbers: 1.2, 1.5, 2.0 and 3.0, andwill
be used as comparison for the CFD simulations. Because the transonic conditions are difϐicult to simulate, as
shown in Subsection 4.4.2, the choice wasmade to simulate fromMach 1.5 till 2.5. (The chosenMach 2.5 up‐
per limit is the TAEM interface point.) For the Mach 2.5 simulation, the reference data is linearised between
Mach 2.0 and 3.0. The CFD results are presented similarly as in the literature, the forces and moments in
the longitudinal direction are shown depending on the angle‐of‐attack. And, the forces and moments in the
lateral direction are shown depending on the angle‐of‐attack and the angle‐of‐sideslip. The angle‐of‐sideslip
is linearised between 0 and 2 degrees (which corresponds to the reference data). A higher angle‐of‐sideslip
is not relevant because the controller keeps the angle below 2 degrees [Mooij, 2017]. Similar as in the pre‐
vious section, the aerodynamic characteristics are shown in the nominal conϐiguration, hence zero degrees
deϐlection angle.

The aerodynamic forces are plotted in Figures 6.2a, 6.2b and 6.3a which are the forces in the X, Y, and
Z‐direction of the aerodynamic reference frame. The relative deviation in drag coefϐicient at zero angle‐of‐
attack is inbetween20.6% forMach2.5 and37.1% forMach1.5,which is thehighest deviationover thewhole
simulated angle‐of‐attack range. At 20degrees angle‐of‐attack thedeviations are4.8%and5.9% forMach2.5
and1.5 respectively. This behaviour is due to the uncertainty in the bluntness of the nosecone. In Figure 2.11,
where the HORUS design is presented, the curvature of the nosecone is not fully deϐined and this causes the
deviation in the results at zero angle‐of‐attack. When the angle‐of‐attack increases, the bottom surface of
the HORUS spaceplane is more dominant in deϐlecting the ϐlow. Therefore the results becomemore accurate
for higher angle‐of‐attack. A similar accuracy percentage can be seen for the lift coefϐicient. The highest
relative error is at zero angle‐of‐attack, which is 38.0% for Mach 2.5. At 20 degrees angle‐of‐attack the error
decreases towards 1.6%. The reason for this behaviour is again related to the uncertainty in the nosecone
design for zero angle‐of‐attack. At higher angle‐of‐attack the lift coefϐicient is slightly underestimated, which
is due to the fact that thewakebehind the spaceplane increases, and the ϐlowproperties in this ϐlowregionare
determined with the lowest accuracy. The reason for this is that the wake is created by the ϐlow separation,
which is viscous dominated and currently neglected by the Euler method. For the side force coefϐicient,
the CFD simulations are inaccurate. The trend of the curves and the order of magnitude are correct, but
the inϐluence of the different Mach numbers is almost invisible. The largest deviation is 65.3% (visible in
Figure 6.2b). The reason for the deviation is that the lateral direction is more difϐicult to simulate, because
the order of magnitude of the forces is much smaller than the longitudinal direction. The lateral direction
requires much more mesh elements and advanced ϐluid model, leading to more details in the ϐlow variables
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(a) Nominal drag coefϐicient (b) Nominal side‐force coefϐicient differentiated to the sideslip angle

Figure 6.2: The comparison of aerodynamic characteristics between the original
HORUS data [Cucinelii and Müller, 1988] and the CFD model part 1 of 3.

and therefore resulting in more accurate lateral results. But, due to computational power and the available
research time of this research the mesh quality could not be generated at that level. Also, the spikes in the
ϐlowproperties (for instance in gaps) havemore impact on this direction as discussed in the previous section.
The inaccurate prediction of the side force coefϐicient also leads to inaccurate results for the lateral moment
coefϐicients.

The moment coefϐicients are plotted in Figures 6.3b, 6.4a and 6.4b. These are the moment coefϐicients
around the X, Y and Z‐axis of the body ϐixed reference frame, respectively. Themomentums are depended on
the distance from the reference centerwhich is chosen similarly as the reference [Cucinelii andMüller, 1988]
and visible in Figure 2.11. Starting with the roll moment coefϐicient, the curve trend and order of magnitude
are correct, but there are somedeviations especially at 0 angle‐of‐attack. The error at an angle‐of‐attack of 20
degrees is between11.2 and 30.5%. The reason for the error is again associatedwith the simulation accuracy
of the lateral direction. The order of magnitude is much smaller and harder to determine accurately with
this mesh quality/density. For the yaw moment coefϐicient, similar results can be seen. The yaw coefϐicient
is closely related to the side force coefϐicient and therefore the trends look the same. However, because the
sign is negative instead of positive, the static stability changes from stable to slightly unstable (𝐶𝑛𝛽 > 0 is
statically stable). For the pitch moment the results look pretty accurate, only for the lower Mach of 1.5 the
results start to deviatemore, because of transonic ϐlow simulation difϐiculties. Overall, the coefϐicients for the
longitudinal direction are within the mission requirements, but for the lateral direction the results require
more advancedmeshing, which is beyond the capabilities and available time of this research. The deviations
will lead to errors in the lateral eigenmotions. However, a shape improvement will still be noticeable with
respect to the original spaceplane.

6.2.1. Bodyflap and elevon
Because the pitch moment derivative in the state‐space form includes the effect of the bodyϐlap and elevons
(see Subsection 3.4.1), the increment in pitch moment due to the bodyϐlap and elevons has to be deter‐
mined. Instead of determining all the conϐigurations, the most relevant ϐlap deϐlections are investigated.
Mooij [2015] shows, the ϐlap conϐiguration of a realistic ϐlight control system of the HORUS spaceplane can
be found. At the TAEM interface the bodyϐlap is set to ‐20 degrees and the elevons are set to ‐17.5 which is
required to be able to trim the vehicle. The elevon angle will decrease further when the altitude decreases
to maintain trim conditions. In Figure 6.5 the pitch moment increment due to the bodyϐlap and both elevons
(left and right elevon) is simulated. The reference data is linearised between Mach 2 and 3, similarly as
above. Also for the elevon the deϐlection angle is linearised between ‐10 and ‐20 degrees. Both results are
quite accurate, the errors are in the order of 15%. For Mach 1.5 the accuracy is slightly lower in the order of
30%. For higher deϐlections of the elevons the results become more accurate as can be seen in Figure 6.6.
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(a) Nominal lift coefϐicient (b) Nominal roll moment coefϐicient differentiated to the sideslip angle

Figure 6.3: The comparison of aerodynamic characteristics between the original HORUS data [Cucinelii and Müller, 1988] and the CFD
model part 2 of 3.

(a) Nominal pitch moment coefϐicient (b) Nominal yaw moment coefϐicient differentiated to the sideslip angle

Figure 6.4: The comparison of aerodynamic characteristics between the original HORUS data [Cucinelii and Müller, 1988] and the CFD
model part 3 of 3.

6.2.2. Hypersonic regime
Because the spaceplane concept needs to deal with different ϐlow conditions, the aerodynamic character‐
istics at higher ϐlow velocities need to be determined after the optimisation study. These will be used to
investigate the eigenmotions in the beginning of the re‐entry trajectory. As already discussed in Chapter 4,
the hypersonic regime is more difϐicult to simulate. The iterations of the governing equations converge less
and sometimes even result in divergence due to the spikes in the ϐield variables. These spikes arise mostly
at the tip of the nosecone in the stagnation area. For the validation, Mach 5, 10 and 15 (with nominal ϐlap
conditions) are simulated and compared with the data in Cucinelii and Müller [1988]. Since in the reference
data Mach 15 is not simulated, it is linearised between Mach 10 and 20. The accuracy of the higher Mach
numbers: 5, 10 and 15 is quite good. Similar accuracy percentages can be seen as for the TAEMphase shown
above. The results are shown in Figures 6.7, 6.8 and 6.9. The longitudinal results have a maximum accuracy
percentage of approximately 35%, similar as the results shown in the TAEM phase of the re‐entry. The lift
and pitch coefϐicient at zero angle‐of‐attack are slightly worse. The velocity is increased, which leads to an
increased error in the lift force due to the already explained uncertainty in the nosecone dimensions. The
lateral direction is more accurate than the results in the TAEM phase of the re‐entry. The reason for this
behaviour is that viscous effects become negligible and therefore the inertia effects become dominant with
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(a) Increment in pitch moment coefϐicient due to the bodyϐlap at ‐20 degrees (b) Increment in pitch moment coefϐicient due to both elevons at ‐12.5
degrees

Figure 6.5: The comparison of aerodynamic characteristics between the original HORUS data [Cucinelii and Müller, 1988] and the CFD
model.

increasing Mach number. Because the side force is more accurate, the roll and yaw moment become more
accurate. The lowest accuracy of the yaw moment coefϐicient is 32.9% at zero angle‐of‐attack which is a
signiϐicant improvement. To conclude, the longitudinal accuracy results are similar as for the lower speeds,
the simulation outcome for the lateral direction is improved, but the simulation complexity and therefore
difϐiculty is increased.

6.2.3. Geometry uncertainties
The original HORUS spaceplane design is created based on the reference sketch Figure 2.11. As already
explained, the reference sketch is not precise and is more of an aerodynamic concept drawing. In a real life
scenario, the deϐlection surfaces cannot even rotate the full designated range due to the intersection of the
ϐlapswith the base of the vehicle. Also, some dimensions are doubtful, for instance the curvature dimensions
which are not precisely stated and had to be approximated by other dimensions available in the reference
sketch. These uncertainties in the curvatures have a small effect on the longitudinal direction, but for the
lateral direction where the forces are order of magnitude lower, the accuracy is within the details. Thus,
a small part of the deviation is due to these curvature uncertainties. The aerodynamic deviations are not
due to the cracks created to make the deϐlection surfaces rational, because that is excluded by the geometry
validation in the previous section. The most precise geometry had no cracks to investigate this inϐluence,
therefore the small deviation in the ϐlow ϐield variables due to the cracks is negligible.

6.2.4. Fluid model and mesh setting uncertainties
Obviously, the settings of the CFD model are a simpliϐication of the real life scenario which led to errors
in the results. However, also the overall level of simulation is low, because the most simplistic ϐluid model
and discretization schemes are used. As already explained, the viscous dominated region which is close to
the wall is oversimpliϐied. The turbulent and boundary layer effects are neglected. Because not only the
CFD settings require more simulation also the mesh 𝑦+ value needs to be satisϐied for those simulations
as explained in Section 4.4 which adds unrealistic complexity for this three dimensional geometry. Also, a
decrease of mesh surface element size would increase the details of the shape captured by the mesh. Thus,
these settings in combination with the geometry deviation itself are the reason for the relative big error in
the lateral direction. To obtain the order of magnitude of the lateral forces, the mesh density needs to be
increased extensively.

6.2.5. Reference data reliability
The reference data by Cucinelii and Müller [1988] are determined in a simplistic manner. The target was to
get a quick estimate of the aerodynamic characteristics of the HORUS to see the potential of this design. The
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Figure 6.6: Increment in pitch moment coefϐicient due to both elevons at ‐20 degrees.

data are determined based on simple calculation methods like, linearised potential theory (which is based
on inviscid and irrotational ϐlow assumption), semiempirical methods and hypersonic impact and shadow
ϐlow methods. Also, there were no experimental tests done to validate the data. The reference data also
neglected the real gas effects, bow‐shock‐wing‐interaction, ϐlow separation, and are therefore very simplis‐
tically obtained. Thus, because the aerodynamic data were obtained in 1988 and in that time computers had
less computational capabilities, the data cannot be assumed to be 100% correct. But, that does not mean
that the data generated by this research is correct. Hence, the real percentage error in aerodynamic data is
still uncertain.

(a) Nominal drag coefϐicient (b) Nominal side‐force coefϐicient differentiated to the sideslip angle

Figure 6.7: The comparison of aerodynamic characteristics between the original HORUS data [Cucinelii and Müller, 1988] and the CFD
model for hypersonic speeds part 1 of 3.
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(a) Nominal lift coefϐicient (b) Nominal roll moment coefϐicient differentiated to the sideslip angle

Figure 6.8: The comparison of aerodynamic characteristics between the original HORUS data [Cucinelii and Müller, 1988] and the CFD
model for hypersonic speeds part 2 of 3.

(a) Nominal pitch moment coefϐicient (b) Nominal yaw moment coefϐicient differentiated to the sideslip angle

Figure 6.9: The comparison of aerodynamic characteristics between the original HORUS data [Cucinelii and Müller, 1988] and the CFD
model for hypersonic speeds part 3 of 3.

6.3. Dynamic stability calculations
As indicated in Section 2.4, the validation of the dynamic stability is possible at the TAEM interface point.
Stated by Mooij [1998], there is a simple equilibrium system which determines the attitude and ϐlap deϐlec‐
tion angles to trim the vehicle. At this point the bodyϐlap has an angle of ‐20 degrees and the elevon angle is
‐12.5 degrees. The rest of the conditions along the trajectory and corresponding aerodynamic characteristics
from Cucinelii and Müller [1988] are stated in Table 6.1. At this point along the trajectory the eigenmotions
are determined and presented in Table 6.3. Mooij [2015] states the eigenmotions at similar conditions are
determined. These results are presented in Table 6.2.

The different ϐlight modes are presented in the ϐirst row of the tables with their corresponding eigen‐
values. These eigenvalues result in the period, halve time, damping ratio and natural frequency which are
shown in the next rows. The lower part of the tables show the eigenvectors in magnitude and phase angle.
The results show a similar response of real and complex values. The deviation in the eigenvalues for the spi‐
ral mode 1 and 2, pitch roll/divergence, lateral oscillation, periodic pitch/roll mode and former short‐period
oscillation are 16.4%, 30.2%, 12.8%, 61.0%, 4.3%, 87.7% and 85.6%, respectively. The former short period
oscillation and the lateral oscillation, which have higher in eigenvalues (in magnitude), have more deviation
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Table 6.1: Input variables for the dynamic stability validation (trimmed condition ‐20 degrees bodyϐlap and ‐17.5 degrees).

Variable Value Unit Variable Base Increment
bodyϐlap

Increment
left elevon¹ Total Unit

𝑀 2.5 ‐ 𝐶𝐷𝛼 0.019 ‐0.0007 ‐0.0002 0.0179 ‐
ℎ 26.7 km 𝐶𝐿𝛼 0.033 ‐0.0003 ‐0.0002 0.0323 ‐
𝑃𝑠 2511.02 Pa 𝐶𝑚𝛼 0.0004 0.00011 0.0001 0.00071 ‐
𝑇𝑠 221.650 K 𝐶𝑆𝛽 ‐0.01725 ‐ ‐ 0.01725 ‐
𝑆𝑟𝑒𝑓 110 m2 𝐶𝑙𝛽 ‐0.00139 ‐ ‐ 0.00139 ‐
𝑐𝑟𝑒𝑓 23 m 𝐶𝑛𝛽 ‐0.00048 ‐ ‐ 0.00048 ‐
𝑏𝑟𝑒𝑓 13 m 𝐶𝐷𝑀 ‐0.045 ‐0.0005 0.002 0.0415 ‐
𝛼 16.6 deg 𝐶𝐿𝑀 ‐0.105 0.0065 0.001 0.0965 ‐
𝛾 ‐8.4 deg 𝐶𝑚𝑀 0.015 ‐0.00165 ‐0.0007 0.01195 ‐
𝜎 55 deg

than the others. The deviation is due to the small differences in input variables of the state‐space matrix
A. Such as, atmospheric properties, dynamic pressure, height and aerodynamic forces. These values are
not exactly known from the reference and are leading to these errors in the eigenmodes. The signs are still
correct only the magnitude is slightly off, which indicates still the same stability behaviour only not by the
same level. For instance a higher imaginary eigenvalue will lead to a lower damping ratio and higher natural
frequency, which is by the military requirements worse. Thus, for the highest deviation eigenvalues (former
short‐period oscillation and lateral oscillation), the slight negative offset in eigenvalues is artiϐicially decreas‐
ing the stability for the former short‐period oscillation and increasing the stability for the lateral oscillation.
This offset has to be taken into account when discussing the results of this research.

¹The increment due to the elevon has to be doubled because of the symmetric condition, see Table 2.3.
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7
Results

In this second to last chapter the results of the model will be presented. First, the aerodynamic derivatives
representing the static stability of the spacecraft are discussed. Next, the consequences of the modiϐied
spaceplane shapes are shown. In the second part, the dynamic stability will be evaluated to give the full
stability characteristics. This explains which ϐlight modes are improved and which have become worse. Fol‐
lowed by statingwhich shape features have the potential to improve themilitary requirements of the HORUS
spaceplane. This chapterwill be concludedwith the improved shape, this shapewill be simulated for a higher
Mach number.

7.1. Aerodynamics
To answer the research question, several points along the reference trajectory were chosen to be investi‐
gated. One just below the transonic regime at Mach 0.8, and the others above the transonic regime into the
supersonic regime at Mach 1.5 and 2.5. The ϐlap conϐiguration is assumed to be at a realistic ‐20 degrees
for the bodyϐlap and ‐17.5 degrees for both elevons, to trim the vehicle. The atmospheric properties are set
as deϐined in Table 4.1. The chosen Mach range will show the stability effects in the TAEM phase of the re‐
entry trajectory. The shape modiϐications are compared with the original spaceplane which is extensively
discussed in Chapter 6. Instead of discussing each ϐlow ϐield, the magnitude of the aerodynamic derivatives
will be discussed. Because the ϐlow ϐield will only show the pressure/density/velocity distribution for a
single situation whereas the aerodynamic derivatives show the change in the ϐlow ϐield and therefore the
vehicle’s aerodynamic behaviour. The reference aerodynamic derivatives which are the derivatives of the
original modiϐiable spaceplane are presented in Table 7.1.

In Table 7.1 the derivatives required for the A matrix of the state‐space model are shown. The three
columns represent the three different Mach numbers along the trajectory. The angle‐of‐attack variation is
linearised between the current state and an increment of 5 degrees, for the side‐slip angle the increment is
2 degrees and for the Mach number its an increment of 1. This leads to 12 CFD simulations to obtain one
spaceplane aerodynamic database. The outcome of the aerodynamic simulations will be discussed starting
with the moments. As can be seen in the table, the 𝐶𝑚𝛼 is close to zero as it should be to trim the vehicle and
is therefore quite accurate. The small offset from zero is due to the chosen ϐlap deϐlection. The 𝐶𝑛𝛽 is positive
which indicates static instability for the yawmoment. Thus, insteadof creating a countermomentwhen there
is a non‐zero angle‐of‐sideslip, the spaceplane wants to rotate more. This is also visible in Table 6.1 where
the reference aerodynamic derivatives are shown from the source by Cucinelii and Müller [1988]. However,
the instability is slightly higher in the simulations compared to the reference. The 𝐶𝑙𝛽 is stable and becomes
more stable with decreasing Mach number. For the other derivatives, the drag is slightly underestimated
due to the simplicity of themodel and due to the extra 5 degrees in elevon deϐlectionwhich leads to less drag
and lift at the current attitude. Overall the aerodynamic simulation and ϐlow properties satisfy the accuracy
demands.

All the shape modiϐication with their lower and upper limits as described in Table 5.1 and visualised
in Figure 5.4 till Figure 5.22 are simulated. The whole database is presented in Appendix C (for reference
purposes). Because we are interested in the differences between the original shape and the modiϐied shape,
the relative derivatives deviation is presented in Figure 7.1 till ?? for Mach 0.8, 1.5 and 2.5. For the 𝐶𝑚𝛼 ,

79
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Table 7.1: The aerodynamic derivatives of the original modiϐiable spaceplane.

𝑀 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092
𝐶𝐿𝛼 0.0350 0.0334 0.0241
𝐶𝑚𝛼 1.2919⋅10−5 ‐0.0010 0.0004
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028

Figure 7.1: The aerodynamic derivatives for the modiϐied spaceplane at Mach 0.8 part 1 of 3.

the deviation is close to zero (due to trim condition), which would blow up the relative derivative deviation.
Therefore, it is expressed in the Relative Percent Difference (RPD) which is deϐined as:

RPD = 𝑥 − 𝑦
(|𝑥| + |𝑦|)/2 = 2

𝑥 − 𝑦
|𝑥| + |𝑦| , (7.1)

The RPD value is another way to represent the deviation percentage and is slightly better. However, the
results of the 𝐶𝑚𝛼 are still less convenient to present, because a small deviation compared to zero is still
very large. To make the comparison as equivalent as possible, the moment reference point is scaled. For
example, for the increase in fuselage length the x‐reference length is moved along with a percentage of the
increased length. Similarly in the z‐direction. For the y‐direction this is not necessary because of symmetry.
The displacement of the reference center is a realistic estimation and obviously leads to small deviations for
the moment coefϐicients.

In this chapter there will be only focused on the most relevant or negligible shape modiϐication. The
wing width (Figures 7.1, 7.4 and 7.7) of the spaceplane increases/decreases the deϐlection area. This leads
to a higher lift coefϐicient with increasing angle‐of‐attack and Mach number. Additionally, the pitch moment
depending on Mach increases, because of similar reasoning. The thickness of the wing (Figures 7.1, 7.4 and
7.7) does havemuch impact on the derivatives. ForMach2.5 all the derivative deviations arewithin a range of
10%. The only difference is in the drag coefϐicient depending on the Mach number for lower Mach numbers.
This is due to increased/decreased sharpness of the leading edgewhich has tomove alongwith the thickness
of the wing. The change due to the wing thickness is therefore negligibly small and will be used to improve
the spaceplane shape. The two parameters which change the location of the corner in the base of the wing
(Figures 7.2, 7.5 and7.8) donot effect the outcomemuch and are therefore also negligible. This is because the
range of the parameter is limited by design limitations. There is a small increase in the side force depending
on the side‐slip‐angle and also less drag depending on how streamlined shape becomes.

Increasing the wing top length (Figures 7.1, 7.4 and 7.7) makes the winglet less streamlined, because
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Figure 7.2: The aerodynamic derivatives for the modiϐied spaceplane at Mach 0.8 part 2 of 3.

Figure 7.3: The aerodynamic derivatives for the modiϐied spaceplane at Mach 0.8 part 3 of 3.

the back reference point is ϐixed and therefore the winglet is moving forwards. This affects the lift, drag and
pitch coefϐicients depending onMach signiϐicantly because the spaceplane becomes less streamlined. Hence,
increasing the winglet top length reduces the negative lift force and increases the drag force. For the winglet
height, which basically increases the winglet, the lateral derivatives change. For instance the 𝐶𝑛𝛽 decreases
(more statically stable) with increasing winglet and vice versa. Also, the roll coefϐicient depending on the
angle‐of‐attack is more stable with an increased winglet size. For the bottom length (Figures 7.1, 7.4 and
7.7) of the winglet, which makes the wing less streamlined after the corner, the 𝐶𝐷𝑀 also increases, because
of similar reasoning as thewinglet top lengthparameter. Thebackwards angle (Figures7.2, 7.5 and7.8) of the
winglet is interesting, this shape featuremainly affects the side‐slip‐angle related derivatives. Bymoving the
vertical reϐlecting areamore backwards, themoment arm is increasedwhich improves the𝐶𝑛𝛽 but decreases
the𝐶𝑙𝛽 performance. (These twoderivatives counteract each other.) Thewinglet sideways angle (Figures 7.2,
7.5 and 7.8) is a shape feature which mostly affects the 𝐶𝑙𝛽 . An increase in sidewards angle increases the 𝐶𝑙𝛽
value.

The nose height (Figures 7.2, 7.5 and 7.8) inϐluences the lift, drag and pitch coefϐicients related to the
angle‐of‐attack. This makes sense, because the forces on the nosecone will be more upwards or downwards,
depending on the pointing direction. For the drag it depends onwhether the streamlining is improved, when
the angle‐of‐attack is changed. The effects due to the change in Mach number remain similar.
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Figure 7.4: The aerodynamic derivatives for the modiϐied spaceplane at Mach 1.5 part 2 of 3.

Figure 7.5: The aerodynamic derivatives for the modiϐied spaceplane at Mach 1.5 part 2 of 3.

The fuselage width (Figures 7.3, 7.6 and 7.9) increases the curvature of the nosecone from the nose tip
until the start of the fuselage, which leads tomuchmore force in the lateral direction and therefore improves
the lateral stability derivatives. In the longitudinal direction a similar response can be seen. A wider base
of the vehicle increases the drag forces and also the lift forces because the deϐlection area becomes larger.
Therefore, all the derivatives increase with increasing fuselage width and vice versa. Unlike the fuselage
widthparameter, the fuselageheight (Figures7.3, 7.6 and7.9) parameterdoesnot increase all thederivatives.
This is due to the fact that the expansion/reduction does not change the reference area for the lift force. Thus,
the impact for the angle‐of‐attack related parameters is not inϐluenced signiϐicantly. For the lateral direction,
however, the roll derivative becomes lower and the yaw derivative becomes higher with increasing height.
Hence, for static stability for both parameters a higher fuselage is desired. The change in height affects the
derivatives depending on Mach number the most in a similar manner as the fuselage width. The change in
fuselage length (Figures 7.3, 7.6 and7.9) is one of the parameterswhich is important if the derivatives related
to the angle‐of‐attack need to be modiϐied. Because the reference area becomes larger, there is more lift and
drag gain with increasing angle‐of‐attack.

Lastly, the curvature of the bottom fuselage and wing depending on height and width (Figures 7.3, 7.6
and 7.9) dimensions as explained in Chapter 5 are discussed. This parameter effects all the coefϐicients and
changes signiϐicantly with different Mach numbers. The parameters change the whole design: the fuselage,
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Figure 7.6: The aerodynamic derivatives for the modiϐied spaceplane at Mach 1.5 part 3 of 3.

Figure 7.7: The aerodynamic derivatives for the modiϐied spaceplane at Mach 2.5 part 1 of 3.

wings and thewing andwinglet interaction. The shape parameters can be comparedwith thewing folding of
birds. When the curvature height is increased, the lift and drag becomes less. Thus, the parameters related
to the drag and lift change the most. For the lateral direction, small changes can be seen due to the increase
or decrease of the angle of the wing, which causes more vertical forces to act on this part of the vehicle.
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Figure 7.8: The aerodynamic derivatives for the modiϐied spaceplane at Mach 2.5 part 2 of 3.

Figure 7.9: The aerodynamic derivatives for the modiϐied spaceplane at Mach 2.5 part 3 of 3.
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7.2. Flight modes
The ϐlight modes of the original spaceplane are determined and presented in Tables 7.2, 7.3 and 7.4 for Mach
0.8, 1.5 and 2.5 respectively. Comparing Mach 2.5 with the reference eigenmodes created by the reference
data by Cucinelii and Müller [1988] in Table 6.3, the results look similar. The longitudinal short period os‐
cillation is damped for all the Mach numbers. The phugoid however, which is the longer period oscillation,
is unstable. The eigenvalue has a positive real part which indicates the instability. When the Mach number
is lowered, the phugoid ϐlight modes becomes less unstable. The lateral oscillation, which has a large imagi‐
nary part and a small real part, is close to zero and is therefore on the edge of unstable/stable. The periodic
pitch/roll mode is stable, but has a long period and high halve time. The pitch/roll divergence determined
at Mach 2.5 is slightly unstable. Lastly, the spiral modes are very small and the real part is close to zero. The
halve time is very high which means that it takes a long time to become damped again. Overall, the different
Mach numbers show similar responses, except that for lowerMach numbers the phugoid will have an imagi‐
nary eigenvalue pair. The eigenvalues aremore clearly presented in Figure 7.10which shows the eigenvalues
in the complex plane. To improve the spaceplane it is important to make the unstable eigenvalues become
stable by changing the real part from positive to negative or less positive.

Instead of showing all the tables with the eigenvalues of different shapes or all the values in the complex
plane, the focus will be on the maximum unstable ϐlight mode, which is the eigenvalue of the phugoid mode.
By plotting the maximum real part of the eigenvalues, the improvement or deterioration of the stability can
be shown. In Figures 7.11, 7.12 and 7.13 the maximum real eigenvalues are shown for Mach 0.8, 1.5, and
2.5 respectively. For the different Mach numbers, the results show similar parameters which improve the
eigenvalue. An increase in winglet height decreases the real value by 53% for Mach 2.5. The only difference
is that the eigenvalue gains a complex part. This again effects the damping ratio, but not the doubling time.
For lower Mach numbers, the percentage is approximately the same. The starting eigenvalue at this Mach
number already has an imaginary part and the parameters increase this value slightly. Another parameter
which improves the eigenvalue is the fuselage height, by decreasing this parameter the real part lowers with
45% for Mach 2.5. The parameter that does not create an imaginary part when decreasing the real part is
the wing width (increasing the wingspan), this lowers the eigenvalue by 36% for Mach 2.5. For the lower
Mach numbers, the improvement percentages are a bit lower and they all have an imaginary part as can be
seen in Figures 7.11 and 7.12.

The full eigenmotion eigenvalues are presented in Table 7.5. The downside is that the short period os‐
cillation, periodic pitch/roll rate and the second spiral mode became a little less stable. However, the im‐
provement on the phugoid mode is deϐinitely worth the deterioration in the others. For the fuselage height,
the outcome is slightly worse for the ϐirst spiral mode and slightly better for the second spiral and periodic
pitch/roll mode. By increasing the wing width, the improvement in the phugoid mode is less, but the upside
is that the (negative) impact on the other eigenvalues is also less.

Different parameters are relevant to improve the other ϐlight modes. Starting with the short period oscil‐
lation, the best option for improving the eigenvalue is by increasing the fuselage height and fuselage width.
For the lateral oscillation also an increase in fuselage width is desired. The periodic pitch/roll mode is im‐
proved by increasing the nosecone height or the wingspan. Finally, the spiral modes are improved by the
winglet top length. These results are similar for all the different Mach numbers. Only the percentage im‐
provements for the lower Mach numbers are lower compared to Mach 2.5.

Table 7.2: The eigenmodes of the modiϐiable spaceplane at Mach 0.8.

Short
period oscillation Phugoid

Lateral
oscillation

Periodic pitch/
roll mode Spiral mode

𝜆𝑖 Re ‐0.1975 0.0975 ‐0.0044 ‐0.0186 3.652⋅10−5 0
Im 0 ±0.2248 ±0.5617 ±0.0453 0 0

𝑃(𝑠) Inf 28.0 11.2 138.6 Inf Inf
𝑇1/2(𝑠) 3.5 ‐7.1 157.9 37.3 ‐1.9⋅104 Inf
𝜁(−) ‐ ‐0.398 0.008 0.379 ‐ ‐

𝜔𝑛(𝑟𝑎𝑑/𝑠) 0.198 0.245 0.562 0.049 3.652⋅10−5 0
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Table 7.3: The eigenmodes of the modiϐiable spaceplane at Mach 1.5.

Short
period oscillation Phugoid

Lateral
oscillation

Periodic pitch/
roll mode Spiral mode

𝜆𝑖 Re ‐0.1562 0.0765 0.0003 ‐0.0074 3.824⋅10−5 0
Im 0 ±0.1549 ±0.6088 ±0.0267 0 0

𝑃(𝑠) Inf 40.6 10.3 235.4 Inf Inf
𝑇1/2(𝑠) 4.4 ‐9.1 ‐2480.4 93.8 ‐1.8⋅104 ‐Inf
𝜁(−) ‐ ‐0.443 ‐0.001 0.267 ‐ ‐

𝜔𝑛(𝑟𝑎𝑑/𝑠) 0.156 0.173 0.609 0.028 3.824⋅10−5 0

Table 7.4: The eigenmodes of the modiϐiable spaceplane at Mach 2.5.

Short period
oscillation Phugoid

Lateral
oscillation

Periodic pitch/
roll mode

Pitch/roll
divergence Spiral mode

𝜆𝑖 Re ‐0.2111 0.1715 ‐0.0006 ‐0.0062 0.0378 1.091⋅10−4 0
Im 0 0 ±0.6231 ±0.0149 0 0 0

𝑃(𝑠) Inf Inf 10.1 421.3 Inf Inf Inf
𝑇1/2(𝑠) 3.3 ‐4.0 1231.5 111.2 ‐18.3 ‐6.4⋅103 Inf
𝜁(−) ‐ ‐ 0.001 0.386 ‐ ‐ ‐

𝜔𝑛(𝑟𝑎𝑑/𝑠) 0.211 0.172 0.623 0.016 0.038 1.091⋅10−4 0

Table 7.5: The eigenmodes of the spaceplane with winglet height of 4.5 m at Mach 2.5.

Short
period oscillation Phugoid

Lateral
oscillation

Periodic pitch/
roll mode Spiral mode

𝜆𝑖 Re ‐0.1643 0.0813 ‐0.0005 ‐0.0020 1.461⋅10−5 0
Im 0 ±0.0787 ±0.6532 ±0.0155 0 0

𝑃(𝑠) Inf 79.8 9.6 404.6 Inf Inf
𝑇1/2(𝑠) 4.2 ‐8.5 1476.3 349.1 ‐4.7⋅104 ‐Inf
𝜁(−) ‐ ‐0.718 0.001 0.127 ‐ ‐

𝜔𝑛(𝑟𝑎𝑑/𝑠) 0.164 0.113 0.653 0.016 1.461⋅10−5 0

Figure 7.10: The eigenvalues of the modiϐiable spaceplane for Mach 0.8 (blue), 1.5 (red) and 2.5 (black).
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Figure 7.11: The complex eigenvalue of the phugoid ϐlight mode at Mach 0.8.

Figure 7.12: The complex eigenvalue of the phugoid ϐlight mode at Mach 1.5.
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Figure 7.13: The complex eigenvalue of the phugoid ϐlight mode at Mach 2.5.
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7.3. MIL standards
In this section, the results of the eigenmotionswill be comparedwith themilitary requirements. As explained
earlier, there aremilitary requirements that give conϐirmation for a save ϐlight. These requirements are stated
for the short period, the phugoid and the lateral oscillation.

• The longitudinal short period oscillation, has a requirement based on the damping ratio for this par‐
ticular eigenmotion. For level 1, a damping is required between 0.30 and 2.00. For level 2 (which
is worse), the damping ratio may be lowered to 0.20 and for level 3 (which is the worst case), the
damping may be lowered to 0.15. However, because the eigenvalue of this motion only has a real part,
the motion is aperiodic and therefore the damping ratio is not deϐined. Not only is this the case for
the original spaceplane, but also for all the modiϐied simulated spaceplanes. Stated by Mooij [2015],
this eigenmotion of the original spaceplane will only have an imaginary part at an altitude of approx‐
imately 70 kilometers or higher where the Mach number is in between 15 and 20 and upwards. (For
these calculations the corresponding parameters along that point in the trajectory are used, similar to
this research.) With the shapemodiϐications, the input parameters are kept similar except of the aero‐
dynamic derivatives. Therefore, the eigenvalue results for this eigenmotion are also similar. Thus, the
military requirements for the longitudinal direction can not be compared with the generated results.
Only if higher velocities are simulated this might be the case. Overall, the short period oscillation has
a high real value which means that this mode is most stable compared to the others.

• Thephugoid ϐlightmode, also has requirements depending on thedamping ratio and thedoubling time.
For level 1 the damping ratio must be higher than 0.04, for level 2 the damping must be at least higher
than 0 and for level 3 the doubling time (whichmeans unstablemotion)must be at least higher than 55
seconds. The phugoid mode is already discussed above and has a negative real value which indicates
instability. The eigenvalues for Mach 2.5 of most of the modiϐied spaceplanes and the original space‐
plane again have only a real part (this is shown in Figure 7.13). This again means that the damping
ratio cannot be determined. For the lower Mach numbers, 1.5 and 0.8, all the spaceplanes will have
a conjugate eigenvalue pair with a negative real value. However, because the real part is negative the
damping ratio is negative, which means that the damping ratio becomes an ampliϐication ratio and the
halve time becomes doubling time. Thus, without doing any calculations it can be determined that the
ϐirst and second military requirement levels will not be satisϐied for these Mach numbers and shape
modiϐications. The only option is to decrease the real part of the eigenvalue, whichmakes the eigenmo‐
tion less unstable, (but still unstable), and increases the doubling time. This was already investigated
in the previous section.

The lowest real value for Mach 2.5 is the increased winglet height, this results in a real part of ‐
0.0813 which gives a doubling time of 8.53 seconds (as can be seen in Table 7.5. The doubling time is
not high enough to satisfy the level 3 requirement of themilitary requirements. However, the doubling
timehas improved from the starting value of 4.04 seconds shown inTable 7.4. ForMach1.5, thewinglet
height increases the doubling time to 12.62 seconds and for Mach 0.8 this decreases again to 8.23
seconds. This individual shape modiϐication does not lead to satisfying the military requirements

• The lateral oscillation has military requirements based on the damping ratio, natural frequency and a
combination of both. For each level, all three requirements have to be satisϐied (the natural frequency
requirement may not be valid for this type of vehicle). For level 1 the minimum damping ratio has to
be 0.08, the product of damping ratio and natural frequency has to be higher than 0.15 and the natural
frequency has to be higher than 0.4. Level 2 requires aminimumdamping of 0.02, the product has to be
higher than 0.05 and the natural frequency has to be higher than 0.4. Finally, the level 3 requirement,
requires a damping higher than 0, the combination is not speciϐied and the natural frequency higher
than 0.4.

Because for this ϐlight mode all the spaceplane modiϐications are within the potential to satisfy the
requirement, the results are plotted for Mach 0.8. The damping ratio, natural frequency and the prod‐
uct of both are visualised in Figures 7.14a, 7.14b and 7.15, respectively. For the damping ratio all the
spaceplane modiϐications and also the original spaceplane are just within the level 3 requirement. For
the natural frequency all the spaceplanes (including the original) are far above the level 1 requirement
and for the multiplication of the natural frequency and damping ratio most of the spaceplanes are be‐
low the level 2 requirement. Somemodiϐication such as: the increased wing width, fuselage width and
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(a) the damping ratio (b) the natural frequency

Figure 7.14: The lateral oscillation results of different spaceplanes compared with the military requirements for Mach 0.8.

Figure 7.15: The lateral oscillation results of different spaceplanes compared
with the military requirements for Mach 0.8.

wing corner width the values are barley in the level 2 requirement. The results combined for all the
modiϐied spaceplanes, lead to a satisϐied level 3 requirement for the lateral oscillation, which is not
very good. Additionally, as can be seen in the results, a single change in shape parameter cannot lead
to satisfying the level 2 requirements, due to the low damping ratio. The best option to improve this
ϐlight mode is to decrease the fuselage height, increase the fuselage width and length and increase the
wing width. There are also some parameters such as increasing the winglet height and increasing the
backwards and sidewards angle of the winglet. However, each of these parameters or combined will
probably not lead to level 2, because each of these parameters do not effect damping ratio signiϐicantly.
Unless changing the parameters until unrealistic shape would be generated, which would not be pos‐
sible within the bounds of this model. For Mach 2.5, the damping ratio and the product of the damping
and natural frequency become a little lower. But, overall the results forMach 1.5 and 2.5 look the same.

7.4. Optimising the spaceplane shape
To optimise the shape based on the knowledge gained in the previous sections we must do the following
shape modiϐications. To improve the static stability for the yaw moment coefϐicient depending on the side‐
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(a) 3‐Dimensional view

(b) Front view

Figure 7.16: The ϐinal optimised shape conϐiguration on the left upper side and the original on the right lower side. The fuselage wider
and less high, the winglet and wingspan in increased explained in Section 7.4.

slip‐angle we desire to increase the winglet height. This parameter is also desired to increase the dynamic
stability, in particular for the phugoid ϐlight mode. The fuselage height is preferred to be lowered for the
eigenvalue of the phugoid eigenmode, but this will decrease the short period oscillation and the lateral os‐
cillation. Therefore, this parameter cannot be used to improve the phugoid eigenvalues. Another positive
effect for the phugoid mode is to increase the wing width and therefore the wingspan. The last parameter
which will improve this mode is to increase the fuselage width. For the spiral mode, the winglet top length
is desired to be enlarged, but this will decrease the pitch/roll divergence performance.

Thus, for the next simulation the parameters are set to:

• The winglet height is increased from 3.2 to 4 meters.

• The straight part of the fuselage height is decreased from 1.57 to 1 meter.

• The fuselage width (one side) is increased from 2.5 to 3 meters.

• The wing width is increased from to 3.1 to 3.9 meters.

• The winglet top length is increased from to 2.5 to 3 meters.

These shape modiϐications result in the following shape, as can be seen in Figure 7.16. For the fuselage
and the nosecone there are not that many differences compared to the original. In contrast, the wing and
winglet are enlarged signiϐicantly. The changes in aerodynamic characteristics are shown in Table 7.6. The
fuselage width and wing expansion created more deϐlecting area and therefore more lift with increasing
angle‐of‐attack. Also, the increased winglet creates more deϐlection when the angle‐of‐sideslip is non‐zero.
The drag is reduced because of a lower fuselage and can be noticed when adjusting the angle‐of‐attack. The
static stability of the yaw coefϐicient is improved, especially for Mach 1.5, but still slightly statically unstable.
Thesederivatives are implemented in the state‐space formand the eigenmotions aredetermined. The results
for Mach 0.8, 1.5 and 2.5 are stated in Table 7.7. For this optimised shape the military requirements and the
behaviour in higher Mach regimes will be determined in the next couple of sections.
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Table 7.6: Aerodynamic coefϐicients of the optimised spaceplane shape.

optimised spaceplane
𝑀 0.8 1.5 2.5
𝐶𝐷𝛼 0.0113 0.0145 0.0105
𝐶𝐿𝛼 0.0405 0.0387 0.0274
𝐶𝑚𝛼 0.0005 ‐0.0008 0.0007
𝐶𝑆𝛽 ‐0.0146 ‐0.0147 ‐0.0116
𝐶𝑙𝛽 ‐0.0057 ‐0.0039 ‐0.0017
𝐶𝑛𝛽 ‐0.0011 ‐0.0008 ‐0.0027
𝐶𝐷𝑀 0.0406 ‐0.0684 ‐0.0333
𝐶𝐿𝑀 0.0465 ‐0.0925 ‐0.0559
𝐶𝑚𝑀 ‐0.0391 ‐0.0004 0.0024

7.4.1. Satisfying the MIL standards
The dynamic stability of the different ϐlight modes is discussed here:

• For the longitudinal short period oscillation the real part of the eigenvalue is increased, which indicates
that the eigenmotion is still less dynamically stable (as predicted). However, because the eigenvalue
is still negative, the motion is still stabilising. This is a side effect of optimizing the shape such that
the phugoid manoeuvre becomes less unstable. The eigenvalue still does not contain an imaginary
part and therefore this eigenmotion can still not be comparedwith themilitary requirements from the
source MIL‐F‐8785C [1980] and MIL‐HDBK‐1797 [1997].

• For the phugoid eigenmotion the overall doubling time is improved from approximately 4 seconds to
8 seconds for Mach 2.5. This is not spectacular, but based on our ϐindings in the previous section,
it is difϐicult to achieve a large improvement with the shape parameters and their scopes which are
available in this model. The result is still unstable and far from the level 3 requirement (which is the
lowest). The spaceplane is still very unstable for this eigenmotion.

• The lateral oscillation is stable and slightly improved forMach 2.5, 1.5 and 0.8. This requirementmeets
the required level 3 demands for all three Mach numbers. The damping ratio is above 0 (which is level
3) and becomes closer to the level 2 requirement, but is not level 2 yet. The natural frequency is above
0.4 (which is level 1) and therefore very good. The combination of the damping ratio multiplied with
the natural frequency is in the level 2 requirement. This leads to a total level 3 for this eigenmotion.
But, the behaviour on this ϐlight mode is signiϐicantly improved.

• The periodic pitch has negative imaginary parts aswell for all three differentMach numbers, indicating
stability.

• The spiral modes are slightly positive, but is so small that the doubling time is extremely large. There‐
fore these modes are negligible and can be easily anticipated.

7.4.2. Behaviour hypersonic regime
Tomake sure that for higherMach numbers the spaceplane still has reasonable dynamic stability, the aerody‐
namic derivatives for Mach 5 and 10 are determined and presented in Table 7.8, leading to the eigenmotions
visualised in Table 7.9. For these results the input parameters are changed to the corresponding atmospheric
properties stated in Table 4.1. The imaginary part of the phugoid disappeared again, similar as seen above
for someMach 2.5 shapes. The ϐlightmodes of the higherMach numbers look similar, except for the unstable
pitch/roll divergence. Compared to the eigenmotions at these Mach numbers determined by Mooij [2015],
the outcome looks similar. In these results the longitudinal phugoid and the pitch/roll divergence are un‐
stable. However, for the optimised spaceplane the lateral oscillation is still negative and therefore stable.
Thus, the lateral oscillation is also improved for higher Mach regimes. Overall, the modiϐied spaceplane has
no stability downside in the hypersonic ϐlight regime. In Figure 7.17 a hypersonic ϐlow (Mach 5) simulation
of the optimised shape with 10∘ angle‐of‐attack is visualised.
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Table 7.7: Eigenmotions for different Mach numbers of the optimised spaceplane shape.

Mach 2.5
Short

period oscillation Phugoid
Lateral

oscillation
Periodic pitch/

roll mode Spiral mode

𝜆𝑖 Re ‐0.1715 0.0847 ‐0.0007 ‐0.0072 0.0001 0
Im 0 ±0.1010 ±0.6481 ±0.0148 0 0
𝑃(𝑠) Inf 62.2 9.7 423.5 Inf Inf
𝑇1/2(𝑠) 4.0 ‐8.2 1013.2 96.7 ‐5574.8 ‐Inf
𝜁(−) ‐ ‐0.643 0.001 0.435 ‐ ‐

𝜔𝑛(𝑟𝑎𝑑/𝑠) 0.171 0.132 0.648 0.016 0.0001 0
Mach 1.5

Short
period oscillation Phugoid

Lateral
oscillation

Periodic pitch/
roll mode Spiral mode

𝜆𝑖 Re ‐0.1228 0.0595 ‐0.0016 ‐0.0144 7.9057⋅10−5 0
Im 0 ±0.2626 ±0.6450 ±0.0259 0 0
𝑃(𝑠) Inf 23.9 9.7 242.3 Inf Inf
𝑇1/2(𝑠) 5.6 ‐11.7 428.8 48.2 ‐8767.7 Inf
𝜁(−) ‐ ‐0.221 0.003 0.485 ‐ ‐

𝜔𝑛(𝑟𝑎𝑑/𝑠) 0.123 0.269 0.645 0.030 7.905⋅10−5 0
Mach 0.8

Short
period oscillation Phugoid

Lateral
oscillation

Periodic pitch/
roll mode Spiral mode

𝜆𝑖 Re ‐0.1911 0.0931 ‐0.0043 ‐0.0219 3.462⋅10−5 0
Im 0 ±0.3173 ±0.5957 ±0.0497 0 0
𝑃(𝑠) Inf 19.8 10.5 126.5 Inf Inf
𝑇1/2(𝑠) 3.6 ‐7.4 159.7 31.7 ‐20020 ‐Inf
𝜁(−) ‐ ‐0.282 0.007 0.403 ‐ ‐

𝜔𝑛(𝑟𝑎𝑑/𝑠) 0.191 0.331 0.596 0.054 3.462⋅10−5 0

Table 7.8: Aerodynamic coefϐicients for higher Mach numbers of the optimised spaceplane shape.

optimised spaceplane
𝑀 10 5
𝐶𝐷𝛼 0.0066 0.0077
𝐶𝐿𝛼 0.0178 0.0199
𝐶𝑚𝛼 0.0010 0.0010
𝐶𝑆𝛽 ‐0.0088 ‐0.0095
𝐶𝑙𝛽 ‐0.0014 ‐0.0012
𝐶𝑛𝛽 ‐0.0027 ‐0.0029
𝐶𝐷𝑀 0.0009 ‐0.0075
𝐶𝐿𝑀 ‐0.0027 ‐0.0167
𝐶𝑚𝑀 0.0007 0.0009
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Table 7.9: Eigenmotions for high Mach regime of the optimised spaceplane shape.

Mach 5
Short period
oscillation Phugoid

Lateral
oscillation

Pitch/roll
divergence

Periodic pitch/
roll mode Spiral mode

𝜆𝑖 Re ‐0.1417 0.0980 ‐0.0001 0.0434 ‐0.0016 1.368⋅10−4 0
Im 0 0 ±0.4470 0 ±0.0064 0 0
𝑃(𝑠) Inf Inf 14.1 Inf 979.4 Inf Inf
𝑇1/2(𝑠) 4.9 ‐7.1 4972.3 ‐16.0 427.5 ‐5.069⋅103 Inf
𝜁(−) ‐ ‐ 0.0003 ‐ 0.245 ‐ ‐

𝜔𝑛(𝑟𝑎𝑑/𝑠) 0.142 0.098 0.447 0.043 0.007 1.368⋅10−4 0
Mach 10

Short period
oscillation Phugoid

Lateral
oscillation

Pitch/roll
divergence

Periodic pitch/
roll mode Spiral mode

𝜆𝑖 Re ‐0.0910 0.0520 0 0.0389 ‐0.0006 1.575⋅10−4 0
Im 0 0 ±0.3236 0 ±0.0029 0 0
𝑃(𝑠) Inf Inf 19.4 Inf 2180.5 Inf Inf
𝑇1/2(𝑠) 7.6 ‐13.3 23675 ‐17.8 1165.9 ‐4.402⋅103 Inf
𝜁(−) ‐ ‐ 0 ‐ 0.202 ‐ ‐

𝜔𝑛(𝑟𝑎𝑑/𝑠) 0.091 0.052 0.324 0.039 0.003 1.575⋅10−4 0

Figure 7.17: A Mach 5 ϐlow simulation of the optimised spaceplane shape with an angle‐of‐attack of 10∘

(trimmed condition). On the right side the dynamic pressure is shown.



8
Conclusion and Recommendations

In this chapter the conclusions and recommendations of this research will be stated and discussed. To be‐
gin with stating the inϐluences of the spaceplane modiϐication parameters. Leading to the most important
optimisation parameters to improve the ϐlying qualities. Followed by comparing these parameters with the
military requirements. At that point all the research questions are answered. This chapter will be concluded
with the recommendations for further research. Which involve controllability performance, data reliability
and a better optimisation process.

8.1. Conclusions
8.1.1. Shape optimisation
From the 15 modiϐication parameters which were investigated, some are more interesting than others. Pa‐
rameters which had a small modiϐication range did not change the aerodynamic characteristic much, leading
to negligible small inϐluence on the ϐlying qualities. These parameters are the wing thickness, winglet bot‐
tom length, changing the location of thewing corner and the parameters related to the bottom fuselage/wing
curvature. Other parameters such as: fuselage, the wing andwinglet design hadmore inϐluence on the static
and dynamic stability.

To improve the yaw moment static stability derivative, which is a problem for many spaceplanes, the
winglet height andwinglet top length are enlarged. This increases the ϐlowdeϐlectionwhen a non‐zero angle‐
of‐sideslip occurs, leading a counter moment pushing the spaceplane back towards the desired zero angle‐
of‐sideslip equilibrium. The downside of this modiϐication is that the longitudinal short period oscillation
and periodic pitch/roll eigenmodes decreased in dynamic stability.

The phugoid ϐlight mode is one of the most (and only) unstable eigenmodes of the HORUS spaceplane.
Increasing the winglet height and decreasing the fuselage height improved the stability of the phugoid ϐlight
mode. The real eigenvalue becomes closer to zero and the imaginary part becomes non‐zero. The downside
of this modiϐication is again an increase in the short‐period oscillation, but this is still a stable eigenmode
after the modiϐications.

To improve the lateral oscillation eigenmode the fuselage width, wing width and the winglet height are
increased. The increased nose curvature length due to the increased fuselage width creates more deϐlec‐
tion which is able to damp the oscillation in the lateral direction. Similar, reasoning can be used for the
increased winglet height. The results showed an increase in natural frequency as well as for the damping ra‐
tio. The increase in damping ratio and natural frequency increased the lateral dynamic stability, with these
improvements the lateral eigenmode almost became level 2. The downside of these modiϐications is again
a slight decrease in stability for the short period oscillation. The other modiϐication parameters were also
investigated, but the effects on the ϐlying qualities due to these parameters are signiϐicantly smaller, and are
therefore not further analysed. These include the nosecone height, winglet backwards and sidewards angle.

For the optimisation process all the parameters, which signiϐicantly improved the unstable eigenmodes
were used. The ϐinal optimisation led to: awinglet height increase from3.2m to4m, fuselage height (straight
part) decrease from1.57m to1m, fuselagewidth (one side) increase from2.5m to3m, awingwidth increase
from 3.1 m to 3.9 m and a winglet top length increase from 2.5 to 3 m. The optimised spaceplane shape led
to: an improved yaw static derivative by 7.4% (slightly statically unstable), an improved phugoid ϐlightmode

95
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real eigenvalue by 45.6% (slightly dynamically unstable), a deteriorated short period oscillation real value
by 9.5% (dynamically stable) and increased lateral oscillation real eigenvalue by 16.7% (dynamically stable)
for Mach 2.5. The other static stability derivatives and eigenmodes are not effected signiϐicantly such that
they become unstable. Overall, the compromise in the short period eigenmode is worth the improvement in
the other stability characteristics. These improvements almost resulted in a level 2 dynamic stability for the
lateral oscillation. The military requirements of the longitudinal direction could not be compared with the
requirements, because the eigenvalues only consisted of a real part and not an imaginary part. But, based on
the deϐinition of the eigenvalues, which indicate that an negative eigenvalue is stable, conclusions can still
be made. The short period oscillation is stable and the phugoid eigenmode is slightly unstable and has to be
artiϐicially controlled by the ϐlaps to create stability. For the other Mach numbers: Mach 0.8 and Mach 1.5
the numbers are similar and therefore the conclusions about static and dynamic stability are the same. The
only difference is that the improvement percentage is a little lower for lower Mach numbers. These results
and conclusions are answered the main research question. The geometry dimensions which inϐluence the
spaceplane’s ϐlying qualities themost (Sub research question 2.) are the fuselage dimensions, thewingwidth
and the size of the winglet.

However, there is not a single parameter or combination of parameters that could have made such a
difference that all the military requirements would have been satisϐied. With the shapemodiϐication param‐
eters and their scope which were available in this model, the level 1 military requirements for the lateral
oscillation cannot be reached for the TAEM phase of the re‐entry. With a full optimisation and more compu‐
tational power there might be a shape that satisϐies the level 2 military requirement. Also, creating dynamic
stability for the phugoid ϐlight mode appeared to be not possible. For the former short period oscillation
no modiϐication are required, this ϐlight mode was already stable and will still be stable with the modiϐica‐
tions. Other shape modiϐications were in contradiction with the limitations set by the thermo‐mechanical
load limits (sub research question 1.), such as: nosecone and sharpness of the leading edges. This makes
satisfying the military requirements difϐicult. The blunt nosecone leads to bad dynamic stability and has a
dominant effect as shown by the results. Other spaceplanes, such as the Space Shuttle Orbiter, have similar
problems and solve these by artiϐicially stabilising the spaceplane with control surfaces or thrusters. But, if
these control surfaces and thrusters fail, and the spaceplane is in such an unstable eigenmode, this will have
disastrous effects. Than, the manoeuvre will be ampliϐied until the spaceplane crashes. This is one of the
biggest problematic consequence of the spaceplane design.

8.1.2. Hypersonic behaviour
For research question 3., the optimised spaceplane is simulated for hypersonic conditions. The modiϐied
spaceplane did not effect the ϐlight modes in a negative manner. At these speeds the positive pitch roll diver‐
gence ϐlight mode appears, with a positive real eigenvalue (indicating unstable). But, this behaviour is also
showing in the eigenmodes from theoriginal spaceplane. The ϐinal results showactually still an improvement
in the lateral oscillation eigenmode compared to the original spaceplane. For other eigenmodes the results
look similar and therefore the modiϐied spaceplane did not negatively effect the spaceplane’s performance
in the higher ϐlow regimes.

8.2. Recommendations
8.2.1. Controllability
The model is also able to study and modify the effects of the deϐlection surfaces. The control characteris‐
tics/derivatives canbedeterminedby theCFDmodel andbe implemented into theBmatrix of the state‐space
model. These changes can be studied by comparing the control effort required for artiϐicially stabilising the
spaceplane. For this investigation a complete control model is required, instead of only the plant (system)
matrix which described the motion of the spacecraft. However, these shape modiϐications and necessary
control effort were not studied due to the time constraints of this research. For investigating the full ϐlying
qualities of a spaceplane, both the stability and controllability has to be investigated. Therefore, for further
research it is desired to take a look into the controllability of these modiϐied spaceplanes. With an improve‐
ment in dynamic stability due to the base of the vehicle, less control effort is required to keep the spaceplane
stable for a controlled and safe ϐlight. This investigation would lead to a complete overview of the ϐlying
qualities.
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8.2.2. Data reliability
The data of the CFD simulations are quite accurate as shown in the validation chapter. All the results made
sense, except for the parameters affecting the corner of the wing and also the curvature of the bottom of the
spaceplane. These parameters sometimes gave extreme derivatives and might be incorrect. The reason for
this behaviour is that these parameters are the most complex shape modiϐications. For each of these four
parameters, a bunch of adjustments in the design must be performed to correctly generate the shape. This
is likely the reason for the sometimes odd behaviour in the derivatives.

Another recommendation is to simulate the spaceplanewith amore advancedmesh and ϐluidmodel. This
would answer if the forces and moments in the lateral direction can be determined more accurately. If these
are determined more accurately the overall research accuracy would be improved.

8.2.3. Optimisation
In this research the computational capabilities were limited leading to a simplistic optimisation and rough
estimate of the aerodynamic characteristics. The model is able to perform a full optimisation by creating an
algorithm in Matlab. This will ϐind the optimal performance in ϐlight modes or static stability derivatives.
For instance, a Monte Carlo simulation would show the best parameter and the individual capabilities of the
parameters to improve the ϐlight modes. A computer with more capabilities would improve the outcome of
this research signiϐicantly and show the full capability of themodel and therefore the potential of each shape
modiϐication parameter.

But, if a full optimisation study will be performed, the results would probably not create full dynamic
stability. The results showed that one or a combination of multiple parameters would likely not create full
stability. This research was based on small shape modiϐications while preserving the original style of the
HORUS‐2B spaceplane. However, to further improve the stability, other shape implementation features are
required, such as: a different wing/fuselage design or an additional wing. Thus, more promising stability
improvements would likely be outside the scope of these modiϐication parameters.
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A
Statespace expressions

For the Amatrix of the state space form, the expressions are stated below.

𝑎𝑉𝑉 = −
1
𝑚𝑉0

(𝑀0
𝜕𝐶𝐷
𝜕𝑀 �̄�0𝑆𝑟𝑒𝑓 + 2𝐷0) (A.1)

𝑎𝑉𝛾 = −𝑔0 cos 𝛾0 (A.2)

𝑎𝑉𝑅 = 2
𝑔0
𝑅0

sin 𝛾0 (A.3)

𝑎𝑉𝛼 = −
1
𝑚
𝜕𝐶𝐷
𝜕𝛼 �̄�0𝑆𝑟𝑒𝑓 (A.4)

𝑎𝑉𝑝 = 𝑎𝑉𝑞 = 𝑎𝑉𝑟 = 𝑎𝑉𝛽 = 𝑎𝑉𝜎 = 0 (A.5)

𝑎𝛾𝑉 =
1
𝑉0
(−�̇�0 +

2𝑉0
𝑅0

cos 𝛾0) +
cos𝜎0
𝑚𝑉20

(𝑀0
𝜕𝐶𝐿
𝜕𝑀 �̄�0𝑆𝑟𝑒𝑓 + 2𝐿0) (A.6)

𝑎𝛾𝛾 = −(
𝑉0
𝑅0
− 𝑔0𝑉0

) sin 𝛾0 (A.7)

𝑎𝛾𝑅 = (
2𝑔0
𝑉0

− 𝑉0
𝑅0
) cos 𝛾0

𝑅0
(A.8)

𝑎𝛾𝛼 =
cos𝜎0
𝑚𝑉0

𝜕𝐶𝐿
𝜕𝛼 �̄�0𝑆𝑟𝑒𝑓 (A.9)

𝑎𝛾𝛽 = −
sin𝜎0
𝑚𝑉0

𝜕𝐶𝑆
𝜕𝛽 �̄�0𝑆𝑟𝑒𝑓 (A.10)

𝑎𝛾𝜎 = −
𝐿0
𝑚𝑉0

sin𝜎0 (A.11)

𝑎𝛾𝑝 = 𝑎𝛾𝑞 = 𝑎𝛾𝑟 = 0 (A.12)

𝑎𝑅𝑉 = sin 𝛾0 (A.13)

𝑎𝑅𝛾 = 𝑉0 cos 𝛾0 (A.14)

𝑎𝑅𝑅 = 𝑎𝑅𝑝 = 𝑎𝑅𝑞 = 𝑎𝑅𝑟 = 𝑎𝑅𝛼 = 𝑎𝑅𝛽 = 𝑎𝑅𝜎 = 0 (A.15)
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𝑎𝑝𝛽 =
1
𝐼𝑥𝑥

𝜕𝐶𝑙
𝜕𝛽 �̄�0𝑆𝑟𝑒𝑓𝑏𝑟𝑒𝑓 (A.16)

𝑎𝑝𝑉 = 𝑎𝑝𝛾 = 𝑎𝑝𝑅 = 𝑎𝑝𝑝 = 𝑎𝑝𝑞 = 𝑎𝑝𝑟 = 𝑎𝑝𝛼 = 𝑎𝑝𝜎 = 0 (A.17)

𝑎𝑞𝑉 =
𝑀0
𝐼𝑦𝑦𝑉0

𝜕𝐶𝑚
𝜕𝑀 �̄�0𝑆𝑟𝑒𝑓𝑐𝑟𝑒𝑓 (A.18)

𝑎𝑞𝛼 =
1
𝐼𝑦𝑦

𝜕𝐶𝑚
𝜕𝛼 �̄�0𝑆𝑟𝑒𝑓𝑐𝑟𝑒𝑓 (A.19)

𝑎𝑞𝛾 = 𝑎𝑞𝑅 = 𝑎𝑞𝑝 = 𝑎𝑞𝑞 = 𝑎𝑞𝑟 = 𝑎𝑞𝛽 = 𝑎𝑞𝜎 = 0 (A.20)

𝑎𝑟𝛽 =
1
𝐼𝑧𝑧
𝜕𝐶𝑛
𝜕𝛽 �̄�0𝑆𝑟𝑒𝑓𝑏𝑟𝑒𝑓 (A.21)

𝑎𝑟𝑉 = 𝑎𝛾𝛾 = 𝑎𝑟𝑅 = 𝑎𝑟𝑝 = 𝑎𝑟𝑞 = 𝑎𝑟𝑟 = 𝑎𝑟𝛼 = 𝑎𝑟𝜎 = 0 (A.22)

𝑎𝛼𝑉 = −
𝑔0
𝑉20

cos 𝛾0 cos𝜎0 −
1
𝑚𝑉20

(𝑀0
𝜕𝐶𝐿
𝜕𝑀 �̄�0𝑆𝑟𝑒𝑓 + 𝐿0) (A.23)

𝑎𝛼𝛾 = −
𝑔0
𝑉0

sin 𝛾0 cos𝜎0 (A.24)

𝑎𝛼𝑅 = −
2𝑔0
𝑅0𝑉0

cos 𝛾0 cos𝜎0 (A.25)

𝑎𝛼𝑞 = 1 (A.26)

𝑎𝛼𝛼 = −
1
𝑚𝑉0

𝜕𝐶𝐿
𝜕𝛼 �̄�0𝑆𝑟𝑒𝑓 (A.27)

𝑎𝛼𝜎 = −
𝑔0
𝑉0

cos 𝛾0 sin𝜎0 (A.28)

𝑎𝛼𝑝 = 𝑎𝛼𝑟 = 𝑎𝛼𝛽 = 0 (A.29)

𝑎𝛽𝑉 =
𝑔0
𝑉20

cos 𝛾0 sin𝜎0 (A.30)

𝑎𝛽𝛾 =
𝑔0
𝑉0

sin 𝛾0 sin𝜎0 (A.31)

𝑎𝛽𝑝 = sin𝛼0 (A.32)

𝑎𝛽𝑟 = − cos𝛼0 (A.33)

𝑎𝛽𝛽 = −
1
𝑚𝑉0

𝜕𝐶𝑆
𝜕𝛽 �̄�0𝑆𝑟𝑒𝑓 (A.34)

𝑎𝛽𝜎 = −
𝑔0
𝑉0

cos 𝛾0 cos𝜎0 (A.35)

𝑎𝛽𝑞 = 𝑎𝛽𝛼 = 0 (A.36)
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𝑎𝜎𝑉 =
tan 𝛾0 sin𝜎0

𝑚𝑉20
(𝑀0

𝜕𝐶𝐿
𝜕𝑀 �̄�0𝑆𝑟𝑒𝑓 + 𝐿0)𝑎𝜎𝑦 =

𝐿0
𝑚𝑉0

sin𝜎0 (A.37)

𝑎𝜎𝑝 = − cos𝛼0 (A.38)

𝑎𝜎𝑟 = − sin𝛼0 (A.39)

𝑎𝜎𝛼 =
tan 𝛾0 sin𝜎0

𝑚𝑉0
𝜕𝐶𝐿
𝜕𝛼 �̄�0𝑆𝑟𝑒𝑓 (A.40)

𝑎𝜎𝛽 =
tan 𝛾0 cos𝜎0

𝑚𝑉0
𝜕𝐶𝑆
𝜕𝛽 �̄�0𝑆ref −

𝐿0
𝑚𝑉0

+ 𝑔0𝑉0
cos 𝛾0 cos𝜎0 (A.41)

𝑎𝜎𝜎 = tan 𝛾0 cos𝜎0
𝐿0
𝑚𝑉0

(A.42)

𝑎𝜎𝑅 = 𝑎𝜎𝑞 = 0 (A.43)

Now, for the Bmatrix of the state space form, the expressions are the following.

𝑏𝑉𝑒 = 𝑏𝑉𝑎 = 𝑏𝑉𝑟 = 𝑏𝑉𝑥 = 𝑏𝑉𝑦 = 𝑏𝑉𝑧 = 0 (A.44)

𝑏𝛾𝑒 = 𝑏𝛾𝑎 = 𝑏𝛾𝑟 = 𝑏𝛾𝑥 = 𝑏𝛾𝑦 = 𝑏𝛾𝑧 = 0 (A.45)

𝑏𝑅𝑒 = 𝑏𝑅𝑎 = 𝑏𝑅𝑟 = 𝑏𝑅𝑥 = 𝑏𝑅𝑦 = 𝑏𝑅𝑧 = 0 (A.46)

𝑏𝑝𝑎 =
1
𝐼𝑥𝑥

𝜕𝐶𝑙
𝜕𝛿𝑎

�̄�0𝑆𝑟𝑒𝑡𝑏𝑟𝑒𝑓 (A.47)

𝑏𝑝𝑥 =
1
𝐼𝑥𝑥

(A.48)

𝑏𝑝𝑒 = 𝑏𝑝𝑟 = 𝑏𝑝𝑦 = 𝑏𝑝𝑧 = 0 (A.49)

𝑏𝑞𝑒 =
1
𝐼𝑦𝑦

𝜕𝐶𝑚
𝜕𝛿𝑒

�̄�0𝑆𝑟𝑒𝑓𝑐𝑟𝑒𝑓 (A.50)

𝑏𝑞𝑦 =
1
𝐼𝑦𝑦

(A.51)

𝑏𝑞𝑎 = 𝑏𝑞𝑟 = 𝑏𝑞𝑥 = 𝑏𝑞𝑧 = 0 (A.52)

𝑏𝑟𝑎 =
1
𝐼𝑧𝑧
𝜕𝐶𝑛
𝜕𝛿𝑎

�̄�0𝑆𝑟𝑒𝑡𝑏𝑟𝑒𝑓 (A.53)

𝑏𝑟𝑟 =
1
𝐼𝑧𝑧
𝜕𝐶𝑛
𝜕𝛿𝑟

�̄�0𝑆𝑟𝑒𝑓𝑏𝑟𝑒𝑓 (A.54)

𝑏𝑟𝑧 =
1
𝐼𝑧𝑧

(A.55)

𝑏𝑟𝑒 = 𝑏𝑟𝑥 = 𝑏𝑟𝑦 = 0 (A.56)

𝑏𝛼𝑒 = 𝑏𝛼𝑎 = 𝑏𝛼𝑟 = 𝑏𝛼𝑥 = 𝑏𝛼𝑦 = 𝑏𝛼𝑧 = 0 (A.57)

𝑏𝛽𝑒 = 𝑏𝛽𝑎 = 𝑏𝛽𝑟 = 𝑏𝛽𝑥 = 𝑏𝛽𝑦 = 𝑏𝛽𝑧 = 0 (A.58)

𝑏𝜎𝑒 = 𝑏𝜎𝑎 = 𝑏𝜎𝑟 = 𝑏𝜎𝑥 = 𝑏𝜎𝑦 = 𝑏𝜎𝑧 = 0 (A.59)
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B
Validation Figures

This chapter shows the extra ϐigures used for the validation of the model (Chapter 6). Figure B.1 presents
the comparison between the original design fromChapter 4 and themodiϐiable HORUS geometry fromChap‐
ter 5 for the sideforce coefϐicient and the roll moment coefϐicient. In Figure B.2 the pitch and yaw moment
coefϐicient is visualised. Similar as explained in the Chapter 6 there is not much difference between the two
designs based on aerodynamic data. The differences between the geometries are negligible small compared
to the errors compared to the reference data. This shows that the adaptable geometry is veriϐied to be used
for the validation process with the reference data.

(a) Nominal side coefϐicient differentiated to the sideslip angle (b) Nominal roll coefϐicient differentiated to the sideslip angle

Figure B.1: The comparison between the original (most similar as reference) and modiϐiable geometry.
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(a) Nominal pitch coefϐicient (b) Nominal yaw coefϐicient differentiated to the sideslip angle

Figure B.2: The comparison between the original (most similar as reference) and modiϐiable geometry.



C
Aerodynamic characteristic tables

In this chapter the aerodynamic results of all the shape modiϐications are presented. In each tables the
trimmedaerodynamicderivatives for differentMachnumbers: 0.8, 1.5 and2.5 along the trajectory are stated.
The ϐirst column shows the original derivatives, the second column the high value of the shape modiϐication
parameter and the third the low value of the shape modiϐication parameter. In every table’s label there
is linked to the shape modiϐication visualisation of Chapter 5. These aerodynamic derivatives are used for
Chapter 7, where the results of the ϐlight modes are computed. Thus, these aerodynamic derivatives are im‐
plemented in the Amatrix and therefore the equations stated in Appendix A. (The body ϐlap is ‐20 degrees
and both elevons ‐17.5 degrees.)
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Table C.1: Inϐluence of the wingspan by increasing the wing length, see Figure 5.10a.

Original spaceplane (3.1 m) Wing width 3.9 m Wing width 2.8 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0118 0.0139 0.0100 0.0081 0.0116 0.0088
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0418 0.0367 0.0261 0.0338 0.0325 0.0236
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐1.57⋅10−3 ‐1.79⋅10−3 ‐9.88⋅10−5 5.41⋅10−5 ‐6.88⋅10−4 5.48⋅10−4
𝐶𝑆𝛽 ‐0.0130 ‐0.0131 ‐0.0107 ‐0.0133 ‐0.0126 ‐0.0109 ‐0.0122 ‐0.0130 ‐0.0106
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0042 ‐0.0024 ‐0.0010 ‐0.0026 ‐0.0019 ‐0.0007
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0019 ‐0.0021 ‐0.0027 ‐0.0024 ‐0.0021 ‐0.0030
𝐶𝐷𝑀 0.0210 ‐0.1600 ‐0.0250 0.0270 ‐0.0620 ‐0.0280 0.0320 ‐0.0540 ‐0.0260
𝐶𝐿𝑀 0.1160 ‐0.1570 ‐0.0460 0.0670 ‐0.1030 ‐0.0530 0.1100 ‐0.0640 ‐0.0430
𝐶𝑚𝑀 ‐0.0540 0.0280 0.0030 ‐0.0460 0.0100 0.0050 ‐0.0490 ‐0.0000 0.0020

Table C.2: Inϐluence of the winglet bottom length, see Figure 5.14a.

Original spaceplane (4.5 m) Winglet bottom length 4.7 m Winglet bottom length 4.0 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0094 0.0124 0.0092 0.0088 0.0120 0.0090
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0363 0.0335 0.0242 0.0352 0.0332 0.0240
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐2.00⋅10−4 ‐9.72⋅10−4 3.93⋅10−4 ‐1.36⋅10−4 ‐8.75⋅10−4 4.38⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0126 ‐0.0132 ‐0.0108 ‐0.0127 ‐0.0130 ‐0.0106
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0030 ‐0.0021 ‐0.0008 ‐0.0029 ‐0.0020 ‐0.0007
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0024 ‐0.0020 ‐0.0029 ‐0.0022 ‐0.0020 ‐0.0029
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0316 ‐0.0567 ‐0.0268 0.0253 ‐0.0545 ‐0.0451
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.1025 ‐0.0779 ‐0.0456 0.0981 ‐0.0698 ‐0.0581
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0500 0.0032 0.0030 ‐0.0477 0.0012 0.0077

Table C.3: Inϐluence of the winglet angle backwards, see Figure 5.18a.

Original spaceplane (20∘) Winglet angle backwards 30∘ Winglet angle backwards 10∘

𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0090 0.0122 0.0092 0.0096 0.0124 0.0092
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0358 0.0333 0.0241 0.0364 0.0337 0.0241
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐2.51⋅10−4 ‐8.83⋅10−4 4.06⋅10−4 ‐2.14⋅10−4 ‐9.61⋅10−4 4.45⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0118 ‐0.0128 ‐0.0104 ‐0.0131 ‐0.0132 ‐0.0109
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0026 ‐0.0020 ‐0.0007 ‐0.0034 ‐0.0022 ‐0.0009
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0026 ‐0.0021 ‐0.0030 ‐0.0022 ‐0.0020 ‐0.0028
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0293 ‐0.0543 ‐0.0258 0.0284 ‐0.0570 ‐0.0281
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.1124 ‐0.0734 ‐0.0460 0.0896 ‐0.0759 ‐0.0459
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0518 0.0022 0.0030 ‐0.0462 0.0023 0.0030
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Table C.4: Inϐluence of the winglet angle sidewards, see Figure 5.18a.

Original spaceplane (12∘) Winglet angle sidewards 25∘ Winglet angle sidewards 5∘

𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0103 0.0129 0.0095 0.0088 0.0120 0.0090
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0382 0.0344 0.0246 0.0349 0.0331 0.0239
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐8.09⋅10−4 ‐1.25⋅10−3 2.60⋅10−4 1.20⋅10−4 ‐7.25⋅10−4 4.95⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0120 ‐0.0123 ‐0.0106 ‐0.0128 ‐0.0132 ‐0.0106
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0035 ‐0.0024 ‐0.0010 ‐0.0027 ‐0.0019 ‐0.0007
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0026 ‐0.0024 ‐0.0029 ‐0.0022 ‐0.0019 ‐0.0029
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0278 ‐0.0577 ‐0.0271 0.0309 ‐0.0544 ‐0.0264
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.0918 ‐0.0860 ‐0.0488 0.1013 ‐0.0696 ‐0.0434
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0481 0.0056 0.0040 ‐0.0490 0.0010 0.0021

Table C.5: Inϐluence of the wing corner width, see Figure 5.11a.

Original spaceplane (1.5 m) Wing corner width 2.5 m Wing corner width 1.2 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0102 0.0138 0.0035 0.0089 0.0119 0.0089
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0375 0.0365 0.0451 0.0359 0.0325 0.0237
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 8.10⋅10−4 ‐9.98⋅10−4 ‐6.28⋅10−3 ‐5.98⋅10−4 ‐8.88⋅10−4 4.21⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0125 ‐0.0136 ‐0.0079 ‐0.0127 ‐0.0129 ‐0.0107
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0033 ‐0.0024 0.0008 ‐0.0029 ‐0.0020 ‐0.0007
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0022 ‐0.0016 ‐0.0032 ‐0.0022 ‐0.0020 ‐0.0028
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0331 ‐0.0575 ‐0.0550 0.0276 ‐0.0568 ‐0.0261
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.1221 ‐0.0897 0.0447 0.0934 ‐0.0733 ‐0.0423
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0595 0.0014 ‐0.0306 ‐0.0470 0.0031 0.0026

Table C.6: Inϐluence of the wing corner length, see Figure 5.12a.

Original spaceplane (4.8 m) Wing corner length 5.5 m Wing corner length 4.6 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0095 0.0127 0.0094 0.0093 0.0123 0.0091
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0364 0.0341 0.0245 0.0357 0.0333 0.0240
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 1.08⋅10−5 ‐9.44⋅10−4 4.09⋅10−4 ‐1.73⋅10−4 ‐8.83⋅10−4 4.40⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0126 ‐0.0131 ‐0.0107 ‐0.0126 ‐0.0132 ‐0.0108
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0031 ‐0.0022 ‐0.0008 ‐0.0030 ‐0.0021 ‐0.0008
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0022 ‐0.0019 ‐0.0029 ‐0.0024 ‐0.0020 ‐0.0029
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0303 ‐0.0576 ‐0.0271 0.0323 ‐0.0549 ‐0.0265
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.1032 ‐0.0797 ‐0.0474 0.0962 ‐0.0735 ‐0.0449
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0511 0.0020 0.0032 ‐0.0478 0.0019 0.0030
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Table C.7: Inϐluence of the nosecone tip height, see Figure 5.6a.

Original spaceplane (1.5 m) Nosecone height 1.8 m Nosecone height 1.3 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0092 0.0129 0.0098 0.0093 0.0120 0.0088
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0359 0.0340 0.0241 0.0364 0.0330 0.0242
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐2.84⋅10−4 ‐8.88⋅10−4 5.03⋅10−4 ‐4.15⋅10−4 ‐9.14⋅10−4 3.88⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0124 ‐0.0132 ‐0.0107 ‐0.0124 ‐0.0129 ‐0.0107
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0031 ‐0.0024 ‐0.0009 ‐0.0029 ‐0.0019 ‐0.0007
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0024 ‐0.0019 ‐0.0029 ‐0.0023 ‐0.0020 ‐0.0029
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0338 ‐0.0543 ‐0.0253 0.0285 ‐0.0561 ‐0.0258
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.1042 ‐0.0705 ‐0.0461 0.0955 ‐0.0804 ‐0.0458
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0472 0.0014 0.0022 ‐0.0495 0.0039 0.0033

Table C.8: Inϐluence of the fuselage width, see Figure 5.4a.

Original spaceplane (2.5 m) Fuselage width 3.5 m Fuselage height 2.0 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0129 0.0135 0.0070 0.0084 0.0111 0.0082
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0459 0.0394 0.0281 0.0315 0.0278 0.0211
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 8.67⋅10−4 2.05⋅10−4 2.35⋅10−3 ‐6.23⋅10−4 ‐1.22⋅10−3 1.16⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0155 ‐0.0149 ‐0.0174 ‐0.0118 0.0134 ‐0.0092
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0042 ‐0.0020 0.0004 ‐0.0029 ‐0.0046 ‐0.0006
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0042 ‐0.0036 ‐0.0050 ‐0.0013 ‐0.0188 ‐0.0023
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 ‐0.0363 ‐0.0978 ‐0.0498 0.0046 ‐0.0396 ‐0.0207
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 ‐0.1029 ‐0.1151 ‐0.0618 0.0889 ‐0.0701 ‐0.0410
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0143 0.0033 0.0059 ‐0.0389 0.0017 0.0028

Table C.9: Inϐluence of the fuselage length, see Figure 5.7a. (With scaled moment reference point.)

Original spaceplane (10 m) Fuselage length 15 m Fuselage length 5 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0101 0.0132 0.0105 0.0089 0.0111 0.0079
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0380 0.0365 0.0274 0.0355 0.0304 0.0219
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐1.53⋅10−3 ‐1.74⋅10−3 2.98⋅10−4 1.63⋅10−3 5.65⋅10−4 9.51⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0139 ‐0.0148 ‐0.0124 ‐0.0115 ‐0.0110 ‐0.0090
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0034 ‐0.0028 ‐0.0010 ‐0.0028 ‐0.0014 ‐0.0006
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0028 ‐0.0025 ‐0.0040 ‐0.0019 ‐0.0017 ‐0.0020
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0281 ‐0.0538 ‐0.0269 0.0265 ‐0.0575 ‐0.0252
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.1018 ‐0.0610 ‐0.0458 0.0747 ‐0.0820 ‐0.0415
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0596 0.0029 0.0041 ‐0.0369 ‐0.0008 0.0008
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Table C.10: Inϐluence of the fuselage height, see Figure 5.5a. (With scaled moment reference point.)

Original spaceplane (1.57 m) Fuselage height 2.00 m Fuselage height 1.00 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0091 0.0117 0.0088 0.0097 0.0131 0.0096
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0360 0.0325 0.0243 0.0362 0.0350 0.0241
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐2.56⋅10−4 ‐8.13⋅10−4 4.31⋅10−4 ‐1.27⋅10−4 ‐9.99⋅10−4 3.66⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0135 ‐0.0138 ‐0.0118 ‐0.0112 ‐0.0122 ‐0.0093
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0024 ‐0.0013 ‐0.0006 ‐0.0038 ‐0.0033 ‐0.0012
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0030 ‐0.0028 ‐0.0031 ‐0.0014 ‐0.0010 ‐0.0027
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0305 ‐0.0613 ‐0.1211 0.0313 ‐0.0501 ‐0.0249
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.0985 ‐0.0773 ‐0.5823 0.1035 ‐0.0695 ‐0.0499
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0499 0.0040 0.0762 ‐0.0475 ‐0.0021 0.0019

Table C.11: Inϐluence of the fuselage bottom curve width, see Figure 5.8a.

Original spaceplane (5.5 m)
Fuselage bottom curvature

width 6.6 m
Fuselage bottom curvature

width 4.5 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0094 0.0130 0.0095 0.0167 0.0173 0.0111
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0371 0.0354 0.0249 0.0538 0.0423 0.0300
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐4.38⋅10−4 ‐1.29⋅10−3 3.07⋅10−4 1.21⋅10−3 7.06⋅10−5 5.60⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0122 ‐0.0123 ‐0.0110 ‐0.0254 ‐0.0227 ‐0.0149
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0027 ‐0.0016 ‐0.0006 ‐0.0051 ‐0.0035 ‐0.0014
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0023 ‐0.0023 ‐0.0026 ‐0.0041 ‐0.0036 ‐0.0037
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0316 ‐0.0529 ‐0.0273 ‐0.1239 ‐0.0733 ‐0.0372
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.0986 ‐0.0720 ‐0.0572 ‐0.0680 ‐0.1097 ‐0.0386
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0480 0.0015 0.0048 ‐0.0288 0.0049 0.0015

Table C.12: Inϐluence of the fuselage bottom curve width, see Figure 5.9a.

Original spaceplane (1.5 m)
Fuselage bottom curvature

height 2.0 m
Fuselage bottom curvature

height 1.0 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0085 0.0116 0.0085 0.0102 0.0131 0.0091
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0346 0.0317 0.0231 0.0380 0.0355 0.0232
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐2.21⋅10−4 ‐7.68⋅10−4 5.23⋅10−4 ‐3.83⋅10−4 ‐1.15⋅10−3 5.55⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0131 ‐0.0135 ‐0.0112 ‐0.0119 ‐0.0122 ‐0.0103
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0035 ‐0.0024 ‐0.0011 ‐0.0024 ‐0.0014 ‐0.0004
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0023 ‐0.0024 ‐0.0029
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0295 ‐0.0551 ‐0.0258 0.0301 ‐0.0521 ‐0.4262
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.0879 ‐0.0731 ‐0.0517 0.0865 ‐0.0711 0.0622
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0442 0.0030 0.0043 ‐0.0446 0.0011 0.0074
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Table C.13: Inϐluence of the wing thickness, see Figure 5.13a.

Original spaceplane (0.2 m) Wing thickness 0.21 m Wing thickness 0.18 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0088 0.0121 0.0092 0.0092 0.0122 0.0091
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0346 0.0332 0.0240 0.0359 0.0334 0.0240
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 1.75⋅10−4 ‐8.09⋅10−4 4.44⋅10−4 ‐2.09⋅10−4 ‐9.49⋅10−4 4.11⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0111 ‐0.0119 ‐0.0101 ‐0.0125 ‐0.0130 ‐0.0106
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0000 ‐0.0000 ‐0.0000 ‐0.0000 ‐0.0000 ‐0.0000
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0000 ‐0.0000 ‐0.0000 ‐0.0000 ‐0.0000 ‐0.0000
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0300 ‐0.0500 ‐0.0300 0.0300 ‐0.0600 ‐0.0300
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.1000 ‐0.0700 ‐0.0400 0.1100 ‐0.0700 ‐0.0500
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0500 0.0000 0.0000 ‐0.0500 0.0000 0.0000

Table C.14: Inϐluence of the winglet top length, see Figure 5.15a.

Original spaceplane (2.5 m) Winglet top length 3.5 m Winglet top length 2.2 m
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0097 0.0125 0.0082 0.0092 0.0123 0.0092
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0367 0.0336 0.0239 0.0356 0.0335 0.0241
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐3.92⋅10−4 ‐9.70⋅10−4 4.72⋅10−4 ‐7.90⋅10−5 ‐9.38⋅10−4 4.18⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0131 ‐0.0137 ‐0.0110 ‐0.0123 ‐0.0129 ‐0.0106
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0034 ‐0.0023 ‐0.0009 ‐0.0029 ‐0.0020 ‐0.0007
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0022 ‐0.0017 ‐0.0027 ‐0.0024 ‐0.0021 ‐0.0029
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 ‐0.0025 ‐0.0766 ‐0.0283 0.0307 ‐0.0559 ‐0.0264
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 ‐0.0177 ‐0.1299 ‐0.0457 0.1044 ‐0.0737 ‐0.0452
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0086 0.0201 0.0028 ‐0.0504 0.0018 0.0029

Table C.15: Inϐluence of the winglet height, see Figure 5.16a.

Original spaceplane (3.2 m) Winglet height 4.5 m Winglet height 2.5
𝑀 0.8 1.5 2.5 0.8 1.5 2.5 0.8 1.5 2.5
𝐶𝐷𝛼 0.0091 0.0123 0.0092 0.0095 0.0124 0.0090 0.0092 0.0123 0.0092
𝐶𝐿𝛼 0.0350 0.0334 0.0241 0.0373 0.0340 0.0244 0.0348 0.0333 0.0240
𝐶𝑚𝛼 1.29⋅10−5 ‐9.55⋅10−4 3.73⋅10−4 ‐6.46⋅10−4 ‐1.16⋅10−3 3.04⋅10−4 2.08⋅10−4 ‐8.02⋅10−4 4.91⋅10−4
𝐶𝑆𝛽 ‐0.0129 ‐0.0131 ‐0.0107 ‐0.0161 ‐0.0154 ‐0.0118 ‐0.0111 ‐0.0120 ‐0.0102
𝐶𝑙𝛽 ‐0.0032 ‐0.0020 ‐0.0008 ‐0.0045 ‐0.0030 ‐0.0012 ‐0.0024 ‐0.0017 ‐0.0006
𝐶𝑛𝛽 ‐0.0023 ‐0.0020 ‐0.0029 ‐0.0003 ‐0.0004 ‐0.0022 ‐0.0031 ‐0.0027 ‐0.0032
𝐶𝐷𝑀 0.0208 ‐0.1598 ‐0.0253 0.0249 ‐0.0577 ‐0.0842 0.0313 ‐0.0538 ‐0.0258
𝐶𝐿𝑀 0.1164 ‐0.1567 ‐0.0460 0.0844 ‐0.0798 ‐0.0492 0.1013 ‐0.0728 ‐0.0444
𝐶𝑚𝑀 ‐0.0543 0.0283 0.0028 ‐0.0455 0.0035 0.0048 ‐0.0495 0.0014 0.0024
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