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Abstract: Several procedures have been recently proposed to test the simplifying assumption for conditional
copulas. Instead of considering pointwise conditioning events, we study the constancy of the conditional
dependence structure when some covariates belong to general Borel conditioning subsets. We introduce
several test statistics based on the equality of conditional Kendall’s taus and derive their asymptotic
distributions under the null hypothesis. In settings where such conditioning events are not fixed ex ante,
we propose a data-driven procedure to recursively build such relevant subsets. This procedure is based
on decision trees that maximize the differences between the conditional Kendall’s taus, which correspond
to the leaves of the trees. Empirical results for such tests are illustrated in the Supplementary Material.
Moreover, a study of the conditional dependence between financial stock returns is presented and highlights
specific contagion effects of past returns. The last application deals with conditional dependence between
coverage amounts in an insurance dataset.
Résumé: Plusieurs procédures ont été proposées récemment pour tester l’hypothèse simplificatrice pour les
copules conditionnelles. Au lieu de considérer des évènements conditionnants ponctuels, nous étudions le
caractère constant de la structure de dépendance conditionnelle lorsque certaines covariables appartiennent à
des ensembles boréliens conditionnants. Nous introduisons plusieurs statistiques de test basées sur l’égalité
des taus de Kendall conditionnels, et nous explicitons leurs distributions asymptotiques sous l’hypothèse
nulle. Dans les cas où de tels évènements conditionnants ne sont pas fixés à l’avance, nous proposons
une procédure s’appuyant sur les données pour construire récursivement de tels ensembles conditionnants
pertinents. Cette procédure est basée sur des arbres de décision qui maximisent les différences entre les
taus de Kendall conditionnels, qui correspondent aux feuilles de l’arbre. Les résultats empiriques de ces
tests sont présentés dans le contenu supplémentaire. De plus, nous étudions la dépendance conditionnelle
entre plusieurs rendements d’actifs et illustrons certains effets particuliers de contagion par les rendements
passés. La dernière application traite de la dépendance conditionnelle entre des montants de couverture
dans une base de données d’assurance.

Additional Supporting Information may be found in the online version of this article at the publisher’s website.
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1. INTRODUCTION

Copulas express the dependence structures of multivariate random vectors independent of their
marginal distributions. Therefore, they often allow insightful two-step model specifications
and inference. Copulas have motivated many academic papers during the last decades and
have become popular in many applied fields. If several multivariate datasets of the same
nature are available, then a natural question that arises is whether their dependence structures
coincide. This problem was first tackled in Rémillard & Scaillet (2009) for the case of
two samples. A general testing procedure for several samples was proposed in Bouzebda,
Keziou & Zari (2011). Seo (2020) revisited this two-sample problem by introducing modified
randomization procedures. In a related paper, Quessy (2016) proposed quadratic-type statistics
for testing whether a given collection of induced lower-dimensional copulas from a multivariate
distribution are identical. The𝑘-sample problem for extreme-value copulas was tackled in Bücher,
Kinsvater & Kojadinovic (2017). A similar question arises for conditional dependence structures
in multivariate datasets. Currently, a key problem is in testing whether some conditional copulas
differ or not, given different conditioning events. This is the motivation for our work.

To be specific, assume that we observe 𝑛 independent and identically distributed (IID)
replications

((
X⊤

𝑖,𝐼
,X⊤

𝑖,𝐽

)⊤)
𝑖=1,…,𝑛

of a random vector X ∶=
(
X⊤

𝐼
,X⊤

𝐽

)⊤ ∈ ℝ𝑑 where, without loss
of generality, the subset of conditioned variables is indexed by 𝐼 = {1,… , 𝑝} and the subset of
conditioning variables by 𝐽 = {𝑝 + 1,… , 𝑑} for some integer 𝑝 ∈ {1,… , 𝑑}. For 𝑘 ∈ {1,… , 𝑝},
let 𝐹

𝑘|𝐽 (⋅|X𝐽
= x

𝐽
) be the conditional law of 𝑋

𝑘
given X

𝐽
= x

𝐽
, where the conditioning

event corresponds to a fixed point x
𝐽
∈ ℝ𝑑−𝑝. Following Patton (2006a,b) and Fermanian &

Wegkamp (2012), a conditional copula of X
𝐼

given X
𝐽
= x

𝐽
, denoted as 𝐶

𝐼|𝐽 (⋅|X𝐽
= x

𝐽
), exists

and is defined by an equivalent version of Sklar’s theorem: for every x
𝐼
∈ ℝ𝑝 and almost all

x
𝐽
∈ ℝ𝑑−𝑝,

ℙ
(
X
𝐼
≤ x

𝐼
|X

𝐽
= x

𝐽

)
= 𝐶

𝐼|𝐽
(
𝐹1|𝐽

(
𝑥1|X𝐽

= x
𝐽

)
,… , 𝐹

𝑝|𝐽
(
𝑥
𝑝
|X

𝐽
= x

𝐽

)
| X

𝐽
= x

𝐽

)

with almost sure uniqueness of 𝐶
𝐼|𝐽 (⋅|X𝐽

= x
𝐽
) when the conditional margins of X

𝐼
given

X
𝐽
= x

𝐽
are continuous. Note that the maps 𝐶

𝐼|𝐽 (⋅|X𝐽
= x

𝐽
), for x

𝐽
∈ ℝ𝑑−𝑝, are different in

general. Nonetheless, a desirable property would be their constancy with respect to the choice
of the pointwise conditioning event, in particular, for inferential purposes (Hobæk Haff, Aas &
Frigessi, 2010). This is the famous “simplifying assumption” that is standard for vine models
(Kurz & Spanhel, 2017; Czado, 2019). It can be written as

0 ∶ 𝐶𝐼|𝐽 (⋅|X𝐽
= x

𝐽
) does not depend on x

𝐽
for almost all x

𝐽
∈ ℝ𝑑−𝑝

.

Many tests of this simplifying assumption have appeared in the literature (see Section 2.1
for a complete discussion). Without restricting assumptions (semiparametric models, linear
approximations, single-index, etc.), such techniques require smoothing. Besides the choice of
additional tuning parameters, such smoothing-based tests are no longer numerically feasible
when the dimension of X

𝐽
is larger than three due to the curse of dimensionality. To circumvent

this problem, we deal with more general measurable conditioning subsets instead of pointwise
conditioning events.

For 𝑘 = 1,… , 𝑝, let 𝐹
𝑘|𝐽 (⋅|X𝐽

∈ 𝐴
𝐽
) be the conditional law of 𝑋

𝑘
given that X

𝐽
belongs to

a Borel subset 𝐴
𝐽

of ℝ𝑑−𝑝 with ℙ
(
X
𝐽
∈ 𝐴

𝐽

)
> 0. Similar to the pointwise case, the conditional

copula of X
𝐼

given X
𝐽
∈ 𝐴

𝐽
is defined as

ℙ
(
X
𝐼
≤ x

𝐼
|X

𝐽
∈ 𝐴

𝐽

)
= 𝐶

𝐴𝐽

𝐼|𝐽

(
𝐹1|𝐽

(
𝑥1|X𝐽

∈ 𝐴
𝐽

)
,… , 𝐹

𝑝|𝐽
(
𝑥
𝑝
|X

𝐽
∈ 𝐴

𝐽

)
| X

𝐽
∈ 𝐴

𝐽

)
,
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2022 TESTING THE ASSUMPTION OF CONSTANT CONDITIONAL DEPENDENCE 3

for every x
𝐼
. It can be easily checked that the conditional copula 𝐶𝐴𝐽

𝐼|𝐽 (⋅|X𝐽
∈ 𝐴

𝐽
) is the cumu-

lative distribution function of the random vector
(
𝐹1|𝐽 (𝑋1|X𝐽

∈ 𝐴
𝐽
),… , 𝐹

𝑝|𝐽 (𝑋𝑝
|X

𝐽
∈ 𝐴

𝐽
)
)

given the event (X
𝐽
∈ 𝐴

𝐽
) when all the latter conditional margins are continuous. This will be

assumed in this article.
Box-type events provide a natural framework in many situations. In finance and insurance,

the analysis of dependencies between asset returns when some covariates belong to specific
subspaces is of particular interest. In Section 7, we will study the level of dependence between
two stock indices given the range of values of their past returns. As another example, bank
stress tests will focus on some quantiles of losses, that is, 𝐴

𝐽
= (Loss > 𝑞

𝛼
). When dealing

with high-level quantiles, it is no longer possible to rely on marginal or joint estimators given
pointwise conditioning events as𝐴

𝐽
= (Loss = 𝑞

𝛼
) due to the sparsity of relevant data. Moreover,

when the dimension of X
𝐽

is larger than three, discretizing is often the only feasible way of
building nonparametric and semiparametric dependence models in practice. Finally, in the case
of categorical explanatory variables X

𝐽
, the new conditional copulas

(
𝐶
𝐴𝐽

𝐼|𝐽 , 𝐴𝐽
∈ 

𝐽

)
, where


𝐽
=
{
{x

𝐽
} ∶ x

𝐽
∈ ℝ𝑑−𝑝

,ℙ(X
𝐽
= x

𝐽
) > 0

}
, are obviously appropriate and very natural.

We now consider several such sets in order to compare the dependencies knowing (X
𝐽
∈ 𝐴

𝐽
)

for general different conditioning subsets 𝐴
𝐽

in a way similar to that for the usual simplifying
assumption. Let 

𝐽
∶= {𝐴1,𝐽 ,… , 𝐴

𝑚,𝐽
} be a collection of 𝑚 Borel sets 𝐴

𝑘,𝐽
with ℙ

(
X
𝐽
∈

𝐴
𝑘,𝐽

)
> 0 for 𝑘 ∈ {1,… , 𝑚}. This family 

𝐽
may be disjoint or even a partition of ℝ𝑑−𝑝, but

this is not mandatory in our framework. As in Derumigny & Fermanian (2017), consider the null
hypothesis

0 ∶ 𝐴𝑘,𝐽
→ 𝐶

𝐴𝑘,𝐽

𝐼|𝐽 (⋅|X𝐽
∈ 𝐴

𝑘,𝐽
) is constant over 

𝐽
.

Importantly, it is known that neither of the simplifying assumptions 0 or 0 implies the
other when 

𝐽
is finite: see Section 3.1 of Derumigny & Fermanian (2017). In other words,

there is no relationship between a test of 0 and a test of 0 strictly speaking (except when X
𝐽

is discrete), even if they are based on similar intuitions.
Several omnibus tests of0 have already been proposed in Derumigny & Fermanian (2017).

All of them are based on empirical counterparts of conditional distributions, with some integration
on possibly high-dimensional spaces. This may induce burdensome numerical problems and
slow calculations. To the best of our knowledge, the latter is the only work in the literature that
formally tackles the problem of testing 0. In this article, we propose a simpler and quicker
omnibus test procedure. Our procedure is related to a less-demanding null hypothesis 

𝜏

0
involving the equality of all bivariate conditional Kendall’s taus associated with the random
vector X

𝐼
.

To be more specific, let us first formulate our null hypothesis when X
𝐼

is a bivariate vector,
that is, when 𝑝 = 2. In this case, the null hypothesis 

𝜏

0 is


𝜏

0 ∶ 𝜏1,2|X𝐽∈𝐴1,𝐽
= 𝜏1,2|X𝐽∈𝐴2,𝐽

= … = 𝜏1,2|X𝐽∈𝐴𝑚,𝐽 , (1)

where 𝜏1,2|X𝐽∈𝐴𝑘,𝐽 denotes Kendall’s tau between 𝑋1 and 𝑋2 given X
𝐽
∈ 𝐴

𝑘,𝐽
. In other words,

we test whether the conditional Kendall’s taus associated with every subset in
𝐽

are equal. We
recall that

𝜏1,2|X𝐽∈𝐴𝑘,𝐽 ≔ 4
∫
𝐶
𝐴𝑘,𝐽

𝐼|𝐽

(
𝑢1, 𝑢2|X𝐽

∈ 𝐴
𝑘,𝐽

)
𝐶
𝐴𝑘,𝐽

𝐼|𝐽

(
d𝑢1, d𝑢2|X𝐽

∈ 𝐴
𝑘,𝐽

)
− 1

= ℙ
((
𝑋11 −𝑋21

)(
𝑋12 −𝑋22

)
> 0 | X1,𝐽 ∈ 𝐴

𝑘,𝐽
, X2,𝐽 ∈ 𝐴

𝑘,𝐽

)

DOI: 10.1002/cjs.11742 The Canadian Journal of Statistics / La revue canadienne de statistique
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4 DERUMIGNY, FERMANIAN AND MIN Vol. 00, No. 00

− ℙ
((
𝑋11 −𝑋21

)(
𝑋12 −𝑋22

)
< 0 | X1,𝐽 ∈ 𝐴

𝑘,𝐽
, X2,𝐽 ∈ 𝐴

𝑘,𝐽

)

= 4𝑝1,2|𝐴𝑘,𝐽 − 1,

where
𝑝1,2|𝐴𝑘,𝐽 ∶= ℙ

(
𝑋11 < 𝑋21, 𝑋12 < 𝑋22 | X1,𝐽 ∈ 𝐴

𝑘,𝐽
, X2,𝐽 ∈ 𝐴

𝑘,𝐽

)

and X1 and X2 are two independent copies of X. Clearly, 0 implies 
𝜏

0 but the converse is

not true. Therefore, if 
𝜏

0 is not rejected (by a statistical test), this does not imply the same
conclusion for0. Nonetheless, a reasonable lack of power may be accepted for a gain in terms
of simplicity (implementation or interpretation). We argue that this is the case for some test
statistics based on conditional Kendall’s taus in Section 2.3.

For the general case with 𝑝 ≥ 2, consider Kendall’s tau for all possible pairs (𝑋
𝑖
,𝑋

𝑗
) with

(𝑖, 𝑗) ∈ {1,… , 𝑝}2 and 𝑖 < 𝑗. For each 𝐴
𝑘,𝐽
∈ 

𝐽
, there are 𝑝(𝑝 − 1)∕2 conditional Kendall’s

taus: we order them in the vector

𝝉
𝐼|X𝐽∈𝐴𝑘,𝐽 ∶=

(
𝜏1,2|X𝐽∈𝐴𝑘,𝐽 , 𝜏1,3|X𝐽∈𝐴𝑘,𝐽 ,… , 𝜏1,𝑝|X𝐽∈𝐴𝑘,𝐽 , 𝜏2,3|X𝐽∈𝐴𝑘,𝐽 ,… , 𝜏

𝑝−1,𝑝|X𝐽∈𝐴𝑘,𝐽

)⊤
.

The null hypothesis 
𝜏

0 in Equation (1) can be generalized as the new null hypothesis


𝝉

0 ∶ 𝝉
𝐼|X𝐽∈𝐴1,𝐽

= 𝝉
𝐼|X𝐽∈𝐴2,𝐽

= … = 𝝉
𝐼|X𝐽∈𝐴𝑚,𝐽 .

In other words, 
𝝉

0 = ∩
𝑎,𝑏,𝑎≠𝑏

𝜏𝑎,𝑏

0 , which corresponds to the assumption that the function
𝐴
𝐽
→ 𝝉

𝐼|X𝐽∈𝐴𝐽 is constant over 
𝐽

. Equivalently, this means that for every distinct pair of
indices (𝑎, 𝑏) ∈ {1,… , 𝑝}2

, the function 𝐴
𝐽
→ 𝜏

𝑎,𝑏|X𝐽∈𝐴𝐽 is constant over
𝐽

.
Our tests will therefore be based on equality between some of the conditional Kendall’s taus,

as defined above. These quantities are unknown and have to be estimated over the corresponding
subsamples that are of random sizes. Inference and hypothesis testing using Kendall’s tau
is popular in dependence modelling. This is, for example, the approach chosen in Jaser &
Min (2021) to test symmetry and radial symmetry between two independent samples of equal
size. However, our framework can deal with more than two subsamples and does not require the
equality of their sample sizes.

We organize the rest of this article as follows. In Section 2, we discuss the relationship
between the hypothesis

𝝉

0 and the simplifying assumption as well as the link between pointwise
conditional Kendall’s tau and Spearman’s rho. In Section 3, we introduce a statistic for testing
the hypothesis 

𝜏

0 and we state its limiting distribution. We generalize this construction for

the hypothesis 
𝝉

0 in Section 4. Section 5 explains how a typical nonparametric bootstrapping
scheme can be invoked to calculate 𝑃 -values. In Section 6, we propose an algorithm to generate
a relevant collection of sets 

𝐽
. We provide two applications on real datasets in Section 7.

First, we study conditional dependence between the S&P500 and the Eurostoxx indices in
a copula-GARCH model for which we highlight some contagion phenomena. The second
application focuses on dependence between different coverages in an insurance dataset. We
defer proofs to the Appendix. We discuss the empirical properties of all methods in an extensive
simulation study given in the Supplementary Material, which also contains two counterexamples
that illustrate relationships between 

𝝉

0 and  𝝉

0 .

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11742
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2022 TESTING THE ASSUMPTION OF CONSTANT CONDITIONAL DEPENDENCE 5

2. RELATIONSHIPS TO RELATED HYPOTHESES AND TESTS ABOUT
CONDITIONAL COPULAS

2.1. Relationship between 0 and the Simplifying Assumption of Pointwise Conditional
Copulas
To test the simplifying assumption of pointwise constant conditional copulas, a generalized
likelihood ratio test was introduced by Acar, Craiu & Yao (2013) under a semiparametric
framework where a conditional copula belongs to a one-dimensional parametric family. This
idea has been extended in Gijbels et al. (2017) in the case of unknown margins. Several tests
were proposed in Derumigny & Fermanian (2017) in more general nonparametric and semi-
parametric settings. Levi & Craiu (2019) consider the problem of establishing the validity of
the simplifying assumption in a Bayesian setting. To the best of our knowledge, all papers in
the literature, except Derumigny & Fermanian (2017), deal with pointwise conditioning events
in a fully nonparametric framework. The idea of discretizing the support of the conditioning
vector appears in Kurz & Spanhel (2017) for D-vine parametric copula models. In particu-
lar, Gijbels, Omelka & Veraverbeke (2017) propose some tests of the simplifying assumption
with score-type statistics and comparisons of pointwise conditional Kendall’s taus with their
average.

Whenever the collection 
𝐽

forms a partition of the support of X
𝐽

, it is possible to define
a random variable 𝑌 as the random integer 𝑘 = 𝑘(X

𝐽
) ∈ {1,… , 𝑚} such that 𝑌 ∈ 𝐴

𝑘(X𝐽 ),𝐽 , as

noted in Derumigny & Fermanian (2017, Section 3). The assumption 0 is then equivalent
to the assumption that the conditional copula of X

𝐼
given 𝑌 = 𝑘 is constant with respect

to 𝑘 ∈ {1,… , 𝑚}. However, since most existing tests of the simplifying assumption require
that the covariate X

𝐽
has a continuous distribution, they rely on smoothing (e.g., by kernel

or local-linear methods). Therefore, they cannot be directly applied in our setting, since
the theoretical properties would not hold and the implementation could not manage discrete
conditioning variables. Conversely, when the conditioning variable has a discrete, finite support,
the simplifying assumption can be equivalently rewritten using 0 and 𝐴

𝑘,𝐽
∶= {x

𝑘,𝐽
}, where

the support of X
𝐽

is {x
𝑘,𝐽
∶ 𝑘 = 1,… , 𝑚}. This allows us to directly apply the tests presented in

this article.

2.2. The Simplifying Assumption and Conditional Kendall’s Tau
When the conditioning event is pointwise, the corresponding assumption is


𝝉

0 ∶ 𝝉
𝐼|X𝐽=x𝐽 does not depend on x

𝐽
∈ ℝ𝑑−𝑝

,

where 𝝉
𝐼|X𝐽=x𝐽 is the vector stacking all pointwise conditional Kendall’s taus for every pair of

distinct indices. Unfortunately, neither of the simplifying assumptions  𝝉

0 or 
𝝉

0 implies the

other when 
𝐽

is finite. In other words, there exists a distribution such that 
𝝉

0 is satisfied and


𝝉

0 is not, and there exists another distribution such that  𝝉

0 is satisfied and 
𝝉

0 is not. For
completeness, two such counterexamples are given in Section 8 of the Supplementary Material.
To fuel intuition, we note that, in the case with 𝐼 = {1, 2}, where 𝑓X𝐽

(⋅) denotes the density of
X
𝐽

with respect to the Lebesgue measure,

𝑝1,2|𝐴 = ℙ
(
𝑋11 < 𝑋21, 𝑋12 < 𝑋22|X1,𝐽 ∈ 𝐴,X2,𝐽 ∈ 𝐴

)

=
∫
𝐴×𝐴

𝑝1,2|x𝐽 ,x′𝐽
𝑓X𝐽

(x
𝐽
)𝑓X𝐽

(
x′
𝐽

)
dx

𝐽
dx′

𝐽
∕ℙ(𝐴)2,

DOI: 10.1002/cjs.11742 The Canadian Journal of Statistics / La revue canadienne de statistique
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6 DERUMIGNY, FERMANIAN AND MIN Vol. 00, No. 00

where, for every (x
𝐽
, x′

𝐽
) ∈ ℝ𝑑−2 ×ℝ𝑑−2,

𝑝1,2|x𝐽 ,x′𝐽
= ℙ

(
𝑋11 < 𝑋21, 𝑋12 < 𝑋22|X1,𝐽 = x

𝐽
,X2,𝐽 = x′

𝐽

)
.

In other words, 𝑝1,2|𝐴 is a weighted average of the quantities 𝑝1,2|x𝐽 ,x′𝐽
when x

𝐽
and x′

𝐽
both

describe 𝐴, and it is not an average of the pointwise conditional probabilities 𝑝1,2|x𝐽 = 𝑝1,2|x𝐽 ,x𝐽
(imposing x

𝐽
= x′

𝐽
) that yield 𝜏1,2|X𝐽=x𝐽 .

2.3. Conditional Spearman’s Rho

As an alternative to
𝜏

0 , we could consider testing for equality between conditional Spearman’s
rhos given X

𝐽
∈ 𝐴

𝑘,𝐽
for different subsets 𝐴

𝑘,𝐽
, in the same vein as Gaißer & Schmid (2010).

Nonetheless, this would require working with pseudo-observations, while our approach with
estimated conditional Kendall’s taus involves simpler analytic functions of the original sample.
Generally speaking, working with Kendall’s tau avoids many technicalities induced by the theory
of empirical copulas and keeps the limiting laws rather simple. In particular, the asymptotic
variances of our test statistics have straightforward empirical counterparts, while this is almost
never the case for empirical copula processes. The same remark applies to the competing
tests of the constancy of the conditional copula given X

𝐽
∈ 𝐴

𝑘,𝐽
as proposed in Derumigny

& Fermanian (2017, Section 3). Moreover, the latter approach is based on the calculation of
𝑝-dimensional integrals, a numerically demanding task when 𝑝 > 3.

3. ASYMPTOTIC TEST IN TWO DIMENSIONS

In this section, we study some test statistics for the null hypothesis 
𝜏

0 and we derive their
asymptotic distributions. A generalization for 𝑝 > 2 is based on the same idea and is presented
in the next section.

The hypothesis 
𝜏

0 can be rewritten as an 𝑚-sample problem by defining the subsamples

𝑘
∶= {𝑖 = 1,… , 𝑛 ∶ X

𝑖,𝐽
∈ 𝐴

𝑘,𝐽
} for 𝑘 ∈ {1,… , 𝑚}. In this case, we want to test whether the

dependence between 𝑋1 and 𝑋2 is the same across all the samples 
𝑘
. Contrary to the usual

𝑚-sample problem, the sample sizes 𝑁
𝑘,𝑛

are random for fixed or data-driven “boxes” 𝐴
𝑘,𝐽

for
𝑘 ∈ {1,… , 𝑚} (see Section 6). Moreover, we do not restrict ourselves to disjoint samples. In
other words, the conditioning subsets 𝐴

𝑘,𝐽
for 𝑘 ∈ {1,… , 𝑚} may intersect.

Following Derumigny & Fermanian (2019b), for any 𝑘 ∈ {1,… , 𝑚}, candidate estimators
of conditional Kendall’s tau are

𝜏
(1)
1,2|X𝐽∈𝐴𝑘,𝐽

∶= 4
𝑛∑

𝑖=1

𝑛∑

𝑗=1

w(𝑘)
𝑖,𝑛

w(𝑘)
𝑗,𝑛

1
{
𝑋
𝑖,1 < 𝑋

𝑗,1, 𝑋𝑖,2 < 𝑋
𝑗,2
}
− 1,

𝜏
(2)
1,2|X𝐽∈𝐴𝑘,𝐽

∶=
𝑛∑

𝑖=1

𝑛∑

𝑗=1

w(𝑘)
𝑖,𝑛

w(𝑘)
𝑗,𝑛

(
1
{
(𝑋

𝑖,1 −𝑋
𝑗,1)(𝑋𝑖,2 −𝑋

𝑗,2) > 0
}

−1
{
(𝑋

𝑖,1 −𝑋
𝑗,1)(𝑋𝑖,2 −𝑋

𝑗,2) < 0
})

,

and

𝜏
(3)
1,2|X𝐽∈𝐴𝑘,𝐽

∶= 1 − 4
𝑛∑

𝑖=1

𝑛∑

𝑗=1

w(𝑘)
𝑖,𝑛

w(𝑘)
𝑗,𝑛

1
{
𝑋
𝑖,1 < 𝑋

𝑗,1, 𝑋𝑖,2 > 𝑋
𝑗,2
}
,

where w(𝑘)
𝑖,𝑛
∶= 1{𝑋

𝑖,𝐽
∈ 𝐴

𝑘,𝐽
}∕𝑁

𝑘,𝑛
for 𝑖 = 1,… , 𝑛. In contrast to Jaser & Min (2021), we do

not require equal sample sizes for 𝑘 ∈ {1,… , 𝑚}.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11742
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2022 TESTING THE ASSUMPTION OF CONSTANT CONDITIONAL DEPENDENCE 7

With 𝑠
(𝑘)
𝑛 ∶=

∑𝑛

𝑖=1

(
w(𝑘)
𝑖,𝑛

)2
, it can be easily proved that 𝜏(1)1,2|X𝐽∈𝐴𝑘,𝐽

belongs to the interval
[
−1, 1 − 2𝑠(𝑘)𝑛

]
, 𝜏(2)1,2|X𝐽∈𝐴𝑘,𝐽

stays in
[
−1 + 𝑠

(𝑘)
𝑛 , 1 − 𝑠

(𝑘)
𝑛

]
, and 𝜏

(3)
1,2|X𝐽∈𝐴𝑘,𝐽

is in [−1 + 2𝑠(𝑘)𝑛 , 1].
Moreover, there exists a direct relationship between these three estimators. Indeed, as noted
in Derumigny & Fermanian (2019b),

𝜏
(1)
1,2|X𝐽∈𝐴𝑘,𝐽

+ 𝑠
(𝑘)
𝑛
= 𝜏

(2)
1,2|X𝐽∈𝐴𝑘,𝐽

= 𝜏
(3)
1,2|X𝐽∈𝐴𝑘,𝐽

− 𝑠
(𝑘)
𝑛

almost surely. We can rescale the previous estimators so that they take values in the whole
interval [−1, 1]:

𝜏1,2|X𝐽∈𝐴𝑘,𝐽 ∶=
𝜏
(1)
1,2|X𝐽∈𝐴𝑘,𝐽

1 − 𝑠
(𝑘)
𝑛

+
𝑠
(𝑘)
𝑛

1 − 𝑠
(𝑘)
𝑛

=
𝜏
(2)
1,2|X𝐽∈𝐴𝑘,𝐽

1 − 𝑠
(𝑘)
𝑛

=
𝜏
(3)
1,2|X𝐽∈𝐴𝑘,𝐽

1 − 𝑠
(𝑘)
𝑛

−
𝑠
(𝑘)
𝑛

1 − 𝑠
(𝑘)
𝑛

. (2)

The quantity 𝜏1,2|X𝐽∈𝐴𝑘,𝐽 is our empirical Kendall’s tau given X
𝐽
∈ 𝐴

𝑘,𝐽
for any 𝑘 ∈ {1,… , 𝑚}.

It coincides with the usual Kendall’s tau based on the subsample 
𝑘
.

Under 
𝜏

0 , all the conditional Kendall’s taus are the same and many test statistics could be

proposed. In particular, we build a test of
𝜏

0 based on a random vector whose components have
the form

Δ
𝑘,𝑙
∶=

√
𝑛

(
𝜏1,2|X𝐽∈𝐴𝑘,𝐽 − 𝜏1,2|X𝐽∈𝐴𝑙,𝐽

)
,

for some (𝑘, 𝑙) in {1,… , 𝑚}2 with 𝑘 < 𝑙. Sinceℙ(X
𝐽
∈ 𝐴

𝑘,𝐽
) = 𝜇

𝑘
> 0, the estimator 𝜏1,2|X𝐽∈𝐴𝑘,𝐽

is constructed on a subsample that is roughly (but not exactly) a fraction 𝜇
𝑘

of the whole sample.
Therefore, the random size 𝑁

𝑘,𝑛
will have an influence on the joint limiting law of Δ

𝑘,𝑙
for any

(𝑘, 𝑙). To find this law, we will first consider the law of the random vectors

Ŵ1,2 ∶=
√
𝑛

(
𝜏1,2|X𝐽∈𝐴1,𝐽

− 𝜏1,2|X𝐽∈𝐴1,𝐽
,… , 𝜏1,2|X𝐽∈𝐴𝑚,𝐽 − 𝜏1,2|X𝐽∈𝐴𝑚,𝐽

)⊤

and

Ŵ
(𝑗)
1,2 ∶=

√
𝑛

(
𝜏
(𝑗)
1,2|X𝐽∈𝐴1,𝐽

− 𝜏1,2|X𝐽∈𝐴1,𝐽
,… , 𝜏

(𝑗)
1,2|X𝐽∈𝐴𝑚,𝐽

− 𝜏1,2|X𝐽∈𝐴𝑚,𝐽

)⊤
,

for 𝑗 ∈ {1, 2, 3}. Their laws will be deduced from the limiting law of

V̂ ∶=
(
𝐷̂1 −𝐷1,… , 𝐷̂

𝑚
−𝐷

𝑚
, 𝑝̂1 − 𝑝1,… , 𝑝̂

𝑚
− 𝑝

𝑚

)⊤
,

where

𝐷̂
𝑘
∶= 1

𝑛(𝑛 − 1)

𝑛∑

𝑖=1

𝑛∑

𝑗=1,𝑗≠𝑖

1
{
𝑋
𝑖,1 < 𝑋

𝑗,1, 𝑋𝑖,2 < 𝑋
𝑗,2,X𝑖,𝐽

∈ 𝐴
𝑘,𝐽
,X

𝑗,𝐽
∈ 𝐴

𝑘,𝐽

}
,

𝐷
𝑘
∶= 𝔼[𝐷̂

𝑘
] = ℙ

(
𝑋
𝑖,1 < 𝑋

𝑗,1, 𝑋𝑖,2 < 𝑋
𝑗,2,X𝑖,𝐽

∈ 𝐴
𝑘,𝐽
,X

𝑗,𝐽
∈ 𝐴

𝑘,𝐽

)
,

𝑝̂
𝑘
∶= 1

𝑛

∑𝑛

𝑖=11{X
𝑖,𝐽
∈ 𝐴

𝑘,𝐽
}, and 𝑝

𝑘
= ℙ

(
X
𝐽
∈ 𝐴

𝑘,𝐽

)
for 𝑘 ∈ {1,… , 𝑚}.

Denote by ℙ
𝑘

the law of X given X
𝐽
∈ 𝐴

𝑘,𝐽
, i.e. ℙ

𝑘
(dx) = 1{x

𝐽
∈ 𝐴

𝑘,𝐽
} ℙ(dx)∕𝑝

𝑘
.

Moreover, set

𝜋(x1, x2) ∶=
(
1{𝑥1,1 < 𝑥2,1, 𝑥1,2 < 𝑥2,2} + 1{𝑥2,1 < 𝑥1,1, 𝑥2,2 < 𝑥1,2}

)
∕2,

DOI: 10.1002/cjs.11742 The Canadian Journal of Statistics / La revue canadienne de statistique
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8 DERUMIGNY, FERMANIAN AND MIN Vol. 00, No. 00

𝐼
𝑘,𝑙
∶=
∫

1{x3,𝐽 ∈ 𝐴
𝑘,𝐽
∩ 𝐴

𝑙,𝐽
}𝜋(x1, x3)𝜋(x2, x3) ℙ𝑘

(dx1) ℙ𝑙
(dx2) ℙ(dx3),

𝐽
𝑘,𝑙
∶=
∫

1{x2,𝐽 ∈ 𝐴
𝑘,𝐽
∩ 𝐴

𝑙,𝐽
}𝜋(x1, x2) ℙ𝑘

(dx1) ℙ(dx2),

and 𝑝
𝑘,𝑙
∶= ℙ(𝑋

𝐽
∈ 𝐴

𝑘,𝐽
∩ 𝐴

𝑙,𝐽
) for every 𝑘, 𝑙 ∈ {1,… , 𝑚}. The above notations imply 𝐷

𝑘
=

𝑝
2
𝑘
∫ 𝜋(x1, x2) ℙ𝑘

(dx1) ℙ𝑘
(dx2) = 𝑝

𝑘
𝐽
𝑘,𝑘

.

Theorem 1. When 𝑛 tends to infinity,
√
𝑛 V̂ tends in law to the 2𝑚-dimensional Gaussian

distribution vector (0,Σ), where

Σ ∶=

[
Σ1,1 Σ1,2

Σ⊤1,2 Σ2,2

]

,

Σ1,1 ∶=
[
𝜎
𝑘,𝑙

]𝑚
𝑘,𝑙=1 with 𝜎

𝑘,𝑙
∶= 4𝑝

𝑘
𝑝
𝑙
𝐼
𝑘,𝑙
− 4𝐷

𝑘
𝐷
𝑙
, Σ1,2 ∶=

[
2𝑝

𝑘
𝐽
𝑘,𝑙
− 2𝐷

𝑘
𝑝
𝑙

]𝑚
𝑘,𝑙=1, and Σ2,2 ∶=[

𝑝
𝑘,𝑙
− 𝑝

𝑘
𝑝
𝑙

]𝑚
𝑘,𝑙=1.

We now state the limiting law of Ŵ
(𝑗)
1,2 for 𝑗 ∈ {1, 2, 3}, and Ŵ1,2. By virtue of Equation (2)

and the relation 𝑠
(𝑘)
𝑛 = 1∕(𝑛𝑝̂

𝑘
) = 𝑂(𝑛−1), all four statistics have the same limiting law. This

asymptotic law is presented in the next proposition, whose proof can be found in the Appendix.

Proposition 1. When 𝑛 tends to infinity,
√
𝑛 Ŵ1,2 and

√
𝑛Ŵ

(𝑗)
1,2 for 𝑗 ∈ {1, 2, 3} tend in law to

the 𝑚-dimensional Gaussian distribution (0,Δ), where

Δ ∶= 64

[
𝐼
𝑘𝑙

𝑝
𝑘
𝑝
𝑙

+
𝐷
𝑘
𝐷
𝑙
𝑝
𝑘,𝑙

𝑝
3
𝑘
𝑝

3
𝑙

−
𝐷
𝑙
𝐽
𝑘,𝑙

𝑝
𝑘
𝑝

3
𝑙

−
𝐷
𝑘
𝐽
𝑙,𝑘

𝑝
𝑙
𝑝

3
𝑘

]𝑚

𝑘,𝑙=1

.

When the subsets (𝐴
𝑘,𝐽
)
𝑘=1,…,𝑚

are disjoint, we simply get the diagonal matrix

Δ = Diag(Δ
𝑘
)𝑚
𝑘=1 ∶= 16 Diag

(
4𝐼

𝑘,𝑘
∕𝑝2

𝑘
−
(
1 + 𝜏1,2|X𝐽∈𝐴𝑘,𝐽

)2∕(4𝑝
𝑘
)
)𝑚

𝑘=1
.

It is easy to consistently estimate the limiting variance–covariance matrix Δ by replacing
every unknown expectation with its empirical counterpart. For instance, in the disjoint case,
replace the conditional Kendall’s taus with their estimators, replace 𝑝

𝑘
with 𝑝̂

𝑘
and estimate 𝐼

𝑘,𝑘
as

Î
𝑘,𝑘
∶= 1

𝑛3𝑝̂2
𝑘

𝑛∑

𝑖1=1

𝑛∑

𝑖2=1

𝑛∑

𝑖3=1

𝜋
(
X
𝑖1
,X

𝑖3

)
𝜋
(
X
𝑖2
,X

𝑖3

)
1
{

X
𝑖1,𝐽

∈ 𝐴
𝑘,𝐽
,X

𝑖2,𝐽
∈ 𝐴

𝑘,𝐽
,X

𝑖3,𝐽
∈ 𝐴

𝑘,𝐽

}
.

This yields the estimator

Δ̂ ∶= Diag
(
Δ̂
𝑘

)𝑚
𝑘=1 ∶= 16 Diag

(
4Î

𝑘,𝑘
∕𝑝̂2

𝑘
−
(
1 + 𝜏1,2|X𝐽∈𝐴𝑘,𝐽

)2∕(4𝑝̂
𝑘
)
)𝑚

𝑘=1
.

However, the cost of computing Î
𝑘,𝑘

grows as 𝑂(𝑛3), which can be quite high for large subsample
sizes.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11742
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2022 TESTING THE ASSUMPTION OF CONSTANT CONDITIONAL DEPENDENCE 9

To build a test statistic for 
𝜏

0 , one can consider a subset  of 𝑞 pairs of indices (𝑘
𝑖
, 𝑙
𝑖
) in

{1,… , 𝑚}2 where 𝑘
𝑖
≠ 𝑙

𝑖
, 𝑖 ∈ {1,… , 𝑞} and 𝑞 < 𝑚. A 𝑞 × 𝑚 contrast matrix 𝑇 will describe this

set  in the following way: on every row of 𝑇 , say the 𝑖th, all components are zero except the 𝑘
𝑖
th

and the 𝑙
𝑖
th ones since (𝑘

𝑖
, 𝑙
𝑖
) ∈ : these elements are 1 and −1, respectively. By construction,

the rank of 𝑇 is 𝑞. We can test any linear null hypothesis of the form

𝑇

(
𝜏1,2|𝑋𝐽∈𝐴1,𝐽

, 𝜏1,2|𝑋𝐽∈𝐴2,𝐽
,… , 𝜏1,2|𝑋𝐽∈𝐴𝑚,𝐽

)⊤
= 0

𝑞
,

where 0
𝑞

is a 𝑞-dimensional vector of zeros. For instance, for the null hypothesis 
𝜏

0 , the
contrast matrix 𝑇 with rank 𝑚 − 1 may be chosen as

𝑇 ∶=
[
1
𝑚−1 − 𝐼

𝑚−1
]
, (3)

where 1
𝑚−1 is an (𝑚 − 1)-dimensional vector of ones and 𝐼

𝑚
is the (𝑚 − 1)-dimensional identity

matrix. For 𝑚 = 4, this yields the matrix

𝑇 =
⎡
⎢
⎢
⎢
⎣

1 −1 0 0
1 0 −1 0
1 0 0 −1

⎤
⎥
⎥
⎥
⎦

whose rank is three. This reduces to testing the null hypothesis
𝜏

0 ∶ 𝜏1,2|𝑋𝐽∈𝐴1,𝐽
= 𝜏1,2|𝑋𝐽∈𝐴𝑘,𝐽

for all 𝑘 ∈ {2,… , 𝑚}.
Due to Proposition 1, the random vector

√
𝑛 𝑇 Ŵ1,2 asymptotically follows the nondegenerate

Gaussian distribution
(
0, 𝑇Δ𝑇 ⊤

)
and so the following statement holds.

Corollary 1. Under the null hypothesis
𝜏

0 , 
𝑛
∶= Ŵ

⊤

1,2𝑇
⊤
(
𝑇 Δ̂𝑇 ⊤

)−1
𝑇 Ŵ1,2 tends in law to a

chi-squared distribution with 𝑚 − 1 degrees of freedom.

The columns of the contrast matrix 𝑇 in Equation (3) can be arbitrarily permuted without
changing the limiting law of 

𝑛
under 

𝜏

0 . If the column of ones is the 𝑗th column (with 𝑗 ≠ 1)
of 𝑇 , then the corresponding equivalent formulation of the null hypothesis is


𝜏

0 ∶ 𝜏1,2|𝑋𝐽∈𝐴𝑗,𝐽 = 𝜏1,2|𝑋𝐽∈𝐴𝑘,𝐽 for 𝑘 ∈ {1,… , 𝑚}⧵{𝑗}.

Therefore, without loss of generality, we consider only the contrast matrix in Equation (3) from
here on.

4. ASYMPTOTIC TEST IN HIGHER DIMENSIONS

In this section, we deal with a 𝑝-dimensional subvector X
𝐼

with 𝑝 > 2. As before, we still test
whether the conditioning subsets 𝐴

𝑘,𝐽
for 𝑘 ∈ {1,… , 𝑚} influence the underlying conditional

copula of X
𝐼

given X
𝐽
∈ 𝐴

𝑘,𝐽
(i.e., 0). A natural approach would be to rely on bivariate

(conditional) Kendall’s taus as before, but with all possible pairs (𝑋
𝑎
,𝑋

𝑏
) for (𝑎, 𝑏) ∈ {1,… , 𝑝}2

and 𝑎 < 𝑏. For the given family
𝐽

, the limiting law of the stacked random vector of interest,

Ŵ ∶=
(

Ŵ
⊤

1,2, Ŵ
⊤

1,3,… , Ŵ
⊤

1,𝑝, Ŵ
⊤

2,3,… , Ŵ
⊤

𝑝−1,𝑝

)⊤

DOI: 10.1002/cjs.11742 The Canadian Journal of Statistics / La revue canadienne de statistique
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10 DERUMIGNY, FERMANIAN AND MIN Vol. 00, No. 00

or

Ŵ
(𝑗) ∶=

(
Ŵ
(𝑗)⊤
1,2 , Ŵ

(𝑗)⊤
1,3 ,… , Ŵ

(𝑗)⊤
1,𝑝 , Ŵ

(𝑗)⊤
2,3 ,… , Ŵ

(𝑗)⊤
𝑝−1,𝑝

)⊤
,

for 𝑗 ∈ {1, 2, 3}, each of size 𝑚𝑝(𝑝 − 1)∕2, is needed. Here, we use the notation

Ŵ
𝑎,𝑏
∶=

√
𝑛

(
𝜏
𝑎,𝑏|X𝐽∈𝐴1,𝐽

− 𝜏
𝑎,𝑏|X𝐽∈𝐴1,𝐽

,… , 𝜏
𝑎,𝑏|X𝐽∈𝐴𝑚,𝐽 − 𝜏

𝑎,𝑏|X𝐽∈𝐴𝑚,𝐽

)⊤

and

Ŵ
(𝑗)
𝑎,𝑏
∶=

√
𝑛

(
𝜏
(𝑗)
𝑎,𝑏|X𝐽∈𝐴1,𝐽

− 𝜏
𝑎,𝑏|X𝐽∈𝐴1,𝐽

,… , 𝜏
(𝑗)
𝑎,𝑏|X𝐽∈𝐴𝑚,𝐽

− 𝜏
𝑎,𝑏|X𝐽∈𝐴𝑚,𝐽

)⊤
,

for every pair of indices (𝑎, 𝑏) in {1,… , 𝑝}2 with 𝑎 < 𝑏.
The corresponding limiting laws are Gaussian. A test of ∩

𝑎,𝑏,𝑎≠𝑏
𝜏𝑎,𝑏

0 , and then of0, can be
based on a linear transformation of Ŵ. For example, such a test could be based on the average
value of conditional Kendall’s tau over all possible pairs (𝑋

𝑎
,𝑋

𝑏
) with 𝑎, 𝑏 ∈ {1,… , 𝑝} and

𝑎 < 𝑏 in the spirit of Kendall & Smith (1940).
To derive the asymptotic distribution of Ŵ and Ŵ

(𝑗)
, we need to generalize Theorem 1. First

define

V̂ ∶=
(

V̂
⊤

1,2, V̂
⊤

1,3,… , V̂
⊤

𝑝−1,𝑝, 𝑝̂1 − 𝑝1,… , 𝑝̂
𝑚
− 𝑝

𝑚

)⊤
,

V̂
𝑎,𝑏
∶=

(
𝐷̂
𝑎,𝑏,1 −𝐷

𝑎,𝑏,1,… , 𝐷̂
𝑎,𝑏,𝑚

−𝐷
𝑎,𝑏,𝑚

)⊤
,

𝐷̂
𝑎,𝑏,𝑘

∶= 1
𝑛(𝑛 − 1)

𝑛∑

𝑖=1

𝑛∑

𝑗=1,𝑗≠𝑖

1
{
𝑋
𝑖,𝑎
< 𝑋

𝑗,𝑎
, 𝑋

𝑖,𝑏
< 𝑋

𝑗,𝑏
, 𝑋

𝑖,𝐽
∈ 𝐴

𝑘,𝐽
, 𝑋

𝑗,𝐽
∈ 𝐴

𝑘,𝐽

}
,

and
𝐷
𝑎,𝑏,𝑘

∶= 𝔼[𝐷̂
𝑎,𝑏,𝑘

] = ℙ
(
𝑋
𝑖,𝑎
< 𝑋

𝑗,𝑎
, 𝑋

𝑖,𝑏
< 𝑋

𝑗,𝑏
, 𝑋

𝑖,𝐽
∈ 𝐴

𝑘,𝐽
, 𝑋

𝑗,𝐽
∈ 𝐴

𝑘,𝐽

)
,

for every pair of indices (𝑎, 𝑏) in {1,… , 𝑝}2 with 𝑎 < 𝑏. Moreover, set

𝜋
𝑎,𝑏
(x1, x2) ∶=

(
1{𝑥1,𝑎 < 𝑥2,𝑎, 𝑥1,𝑏 < 𝑥2,𝑏} + 1{𝑥2,𝑎 < 𝑥1,𝑎, 𝑥2,𝑏 < 𝑥1,𝑏}

)
∕2,

𝐼
𝑎,𝑏,𝑎′,𝑏′,𝑘,𝑙 ∶=

∫
1{x3,𝐽 ∈ 𝐴

𝑘,𝐽
∩ 𝐴

𝑙,𝐽
}𝜋

𝑎,𝑏
(x1, x3)𝜋𝑎′,𝑏′ (x2, x3) ℙ𝑘

(dx1) ℙ𝑙
(dx2) ℙ(dx3),

and

𝐽
𝑎,𝑏,𝑘,𝑙

∶=
∫

1{x2,𝐽 ∈ 𝐴
𝑘,𝐽
∩ 𝐴

𝑙,𝐽
}𝜋

𝑎,𝑏
(x1, x2) ℙ𝑘

(dx1) ℙ(dx2).

Note that 𝐷
𝑎,𝑏,𝑘,𝑘

= 𝑝
2
𝑘
∫ 𝜋

𝑎,𝑏
(x1, x2) ℙ𝑘

(dx1) ℙ𝑘
(dx2) = 𝑝

𝑘
𝐽
𝑎,𝑏,𝑘,𝑘

.

Theorem 2. When 𝑛 tends to infinity,
√
𝑛 V̂ tends in law to the (𝑚𝑝(𝑝 − 1)∕2 + 𝑝)-dimensional

Gaussian distribution (0,Σ
𝑒
). The block matrix Σ

𝑒
is

Σ
𝑒
∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ(1,2),(1,2) Σ(1,2),(1,3) … Σ(1,2),(𝑝−1,𝑝) Σ(1,2),0
Σ(1,3),(1,2) Σ(1,3),(1,3) … Σ(1,3),(𝑝−1,𝑝) Σ(1,3),0

⋮ ⋮ ⋱ ⋮ ⋮

Σ(𝑝−1,𝑝),(1,2) Σ(𝑝−1,𝑝),(1,3) … Σ(𝑝−1,𝑝),(𝑝−1,𝑝) Σ(𝑝−1,𝑝),0

Σ0,(1,2) Σ0,(1,3) … Σ0,(𝑝−1,𝑝) Σ0,0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11742
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2022 TESTING THE ASSUMPTION OF CONSTANT CONDITIONAL DEPENDENCE 11

where Σ(𝑎,𝑏),(𝑎′,𝑏′) = Σ⊤(𝑎′,𝑏′),(𝑎,𝑏) for every (𝑎, 𝑏) and (𝑎′, 𝑏′). Similarly, Σ(𝑎,𝑏),0 = Σ⊤0,(𝑎,𝑏). Each
blockwise component of Σ is an 𝑚 × 𝑚 matrix with the form

Σ(𝑎,𝑏),(𝑎′,𝑏′) ∶=
[
4𝑝

𝑘
𝑝
𝑙
𝐼
𝑎,𝑏,𝑎′,𝑏′,𝑘,𝑙 − 4𝐷

𝑎,𝑏,𝑘
𝐷
𝑎′,𝑏′,𝑙

]𝑚
𝑘,𝑙=1,

Σ(𝑎,𝑏),0 ∶=
[
2𝑝

𝑘
𝐽
𝑎,𝑏,𝑘,𝑙

− 2𝐷
𝑎,𝑏,𝑘

𝑝
𝑙

]𝑚
𝑘,𝑙=1,

or
Σ0,0 ∶=

[
𝑝
𝑘,𝑙
− 𝑝

𝑘
𝑝
𝑙

]𝑚
𝑘,𝑙=1.

We now state the limiting law of Ŵ
(𝑗)

, for 𝑗 ∈ {1, 2, 3}, and Ŵ. As before, all four statistics
have the same limiting law.

Proposition 2. When 𝑛 tends to infinity,
√
𝑛 Ŵ and

√
𝑛 Ŵ

(𝑗)
, for 𝑗 = 1, 2, 3, tends in law to the

(𝑚𝑝(𝑝 − 1)∕2)-dimensional Gaussian distribution (0,Δ
𝑒
), where Δ

𝑒
is a square matrix of size

𝑚𝑝(𝑝 − 1)∕2 that can be written blockwise as

Δ
𝑒
∶=

⎡
⎢
⎢
⎢
⎢
⎣

Δ(1,2),(1,2) Δ(1,2),(1,3) … Δ(1,2),(𝑝−1,𝑝)

Δ(1,3),(1,2) Δ(1,3),(1,3) … Δ(1,3),(𝑝−1,𝑝)

⋮ ⋮ ⋱ ⋮

Δ(𝑝−1,𝑝),(1,2) Δ(𝑝−1,𝑝),(1,3) … Δ(𝑝−1,𝑝),(𝑝−1,𝑝)

⎤
⎥
⎥
⎥
⎥
⎦

,

where, for any (𝑎, 𝑏) and (𝑎′, 𝑏′), Δ(𝑎,𝑏),(𝑎′,𝑏′) is the matrix of size 𝑚 × 𝑚 defined by

Δ(𝑎,𝑏),(𝑎′,𝑏′) ∶= 64

[
𝐼
𝑎,𝑏,𝑎′,𝑏′,𝑘,𝑙

𝑝
𝑘
𝑝
𝑙

+
𝐷
𝑎,𝑏,𝑘

𝐷
𝑎′,𝑏′,𝑙𝑝𝑘,𝑙

𝑝
3
𝑘
𝑝

3
𝑙

−
𝐷
𝑎′,𝑏′,𝑙𝐽𝑎,𝑏,𝑘,𝑙

𝑝
𝑘
𝑝

3
𝑙

−
𝐷
𝑎,𝑏,𝑘

𝐽
𝑎′,𝑏′,𝑙,𝑘

𝑝
𝑙
𝑝

3
𝑘

]𝑚

𝑘,𝑙=1

.

In particular, when the subsets 𝐴
𝑘,𝐽

are disjoint over 𝑘 ∈ {1,… , 𝑚}, then every submatrix
Δ(𝑎,𝑏),(𝑎′,𝑏′) is diagonal and

Δ(𝑎,𝑏),(𝑎′,𝑏′) ∶= 16 Diag

(
4𝐼

𝑎,𝑏,𝑎′,𝑏′,𝑘,𝑘

𝑝
2
𝑘

−

(
1 + 𝜏

𝑎,𝑏|X𝐽∈𝐴𝑘,𝐽

)(
1 + 𝜏

𝑎′,𝑏′|X𝐽∈𝐴𝑘,𝐽

)

4𝑝
𝑘

)𝑚

𝑘,𝑙=1

since 4𝐷
𝑎,𝑏,𝑘

∕𝑝2
𝑘
= 1 + 𝜏

𝑎,𝑏|X𝐽∈𝐴𝑘,𝐽 for every (𝑎, 𝑏) and every 𝑘.
As in Section 3, the components of Δ

𝑒
can be empirically estimated. For any 𝑎 < 𝑏 ∈

{1,… , 𝑝} with 𝑎 < 𝑏, introduce

Î
𝑎,𝑏,𝑎′,𝑏′,𝑘,𝑘 ≔

1
𝑛3𝑝̂2

𝑘

𝑛∑

𝑖1=1

𝑛∑

𝑖2=1

𝑛∑

𝑖3=1

𝜋
𝑎,𝑏

(
X
𝑖1
,X

𝑖3

)
𝜋
𝑎′,𝑏′

(
X
𝑖2
,X

𝑖3

)

× 1
{

X
𝑖1,𝐽

∈ 𝐴
𝑘,𝐽
,X

𝑖2,𝐽
∈ 𝐴

𝑘,𝐽
,X

𝑖3,𝐽
∈ 𝐴

𝑘,𝐽

}
.

Then, in the case of disjoint boxes, a consistent estimator of Δ(𝑎,𝑏),(𝑎′,𝑏′) is

Δ̂(𝑎,𝑏),(𝑎′,𝑏′) ∶= 16 Diag

(
4Î

𝑎,𝑏,𝑎′,𝑏′,𝑘,𝑘

𝑝̂
2
𝑘

−

(
1 + 𝜏

𝑎,𝑏|X𝐽∈𝐴𝑘,𝐽

)(
1 + 𝜏

𝑎′,𝑏′|X𝐽∈𝐴𝑘,𝐽

)

4𝑝̂
𝑘

)𝑚

𝑘,𝑙=1

,

which suggests an estimator Δ̂
𝑒

of the limiting covariance matrix Δ
𝑒
.
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12 DERUMIGNY, FERMANIAN AND MIN Vol. 00, No. 00

Recall that the matrix 𝑇 =
[
1
𝑚−1 ∶ −𝐼

𝑚−1
]

has a rank of 𝑚 − 1. Let 𝑇
𝑒

be the (𝑚 − 1)
𝑝(𝑝 − 1)∕2 × 𝑚𝑝(𝑝 − 1)∕2 block matrix

𝑇
𝑒
∶= 𝐼

𝑝(𝑝−1)∕2 ⊗ 𝑇 = Diag(𝑇 ,… , 𝑇 ) (4)

whose rank is (𝑚 − 1)𝑝(𝑝 − 1)∕2. Then
√
𝑛𝑇

𝑒
Ŵ tends in law to 

(
0, 𝑇

𝑒
Δ
𝑒
𝑇
⊤

𝑒

)
under the null

hypothesis. Similar to Corollary 1, we can build a Wald-type test statistic as follows.

Corollary 2. Under the null hypothesis
𝝉

0 , the test statistic  (𝑒)𝑛 ∶= 𝑛Ŵ
⊤

𝑇
⊤

𝑒

(
𝑇
𝑒
Δ
𝑒
𝑇
⊤

𝑒

)−1
𝑇
𝑒
Ŵ

converges in distribution to a chi-squared distribution with (𝑚 − 1)𝑝(𝑝 − 1)∕2 degrees of
freedom.

5. BOOTSTRAPPING AND OTHER TEST STATISTICS

In practice, the covariance matrix Δ
𝑒

can be consistently estimated using 𝑈 -statistics of order
three. The accuracy of the distributional approximation of the test statistic  (𝑒)𝑛 can suffer in this
estimation stage if the sample size 𝑛 is not large enough. Besides, its computational complexity
is 𝑂(𝑛3) for fixed 𝑝 and 𝑚. Therefore, we also consider two statistics that do not require the
estimation of Δ

𝑒
and whose corresponding 𝑃 -values can easily be bootstrapped.

The first test statistic is based on the maximal absolute deviation between two conditional
Kendall’s taus over all compared pairs of the conditioning subsets and is defined by

∞,𝑛
∶= ||

√
𝑛𝑇

𝑒
Ŵ||∞.

The second test statistic is
2,𝑛 ∶= 𝑛Ŵ

⊤

𝑇
⊤

𝑒
𝑇
𝑒
Ŵ,

which is the sum of squared differences between pairs of Kendall’s taus over all specified pairs
of the conditioning subsets. Under the null hypothesis 

𝝉

0 , the asymptotic distributions of ∞,𝑛

and 2,𝑛 are more complex than those of  (𝑒)𝑛 and still depend on the unknown covariance matrix
Δ
𝑒
. However, their computation does not require an estimation of the covariance matrix Δ

𝑒
and

their asymptotic distributions can quickly be estimated using bootstrap techniques.

Remark 1. Both of the test statistics ∞,𝑛
and 2,𝑛 depend on a choice of the contrast matrix 𝑇

𝑒
.

This contrast matrix 𝑇
𝑒

can be chosen in a random way (such as a random permutation of a given
contrast matrix). In this case, random contrast matrices have to be resampled in each bootstrap
replication from the same distribution of contrast matrices. This will change the limiting law
established in Corollaries 1 and 2. In the following, we prefer to choose a fixed contrast matrix
that is reused for all bootstrap replications.

We consider the classical nonparametric bootstrap scheme introduced in Efron (1979). Here,
the bootstrapped sample is obtained by resampling 𝑛 observations X∗

𝑖
from the initial sample

(X1,… ,X
𝑛
) with replacement. Denote by Ŵ

∗
the bootstrapped version of Ŵ built on the

bootstrapped sample
(
X∗

1,… ,X∗
𝑛

)
instead of (X1,… ,X

𝑛
). The bootstrapped test statistics are,

respectively,

∗
∞,𝑛

∶= ||
√
𝑛𝑇

𝑒
Ŵ
∗ −

√
𝑛𝑇

𝑒
Ŵ||∞

and

∗

2,𝑛 ∶= 𝑛
(
Ŵ
∗ − Ŵ

)⊤
𝑇
⊤

𝑒
𝑇
𝑒

(
Ŵ
∗ − Ŵ

)
.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11742
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2022 TESTING THE ASSUMPTION OF CONSTANT CONDITIONAL DEPENDENCE 13

These two statistics share the same asymptotic distributions as ∞,𝑛
and 2,𝑛 respectively, under

the null hypothesis 
𝝉

0 when 𝑛 tends to infinity. Their empirical 𝑃 -values are computed as the
empirical frequency of the events

(
 ∗∞,𝑛

> ∞,𝑛

)
and

(

∗

2,𝑛 > 2,𝑛
)
.

This empirical bootstrap technique is valid due to the consistency of the empirical bootstrap
process (Van der Vaart & Wellner, 1996, Theorem 3.6.1). This can be applied without any hurdle
because our test statistics can be approximated by IID expansions due to our Hájek projection
technique (see 𝐷̃

𝑘
and Equation (A1) in the proof of Theorem 1 in the Appendix). This directly

implies that
√
𝑛Ŵ and

√
𝑛
(
Ŵ
∗ − Ŵ

)
share the same limiting law. As a consequence,  ∗∞,𝑛

(respectively,  ∗2,𝑛) has the same weak limit as ∞,𝑛
(respectively, 2,𝑛).

Remark 2. In this article, our test statistics are functions of realizations of Y ∶=(
X
𝐼
, 1
(
X
𝐽
∈ 𝐴1

)
,… , 1

(
X
𝐽
∈ 𝐴

𝑚

))
. This means that the random vector of interest is

not X but, rather, X
𝐼

plus the index of the box that contains X
𝐽

. As a consequence, the
nonparametric bootstrap scheme is equivalent to the so-called “conditional bootstrap” scheme
proposed in Derumigny & Fermanian (2017). Indeed, the probability of drawing Y

𝑖
is

𝑞
𝑖
∶= ℙ(the box 𝑘(𝑖) is drawn) × ℙ(X

𝑖,𝐼
is drawn | 𝑘(𝑖) has been drawn),

where 𝑘(𝑖) ∈ {1,… , 𝑚} is the index of the box that contains X
𝑖,𝐽

. Obviously, ℙ(the box 𝑘(𝑖)
is drawn) = 𝑁

𝑘(𝑖),𝑛∕𝑛 and ℙ(X
𝑖,𝐼

is drawn | 𝑘(𝑖) has been drawn) = 1∕𝑁
𝑘(𝑖),𝑛. Therefore, 𝑞

𝑖
=

1∕𝑛, for every 𝑖 ∈ {1,… , 𝑛}, corresponds to the resampling probability of Y
𝑖

within Efron’s
bootstrap scheme.

6. BUILDING RELEVANT BOXES

A problem may occur in practice when the dimension 𝑑 − 𝑝 of the conditioning random vector
X
𝐽

is larger than three or four. Indeed, except when the boxes are imposed by the particular
geometry of the problem or by some specific prior information, it is not obvious what the
most relevant boxes are. In other words, without knowing whether the dependence between
the components of X

𝐼
depend on X

𝐽
, it is of interest to build some boxes 𝐴1,𝐽 ,… , 𝐴

𝑚,𝐽
so

that the dependence structures of X
𝐼

given X
𝐽
∈ 𝐴

𝑘,𝐽
for 𝑘 ∈ {1,… , 𝑚} are “as different as

possible” from each other. This practical problem is particularly relevant in vine structures for
which we want to weaken the standard simplifying assumption. In other words, it makes sense
to build a realistic vine model for which the dependence copulas of any pair (𝑋1, 𝑋2) given
X
𝐽
= x

𝐽
are not constant (the usual simplifying assumption) or a continuous function of x

𝐽
(a

difficult task in terms of model specification in general) but, rather, an intermediate solution:
the copulas would be chosen among a finite number of conditional copulas of (𝑋1, 𝑋2) given
X
𝐽
∈ 𝐴

𝑘,𝐽
for 𝑘 ∈ {1,… , 𝑚}.

To this end, it is necessary to build the boxes 𝐴
𝑘,𝐽

for 𝑘 ∈ {1,… , 𝑚}. Assume that 𝑚 is
fixed. Intuitively, the best sets of boxes will be able to discriminate among the 𝑚 corresponding
conditional copulas in a clear-cut way. A simple solution is to rely on classification trees to
build 𝑚 boxes after successively splitting some components of X

𝐽
into two intervals. The loss

function can be defined by a distance 𝑑(⋅, ⋅) between the conditional copulas at every stage. For
instance, set 𝑝 = 2 and consider a tree algorithm similar to the classification and regression tree
(CART) algorithm (Friedman, Hastie & Tibshirani, 2001). In the first step, one searches for an
index 𝑘1 ∈ {𝑝 + 1,… , 𝑑} and a threshold 𝑡1 so that

(𝑘1, 𝑡1) = arg max
𝑘,𝑡

𝑑

(
𝐶1,2|𝑋𝑘≤𝑡

, 𝐶1,2|𝑋𝑘>𝑡

)
+ pen(𝑘, 𝑡),

DOI: 10.1002/cjs.11742 The Canadian Journal of Statistics / La revue canadienne de statistique
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14 DERUMIGNY, FERMANIAN AND MIN Vol. 00, No. 00

where the penalty pen function may be related to the size of the obtained boxes: for a non-negative
tuning parameter 𝛼, set pen(𝑘, 𝑡) = 𝛼 min

(
ℙ(𝑋

𝑘
> 𝑡),ℙ(𝑋

𝑘
≤ 𝑡)

)
. As a variant, we could impose

a minimum size 𝜈 for all the boxes by choosing

pen(𝑘, 𝑡) = 𝛼 min
(
ℙ(𝑋

𝑘
> 𝑡),ℙ(𝑋

𝑘
≤ 𝑡)

)
−𝑀1

{
min

(
ℙ(𝑋

𝑘
> 𝑡),ℙ(𝑋

𝑘
≤ 𝑡)

)
< 𝜈

}

for some given, large constant 𝑀 ≫ 1 and a given, small 𝜈 < 1. In practice, the conditional
copulas have to be estimated from an 𝑛-sample of IID realizations of X. The empirical
criterion is

(𝑘1, 𝑡1) = arg max
𝑘,𝑡

𝑑

(
𝐶̂1,2|𝑋𝑘≤𝑡

, 𝐶̂1,2|𝑋𝑘>𝑡

)
+ p̂en(𝑘, 𝑡),

where p̂en(𝑘, 𝑡) = 𝛼 min
(
ℙ
𝑛
(𝑋

𝑘
> 𝑡),ℙ

𝑛
(𝑋

𝑘
≤ 𝑡)

)
and where 𝐶̂1,2|𝑋𝑘≤𝑡

and 𝐶̂1,2|𝑋𝑘>𝑡
denote the

estimated conditional copulas of 𝑋1 and 𝑋2 given (𝑋
𝑘
≤ 𝑡) and (𝑋

𝑘
> 𝑡), respectively, and

ℙ
𝑛

denotes the empirical measure. The same procedure can then be recursively applied to the
observations. See Section 9 of Friedman, Hastie & Tibshirani (2001) for details.

This procedure may be computationally expensive in general, especially due to the inference
of the conditional copulas and the calculation of a distance between multivariate distribution
functions. As an alternative, we now propose to replace the function 𝐶1,2|𝑋𝑘≤𝑡

by some
conditional dependence measure, namely, by conditional Kendall’s tau. Indeed, the estimation
of Kendall’s tau (conditional or not) is related to a classification task, as noted in Derumigny &
Fermanian (2019a). The new program has

(𝑘1, 𝑡1) ∶= arg max
𝑘,𝑡

|𝑝
𝑋1,𝑋2|𝑋𝑘≤𝑡

− 𝑝
𝑋1,𝑋2|𝑋𝑘>𝑡

|𝛾 + pen(𝑘, 𝑡),

where
𝑝
𝑋1,𝑋2|𝑋𝑘≤𝑡

∶= ℙ
(
𝑋1,1 ≤ 𝑋2,1, 𝑋1,2 ≤ 𝑋2,2|𝑋1,𝑘 ≤ 𝑡, 𝑋2,𝑘 ≤ 𝑡

)

and
𝑝
𝑋1,𝑋2|𝑋𝑘>𝑡

∶= ℙ
(
𝑋1,1 ≤ 𝑋2,1, 𝑋1,2 ≤ 𝑋2,2|𝑋1,𝑘 > 𝑡,𝑋2,𝑘 > 𝑡

)
,

for some 𝛾 > 0 and independent X1 and X2. The empirical version of the above is

(𝑘1, 𝑡1) ∶= arg max
𝑘,𝑡

|𝑝̂
𝑋1,𝑋2|𝑋𝑘≤𝑡

− 𝑝̂
𝑋1,𝑋2|𝑋𝑘>𝑡

|𝛾 + p̂en(𝑘, 𝑡),

where

𝑝̂
𝑋1,𝑋2|𝑋𝑘≤𝑡

∶= 1
𝑛(𝑛 − 1)ℙ

𝑛
(𝑋

𝑘
≤ 𝑡)2

𝑛∑

𝑖=1

𝑛∑

𝑗=1,𝑗≠𝑖

1
{
𝑋
𝑖,1 ≤ 𝑋

𝑗,1, 𝑋𝑖,2 ≤ 𝑋
𝑗,2, 𝑋𝑖,𝑘

≤ 𝑡, 𝑋
𝑗,𝑘
≤ 𝑡

}

and

𝑝̂
𝑋1,𝑋2|𝑋𝑘>𝑡

∶= 1
𝑛(𝑛 − 1)ℙ

𝑛
(𝑋

𝑘
> 𝑡)2

𝑛∑

𝑖=1

𝑛∑

𝑗=1,𝑗≠𝑖

1
{
𝑋
𝑖,1 ≤ 𝑋

𝑗,1, 𝑋𝑖,2 ≤ 𝑋
𝑗,2, 𝑋𝑖,𝑘

> 𝑡,𝑋
𝑗,𝑘

> 𝑡
}
.

The recursive procedure is repeated on the two datasets corresponding to the conditioning subsets
(𝑋

𝑘1
≤ 𝑡1) and (𝑋

𝑘1
> 𝑡1), respectively.

Several termination rules can be implemented for this procedure. The simplest is to stop
the procedure when the number of obtained categories (boxes) is larger than 𝑚. When 𝑚 is

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11742
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2022 TESTING THE ASSUMPTION OF CONSTANT CONDITIONAL DEPENDENCE 15

even, we can obtain exactly 𝑚 categories. It is also possible to specify a minimum number of
observations for each box and a minimum difference between the conditional Kendall’s taus
from two estimated boxes. A more sophisticated approach uses a “pruning” rule once a large tree
has been built (Friedman et al. 2001, p. 270).

When 𝑝 > 2 conditioned variables are available, the first step becomes

(𝑖1, 𝑗1, 𝑘1, 𝑡1) ∶= arg max
𝑖,𝑗,𝑘,𝑡

|𝑝̂
𝑋𝑖,𝑋𝑗 |𝑋𝑘≤𝑡

− 𝑝̂
𝑋𝑖,𝑋𝑗 |𝑋𝑘>𝑡

|𝛾 + p̂en(𝑖, 𝑗, 𝑘, 𝑡). (5)

The complete algorithm is presented in Algorithm 1, where we fix 𝛾 = 1 and we use
the notation [𝑎, 𝑏]

𝑘
∶= ℝ𝑘−𝑝−1 × [𝑎, 𝑏] ×ℝ𝑑−𝑘 to denote the hyper-rectangle of (conditioning)

points x
𝐽

satisfying 𝑥
𝑘
∈ [𝑎, 𝑏]. The algorithm consists of one recursive function CutCKT

that chooses the best boxes (−∞, 𝑡]
𝑘

and (𝑡,∞)
𝑘

for separating the conditional Kendall’s taus
between the pairs of the conditioned variables as much as possible. Each of these two sets
is recursively partitioned in the same way until the sample size corresponding to each box
is sufficiently small or until the difference in the conditional Kendall’s taus is sufficiently
small.

Algorithm 1. Recursive algorithm for building a set of relevant boxes for conditional
Kendall’s taus

def CutCKT(a dataset  ∈ ℝ𝑛×𝑑 , a subset 𝐴
𝑑𝑒𝑓𝑎𝑢𝑙𝑡

= ℝ|𝐽 |, minCut ≥ 0,

minSize ≥ 0):
for 𝑖 ← 1 to 𝑝 − 1 do

for 𝑗 ← 𝑖 + 1 to 𝑝 do
for 𝑘← 𝑝 + 1 to 𝑑 do

foreach 𝑡 ∈ ℝ do
Diff[𝑖, 𝑗, 𝑘, 𝑡] ← ||𝜏𝑖,𝑗∣X𝐽∈𝐴∩(−∞,𝑡]𝑘 − 𝜏

𝑖,𝑗∣X𝐽∈𝐴∩(𝑡,+∞)𝑘
||;

(𝑖∗, 𝑗∗, 𝑘∗, 𝑡∗)← arg max
𝑖,𝑗,𝑘,𝑡

Diff[𝑖, 𝑗, 𝑘, 𝑡];
Box1 ← 𝐴 ∩ (−∞, 𝑡

∗]
𝑘∗ ;

Box2 ← 𝐴 ∩ (𝑡∗,+∞)
𝑘∗ ;

if min
(
ℙ
𝑛
(𝑋

𝐽
∈ Box1) , ℙ

𝑛
(𝑋

𝐽
∈ Box2)

)
<minSize or

Diff[𝑖∗, 𝑗∗, 𝑘∗, 𝑡∗]<minCut then

return
(
𝝉̂
𝐼 ∣X𝐽∈𝐴

)
.

else
Child− ← CutCKT(,𝐴 = Box1, minCut, minSize);

Child+ ← CutCKT(,𝐴 = Box2, minCut, minSize);

return
(
𝝉̂
𝐼 ∣X𝐽∈𝐴, (𝑖

∗
, 𝑗
∗
, 𝑘
∗
, 𝑡
∗),Child−,Child+

)

The object returned by the function CutCKT is a proper binary tree. Its Root attribute
stores a vector of the (estimated) unconditional Kendall’s taus, 𝝉̂

𝐼
. If Root has two children,

then it also stores the indices (𝑖1, 𝑗1) of the pair of conditioned variables selected as having the
maximum difference in conditional Kendall’s tau following Equation (5). In this case, it also

DOI: 10.1002/cjs.11742 The Canadian Journal of Statistics / La revue canadienne de statistique
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16 DERUMIGNY, FERMANIAN AND MIN Vol. 00, No. 00

stores the index 𝑘1 of the selected conditional variable as well as the threshold 𝑡1. Recursively, a
Child of any Node of the tree is either

• a final leaf of the tree, with a conditional Kendall’s tau vector of 𝝉̂
𝐼|X𝐽∈𝐴, where 𝐴 is the

box corresponding to the conditioning subset passed to the Child, or
• an internal leaf of the tree.

An internal leaf is composed of the conditional Kendall’s tau vector 𝝉̂
𝐼|X𝐽∈𝐴; the indices

𝑖
∗
, 𝑗
∗ and 𝑘∗; the threshold defining the split; and the two children corresponding to, respectively,

the lower box𝐴 ∩ (−∞, 𝑡
∗]
𝑘∗ (adding the event {𝑋

𝑘∗ ≤ 𝑡
∗}) and to the upper box𝐴 ∩

(
𝑡
∗
,+∞

)
𝑘∗

(adding the event {𝑋
𝑘∗ > 𝑡

∗}). The type of such a proper binary tree can be recursively defined as

Tree = 𝝉̂
𝐼

‖‖‖
(
𝝉̂
𝐼
, 𝑖1, 𝑗1, 𝑘1, 𝑡1,Child

(
(−∞, 𝑡1]𝑘1

)
,Child

(
(𝑡1,+∞)𝑘1

))
,

Child(𝐴) = 𝝉̂
𝐼|X𝐽∈𝐴

‖‖‖

(
𝝉̂
𝐼|X𝐽∈𝐴, 𝑖

∗
, 𝑗
∗
, 𝑘
∗
, 𝑡
∗
,

Child
(
𝐴 ∩ (−∞, 𝑡

∗]
𝑘∗
)
,Child

(
𝐴 ∩ (𝑡∗,+∞)

𝑘∗
))

,

where the symbol || refers here to the union of types. Examples of such trees are displayed in
Figures 1 and 2.

The use of the same sample for the construction of the boxes using Algorithm 1 and for
testing 

𝝉

0 may not be theoretically justified. Indeed, using the same sample for both tasks

would certainly lead to the over-rejection of 
𝝉

0 . We would exactly calibrate our conditional
Kendall’s tau to get the largest difference among them in the population, which would not happen
for fixed boxes, and this would yield a misleading 𝑃 -value. Another solution would be to invoke
the bootstrap for the construction of the tree at the same time to take into account that effect,
that is, whenever we have a bootstrapped sample, we computed a new tree based on it, as well
as a new test statistic (based on the partition given by this new, random tree that will differ for
each bootstrapped sample). In this case, the asymptotic theory is different and is left for future
research.

We propose to use a sample-splitting strategy: a fraction 𝜅 of the sample is given to
Algorithm 1 in order to construct a set of relevant boxes while the rest of the sample is used to

KT = 0.312

S&P500L1 < 1.19, CKT = 0.319 S&P500L1 > 1.19, CKT = 0.256

S&P500L5 < -1.32, CKT = 0.374 S&P500L5 > -1.32, CKT = 0.313

EurostoxxL2 < -1.3, CKT = 0.357 EurostoxxL2 > -1.3, CKT = 0.308

FIGURE 1: Data-driven tree for the conditional dependence between the Eurostoxx and S&P500 inno-
vations. The conditioning variables are the lagged innovations X

𝑡,𝐽2 including up to five lags. “KT”
(respectively “CKT”) denotes the unconditional Kendall’s tau (respectively conditional Kendall’s tau with
the conditioning event corresponding to the node). For example, given 𝑋

𝑡−1,2 < 1.19 and 𝑋
𝑡−5,2 > −1.32,

the conditional Kendall’s tau between 𝑋
𝑡,1 and 𝑋

𝑡,2 is estimated as 𝜏
𝑋𝑡,1 , 𝑋𝑡,2 | 𝑋𝑡−1,2<1.19, 𝑋𝑡−5,2>−1.32 = 0.313.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11742
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2022 TESTING THE ASSUMPTION OF CONSTANT CONDITIONAL DEPENDENCE 17

KT = 0.312

t < 1995-11-29, CKT = 0.161 t > 1995-11-29, CKT = 0.367

S&P500L1 < 1.18
CKT = 0.167

S&P500L1 > 1.18
CKT = 0.0529

EurostoxxL4 < 0.747
CKT = 0.183

EurostoxxL4 > 0.747
CKT = 0.0889

t < 1998-01-29
CKT = 0.234

t > 1998-01-29
CKT = 0.38

t < 2008-01-30
CKT = 0.329

t > 2008-01-30
CKT = 0.427

S&P500L5 < -0.958
CKT = 0.395

S&P500L5 > -0.958
CKT = 0.312

t < 2006-05-01
CKT = 0.294

t > 2006-05-01
CKT = 0.397

S&P500L1 < -1.35
CKT = 0.338

S&P500L1 > -1.35
CKT = 0.442

S&P500L1 < 1.19
CKT = 0.45

S&P500L1 > 1.19
CKT = 0.366

t < 2012-08-14
CKT = 0.508

t > 2012-08-14
CKT = 0.414

FIGURE 2: Data-driven tree for the conditional dependence between the Eurostoxx and S&P500 innovations.
The conditioning variables are the lagged innovations X

𝑡,𝐽3 including up to five lags and time. “KT”
(respectively “CKT”) denotes the unconditional Kendall’s tau (respectively the conditional Kendall’s tau
with the conditioning event corresponding to the node). For example, given 𝑡 < 1995-11-29 and 𝑋

𝑡−1,2 <

1.18, conditional Kendall’s tau between 𝑋
𝑡,1 and 𝑋

𝑡,2 is estimated as 𝜏
𝑋𝑡,1 , 𝑋𝑡,2| 𝑡<1995-11-29, 𝑋𝑡−1,2<1.18 = 0.167.

compute the test statistic as well as its bootstrapped counterpart. In other words, bootstrapping is
performed using only a fraction 1 − 𝜅 of the sample and the previously determined (i.e., fixed)
boxes. This allows us not to contaminate the computation of the 𝑃 -values with the information
used to construct the tree and ensures that both parts of the process are independent. By default,
we suggest 𝜅 = 1∕2. The influence of 𝜅 is explored in Section 7 of the Supplementary Material.

Even when using sample splitting, it is important to note that the theoretical justification
of our test procedures is only valid for fixed boxes (and not for random, i.e., data-driven,
ones). Strictly speaking, the 𝑃 -values obtained with the sample-splitting strategy are only valid
conditional on the first part of the sample. Each collection of Borel sets 

𝐽
= {𝐴1,𝐽 ,… , 𝐴

𝑚,𝐽
}

corresponds to a different null hypothesis that should be denoted by 0(𝐽
) or 

𝝉

0 (𝐽
). Our

splitting procedure can therefore be seen in the following way: the first part of the sample gives
the statistician a relevant collection of Borel sets that correspond to the largest differences in
terms of the estimated conditional Kendall’s tau, and the rest of the sample determines whether
such differences are significantly different from zero.

7. TWO EMPIRICAL APPLICATIONS

The following empirical applications were performed in the statistical environment R using the
functionsbCond.treeCKT (which corresponds to Algorithm 1) andbCond.simpA.CKT (for
the statistical test of constant dependence) from the package CondCopulas (Derumigny, 2022).

7.1. Financial Dataset
In this section, we consider time series for two stock indices, the Eurostoxx50 and the S&P500.
The data are composed of 𝑛 = 8265 observations of daily returns from January 5, 1987 to
March 27, 2020. First, a preprocessing step is used to obtain an ARMA–GARCH filtering
of each of the marginal processes. The orders are selected by minimizing the BIC using the
R package fGarch (Wuertz et al., 2020). For the Eurostoxx (respectively, S&P500) returns,

DOI: 10.1002/cjs.11742 The Canadian Journal of Statistics / La revue canadienne de statistique
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an ARMA(0,0)-GARCH(1,1) (respectively, ARMA(1,1)-GARCH(1,1)) model is selected. We
denote by 𝑋

𝑡,1 and 𝑋
𝑡,2 the standardized residuals of the Eurostoxx and S&P500 returns,

respectively, at time 𝑡. The vector of interest is X
𝑡,𝐼
∶=

(
𝑋
𝑡,1, 𝑋𝑡,2

)
.

First, we study the past residuals X
𝑡,𝐽1 ∶= 𝐿X

𝑡,𝐼
=
(
𝑋
𝑡−1,1, 𝑋𝑡−1,2

)
, where 𝐿 denotes the lag

operator: we can apply Algorithm 1. Under the classical nonparametric bootstrap test procedure,
the differences between our estimated conditional Kendall’s taus are not significant (𝑃 -value
= 0.244) and the assumption of a constant dependence structure cannot be rejected.

We then include more lags, with X
𝑡,𝐽2 ∶=

(
𝐿X

𝑡,𝐼
,… , 𝐿

5X
𝑡,𝐼

)
. Using Algorithm 1, we

obtain the tree displayed in Figure 1. Contrary to the case of a single lag, this partition proves
to be relevant: it induces significantly different conditional Kendall’s taus under the classical
nonparametric bootstrap test procedure. The 𝑃 -value is very close to zero.

By closer examination of the tree in Figure 1, we can distinguish several regimes: in the
normal regime, when the first lag of the innovation of the S&P500 (denoted by “S&P500L1”)
is greater than 1.19, the conditional Kendall’s tau between the two innovations is 0.256. More
generally, we denote by “[name]L[i]” the 𝑖th lag of the innovation of the variable “[name]”. We
have an intermediate regime with S&P500L1 < 1.19, EurostoxxL2 > −1.3, and S&P500L5 >

−1.32 for which the conditional Kendall’s tau is 0.308. The conditional Kendall’s tau for the
left leaf is even higher at 0.357. The last case corresponds to the event in which S&P500L1
and S&P500L5 are both lower than usual. This surely represents a crisis-like situation: here, the
conditional Kendall’s tau reaches its maximum value of 0.374.

It is interesting to note that, at each branch of the tree, the left-hand node (corresponding
to a lower lagged innovation) always has a greater conditional Kendall’s tau than that for the
right-hand node. This illustrates the well-known contagion effect: when market conditions are
bad, the dependencies between stock returns strengthen. Another way of seeing this contagion
effect is by noticing that the tree displayed in Figure 1 is a binary search tree: every node has
zero or two leaves and the value stored at each branch is smaller than the value on the left and
bigger than the value on the right. This means that, for every subset 𝐴 in the tree, for every
conditioning variable 𝑋

𝑘
, and for every real 𝑥,

𝜏1,2|X𝐽∈𝐴,𝑋𝑘≤𝑥
≥ 𝜏1,2|X𝐽∈𝐴 ≥ 𝜏1,2|X𝐽∈𝐴,𝑋𝑘>𝑥

. (6)

In other words, adding the information that (𝑋
𝑘
≤ 𝑥) leads to an increase in the dependence.

In our last model, we also include time (even though it is not a random variable, strictly
speaking) so that X

𝑡,𝐽
∶=

(
𝐿X

𝑡,𝐼
,… , 𝐿

5X
𝑡,𝐼
, 𝑡
)
. This allows us to detect time-varying effects

in the dependence between stock indices. Using Algorithm 1, we obtain the tree displayed
in Figure 2. This partition induces strongly significant differences between the Kendall’s taus
(𝑃 -value = 0, under the classical nonparametric bootstrap test procedures). Three general effects
can be noted.

• The dependence between the S&P500 and the Eurostoxx generally increases in time.
This may be explained by financial globalization, by which major world indices become
increasingly correlated with each other.

• The conditional dependence between the S&P500 and the Eurostoxx indices, given periods
with strong, negative innovations, is generally higher than the conditional dependence
between them during periods with strong, positive innovations. This corresponds to the
contagion effect in Equation (6) that we have identified before.

• The contagion effect seems to be constant over time: Kendall’s tau is around 0.10 higher
in the “bad situations” than it is in the “good situations”. In other words, 𝜏1.2|X𝐽∈bad,𝑡∈𝑇 −
𝜏1.2|X𝐽∈good,𝑡∈𝑇 is nearly the same for each period of time.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11742
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2022 TESTING THE ASSUMPTION OF CONSTANT CONDITIONAL DEPENDENCE 19

More precisely, we see that the main split of the tree separates two periods of time. The
second period is again split. In total, four main periods can be seen:

• 1987–1995 with a Kendall’s tau of 0.161 between the S&P500 and the Eurostoxx,
• 1995–1998 with a Kendall’s tau of 0.234 between the S&P500 and the Eurostoxx,
• 1998–2008 with a Kendall’s tau of 0.329 between the S&P500 and the Eurostoxx, and
• 2008–2020 with a Kendall’s tau of 0.427 between the S&P500 and the Eurostoxx.

These splits along the time variable illustrate the fact that the most important changes
in the dependence between both financial indices are linked to time trends and not to past
returns. This is coherent with intuition: long-term phenomena such as globalization have more
influence than short-term events such as stock return variation a few days before. Note that the
highest dependence levels are observed during the “hot times”, 2008–2012, where financial
markets suffered a financial crisis (Lehman’s bankruptcy in particular) followed by the European
sovereign debt crisis in 2010–2012.

In the branch of the tree corresponding to the period 1987–1995, there are three leaves,
corresponding to three conditioning subsets describing bad, good and intermediate situations with
increasing values of conditional Kendall’s tau that satisfy Equation (6). The period 1995–1998
does not have enough observations to be split further as it is already very short. It represents
a transition (Kendall’s tau = 0.234) between the previous period (Kendall’s tau = 0.161) and
the next (Kendall’s tau = 0.329). In the period 1998–2008, the Kendall’s taus are higher than
before, but the branches still satisfy the general contamination principle in Equation (6).

Interestingly, this principle is not satisfied in the most recent period (2008–2020) as the
dependence during the “stressed event” {𝑋

𝑡−1,2 < −1.35} is in fact smaller (0.338) than during
the complementary event (0.442). It could be possible that such extreme events are linked to
purely American news that did not affect the Eurostoxx very much. Nevertheless, in the “normal”
branch {𝑋

𝑡−1,2 > −1.35}, the classical behaviour appears again, which suggests that the previous
event corresponds to a very special situation.

7.2. Insurance Dataset
Frees, Lee & Yang (2016) presented an extensive analysis of an insurance dataset from the
Wisconsin Local Government Property Insurance Fund using multivariate frequency–severity
regression models. Their training sample covers the time period from 2006 to 2010 and consists of
41 variables and 5677 observations. Each observation corresponds to a local government entity,
which is either a county, city, town, village, school or miscellaneous entity. The information
about the type of a local entity, its number of claims and coverage sizes for a given year,
insurance type, etc., is recorded through these 41 variables.

The training data from Frees, Lee & Yang (2016) consist of nominal (Type), categorical
(Year), discrete and continuous variables. Continuous-type variables are non-negative and many
of them have an atom at zero. We consider only the variables Year and Type as well as the three
continuous variables listed in Table 1. Further, we restrict ourselves to the observations for which
the three claim coverages of interest have a positive logarithm. The nominal variable Type
classifies entities and consists of six categories City, County, School, Town, Village and
Miscellaneous. We exclude observations of miscellaneous entities and deal with entities of
the same type within each of the five remaining categories. We finally obtain 1435 observations
overall. Figure 3 displays scatter plots of the three continuous variables, which are truncated for
better illustration. The conclusions of our statistical analysis hold only for these three continuous
variables conditioned on the event that the covered claims for the corresponding entity are larger
than one million US dollars.

We apply the proposed framework to the three continuous variables to test whether their
dependence structure varies across the five years (2006–2010). The conditioning variables

DOI: 10.1002/cjs.11742 The Canadian Journal of Statistics / La revue canadienne de statistique
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TABLE 1: Description of variables.

Variable Description

Year Claim year with values 2006, 2007, 2008, 2009, 2010

Type Type of a local government entity with nominal values

City, County, School, Town, Village, Miscellaneous

CoveragePN Log-coverage amount of comprehensive new vehicles (PN),

where coverage is in millions of dollars (non-negative or null)

CoveragePO Log-coverage amount of comprehensive old vehicles (PO),

where coverage is in millions of dollars (non-negative or null)

CoverageIM Log-coverage amount of inland marine (IM),

where coverage is in millions of dollars (non-negative or null)

CoveragePN
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FIGURE 3: Scatter plots of CoveragePN, CoveragePO and CoverageIM.
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FIGURE 4: Scatter plots on the unit square of CoveragePN, CoveragePO and CoverageIM for each
type of entity when transformed to have (conditionally) uniform margins.

specify boxes and do not have to be continuous. The null hypothesis is that the three Kendall’s
taus between the variables CoveragePN, CoveragePO and CoverageIM do not change
over time. Under this null hypothesis, the test statistic  (𝑒)𝑛 follows a chi-squared distribution
with 12 degrees of freedom (𝑝 = 3 with five boxes), which has a level-0.95 quantile of 21.026.
With Kendall’s tau for the year 2006 as the reference value for comparisons with the other values
of Kendall’s tau, that is, we use the contrast matrix 𝑇

𝑒
from Equation (4), the statistic  (𝑒)𝑛 is equal

to 7.382 (𝑃 -value = 0.831) and the null hypothesis cannot be rejected at a 5% significance level.
With 1000 bootstrap replicates of the dataset, the two tests based on the bootstrapped test statistics
 ∗∞,𝑛

and  ∗2,𝑛 also cannot reject the null hypothesis with𝑃 -values of 0.573 and 0.267, respectively.

We now can pool the data from the different years together to test the null hypothesis 
𝜏

0
of constant conditional dependence expressed by the Kendall’s taus for the five different entity
types. Here, the null hypothesis can be rejected since the sample value of the test statistic  (𝑒)𝑛

is equal to 232.363 (𝑃 -value = 0). With 1000 bootstrap replicates of the dataset, the two tests
based on the bootstrapped test statistics also reject the null hypothesis as their 𝑃 -values are
equal to zero. Therefore, we can conclude that the dependence structure of nonzero log-coverage
amounts for CoveragePN, CoveragePO and CoverageIM should be separately modelled
for each entity type, additionally to their marginal, univariate modelling, which should also
be separated for each entity type. Figure 4 visualizes our conclusion. In order to exclude the
influence of conditional marginal distributions, the figure shows copula realizations obtained
from the original data using the (conditional) marginal empirical distribution functions in
each box. Thus, one can see in Figure 4 that the dependence between CoverageIM and
CoveragePO for the entity School is significantly lower than for the entity City.

8. CONCLUSION

In this article, we propose to test the assumption of constant conditional dependence for a set
of several conditioning events using conditional Kendall’s tau. Our testing approach is very
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22 DERUMIGNY, FERMANIAN AND MIN Vol. 00, No. 00

simple, does not rely on the theory of empirical processes on the theoretical side, and has
favourable numerical performance. The asymptotic distribution of the proposed Wald-type test
statistic is a chi-squared distribution independent of any conditional marginal distribution. To
avoid estimating a high-dimensional covariance matrix, we additionally consider two alternative
test statistics whose asymptotic distributions can be bootstrapped efficiently using the classical
nonparametric bootstrap. In the Supplementary Material, we investigate the empirical level and
power of the proposed tests with an extensive simulation study. An application to an insurance
dataset illustrates the proposed test methods.

In most applications, conditioning events are not known ex ante. We construct them “blindly”
and recursively in a way that maximizes the differences between conditional Kendall’s taus
and adapts the CART algorithm to the dependence framework. The output is a binary tree
representing the decision paths to explain dependencies given some conditioning events. The
leaves of the tree correspond to the final partition of the conditioning events. An application
to a dataset of financial returns shows that the estimated binary search tree reflects increasing
dependencies during crisis periods compared with noncrisis periods.

The proposed framework and ideas can be adapted to alternative dependence measures
such as Spearman’s rho at the price of additional technicalities related to the computation of
conditional pseudo-observations. Moreover, several different multivariate dependence measures
(Schmid & Schmidt, 2007a,b; Schmid et al., 2010; Genest, Nešlehová & Ben Ghorbal, 2011,
for instance) could be grouped to build richer and more powerful test statistics. This will be the
subject of future research.
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APPENDIX

Proof of Theorem 1
Consider a deterministic vector a ∈ ℝ2𝑚. We only need to prove the asymptotic normality of the
random variable

√
𝑛 a⊤𝑉 since the weak convergence of

√
𝑛 𝑉 will be obtained via the usual

Cramer–Wold device.
We approximate the 𝑈 -statistic 𝐷̂

𝑘
by its Hájek projection. We first symmetrize the relevant

quantities as

𝐷̂
𝑘
∶= 1

2𝑛(𝑛 − 1)

𝑛∑

𝑖=1

𝑛∑

𝑗=1,𝑗≠𝑖

(
𝑔
𝑖𝑗,𝑘

+ 𝑔
𝑗𝑖,𝑘

)

and
𝑔
𝑖𝑗,𝑘

∶= 1{𝑋
𝑖,1 < 𝑋

𝑗,1, 𝑋𝑖,2 < 𝑋
𝑗,2, 𝑋𝑖,𝐽

∈ 𝐴
𝑘,𝐽
, 𝑋

𝑗,𝐽
∈ 𝐴

𝑘,𝐽
}.
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Set 𝑔∗
𝑖𝑗,𝑘

∶= (𝑔
𝑖𝑗,𝑘

+ 𝑔
𝑗𝑖,𝑘
)∕2 and 𝐷̃

𝑘
∶= 2𝑛−1∑𝑛

𝑖=1𝔼
[
𝑔
∗
𝑖0,𝑘|X𝑖

]
−𝐷

𝑘
and introduce another inde-

pendent realization X0. It follows that

𝔼[𝐷̃
𝑘
] = 𝔼

[
2𝑔∗

𝑖0,𝑘

]
−𝐷

𝑘
= 2𝔼[𝑔1,2,𝑘] −𝐷

𝑘
= 𝐷

𝑘
.

Simple calculations yield that

𝐷̂
𝑘
− 𝐷̃

𝑘
= 1
𝑛(𝑛 − 1)

𝑛∑

𝑖=1

𝑛∑

𝑗=1,𝑗≠𝑖

𝑔
∗
𝑖𝑗,𝑘

− 1
𝑛

𝑛∑

𝑖=1

𝔼
[
𝑔
∗
𝑖0,𝑘|X𝑖

]
− 1
𝑛

𝑛∑

𝑖=1

𝔼
[
𝑔
∗
0𝑖,𝑘|X𝑖

]
+𝐷

𝑘

= 1
𝑛(𝑛 − 1)

𝑛∑

𝑖=1

𝑛∑

𝑗=1,𝑗≠𝑖

(
𝑔
∗
𝑖𝑗,𝑘

− 𝔼
[
𝑔
∗
𝑖𝑗,𝑘

|X
𝑖

]
− 𝔼

[
𝑔
∗
𝑗𝑖,𝑘

|X
𝑖

]
+𝐷

𝑘

)

=∶ 1
𝑛(𝑛 − 1)

𝑛∑

𝑖=1

𝑛∑

𝑗=1,𝑗≠𝑖

𝑔
𝑖𝑗,𝑘

.

Note that 𝔼
[
𝑔
𝑖𝑗,𝑘

|X
𝑖

]
= 𝔼

[
𝑔
𝑖𝑗,𝑘

|X
𝑗

]
= 0. By standard reasoning for 𝑈 -statistics,

Var
(
𝐷̂
𝑘
− 𝐷̃

𝑘

)
= 1
𝑛2(𝑛 − 1)2

𝑛∑

𝑖1=1

𝑛∑

𝑗1=1,𝑗1≠𝑖1

𝑛∑

𝑖2=1

𝑛∑

𝑗2=1,𝑗2≠𝑖2

𝔼
[
𝑔
𝑖1𝑗1,𝑘

𝑔
𝑖2𝑗2,𝑘

]
= 𝑂

(
𝑛
−2)

.

Indeed, the previous cross-products are zero when some of the four indices in (𝑖1, 𝑗1, 𝑖2, 𝑗2) differ.
This yields 𝐷̂

𝑘
= 𝐷̃

𝑘
+ 𝑂

𝑃
(𝑛−1) and we deduce that

√
𝑛 a⊤𝑉 =

√
𝑛

𝑚∑

𝑘=1

𝑎
𝑘
(𝐷̃

𝑘
−𝐷

𝑘
) +

√
𝑛

2𝑚∑

𝑘=𝑚+1

𝑎
𝑘
(𝑝̂

𝑘
− 𝑝

𝑘
) + 𝑂

𝑃

(
𝑛
−1∕2)

= 𝑛
−1∕2

𝑛∑

𝑖=1

{
𝑚∑

𝑘=1

2𝑎
𝑘

(
𝔼
[
𝑔
∗
𝑖0,𝑘|X𝑖

]
−𝐷

𝑘

)
+

2𝑚∑

𝑘=𝑚+1

𝑎
𝑘

(
1{𝑋

𝑖,𝐽
∈ 𝐴

𝑘
} − 𝑝

𝑘

)
}

+ 𝑂
𝑃

(
𝑛
−1∕2)

= 𝑛
−1∕2

𝑛∑

𝑖=1

a⊤ṽ
𝑖
+ 𝑂

𝑃

(
𝑛
−1∕2)

, (A1)

where ṽ
𝑖

is the random vector

ṽ
𝑖
∶=

(
2
(
𝔼
[
𝑔
∗
𝑖0,1|X𝑖

]
−𝐷1

)
, … , 2

(
𝔼
[
𝑔
∗
𝑖0,𝑚|X𝑖

]
−𝐷

𝑚

)
,

1{𝑋
𝑖,𝐽
∈ 𝐴1} − 𝑝1 , … , 1{𝑋

𝑖,𝐽
∈ 𝐴

𝑚
} − 𝑝

𝑚

]⊤
.

By the usual central limit theorem, we deduce that
√
𝑛 a⊤𝑉 tends in law to (0, a⊤Σa), where

Σ = 𝔼[ṽ⊤
𝑖

ṽ
𝑖
]. Since this is true for every vector a, this means that

√
𝑛 𝑉 ⇝ (0,Σ). Note that

𝔼
[
𝑔
∗
𝑖0,𝑘|X𝑖

]
= 1{X

𝑖,𝐽
∈ 𝐴

𝑘,𝐽
}
∫
𝜋(x,X

𝑖
)1{x

𝐽
∈ 𝐴

𝑘,𝐽
} ℙ(dx)

= 𝑝
𝑘
1{X

𝑖,𝐽
∈ 𝐴

𝑘,𝐽
}
∫
𝜋(x,X

𝑖
) ℙ

𝑘
(dx).
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Simple calculations yield the components of Σ. For example,

𝜎
𝑘,𝑙
≔ 4𝔼

[
𝔼
[
𝑔
∗
𝑖0,𝑘|X𝑖

]
𝔼
[
𝑔
∗
𝑖0,𝑙|X𝑖

]]
− 4𝐷

𝑘
𝐷
𝑙

= 4𝑝
𝑘
𝑝
𝑙
𝔼
[

1{X
𝑖,𝐽
∈ 𝐴

𝑘,𝐽
,X

𝑖,𝐽
∈ 𝐴

𝑙,𝐽
}
∫
𝜋(x1,X𝑖

) ℙ
𝑘
(dx1)

×
∫
𝜋
𝑙
(x2,X𝑖

) ℙ
𝑙
(dx2)

]
− 4𝐷

𝑘
𝐷
𝑙
.

For 𝑘 = 𝑙,

𝜎
𝑘,𝑘
= 4𝑝2

𝑘
𝔼
[

1{X
𝑖,𝐽
∈ 𝐴

𝑘,𝐽
}
∫
𝜋(x1,X𝑖

) ℙ(dx1)
∫
𝜋(x2,X𝑖

) ℙ(dx2)
]
− 4𝐷2

𝑘

= 4𝑝3
𝑘∫x3∈𝐴𝑘,𝐽

[

∫
𝜋(x1, x3) ℙ𝑘

(dx1)
∫
𝜋(x2, x3) ℙ𝑘

(dx2)
]
ℙ
𝑘
(dx3) − 4𝐷2

𝑘
.

Concerning Σ1,2 ∶= [𝜌𝑘,𝑙]𝑚𝑘,𝑙=1, we have that

𝜌
𝑘,𝑙
= 2𝔼

[
𝔼
[
𝑔
∗
𝑖0,𝑘|X𝑖

]
1{𝑋

𝑖,𝐽
∈ 𝐴

𝑙,𝐽
}
]
− 2𝐷

𝑘
𝑝
𝑙

= 2𝑝
𝑘
𝔼
[

1{X
𝑖,𝐽
∈ 𝐴

𝑘,𝐽
∩ 𝐴

𝑙,𝐽
}
∫
𝜋(x,X

𝑖
) ℙ

𝑘
(dx)

]
− 2𝐷

𝑘
𝑝
𝑙
.

When 𝑘 = 𝑙,

𝜌
𝑘,𝑘
= 2𝑝

𝑘
𝔼
[

1{X
𝑖,𝐽
∈ 𝐴

𝑘,𝐽
}
∫
𝜋(x,X

𝑖
) ℙ

𝑘
(dx)

]
− 2𝐷

𝑘
𝑝
𝑘

= 2𝑝2
𝑘 ∫

[

∫
𝜋(x1, x2) ℙ𝑘

(dx1)
]
ℙ
𝑘
(dx2) − 2𝐷

𝑘
𝑝
𝑘

= 2𝐷
𝑘
− 2𝐷

𝑘
𝑝
𝑘
.

Proof of Proposition 2
We first prove the asymptotic normality of 𝑛1∕2

𝑊̂
(1). The desired result follows. Note that, for

𝑘 ∈ {1,… , 𝑚}, the 𝑘th component of 𝑊̂ (1) is

√
𝑛

(
𝜏
(1)
1,2|X𝐽∈𝐴𝑘,𝐽

− 𝜏1,2|X𝐽∈𝐴𝑘,𝐽

)
= 4

√
𝑛

(
𝐷̂
𝑘

𝑝̂
2
𝑘

−
𝐷
𝑘

𝑝
2
𝑘

)

= 4
√
𝑛

(
𝐷̂
𝑘
−𝐷

𝑘

𝑝
2
𝑘

(

1 +
𝑝

2
𝑘
− 𝑝̂

2
𝑘

𝑝̂
2
𝑘

)

+
𝐷
𝑘

(
𝑝

2
𝑘
− 𝑝̂

2
𝑘

)

𝑝̂
2
𝑘
𝑝

2
𝑘

)

= 4
√
𝑛

(
𝐷̂
𝑘
−𝐷

𝑘

𝑝
2
𝑘

+ 𝑂
𝑃

((
𝐷̂
𝑘
−𝐷

𝑘

)(
𝑝̂
𝑘
− 𝑝

𝑘

))
−

2𝐷
𝑘

(
𝑝̂
𝑘
− 𝑝

𝑘

)

𝑝̂
2
𝑘
𝑝
𝑘

−
𝐷
𝑘

(
𝑝̂
𝑘
− 𝑝

𝑘

)2

𝑝̂
2
𝑘
𝑝

2
𝑘

)
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= 4
√
𝑛

(
𝐷̂
𝑘
−𝐷

𝑘

𝑝
2
𝑘

−
2𝐷

𝑘

(
𝑝̂
𝑘
− 𝑝

𝑘

)

𝑝
3
𝑘

)

+ 𝑂
𝑃

(
𝑛
−1∕2)

=∶ 4𝜁
𝑘
+ 𝑂

𝑃
(𝑛−1∕2)

due to Theorem 1. Direct calculations provide, for every 𝑘, 𝑙 ∈ {1,… , 𝑚}, that

𝔼[𝜁
𝑘
𝜁
𝑙
] =

𝜎
𝑘𝑙

𝑝
2
𝑘
𝑝

2
𝑙

+
4𝐷

𝑘
𝐷
𝑙

(
𝑝
𝑘,𝑙
− 𝑝

𝑘
𝑝
𝑙

)

𝑝
3
𝑘
𝑝

3
𝑙

−
2𝐷

𝑙

(
2𝑝

𝑘
𝐽
𝑘,𝑙
− 2𝐷

𝑘
𝑝
𝑙

)

𝑝
2
𝑘
𝑝

3
𝑙

−
2𝐷

𝑘

(
2𝑝

𝑙
𝐽
𝑙,𝑘
− 2𝐷

𝑙
𝑝
𝑘

)

𝑝
2
𝑙
𝑝

3
𝑘

=
4𝐼

𝑘,𝑙

𝑝
2
𝑘
𝑝

2
𝑙

+
4𝐷

𝑘
𝐷
𝑙
𝑝
𝑘,𝑙

𝑝
3
𝑘
𝑝

3
𝑙

−
4𝐷

𝑙
𝐽
𝑘,𝑙

𝑝
𝑘
𝑝

3
𝑙

−
4𝐷

𝑘
𝐽
𝑙,𝑘

𝑝
𝑙
𝑝

3
𝑘

.

Since 4𝐷
𝑘
∕𝑝2

𝑘
= 1 + 𝜏1,2|X𝐽∈𝐴𝑘,𝐽 , the desired result holds when 𝑘 = 𝑙.

Proof of Proposition 4
Consider a deterministic vector a ∈ ℝ𝑚+𝑝(𝑝−1)𝑚∕2. It will be decomposed as a block vector
a ∶=

[
a⊤0 , a

⊤

1,2, a
⊤

1,3,… , a⊤
𝑝−1,𝑝

]⊤ with a0 ∶=
[
𝑎0,1,… , 𝑎0,𝑚

]⊤ and a
𝑎,𝑏
∶=

[
𝑎
𝑎,𝑏,1,… , 𝑎

𝑎,𝑏,𝑚

]⊤.

After proving the asymptotic normality of the random variable
√
𝑛 a⊤𝑉 , the weak conver-

gence of
√
𝑛 𝑉 can be obtained by invoking the usual Cramer–Wold device. As in the proof of

Theorem 1, for any pair (𝑎, 𝑏), define

𝐷̂
𝑎,𝑏,𝑘

∶= 1
2𝑛(𝑛 − 1)

𝑛∑

𝑖=1

𝑛∑

𝑗=1,𝑗≠𝑖

(
𝑔
𝑖𝑗,𝑎𝑏𝑘

+ 𝑔
𝑗𝑖,𝑎𝑏𝑘

)

and
𝑔
𝑖𝑗,𝑎𝑏𝑘

∶= 1
{
𝑋
𝑖,𝑎
< 𝑋

𝑗,𝑎
, 𝑋

𝑖,𝑏
< 𝑋

𝑗,𝑏
, 𝑋

𝑖,𝐽
∈ 𝐴

𝑘,𝐽
, 𝑋

𝑗,𝐽
∈ 𝐴

𝑘,𝐽

}
.

Set 𝑔
∗
𝑖𝑗,𝑎𝑏𝑘

∶= (𝑔
𝑖𝑗,𝑎𝑏𝑘

+ 𝑔
𝑗𝑖,𝑎𝑏𝑘

)∕2 and 𝐷̃
𝑎,𝑏,𝑘

∶= 2𝑛−1∑𝑛

𝑖=1𝔼
[
𝑔
∗
𝑖0,𝑎𝑏𝑘|X𝑖

]
−𝐷

𝑎,𝑏,𝑘
. Obviously,

𝔼[𝐷̃
𝑎,𝑏,𝑘

] = 𝐷
𝑎,𝑏,𝑘

. Note that

𝔼
[
𝑔
∗
𝑖0,𝑎𝑏𝑘|X𝑖

]
= 𝑝

𝑘
1
{

X
𝑖,𝐽
∈ 𝐴

𝑘,𝐽

}
∫
𝜋
𝑎𝑏𝑘
(x,X

𝑖
) ℙ

𝑘
(dx).

We obtain 𝐷̂
𝑎,𝑏,𝑘

= 𝐷̃
𝑎,𝑏,𝑘

+ 𝑂
𝑃
(𝑛−1) by a standard argument for 𝑈 -statistic and we deduce

that

√
𝑛 adV̂ =

√
𝑛

∑

(𝑎,𝑏)

𝑚∑

𝑘=1

𝑎
𝑎,𝑏,𝑘

(
𝐷̃
𝑎,𝑏,𝑘

−𝐷
𝑎,𝑏,𝑘

)
+
√
𝑛

𝑚∑

𝑘=1

𝑎0,𝑘
(
𝑝̂
𝑘
− 𝑝

𝑘

)
+ 𝑂

𝑃

(
𝑛
−1∕2)

= 𝑛
−1∕2

∑

(𝑎,𝑏)

𝑛∑

𝑖=1

{
𝑚∑

𝑘=1

2𝑎
𝑎,𝑏,𝑘

(
𝔼
[
𝑔
∗
𝑖0,𝑎𝑏𝑘|X𝑖

]
−𝐷

𝑎,𝑏,𝑘

)
+

𝑚∑

𝑘=1

𝑎0,𝑘
(
1{𝑋

𝑖,𝐽
∈ 𝐴

𝑘
} − 𝑝

𝑘

)
}
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+ 𝑂
𝑃
(𝑛−1∕2)

= 𝑛
−1∕2

𝑛∑

𝑖=1

adṼ
𝑖
+ 𝑂

𝑃
(𝑛−1∕2),

where

Ṽ
𝑖
=
[
Ṽ⊤

𝑖,0, Ṽ
⊤

𝑖,1,2, Ṽ
⊤

𝑖,1,3,… , Ṽ⊤

𝑖,𝑝−1,𝑝

]⊤
,

Ṽ
𝑖,𝑎,𝑏

=
[
2
(
𝔼
[
𝑔
∗
𝑖0,𝑎𝑏1|X𝑖

]
−𝐷

𝑎,𝑏,𝑘

)
,… , 2

(
𝔼
[
𝑔
∗
𝑖0,𝑎𝑏𝑚|X𝑖

]
−𝐷

𝑎,𝑏,𝑚

)]⊤

and
Ṽ
𝑖,0 ∶=

[
1{𝑋

𝑖,𝐽
∈ 𝐴1} − 𝑝1,… , 1{𝑋

𝑖,𝐽
∈ 𝐴

𝑚
} − 𝑝

𝑚

]⊤
.

By the usual central limit theorem, we deduce that
√
𝑛 a⊤V̂ tends in law to

(
0, a⊤Σa

)
, where

Σ = 𝔼
[
Ṽ⊤

𝑖
Ṽ
𝑖

]
. Since this is true for every vector a, this means that

√
𝑛 V̂ ⇝ (0,Σ

𝑒
). The

calculation of Σ
𝑒

follows the calculations in the proof of Theorem 1.

Proof of Proposition 5

We first prove the asymptotic normality of 𝑛1∕2Ŵ
(1)

. The desired result follows. As in the proof
of Proposition 2, for every pair (𝑎, 𝑏) ∈ {1,… , 𝑝}2 with 𝑎 ≠ 𝑏 and every 𝑘 ∈ {1,… , 𝑚}, we
have that

√
𝑛
(
𝜏
(1)
𝑎,𝑏|X𝐽∈𝐴𝑘,𝐽

− 𝜏
𝑎,𝑏|X𝐽∈𝐴𝑘,𝐽

)
= 4

√
𝑛

(
𝐷̂
𝑎,𝑏,𝑘

𝑝̂
2
𝑘

−
𝐷
𝑎,𝑏,𝑘

𝑝
2
𝑘

)

= 4
√
𝑛

(
𝐷̂
𝑎,𝑏,𝑘

−𝐷
𝑎,𝑏,𝑘

𝑝
2
𝑘

−
2𝐷

𝑎,𝑏,𝑘

(
𝑝̂
𝑘
− 𝑝

𝑘

)

𝑝
3
𝑘

)

+ 𝑂
𝑃

(
𝑛
−1∕2)

=∶ 4𝜁
𝑎,𝑏,𝑘

+ 𝑂
𝑃

(
𝑛
−1∕2)

due to Theorem 2. Direct calculations provide, for every (𝑎, 𝑏), (𝑎′, 𝑏′) and for every 𝑘, 𝑙 ∈
{1,… , 𝑚}, that

𝔼
[
𝜁
𝑎,𝑏,𝑘

𝜁
𝑎′,𝑏′,𝑙

]
=

4𝑝
𝑘
𝑝
𝑙
𝐼
𝑎,𝑏,𝑎′,𝑏′,𝑘 − 4𝐷

𝑎,𝑏,𝑘
𝐷
𝑎′,𝑏′,𝑙

𝑝
2
𝑘
𝑝

2
𝑙

+
4𝐷

𝑎,𝑏,𝑘
𝐷
𝑎′,𝑏′,𝑙

(
𝑝
𝑘,𝑙
− 𝑝

𝑘
𝑝
𝑙

)

𝑝
3
𝑘
𝑝

3
𝑙

−
2𝐷

𝑎′,𝑏′,𝑙

(
2𝑝

𝑘
𝐽
𝑎,𝑏,𝑘,𝑙

− 2𝐷
𝑎,𝑏,𝑘

𝑝
𝑙

)

𝑝
2
𝑘
𝑝

3
𝑙

−
2𝐷

𝑎,𝑏,𝑘

(
2𝑝

𝑙
𝐽
𝑎′,𝑏′,𝑙,𝑘 − 2𝐷

𝑎′,𝑏′,𝑙𝑝𝑘

)

𝑝
2
𝑙
𝑝

3
𝑘

= 4

(
𝐼
𝑎,𝑏,𝑎′,𝑏′,𝑘,𝑙

𝑝
𝑘
𝑝
𝑙

+
𝐷
𝑎,𝑏,𝑘

𝐷
𝑎′,𝑏′,𝑙𝑝𝑘,𝑙

𝑝
3
𝑘
𝑝

3
𝑙

−
𝐷
𝑎′,𝑏′,𝑙𝐽𝑎,𝑏,𝑘,𝑙

𝑝
𝑘
𝑝

3
𝑙

−
𝐷
𝑎,𝑏,𝑘

𝐽
𝑎′,𝑏′,𝑙,𝑘

𝑝
𝑙
𝑝

3
𝑘

)

,

which yields the desired result.
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