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Abstract

This dissertation presents an optimal control framework to determine a collection of open-
loop command signals, that mathematically guarantees operation of a dynamical system within
prescribed state constraints. The framework is applied to estimate real-time command margins
for aircraft control systems so that, safe operation within the flight envelope can be assured
under appropriate control action. The margins are perceived as useful information to a pilot,
especially during off-nominal conditions, as it can aid the pilot in avoiding flight envelope
excursions, generally considered as causal factors to Loss-Of-Control incidents in aviation.





Summary

Loss-Of-Control (LOC) is a major contributor to accidents and fatalities in all vehicle classes
of aviation. Because of their general association with flight outside the normal operating
envelope, LOC-induced accidents can potentially be avoided with Flight Envelope Protection
(FEP). Current FEP systems however, are not sophisticated enough to adapt to off-nominal
conditions arising from failures, damages, or other causes. As a result, lack-of situational
awareness under these conditions often leads to improper control-actions. Towards this need,
this thesis presents a novel framework for determining real-time ”safety margins” for reference
command signals of an aircraft control system. These margins mathematically guarantee
operation of a dynamical system within state constraints. Provided that off-nominal dynamics
are detected and identified almost immediately, the computed margins are perceived as useful
information to a pilot operating in off-nominal conditions.

The proposed framework involves optimizing a cost functional over a space of admissible
command signals. The cost functional describes whether a state trajectory of the system
can violate the envelope within a given time-interval. This property of the cost functional
is exploited in an iterative procedure to find margins for the command signals. The ex-
trema of the cost functional is found through the Dynamic Programming (DP) principle.
This consists of finding the associated value function, defined as the viscosity solution of a
time-dependent Hamilton-Jacobi-Bellman Partial Differential Equation (HJB PDE). A novel
scheme is presented to solve the non-linear PDE using regression techniques. The scheme
employs value-iteration to estimate the coefficients of the candidate solution in a sequence of
least-squares problems. The considered method is applied together with multivariate simplex
splines to find approximations of the value function.

The entire concept is illustrated on a simplified aircraft system with state constraints on the
pitch attitude. Basic heuristics are used to iteratively adjust the margins of the pitch com-
mand reference in a real-time setting. Experiments are conducted to study the behavior of the
margins in response to abrupt changes in the dynamics. In compliance with expectations, sim-
ulations confirm that envelope excursions may occur under prolonged neglect of the margins.
The envelope excursion is commonly preceded by a rapid shrinkage of the margins, indicat-
ing that the aircraft is approaching the edge of the envelope. Given the time-scale in which
events occur, the proposed framework for envelope protection appears to be more suitable
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for outer-loop control variables of aircraft control systems. The dynamics of these variables
evolve at a slower pace, giving enough response-time for the pilot to take countermeasures.

The optimal control formulation assumes availability of complete information on the system
dynamics. Acknowledging the fact that the dynamics are uncertain, and therefore unknown
during off-nominal conditions, a routine has to be developed to estimate the aircraft dynamics
in-flight. Since deliberate excitation of the controls is unacceptable during a failure condi-
tion, the dynamics have to be approximated with a method that circumvents the persistence
of excitation requirement. An attempt is made to estimate the dynamics indirectly with a
prediction model that closely follows the input-output behavior of the plant. By adaption of
certain parameters, the prediction error dynamics are known to be Lyapunov stable, without
any prerequisites on the richness of the signals. However, this convergence does not imply
identification of the unknown plant parameters: if certain modes of the system are not suf-
ficiently excited, the prediction model will not “learn” the anomalies in the system. As a
result, the margins will be estimated incorrectly.
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Acronyms

ACES Adaptive Control and Evolvable Systems
ADM Aeronautical Decision Making
AvSP NASA’s Aviation Safety Program
BVP Boundary Value Problem
CLF Courant-Friedrichs-Lewy
DP Dynamic Programming
ENO Essentially Non-Oscillatory
FEP Flight Envelope Protection
GTM Generic Transport Model
HJB Hamilton-Jacobi-Bellman
HJB PDE Hamilton-Jacobi-Bellman Partial Differential Equation
KKT Karun-Kuhn-Tucker
LF Lax-Friedrichs
LOC Loss-Of-Control
LTI Linear Time-Invariant
LTV Linear Time-Variant
NDP Neuro-Dynamic Programming
NASA National Aeronautics and Space Administration
NextGen Next Generation
OP Optimization Problem
ODE Ordinary Differential Equation
PDE Partial Differential Equation
QLC Quantitative Loss-of-control Criteria
RK Runge-Kutta
ROA Region-Of-Attraction
RSS Residual Sum-of-Squares
VSST Vehicle Safety Systems Technologies
WENO Weighted Essentially Non-Oscillatory
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Nomenclature

x State of the system
yref Reference command input

y Output of the system
n State dimension
m Reference command/output dimension
f0 Nominal system dynamics
f Off-nominal System dynamics
h Output equation
Yref Command space
Yref Command signal space
t0 Current/initial time
x0 Current/initial state
T Time-horizon
φ System state trajectory
(

yrefmin
,yrefmax

)

Command margins

K Envelope
l Implicit surface function
J Cost functional
V1 Value function associated with cost functional J
V2 Value function associated with terminal cost opt. control problem
H Hamiltonian
g∗ Optimal feedback control law

V̂2 Approximation of value function V2
A0, B0 Nominal LTI system matrices
A,B Off-nominal LTI system matrices
∆A,∆B Unknown terms in off-nominal LTI system
x̂ Predicted state
x̃ Prediction error

∆Â,∆B̂ Adaptive parameters of the prediction model
λ Tuning parameter for the prediction model
γ Adaption rate
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Chapter 1

Introduction

Safety stands paramount in aviation. To this day, air travel remains the safest mode of
transportation. Regardless, accidents in aviation are often accompanied with disastrous con-
sequences. Therefore, improvement of flight safety remains an everlasting endeavor of the
aerospace industry.

The majority of accidents in aviation are nowadays attributed to Loss-Of-Control (LOC). LOC
is generally associated with unintended departure of aircraft into unusual flight conditions and
are complex, in the sense that no single intervention strategy exists to prevent them. As part
of NASA’s Aviation Safety Program (AvSP), the Vehicle Systems Safety Technologies (VSST)
project focuses on developing technologies that help improve safety of future air-vehicles. This
includes extensive research in systems for LOC prevention.

1-1 The thesis project

This thesis project is aimed towards development of innovative Flight Safety Assurance (FSA)
technologies. The FSA technologies must have the capability to provide support and guidance
to future air-vehicles under any flight condition, including damage scenarios. The research
specifically focuses on FSA technologies for large transport aircraft operated by fly-by-wire
systems.

1-1-1 Research motivations

LOC often occurs when aircraft are pushed out of their normal operating envelope. In off-
nominal conditions, current flight control systems and flight deck software appear to be ineffec-
tive in maintaining an aircraft within prescribed limits. The flight control system is designed
for a nominal aircraft model and the system operators (i.e. pilot/auto-pilot) typically only
know how to operate the aircraft safely under those nominal conditions.
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2 Introduction

Unawareness on the impact of in-flight failures and hazardous flight conditions (e.g. severe
turbulence, wind-shear, icing conditions) to vehicle flight safety, often result in pilots/auto-
pilots giving improper commands to the control system. These commands consequently put
the aircraft in a dangerous condition for which recovery to normal flight is difficult to obtain.
In off-nominal conditions, adaptive controllers may help improve flying & handling qualities
to a certain extent. However, shrinkage of the safe maneuvering envelope is often inevitable.

For large transport aircraft, generally, reference command signals are provided to the aircraft
control system, after which an existing controller steers the aircraft towards that reference.
Due to system complexity and lack of situational awareness, pilots may give “unsafe” reference
commands that push the aircraft out of the envelope. This thesis project focuses on classifying
a collection of “safe” command signals that can guarantee operation of an aircraft within the
flight envelope.

1-1-2 The research objective

The research objective of this thesis project is formulated as follows:

For an uncertain command-driven control system, determine, in real-time, mar-
gins for the reference command signals, such that, the system does not violate any
predefined state constraints.

In the formulated objective, the command-driven control system refers to the aircraft control
system, driven by reference command signals of the pilot/auto-pilot. The adjective “uncer-
tain” is used to emphasize that the dynamics are only known for the nominal system. The
margins refer to bounds on the reference command signals, necessary to keep the aircraft
within state constraints. The goal is to estimate these margins in real-time such that they
adapt to changing conditions in-flight.

1-1-3 Contributions

The contributions of this thesis project can be summarized as follows:

• The optimal control approach, originally proposed by (Lygeros, 2004) to compute reach-
able sets of control systems, has been extended to find “safety margins” for command-
driven control systems. Provided that the dynamics of the system are modeled correctly,
these margins found by the proposed method give a mathematical guarantee of opera-
tion within the envelope.

• In response to shortcomings of the level set method regarding their real-time imple-
mentation, a novel scheme has been developed to find approximate solutions for a spe-
cific Hamilton-Jacobi-Bellman Partial Differential Equation (HJB PDE). The proposed
scheme extends the collocation method in (Alwardi, 2010) with value-iteration, such
that it can be implemented in an adaptive framework.

• Multivariate simplex splines have been used as regressors in the aforementioned scheme
to find approximate solutions for the HJB PDE. To the best of the author’s knowledge,
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1-2 Outline of the report 3

simplex splines, as in (de Visser, Chu, & Mulder, 2009), have never been used to solve
this particular type of PDE.

• The global concept of finding command margins for aircraft control systems, has been
successfully demonstrated on a simplified pitch dynamics model with state limitations
on the pitch attitude. Simulations are conducted to illustrate the dynamic behavior of
the margins, in response to sudden system degradation and changes in the envelope.

• As an alternative to traditional parameter estimation techniques, the prediction model,
as in (Stepanyan, Barlow, Krishnakumar, & Bijl, 2011), has been implemented to find
real-time approximations of the system dynamics during off-nominal conditions. The
prediction model is used along with the optimal control formulation to obtain real-time
estimates of the margins for systems with uncertain plant dynamics.

1-2 Outline of the report

This MSc dissertation is organized into four parts.

In Part I of the dissertation, the background and motivations of this thesis project are dis-
cussed in further detail. Chapter 2 presents an elaborate description of LOC, and introduces
Flight Envelope Protection (FEP) as a potential remedy to these incidents. Chapter 3 for-
mulates a mathematical problem statement that best describes the goals in the research
objective.

In Part II of the dissertation, an optimal control framework is introduced to solve the math-
ematical problem statement. Chapter 4 casts the problem in an optimal control framework,
which is subsequently solved using Dynamic Programming (DP). Chapter 5 illustrates the
optimal control framework on a simplified longitudinal aircraft model with state limitations
on the pitch attitude. The margins are estimated off-line, using level set algorithms.

In Part III of the dissertation, a novel scheme is presented to approximate the value function of
the optimal control problem with regression techniques. Chapter 6 discusses the derivation of
the novel scheme, that uses function approximators and value-iteration to obtain approximate
solutions of the HJB PDE. Chapter 7 applies multivariate simplex spline theory to find
approximations of the value function with the scheme derived in chapter 6.

In Part IV of the dissertation, the entire concept of finding command margins for aircraft
control systems is illustrated in a real-time environment. Chapter 8 presents a simple algo-
rithm to iteratively determine command margins for the simplified pitch dynamics model,
introduced earlier in chapter 5. Experiments are conducted to study behavior of the margins
to abrupt changes in the system dynamics and flight envelope. Chapter 9 introduces the pre-
diction model for a Linear-Time-Invariant (LTI) system. Again, simulations are conducted
for the simplified pitch dynamics model, but this time with the approximations of the system
dynamics obtained through the prediction model.

The last part of the dissertation is followed by respectively: the conclusions in chapter 10,
and recommendations in chapter 11. Furthermore, the dissertation contains two appendices:
appendix A gives a brief introduction to level set methods, whereas appendix B gives a
background on multivariate simplex spline theory.
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Part I

Problem description
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Chapter 2

Aircraft Loss-Of-Control prevention

2-1 Introduction

Loss-Of-Control (LOC) is a major contributor to accidents and fatalities across all vehicle
classes, operational categories, and phases of flight. In the commercial jet category alone,
LOC was the cause for 22 accidents resulting in 1,991 fatalities for the period between 1999
and 2008 (Belcastro & Foster, 2010). Consequently, prevention of LOC accidents remains one
of the prime research focuses of the aeronautics community when concerning safety of flight.

This chapter aims to give a background to LOC and its associated causal factors. Extensive
research has already been dedicated to LOC and comprehensive research programs have been
laid out by aviation authorities to prevent LOC-induced accidents in the near and long-term
future. In these programs, Flight Envelope Protection (FEP) is seen as a potential approach
in dealing with LOC.

The chapter is organized as follows. In section 2-2, a detailed description is given on the
composition of LOC incidents. Section 2-3 brings up current aviation safety projects of the
National Aeronautics and Space Administration (NASA) specifically focused on research in
LOC prevention. Section 2-4 introduces the holistic approach taken by industry to reduce
likelihood of future LOC accidents. Section 2-5 discusses current developments in adaptive
FEP technologies.

2-2 Constitution of Loss-Of-Control incidents

There exists no exact, quantitative definition for LOC. However, in the literature, LOC is often
associated with flight outside of the normal operating envelope, with non-linear influences,
and with an inability of the pilot to control the aircraft(Kwatny et al., 2009).
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8 Aircraft Loss-Of-Control prevention

2-2-1 Causal and contributing factors

Aircraft LOC accidents are complex as they result from numerous causes. The major causal
and contributing factors can be organized into three categories: human-induced factors,
environmentally-induced factors and system-induced factors. Table 2-1 shows examples of
causal factors in each category.

Human-induced Environmentally-induced System-induced

Poor pilot awareness. Adverse weather condi-
tions(turbulence, icing, wind
shear).

Poor design.

Automation confusion. Foreign object damage(hail,
bird strike, volcanic ash).

Loss of power and/or
control effectiveness.

Improper procedure. Wake vortices. Aircraft system failures.
Spatial disorientation. Erroneous sensor data.

Table 2-1: Causal factors in LOC.

Studies in (Jacobson, 2010) cite human-induced factors as the most significant causal factor for
LOC. However, no single category is solely responsible for LOC accidents. Accidents usually
happen when combinations of breakdowns happen in different categories simultaneously, or
in a short sequence.

2-2-2 Progression of LOC

LOC events usually occur in off-nominal conditions that may creep-up gradually, but also sud-
denly without any warning. LOC incidents are frequently preceded by a chain of events that
can be grouped into three categories. These precursors, as they are referred to in (Belcastro
& Foster, 2010), are:

• Adverse on-board conditions: vehicle impairment(including inappropriate vehicle config-
uration, contaminated airfoil, and improper vehicle loading), system faults and failures,
or, vehicle damage to airframe and engines.

• External hazards and disturbances: poor visibility, wake vortices, wind shear, turbulence
or icing conditions.

• Vehicle upsets: abnormal attitude, abnormal airspeed, uncontrolled descent (e.g. spiral
dive) or stall/departure (including falling leaf and spin).

Analysis of accident data have shown that these precursors usually follow a certain sequential
order. According to (Belcastro & Foster, 2010), LOC incidents are frequently initiated by
adverse on-board conditions or external hazards/disturbances. Upsets are rarely the cause,
but rather an outcome of the other precursors. A generalized sequence can be attributed to
many LOC incidents. This generalized sequence is shown in figure 2-1 in which a LOC is
initiated by a vehicle impairment/external hazard, followed by a inappropriate crew response
causing an upset condition. Figure 2-1 indicates that flight crew decision-making and human-
machine interactions appear to be often ineffective during off-nominal conditions.
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Figure 2-1: Generalized LOC sequence, courtesy of (Belcastro & Jacobson, 2010)

2-2-3 Quantitative metrics for LOC

As earlierly stated, there exists no exact quantitative definition for LOC. In an attempt to
quantify LOC, (Wilborn & Foster, 2004) defined metrics and criteria that can be used to
identify LOC events from flight data. These metrics are collectively known as the Quanti-
tative Loss-of-Control Criteria (QLC) and consist of five envelopes related to airplane flight
dynamics, aerodynamics, structural integrity and flight control use. The five envelopes, as
defined in (Wilborn & Foster, 2004), are:

• The Adverse Aerodynamics envelope, describing limits on the angle of attack α and
side-slip angle β.

• The Unusual Attitude envelope, describing on the bank angle φ and pitch attitude θ.

• The Structural Integrity envelope, describing limits on the airspeed V and normal load
factor nz.

• The Dynamic Pitch Control envelope, describing limits on the pitch axis control au-
thority and dynamic pitch attitude (θ′ = θ + θ̇).

• The Dynamic Roll Control envelope, describing limits on the roll axis control authority
and dynamic roll attitude (φ′ = φ+ φ̇).

These five envelopes allow for a numerical methodology to reliably identify LOC events. The
numerical methodology consists of analyzing the time history of state trajectories in the
parametric spaces defined by the envelopes. A maneuver that violates three or more QLC
envelopes is classified as a LOC incident. A maneuver that violates only two envelopes is
considered borderline LOC. Ordinary maneuvers, even when performed aggressively, appear
to hardly ever violate any of these envelopes. These conclusions were made based upon
analysis of flight-test data and actual LOC accident data.

2-3 NASA’s aviation safety project

In order to meet with the expected growth in future air travel, NASA in conjunction with
the Federal Aviation Authorities (FAA) has initiated the Aviation Safety Program (AvSP).
The AvSP aims to develop technologies in order to improve overall safety of flight for vehicles
operating in the Next Generation Air Transportation System (NextGen).

The Vehicle Systems Safety Technologies (VSST) project is one of the projects which comes
under the AvSP. The VSST project has the following objective:
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Provide knowledge, concepts and methods to avoid, detect, mitigate and re-
cover from hazardous flight conditions, and to maintain vehicle airworthiness
and health. (source: http://www.aeronautics.nasa.gov/programs avsafe.htm)

To meet this goal, one of the problems that are being addressed by the VSST project is the
occurrence of LOC accidents, induced by unintended departure of aircraft into unusual flight
conditions. The VSST project aims to develop, assess, and validate technologies for avoid-
ing, detecting and resolving conditions that can lead to LOC. This thesis project addresses
concerns which come under the VSST project’s framework.

2-4 A holistic approach to LOC accident prevention

Due to the complexity and multidisciplinary nature of LOC accidents, there exists no single
intervention strategy to prevent them. Rather, a holistic approach must be taken which
systematically break-downs the chain of events that precede a LOC incident. This holistic
approach, as discussed by (Belcastro & Jacobson, 2010), requires the development of the
following technologies:

• Advanced modeling and simulation technologies for characterizing off-nominal condition
effects on vehicle dynamics and control characteristics, including vehicle failures and
damage, vehicle upset conditions, wind shear and turbulence, wake vortices, icing, and
key combinations of these.

• Vehicle Health Management technologies for continually assessing and predicting the
health of the airframe, propulsion system, and avionics systems in real-time.

• Flight Safety Assurance (FSA) technologies for continually assessing and predicting the
impact of off-nominal conditions on vehicle flight safety, and to provide resilient guidance
and control capabilities under off-nominal conditions.

• Effective crew-system interface technologies for providing improved situational aware-
ness and crew response under off-nominal conditions.

• Validation and verification technologies for the comprehensive evaluation and certifica-
tion of these technologies.

2-5 Flight Envelope Protection

Currently, flight control systems and flight deck software are effective under only nominal
conditions. To compensate for these shortcomings, FSA systems need to be developed that
can provide more support to system operators (pilot/auto-pilot) in off-nominal conditions.
Flight Envelope Protection (FEP) is seen in this regard as a useful tool to improve flight
safety. The task of FEP is to monitor and maintain vehicle operation within prescribed limits
under all circumstances.
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2-5-1 Two different design philosophies in FEP systems

Researchers and industry handle two distinct philosophies when concerning the design of
FEP systems. In the first philosophy, the responsibility of maintaining the aircraft within
prescribed limits is given to the flight control system. An active role is taken by the control
system as it can override pilot control actions to prevent aircraft from leaving the envelope. In
the second philosophy, on-board systems compute margins for pilots control actions. Similar
to a flight director, these margins are presented to the pilot, who in turn, has to interpret
these signals to operate the aircraft safely. In this design philosophy, the pilot is given more
freedom over the control of the aircraft as he/she has the final authority.

According to (Falkena, Borst, Chu, & Mulder, 2011), the advantage of the first design philoso-
phy is that protection systems will maintain aircraft within the safe flight envelope, regardless
of pilot control actions. However, such a system may also prevent the aircraft from being
operated at its full capacity. In fact, for some cases, it might even be necessary to violate
the envelope in order to save the aircraft. (Falkena et al., 2011) presented the China Airlines
incident in 1985 as an example of this point. In the incident, the crew was forced to over-stress
the horizontal tail surfaces (i.e. exceeding the load factor envelope) of a B-747 to recover from
a roll and near- vertical dive following an automatic disconnect of the autopilot.

This thesis project focuses more on FEP systems that follow the second design philosophy.
The motivation for this is that automation cannot take over all tasks of the pilot as systems,
including FEP technologies, can fail. The important Aeronautical Decision Making (ADM)
should always be left to a human operator and situational awareness must be improved
instead, such that pilots make the correct decisions.

2-5-2 Current research in adaptive FEP technologies

Current envelope protection technologies are very crude and ineffective under off-nominal
conditions. Off-nominal flight conditions resulting from failures, damage, or other causes,
often lead to unsafe regions in the flight envelope. Insufficient knowledge seems to exist on the
operators part for controlling the aircraft safely in these conditions. In recent times however, a
lot of research has been dedicated to adaptive flight envelope estimation & protection systems.

In (Barlow, Stepanyan, & Krishnakumar, 2011) and (Krishnakumar, Stepanyan, & Barlow,
2011) limits were estimated for control actions of pilots in order to provide assistance for
avoiding envelope excursions. The minimum step inputs were determined for some given time
instances, required to steer an aircraft out of the envelope. The most restrictive step command
is subsequently taken as a safety margin. The data-based predictive control approach, used
to estimate this margins, had however its limitations. First of all, the method is applicable
to only linear systems. Besides, potential state constraint violations were analyzed only at
some discrete time instances, instead over a continuous interval.

In (Unnikrishnan, 2006), another method for adaptive envelope protection was introduced.
The method, specifically designated for unmanned aerial vehicles, was based on minimizing
an objective functional which was a sum of both time and control effort. For certain measures
of aggressiveness in the controls, the objective functional determined the time required for
an aircraft to hit the envelope boundary. The area norm of the optimal control profile was
subsequently used to derive limits for the control inputs.
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Finally, (Bayen, Mitchell, Oishi, & Tomlin, 2007) introduced an approach for envelope pro-
tection which involved finding a state domain with the property that at-least one is retained
which can prevent the aircraft from the envelope. In the viability literature (Aubin, 1991),
this state domain is referred as the viability kernel. An optimal control formulation for com-
puting reachable sets was used to find this viability kernel. The gradient of the value function
associated to the optimal control problem is used to design a regulatory feedback law to keep
the system inside the envelope. This feedback control law is provisionary as it only needs to
be activated when the aircraft get near to boundary of the viability kernel.

2-5-3 Flight envelope estimation of anomalous aircraft

The flight envelope is commonly described in terms of limits on airspeed, pitch and roll angles,
angle of attack, and load factor. During the production phase, engineers have specifically
designed the aircraft for operation within a certain envelope. In the occurrence of failures(e.g.
structural damage of the aircraft), one can expect that the envelope limits will narrow. The
original envelope is no longer correct and a new envelope has to be determined in-flight.

In the literature, assessment of the flight envelope was proposed to be done in several ways.
The paper of (L. Tang et al., 2009) summarizes some of the recent development in adaptive
flight envelope estimation. Anyhow, one proposal was to determine all achievable aircraft trim
conditions. The collection of attainable equilibrium states and their local stability maps is
seen as a comprehensive and consistent way of representing the aircraft maneuvering envelope.
In (Goman, Khramtsovsky, & Kolesnikov, 2008), a systematic approach was presented to
compute all attainable steady states for a general class of helical trajectories. In (Y. Tang,
Atkins, & Sanner, 2007), the stable and controllable trim conditions were determined off-line
for a Generic Transport Model (GTM) with left wing damage.

Another approach is to treat the estimation of the safe flight envelope as a reachability
problem. In (van Oort, 2011), the flight envelope was characterized as the intersection between
the forward and backward reachable set of the aircraft trim set. In (Kwatny et al., 2009), the
flight envelope was defined as the viability kernel for some predefined (never-to-be exceeded)
constraints. (Seube, 2002) computed the viable set for an aircraft taking-off in wind-shear.
The system was modeled as a differential game with the wind-shear components taken as
inputs of an adversary player.

Mind that any of the aforementioned approaches are computationally very intensive. Fur-
thermore, the global model of the off-nominal system needs to be known in order to make
high-fidelity predictions on the envelope limits. This makes envelope estimation in off-nominal
conditions a highly physical and multi-dimensional problem as it requires a fully integrated
modeling of aerodynamic, structural and propulsive aspects of the aircraft. As a result, real-
time flight envelope estimation is not a trivial task and stands as a separate research topic
by itself. In this thesis project, the following assumption is made regarding knowledge of the
envelope.

Assumption: The flight envelope is known for any given condition of the aircraft.
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Chapter 3

Mathematical problem formulation

3-1 Introduction

Many physical systems operate safely only when confined to certain operating conditions. In
other words, the system state trajectories have to be kept within certain state constraints
under all conditions. For an aircraft, the collection of acceptable state trajectories is referred
to as the maneuvering flight envelope. Operation outside of the flight envelope is strongly
discouraged as it puts the aircraft in a dangerous condition. It remains the responsibility of
the system operator(i.e. pilot/automatic control system) to ensure that state constraints are
never violated. The operator must exercise the proper commands such that the envelope is
never exceeded.

The primary objective in this thesis project is to classify a collection of feasible command
signals that mathematically guarantee operation of an aircraft within the flight envelope.
This chapter discusses how the objective is approached quantitatively by formulating a clear
and concise mathematical problem statement.

The chapter is organized as follows. Section 3-2 discusses the treatment of the aircraft as
a command-driven control system. Section 3-3 introduces some definitions and notation
which are necessary to formulate the problem statement. In section 3-4, the actual problem
statement is finally presented.

3-2 The aircraft as a command-driven control system

From the viewpoint of the pilot or auto-pilot, the aircraft is seen as a command-driven control
system. A reference command signal is provided to the aircraft after which an existing
controller steers the aircraft towards that reference. Any proper command-driven control
system has the tendency to track the reference signal as closely as possible. The tracking
performance depends on the type of controller and plant dynamics. In off-nominal conditions

An Optimal Control Approach for Estimating Aircraft Command Margins N. Govindarajan



14 Mathematical problem formulation

degradation of the tracking performance is inevitable. Under these circumstances, command
signals to the control system have to be given with extreme caution.

In this thesis, the aircraft is treated as a command-driven control system. The dynamics are
described by a system of ordinary differential equations:

ẋ = f
(

x,yref

)

(3-1)

where x ∈ R
n denotes the state, yref ∈ R

m denotes the input, and f : Rn × R
m 7→ R

n, a
function mapping the state and input to the state derivative. The notation yref in eq(3-1) is
used to emphasize that the input to the system is a reference command. The output of the
dynamical system is given by expression:

y = h (x) (3-2)

where y ∈ R
m denotes the output, and f : Rn 7→ R

m, a function mapping the state to the
output.

Remark: Mind that the dynamics eq(3-1) are not known exactly, i.e. a model of the
dynamics is available only for the nominal system, denoted by the expression:

ẋ = f0

(

x,yref

)

(3-3)

3-3 Some preliminaries on notation

To formulate the problem statement, certain notations have to be introduced. These notations
describe three aspects of the problem. The aspects are respectively: the command signals
that are provided to the system, the resulting state trajectories being followed, and, the state
constraints that have to be satisfied.

3-3-1 The command-signal space

Let the reference commands yref take values from the set Yref ⊂ R
m. Within this context,

Yref is referred to as the command space. A function space can be defined which describes the
collection of admissible reference command signals yref (·)1. This function space is referred
to as the command-signal space for which the formal definition is given below.

Definition 3.1: The command-signal space
Let Yref ⊂ R

m. The command-signal space is defined as the collection of functions:

Yref :=
{

yref (·) : [t0, t0 + T ] 7→ Yref

∣

∣ yref (·) is measurable
}

(3-4)

where t0 denotes the present time and T > 0 the prediction horizon.

Remark: In definition 3.1 measurable effectively translates to the set of piece-wise continu-
ous signals in the time-interval [t0, t0 + T ], see (van Oort, 2011). A more thorough description
of measurable signals/functions can be found in appendix C.

1The notation (·) is used to distinguish a signal from a single reference command input.
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3-3-2 The system state trajectories

For some initial condition x0 and reference command signal yref (·) ∈ Yref , the system will
follow a specific state trajectory φ : [t0, t0 + T ] 7→ R

n. The following notation is introduced
to denote this trajectory:

φ
(

τ ;x0,yref (·)
)

(3-5)

The running variable in eq(3-5) is τ ∈ [t0, t0 + T ] and the semi-column separates the argument
τ from the parameters x0 and yref (·).

3-3-3 The state envelope

The trajectories of the system have to be maintained inside a state envelope K ⊂ R
n. This

envelope represents the set of states for which the aircraft is advised to operate in. The flight
envelope is described by a collection of inequality constraints that need to be complied with
simultaneously.

Suppose there are r independent inequality constraints:

li (x) ≤ 0, for i = 1, . . . , r (3-6)

Then the envelope K may be denoted as a sub-zero level set of a higher dimensional surface.
This is known as an implicit surface representation for which a definition is given below.

Definition 3.2: Implicit surface representation
Consider a closed set K ⊆ R

n defined by the inequality constraints eq(3-6), an implicit surface
representation for K is a function l (x) : Rn 7→ R such that:

K := {x ∈ R
n | l (x) ≤ 0} (3-7)

Remark: There are multiple choices for l (x) to describe the same set. A straightforward
one would be:

l (x) = max {l1 (x) , . . . , lr (x)} (3-8)

The implicit surface presentation provides a useful means to check whether a state trajectory
has crossed envelope boundaries. A particular trajectory φ has left the envelope K at least
once for the time interval [t0, t0 + T ], if and only if:

max
τ∈[t0,t0+T ]

l
(

φ
(

τ ;x0,yref (·)
))

> 0 (3-9)

This fact is exploited later in chapter 4 to solve the problem statement.

3-4 The mathematical problem statement

This thesis aims to classify a ”safe” command-signal space Yref for the system eq(3-1). Safety
is interpreted here as whether a command signal yref (·) ∈ Yref can steer the system out of
the envelope in the time window [t0, t0 + T ].
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Let Yref ⊂ R
m be parametrized as:

Yref :=
[

yrefmin
,yrefmax

]

(3-10)

where yrefmin
and yrefmax

denote respectively the lower and upper limits on the reference

command. The pair
(

yrefmin
,yrefmax

)

is collectively referred to as the command margins

for the system.

The following problem is formulated:

Determine the command margins
(

yrefmin
,yrefmax

)

, such that, no matter what

command signal yref (·) ∈ Yref is provided to the system, the state x does not
leave the envelope K for the next T seconds, i.e. φ

(

τ ;x0,yref (·)
)

∈ K, ∀τ ∈
[t0, t0 + T ].

Figure 3-1 illustrates2 the problem formulated. The figure shows a state trajectory of an
aircraft system until some present time t0. The system is currently at the state x0 for which
a time window is depicted from the present time t0 to some future time t0 + T . Certain
command margins are set for the time-window shown in the figure. For the margins in
figure 3-1(a) it appears that there exists a yref (·) ∈ Yref which gives rise to an extremal
trajectory which violates the envelope. On the other hand, for the margins in figure 3-1(b)
there exists no such command signal. In this respect, the command margins in figure 3-1(b)
are considered to be ”safe” for the system.

The objective is to estimate the command margins in real-time for uncertain dynamics along
the trajectory being followed. The time window in figure 3-1 is hence moving and the time-
horizon T is a design parameter that needs to be chosen carefully such that the transients in
the dynamics are captured sufficiently in the prediction.

2For illustration purposes, the figure assumes that the reference command is equal to the state. Mind that
this does not hold true for eq(3-2) in the generic case.
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t

x (t)

xmax

xmin

yrefmax

yrefmin

t0 t0 + T

x0

y∗

ref (·)

Envelope violation

φ∗

(

·;x0,y
∗

ref (·)
)

(a) There exists at-least one reference command yref (·) ∈ Yref that can steer the
system outside the envelope in T seconds.

t

x (t)

xmax

xmin

yrefmax

yrefmin

t0 t0 + T

x0

yref (·)

φ∗

(

·;x0,y
∗

ref (·)
)

(b) There exists no reference command yref (·) ∈ Yref that can steer the system
outside the envelope in T seconds.

Figure 3-1: ”Safe” and ”unsafe” command margins for some hypothetical dynamical system
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Part II

An optimal control approach to the
problem
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Chapter 4

The optimal control framework for
estimating aircraft command margins

4-1 Introduction

The problem statement in section 3-4 requires one to analyze the properties of a whole class
of system state trajectories at once. The objective is to determine margins for the reference
command signals, such that a predefined state envelope is never violated for a given future
time interval.

In this chapter, a methodology is presented to solve the above-stated problem in an effective
manner. The problem statement is cast as an optimal control problem and applies principles
from (Lygeros, 2004) and (Mitchell, Bayen, & Tomlin, 2005) to compute reachable sets of dy-
namical systems. The proposed method offers a systematic way of analyzing state trajectory
properties of a dynamical system, in response to a large class of input signals. The optimal
control approach is very generic as it assumes nothing on the structure of the system except
for the dynamics f being Lipschitz continuous.

The chapter is organized as follows. Section 4-2 covers the details of the optimal control ap-
proach. The section introduces the cost functional which needs to be optimized and discusses
also the rationale behind choosing it. Furthermore, the value function that optimizes the cost
functional, is characterized as the unique, viscosity solution of a time-dependent Hamilton-
Jacobi-Bellman Partial Differential Equation (HJB PDE). Section 4-3 summarizes the overall
iterative procedure to find margins for the command-driven control system.

4-2 Formulation as an optimal control problem

The following iterative approach is taken to solve the problem statements. Given certain
margins on the reference command, one verifies the existence of command signals that can

An Optimal Control Approach for Estimating Aircraft Command Margins N. Govindarajan



22 The optimal control framework for estimating aircraft command margins

steer the system out of the envelope. The margins
(

yrefmin
,yrefmax

)

are adjusted accordingly

and the process is repeated until satisfactory margins are obtained.

The iterative approach requires solving the following complimentary problem:

Given an initial condition x0 and command margins
(

yrefmin
,yrefmax

)

, does

there exist the property that, no matter what admissible command signal yref (·) ∈
Yref is given, the system state trajectories φ

(

τ ;x0,yref (·)
)

stay inside the en-
velope K for the time interval [t0, t0 + T ]?

This complimentary problem can be solved with optimal control ideas.

4-2-1 The cost functional

Consider the following cost functional:

J
(

x0,yref (·)
)

= max
τ∈[t0,t0+T ]

l
(

φ
(

τ ;x0,yref (·)
))

(4-1)

where φ
(

τ ;x0,yref (·)
)

is a system trajectory as defined by eq(3-5). Recall from eq(3-9) that
when J ≤ 0, the state trajectory of the system has not violated the envelope in the time
window [t0, t0 + T ].

Now suppose the following optimization problem is solved:

J∗ (x0) = max
yref (·)∈Yref

J
(

x0,yref (·)
)

(4-2)

Then the following holds true:

• J∗ (x0) ≤ 0: the system will not violate any state constraints in the next T seconds, no
matter what command signal yref (·) ∈ Yref is provided.

• J∗ (x0) > 0: there exists some command signal(s) yref (·) ∈ Yref that can steer the
system out of the envelope within the next T seconds.

Basically, the optimization in eq(4-2) is a search within the function space Yref for the
extremal command signal that would steer the system as close to the envelope boundaries
as possible. The sign of J∗ (x0) indicates whether the envelope is violated or not. The next
section shows how the optimal control problem can be solved.

4-2-2 The value function and associated Hamilton-Jacobi-Bellman PDE

Let t ∈ [t0, t0 + T ] and denote:

Yref [t,t0+T ] :=
{

yref (·) : [t, t0 + T ] 7→ Yref

∣

∣ yref (·) is measurable
}

(4-3)

Furthermore, let:
φ
(

τ ;x, t,yref (·)
)

(4-4)
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denote the system trajectory for some state x at time t and reference command signal
yref (·) ∈ Yref [t,t0+T ].

The following function V1 : [t0, t0 + T ]× R
n 7→ R is introduced:

V1 (t,x) := sup
yref (·)∈Yref [t,t0+T ]

{

max
τ∈[t,t0+T ]

l
(

φ
(

τ ;x, t,yref (·)
))

}

(4-5)

Eq(4-5) is known as the value function for the cost functional eq(4-1). From the definition it
follows that:

V1 (t0,x0) = J∗ (x0)

The value function V1 can be solved using the dynamic programming (DP) principle. The
principle of optimality states the following for V1:

V1 (t,x) = sup
yref (·)∈Yref [t,t0+T ]

(

max

{

max
τ∈[t,t+h]

l
(

φ
(

τ ;x, t,yref (·)
))

,

max
τ∈[t,t+h]

V1
(

t+ h,φ
(

t+ h;x, t,yref (·)
))

})

(4-6)

In words, the eq(4-6) states that the best possible cost at a time t and state x, is either equal
to the cost-to-go at time t+h and state φ

(

t+ h;x, t,yref (·)
)

, or to the maximum of l along
the system trajectory φ during time period: [t, t+ h].

The infinitesimal version of eq(4-6) is a specific Hamilton-Jacobi-Bellman Partial Differential
Equation (HJB PDE). The following theorem presents the HJB PDE associated with eq(4-5).

Theorem 4.1

The value function V1 : [t0, t0 + T ] × R
n 7→ R is the unique, continuous viscosity solution of

the following time-dependent Hamilton-Jacobi-Bellman PDE:

∂V1 (t,x)

∂t
+max

{

0, H

(

x,
∂V1 (t,x)

∂x

T
)}

= 0 (4-7a)

V1 (t0 + T,x) = l (x) (4-7b)

where the Hamiltonian H is defined by:

H (x,p) = max
yref∈Yref

pTf
(

x,yref

)

(4-8)

Proof. The formal proof of this theorem involves the rigorous theory of viscosity solutions,
and can for example be found in (Lygeros, 2004).

Remark: HJB PDEs, including the variant in theorem 4.1 rarely have solutions in the
classical sense. Even when f and l are infinitely smooth, the value function may exhibit
shocks and rarefactions. As a result, the value function is not being differentiable everywhere.
(Mitchell, 2002) gives a physical explanation of this phenomena which is basically caused by
the existence of multiple optimal trajectories. Nevertheless, researchers (Crandall & Lions,
1983; Crandall, Evans, & Lions, 1984) introduced a non-classical or weak solution for HJB
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PDEs like eq(4-7), under the name of viscosity solutions. Formally the viscosity solution
for eq(4-7) can be defined as follows. Let ψ (t,x) denote any continuously differentiable test
function. The bounded, uniformly continuous function V1 is a viscosity solution to eq(4-7) if,
whenever ψ (t,x)− V1 (t,x) is a local maximum:

∂ψ (t,x)

∂t
+max

{

0, H

(

x,
∂ψ (t,x)

∂x

T
)}

≤ 0,

and whenever ψ (t,x)− V1 (t,x) is a local minimum:

∂ψ (t,x)

∂t
+max

{

0, H

(

x,
∂ψ (t,x)

∂x

T
)}

≥ 0

Although this definition is not particularly insightful. The viscosity solution has a very im-
portant practical application: wherever the value function is differentiable, the HJB PDE is
satisfied in the classical sense. Furthermore, the viscosity solution is unique. For more on
HJB equations and viscosity solutions, readers are referred to (Bardi & Capuzzo-Dolcetta,
2008).

Remark: In eq(4-8), p denotes the co-state as in the Pontryagin’s Maximum Principle.
See (Evans, unknown) or (Kirk, 1970) for more background.

V1 has connections with a value function associated to a more standard optimal control
problem. Let the function V2 : [t0, t0 + T ]× R

n 7→ R be defined by:

V2 (t,x) = sup
yref (·)∈Yref [t,t0+T ]

l
(

φ
(

t0 + T ;x, t,yref (·)
))

(4-9)

V2 is the value function that optimizes a finite-horizon cost functional with only a terminal
cost and no running costs. It is related to V1 as follows.

Theorem 4.2

Consider the value function V2 as given in eq(4-9). The following relation holds:

V1 (t,x) = max
τ∈[t,t0+T ]

V2 (τ,x) (4-10)

Proof. A proof of this statement can be found in (Lygeros, 2004)

Remark: Theorem 4.2 basically shows that one can interchange max and sup operators in
eq(4-5), i.e.

V1 (t,x) = sup
yref (·)∈Yref [t,t0+T ]

{

max
τ∈[t,t0+T ]

l
(

φ
(

τ ;x, t,yref (·)
))

}

= max
τ∈[t,t0+T ]







sup
yref (·)∈Yref [τ,t0+T ]

l
(

φ
(

t0 + T ;x, τ,yref (·)
))







= max
τ∈[t,t0+T ]

V2 (t,x)
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The value function V2 can be used to obtain V1 indirectly. The HJB PDE associated with V2
is of a simpler form and does not have the extra maximization term max {·, 0} like in eq(4-7).
The principle of optimality states the following for V2:

V2 (t,x) = sup
yref (·)∈Yref [t,t0+T ]

V2
(

t+ h,φ
(

t+ h;x, t,yref (·)
))

(4-11)

The HJB PDE associated to eq(4-11) is given in the following theorem.

Theorem 4.3

The value function V2 : [t0, t0 + T ] × R
n 7→ R is the unique, continuous viscosity solution of

the following time-dependent Hamilton-Jacobi-Bellman PDE:

∂V2 (t,x)

∂t
+H

(

x,
∂V2 (t,x)

∂x

T
)

= 0 (4-12a)

V2 (t0 + T,x) = l (x) (4-12b)

where the Hamiltonian H is again defined by eq(4-8), i.e.

H (x,p) = max
yref∈Yref

pTf
(

x,yref

)

Proof. A proof can be found in (Fleming & Soner, 2006).

Hence, computing J∗ (x0) can be done as follows. One first solves eq(4-12) to obtain V2.
Then, one applies eq(4-10) to obtain V1. Finally, J∗ (x0) is obtained through evaluation of
V1 at t = t0 and x = x0.

V1(t0,x) ≤ 0

”safe set”

∂K

x0

φ
(

t0 + T ;x0,yref 1
(·)
)

φ
(

t0 + T ;x0,yref 2
(·)
)

(a) All trajectories inside the safe-set remain inside
the envelope K for the next T seconds.

V1(t0,x) ≤ 0

”unsafe set”

∂K x0

φ
(

t0 + T ;x0,yref 1
(·)
)

φ
(

t0 + T ;x0,yref 2
(·)
)

(b) For some command signals yref (·) ∈ Yref

there are system trajectories that violate the en-
velope.

Figure 4-1: The safe-set for some given time-horizon T and command-signal space Yref .
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4-2-3 Notion of the ‘safe-set’

The sub-zero level set of V1 at t0, i.e. {x ∈ R
n | V1 (t0,x0) ≤ 0} has a physical interpretation.

It describes the collection of state conditions for which the system is guaranteed to stay inside
the envelope for the next T seconds, irrespective of what command signal yref (·) ∈ Yref is
provided to the system. This state domain is referred to as the safe-set. The safe-set has
the property that it can only shrink or maintain size as the prediction horizon T increases.
Furthermore, by definition, the safe-set is a subset of (or equal to) the envelope K. Figure 4-1
illustrates the safe-set. The figure shows that a state, which is not part of the safe-set, will
not necessarily violate the envelope in the next T seconds. Violations of the envelope occur
only for some specific command signals of the set Yref .

4-3 The general procedure for estimating command margins

The objective is to check continuously whether the current state of the aircraft is inside the
safe-set. This mathematically guarantees operation of the aircraft inside the state envelope.
The contours of the safe-set is a function of the system dynamics, the current state and
command margins.

The task is to keep the state of the aircraft within the safe-set at all times by continuously
adjusting the command margins. The adjustment procedure is shown in figure 4-2. The
most challenging step in the procedure outlined in figure 4-2 is the computation of the value
function V1. Analytic expressions for eq(4-5) (or eq(4-9) for that matter) are rarely found.
Instead, numerical methods needs to be employed to solve the HJB PDE.

In the next chapter, level set methods are used to compute the value function. In chapters 6
and 7 a novel scheme is introduced to compute the value function with multivariate simplex
splines.

Current state Check J∗ (x) ≤ 0
Make necessary adjustments

to
(

yrefmin
,yrefmax

)

Command margins

Compute
Value function V1

System dynamics

Figure 4-2: The procedure for finding safe command margins.
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Chapter 5

Illustrations on a simplified aircraft
system

5-1 Introduction

In this chapter, the safe command margins are estimated for the longitudinal pitch dynamics
of a Generic Transport Model (GTM) (Jordan et al., 2004). The aircraft state envelope is
constrained by limitations on the pitch attitude. The objective is to illustrate the working
principles of the optimal control approach detailed in chapter 4 on a concrete example. The
command margins are estimated in an off-line setting using level set methods.

The chapter is organized as follows. In section 5-2 the GTM pitch dynamics is approximated
with a second-order linear system. Section 5-3 discusses the implementation of the optimal
control approach on the pitch dynamics model for a state envelope with limitations on the
pitch attitude. Section 5-4 presents the results obtain off-line using high-accuracy level set
algorithm.

5-2 The simplified pitch dynamics of a Generic Transport Model

The longitudinal pitch dynamics of the GTM is approximated with a second-order linear
system. The approximation describes the short period motion and omits the much slower
phugoid motion. The state of the system is described by the pitch angle θ and pitch rate q.
The input to the system is the elevator deflection δe.

5-2-1 The nominal system

Let the state be denoted by x =
[

θ, q
]T

and the input by u = δe. Under nominal conditions,
the aircraft dynamics are:

ẋ = A0x+ B0u, umin ≤ u ≤ umax (5-1)
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where1:

A0 =

[

0 1
−2.6923 −0.7322

]

, B0 =

[

0
−3.3552

]

and
umin = −30◦, umax = 30◦

The natural frequency of the nominal system ωn0 is equal to 1.64 rad/s and the damping
ratio ς0 is 0.223.

A pitch command tracker is designed for the nominal system eq(5-1). The pitch command
tracker is a PD controller and has the form:

δe = kθ (ksθref − θ) + kq (0− q)

Let K1 =
[

kθ kq
]

and K2 = kθks, such that:

δe = −K1x+K2θref (5-2)

In eq(5-2), θref is reference pitch attitude. Stability requirements demand the natural fre-
quency ωnr to be 2.5 rad/s and the damping ratio ςr to be 0.707. Pole-placement yields:

K1 =
[

−1.0604 −0.8354
]

(5-3)

The gain K2 is used to eliminate the steady-state error for a step reference command. For
the nominal system, this gain is set to −1.8628. The saturation of the elevator introduces
non-linear effects to an otherwise completely linear system. Within the saturation bounds,
the dynamics are given by:

ẋ = (A0 − B0K1)x+ B0K2θref

5-2-2 The off-nominal system

Many different failure scenarios can be considered for the GTM. This report restricts the
analysis to only one (representative) off-nominal condition in which the open-loop dynamics
become marginally stable. Furthermore, a 50% reduction in elevator effectivenes is present.
The dynamics of the off-nominal condition are:

ẋ = Ax+ Bu, umin ≤ u ≤ umax (5-4)

where:

A =

[

0 1
−2.3388 −0.0252

]

, B =

[

0
−1.7676

]

The natural frequency for the off-nominal system ωn is 1.53 rad/s and the damping ratio ς is
reduced to 0.0083.

Note that the pitch attitude tracker eq(5-2) is non-adaptive and hence the gains K1 and K2

do not get modified. Apart from from a sluggish response(i.e. high overshoot, large settling
time, etc), a steady-state error in the pitch command tracker can also be expected. Within
the linear region of the system, the dynamics are given by:

ẋ = (A− BK1)x+ BK2θref

1The matrices A0 and B0 are given for θ, q and δe expressed in radians.
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5-3 Off-line implementation of the optimal control formulation

The command margins (θref,min, θref,max) are estimated for a state envelope defined in terms
of limits on the pitch attitude:

K :=
{

(θ, q) ∈ R
2
∣

∣ θmin ≤ θ ≤ θmax

}

(5-5)

In the simulations, θmin = −10◦ and θmax = 25◦.

Following the optimal control formulation of section 4-2, certain values are first assumed for
(θref,min, θref,max) and J

∗ is evaluated for some initial condition x0. The value function V1 is
computed indirectly by solving for eq(4-12) first and then applying eq(4-10).

5-3-1 Selection of a suitable implicit surface representation

A suitable implicit surface representation is selected for the state envelope K. The implicit
surface representation is used as a boundary condition for eq(4-12). For the example in this
chapter, eq(3-8) is applied to yield:

l (x) = max {−θ − 10◦, θ − 25◦} (5-6)

Notice that eq(5-6) is non-smooth at θ = 7.5◦. Consequently, one could anticipate that the
value function is non-smooth at that location as well2. In other words, no classical solution
exists for the problem. However, according to theorem 4.3, an unique viscosity solution can
always be found for eq(4-12).

5-3-2 Evaluation of the Hamiltonian and optimal feedback control law

The HJB PDE is coupled with an optimization problem. The optimization consists of evalu-
ating the Hamiltonian eq(4-8), i.e.

H (x,p) = max
yref∈Yref

pTf
(

x,yref

)

In the example problem: yref and Yref in eq(4-8) are respectively replaced by θref and
[θref,min, θref,max].

Next, an analytic expression for the closed-loop optimal control law g∗ : Rn×R
n 7→ R (which

optimizes the Hamiltonian) is found. Let:

f0 (x, θref ) =







A0x+ B0δe,min if −K1x+K2θref < δe,min

A0x+ B0δe,max if −K1x+K2θref > δe,max

(A0 − B0K1)x+ BK2θref otherwise
(5-7)

denote the dynamics of the nominal system. Similarly, let:

f (x, θref ) =







Ax+ Bδe,min if −K1x+K2θref < δe,min

Ax+ Bδe,max if −K1x+K2θref > δe,max

(A− BK1)x+ BK2θref otherwise
(5-8)

2In fact, even when the boundary condition is smooth, the value function can still develop discontinuities
in its partial derivatives.
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denote the dynamics of the off-nominal system. The Hamiltonians are respectively:

H0 (x,p) = max
θref∈[θref,min,θref,max]

pTf0 (x, θref ) (5-9)

and
H (x,p) = max

θref∈[θref,min,θref,max]
pTf (x, θref ) (5-10)

Observing the fact that the optimization variable θref in eq(5-9) (and eq(5-10)) is affine to x

and p, the expressions:

g∗
0 (x,p) =

{

θref,min if pTB0K2 ≤ 0
θref,max if pTB0K2 > 0

(5-11)

and

g∗ (x,p) =

{

θref,min if pTBK2 ≤ 0
θref,max if pTBK2 > 0

(5-12)

optimize respectively the Hamiltonians eq(5-9) and eq(5-10). The Hamiltonian is maximized
along the gradient of the value function, i.e. p = (∂V/∂x)T . From eq(5-11) and eq(5-12) it
follows that the optimal control y∗

ref (·) is a bang-bang signal.

5-3-3 Numerical solutions of the HJB PDE using level set methods

Analytic solutions are rarely found for eq(4-12). This holds also true for the example con-
sidered in this chapter. However, well established numerical methods exist for solving the
HJB PDE with finite-difference techniques. These algorithms go under the name of level set
methods and are specifically designed to obtain viscosity solutions of Hamilton-Jacobi PDEs.
The numerical schemes approximate the solution of the PDE on a fixed Cartesian grid and
the approximation is known to converge to the true solution as the grid gets more refined.
Appendix A covers the details of the algorithm regarding their application to eq(4-12). In
this thesis, extensive use is made of the level set toolbox of (Mitchell, 2007) for implementing
the algorithms in Matlab.

Note that Level set methods are applied in an off-line setting and suffer severely from the
curse-of-dimensionality. The exponential growth of the grid-size with respect to the state
dimension limits the applicability of the method to low dimensional problems. The curse-of-
dimensionality is an inherent problem in DP, and, in the next two chapters, a new method is
proposed to approximate the value function with principles from Neuro-Dynamic Program-
ming (NDP). The new method is used to reduce computational costs substantially, such that,
command margins can be estimated for aircraft in a real-time environment.

5-4 Results

The value function V1 is computed for different command margins and time-horizons. The
value function is approximated with a level set algorithm. The spatial derivatives are approx-
imated with a third-order ENO scheme, a LF approximation is used for the Hamiltonian, and,
the value function is integrated in time with an explicit third-order RK method. The value
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function is solved over the domain Ω = [−0.3491, 0.8727] × [−1.5, 1.5] rad. The accuracy of
the grid are ∆θ = 2

180π rad and ∆q = 2
180π rad. In the following sections, the results obtained

are analyzed for both the nominal and off-nominal conditions.

5-4-1 The safe-set for different command margins

In figure 5-1 the safe-set of the nominal system is shown for three different command margins.
In figure 5-2 the same is done for the off-nominal system. For both figures the time-horizon
is set to three seconds. The figures illustrate the dependency of the safe-set on the command
margins. The safe-set tends to shrink as the command margins are more relaxed. Fur-
thermore, the safe-sets of the nominal system are significantly larger than their off-nominal
counterparts.

5-4-2 The safe-set for different time-horizons

In figure 5-3 and figure 5-4 the safe-set is shown for different time-horizons. The command
margins are set to θref,min = −5◦ and θref,max = 20◦. Figure 5-3 shows that the safe-set for the
nominal system does not shrink after T = 1 second. This indicates that the transients in the
dynamics are already captured sufficiently in a one second time window. For the off-nominal
system, this is however no longer true: figure 5-4 shows that the safe-set shrinks even after
T = 3 seconds. A larger time-horizon is required to capture the complete dynamics. This
can be expected since for the off-nominal system the time constant is much larger.

5-4-3 System state trajectories inside and outside of the safe-set

In Figure 5-5 trajectories of the system are shown in a phase portrait. The trajectories
shown in the plots are in response to some randomly generated bang-bang pitch command
signals. The signals have a two seconds duration and are bounded by: θref,min = −8◦ and
θref,max = 23◦. The left plot on the figures show trajectories of the system for some initial
condition inside the safe-set, the plots on the right show trajectories for some initial condition
outside the safe-set (but still inside the envelope). The backdrop shows the corresponding
safe-sets. In figure 5-5(a), where the system is nominal, the trajectories do not appear to
leave the safe-set once it has entered it. The safe-set is an positively invariant set(Blanchini,
1999) for the system. For the off-nominal system, the trajectories however do appear to leave
the safe-set. The safe-set is no longer positively invariant and if the system starts somewhere
inside the safe-set, although it is guaranteed to stay inside the envelope, the system might
leave the safe-set within the next two seconds and enter the ”unsafe” portion of the envelope.
Hence, for the same command margins, the envelope can be violated for a larger time-horizon.

5-4-4 ‘Safe’ command margins for the nominal and off-nominal system

Fix the time-horizon is to some time T and evaluate J∗ at some initial condition x0 for many
different command margins (θref,min, θref,max). In figure 5-6 and figure 5-7 the results are
shown for a time-horizon of 5 seconds. The green regions in the figures depict the ”safe”3

3”Safe” refers here to the fact that the margins guarantee operation within the envelope for the specified
time window

An Optimal Control Approach for Estimating Aircraft Command Margins N. Govindarajan



32 Illustrations on a simplified aircraft system

command margins for a the specified initial conditions. The command margins are strongly
dependent on the initial condition and system dynamics. This dependency is illustrated also
in figure 4-2.
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(c) θref,min = −8◦, θref,max = 23◦

Figure 5-1: The safe-set for different command margins. The dynamics are nominal and the
time-horizon is set to 3 seconds.
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(c) θref,min = −8◦, θref,max = 23◦

Figure 5-2: The safe-set for different command margins. The dynamics are off-nominal and the
time-horizon is set to 3 seconds.
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(c) T = 5 s

Figure 5-3: The safe-set for different time-horizons. The dynamics are nominal and the command
margins are respectively θref,min = −5◦ and θref,max = 20◦
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Figure 5-4: The safe-set for different time-horizons. The dynamics are off-nominal and the
command margins are respectively θref,min = −5◦ and θref,max = 20◦
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A safe state
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(b) Off-nominal case

Figure 5-5: Possible state trajectories of the system plotted for some initial conditions in re-
sponse to certain randomly generated bang-bang signals. The command margins are respectively
θref,min = −8◦ and θref,max = 23◦. The green area indicates the safe-set for a time-horizon of
2 seconds.
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(b) θ0 = 20◦, q0 = 25◦/s

Figure 5-6: The ”safe” command margins (depicted in green) for the nominal system at different
initial conditions. The time-horizon is set to 5 seconds.
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Figure 5-7: The ”safe” command margins (depicted in green) for the off-nominal system at
different initial conditions. The time-horizon is set to 5 seconds.
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Part III

Approximation of the value function in
a real-time setting

An Optimal Control Approach for Estimating Aircraft Command Margins N. Govindarajan





Chapter 6

A Neuro-Dynamic Programming
approach using value-iteration

6-1 Introduction

The exponential growth of the grid-size limits the applicability of level set algorithms to
relatively low dimensional problems. This motivates to look into alternative approaches to
solve the optimal control problem such that the framework, detailed in chapter 4, can be
implemented in real-time. Neuro-Dynamic Programming (NDP) attempts to beat the curse-
of-dimensionality, inherent to DP problems, by approximating the value function with regres-
sion techniques (Bertsekas & Tsitsiklis, 1996). For instance, in (Djeridane & Lygeros, 2006),
an attempt was made to approximate a time-dependent value function with multi-layer per-
ceptrons. The value function considered by the paper was nearly identical to eq(4-5), except
for the supremum being replaced by an infimum. The tuning of the network parameters,
however, involved solving a complex, non-smooth optimization problem which was difficult
to solve in real-time.

In this chapter, a novel method is presented to find approximate solutions to eq(4-5) using
generic function approximators. The method relies on finding eq(4-5) indirectly through eq(4-
9) by application of eq(4-10). An algebraic expression is first obtained for eq(4-12), which then
is transcribed into a non-linear optimization problem. The non-linear optimization problem
is subsequently solved as a sequence of least-squares problems by means of a value-iteration
scheme.

The chapter is organized as follows. Section 6-2 discusses the discretization of eq(4-12).
Section 6-3 transcribes the approximate algebraic expression of eq(4-12) into a non-linear
optimization problem. Section 6-4 presents the value-iteration scheme, which later is used in
section 6-5 to derive the final algorithm.
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6-2 Discretization of the HJB PDE

The method of discretization for eq(4-12) is motivated by the approaches taken by (Alwardi,
2010) and (Huang, Wang, Chen, & Li, 2006). The PDE is first discretized in the state with
generic function approximators, converting the PDE into an Ordinary Differential Equation
(ODE) with a terminal condition. The ODE is subsequently discretized in time with an
implicit integration scheme, yielding an algebraic matrix expression.

6-2-1 Discretization of the state

The HJB equation is a PDE coupled with an optimization. As a result, Eq(4-12) can be
rewritten into the coupled equations1:

∂V2 (t,x)

∂t
+
∂V2 (t,x)

∂x
f (x, g∗ (t,x)) = 0 (6-1a)

V2 (T,x) = l (x) (6-1b)

and

g∗ (t,x) = arg max
yref∈Yref

{

∂V2 (t,x)

∂x
f
(

x,yref

)

}

(6-2)

where eq(6-1) is referred to as the Boundary value Problem (BVP) and eq(6-2) is referred to
as the Optimization Problem (OP).

Let V̂2 denote the approximate solution for eq(4-12). The approximate solution is assumed
to take the following form:

V̂2 (t,x) = l (x) +

p
∑

i=1

φi (x) ci (t) (6-3)

In eq(6-3), φi (x) represent a set of functions that collectively have high approximation power.
Furthermore, ci (t) are the unknown time-dependent coefficients which need to be estimated.
Notice also that the term: l (x) denotes the boundary condition of eq(6-1). Unlike in the
method of (Alwardi, 2010), the boundary term is added to the expression so that the approx-
imate solution will satisfy the boundary condition by construction.

Several different candidate solutions could have been chosen to approximate eq(4-12). The
benefit of eq(6-3) is that it describes the physics of the underlying PDE. Basically, eq(6-3)
describes an evolving surface over time. However, unlike in level set methods, the surface is
defined continuously by a linear combination of basis functions.

Remark: This chapter describes the proposed method generically for any type of function
approximator which is linear in the parameters. In chapter 7, multivariate simplex spline
theory(Lai & Schumaker, 2007) is used to find a polynomial basis for φi (x).

The approximation V̂2 is related with V2 by:

V2 (t,x) = V̂2 (t,x) + ǫ (t,x) (6-4)

where ǫ (t,x) denotes the approximation error. The following assumption is made.

1Without any loss-of-generality, it is assumed that t0 = 0
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Assumption: For large numbers of basis functions, i.e. when p is sufficiently large, the
approximation error ǫ in eq(6-4) becomes negligible.

The above assumption basically states that the function approximator is able to accurately
describe the shape of the value function.

Next, observe that:

∂V2 (t,x)

∂t
=

p
∑

i=1

φi (x) ċi (t) and
∂V2 (t,x)

∂x
=
∂l (x)

∂x
+

p
∑

i=1

∂φi (x)

∂x
ci (t)

Substitution of these exprresions into eq(6-1) and eq(6-2) yield respectively:

p
∑

i=1

φi (x) ċi (t) = −
(

∂l (x)

∂x
+

p
∑

i=1

∂φi (x)

∂x
ci (t)

)

f (x, g∗ (t,x)) (6-5a)

ci (T ) = 0, i = 1, 2, . . . , p (6-5b)

and

g∗ (t,x) = arg max
yref∈Yref

{(

∂l (x)

∂x
+

p
∑

i=1

∂φi (x)

∂x
ci (t)

)

f
(

x,yref

)

}

(6-6)

Notice that the equality sign in eq(6-5) is actually an immediate result of the assumption
made on eq(6-4) regarding the error term ǫ (t,x).

Nevertheless, the following concise notations are introduced for eq(6-5):

F (x)T ċ (t) = −f (x, g∗ (t,x))T
(

∂l (x)

∂x

T

+
∂F (x)

∂x

T

c (t)

)

(6-7a)

c (T ) = 0, (6-7b)

and eq(6-6):

g∗ (t,x) = arg max
yref∈Yref

{

f
(

x,yref

)T

(

∂l (x)

∂x

T

+
∂F (x)

∂x

T

c (t)

)}

(6-8)

where F (x) is defined as:

F (x) =
[

φ1 (x) φ2 (x) · · · φp (x)
]T

(6-9)

and c (t) as:

c (t) =
[

c1 (t) c2 (t) · · · cp (t)
]T

(6-10)

6-2-2 Discretization in time

The ODE in eq(6-5) is discretized in time with an implicit integration scheme. Implicit
schemes are preferred over explicit ones for their stability properties. Forward-Euler or
higher-order explicit Runge-Kutta schemes are known to be only conditionally stable. In
order to ensure stability, severe restrictions have to be imposed on the time step ∆t in the
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discretization. Implicit schemes on the other hand, do not suffer from such limitations. For
instance, the Backward-Euler O (∆t) and Crank-Nicolson scheme O

(

∆t2
)

are known to be
unconditionally stable. These benefits do not come without a price because implicit schemes
are more complicated to solve. What follows next is a derivation of the algebraic expressions
that result from the application of the Backward-Euler scheme and Crank-Nicolson scheme.

First, let the time-dependent coefficients c (t) be discretized by:

ck = c (k∆t) , k = 0, 1, 2, . . . N (6-11)

where ∆t = T/ (N + 1) and N some positive integer. Furthermore, define:

g∗ (k∆t,x) ≡ g∗ (ck,x) = arg max
yref∈Yref

{

f
(

x,yref

)T

(

∂l (x)

∂x

T

+
∂F (x)

∂x

T

ck

)}

(6-12)

Application of the Backward-Euler scheme to eq(6-7) yields:

F (x)T
ck−1 − ck

∆t
= −f (x, g∗ (ck−1,x))

T

(

∂l (x)

∂x

T

+
∂F (x)

∂x

T

ck−1

)

Observing that the coefficients ck−1 cannot be expressed explicitly as a relation of ck, appli-
cation of the Backward-Euler scheme gives rise to the following implicit sequence:

α1 (x, ck−1) ck−1 + α2 (x) ck = β (x, ck−1) , cN = 0 (6-13)

where:

α1 (x, ck−1) = F (x)T +∆tf (x, g∗ (ck−1,x))
T ∂F (x)

∂x

T

(6-14a)

α2 (x) = −F (x)T (6-14b)

β (x, ck−1) = −∆t (f (x, g∗ (ck−1,x)))
T ∂l (x)

∂x

T

(6-14c)

Similarly, direct application of the Cranck-Nicolson scheme to eq(6-7) will yield:

F (x)T
ck−1 − ck

∆t
= −1

2

{[

f (x, g∗ (ck−1,x))
T

(

∂l (x)

∂x

T

+
∂F (x)

∂x

T

ck−1

)]

+

[

f (x, g∗ (ck,x))
T

(

∂l (x)

∂x

T

+
∂F (x)

∂x

T

ck

)]}

leading to the following implicit sequence:

α1 (x, ck−1) ck−1 + α2 (x, ck) ck = β (x, ck−1, ck) , cN = 0 (6-15)

where:

α1 (x, ck−1) = F (x)T +
∆t

2
f (x, g∗ (ck−1,x))

T ∂F (x)

∂x

T

(6-16a)

α2 (x, ck) = −F (x)T +
∆t

2
f (x, g∗ (ck,x))

T ∂F (x)

∂x

T

(6-16b)

β (x, ck−1, ck) = −∆t

2
(f (x, g∗ (ck−1,x)) + f (x, g∗ (ck,x)))

T ∂l (x)

∂x

T

(6-16c)
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In (Alwardi, 2010), the term: g∗ (ck−1,x) in eq(6-14) and eq(6-16) was approximated with
g∗ (ck,x), so that the coefficients ck can found through backward recursion of the sequences
in eq(6-13) or eq(6-15).

An alternative approach is to place the sequences in one big system of algebraic equations
and find the coefficients through that route. For in the case Back-Euler discretization, this
system of algebraic equations would be:

α1 (x, c0) c0 + α2 (x) c1 = β (x, c0)

α1 (x, c1) c1 + α2 (x) c2 = β (x, c1)

...

α1 (x, cN−2) cN−2 + α2 (x) cN−1 = β (x, cN−2)

α1 (x, cN−1) cN−1 + α2 (x) 0 = β (x, cN−1)

which is expressed in a matrix-vector notation:

A (x,C)C = B (x,C) (6-17)

where C ∈ R
pN denotes:

C =











c0
...

cN−2

cN−1











(6-18)

and A ∈ R
N×pN , B ∈ R

N denotes:

A (x,C) =











α1 (x, c0) α2 (x)
. . .

. . .

α1 (x, cN−2) α2 (x)
α1 (x, cN−1)











(6-19a)

B (x,C) =











β (x, c0)
...

β (x, cN−2)
β (x, cN−1)











(6-19b)

A similar expression expression for the Crank-Nicolson discretization can be found. Infact,
the notation would be identical to eq(6-17), except that A ∈ R

N×pN and B ∈ R
N are now

defined by:

A (x,C) =











α1 (x, c0) α2 (x, c1)
. . .

. . .

α1 (x, cN−2) α2 (x, cN−1)
α1 (x, cN−1)











(6-20a)

B (x,C) =











β (x, c0, c1)
...

β (x, cN−2, cN−1)
β (x, cN−1, 0)











(6-20b)

where the terms: α1, α2, and β refer to the ones in eq(6-16).
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Remark: In comparison to Backward-Euler, the Crank-Nicolson scheme is of higher-order.
However, the additional computational requirements associated with this scheme are negligible.
Therefore, the remainder of this thesis considers only the Crank-Nicolson discretization for
further studies.

6-3 Transcription into a non-linear optimization problem

The algebraic expression in eq(6-17) can be transcribed into an optimization problem in the
following sense.

Define the error function as:

e (x,C) = A (x,C)C − B (x,C) (6-21)

Then eq(6-17) is transcribed into an optimization problem by minimization of the following
integral2:

min
C∈RpN

∫

Rn

‖e (η,C)‖2 dη

Observe that the above integral requires an integration over the entire state-space. This
follows from the fact that V2 is formally defined over the domain: [0, T ]×Rn (see theorem 4.3).
In practice, one is interested in knowing the solution of the PDE only for a subset of this
domain: [0, T ]×K.

Remark: Strictly speaking, solving eq(4-12) for a local domain will require additional in-
formation on what happens at the boundary of this local domain (see also figure 6-1). The
evolution of the surface is governed by the dynamics of the system. Consequently, the char-
acteristic information that emanate from outer regions of the state-space propagate also into
the solution of V2 inside K. Henceforth, solving eq(4-12) over a local state domain automati-
cally introduces errors in the numerical solution. As in (Alwardi, 2010), V2 is solved over an
extended region: Ω ⊃ K in order to minimize these artificially introduced errors.

time

state domain

K

V2 (T,x) = l (x)

∂K × [0, T 〉

∂K × [0, T 〉

??

??

0 T

Figure 6-1: The boundary conditions which are needed to solve the HJB PDE locally. In the
figure, ∂K denotes the boundary of the closed set K.

2‖·‖ denotes here the standard 2-norm.
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Apart from the local domain [0, T ]× Ω, the optimization is done only for a selective number
of L sample points in the state-space, i.e.

xl ∈ Ω, l = 1, 2, . . . , L

In the literature, these sample points are referred to as collocation points and the technique is
referred to as the collocation method. The collocation method effectively reduces the integral
cost cost function into a summation:

O (C) =
L
∑

l=1

‖e (xl,C)‖2

where O : RpN 7→ R.

The cost function can be expressed also in a matrix-vector notation:

O (C) = ‖X(C)C −Y (C)‖2 (6-22)

where X ∈ R
LN×pN and Y ∈ R

LN×1 defined by:

X (C) =











A (x1,C)
A (x2,C)

...
A (xL,C)











(6-23a)

Y (C) =











B (x1,C)
B (x2,C)

...
B (xL,C)











(6-23b)

Notice that since eq(6-22) is non-affine in terms of the arguments, the optimization problem:

min
C∈RpN

O (C) (6-24)

will also be non-linear. The non-linearity is basically caused by the coupling of eq(6-1) with
eq(6-2). Value-iteration can be used decouple this non-linear optimization problem into a
series of least-squares problems.

6-4 Value-iteration for time-dependent HJB PDEs

Consider again BVP eq(6-1) and OP eq(6-2). Observe that g∗ is the optimal feed-back control
law associated with V2, i.e. for any other feedback law yref = g (t,x) the following holds:

V ′
2 (t,x) ≤ V2 (t,x) , ∀ (t,x) ∈ [0, T ]× R

n

where V ′
2 : [0, T ]× R

n 7→ R is the viscosity solution of:

∂V ′
2 (t,x)

∂t
+
∂V ′

2 (t,x)

∂x
f (x, g (t,x)) = 0

V ′
2 (T,x) = l (x)
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In other words, solving eq(4-12) is equivalent to finding an (not necessarily unique!) optimal
feedback control law g∗ (t,x) for eq(3-1).

Iterative approaches can be employed to decouple the BVP from the OP. In value-iteration,

the decoupling is done by starting with some initial function V
(0)
2 for which a (sub-optimal)

feedback law yref = g(0) (t,x) is determined via eq(6-2). This feedback law is subsequently

used to compute an updated value function V
(1)
2 . The process can be repeated indefinitely,

which leads to the following iteration.

Definition 6.1: value-iteration (continuous time)

Set V
(0)
2 (t,x) = l (x). For i = 1, 2, 3, . . ., do:

1. Define:

g(i) (t, x) = arg max
yref∈Yref

{

∂V
(i−1)
2 (t,x)

∂x
f
(

x,yref

)

}

(6-25)

2. Define V
(i)
2 : [0, T ]× R

n 7→ R as the viscosity solution of:

∂V
(i)
2 (t,x)

∂t
+
∂V

(i)
2 (t,x)

∂x
f
(

x, g(i) (t, x)
)

= 0 (6-26a)

V
(i)
2 (T,x) = l (x) (6-26b)

The iteration procedure is also illustrated in figure 6-2.

rr

Evaluate control law

g(i) (t,x)

Initialize:

V
(0)
2 (t,x) = l (x)

Determine value function

V
(i)
2 (t,x)

r r

V
(i−1)
2 (t,x)

Figure 6-2: The value-iteration procedure as described in definition 6.1.

The question which now arises is whether V
(i)
2 in definition 6.1 will approach V2 in the limit

case. Starting with V
(0)
2 (t,x) = l (x) at least guarantees that the feedback law: g(1) (t, x)
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will be optimal at the end-time, i.e. at t = T . But what does this imply for the consecutive
iterations? The next sub-section analyzes the convergence properties of definition 6.1 in
greater detail.

6-4-1 Theoretical convergence analysis

Convergence analysis of value-iteration schemes in the continuous-time setting is complicated
by the involvement of PDEs. For discrete-time systems, the PDEs are replaced by recursive
relations and the convergence analysis can be simplified significantly. Therefore, the proposal
is to study the convergence of the discrete-time equivalent of definition 6.1 and then draw
connections with the continuous-time version. Although this will not prove anything, at least
the convergence of the discrete-time case can be used as a motivation to assert the likelihood
of convergence for the continuous-time case.

Consider the discrete-time dynamical system, given by the recurrence relation:

x (k + 1) = fd

(

x (k) ,yref (k)
)

(6-27)

where t is replaced by k to denote a discrete-time instance, and the subscript d is added to f

to distinguish eq(6-27) from the continuous-time system. Let yref (·) be the concise notation
for a sequence of reference command values3 and define:

Yref {k,··· ,k0+N} :=
{

yref (·) : {k, . . . , k0 +N} 7→ Yref

}

(6-28)

as the analogue of the command signal space, with N as in eq(6-11). The equivalent of eq(4-9)
for the discrete-time system is:

V2 (k,x) = sup
yref (·)∈Yref [k,k0+N ]

l
(

φ
(

k0 +N ;x, k,yref (·)
))

(6-29)

The Bellman equation (i.e. the discrete-time equivalent of the HJB PDE) associated with
eq(6-29) is given by:

V2 (k,x) = max
yref∈Yref

V2
(

k + 1,fd

(

x,yref

))

(6-30)

Similar to eq(6-1) and eq(6-2), eq(6-30) can be reformulated into two coupled equations.
Without loss-of-generality, assuming that k0 = 0, these equations are respectively:

V2 (k,x) = V2 (k + 1,fd (x, g
∗ (k,x))) (6-31a)

V2 (N,x) = l (x) (6-31b)

and
g∗ (k,x) = arg max

yref∈Yref

V2
(

k + 1,fd

(

x,yref

))

(6-32)

The value-iteration scheme for the discrete-time case can subsequently be defined as follows.

Definition 6.2: value-iteration (discrete-time)

Set V
(0)
2 (k,x) = l (x). For i = 1, 2, 3, . . ., do:

3Instead of a signal!
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1. Define:

g(i) (k, x) = arg max
yref∈Yref

V
(i−1)
2

(

k + 1,fd

(

x,yref

))

(6-33)

2. Define V
(i)
2 (k,x) as the solution to:

V
(i)
2 (k,x) = V

(i)
2

(

k + 1,fd

(

x, g(i) (k,x)
))

(6-34a)

V
(i)
2 (N,x) = l (x) (6-34b)

Next will be shown that the scheme in definition 6.2 actually converges to V2, as in eq(6-29),
in a finite number of steps.

Theorem 6.1: Convergence of value-iteration for a discrete-time system

Consider definition 6.2. V
(i)
2 converges to V2, as in eq(6-29), after at most N iterations, i.e.

V
(N)
2 (k,x) = V2 (k,x) (6-35)

Proof. First of all, observe that:

V
(0)
2 (k,x) = V2 (k,x) , for k = N (6-36)

This fact follows straightforwardly from eq(6-31b) and eq(6-34b). Next, it is shown that:

V
(1)
2 (k,x) = V2 (k,x) , for k = N,N − 1 (6-37)

For k = N , the result is trivial. However, to see that the equality also holds for k = N − 1,
notice at first that:

g(1) (N − 1, x) = arg max
yref∈Yref

V
(0)
2

(

N,fd

(

x,yref

))

= arg max
yref∈Yref

V2
(

N,fd

(

x,yref

))

= g∗ (N − 1, x)

From which one can verify that:

V
(1)
2 (N − 1,x) = V

(1)
2

(

N,fd

(

x, g(1) (N − 1,x)
))

= V2

(

N,fd

(

x, g(1) (N − 1,x)
))

= V2 (N,fd (x, g
∗ (N − 1,x)))

= V2 (N − 1,x)

On a similar note, it can be show that:

V
(2)
2 (k,x) = V2 (k,x) , for k = N,N − 1, N − 2 (6-38)

Again, the result for k = N is trivial. To show that eq(6-38) holds true for k = N − 1, one

first shows that g(2) (N − 1, x) = g(1) (N − 1, x) from which one proves that V
(2)
2 (N − 1,x) =
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V
(1)
2 (N − 1,x). Then by eq(6-37), it follows that V

(2)
2 (N − 1,x) = V2 (N − 1,x). To show

for k = N − 2, take first note of the following:

g(2) (N − 2, x) = arg max
yref∈Yref

V
(1)
2

(

N − 1,fd

(

x,yref

))

= arg max
yref∈Yref

V2
(

N − 1,fd

(

x,yref

))

= g∗ (N − 2, x)

From which follows that:

V
(2)
2 (N − 2,x) = V

(2)
2

(

N − 1,fd

(

x, g(2) (N − 2,x)
))

= V2

(

N − 1,fd

(

x, g(2) (N − 2,x)
))

= V2 (N − 1,fd (x, g
∗ (N − 2,x)))

= V2 (N − 2,x)

By induction, the following can be stated:

V
(l)
2 (k,x) = V2 (k,x) , for k = N,N − 1, . . . , N − l (6-39)

Hence, proving the claim made in eq(6-35).

A well known fact is that eq(3-1) can be approximated by a discrete-time model using a
zero-order hold approximation:

fd

(

x (k) ,yref (k)
)

= x (k) + ∆tf
(

x (k) ,yref (k)
)

(6-40)

In the limit case of ∆t→ 0 (and N →∞), eq(6-27) becomes equivalent to eq(3-1). This hints
at the possibility that convergence will also hold for the continuous-time case.

6-4-2 Empirical study of the convergence

To further examine the convergence properties of definition 6.1, empirical studies are con-
ducted on the example problem of chapter 5. Because of the nonexistence of analytical
solutions, the PDEs are solved numerically with level set algorithms which are known to
converge to the correct viscosity solution in the limit case.

The empirical study considers only the nominal system for which the command margins are
set to θref,min = −8◦ and θref,max = 23◦. Furthermore, the boundary condition is set to Eq(5-
6). The value functions are solved over the domain Ω = [−0.3491, 0.8727]× [−1.51.5] rad, and
the grid sizes are set to ∆θ = 2

180π rad and ∆q = 2
180π rad. For computing V2, the spatial

derivatives are approximated with a first-order scheme, the Hamiltonian is approximated
with a LF scheme, and the value function is integrated in time with explicit forward Euler.

For computing V
(i)
2 , the spatial derivatives are approximated with a first-order scheme, the

convective term is approximated with an upwind scheme, and the value function is integrated
in time with explicit forward Euler.
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To study the convergence, the Residual Sum-of-Squares (RSS) is also computed over the
entire solution grid, i.e.

RSS =
∑

(

V
(i)
2 (t,x)− V2 (t,x)

)2

Table 6-1 shows the RSS values for the first 10 iterations. Results indicate that the value-
iteration scheme converges to true value function for this particular example problem.

Iteration RSS RSS normalized

1 1.15958 1
2 0.02912 0.02511
3 0.00641 0.00553
4 0.00227 0.00195
5 0.00107 0.00092
6 0.00070 0.00060
7 0.00055 0.00048
8 0.00049 0.00042
9 0.00046 0.00040
10 0.00045 0.00039

Table 6-1: RSS as a function of number of iterations.

Concluding remarks on the convergence

To the best of the authors knowledge, no specific results were found in the literature regarding
the convergence of the value-iteration scheme for the particular time-dependent, continuous-
time case. Consequently, the following assertion has to be made in the research.

Assertion:

Consider the iteration described in definition 6.1. The following claim is made:

V
(i)
2 (t,x)→ V2 (t,x) , as i→∞

where V2 is as in eq(4-9).

This assertion can be backed by the following arguments:

• Convergence holds for the discrete-time equivalent of the value-iteration scheme.

• Empirical results indicate that convergence also appears to occur for the continuous-
time case.

6-5 The value function approximation algorithm

The value-iteration scheme, as in definition 6.1, is used to convert the non-linear optimization
problem of section 6-3 into a sequence of least-squares problems.
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Let c
(i)
0 , . . . , c

(i)
N−1 denote the coefficients of the value function for the i-th iteration. From

eq(6-12) and eq(6-25) it follows that:

g(i)
(

c
(i−1)
k ,x

)

= arg max
yref∈Yref

{

f
(

x,yref

)T

(

∂l (x)

∂x

T

+
∂F (x)

∂x
c
(i−1)
k

)}

Furthermore, eq(6-15) changes into:

α1

(

x, c
(i−1)
k−1

)

c
(i)
k−1 + α2

(

x, c
(i−1)
k

)

c
(i)
k = β

(

x, c
(i−1)
k−1

)

, c
(i)
N = 0

The value-iteration procedure for the approximate expression of eq(6-17) can effectively de-
scribed by the recursion:

A
(

x,C(i−1)
)

C(i) = B
(

x,C(i−1)
)

, C(0) = 0 (6-41)

with A and B defined as in eq(6-20).

The introduction of value-iteration, transforms the cost function into eq(6-22) a least-squares
problem:

O
(

C(i)
)

=
∥

∥

∥
X
(

C(i−1)
)

C(i) −Y
(

C(i−1)
)∥

∥

∥

2
(6-42)

where X ∈ R
LN×pN and Y ∈ R

LN×1 are given by the expressions:

X
(

C(i−1)
)

=

















A
(

x1,C
(i−1)

)

A
(

x2,C
(i−1)

)

...

A
(

xL,C
(i−1)

)

















(6-43)

and

Y
(

C(i−1)
)

=

















B
(

x1,C
(i−1)

)

B
(

x2,C
(i−1)

)

...

B
(

xL,C
(i−1)

)

















(6-44)

Given the coefficients of a previous value-iteration cycle (i.e. C(i−1)), the objective is to
determine the coefficients for the next value-iteration C(i) by:

arg min
C(i)∈RpN

O
(

C(i)
)

for which the solution is:

C(i) =
(

XT
(

C(i−1)
)

X
(

C(i−1)
))−1

XT
(

C(i−1)
)

Y
(

C(i−1)
)

(6-45)

Note that, in order for the inverse to exist, XTX has to be non-singular. This is the case
when X has full column rank, imposing the necessary condition that the number of collocation
points has to be greater than the number of unknown coefficients (i.e. L ≥ p).
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One of the benefits of value-iteration is that it allows for a framework in which the value
function can be adapted to changing system dynamics. Unlike in level set methods, the
adaption process avoids a complete re-computation of the value function. The algorithm for
approximating the value function is summarized here below.

Algorithm 6.1: Adaptive value function approximation scheme
Initialize C(0) = 0. Given the coefficients of a previous value-iteration cycle (i.e. C(i)), do
the following:

1. Construct matrix X and vector Y based on C(i−1) and present dynamics f .

2. Obtain the new coefficients C(i) through:

C(i) =
(

XT
(

C(i−1)
)

X
(

C(i−1)
))−1

XT
(

C(i−1)
)

Y
(

C(i−1)
)

The algorithm is illustrated in figure 6-3.

rr

Construct

X
(

C(i−1)
)

and Y
(

C(i−1)
)

Initialize:

C(0) = 0

Solve least-squares problem, i.e.

C(i) =
(

XTX
)−1

XTY

r r

C(i−1)

dynamics f

Figure 6-3: The value-iteration procedure as described in definition 6.1.
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Chapter 7

Approximation of the value function
with simplex splines

7-1 Introduction

The previous chapter introduced an alternative method to approximate the solution of eq(4-
12) using regressional techniques. The chapter described the proposed method in a generic
fashion by disclosing the type of function approximator used in the scheme. There are several
options available for the selection of suitable basis functions, so many, that analyzing the
performance of every individual function approximator goes beyond the scope of this thesis.
For instance, the proposed scheme may be used along with Radial Basis Functions (RBFs),
as it was done in (Huang et al., 2006) and (Alwardi, 2010). Apart from the heuristics in
selecting suitable centers, RBFs are linear in the parameters making them a compatible
choice for algorithm 6.1. Another function approximator that has the affine property is the
multivariate simplex spline. In (Awanou & Lai, 2004), (Awanou, Lai, & Wenston, 2005) and
(Hu, Han, & Lai, 2007), simplex splines were already used to solve variants of the Navier-
Stokes equations.

Motivated by these papers, this chapter aims to apply multivariate simplex spline theory
together with algorithm 6.1 to find polynomial-based approximations of eq(4-12). The ”spline
method” is tested on the simplified pitch dynamics model. The performance of the method
is assessed by comparing the quality of the solutions with level set algorithms.

The chapter is organized as follows. Section 7-2 discusses details concerning the implemen-
tation of simplex splines in algorithm 6.1. Section 7-3 presents some preliminary results of
the spline method for the simplified pitch dynamics model. Section 7-4 further analyzes the
results by comparing the performance of the method to level set algorithms.
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56 Approximation of the value function with simplex splines

7-2 The spline method

A multivariate simplex spline is a piecewise-polynomial function defined over a special ge-
ometric structure called a triangulation. Since simplex spline functions are affine in the
parameters, they are directly usable in algorithm 6.1. Appendix B provides a short introduc-
tion to the theory of multivariate simplex splines. Readers not familiar with the subject are
recommended to read the appendix first before proceeding any further.

The following subsections discuss aspects concerning the implementation of splines in algo-
rithm 6.1. This includes matters such as the selection of suitable spline model parameters
and collocation points. Note that the coding of the algorithms is all done in Matlab. A copy
of the source code may be obtained under special request from the author.

7-2-1 Spline model selection

The first step in algorithm 6.1 is to select a suitable spline model. This involves the selection of
a triangulation T for the computational domain Ω, a degree d for the polynomial functions,
and a continuity order r for the simplex interfaces. The exact effects of the spline model
parameters on the quality of the solution is difficult to predict. However, an increase in the
number of simplices, or an increase in the polynomial degree, commonly tends to improve the
quality of the solutions as the approximation power of the spline is increased. Mind that this
increase comes at the price of higher computational costs during estimation and evaluation.
Therefore, a trade-off has to be made in the selection of suitable spline model parameters.
The optimization of the model parameters can go rather involved, even up to the extend that
a separate research project needs to be dedicated to the topic itself.

Consequently, this thesis take only a simplistic approach to triangulate the rectangular do-
mains of the examples. The triangulation is done as follows: the set Ω is partitioned into an
arbitrary number of equally sized sub-boxes. Every sub-box is then further divided into two
triangles leading to the triangulation depicted in figure 7-1. The triangulation may be param-
eterized by a two dimensional row vector. The components of the vector denote respectively
the number of boxes in the x1-direction and x2-direction.

x1

x2

Ω

b b

bb

b

b

b

b

b

b

(a) triangulation [2, 1]

Ω

b b

bb

b

b

b b

b

b

b

bb

b

b

b

(b) triangulation [2, 2]

Figure 7-1: Triangulation of the computational domain Ω.
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7-2 The spline method 57

The preference is to use spline models with lower degree polynomials. This is done in order
to minimize Runge’s phenomenon associated with higher-order polynomial approximations.
Furthermore, the smoothness of the spline functions is limited to 0th order continuity. The
continuity order affects the level of propagation of characteristic information across simplex
boundaries during estimation. Due to time constraints and other priorities during research,
experimentation with higher-order continuous splines has not been attempted.

7-2-2 Selection of suitable collocation points

The estimation procedure requires a set of collocation points to be chosen over the computa-
tional domain Ω. These points are necessary to construct the regression matrices: eq(6-43)
and eq(6-44). The proposal is to use the spatial locations associated with the B-coefficients
as collocation points for the algorithm. The spatial distribution of the B-coefficients, also
referred to as the B-net in (de Visser et al., 2009), is described by eq(B-10). In this configura-
tion, the collocation points are evenly scattered over the simplex and seem to give reasonable
results.

7-2-3 Numerical implementation of the least-squares solution

Let the computational domain Ω be partitioned into J simplexes, the number of collocation
points in algorithm 6.1 will then equal L = Jd̂, where d̂ is defined in eq(B-8). In order
to enforce continuity in the spline function, C(i), as in eq(6-45), has to meet some linear
equality constraints. The following constrained optimization problem needs to be solved in
that regard:

min
C(i)∈RpN

O
(

C(i)
)

subject to constraint: HglobalC
(i) = 0

where Hglobal ∈ R
Ns×Jd̂N is the smoothness matrix, given by:

Hglobal =







Ht0

. . .

HtN






(7-1)

where Htk is as in eq(B-11).

The solution to this constrained optimization problem is obtained by solving the Karun-
Kuhn-Tucker (KKT) system:

[

Q(i−1) HT
global

Hglobal 0

] [

C(i)

λ(i)

]

=

[

R(i−1)

0

]

(7-2)

where Q(i−1) = XT
(

C(i−1)
)

X
(

C(i−1)
)

and R(i−1) = XT
(

C(i−1)
)

Y
(

C(i−1)
)

refer to the

matrices defined in eq(6-43) and eq(6-44).

Eq(7-2) can be solved by a variety of methods. An effective approach is to use the matrix
iterative solver presented in (Awanou & Lai, 2004). The iterative solver computes C(i) by
the recursion:

d(k+1) =

(

Q(i−1) +
1

ǫ
HT

globalHglobal

)−1

Q(i−1)d(k) (7-3)
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where ǫ > 0, and eq(7-3) is initialized by either:

d(0) =

(

Q(i−1) +
1

ǫ
HT

globalHglobal

)−1

R(i−1) (7-4)

or:
d(0) = C(i−1) (7-5)

The iteration is known to converge to C(i) as k → ∞. However, from a practical sense,
convergence is obtained relatively quickly in three or four steps. The iterative solver is more
efficient than solving eq(7-2) directly, because a significantly smaller matrix needs to be
inverted in the process. Furthermore, the sparse matrix Q(i−1) + 1

ǫ
HT

globalHglobal is known to
be positive definite, hence the highly effective Cholesky factorization can be used to solve the
system of equations.

Any algorithm that requires solving a system of linear equations is undesirable in a real-time
application. Preferably, an effective gradient descent method should be used instead. With
the availability of past solutions (i.e. C(i−1)), hopes are that convergence can be obtained
relatively quickly in a real-time setting. Recommendations are to further study the feasibility
of such an approach.

7-3 Results for the simplified pitch dynamics model

The performance of the spline method is tested on the nominal case of the simplified pitch
dynamics model. The value function V1 is approximated for a time-horizon of 3 seconds
and the margins are set to respectively: −8◦ and 23◦ degrees. Since no analytic solutions are
available for the problem, the results are compared to high-accuracy level set approximations.

7-3-1 Two different methods to find the safe-set

The safe-set for eq(5-5) can be obtained in several ways. One approach (method A) is to
compute the value function for the boundary condition in eq(5-6), i.e.

l (x) = max {−θ − 10◦, θ − 25◦}

This approach was taken also in chapter 5 and uses one implicit surface function to describe
all constraints at once.

An alternative approach (method B) is to evaluate separate value functions for the lower
and upper constraint respectively. The intersection of the safe-sets associated to these value
functions, describes the safe set for eq(5-5). That is to say, if V1,a and V1,b denote respectively
the value functions for the boundary conditions:

la (x) = −θ − 10◦ (7-6)

and
lb (x) = θ − 25◦ (7-7)

Then:
{

x ∈ R
2
∣

∣ max {V1,a (0,x) , V1,b (0,x)} ≤ 0
}
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is the safe-set for eq(5-5).

The following analysis presents results for both methods. Based upon earlier results (table 6-
1), the number of iterations in algorithm 6.1 is fixed to 10, irrespective of the convergence
of the scheme. The value functions are approximated for the computational domain Ω :
[−0.2269, 0.5672]× [−0.9750, 0.9750] rad.

7-3-2 Performance metrics for quality assessment

The following performance metrics are introduced to asses the quality of the solutions in
greater detail. The first metric ǫnorm denotes the magnitude of the error normalized with
respect to a reference solution:

ǫnorm (x) =

∥

∥

∥
V1(0,x)− V̂1(0,x)

∥

∥

∥

‖V1(0,x)‖+ c
(7-8)

The normalization is done in order to magnify errors near the zero-level set where accurate
results are more critical. The positive constant c > 0 is added to prevent division by zero. In
this thesis, c was set to 10−3. The second metric η denotes the classification error, and states
whether the approximate solution has the same sign as the reference solution for a particular
locations in Ω:

η (x) =

{

1 if sgnV1(0,x) = sgnV̂1(0,x)
0 otherwise

(7-9)

The reference solutions used in the subsequent results are high-accuracy level set approxi-
mations of the solution. The spatial derivatives are approximated with a third-order ENO
scheme, a LF approximation is used for the Hamiltonian, and the value function is integrated
in time with an explicit third-order RK method. The value function is solved over the domain
Ω = [−0.3491, 0.8727] × [−1.5, 1.5] rad. The grid accuracy is set to respectively ∆θ = 2

180π
rad and ∆q = 2

180π rad.

7-3-3 Analysis of the results

Figure 7-2 displays results using method A for two different spline model configurations.
The associated performance metrics: ǫnorm and η are shown in figures 7-5 and 7-6. Results
illustrate that the approximations get gradually better once the complexity of the spline
model is increased. Apart from this basic observation, a jump appears to also occur in the
solutions at approximately θ = 7.5◦. Further analysis in figures 7-4 and 7-3 clarify that these
jumps are caused by the shortcomings of the spline function to approximate the non-smooth
solution region caused by the kink at the boundary condition.

The performance is significant improved when method B is used to obtain the safe-set. In
figure 7-7 results are shown for method B using a relatively simple spline model with tri-
angulation: [2, 2], d = 3, r = 0, ∆t = 0.2 seconds. The spline functions no longer have
to approximate the non-smooth solution region caused by the kink in the boundary condi-
tion. As a consequence, significantly better approximations are obtained for relatively ”less
complex” spline model configurations. Remember that figure 7-7 shows the results after 10
iterations. However, judging from figure 7-8, the quality of the solutions do not improve
significantly after two iterations.
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(a) reference solution

(b) triangulation [6, 4], d = 3, r = 0, ∆t = 0.1 seconds (c) triangulation [40, 4], d = 3, r = 0, ∆t = 0.1 sec-
onds

Figure 7-2: Spline approximations of V1 (0,x) using method A.
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(a) t = 2.9 seconds

(b) t = 2.0 seconds

(c) t = 0.0 seconds

Figure 7-3: V2 at different time instances for the spline approximation in figure 7-2(b), i.e. with
triangulation [6, 4], d = 3, r = 0, ∆t = 0.1 seconds.
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(a) t = 2.9 seconds

(b) t = 2.0 seconds

(c) t = 0.0 seconds

Figure 7-4: V2 at different time instances for the spline approximation in figure 7-2(c), i.e. with
triangulation [6, 4], d = 3, r = 0, ∆t = 0.1 seconds.
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(a) triangulation [6, 4], d = 3, ∆t = 0.1 seconds
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(b) triangulation [40, 4], d = 3, ∆t = 0.1 seconds

Figure 7-5: The normalized error ǫnorm (in %) for the spline approximations in figure 7-2.

percentage incorrect classification: 47.3708%
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(a) triangulation [6, 4], d = 3, r = 0, ∆t = 0.1 sec-
onds

percentage incorrect classification: 5.364%
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Figure 7-6: The classification error η for the spline approximations in figure 7-2.
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(a) reference solution (b) spline approximation
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(c) normalized error ǫnorm (in %)

percentage incorrect classification: 0.73961%
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Figure 7-7: Spline approximation of V1 (0,x) using method B with triangulation [2, 2], d = 3,
r = 0, ∆t = 0.2 seconds.
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(a) After one iteration.
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(b) After two iterations.
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(c) After three iterations.
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(d) After four iterations.

Figure 7-8: The normalized error ǫnorm (in %) for the spline approximation using method B
with triangulation [2, 2], d = 3, r = 0 ∆t = 0.2 seconds.
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7-4 Comparison to level set algorithms

The spline method has some major shortcomings when compared to the level set algorithms.
Level set methods are known to converge to the correct viscosity solution as the grid gets
more refined. On the other hand, there are no theoretical convergence proofs for the spline
method. However, results do indicate that the approximations get gradually better once
the complexity of the spline model is increased. Furthermore, the splines inheritently have
difficulties approximating non-smooth solution regions of the value function. Judging from
figures 7-4 and 7-3, non-smooth boundary conditions cause severe distortions in the spline
solution. These distortions mellow down, once the spline model complexity is increased,
however at the expense of higher computational costs.

The spline method also exhibit several benefits over the level set algorithms. In the absence
of large non-smooth solution regions, the spline method is capable of giving good approx-
imations to the value function at relatively small computation costs. This claim is made
based on the observations of Method B to approximate the value function. Table 7-2 shows
the computation time1 needed for five iteration cycles with different spline model settings.
Table 7-1 shows the computation times for different grid settings of the level set method. In
the tables, the performance parameter: ǫnormavg is defined as the mean of eq(7-8) over the
entire computational domain, whereas ηtotal denotes the overall classification error.

Note that the above results refer to just one specific example problem. The methods so
strongly differ from each other that comparison is very difficult to make. More studies are
necessary to further analyze the computational complexity of the methods.

Grid accuracy ǫnormavg [-] ηtotal [%] CPU time[seconds]

∆θ = 2
180π, ∆q =

2
180π 0.0473 2.70 7.75

∆θ = 4
180π, ∆q =

4
180π 0.2140 3.27 2.73

∆θ = 6
180π, ∆q =

6
180π 0.4574 7.25 1.65

∆θ = 8
180π, ∆q =

8
180π 0.9370 18.43 1.23

Table 7-1: Performance of level set algorithm using method B. The spatial derivatives are
approximated with a upwind first-order scheme, a LF approximation is used for the Hamiltonian,
and the value function is integrated in time using forward Euler.

1Note that these times are obtained on a laptop with Intel Core Duo 2.1 GHz processor and 4 GB RAM.
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Figure 7-9: The normalized error ǫnorm (in %) for the level set algorithm using method B. The
spatial derivatives are approximated with a upwind first-order scheme, a LF approximation is used
for the Hamiltonian, and the value function is integrated in time using forward Euler.
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(a) Performance of the spline approximations using method B with different
triangulation configurations. The other settings are: d = 3, r = 0, ∆t = 0.2
seconds.

triangulation ǫnormavg [-] ηtotal [%] CPU time [seconds]

[1, 1] 0.3012 2.58 0.078
[2, 2] 0.1597 0.74 0.50
[3, 3] 0.2743 1.33 1.43
[4, 4] 0.2355 1.13 2.46

(b) Performance of the spline approximations using method B with dif-
ferent polynomial degrees. The other settings are: triangulation [2, 2],
r = 0, ∆t = 0.2 seconds.

degree d ǫnormavg [-] ηtotal [%] CPU time [seconds]

2 1.4072 79.99 0.28
3 0.1597 0.74 0.51
4 0.2201 1.48 1.09
5 0.2215 1.40 1.90

(c) Performance of the spline approximations using method B with different time-steps.
The other settings are: triangulation [2, 2], d = 3, r = 0.

time-step ∆t [seconds] ǫnormavg [-] ηtotal [%] CPU time [seconds]

0.375 0.8043 28.22 0.31
0.3 0.4047 1.58 0.36
0.2 0.1597 0.74 0.51
0.1 0.1509 1.22 1.12

Table 7-2: Performance of the spline approximations using method B with different model
configurations. The number of value-iteration cycles is fixed to 5.
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Part IV

In-flight command margin estimation
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Chapter 8

A step towards real-time command
margin estimation

8-1 Introduction

The objective in this thesis project is to determine margins for reference command signals
of aircraft control systems, such that predefined state constraints are never violated. The
margins are determined through the procedure outlined in figure 4-2, and involves solving a
optimal control problem in real-time. So-far, the previous chapters have addressed how the
optimization of the cost functional is done.

In this chapter, initial steps are taken to develop algorithms that close-the-loop in figure 4-2.
A simple algorithm is presented to determine margins for the pitch command reference of
the simplified pitch dynamics model in an iterative procedure. Furthermore, simulations are
performed to study the properties of the algorithm with respect to abrupt changes in the
dynamics and flight envelope.

The chapter is organized as follows. Section 8-2 presents the algorithm developed to determine
the margins of the pitch dynamics model. Section 8-3 presents simulation results with the
algorithm for some representative failure scenarios.

8-2 A simple algorithm for the pitch dynamics model

The margins for the simplified pitch dynamics model are found by making incremental changes
to the upper and lower limits of the pitch command reference. The margins are adjusted ac-
cording to the sign of J∗

a and J∗
b , which respectively denote the maxima of the cost functionals:

Ja (x0, θref (·)) = max
τ∈[t0,t0+T ]

la (φ (τ ;x0, θref (·))) (8-1)

and
Jb (x0, θref (·)) = max

τ∈[t0,t0+T ]
lb (φ (τ ;x0, θref (·))) (8-2)
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where la and lb are defined by eq(7-6) and eq(7-7).

Given the dependency of J∗
a and J∗

b on the margins: (θref,min, θref,max), the following may be
stated:

J∗
a = J∗

a (x0, θref,min, θref,max) , J∗
b = J∗

b (x0, θref,min, θref,max)

Hence, the objective is to adjust (θref,min, θref,max) such that:

J∗
a (x0) ≤ 0 and J∗

b (x0) ≤ 0 (8-3)

The relative simplicity of the pitch dynamics model allows one to take a heuristic approach to
adjust the margins. The heuristic approach involves making incremental one degree changes
to θref,min and θref,max, until the criteria shown in eq(8-3) are all satisfied. The entire heuristic
procedure is described here below in algorithmic form.

Algorithm 8.1

Let x0 denote the current state. Initialize θref,min and θref,max. For every time-step, do the
following iteration:

repeat

Compute J∗
a (x0) and J

∗
b (x0).

if k > 1 then

if J∗
a (x0) ≤ 0 and J∗

b (x0) ≤ 0 then
break;

else if θref,min = θref,max and ( J∗
a (x0) > 0 or J∗

b (x0) > 0 ) then
break;

end if

end if
if J∗

a (x0) > 0 then

if θref,min < θref,max then
θref,min ← θref,min + 1◦.

else if θref,min = θref,max then
θref,min ← θref,min + 1◦.
θref,max ← θref,max + 1◦.

end if
else
θref,min ← θref,min − 1◦.

end if

Compute J∗
a (x0) and J

∗
b (x0).

if k > 1 then

if J∗
a (x0) ≤ 0 and J∗

b (x0) ≤ 0 then
break;

else if θref,min = θref,max and ( J∗
a (x0) > 0 or J∗

b (x0) > 0 ) then
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break;
end if

end if
if J∗

b (x0) > 0 then

if θref,max > θref,min then
θref,max ← θref,max − 1◦.

else if θref,max = θref,min then
θref,max ← θref,max − 1◦.
θref,min ← θref,min − 1◦.

end if
else
θref,max ← θref,max + 1◦.

end if

until iteration terminates

For damaged aircraft, the actual envelope has the potential to shrink. It is possible to adapt
algorithm 8.1, such that sudden changes in the envelope can be automatically included in the
analysis. This adaption is done by modifying eq(7-6) and eq(7-7) by respectively:

la (x) = −θ (8-4)

and

lb (x) = θ (8-5)

To find the margins, the following conditions need then to be satisfied:

J∗
a (x0) ≤ −θmin and J∗

b (x0) ≤ θmax

where θmin and θmax denote respectively the lower and upper limit of the envelope. The
modified procedure is described here below in algorithmic form.

Algorithm 8.2

Let x0 denote the current state. Initialize θref,min and θref,max. For every time-step, do the
following iteration:

repeat

Compute J∗
a (x0) and J

∗
b (x0).

if k > 1 then

if J∗
a (x0) ≤ −θref,min and J∗

b (x0) ≤ θref,max then
break;

else if θref,min = θref,max and ( J∗
a (x0) > −θref,min or J∗

b (x0) > θref,max ) then
break;

end if
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end if
if J∗

a (x0) > −θref,min then

if θref,min < θref,max then
θref,min ← θref,min + 1◦.

else if θref,min = θref,max then
θref,min ← θref,min + 1◦.
θref,max ← θref,max + 1◦.

end if
else
θref,min ← θref,min − 1◦.

end if

Compute J∗
a (x0) and J

∗
b (x0).

if k > 1 then

if J∗
a (x0) ≤ −θref,min and J∗

b (x0) ≤ θref,max then
break;

else if θref,min = θref,max and ( J∗
a (x0) > −θref,min or J∗

b (x0) > θref,max ) then
break;

end if

end if
if J∗

b (x0) > θref,max then

if θref,max > θref,min then
θref,max ← θref,max − 1◦.

else if θref,max = θref,min then
θref,max ← θref,max − 1◦.
θref,min ← θref,min − 1◦.

end if
else
θref,max ← θref,max + 1◦.

end if

until iteration terminates

Algorithm 8.2 is implemented in a Matlab/Simulink environment. The spline method is used
to approximate the value function associated with the cost functionals in eq(8-1) and eq(8-
2). A copy of the Matlab and Simulink files can be obtained under special request from the
author.
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8-3 Simulations

Simulations are conducted to study the behavior of the margins in a dynamic environment.
Given that the pilot has final authority over the control system, the following two cases can
be distinguished:

• Case I: the pilot follows the command margins, and provides a reference command
signal within the margins.

• Case II: the pilot ignores the command margins, and provides a reference command
signal outside of the margins.

The response of the margins is studied for both cases. Simulations are conducted with a
duration of 50 seconds for the following ”failure” scenarios:

• Scenario A: a sudden degradation of the system dynamics, in which the system becomes
off-nominal, as in eq(5-4), after t = 10 seconds.

• Scenario B: a sudden degradation of the envelope, in which the envelope limits change
according to:

θmin (t) =

{

−10◦ t < 20 seconds
−5◦ t ≥ 20 seconds

, θmax (t) =

{

25◦ t < 20 seconds
20◦ t ≥ 20 seconds

(8-6)

• Scenario C: a superposition of the previous two scenarios in which the system becomes
off-nominal after t = 10 seconds and the envelope shrinks according to eq(8-6).

Section 8-3-1 analyzes results for case I, whereas section 8-3-2 analyzes the results for case II.

8-3-1 Case I: Pilot follows the margins

Figure 8-1 shows simulation results for scenario A where the computed margins are displayed
along the trajectory of the system. The margins are computed for different time-horizons.
Results indicate that the margins tend to become larger when the time-horizon is reduced.
In fact, for T = 1 second (figure 8-1(a)), the margins even exceed the flight envelope. Ap-
parently, the inputs of the system do not have enough control power to steer the aircraft out
of the envelope within an one second horizon. The time-scale of the system requires one to
compute the margins for a larger time-window in order to account for all transient effects.
For the type of dynamics in the example problem, a time-horizon of T = 5 seconds is a more
suitable indication of safety. For T = 5 seconds, the margins clearly shrink once the dynamics
become off-nominal, which gives the correct indication that the aircraft performance has been
degraded.

In general, small time-horizons can give misleading (i.e. large) margins to a pilot, especially
if the time window is not able to capture all the transients. On the other hand, a large time-
horizon T is of no practical use as one is uncertain about the dynamics in the distant future.
Aircraft dynamics are highly non-linear, and one typically has only local approximations of
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the dynamics available, especially during off-nominal conditions. Consequently, a trade-off
needs to be made in the selection of a suitable time-horizon. A suggestion is to fix T to two
or three times the time-constant of the nominal system.

In figure 8-2 and 8-3, simulation results are shown for respectively scenario B and C. The
margins displayed in the figures are for a time-horizon of T = 5 seconds. As in figure 8-1, the
pilot again provides a reference command signal in the form of a block function. As expected,
results show that the margins shrink once the flight envelope also shrinks. The margins shrink
even further when the system also becomes off-nominal. The state trajectories appear to also
never violate the flight envelope. This observation is consistent with the theory because the
pilot continuously provides a reference command signal within the margins.
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(a) Results for T = 1 seconds.
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(b) Results for T = 3 seconds.
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(c) Results for T = 5 seconds.

Figure 8-1: The command margins estimated for scenario A. The upper and lower limits of the
margins are shown respectively in blue and green. The envelope limits are denoted in red. The
state trajectory is denoted by the black continuous line. The reference command signal is denoted
by the black dotted line.
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Figure 8-2: The command margins estimated for scenario B with T = 5 seconds. The upper
and lower limits of the margins are shown respectively in blue and green. The envelope limits
are denoted in red. The state trajectory is denoted by the black continuous line. The reference
command signal is denoted by the black dotted line.
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Figure 8-3: The command margins estimated for scenario C with T = 5 seconds. The upper
and lower limits of the margins are shown respectively in blue and green. The envelope limits
are denoted in red. The state trajectory is denoted by the black continuous line. The reference
command signal is denoted by the black dotted line.
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8-3-2 Case II: Pilot ignores the margins

Figure 8-4 shows more simulation results for scenario A, B, and C. The margins are again esti-
mated for a time-horizon of T = 5 seconds. However, this time the pilot provides a reference
command signal that occasionally violates the margins. In compliance with expectations,
results indicate that envelope excursions may occur under prolonged neglect of the margins.
However, mind that such a neglect does not imply an inevitable violation of the envelope.
For example, in figure 8-4(a) the pilot repeatedly violates the margins after t = 20 seconds,
but the system never violates the envelope.

An envelope excursion is commonly preceded by a rapid shrinkage of the margins, which
indicates that the aircraft is fast approaching the edge of the envelope. This shrinkage can
especially be noticed in figure 8-4(c) after t = 20 seconds. An envelope excursion can be
prevented if the pilot reacts in time to the changes in the margins. This is illustrated in
figure 8-5 where some more simulations results are presented for scenario A. Results are
zoomed-in to the time interval: [9, 11.5] seconds when the transition occurs from nominal to
off-nominal dynamics. In figure 8-5(b) and 8-5(c), the pilot avoids an envelope excursion by
changing his reference command at approximately t = 11.2 seconds. Note however that in
reality an envelope violation could not have been avoided, given the reaction time of a pilot.
The proposed framework for envelope protection will be for suitable for outer-loop control
variables of aircraft control systems (e.g. airspeed, flight-path angle). The dynamics of these
variables evolve at a slower pace, giving enough time for the pilot to take countermeasures.
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(a) Results for scenario A.
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(b) Results for scenario B.
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(c) Results for scenario C.

Figure 8-4: Command margins estimated for different scenarios with T = 5 seconds. This time
the reference command signals of the pilot do not always satisfy the margins. The upper and lower
limits of the margins are shown respectively in blue and green. The envelope limits are denoted in
red. The state trajectory is denoted by the black continuous line. The reference command signal
is denoted by the black dotted line.
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(a) The pilot ignores the margins continuously. The margins shrink rapidly followed by a envelope violation.
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(b) The pilot responds to the changes in the margins. Consequently, the margins recover to their original state
and a envelope violated is prevented.
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(c) The pilot responds to the changes in the margins, but this time, a reference command is given which barely
satisfies the margins. Consequently, the aircraft briefly touches the envelope boundaries, but an violation does
not occur.

Figure 8-5: Command margins estimated for scenario A with T = 5 seconds. The results are
shown for the time interval: [9, 11.5] seconds where the transition occurs from nominal to off-
nominal dynamics. The upper and lower limits of the margins are shown respectively in blue
and green. The envelope limits are denoted in red. The state trajectory is denoted by the black
continuous line. The reference command signal is denoted by the black dotted line.
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Chapter 9

Command margin estimation with
uncertain dynamics

9-1 Introduction

In reality, the aircraft dynamics are known only for the nominal case. During off-nominal
conditions, the command margins have to be estimated with approximations of the dynamics
instead. The detection and identification of anomalies in-flight has to be done extremely
fast in order to prevent LOC incidents. LOC may happen within a matter of seconds and
without any prior notice. The pilot needs to be warned well in advance on how to adapt to
the degrading condition.

This chapter discusses how safe command margins can be estimated for aircraft when the
dynamics are not known entirely. The goal is to estimate the correct margins without exciting
the inputs of the system. The proposal is to use the prediction model in (Stepanyan et al.,
2011) to obtain real-time approximations of the system dynamics. The prediction model is
chosen over traditional parameter estimation techniques for its properties regarding parameter
convergence. Simulations with the simplified pitch dynamics model are conducted in order
to study the effects of this approach.

The chapter is organized as follows. Section 9-2 introduces the prediction model for a Linear
Time-Invariant (LTI) system. Furthermore, the section discusses how the prediction model
is integrated with the command margin estimation procedure. Section 8-3 presents results
obtained with the prediction model.

9-2 The prediction model

The prediction model is a state predictor that runs parallel to the flight control system (see
figure 9-1). The prediction model follows the input-output behavior of the plant by adaption
of certain parameters. The adaptive laws are a function of the predicted state, actual state
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and input of the system. These laws are designed such that the error between the predicted
state and actual state converges to zero.

What follows hereafter is a description of the prediction model for a LTI system. Extensions
to more general classes of dynamical systems are discussed in (Stepanyan et al., 2011) or
(Stepanyan & Krishnakumar, 2011), and go beyond the scope of this thesis.

Plant with
unknown parameters

Prediction
model

Adaptive
law

r r

r r

r

rr

r

r

input state

predicted
state

Figure 9-1: Prediction model

9-2-1 The Linear Time-Invariant case

Assume the nominal dynamics of the aircraft to be known entirely. Denote the nominal
system by:

ẋ (t) = A0x (t) + B0u (t) (9-1)

where A0 is a Hurwitz matrix (i.e. all eigenvalues of A0 have a strictly negative real part).
Since A0 is Hurwitz, there exists for any given positive definite matrix Q = QT > 0, a positive
definite matrix P = PT > 0 such that:

AP + APT = −Q (9-2)

where eq(9-2) is known as the Lyapunov equation.

Now consider the off-nominal system:

ẋ (t) = Ax (t) + Bu (t) (9-3)

where:
A = A0 +∆A, B = B0 +∆B

The off-nominal system may also be expressed by:

ẋ (t) = A0x (t) + B0u (t) + ∆Ax (t) + ∆Bu (t) (9-4)

where ∆A and ∆B are unknown terms.
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Remark: Notice that when ∆A,∆B = 0, the system is behaving nominally.

The prediction model for eq(9-4) is described in the following definition.

Definition 9.1: Prediction model for a LTI system
Let x̂ denote the predicted state. The prediction model is defined as:

˙̂x (t) = A0x̂ (t) + B0u (t) + ∆Â (t)x (t) + ∆B̂ (t)u (t) + λ (x (t)− x̂ (t)) (9-5)

where λ is a design parameter and ∆Â (t), ∆B̂ (t) are parameters updated by the laws:

∆
˙̂
A (t) = γP (x (t)− x̂ (t))xT (t) (9-6a)

∆
˙̂
B (t) = γP (x (t)− x̂ (t))uT (t) (9-6b)

with γ defined as the adaption rate, and P a solution of eq(9-2) for some given Q = QT > 0.

The predicted state in definition 9.1 closely follows the actual state of the system under
specific conditions for λ and γ. Define the prediction error as:

x̃ (t) = x (t)− x̂ (t) (9-7)

The prediction error dynamics are given by:

˙̃x (t) = (A0 − λI) x̃ (t) + ∆Ã (t)x (t) + ∆B̃ (t)u (t) (9-8)

where ∆Ã (t) = ∆A −∆Â (t) and ∆B̃ (t) = ∆B −∆B̂ (t). Since ∆A and ∆B are constants,
it follows that:

∆ ˙̃A (t) = −γPx̃ (t)xT (t) (9-9a)

∆ ˙̃B (t) = −γPx̃ (t)uT (t) (9-9b)

The prediction-error dynamics are known to be asymptotically stable for γ > 0, λ > 0. This
is proven in the next theorem using Lyapunov stability theory.

Theorem 9.1: Asymptotic properties of the prediction error
Consider the LTI system eq(9-4) along with the prediction model eq(9-5) and update laws
eq(9-6).

Let γ > 0, λ > 0, then the following asymptotic relations hold:

x̃ (t) → 0 (9-10a)

∆ ˙̃A (t) → 0 (9-10b)

∆ ˙̃B (t) → 0 (9-10c)

as t→∞.

Proof. Take a γ > 0 and consider the following candidate Lyapunov function:

V (t) = x̃T (t) Px̃ (t) +
1

γ
trace

(

∆ÃT (t)∆Ã (t) + ∆B̃T (t)∆B̃ (t)
)

(9-11)
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The derivative of eq(9-11) with respect to time is:

V̇ (t) = 2x̃T (t) P ˙̃x (t) +
2

γ
trace

(

∆ÃT (t)∆ ˙̃A (t) + ∆B̃T (t)∆ ˙̃B (t)
)

(9-12)

Direct substitution of eq(9-8) , eq(9-9a) and eq(9-9b) yields:

V̇ (t) = 2x̃T (t) P
(

(A0 − λI) x̃ (t) + ∆Ã (t)x (t) + ∆B̃ (t)u (t)
)

+

2

γ
trace

(

∆ÃT (t)
(

−γPx̃ (t)xT (t)
)

+∆B̃T (t)
(

−γPx̃ (t)uT (t)
)

)

= 2x̃T (t) P (A0 − λI) x̃ (t) + 2x̃T (t) P∆Ã (t)x (t) + 2x̃T (t) P∆B̃ (t)u (t)−
2 trace

(

∆ÃT (t) Px̃ (t)xT (t)
)

− 2 trace
(

∆B̃T (t) Px̃ (t)uT (t)
)

By using the property: qTr = trace(rqT ) = trace(qrT ), the following can be shown:

x̃T (t) P∆B̃ (t)u (t) = trace
(

∆B̃T (t) Px̃ (t)uT (t)
)

and
x̃T (t) P∆Ã (t)x (t) = trace

(

∆ÃT (t) Px̃ (t)xT (t)
)

Hence,
V̇ (t) = 2x̃T (t) P (A0 − λI) x̃ (t) (9-13)

By re-arrangement of the terms, eq(9-13) can be expressed as:

V̇ (t) = x̃T (t)
(

PA0 +AT
0 P
)

x̃ (t)− 2λx̃T (t) Px̃ (t) (9-14)

Furthermore, application of eq(9-2) yields:

V̇ (t) = −x̃T (t)Qx̃ (t)− 2λx̃T (t) Px̃ (t) (9-15)

Since P > 0, Q > 0, Lyapunov stability theory guarantees eq(9-10a). Eq(9-10b) and eq(9-10c)
follow directly from eq(9-9), hence proving the claims made in the theorem.

9-2-2 Estimating command margins with the prediction model

The parameters ∆Â (t), ∆B̂ (t) are used to approximate the system dynamics. Essentially,
the input-output behavior is approximated with the Linear Time-Variant (LTV) system:

ẋ (t) = Â (t)x (t) + B̂ (t)u (t) (9-16)

where:
Â (t) = A0 +∆Â (t) , B̂ (t) = B0 +∆B̂ (t)

The integration of the prediction model with the command margin estimation procedure is
illustrated in figure 9-2. The estimates: Â (t) and B̂ (t), are used in the optimal control
formulation. Instead of eq(9-3), the margins are computed for the LTI system:

ẋ (t) = Â (t0)x (t) + B̂ (t0)u (t) (9-17)

where t0 presents the current time. In order for the margins to be estimated correctly, eq(9-
17) has to converge to eq(9-3) as time progresses. This convergence is however an issue, since
the statements of eq(9-10b) and eq(9-10c) in theorem 9.1 do not immediately imply that:
Ã (t)→ 0 and B̃ (t)→ 0, as t→∞.
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Figure 9-2: Real-time implementation

9-3 Simulations

Simulations are conducted to the study performance of the prediction model in conjunction
with the set-up shown in figure 9-2. Only scenario A, as in section 8-3, is considered in the
analysis.

9-3-1 Effects of the prediction model parameters

The parameters: γ and λ have the following effect on the behavior of the prediction model.
Roughly stated, γ dictates the convergence rate of the prediction error signal, and λ influences
the transient behavior. The adaption rate γ must be set as high as possible, in order to
improve the rate of convergence of the prediction error signal x̃ (t). The design criterion γ is
then chosen accordingly to ”tame” the large transients in the prediction error signal, but also
in the estimates: Â (t) and B̂ (t). (Stepanyan & Krishnakumar, 2011) proposed the following
for λ:

λ (t) = 2
√
γ

√

‖x (t)‖2 + ‖u (t)‖2 (9-18)

Figures 9-3 and 9-5 illustrate the effects of λ on the transient behavior of x̃ (t), Â (t), and
B̂ (t). The adaption rate γ = 10000 and P = I. As can be seen in the figures, the performance
of the prediction model strongly depends on the setting of λ. When λ = 0, large oscillations
occur in x̃ (t), Â (t), and B̂ (t), as shown by the blue lines in the figures. When λ is set
according to eq(9-18), the high frequency oscillations are reduced.
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Figure 9-3: The prediction error x̃ (t) for the state trajectory shown in figure 9-4. The blue lines
denote the prediction error for the settings: γ = 1000, P = I and λ = 0. The black lines denote
the prediction error for the settings: γ = 1000, P = I and λ set according to eq(9-18).
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Figure 9-4: The state and input as a function of time. The top graph displays the pitch angle
θ and reference pitch attitude θref versus time. The center graph shows the pitch rate q versus
time. The bottom graph shows the elevator deflection versus time.
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Figure 9-5: The adaptive parameters Â (t) and B̂ (t) for the state trajectory shown in figure 9-4. The blue lines denote the estimates obtained
with the settings: γ = 1000, P = I and λ = 0. The black continuous lines denote the estimates obtained with the settings: γ = 1000, P = I
and λ set according to eq(9-18). The black dotted lines denote the actual values of the elements in A and B.
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9-3-2 Convergence of the adaptive parameters

The system identification approach using the prediction model stands different from ordinary
parameter estimation techniques. The prediction model does not attempt to estimate the
unknown parameters of the off-nominal model directly. Instead, it only adapts the parameters:
∆Â (t) and ∆B̂ (t), such that the predicted state follows the actual state. Although eq(9-16)
mimics the input-output behavior of eq(9-3), internally they may be very different. For
example, when certain modes of the system are not excited, the prediction model will not
detect certain anomalies in the system. Consequently, the parameters of the prediction model
will not ”learn” the off-nominal conditions required to estimate the correct margins.

In figure 9-6, the adaptive parameters: Â (t) and B̂ (t) are shown along with the true values
of A and B. The blue lines denote the estimates obtained with the trajectory shown in
figure 9-7(a). The black lines denote the estimates obtained with the trajectory of figure 9-
7(b). When the reference command is constant for a prolonged period, the prediction model
tends to not learn anything new about the system. This can especially be noticed for the
time period from 10 to 20 seconds where Â (t) and B̂ (t) settle down to a value, other than A
and B. The estimates obtained with the trajectory of figure 9-7(b) appear to converge faster
to the true values of the system. This is caused by the fact that the reference command in
figure 9-7(a) switches from value at a higher frequency. Every time the reference command
changes from value, the system gets excited and the prediction model gets to ”learn” more
about the off-nominal conditions.

Judging from the simulations, the plant needs to be sufficiently excited in order for Â (t) and
B̂ (t) to converge to respectively A and B. Consequently, there seems to be no real benefit of
using the prediction model as opposed to other system identification methods. Although the
author of the report feels that no strong conclusions can be made on this matter, because not
enough time has been invested to study the properties of the prediction model thoroughly.
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Figure 9-6: The adaptive parameters Â (t) and B̂ (t) for the state trajectory shown in figure 9-7. The blue lines denote the estimates obtained
with the trajectory in figure 9-7(a). The black (continuous) lines denote the estimates obtained with the trajectory in figure 9-7(b). The black
dotted lines denote the actual values of the elements in A and B. The prediction model settings are: γ = 1000, P = I and λ set according to
eq(9-18).
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(a) A low frequency block signal is provided as a reference command.
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Figure 9-7: Margins estimated with the prediction model. The upper and lower limits of the margins are denoted respectively by the blue and
green continuous lines. The dotted blue and green lines denote the actual margins (estimated with the true model parameter). The envelope
limits are denoted in red. The state trajectory is denoted by the black continuous line. The reference command signal is denoted by the black
dotted line.

N
.
G
o
v
in
d
a
ra
ja
n

A
n
O
p
tim

a
l
C
o
n
tro

l
A
p
p
ro
a
c
h
fo
r
E
stim

a
tin

g
A
irc

ra
ft

C
o
m
m
a
n
d
M
a
rg
in
s



Chapter 10

Conclusions

The goal of this thesis project was to develop a procedure to compute ”safety margins” for
reference command signals of aircraft control systems, such that predefined state constraints
are never violated. Furthermore, the margins have to be estimated in real-time for system
with uncertain plant dynamics. An optimal control framework was proposed to estimate these
margins. The framework requires complete information on the system, for which a prediction
model was used to obtain approximation of the dynamics during off-nominal conditions. The
global concept of estimating margins was illustrated on a simplified pitch dynamics model
with state limitations on the pitch attitude.

The optimal control framework involved optimizing a cost functional over a space of admissible
command signals. The sign of the cost functional indicates whether a state trajectory of the
system can violate the envelope in a given time window. This property was exploited to find
margins for the reference command signals in an iterative procedure. The optimization of
the cost functional was done using DP principles. Essentially, a time-dependent Hamilton-
Jacobi-Bellman PDE had to be solved in order to find the extrema of the cost functional.
The so-called viscosity solution of this PDE described the value function of a terminal cost
optimal control problem.

Well established numerical schemes, collectively referred to as level set methods, exist to solve
PDEs of the kind addressed in this thesis. However, they are computationally expensive,
making them unsuitable for real-time applications. This motivated to look into alternative
solution methods. A scheme was developed to approximate the solution of the PDE using
regressional techniques. The PDE was transcribed into a non-linear optimization problem
which subsequently was solved as a sequence of least-squares problems through the employ-
ment of a value-iteration scheme. A shortcoming of the proposed method is the unknown
convergence properties of the value-iteration scheme. Although an independent proof was
derived for the convergence of the discrete-time equivalent of the scheme, this was insufficient
to claim also convergence for the continuous-time case. Hence, empirical studies were needed
to further back the use of the scheme in the algorithm.

The new methodology to solve the PDE was tested on the simplified pitch dynamics model
with multivariate simplex splines as regressors. Results showed that the splines have difficul-
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ties approximating non-smooth parts of the viscosity solution. Especially in the presence of
non-smooth boundary conditions, the approximations tend to get heavily distorted. Other-
wise, sufficiently accurate results may be obtained with significant reductions in computational
time.

A simple algorithm was developed to determine pitch reference margins for the simplified
pitch dynamics model. Experiments were conducted to study the behavior of the margins
in response to abrupt changes in the dynamics and flight envelope. Simulations confirmed
that envelope excursions are avoided when the reference command signal remains within the
margins. On the other hand, a prolonged neglect of the margins is capable of steering the
aircraft out of the flight envelope. The excursions can be anticipated by a pilot through the
rapid shrinkage of the margins prior to an envelope violation. However, given the time-scale in
which these events occur, it is postulated that the proposed framework for envelope protection
will be more suitable for outer-loop control variables of aircraft control systems. Variables
such as airspeed and flight-path angle evolve at a slower pace, giving enough response-time
for the pilot to take countermeasures.

To estimate command margins during off-nominal conditions, a system identification pro-
cedure had to be implemented to determine the uncertain plant dynamics. The dynamics
needed to be approximated with a method that circumvents the persistence of excitation re-
quirement, because deliberate excitation of the controls is not recommended during a failure
condition. The idea was to use a prediction model that follows the input-output behavior of
the plant by adaption of certain parameters. The adaptive laws are designed such that the
predicted error converges to zero, irrespective of the input excitation given to the system.
However, it was discovered that this convergence was not sufficient for estimating the mar-
gins correctly. The adaptive parameters need to first converge to the true model parameters,
however that appeared to occur only when the plant got sufficiently excited. Judging from
simulation results, there seems to be no real benefit of using the prediction model as op-
posed to other system identification methods. Mind however that no strong conclusions can
be made on this matter because insufficient time has been invested to study the prediction
model thoroughly.
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Chapter 11

Recommendations

The priority in this thesis was to illustrate the entire concept of estimating aircraft command
margins on a simplified dynamical system. There are still major hurdles to be overcome,
before the proposed concept can be implemented on realistic aircraft systems. These hurdles
are respectively the high computational costs for solving the optimal control problem, and
the challenges associated with on-line identification of off-nominal conditions. The following
recommendations are given for further research.

The first recommendation is to explore other methods for solving the optimal control problem.
It is important to recognize that the cost functional needs to be optimized only along the
trajectory of the system. In DP, the extremum of a cost functional is found for an entire
sub-region of the state-space. This makes DP somewhat cumbersome for the application.
Recommended is to exploit the connections of eq(4-1) with standard optimal control problems,
such that other algorithms from the literature can be used instead. The papers of (Betts, 1998)
and (Rao, 2009) provide a good survey on the various numerical methods in optimal control.
The papers classify the numerical methods into direct and indirect methods. Whereas the
former aims to solve the optimal control problems through first-order necessary conditions
in calculus of variations and Pontryagin’s maximum principle, the latter proposes a direct
discretization of the cost functional. A particularly interesting direct approach is the Gauss-
Pseudospectral method of (Benson, 2005). The method proposes to approximate the state
and input trajectory of a dynamical system with Legendre polynomials at so-called Gauss
collocation points. The cost functional is effectively transcribed into a non-linear program
where the resulting KKT conditions are exactly equivalent to the discretized version of the
first-order necessary conditions for optimality. As a consequence, the method shares the
accuracy of indirect methods, while preserving the robustness of direct methods.

The second recommendation is to make further improvements to the spline method of chap-
ter 7. The performance of the method can be further enhanced by optimizing the configuration
of the spline model. A suggestion is to develop an adaptive scheme which re-configures the
parameters of the spline based on the residual approximation error. The computational costs
can be further reduced by implementing a gradient descent method for solving the system of
algebraic equations. Direct elimination of the smoothness constraints in eq(7-1) may also be
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useful for reducing computational costs. More studies need to be conducted to compare the
computational complexity of the spline method with level set algorithms. The convergence of
the value-iteration procedure also needs to be proven. A recommendation is to first conduct
more empirical studies for value-iteration, especially with nonlinear systems. Researchers are
encouraged to study the survey paper of (Wang, Zhang, & Liu, 2009) in order to gain addi-
tional insight into the field of ”adaptive dynamic programming”. The survey gives references
to work such as (Vamvoudakis, 2011), where on-line algorithms were developed to find the
value function of an infinite-horizon integral cost functional.

The final recommendation is to perform more studies to improve the detection & identification
procedure of off-nominal conditions. Given the nature of LOC incidents, accurate estimates
of the off-nominal dynamics need to be obtained in a very short time-span. In addition,
deliberate excitation of the inputs has to be avoided, which further complicates matters.
In this thesis, little has been done to address these aspects of the problem. The majority
of the work focused on finding an effective method to solve the optimal control problem.
Nevertheless, a first step is to conduct more simulations with the prediction model.
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Appendix A

Level set methods

A-1 Introduction

Analytic solutions are rarely found for the PDEs in eq(4-7) and eq(4-12). Furthermore, classi-
cal solutions often do not exist for these PDEs as eq(4-5) and eq(4-9) may form discontinuities
in their derivatives. Anyhow, well established methods do exist to solve these HJB PDEs nu-
merically. The numerical schemes go under the name of level set methods, and are specifically
designed to obtain viscosity solutions.

This appendix chapter aims to give a brief introduction to level set algorithms. The ap-
pendix primarily focuses on the algorithms used to obtain solutions for eq(4-12). A more
comprehensive treatment of level set methods can be found in the books of (Osher & Fedkiw,
2003) and (Sethian, 1999). The Level Set Toolbox documentation of (Mitchell, 2007) is also a
good source of information, especially when considering the practical implementation of the
schemes.

The appendix is organized as follows. Section A-2 discusses the basic considerations for
approximating the value functions on a finite grid. Section A-3 discusses the finite differ-
ence methods used to evaluate the separate PDE terms. Section A-4 describes the overall
algorithm. Section A-5 discusses the general shortcomings of the algorithms.

A-2 Numerically approximating the value function on a finite grid

Level set algorithms aim to solve PDEs, like the one in eq(4-12), over a fixed, finite grid of
the state-space. The spatial derivatives are evaluated with finite difference methods and the
grid values are evolved over time with an explicit integration scheme.

Note that subsequently, the value function V2 is approximated for only a local region of
the state-space, i.e. for some Ω ⊂ R

n. Since V2 is formally defined over the entire state-
space, errors will be introduced automatically in the numerical solutions due to incorrect
boundary conditions. Consequently, a sufficiently large computational domain has to be taken
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to marginalize these errors. The size of this computational domain will vary per problem and
depends on how far the characteristic waves propagate in the state-space.

For illustration purposes, the working principles of the level set algorithms is described for
the one dimensional case. Extension to the multivariate case is relatively straightforward and
can be found in the aforementioned literature.

Figure A-1 shows the grid over which eq(4-12) is solved. Notice that every point (tj , xi) within
the grid, has to satisfy the following relation1:

∂V (tj , xi)

∂t
+H

(

xi,
∂V (tj , xi)

∂x

)

= 0 (A-1)

Furthermore, the grid points at the boundary are equal to:

V (tN , xi) = l (xi) (A-2)

[0, T ]

ti−1 ti tN−1 tN

• • · · · • •
• • · · · • •
...

...
...

...
• • · · · • • xi−1

• • · · · • • xi
• • · · · • • xi+1
...

...
...

...
• • · · · • •
• • · · · • •

Ω

Figure A-1: The grid for solving V2 over the domain: [0, T ]× Ω

A-3 Approximation of the PDE terms

The PDE terms are approximated with finite difference methods. The manner in which these
approximations have to be made requires some consideration in order to ensure stability of
the overall algorithm.

A-3-1 The spatial derivatives

The spatial derivatives of the value function at a certain grid point is approximated from the
left and right side of the respective node. In the case of eq(A-1), the left approximation is

1For sake of brevity, the subscript 2 is omitted and t0 is set to 0

N. Govindarajan An Optimal Control Approach for Estimating Aircraft Command Margins



A-3 Approximation of the PDE terms 97

given by:
∂V − (tj , xi)

∂x
=
V (tj , xi)− V (tj , xi−1)

∆x
(A-3)

whereas the right approximation is given by:

∂V + (tj , xi)

∂x
=
V (tj , xi+1)− V (tj , xi)

∆x
(A-4)

Note that eq(A-3) and eq(A-4) are both first-order O (∆x) approximations of the gradi-

ent. Higher order approximations for ∂V −

∂x
and ∂V +

∂x
can be obtained with Essentially Non-

Oscillatory (ENO) and Weighted Essentially Non-Oscillatory (WENO) schemes. The Level
Set Toolbox, as in (Mitchell, 2007), has predefined functions which allows one to implement
these higher-order approximations.

A-3-2 The temporal derivative

The temporal derivative is evaluated with an explicit integration scheme. The explicit scheme
allows one to express the values of the nodes at tj−1 explicitly as relation of the nodes at tj .
The most simplest version of such a scheme is the forward Euler method which is of firs-order
accuracy O (∆t). Given that the integration is done backwards in time, the forward Euler
approximation is given by:

∂V (tj ,xi)

∂t
=
V (tj , xi)− V (tj−1, xi)

∆t
(A-5)

Higher order Runge-Kutta (RK) schemes also exist for the temporal derivative. The Level
Set Toolbox allows one to implement these higher order approximations.

A-3-3 The Hamiltonian term

In order to ensure numerical stability, the Hamiltonian term is either approximated in the
upwind direction, or artificial diffusion is added to the dampen the system. For systems with
no inputs, it is more practical to use upwind differencing. For the generic case however, the
Lax-Friedrich (LF) approximation should be used.

Upwind differencing

When the system is autonomous, eq(A-1) reduces to the convection equation:

∂V (tj , xi)

∂t
+
∂V (tj , xi)

∂x
f (xi) = 0 (A-6a)

V (tN , xi) = l (xi) (A-6b)

where f (x) is the externally generated velocity field. The term
∂V (tj ,xi)

∂x

T
f (xi) is evalu-

ated with an upwind scheme. The upwind scheme approximates the spatial derivatives by
biasing the finite difference stencil in the direction where the characteristic information is

coming from. If f (xi) > 0, the right approximation
∂V +(tj ,xi)

∂x
is used. Similarly, the left

approximation
∂V −(tj ,xi)

∂x
is used when f (xi) < 0.
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Lax-Friedrichs approximation

For the more generic case, the Lax-Friedrichs (LF) approximation is used instead:

Ĥ = H

(

x,
p+ + p−

2

)

−αT p
+ − p−

2
(A-7)

In eq(A-8), the second term represents the artificial dissipation needed to stabilize the nu-
merical scheme. For the one dimensional case, the LF approximation of the Hamiltonian is
given by:

Ĥ = H

(

xi,
p+ + p−

2

)

− αp
+ − p−

2
(A-8)

where p+ =
∂V +(tj ,xi)

∂x
and p− =

∂V −(tj ,xi)
∂x

.

The dissipation coefficient α increases the amount of artificial dissipation and reduces the
quality of the solution. Ideally, the objective it is to chose α as small as possible without
inducing oscillations (or other nonphysical phenomena) into the numerical solution. In the
simulations performed in this thesis, the dissipation coefficient is obtained through maximiz-
ing:

α = max

∣

∣

∣

∣

∂H

∂p

∣

∣

∣

∣

(A-9)

over the entire computational domain.

A-4 The overall numerical scheme

The algorithms for solving eq(4-12) are summarized here below.

Algorithm A.1: Level set algorithm using upwind scheme
Consider eq(A-6). Initialize grid points at tN with l (xi), i.e. V (tN , xi) = l (xi). Repeat the
following steps until tj = 0:

1. Evaluate ∂V/∂x in the upwind direction for all grid points at time tj , i.e.

if f(xi) > 0, then
∂V +(tj ,xi)

∂t
→ ∂V (tj ,xi)

∂t

and,

if f(xi) < 0, then
∂V −(tj ,xi)

∂t
→ ∂V (tj ,xi)

∂t

2. Evaluate V for all grid points at time tj−1 with:

V (tj−1, xi) = V (tj , xi)−∆t
∂V (tj , xi)

∂x
f (xi)

Algorithm A.2: Level set algorithm with LF approximation
Consider eq(A-1). Initialize grid points at tN with l (xi), i.e. V (tN , xi) = l (xi). Repeat the
following steps until tj = 0:
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1. Evaluate the LF approximation for all grid points at time tj:

Ĥ (tj , xi) = H

(

xi,
1

2

(

∂V + (tj , xi)

∂x
+
∂V − (tj , xi)

∂x

))

−1

2
α

(

∂V + (tj , xi)

∂x
− ∂V − (tj , xi)

∂x

)

where the artificial dissipation coefficient α is obtained through eq(A-9).

2. Evaluate V for all grid points at time tj−1 with:

V (tj−1, xi) = V (tj , xi)−∆tĤ (tj , xi)

A-4-1 Stability and convergence properties

The algorithms A.1 and A.2 converge to the correct solution if, and only if, the algorithms
are both consistent and stable. Since the approximation error converges to zero as ∆t → 0
and ∆x→ 0, the algorithms are known to be consistent. Stability, on the other hand, needs
to be enforced through the Courant-Friedrichs-Lewy (CFL) condition. The CLF condition
states that the numerical waves: ∆x/∆t have to propagate as fast as the physical waves. For
the univariate case, the CLF condition is:

∆t <
∆x

max
{
∣

∣

∣

∂H
∂p

∣

∣

∣

} (A-10)

where max {|f (xi)|} is taken over the entire computational domain. For the autonomous case
in eq(A-6), ∂H

∂p
= f (xi). Notice also when the grid becomes more dense, the CLF condition

imposes a more severe restriction on the maximum allowable time-step. For the practical
implementation, this restriction enforces a lower limit on the grid accuracy ∆x.

A-5 Drawbacks of level set algorithms

The main drawback of level set algorithms is the curse-of-dimensionality, which is inherent
to all DP problems. Since the grid size grows exponentially with the state dimension, the
algorithms become intractable as the size of state vector grows. Consequently, level set
methods are applicable to only relatively small-scale problems. In order to extend their
applicability to more real-life problems, (Kitsios & Lygeros, 2005) proposed to use time-scale
separation to divide the computation into several parts. In his paper, this approach was
used to compute the final glide back envelope of a reusable launch vehicle. Regardless, the
algorithms are still unsuitable for real-time applications.
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Appendix B

Multivariate simplex splines

B-1 Introduction

A spline is a piecewise polynomial function with predefined continuity between the separate
pieces. They are known to be highly effective tools for function approximation as they allow
one to fit data which otherwise is too complex for one single function. In the multivariate
case, splines can for instance be defined over special geometric structures called triangulations.
These so-called simplex splines are used in chapter 7 to approximate the value function in
eq(4-9).

This appendix chapter aims to give a brief introduction to multivariate simplex spline theory.
The appendix acts as complement to chapter 7 for readers who are not familiar with the
subject. For a more thorough understanding however, the author of this report recommends
the PhD thesis of (de Visser, 2011) and the references therein.

The appendix is organized as follows. Section B-2 introduces the basic theory of multivariate
simplex splines. Section B-3 discusses their application to non-linear function approximation.

B-2 Simplex spline theory

A multivariate simplex spline can be described as a piecewise-polynomial function of certain
continuity order defined over a triangulation. The polynomial functions within each simplex
of the triangulation are furthermore expressed in B-form using barycentric coordinates.

What follows next is a further elaboration on the terminology: simplex, triangulation,
barycentric coordinates, B-form polynomial, and continuity order.

B-2-1 Preliminaries on simplices, triangulations and Barycentric coordinates

An n-simplex is an n-dimensional polytope with n + 1 vertices. As illustrated in figure B-
1, a line segment is a simplex in one dimensional space. In two dimensional space, the
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simplex becomes equivalent to a triangle, which subsequently turns into a tetrahedron in
three dimensional space. Formally, the simplex can be defined as follows.

Definition B.1: Simplex
An n-simplex is an n-dimensional polytope with n+1 vertices. Let V be a set of n+1 unique,
non-degenerate, points in n-dimensional space, i.e. V := {v0,v1, . . . ,vn} ∈ R

n. Then the
n-simplex ∆ is the convex hull of V.

b b

(a) 1-D simplex: a
line segment.

b

b

b

(b) 2-D simplex: a tri-
angle.

b b

b

b

b

b

b

b

b

(c) 3-D simplex: a
tetrahedron.

Figure B-1: Examples of simplices

For a simplex, a local coordinate system can be defined in terms of Barycentric coordinates.
In the Barycentric coordinate system, every point x ∈ R

n is expressed in terms of a unique,
normalized, weighted vector sum of the simplex vertices:

x =
n
∑

i=0

vibi,
n
∑

i=0

bi = 1 (B-1)

The mapping between Barycentric and Cartesian coordinates is linear and invertible. The
transformation from Cartesian to Barycentric coordinates: TC 7→B can be denoted by:

b = TC 7→B (x) = Ax+ B (B-2)

where A ∈ R
(n+1)×n and B ∈ R

(n+1)×1 are obtained through:

[

A B
]

=

[

v0 · · · vn

1 · · · 1

]−1

(B-3)

and b =
[

b1 b2 . . . bn
]T

. The transformation from Cartesian to Barycentric coordinates
is, in principle, a linear mapping from a n-dimensional Euclidian space (Rn) on to a n-
dimensional hyper plane in (n + 1)-dimensional Euclidian space (Rn+1). The columns of A
basically represent the partial derivatives of the Barycentric coordinates w.r.t. the Cartesian
coordinates, i.e.

A :=
[

∂b
∂x1

· · · ∂b
∂xn

]

∈ R
(n+1)×n

A polygonal domain in R
n can be partitioned into many non-overlapping simplices. Such a

partition is called a triangulation. Figure B-2 shows a triangulation in two dimensional space.
Formally, triangulations can be defined as follows.
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Definition B.2: Triangulation
A triangulation T is a special decomposition of a domain in R

n into a set of J non-overlapping
simplices:

T :=
⋃

{∆i, i = 1, 2, . . . , J} (B-4)

in which ∀∆i,∆j ∈ T , i 6= j, it holds that

∆i ∩∆j =
{

∅, ∆̄
}

(B-5)

where ∆̄ is a k-simplex with 0 ≤ k ≤ n− 1 (de Visser et al., 2009).

b

b

b

∆2

b b

b

∆3

∆1b

b

b

b b

b

∆6

∆4

∆5

b

bb

b

b

b

∆7

b

b

b

b

b

b b

b

b

(a) ∆1 ∩∆5 = ∅

b

b

b

∆2

b b

b

∆3

∆1b

b

b

b b

b

∆6

∆4

∆5

b

bb

b

b

b

∆7

b

b

b

∆1b

b

b

b b

b

∆6

b∆1 ∩ ∆6

(b) ∆1 ∩∆6 = {a 0-D simplex}

b

b

b

∆2

b b

b

∆3

∆1b

b

b

b b

b

∆6

∆4

∆5

b

bb

b

b

b

∆7

b

b

b

b b

b

∆6

∆4

b

b

b

b

b

∆4 ∩ ∆6

(c) ∆3 ∩∆6 = {a 1-D simplex}

Figure B-2: A triangulation in two dimensional space.

B-2-2 The B-form polynomial

The polynomial functions within every simplex of the triangulation are expressed in B-form.
The B-form polynomial expression follows from the multinomial theorem. The multinomial
theorem, which basically is a generalization of Newton’s binomial theorem, states that a sum
of n + 1 numbers raised to the d-th power can be expanded into d̂ = (d+n)!

d!n! terms by the
relation:

(b0 + b1 + . . .+ bn)
d =

∑

κ1+κ2+...+κn=d

(

d!

κ1!κ2! . . . κn!

n
∏

i=0

bκi

i

)

(B-6)

The B-form polynomial is then defined as follows.

Definition B.3: B-form polynomial
Let b0, b1, . . . , bn in eq(B-6) be the barycentric coordinates with respect to some simplex ∆
for a point x ∈ R

n. A polynomial function p : Rn 7→ R is expressed in B-form when the
polynomial is expressed as a linear combination of the multinomial terms:

p (b) =
∑

κ1+κ2+...+κn=d

cκB
d
κ (b) (B-7)

where:

Bd
κ (b) :=

d!

κ1!κ2! . . . κn!

n
∏

i=0

bκi

i

and
κ := (κ0, κ1, . . . , κn) ∈ N

n+1
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In definition B.3, cκ are referred to as the B-coefficients. The number of terms in the sum-
mation is given by

d̂ =
(d+ n)!

d!n!
(B-8)

For sake of convenience, the following vectorized notation is introduced 1:

p (b) = F (b)T c∆j
(B-9)

where the terms in F (b) ∈ R
d̂ and c∆j

∈ R
d̂ are lexicographically sorted by:

F (b) =





















Bd
(d,0,0,...,0) (b)

Bd
(d−1,1,0...,0) (b)

Bd
(d−1,0,1,0...,0) (b)

...
Bd

(0,...,0,1,d−1) (b)

Bd
(0,...,0,0,d) (b)





















, c∆j
=



















c(d,0,0,...,0)
c(d−1,1,0...,0)

c(d−1,0,1,0...,0)
...

c(0,...,0,1,d−1)

c(0,...,0,0,d)



















The B-form polynomial has several interesting properties. First of all, the basis terms always

x

p (x)

0

1

2

0 0.2 0.4 0.6 0.8 1.0

b b b b b b
c(5,0) c(4,1) c(3,2) c(2,3) c(1,4) c(0,5)

x

p (x)

0

1

2

0 0.2 0.4 0.6 0.8 1.0

b

b b b b

b
c(5,0)

c(4,1) c(3,2) c(2,3) c(1,4)

c(0,5)

x

p (x)

0

1

2

0 0.2 0.4 0.6 0.8 1.0

b

b

b b

b

b
c(5,0)

c(4,1)

c(3,2) c(2,3)

c(1,4)

c(0,5)

Figure B-3: Effect of the B-coefficients on the shape of the B-form polynomial function with
degree d = 5.

sum-up to zero. Another interesting property is the spatial structure of the B-coefficients.
Every B-coefficient is associated with a spatial location where it has maximum influence on

1The subscript ∆j is used to emphasize that the coefficients refer a particular B-form polynomial function
of the spline.
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the shape of the polynomial. In terms of barycentric coordinates, the spatial locations of the
B-coefficients are given by:

b (cκ) =
κ

d
(B-10)

Figure B-3 illustrates the effect of the B-coefficients on the shape of the polynomial function
for the univariate case.

B-2-3 Continuity order and inter-simplex constraints

In a simplex spline, a separate B-form polynomial is defined for every simplex of the triangu-
lation. The polynomials are subsequently ”knotted” together into one continuous function by
the introduction of inter-simplex, linear equality constraints on the B-coefficients. The exact
structure of the constraints depend on the continuity order desired for the spline functions
and are discussed in (de Visser et al., 2009). For 0th order continuity, the required constraints
are relatively straightforward: one simply needs to equate the B-coefficients sharing a com-
mon global position with one another. This is illustrated in Figure B-4 for two neighboring
triangles with 4th degree polynomials.

∆i

∆j

C0 (T )

v1
v2

v3
v4

b b

b

b

b b

b

b

b

b

b

ci
(0,4,0)

=c
j

(4,0,0)

ci
(0,3,1)

=c
j

(3,1,0)

ci
(0,2,2)

=c
j

(2,2,0)

ci
(0,1,3)

=c
j

(1,3,0)

ci
(0,0,4)

=c
j

(0,4,0)

Figure B-4: Inter-simplex constraints on the B-coefficients for 0-th order continuity.

Regardless of the continuity order, the constraints can be summarized by s linearly indepen-
dent relations denoted by the expression:

Hc = 0 (B-11)

where H ∈ R
s×Jd̂ and c ∈ R

Jd̂.

B-2-4 Computation of spline derivatives

The gradient of a spline function is relatively straightforward to determine as one simply
evaluates the derivative of the respective B-form polynomials at the location of interest. The
derivatives with respect to the Cartesian coordinates are found by direct application of the
chain rule:

∂p (b (x))

∂x
=
∂p (b)

∂b

∂b (x)

∂x
(B-12)
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In eq(B-12), the gradient with respect to the Barycentric coordinates may be expressed by:

∂p (b)

∂b
=

∑

κ1+κ2+...+κn=d

cκ
∂Bd

κ

∂b
(b) = cT∆j

∂F (b)

∂b
(B-13)

where ∂F
∂b
∈ R

d̂×(n+1) is given by:

∂F (b)

∂b
=





























∂Bd
(d,0,0,...,0)

(b)

∂b0

Bd
(d,0,0,...,0)

(b)

∂b1
· · · Bd

(d,0,0,...,0)
(b)

∂bn
∂Bd

(d−1,1,0...,0)
(b)

∂b0

∂Bd
(d−1,1,0...,0)

(b)

∂b1
· · · ∂Bd

(d−1,1,0...,0)
(b)

∂bn
∂Bd

(d−1,0,1,0...,0)
(b)

∂b0

∂Bd
(d−1,1,0...,0)

(b)

∂b1
· · · ∂Bd

(d−1,1,0...,0)
(b)

∂bn
...

...
...

∂Bd
(0,...,0,1,d−1)

(b)

∂b0

∂Bd
(0,...,0,1,d−1)

(b)

∂b1
· · · ∂Bd

(0,...,0,1,d−1)
(b)

∂bn
∂Bd

(0,...,0,0,d)
(b)

∂b0

∂Bd
(0,...,0,0,d)

(b)

∂b1
· · · ∂Bd

(0,...,0,0,d)
(b)

∂bn





























From eq(B-2) follows that:
∂p (b (x))

∂x
= cT∆j

∂F (b)

∂b
Aj (B-14)

B-3 Regression with simplex splines

Multivariate simplex splines can be used to approximate nonlinear functions of scattered
data sets. In (de Visser et al., 2009), a linear regression scheme was presented to estimate
the B-coefficients using standard parameter estimation techniques.

Consider a collection of data points:

(xi, yi) , i = 1, . . . , N

scattered over a domain D. The objective is to find a spline function S : Rn 7→ R that best
fits the data points. The following steps are taken.

The first step involves selecting suitable parameters for the spline model. This includes
selecting a triangulation T for the domain D, the degree d for the polynomial functions, and,
continuity order r for the spline function. The second step is to sort the data points according
to their location within the triangulation, i.e.

(

x
j
i , y

j
i

)

∈ ∆j , i = 1, . . . , Nj

. and N1 +N2 + . . .+NJ = N . The following matrices are then constructed:

Xj =











F
(

TC 7→B

(

x
j
1

))T

...

F
(

TC 7→B

(

x
j
Nj

))T











, Y j =







yj1
...

yjNj






, j = 1, . . . J

N. Govindarajan An Optimal Control Approach for Estimating Aircraft Command Margins



B-3 Regression with simplex splines 107

The final step is to solve the optimization problem:

c∗ = arg min
c∈RJd̂

(Y −Xc)T (Y −Xc) , subject to the constraint: Hc = 0 (B-15)

where:

c =







c1

...
cJ






,X =







X1

. . .

XJ






,Y =







Y 1

...

Y J






,with Xj ∈ R

Nj×d̂,Y j ∈ R
Nj×1

This optimization problem may be solved by inverting the Karun-Kuhn-Tucker (KKT) sys-
tem:

[

Q HT

H 0

] [

c

λ

]

=

[

R
0

]

(B-16)

where R = XTY . A unique solution exists for eq(B-15) if, and only if, the dispersion matrix
Q = XTX is positive definite on the kernel of H. Furthermore, the KKT matrix is guaranteed
to be invertible when Q is non-singular and H has full row rank. (de Visser et al., 2009)
showed that Q is non-singular when every simplex of the triangulation contains at least a
minimum of d̂ non-coplanar data points. The matrix H is known to have full row rank as well
since it describes a set of s linearly independent relations as per eq(B-11).
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Appendix C

Measurable functions

In section 3-3, the notion of a measurable signal was introduced to define the function space
of admissible command signals in eq(3-4). The concept of measurable signals (or functions) is
common mathematical terminology used in the field of measure theory. For basic understand-
ing of the work in this thesis, there is no requirement to have a background in measure theory
as the term ”measurable” is used more as formality in the text. One can simply interpret
a measurable signal as any piecewise continuous function, which includes also the class of
bang-bang signals. This formulation was used also in (van Oort, 2011).

Regardless, what follows next is a concise description of measurable functions. To describe
them will require the introduction of so-called σ-algebras and measurable spaces. The follow-
ing definitions adapt the notation in (Hunter, unknown).

Definition C.1: σ-algebra
A σ-algebra on a set X is a collection A of subsets of X such that:

1. ∅, X ∈ A

2. if A ∈ A, then Ac ∈ A

3. if Ai ∈ A for i ∈ 1, 2, 3, . . . then

∞
⋃

i=1

Ai ∈ A,
∞
⋂

i=1

Ai ∈ A

Definition C.2: Measurable space
A measurable space (X,A) is a non-empty set X equipped with a σ-algebra A on X.

Given a measurable space (X,A), a measure µ : A 7→ [0,∞] can be defined for that space.
A measure is interpreted as a generalization of the concept of size, and satisfies the following
properties.
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Definition C.3: Measure
A measure µ on a measurable space (X,A) is a function: A 7→ [0,∞] such that:

1. µ (∅) = 0

2. if {Ai ∈ A : i ∈ 1, 2, 3, . . .} is a countable disjoint collection of sets in A, then

µ

(

∞
⋃

i=1

Ai

)

=
∞
⋃

i=1

µ (Ai)

Given two measurable spaces, a measurable function is defined as follows.

Definition C.4: Measurable function
Let (X,A) and (Y,B) be measurable spaces. A function f : X 7→ Y is measurable if the
inverse image f−1 (B) ∈ A for every B ∈ B.

A measurable function is a function that preserves the measurability of the underlying spaces
in which the functions are defined. The property is independent of the type measure used,
and solely depends on the σ-algebras.

Practically, almost any function on the real numbers is a measurable function. However,
there exist some functions that are non-measurable. For example, the indicator function
χE : X 7→ R:

χE (x) =

{

1 if x ∈ E
0 if x /∈ E (C-1)

is known to be unmeasurable if E ⊂ X is a non-measurable set. Existence of non-measurable
sets on the real numbers can be shown by the so-called Vitali sets, see also (Benedetto &
Czaja, 2009) and the references therein.
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