
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2011-07

M.Sc. Thesis

Optimization of the Belief Propagation
algorithm for Luby Transform decoding

over the Binary Erasure Channel

Marta Alvarez Guede

Abstract

Live-streaming media applications in the Internet are character-
ized by time deadlines and bandwidth constraints. Reliability over the
Internet is provided traditionally by the Transmission Control Proto-
col (TCP) which is based on retransmissions. However, resending the
missed information leads to a waste in time and bandwidth. Era-
sure correcting codes can be used as an alternative to TCP. In this
thesis, we consider the use of Luby Transform (LT) codes, which are
part of the Digital Fountain (DF) codes. They are efficient and have
low encoding and decoding time as opposite to other erasure codes
like Reed-Solomon (RS) or Low-Density Parity-Check (LDPC). They
are also the first realization of rateless codes, where the number of
encoded symbols is potentially limitless, hence suitable for Internet
applications, where the channel conditions can change very fast or be
unknown. The accepted efficient decoding algorithm for LT codes is
the Belief Propagation (BP) algorithm. Unfortunately, BP exhibits a
rather poor performance when used with small sizes of message sym-
bols. This turns out to be a limitation in live-streaming applications,
as they should wait until that number of source symbols are received
for attempting decoding. In our project, we explore optimizations
of the BP decoding process for LT codes when the number of infor-
mation symbols is small. We present two new decoding algorithms
that improve the performance of BP while keeping a low complexity.
We show simulation results of the new LT decoding algorithms suc-
cess rate and complexity versus overhead when used with small sizes,
proving the gain in performance compare to BP.

Optimization of the Belief Propagation algorithm for

Luby Transform decoding over the Binary Erasure

Channel

Thesis

submitted in partial fulfillment of the
Requirements for the degree of

Master of Science

in

Computer Engeneering

by

Marta Alvarez Guede
born in Ourense, Spain

Committee members

Advisor: Dr.ir. T.G.R.M. van Leuken

Member: Prof.dr.ir. A.J. van der Veen

Member: Dr.ir. Josh Weber

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright c© 2011 Circuits and Systems Group
All rights reserved.

Delft University of Technology

Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Optimization of the Belief Propagation algorithm for Luby Trans-
form decoding over the Binary Erasure Channel” by Marta Alvarez Guede
in partial fulfillment of the requirements for the degree of Master of Science.

Dated: date

Chairman:
Prof.dr.ir. A.J. van der Veen

Advisor:
Dr.ir. T.G.R.M. van Leuken

Committee Members:
Dr.ir. Josh Weber

iv

Contents

1 Introduction 1
1.1 Motivation: rateless coding for reliable communication 1
1.2 Fountain codes challenges . 3
1.3 Outline and contributions . 4

2 Background 7
2.1 A Theory of communication . 7
2.2 Error detection and error correction: Hamming codes 11
2.3 Error correction, error detection and erasure correction [1] 14

2.3.1 Stopping sets . 14
2.4 Codes definitions and properties . 15
2.5 Summary . 15

3 Erasure Correcting Codes 17
3.1 Reed-Solomon codes . 17
3.2 Low-Density Parity-Check codes . 17
3.3 Digital Fountain Codes . 19

3.3.1 Tornado codes . 20
3.3.2 LT codes . 21
3.3.3 Raptor codes . 26

3.4 Conclusions . 29

4 BP Decoding Optimization 31
4.1 Belief Propagation vs Gaussian Elimination 31
4.2 Algorithms improving Gaussian Elimination complexity 35
4.3 Algorithms improving Belief Propagation 37
4.4 Double Tree-structure Expectation Propagation algorithm 42
4.5 Triple Tree-structure Expectation Propagation algorithm 44
4.6 Conclusions . 45

5 Simulation results 47
5.1 Overview . 47
5.2 Decoding analysis . 47
5.3 Conclusions . 50

6 Conclusion 55
6.1 Summary . 55
6.2 Suggestions for further Work . 55

v

vi

List of Figures

2.1 Sketch of a communication system. 8
2.2 Binary erasure channel with erasure probability p. 11
2.3 Binary symmetric channel with erasure probability p. 11

3.1 Tanner graph representation of an LT code. 22
3.2 The distributions ρ(i) and τ(i) for the case k = 10000, δ = 0.05 and

c = 0.2, which gives k/R = 41 and β ≃ 1.3. The distribution τ is larger
at i = 1 and i = k/R = 41. 24

3.3 Bounds on c. 25
3.4 Robust Soliton distribution average degree vs c. 26
3.5 Robust Soliton probability of degree-one check nodes vs c. 26
3.6 Robust Soliton distribution average degree vs δ. 27
3.7 Robust Soliton probability of degree-one check nodes vs δ. 27
3.8 Tanner graph representation of a Raptor code. 28

4.1 Belief Propagation decoding of a LT code. 32
4.2 Belief Propagation decoding of a LT code. 32
4.3 Belief Propagation decoding of a LT code. 33
4.4 Belief Propagation decoding of a LT code. 33
4.5 Belief Propagation decoding of a LT code. 34
4.6 Belief Propagation decoding of a LT code. 34
4.7 Triangularization step in incremental GE. 36
4.8 Triangularization step in the OFG algorithm. 38
4.9 In (a) we show an output node Y1 of degree two connected to the input

nodes X1 and X2. In (b) we can see the graph once Y1 and X2 have been
removed. We add Y1 to Y2 and Y3. 39

4.10 In (a) it can be seen two input nodes, X1 and X2, which share the degree
two output node Y3 and the degree three output node Y4. In (b) a new
degree one output node Y4 has been created after removing X2 and Y1

from the graph. 41
4.11 In (a) we show the output node Y1 of degree three connected to the input

nodes X1, X2, and X3. In (b) we can see the graph once Y1 and X2 have
been removed. The parity of Y1 is added to Y2 and Y3. 43

4.12 In (a) it can be seen three input nodes, X1, X2, and X3, which share the
degree three output node Y3 and the degree three output node Y4. In
(b) we can see the graph once Y3 and X2 have been removed. The value
of Y3 is added to Y1, Y2, and Y4. 44

5.1 Success rate and complexity vs percent overhead for k = 50. 48
5.2 Success rate and complexity vs percent overhead for k = 100. 49
5.3 Success rate and complexity vs percent overhead for k = 200. 51
5.4 Success rate and complexity vs percent overhead for k = 500. 52
5.5 Success rate and complexity vs percent overhead for k = 1000. 53

vii

viii

List of Tables

2.1 Information units depending on the logarithmic bases used. 7
2.2 Association between parity check equations and information bits 14

3.1 Example of a low-density parity check matrix with N=20, j=3, k=4. . . 18
3.2 Robust Soliton distribution characteristics. 27
3.3 Comparison of the properties of some of the presented erasure correcting

codes. The number of output symbols needed, encoding and decoding
costs are shown. 29

5.1 Comparation of BP, TEP, DoubleTEP, and TripleTEP success rate and
complexity for k=50 and overhead=20, 30, 40. 49

5.2 Comparation of BP, TEP, DoubleTEP, and TripleTEP success rate and
complexity for k=100 and overhead=20, 30, 40. 50

5.3 Comparation of BP, TEP, DoubleTEP, and TripleTEP success rate and
complexity for k=200 and overhead=20, 30, 40. 50

5.4 Comparation of BP, TEP, DoubleTEP, and TripleTEP success rate and
complexity for k=500 and overhead=20, 30, 40. 51

5.5 Comparation of BP, TEP, DoubleTEP, and TripleTEP success rate and
complexity for k=1000 and overhead=20, 30, 40. 54

ix

x

Introduction 1
In this thesis we consider the problem of applying erasure rateless codes to provide
reliability to data distribution applications and present a new approach based on an
optimization of the iterative decoding process Belief Propagation associated to these
codes. The objective of this chapter is to introduce the problem addressed in this
thesis, motivate the need for a new approach and describe our main contributions and
the organization of the thesis.

1.1 Motivation: rateless coding for reliable communication

The development of Internet applications transferring large amounts of data from one
point to many points, or from several senders to many receivers has rapidly increased
the demand of bandwidth resources. Despite the fast development of Internet tech-
nologies allowing the availability of higher capacities, the continuous growth of the size
of the data turns the design of mechanisms aiming the reliable distribution of digital
media data to a high number of heterogeneous and autonomous clients into a hot re-
search area. Live-streaming applications in Internet have strict time deadlines and high
bandwidth demands. On the Internet the information is divided into packets with a
header specifying the source and the destination. The header information is used by
the intermediate routers to forward the packets to the nearest router to its destination
according to some metric. Due to several reasons, like buffer overflows at the routers
causing them to drop packets or link failures, some of those packets could be lost, i.e.,
they could not be received at its destination and consequently would be considered as
erasures. Traditionally, reliable communication on the Internet are provided by the
Transmission Control Protocol (TCP). This protocol keeps track of the sent packets
within a variable size window waiting for the acknowledge (ACK) of the reception of
each transmitted packet and retransmitting those ones for which the ACK is not re-
ceived. However, TCP suffers significant problems in some situations. For instance, if
the communication involves several receivers, missing an ACK from one receiver would
imply resending that packet to all of them and as a result, a waste of bandwidth and
resources. Furthermore, it would be a problem if the sender and the receiver channels
are rather impair, like per example in poor wireless networks or in satellite communi-
cations. Neither ACK-based protocols offer good performance if the distance between
source and destination is high, due mainly to idle times waiting for ACKs. Hence, a
new approach solving the problems of the ACK-based algorithms in the new emerging
scenarios on the Internet is demanded.

In 1948 Shannon published his paper [2] marking the beginning of a new com-
munication paradigm which set the basis of three new fields: information, coding and
communication theory. Shannon’s approach divides the point-to-point communication

1

2 CHAPTER 1. INTRODUCTION

problem into two sub-problems: source coding and channel coding. Source coding re-
moves redundancy from the information that is going to be transmitted in order to
represent the source as compressed as possible. On the other hand, channel coding
adds redundancy to fight the noise introduced by the channel thus protecting the in-
formation against errors. In a mathematical way the information source is modeled
as a stochastic process and the channel as a probabilistic mapping. Shannon proved
that reliable communication is possible as long as the rate does not exceed a channel
parameter known as the Shannon capacity of the channel. At rates exceeding the chan-
nel capacity, reliable communication is not possible. However, no algorithm or method
explaining how to achieve this optimum rate was provided, neither the complexity price
associated to the process. From that moment on, efforts to develop and design codes
able to offer reliable communication at rates near the so-called Shannon capacity at a
low complexity started.

Channel coding seems to be able of addressing the problem related to the distri-
bution of data on the Internet as an alternative to schemes based on retransmissions.
Instead of resending the missed or damaged information, redundancy is added at the
source side to the original data, allowing to handle at destination the possible errors
that occur during communication. This mechanism ends with the need for a feedback
channel and uses in an efficient way the available bandwidth. The redundancy added
at the sender side implies a price in bandwidth consumption, due to the extra infor-
mation sent, and a price in time, due to the coding and decoding operations that need
to be done at source and destination respectively. Consequently these codes must be
designed carefully to fulfill the application requirements and usually that design is not
a trivial task at all. Three different levels of error handling can be considered [1]: error
detection, error correction and erasure correction. On the Internet, data is considered
either lost or received without errors, hence a class of erasure correcting codes will be
used.

The traditional and still widely used Reed-Solomon (RS) codes [3] are very efficient
classical erasure codes. Unfortunately, the cubic decoding complexity associated to
them is unacceptable for some applications, for example in real-time applications.

Recently, a new packet level erasure correction technique called the Digital Foun-
tain paradigm [4] has been proposed to use bandwidth resources efficiently, changing
the classic transmission approach. They are random codes provided with linear time
encoding and decoding algorithms. Encoded packets are generated by adding random
combinations of the original packets. The accepted and efficient decoding algorithm
when they are used over erasure channels is the Belief Propagation (BP) algorithm as
opposed to the Gaussian elimination (GE) algorithm. The main idea of a Fountain
code comes from an analogy of a water fountain producing drops of water and a bucket
that should be filled with a fixed amount of these water drops. It does not matter
which drops exactly as long as they are enough for filling the bucket. In the same way,
servers on the Internet are like water fountains, but instead of spreading water drops
they spread packets. The receivers are the buckets which need to be filled with a fixed
amount of packets, independently of which ones. Digital Fountain codes are rateless
codes which can generate potentially limitless encoded packets from the same set of
information packets. In this sense, its rate is not fixed a priori. Hence, when they are

1.2. FOUNTAIN CODES CHALLENGES 3

used over erasure channels as the Internet one, knowledge about the channel parame-
ters is not required, as different erasure probabilities will imply only a change in the
time that receivers need to wait to collect the number of encoded packets necessary to
achieve successful decoding. Thus, Fountain codes are optimal for any erasure channel,
being very suitable in situations in which the sender transmit over unknown channels,
channels with high parameter variations or involving several heterogeneous receivers
with different channels. They promise efficiency and reliable distribution of bulk data
at a low complexity.

The Fountain idea can be approximated by RS codes or regular Low-Density Parity-
Check codes (LDPC) also known as Gallager [5] codes, though its rate should be fixed
before transmission begins, thereby loosing the advantages offered by rateless codes.

1.2 Fountain codes challenges

An ideal Fountain code is characterized by the following properties:

• Rateless: It can provide an unlimited supply of encoded symbols on-the-fly.

• Efficient: The original message can be recovered once a fixed number of encoded
packets equal to the amount of original source packets have been received.

• Linear complexity: The running times of the encoding and decoding processes
increase linearlly with the number of source packets.

Real implementations of the DF paradigm approximate the Fountain approach by
loosing some of these requirements in several ways.

Luby Transform (LT) codes [6] are the first practical realization of the Fountain
paradigm. The performance of LT codes when used over erasure channels and decoded
by the message passing algorithm known as Belief Propagation(BP) [7] is completely
determined by its degree distribution. Raptor codes [8] are cascaded codes consisting
of a pre-code and an LT code. They offer even smaller decoding complexity than
LT. Fountain codes are asymptotically optimal, exhibiting good performance when the
number of source packets is large. Its efficiency increases as the amount of source
packets used in the encoding process grows showing a rather poor performance when
the number of input symbols is small.

For some applications this drawback associated with the amount of input symbols
turns out to be an unacceptable price, for example in real-time multimedia applications ,
specially real-time audio or video, the latency should be kept low, and thus the encoding
and decoding times of Fountain codes with long message size are too high. The use
of a smaller message size implies that encoded symbols can be generated faster, thus
increasing the throughput. Furthermore, the decoder needs to wait less time until it has
collected enough number of encoded symbols to start the decoding process decreasing
in this way the overall latency. Applications in which Fountain codes are expected
to improve communication performance are data delivery across best effort networks,
reliable data storage on multiple disks and the very challenging multimedia applications.
Recently, the 3rd Generation Partnership Project (3GPP) standardization body has

4 CHAPTER 1. INTRODUCTION

adopted Fountain codes as the FEC scheme for the Multimedia Multicast Broadcast
Service (MBMS) and for the Digital Video Broadcasting Project (DVB) [9]. 3GPP
standard supports messages of length between 4 and 8192 and the number of frames
in the Group Of Pictures (GOP) utilized in video streaming applications is typically
in the range of 10 to 100. Therefore efforts to improve the behavior of the state-of-
the-art Fountain codes when the number of input symbols need to be small are still
being demanded. The optimizations follow mainly two different paths, either they try
to improve the degree distribution or to improve the decoding process.

1.3 Outline and contributions

Before describing the content of the thesis chapter by chapter, we briefly summarize our
main contributions. The first major contribution is the development of two BP decoding
enhancements called Double Tree-structure Expectation Propagation algorithm and
Triple Tree-structure Expectation Propagation algorithm using redundancies present
in the received packets and thus increasing the probability of successful decoding for
small sizes cases. These algorithms improve the performance of the decoding procedure
in terms of overhead while keeping a lineal complexity.

Chapter 2: Background
In this chapter we present the key concepts and definitions related with information

and coding theory.
We review information theory from Shannon’s point of view and coding theory from

Hamming’s perspective.
Chapter 3: Erasure Correction Codes
In this chapter we present different erasure coding algorithms. First traditional era-

sure codes based on Reed-Solomon codes are presented. Next, we introduce the erasure
correction state-of-the-art represented by the Fountain digital family. We specially em-
phasize a class of them, the Luby Transform codes, which will be the central subject of
this thesis, stating the main performance parameters of a Fountain code: probability
of decoding success, overhead and complexity, and the code parameters affecting them.
Finally we end with a discussion about the main advantages, drawbacks and limita-
tions of each of the previously discussed erasure correcting mechanisms and thereby
motivating the need of our optimization method for the decoding process associated to
the Fountain family when used with small sizes of input symbols.

Chapter 4: BP Decoding Optimization
This chapter contains the main contribution of this thesis. We start by giving

a brief overview of the BP algorithm which is the accepted and efficient decoding
algorithm for Fountain codes as opposed to Gaussian elimination (GE). We discuss
then its limitations and present different improvements of this technique which exist in
current literature discussing its drawbacks when they are used on media streaming and
real time applications. We propose two new decoding enhancement algorithms that
improve the probability of successful decoding and have still linear complexity.

Chapter 5: Simulation results
We implement the LT code, the BEC channel and four different decoding algorithms

in Matlab. The four different decoding algorithms are: Belief Propagation, Double

1.3. OUTLINE AND CONTRIBUTIONS 5

Tree-structure Expectation Propagation, Tree-structure Expectation Propagation, and
Triple Tree-structure Expectation Propagation. We compare them for several small
values of input symbols in terms of probability of success and complexity, proving that
the two new decoding algorithms improve the decoding performance at the same time
that keep a low complexity.

Chapter 6: Conclusions and further work
This chapter summarizes the main ideas of this thesis and provides suggestion for

further research in the area.

6 CHAPTER 1. INTRODUCTION

Background 2
In this chapter a communication system model as the original one proposed by Claude
E. Shannon in 1948 is introduced reviewing the concept of channel coding. After
that and based on Hamming codes, error correction and detection is explained. We
finish with an overview of erasure correction and some definitions associated to channel
coding.

2.1 A Theory of communication

In 1948 C.E. Shannon in his seminal paper [2] A Mathematical Theory of Communi-
cation set the basis for approaching the communication problem in which a message
selected from a set of possible messages in one point should be reproduced in another
point 1.

As a measure of the information provided by the choice of one message 2 a logarith-
mic function of the number of messages seems suitable due to mathematical, intuitive
and practical reasons. Different logarithmic bases will lead to different information
measurement units, as it can be seen in Table 2.1. Going from base a to base b implies
a multiplication by logb a. A general communication system for transmitting informa-
tion from a source to a destination through a channel will consist of the five parts
indicated schematically in Figure 2.1.

Communication systems can be classified as:

1. Discrete: Messages and signals in the system are discrete sequences of symbols.

2. Continuous: Messages and signals in the system are continuous functions.

3. Mixed: The system contains both discrete and continuous variables.

The capacity of a discrete noiseless channel

By a discrete channel we understand the medium used to transmit from one point
to another a sequence of elementary symbols chosen from a finite set. Each symbol

1The message does not need to be reproduced in a exactly way.
2All messages are considered to have identical probability of being chosen.

Symbol Base Unit

log2 2 Bits

log10 10 Harleys

ln e Nats

Table 2.1: Information units depending on the logarithmic bases used.

7

8 CHAPTER 2. BACKGROUND

Figure 2.1: Sketch of a communication system.

Si has a duration ti and certain sequences of symbols may not be allowed. The
capacity C of such a channel is given by

C = lim
T→∞

logN(T)

T
(2.1)

where N(T) is the number of allowed signals of duration T.

A model for a discrete information source

We can reduce the required capacity of the channel by using statistical knowledge
about the source through a proper encoding of the information. A discrete source
will choose successive symbols following certain probabilities that depend on gen-
eral on preceding and present symbols, therefore a discrete source can be modeled
as a stochastic process. Moreover, a stochastic process as the one described before
is known as a Markoff process. A general discrete Markoff process is described by
a finite number of possible states and the transition probabilities from one state
to another, in the case of a discrete source, a symbol will be generated in each
transition. The number of states of the system depends on the number of symbols
and the grade of dependency between them. If the opposite is not said, we will
assume that the source is ergodic, it means that each sequence produced by the
process is the same in statistical properties. A process can be represented by a
graph, it will be ergodic if its graph holds the following properties:

• It has no isolated parts

• The greatest common divisor of the lengths of all circuits is one.

An information measure: choice, uncertainty and entropy

A discrete information source as the one described above will produce infor-
mation at a certain rate, we want to find a measure of the amount of infor-
mation produced by the source, which is equivalent to how uncertain we are
about the outcome of the source. Let H(p1, p2, . . . , pn) be that measure where
(p1, p2, . . . , pn) = (p(x1), p(x2), . . . , p(xn)) are the happening probabilities of the
different possible sets of events. It seems natural to ask that H(p1, p2, . . . , pn)
holds the following properties:

2.1. A THEORY OF COMMUNICATION 9

1. H should be a continuous function of the probabilities pi.

2. If all the sets of events are equally probable, H should be a monotonic in-
creasing function of n.

3. H should be the weighted sum of the individual values of H.

Theorem [2] 2.1. The only H satisfying the above properties is:

H(X) = −
∑

i

p(xi)

log p(xi)
=

∑

i

pi log(pi) (2.2)

The proof can be found in [2].

The quantity H defined as in theorem 2.1 shows an amount of interesting proper-
ties:

1. H(X) is bounded in the following way:

0 ≤ H(X) ≥ log n

It will reach its minimum value when there is not uncertain about the outcome
of X, in which case there is not information provided.

H(X)Min = 0 ⇔ ∃ pi such that pi = 0

And it will reach its maximum value when the uncertain about the value of
X is maximum, which means that all the possible values for X are equally
probable.

H(X)Max = log n ⇔ pi =
1

n
∀ i

2. If we consider two random events X and Y, the entropy of the joint event
associated to the probability that both events X and Y happen at the same
time is:

H(X, Y) = −
∑

i

∑

j

p(xi, yj) log p(xi, yj) (2.3)

This joint entropy holds the inequality:

H(X, Y) ≤ H(X) + H(Y)

3. The conditional entropy associated to the event X conditional to the event
Y is:

H(XYk
) = −

∑

i

p(xi/yk) log p(xi/yk) (2.4)

H(X/Y) =
∑

j

p(yj)H(XYj
)

= −
∑

j

p(yj)
∑

i

p(xi/yk) log p(xi/yk)

= −
∑

i,j

p(xi, yk) log(xi/yk) (2.5)

10 CHAPTER 2. BACKGROUND

This conditional entropy holds the inequality:

H(X/Y) ≤ H(X)

The entropy of an information source

Let consider that the source can be in i = 1 · · ·N possible states and let Pi be
the probability of the source being in state i and let Pi(j) be the probability of
the source generating symbol j when is in state i. For each state i there is an
associated entropy Hi, hence the entropy of the source per symbol will be defined
as:

H =
∑

i

PiHi where Hi =
∑

i,j

pi(j)logpi(j) (2.6)

The capacity of the noisy discrete channel

The situation in which the transmitted signal is perturbed by noise is considered
now. Let H(x) be the source entropy which in case of non-singular transmission
is also the input entropy of the channel. Let H(y) be the entropy of the output of
the channel. We will define the join entropy of the output and the input of the
channel as,

H(x, y) = H(x) + Hx(y) = H(y) + Hy(x) (2.7)

Hy(x) can be considered as the equivocation introduced by the noisy channel. Let
R be the transmitter rate, which can be calculated as the information rate of the
source H(x) minus the equivocation due to the channel noise and we obtain

R = H(x)− Hy(x) (2.8)

and the capacity of such a noisy channel will be the maximum rate allowed over
it

C = max(H(x)− Hy(x)) (2.9)

In case the channel is noiseless Hy(x) will be zero. Finally Shannon’s fundamental
theorem for a discrete channel with noise is

Theorem [2] 2.2. Let H(x) be the entropy of a source and let C be the capacity
of a discrete channel. There is an encoding method that allows the transmission of
this source over the channel without errors as long as the rate of transmission H(x)
does not exceed the capacity of the channel. A guaranteed transmission without
errors involving a higher rate is not possible.

The proof can be found in [2].

Two model channels examples

We will introduce two channel examples: the binary erasure channel (BEC) and
the binary symmetric channel (BSC). The BEC model fits in situations where the
information represented by single bits can be lost but never corrupted. The binary
symbols that are sent from one side to the other may not arrive to its destination,

2.2. ERROR DETECTION AND ERROR CORRECTION: HAMMING CODES 11

Figure 2.2: Binary erasure channel with erasure probability p.

Figure 2.3: Binary symmetric channel with erasure probability p.

however, if they do it will be without error. Figure 2.2 represents a BEC with
erasure probability p where the input symbols 0, 1 that will be transmitted can
be erased with probability p, being that erasure represented by ?, or received
correctly with probability (1 − p). The channel is memoryless meaning that the
erasures occur independently with probability p for each transmitted symbol. The
capacity of a BEC with erasure probability p is CBEC = 1− p and random codes
transmitting at rates close to 1 − p and decoded using a Maximum Likelihood
(ML) algorithm will show an exponentially decreasing error probability.

The BSC model represents situations where the information represented by single
bits can not be lost but only received in error. The binary symbols that are
sent from one side to the other will arrive always to its destination, however it
is possible that they are received with error. Figure 2.3 represents a BSC with
erasure probability p where the input symbols 0, 1 that will be transmitted can
be corrupted with probability p or received correctly with probability (1 − p).
The channel is memoryless meaning that the errors occur independently with
probability p for each transmitted symbol. The channel capacity of a BSC with
error probability p is CBEC = 1− p log p− (1− p) log(1− p).

2.2 Error detection and error correction: Hamming codes

Hamming codes are one of the first known error correcting codes. They were intro-
duced for the first time by Richard W. Hamming in 1950 [10]. He was motivated by
the large scale computing problem where a single failure means the failure of a large

12 CHAPTER 2. BACKGROUND

process. They are systematic block codes, meaning that the original k binary digits of
information are integrated in the n bits of the codeword that will be transmitted. The
n − k redundant bits added are called the parity check binary digits and they will be
used for error detection and correction. The Redundancy R = n

k
measures the efficiency

of the code, the inverse of the redundancy is the code Rate.
Two different approaches for representing the codes will be used:

• A matrix which elements are 0’s or 1’s where each row corresponds to one of
the n − k parity check equations and each column corresponds to one of the k
information bits as it can be seen in 2.10.

H =

h11 . . . h1k

h21 . . . h2k
...

. . .
...

h(n−k)1 . . . h(n−k)k

(2.10)

If the element hij in the matrix is a 1 it means that the i− th equation checks on
the j − th information bit.

• A Geometrical model is introduced to represent these codes in which the different
2n codewords will be identified with the points that correspond to the vertexes
of a unit n-dimensional cube. A metric D(x, y) is defined in this space, called
the distance between two codewords x and y, and it will be seen as the number
of coordinates in which x and y are different or equivalently the shortest path
between the two points in number of edges.

D(x, y) will hold the classical metric properties:

1. x = y ⇔ D(x, y) = 0

2. x 6= y ⇒ D(x, y) = D(y, x) ≥ 0

3. D(x, z) ≥ D(x, y) +D(y, z)

The points that are at the same distance d from a given point c will define a sphere
with radius d and center c.

Hamming explained how to build codes with minimal redundancy. We will review his
ideas for single error detection, single error correction and single error correction plus
double error detection.

1. Single error detecting codes:

For single error detecting one binary redundant digit is added to the original
information m bits in such a way that it leads to an even number of 1’s in the
codeword. This means a redundancy of

R =
k + 1

k
=

n

n− 1
. (2.11)

A single error will be detected because an odd number of 1’s will appear in the
codeword. Multiple errors will be detected only if an odd number of them occur,

2.2. ERROR DETECTION AND ERROR CORRECTION: HAMMING CODES 13

but it is not possible to know exactly the amount of them. An odd number of
errors will not be detected, due to the fact that they will lead to an even number
of 1’s again. It will be neither possible to know the position of the errors.

In the geometrical model the single error detection is equivalent to finding the
maximum amount of points N in a unit n-dimensional cube separated by at
least two units between them. An n-dimensional cube can be decomposed in
two (n − 1)-dimensional cubes with at least one of them containing at least half
of the N points. We can repeat the same operation again over one of the (n− 1)-
dimensional cubes thus we get at least one (n− 2)-dimensional cube with at least
N
22

points. Following this reasoning we get a 2-dimensional cube with at least N
2n−2

points. Inside a square only two points as maximum can be placed so that they
are separated at least by two units. Thus we get

N

2n−2
= 2 ⇒ N = 2n−1 points (2.12)

2. Single error correcting codes:

For single error correction n−k parity check bits will be added to the k information
bits. Applying the n− k parity check equations to the received n bits a Checking
Number will be calculated as follows, from the first parity check equation to the
last, writing from right to left, if the result of applying the parity check equation i
gives the same value that is received on the corresponding check position for that
equation, a 0 will be written in the ith check number position, otherwise a 1. This
checking number should give the position of the error or a zero in case no error
occurs. Thus its n−k bits should be enough for describing the n different possible
positions of an error inside the codeword plus the zero word for the no-error case,
so that

2n+1 ≥ 2n−k ≥ n+ 1 ≤ 2k ≤ 2n

n+ 1
(2.13)

With this condition we can calculated the maximum amount of information bits
k that we can transmitted for a given size of codeword n. As we have said the
checking number should give a number that points to the position of the error.
This implies that all the positions with a binary representation having a one on
the right (these are all the odd positions) should be checked by the first parity
check equation, because in case it is not satisfied a one will be assigned to the
checking number bit that is on the right. Following this reasoning we get Table 2.2

In the geometrical model we want to find the maximum number of points that we
can packed in a n-dimensional unit cube in such a way that a sphere with radius
1 can be placed over each point without any common point between them. Each
sphere will have n points over its surface plus the center point and there are 2n

points in the full space. Thus we will be able of packing:

2n

n+ 1
(2.14)

14 CHAPTER 2. BACKGROUND

Checking Number 3

Decimal Binary

1 001
2 010
3 011
4 100
5 101
6 110
7 111

Table 2.2: Association between parity check equations and information bits

3. Single Error Correcting Plus Double Error Detecting Codes: An extra even parity
check bit will be added to the single error correcting code that we have just seen.

2.3 Error correction, error detection and erasure correction
[1]

An erasure can be seen as an error which position is known. Let C be a linear block
code [n, k, d] over GF(q), the following properties can be proved:

• The code C can correct up to [(d− 1)/2] errors.

• Let e and p two non negative integers such that 2e+ p ≤ d− 1, then the code C
will correct up to e errors and detect up to e+ p errors.

• For each 0 ≤ ρ ≤ d − 1 number of erasures let e = eρ and p = pρ be two non
negative integers such that 2e + p+ ρ ≤ d− 1. If the number of errors excluding
erasures is up to e, then C will correct all errors and erasures. Otherwise, if the
number of errors is up to p+ e C will give an error.

2.3.1 Stopping sets

A stopping set of a code C is a subset of the message nodes such that all their neighbors
are connected to this subset at least twice. The size of the smallest stopping set is called
the stopping distance, and it depends on the parity-check matrix H chosen 4. Therefore
a code C will have different stopping distances depending on the specific choice of H
These stopping distances are related with the performance of the iterative decoding
algorithms for a linear code, being the goal to maximize it. The stopping redundancy
of C is defined as the minimum number of rows that a parity-check matrix for C should
have such that the stopping distance of C equals the minimum distance of C. Finally we
will define the redundancy of a code as the minimum number of rows in a parity-check
matrix for that code.

4Or equivalently on the associated Tanner graph.

2.4. CODES DEFINITIONS AND PROPERTIES 15

2.4 Codes definitions and properties

• Universal code: A code is called universal for a certain kind of channel if it can
be used for transmitting over it without regarding the different parameters that
define the channel. Per example, a code is universal for the BEC channel if its
performance does not depend on the erasure probability of the channel.

• Rateless: We say that a code is rateless when its rate 5 is not fixed a priori.

• Minimum Distance Separable: A code is MDS if the code parameters hold the
relation d− 1 = n− k.

• Capacity-achieving: Capacity-achieving codes are the ones that can transmit near
the Shannon limit.

• Maximum Likelihood decoding: Once a vector is received it chooses as the trans-
mitted vector the one that maximizes the probability of that vector being sent
given the received vector. It is slow and it c an make mistakes, however it is the
best decoder.

2.5 Summary

In this chapter we have presented important coding concepts and definitions following
Shannon approach. Channel coding and erasure correction will be used through the
rest of this thesis for trying to solve the problem of offering reliability to live-streaming
applications over the Internet.

5The relation between the code length and the code dimension.

16 CHAPTER 2. BACKGROUND

Erasure Correcting Codes 3
In this chapter, the erasure correcting codes Reed-Solomon, LDPC, and the Digital
Fountain family are presented and compared in terms of efficiency, encoding com-
plexity, and decoding complexity. In the last section, we discuss the advantages and
disadvantages of each one for their use in live-streaming applications.

3.1 Reed-Solomon codes

I. S. Reed and G. Solomon presented the Reed-Solomon codes in 1960 [3]. They are
non-binary cyclic linear block codes. Due to the cyclic property, a shifted codeword
will result in a codeword that also belongs to the code. Reed-Solomon codes are still
one of the most used FEC algorithms. Some applications where they are frequently
presented are data storage, compact discs and satellite communications. A code can
be seen as an application that maps from a vector space Vk(F) of dimension k over a
finite field F [11] [12] into a vector space Vn(F) of dimension n > k over the same field
F. The additional n − k elements are the redundant information used to recover the
original message in case of errors during the transmission. Thus the rate is fixed before
the transmission starts. Although the efficiency of RS codes is the best, meaning that
the number of output symbols necessary for successful decoding is exactly the number
of input symbols that we want to recover, their decoding complexity is very high hence
in general is done by solving a system of equations which leads to a cubic complexity
with the size of the information. Therefore, they are not very suitable for applications
showing time restrictions as the live-streaming ones..

3.2 Low-Density Parity-Check codes

In 1962 R. G. Gallager invented a new class of linear parity-check codes [5] called Low-
Density Parity-Check Codes (LDPC). Gallager was motivated by the high decoding
complexity of the already existing parity-check codes. Unlike most kinds of codes,
LDPC codes include very fast encoding and decoding algorithms, therefore the main
issue is to design the codes such that these algorithms are able to recover the original
codeword even in the presence of large amounts of noise. At the time of LDPC codes
invention, the existing technology did not allow practical implementations of them and
LDPC codes were forgotten during almost 30 years. After the discovery of Turbo codes
[13] in the 90s, the first practical codes that are capacity-approaching, McKay and Neal
rediscovered LDPC codes [14] in 1995. We will review the encoding and decoding of
LDPC codes as it was presented by Gallager.

Encoding:

17

18 CHAPTER 3. ERASURE CORRECTING CODES

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

Table 3.1: Example of a low-density parity check matrix with N=20, j=3, k=4.

LDPC codes are linear codes built using Tanner graphs that are sparse. A Tanner
graph is a bipartite graph with two different entities. Let G be a graph with n left
nodes (called variable or message nodes) and r right nodes (called check or constraint
nodes). This graph describes a linear code of block length n and dimension at least
n − r. The n coordinates of each codeword are associated with the n message nodes
and the codewords are those vectors such that for each check node the sum along all its
neighbor message nodes is zero.Therefore if an edge exists between a message node j
and a check node i, then the jth codeword coordinate is checked at the ith constraint.
This graphical representation is equivalent to an analytically representation with a
parity sparse matrix. Let H be a binary rxn-matrix in which the entry (i, j) = 1
means that the jth message node is checked at the ith constraint node. An LDPC is
called regular if the number of checks per message node and the number of message
nodes per check are both constants. Irregular LDPC codes perform better [15] [16],
however its implementation complexity is slightly higher.

Regular codes, also called Gallager codes, can be specified by a parity check matrix
containing a small and constant amount of 1’s per column, as well as another small
and constant amount of 1’s per row. A code with block length n, a number j of 1’s per
column and a number k of 1’s per row is called an (n, j, k) low-density code. In Table 3.1
we can see a matrix representation example. These matrices represent equations from
where the check bits can be expressed as sums of the information bits. Unfortunately
the maximum code rate is far away from the Shannon limit and also for a given code
length the error probability is not optimum. Due to the large number of codewords in
the whole code, an ensemble of the code will be used to analyze the code properties.
The ensemble of an (n, j, k) low density parity check code will be obtained from a
random permutation of the columns of each of the bottom (j − 1) submatrices with a
single one per column and two properties will be extrapolated from its behavior:

1. Minimum Distance: It is a random variable with an over bounded distribution

3.3. DIGITAL FOUNTAIN CODES 19

function . It can be shown that for large n almost all the codes in the ensemble
have a minimum distance lower bounded by nδij .

2. Error Probability with Maximum Likelihood: Clearly the error probability de-
pends on the channel used for transmitting the information.

The LDPC code will be the set of codewords c = (c, · · · , cn) such that H · cT = . Any
linear code can be represented by a bipartite code, however this graph is not unique.
If that graph is also sparse then the code is an LDPC . This sparsity is the key feature
that provides the encoding and decoding algorithmic efficiency of LDPC codes.

Decoding:
The efficient and accepted decoding algorithms for LDPC codes are based on mes-

sage passing (MP) algorithms They are iterative algorithms in which variable and check
nodes exchange information about the reliability of the decoded bits. The messages
interchanged between message and check nodes are probabilities or beliefs.

At each iteration, messages are passed from check nodes to message nodes and from
message nodes to check nodes, therefore the name. The messages from message nodes to
check nodes are calculated based on the original received value of that message node and
part of the messages passed from the neighboring check nodes to the message node. An
important characteristic is that a message sent from a message node v to a check node
c must not have in account the message passed from check node c to message node v in
the previous iteration and vice versa. For continuous or floating point representation,
the MP techniques are also called belief propagation (BP) algorithm. A simplified
version of BP was already present in Gallager’s work [5]. BP has been also used by
the Artificial Intelligence community [7]. :

Message passed from message node v to check node c : It is the probability
that message node v has a certain value conditioned on the original received
value in that message node and the message passed in the previous iteration from
the neighboring check nodes of v except c.

Message passed from message check c to message node v : It is the probabil-
ity that message node v has a certain value conditioned on the message passed in
the previous iteration from the neighboring message nodes of c other than v.

The equations for these probabilities can be derived easily assuming that the mes-
sages are independent.

In [17] a finite analysis of the probability of decoding success for LDPC codes is
derived using combinatorial and stadistical tools.

3.3 Digital Fountain Codes

Fountain codes [18] [19] [20] [21] are linear error correcting codes that were first
named without a construction in [4] to address the problems and issues related to
reliable and robust transmission on the Internet. They were motivated by the idea of
a reliable, efficient, on-demand and fully scalable protocol that allows the distribution
by applications of bulk data in networks to a large number of heterogeneous clients

20 CHAPTER 3. ERASURE CORRECTING CODES

simultaneously [4]. The fountain approach is based on the idea of a water fountain
that spreads drops of water in a constant way and a bucket that should be filled with
these water drops. For filling the bucket it does not matter which water drops are
collected but that there are enough of them. In the same way the server is like a
fountain spreading packets and the clients are the buckets that need to be filled with
enough packets.

A Fountain code with parameters (k, ρ) is a linear application that maps binary
strings of length k with random independent elements distributed over Fk

2 according to
the probability distribution ρ into the set of all possible sequences over F2, producing
a potentially infinite stream of output symbols.

• Encoding:

1. The weight of the output symbol is chosen sampling from a probability dis-
tribution.

2. A vector of that weight is chosen from Fk
2 in a random and independent way.

3. The output symbol is generated adding the input symbols selected by that
vector.

It is necessary some kind of synchronization between sender and receiver in order
to do available at the destination the information specifying which input symbols
are part of each output symbol. That information could be incorporated into
each output symbol as a header, or both source and destination could use the
same random number generator with the same seed so that the destination can
reproduce the random process that generated each output symbol at the source
or it can be communicated by other ways. The encoding cost in terms of number
of operations per output symbol is the weight of the vector generated during the
encoding process minus one.

• Decoding:

The decoding algorithm should be able to recover the k input symbols from any
set of n output symbols and it will be said that the Fountain code is a good
Fountain code if the number of output symbols n for decoding is very close to k
and it shows a decoding time linear with the code dimension k.

Advantages:

1. On line generation. In practice, truncated Fountain codes will be considered
taking advantage of the fact that its length is not fixed a priori.

2. They work for more general channels than the BEC without memory.

3.3.1 Tornado codes

They appear for first time in [22] and are based on irregular sparse graphs. When
they are used over a BEC with erasure probability δ they can correct up to p(1 − ǫ)
errors and their encoding and decoding time complexities are proportional to nlog(1

ǫ
).

3.3. DIGITAL FOUNTAIN CODES 21

The construction of Tornado codes consists in the generation of a sequence of cascade
irregular bipartite graphs in a random way [23] [24] [25] [26]. Let ε be a positive
constant, the Tornado degree distributions for right and left edges are

λ(x) =
1

H(D)

D
∑

i=1

xi

i
(3.1)

ρ(x) = expα(x−1) (3.2)

where D := ⌈1/ε⌉ and α = H(D)
p

3.3.2 LT codes

LT codes were introduced for the first time in 2002 by Michael Luby in [6]. They
are the first practical realization of the digital fountain approach, also called universal
erasure codes. The resulting code is a subclass of an irregular Low-Density Parity Code.
The main advantages of LT codes are:

1. Rateless: The number of encoding symbols that can be generated from the data
is potentially limitless.

2. Universal: Near optimal for every erasure channel independently from its erasure
channel probability because the decoder can recover the original data from any
set of a fixed number of encoded packets and the encoder can always generate
more encoded symbols.

3. Low complexity: For both encoding and decoding processes, and therefore very
suitable for hardware implementations and time constraint applications.

• Encoding:

The data of length N is divided into k = N
l
input symbols 1. The length l of the

input symbols is not fixed and can be chosen as desired. Encoding and decoding
are more efficient for large values of l due to overheads. The process for generating
each encoding symbol is as follows:

1. Choose the degree d of the encoding symbol randomly from a degree distri-
bution .

2. Choose uniformly random d different input symbols as neighbors of the en-
coding symbol .

3. The encoding symbol will be the result of the exclusive-or of the d chosen
neighbors

The encoding process defines a bipartite graph as the one in Figure 3.1 that
connects encoding symbols with input symbols . It is a sparse graph because the
mean degree d of the output symbols is smaller than the message length k.

1Each input symbol of length l.

22 CHAPTER 3. ERASURE CORRECTING CODES

Figure 3.1: Tanner graph representation of an LT code.

• Decoding:

The decoding is an iterative process:

1. Find encoding symbols with exactly one input symbol neighbor

2. Recover the input symbols associated with those encoding symbols.

3. Remove the recovered input symbols from the rest of the encoding symbols
in which they are as neighbors presented through an exclusive-or.

4. Repeat step 1 to 4 until all the input symbols are recovered 2) or no more
encoding symbols can be found in step 1 3.

The total amount of degrees is equal to the necessary operations in the decoding
process. The decoder needs to know the degree and the set of neighbors of each
encoding symbol. This information can be communicated in several ways. Per
example, both encoder and decoder can use a pseudo-random generator with the
same seed. The degree distribution for d is the crucial part of the code design
because it will determine the random behavior of the LT process. The LT decoding
process can be seen as a generalization of the classical process known as bins and
balls, where n balls are randomly thrown into n bins. Encoding symbols are
analogous to balls and input symbols are analogous to bins. The process succeeds
if at the end all input symbols are covered.

Some characteristics of LT codes are:

– Output Symbol Release Probability

Let the degree distribution ρ(i) be the probability that an output symbol has
degree i. Let the degree release probability q(i, L) be the probability that an
output symbol of degree i is released exactly when L input symbols remain
unprocessed. Then

2Meaning decoding success.
3Meaning decoding failure.

3.3. DIGITAL FOUNTAIN CODES 23

q(i, k) =

1 For i = 1
i(i−1)L

∏i−3

j=0
k−(L+1)−j

∏i−1

j=0
k−j

For i = 2, · · · , k, for all L = k − i+ 1, · · · , 1
0 For all other i and L

Let r(i, L) = ρ(i)q(i, L) the probability that an output symbol of degree
i is released when L input symbols remain unprocessed. And finally let
r(L) =

∑

i r(i, L) =
∑

i ρ(i)q(i, L) be the probability that an output symbol
is released when L input symbols remain unprocessed. In [27] is presented
a finite length analysis of LT codes providing expressions for the probability
of decoding success.

– The Robust Soliton Distribution

The goal of the degree distribution is to avoid redundant coverage of input
symbols by the encoding symbols, but at the same to ensure that the process
does not fail before all the input symbols are released due to the fact that no
more encoding symbols can be found with exactly one input symbol neighbor
in the first step of the decoding process. In [6] the Robust Soliton distribution
is proposed as a degree distribution. The Robust Soliton distribution is µ(.)
defined as follows:

Let R = c ln(k/δ)
√
k for some suitable constant c > 0 and let τ(i) be

τ(i) =

R
ik

for i = 1, . . . , k
R
− 1

R
k
ln(R

δ
) for i = k

R

0 for i = k
R
+ 1, . . . , k

(3.3)

Add the Ideal Soliton distribution ρ(.) to τ(.) and normalize dividing by β
to obtain µ(.) where

β =
k

∑

i=1

(ρ(i) + τ(i))

µ(i) =
ρ(i) + τ(i)

β
For all i = 1, . . . , k (3.4)

where the Ideal Soliton distribution is defined as

ρ(i) =

{

1
k

For i = 1
1

i(i−1)
For all i = 2, . . . , k (3.5)

A detailed analysis of LT Code and Robust Soliton distribution is done also in
[6] showing that:

1. The number of encoding symbols is K = k +O(
√
k · ln2(k

δ
)).

2. The average degree of an encoding symbol is D = O(ln(k
δ
)).

3. The decoder fails to recover the data with probability at most δ from a set
of K encoding symbols.

24 CHAPTER 3. ERASURE CORRECTING CODES

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Degree

Pr
ob

ab
ilit

y
D

is
tri

bu
tio

n

rho
tau

Figure 3.2: The distributions ρ(i) and τ(i) for the case k = 10000, δ = 0.05 and c = 0.2,
which gives k/R = 41 and β ≃ 1.3. The distribution τ is larger at i = 1 and i = k/R = 41.

In Figure 3.2 we show the Ideal Soliton distribution in red color, and tau distri-
bution in black color. They are described respectively by equations 3.5 and 3.3.
Notice the peak that appears in the Robust Soliton distribution at degree k/R.
The distributions are plotted for δ = 0.05 and c = 0.2, as it can be derived from
their equations, these values change the shape of the distributions.

Bounds for c as a function of k and δ:

The behavior of the RSD is determined by two parameters: c and δ. The first
one, c, it should be a suitable constant since it has a strong effect in the code
performance. The parameter δ is the decoding failure probability given that
n = (1+ ǫ)k output symbols were received, δis also related with the sparsity
of the generator matrix once n is fixed. The LT definition given in [6] leads
to a range of allowable values for c. The following bounds on c based on k
and δ are derived in [28] by enforcing the consistency of the index ranges in
equation 3.3.

1

k − 1
·

√
k

ln(k/δ)
≤ c ≤ 1

2
·

√
k

ln(k/δ)
(3.6)

As 3.6 shows, the allowable range of c increases as the number of input
symbols k increases. In Figure 3.3 these bounds are plotted for some values
of δ as a function of k.

Effects of changing c and δ on the Robust Soliton degree distribution:

As we have seen in 3.3.2, the average degree of the output symbols of the LT
distribution depends on k and δ. Furthermore, the average degree holds a
direct relationship with the encoding and decoding complexity of the code,

3.3. DIGITAL FOUNTAIN CODES 25

10
1

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Source symbols [k]

c

δ=5e−1

δ=1e−3

δ=1e−6

Figure 3.3: Bounds on c.

meaning that a higher average degree leads to a higher code complexity.
For those reasons, it is worthy to analyze the impact of changing the RSD
parameters δ and c on the average degree of the check nodes and on the
number of degree one check nodes [29], since the BP algorithm gets stack
once there are not more degree one check nodes. We will make that analysis
for several values of input symbols.

1. Changing c:
In Figure 3.4 we show how the average degree of check nodes decreases,
therefore the necessary number of decoding operations also decreases as
there are less edges per output symbol, and as a consequence the decoding
delay is also reduced. The experiment was performed with δ = 0.5 and
different small values of k, specifically for k = 5, 10, 50, 100. The effect of
changing c for k = 5 and for k = 10 is less pronounced due to the fact that
for those values the distribution shape is very limited, in addition also
the allowable range of c decreases as k decreases accordingly to Range. In
Figure 3.5 we show the effect of changing c on the number of degree one
check nodes for the same values of k and δ. As c increases that number
also increases.

2. Changing δ:
The impact of changing parameter δ on the SRD is not as big as the
impact of changing c. However, even a small change on the distribution
can have a large effect on the decoding behavior with a small number of
input symbols. As Figure 3.6 shows, increasing δ increases the average
degree of check nodes in a logarithmic way. However the number of degree
one check nodes reduces as δ grows up, but this effect is very small as it
can be seen in Figure 3.7.

26 CHAPTER 3. ERASURE CORRECTING CODES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

c

A
v
e

ra
g

e
 d

e
g

re
e

k=100

k=50

k=10

k=5

δ=0.5

Figure 3.4: Robust Soliton distribution average degree vs c.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

c

P
ro

b
a

b
ili

ty
 o

f
d

e
g

re
e

−
o

n
e

 c
h

e
c
k
 n

o
d

e

k=100

k=50

k=10

k=5

Figure 3.5: Robust Soliton probability of degree-one check nodes vs c.

The figures representing the average degree of the output nodes, Figure 3.4
and Figure 3.6, show a step pattern as a consequence of the use of ceil and
floor functions in the generation of the degree distribution for the different
degrees since the indexes should be integers.

3.3.3 Raptor codes

As we have seen, there is a lower bound of k log k for the amount of edges in
the decoding graph associated to a reliable decoding algorithm for LT codes.
Consequently when the number of collected output symbols is close to the number
of input symbols k, the encoding cost is at least log k.

3.3. DIGITAL FOUNTAIN CODES 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Delta

A
ve

ra
ge

 d
eg

re
e

k=100

k=50

k=10

k=5

Figure 3.6: Robust Soliton distribution average degree vs δ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delta

P
ro

ba
bi

lit
y

of
 d

eg
re

e−
on

e
ch

ec
k

no
de

k=100

k=50

k=10

k=5

c=0.3

Figure 3.7: Robust Soliton probability of degree-one check nodes vs δ.

Characteristic Increase c Increase δ

Average degree Decreases Increases

Degree one probability Increases Increases slightly

First peak Decreases Increases

Second peak Increases Decreases

Table 3.2: Robust Soliton distribution characteristics.

28 CHAPTER 3. ERASURE CORRECTING CODES

Figure 3.8: Tanner graph representation of a Raptor code.

Raptor codes [8] are also part of the Fountain family but they allow constant
encoding and decoding cost. The idea behind them is to pre-code the original
information using a traditional erasure correcting code that corrects a constant
fraction of errors, and after that to use a suitable LT code. In this way the LT
code does not need to recover all the input symbols, but only a constant fraction
of them. A Raptor code with parameters (k, C, Ω(x)), where C is a linear code
with block length n and dimension k called the pre-code and Ω(x) is a degree
distribution, is an LT code with k input symbols that are used by C to build
n intermediate symbols that will be used by the LT code as input symbols to
construct the output symbols of the Raptor code as it can be seen in Figure 3.1.

The main performance parameters for the study of the Raptor codes are:

1. Space: The space for storing the intermediates symbols. It will be 1/R, a
multiple of the input symbols, where R is the rate of the pre-code.

2. Overhead: It depends on the algorithm used for decoding and it is the ex-
tra symbols necessary to decode the input symbols with high probability.
i.e., , the difference between the number of input symbols and the number
of collected output symbols. It will be expressed in terms of the number of
input symbols, therefore if (1+ǫ)k output symbols are needed for a successful
decoding with high probability, the overhead is ǫ.

3. Cost: The complexity of the encoding and decoding processes.

Two extreme examples of Raptor codes in terms of the pre-code C and the degree
distribution Ω(x) are:

– LT codes: An LT code is a class of Raptor code with parameters
(k,Fk

2,Ω(x)). Its space consumption is 1, therefore it is optimal in that sense.

It has an overhead of O(log2(k)/
√
k) and its encoding and decoding cost is

O(log(k)). Its lack of pre-coding is compensated with a rather complicated
degree distribution.

3.4. CONCLUSIONS 29

Code Needed symbols Encoding cost Decoding cost Rateless

Reed-Solomon k O(k) O(k3) No

Tornado (1 + ǫ)k O(1) O(k) No

LT k +O(
√
k log2 k) O(log k) O(k log k) Yes

Raptor (1 + ǫ)k O(1) O(k) Yes

Table 3.3: Comparison of the properties of some of the presented erasure correcting codes.
The number of output symbols needed, encoding and decoding costs are shown.

– Pre-code-only (PCO) Raptor code: A PCO Raptor code is a class of Raptor
code using the trivial degree distribution Ω(x) = x with parameters (k,C, x).
The behavior of a PCO Raptor code depends only on its pre-code.

3.4 Conclusions

In this chapter we reviewed RS, LDPC, and the Fountain family codes, showing
encoding and decoding algorithms for them. Its efficiency and complexities have
been presented. In 3.3, we can see a comparison between the main performance
parameters for these codes. As it can be observed, RS are the most efficient ones,
needing exactly the same number of encoded symbols for successful decoding than
the number of input symbols, but its decoding complexity is the highest, forbidden
its use in applications with time constraints as the live-streaming ones. Tornado
codes and Raptor codes displayed the best performance parameters, low overhead
for successful decoding and linear encoding and decoding complexities. However,
even Tornado codes are considered in this thesis as part of the Digital Fountain
family, they are not rateless, becoming them in less suitable for transmitting over
the Internet where the channel parameters are quite often unknown or rather
unstable. Although LT codes are rateless, present a small overhead, and linear
complexities, both are a bit higher than the ones corresponding to Raptor codes.
Therefore, Raptor codes are the most suitable ones for our applications. However,
they use an LT code on their construction, and the efficiency of LT codes grows
with the number of input symbols, meaning that they are very inefficient for small
sizes as the ones needed for live-streaming applications. In the next section we
will try to improve the poor decoding efficiency of LT codes for small sizes.

30 CHAPTER 3. ERASURE CORRECTING CODES

BP Decoding Optimization 4
In Chapter 3, we presented different erasure correcting schemes in the frame of
live-streaming applications working over the Internet. The performance of the
different applications was compared based on decoding efficiency and encoding-
decoding complexities. Raptor codes turned out to be the most suitable ones
for this kind of applications due to its rateless property, hight efficiency, and
low complexities. However, they use LT codes, which are asymptotically efficient,
meaning that its overhead decreases exponentially as the number of input symbols
increases, hence they work very bad for small sizes of input symbols. In this
chapter, the classical decoding algorithms called Belief Propagation and Gaussian
Elimination are presented, discussing their advantages and disadvantages. We
also review several existing approaches attempting to improve the efficiency of LT
codes for small sizes decoded under Gaussian Elimination. We continue presenting
algorithms that enhance Belief Propagation efficiency. Finally, we introduce new
iterative decoding algorithms based on Belief Propagation which also increase the
efficiency but at the same time preserve a low complexity.

4.1 Belief Propagation vs Gaussian Elimination

Providing that the received output symbols form a full rank system, decoding
can be successful. Otherwise, recovering the original input symbols is not possi-
ble. Two decoding approaches characterized by extreme behaviors are presented
in this chapter: Belief propagation and Gaussian elimination decoding. The first
one shows linear complexity but non optimal recovery, specially in scenarios where
few input symbols are transmitted, meaning that the algorithm fails with high
probability unless a high overhead is paid. The second one results in a maximum
likelihood decoding, in other words, presents an optimal recovery on the assump-
tion that the system has full rank. In fact, k output symbols, as many as input
symbols, are enough to ensure decoding success. However, it shows a rather high
complexity. Therefore, it is not suitable for real time applications, where time
is a crucial parameter for the performance of the system. Intermediate solutions
displaying different trade-offs between both extreme schemes are discussed.

1. Belief propagation algorithm:

The belief propagation algorithm [7] is the accepted efficient algorithm to
decode LT codes. We review an example of this decoding algorithm working
on the bipartite graph displayed in Figure 3.1. First, the algorithm looks for
a degree-one output symbol, in this case y1 it is the chosen one as Figure 4.1

31

32 CHAPTER 4. BP DECODING OPTIMIZATION

Figure 4.1: Belief Propagation decoding of a LT code.

Figure 4.2: Belief Propagation decoding of a LT code.

shows and therefore the value of its only neighbor x1 is recovered. The out-
put symbols y2 and y3 which are connected to x1 also update its value. In
Figure 4.1 it can be seen in red the edges that are deleted from the graph as a
consequence of the processing of the input symbol x1. The result of this first
decoding step is represented in Figure 4.2 where y3 is the new output symbol
of reduced degree one. y3 recovers the input symbol x4, which is neighbor
of the output symbols y2, y5 and y7. After removing the edges associated to
the input symbol that we have just processed there is a new output symbol
of degree one, y5, that recovers the input symbol x2 as it is shown in Fig-
ure 4.3. The graph that remains after deleting the edges associated with the
processing of the input symbol x2 together with the corresponding updates

4.1. BELIEF PROPAGATION VS GAUSSIAN ELIMINATION 33

Figure 4.3: Belief Propagation decoding of a LT code.

Figure 4.4: Belief Propagation decoding of a LT code.

in the output symbols is showed in Figure 4.4. The choice is now between
two different output symbols, y2 and y6. The output symbol y2 is picked up
this time, covering the input symbol x3, and the remaining graph is shown
in Figure 4.5. We have once more two output symbols of reduced degree
one, namely y4 and y7, we choose to process y4 which recovers x5 leading to
Figure 4.6. Finally x6 is recovered by y7 and the decoding process finishes
successfully.

The BP decoding algorithm presents a linear complexity, but its drawback is
a high overhead for successful decoding when the number of input symbols
is small. That is due to the lack of degree one output symbols at some point
of the decoding process, leading to a decoding failure. Thus, we can not

34 CHAPTER 4. BP DECODING OPTIMIZATION

Figure 4.5: Belief Propagation decoding of a LT code.

Figure 4.6: Belief Propagation decoding of a LT code.

desire a better decoding complexity but optimizations and modifications of
this algorithm could done to achieve higher successfully probabilities while
requiring lower overheads.

2. Gaussian elimination decoding:

In contrast to the BP decoding, the computational complexity of Gaussian
elimination algorithms is cubic with the size of the system form by the output
symbols collected. However, its overhead is 1, meaning that is optimal. As
soon as exactly k output symbols have been received, the decoding process
can start and it will be successful as long as the system of equations that
defines the received output symbols has full rank. The Gaussian elimination
decoding is divided into two steps:

4.2. ALGORITHMS IMPROVING GAUSSIAN ELIMINATION COMPLEXITY 35

(a) Triangularization step: In the triangularization step, the purpose is to
reduce the matrix representing the linear system of equations to an upper
square triangular matrix with ones along its diagonal and zeros below it.
If there are extra bottom rows, they are discarded. The triangularization
is done through elementary operations in the matrix.

(b) Back substitution step: If the triangularization is successful, the system
can be solved by converting the triangular matrix into the identity matrix.

The success probability of the Gaussian elimination decoding is exactly the
success probability of the triangularization step. If the first step fails, more
output symbols need to be collected so that the triangularization step can be
tried once more, increasing consequently the decoding time.

4.2 Algorithms improving Gaussian Elimination complex-
ity

– Incremental Gaussian elimination decoding:

Gaussian elimination decoding offers the same performance as ML decoding,
although at the price of a quite high decoding complexity. In [30], a new
scheme called Incremental Gaussian Elimination (IGE) is presented. The
goal of the IGE decoding is to reduce the decoding time of GE keeping its
performance. The improvement introduced by this decoding scheme is on the
triangularization step. In fact, if that first step is successful, IGE is exactly
GE. However, once the triangularization step fails during GE decoding, most
of the times the obtained matrix is almost upper triangular, having very
few rows missing a one on its diagonal, and this fact is utilized by the IGE
algorithm to improve the time complexity of GE. Instead of directly collecting
more output symbols and trying the triangularization of the matrix as it is
done in normal GE decoding, incremental GE exploits the fact that almost
all the rows have a 1 along the diagonal. Suppose that the triangularization
step of GE ends unsuccessfully. At that point, the rows with a 1 along the
diagonal are identified as the ”good” rows, and the ones without it are the
”bad” rows.

To illustrate how IGE works, in Figure 4.7 (a) it can be seen the matrix
obtained after the triangularization step has failed. The ”good” rows are
rows 1, 2, and 4. On the other hand, the set of ”bad” rows is defined as rows
3 and 5. We want to convert the ”bad” rows into ”good” rows before picking
up new output symbols. The result of a XOR operation between row 3 and
row 4 is 00001, and that is exactly the row that is needed in position 5, where
at this moment there is still a ”bad” row, thus we can swap both.

In Figure 4.7 (b) is showed the matrix resulting of applying those operations
to the matrix in Figure 4.7 (a). There is only one ”bad” row left at row 3,
but new rows have to be used to convert it into a ”good” row. Therefore, a
new encoding symbol is received at position 6, as it can be seen in Figure 4.7
(c). We now try to become row 6 through elementary operations with others

36 CHAPTER 4. BP DECODING OPTIMIZATION

11011

01010

00000

00010

00010

10110

(c)

11011

01010

00000

00010

00001

(b)

11011

01010

00111

00010

00001

(d)

11011

01010

00011

00010

00000

(a)

Figure 4.7: Triangularization step in incremental GE.

rows into a ”good” row for replacing the ”bad” row that is still at position
3. That can be done easily by performing two XOR operations of row 6 with
row 1 and 2. Finally, the resulting row 6 is swapped with row 3, and the
upper triangular matrix that IGE obtained is showed in Figure 4.7 (d).

– On the fly Gaussian elimination decoding:

The decoding approaches Gaussian Elimination (GE) and Incremental Gaus-
sian Elimination (IGE) explained above perform all the decoding operations

4.3. ALGORITHMS IMPROVING BELIEF PROPAGATION 37

once k output symbols have been received, thus its decoding complexity is
concentrated around the time of the arrival of the last output symbols. In
[31], a Gaussian-like algorithm called On the fly Gaussian Elimination (OGE)
is presented. Its main advantage is that performs decoding operations at each
output symbol arrival, spreading the decoding complexity all along the re-
ception process, and hence reducing the total time used by the algorithm
compared to GE and IGE. The triangularization step starts as soon as the
first output symbol is received. Operations attempting to obtain an upper
triangular matrix are performed at each packet arrival. Besides, OFG uses a
swap heuristic that keeps the matrix sparse. Therefore, decreases the com-
plexity of the swapping, row xoring and back substitution operations.

examplee show how OFG works in an example. Figure 4.8 (a) represents
a partially upper triangular matrix, and the OFG algorithm is applied to
obtain an upper triangular matrix. A new output symbol is required so that
the triangularization step can continue. 01100 is the new received symbol, its
leftmost one is at position 2, and row 2 is indeed still empty. Thus, the new
symbol is placed directly at row 2 as it can be seen in Figure 4.8 (b). The
matrix is still not triangular, therefore, a new output symbol is collected.
In this case, the received symbol is 11010 with its leftmost 1 situated in
position 1, though position 1 in the matrix is already filled with a sparser
word. We xor this last received output symbol 11010 with position 1 in the
matrix obtaining 01000 which has its leftmost 1 at position 2. Again position
2 is already filled, however, this time with a less sparse word. Consequently
swapping occurs, as it is showed in Figure 4.8(c). Continuing the process,
the latest swapped words 01100 and 01000 are xored obtaining 00100, with
the leftmost 1 in position 3. Row 3 in Figure 4.8 (b) is already filled, but
with a word of degree 2, thus they are swapped as it shows Figure 4.8 (c).
Afterward, a xoring operation between 00011 and 00100 is performed getting
00111, and we obtain finally the upper triangular matrix in Figure 4.8 (c).
Applying OFG without swapping, the result would have been Figure 4.8 (d).
It can be checked that is a less sparse matrix than the one in Figure 4.8 (c).

Unfourtunaly any of these algorithms have linear complexity, and therefore not
suitable for live-streaming applications.

4.3 Algorithms improving Belief Propagation

– Maxwell decoder:

Although the asymptotic analysis of the BP algorithm applied to LDPC codes
over the BEC shows that is able of achieving capacity, actually its perfor-
mance for any finite-length code which graph has cycles is worse than the
MAP decoder one. In [32], the Maxwell decoder is presented to achieve
MAP capacity once the BP algorithm gets stuck because no degree-one out-
put nodes are left before all the input nodes are decoded. Once that happens,

38 CHAPTER 4. BP DECODING OPTIMIZATION

10010

01000

00100

00010

00001

(c)

10010

01100

00110

00011

00000

(b)

10010

01100

00110

00011

00001

(d)

10010

00000

00110

00011

00000

(a)

Figure 4.8: Triangularization step in the OFG algorithm.

the Maxwell decoder guesses one or more of the input nodes that are still
unknown, such that a new degree-one output node is created. Therefore, the
BP algorithm can continue. This procedure is repeated until all input nodes
are recovered successfully. The main trade-off of this algorithm is a complex-
ity that grows exponentially with the number of needed guesses, becoming
Maxwell decoder in an impractical algorithm for almost any real applications.
However, it is a powerful tool to analyze the code performance and derive its
MAP capacity.

4.3. ALGORITHMS IMPROVING BELIEF PROPAGATION 39��
� � �� � � � � ��� ��� � � � � �� � ��� �������� ������ �������	
 ��

Figure 4.9: In (a) we show an output node Y1 of degree two connected to the input nodes X1

and X2. In (b) we can see the graph once Y1 and X2 have been removed. We add Y1 to Y2

and Y3.

– Tree-structure Expectation Propagation decoder

A new algorithm to decode LDPC codes over the BEC is proposed and ana-
lyzed in [33] and [34]. It is based on a technique borrowed from the Bayesian
machine learning world where a probability distribution is approximated in
an iterative way.

The performance of the so-called Tree-structure Expectation Propagation
(TEP) decoder is better than the traditional BP decoder while keeping similar
complexity. In [35] was already proposed a similar algorithm which looks
for redundancies to increase the probability of decoding success, however its
complexity was higher. The TEP decoder is triggered once the BP decoder
gets stuck.

First, the TEP algorithm looks for an output node of degree two, after find-
ing the degree two output node it removes that output node together with
one of the two input nodes attached to it and the associated edges. Then,
it reconnects the input node that remains to the output nodes that were
connected to the removed input node, and finally the values of those output
nodes should be inverted if the removed degree two output node was a 1. This
procedure is illustrated in Figure 4.9. We can see how the TEP algorithm
chooses the grade two output node Y1 removing it together with X2, one of
the input nodes attached to it. In Figure 4.9 (b), Y1 and X2 are already
deleted and the output nodes Y2 and Y3, which were connected to X2, have
been reconnected to X1 which degree is now dX1

+ dX2
− 2, and the values of

Y2 and Y3 have been updated.

We show now a matrix interpretation of this process. The graph in Figure 4.9
(a) is represented as a linear system of three equations. The input variable

40 CHAPTER 4. BP DECODING OPTIMIZATION

X2 is isolated to the other side in the first equation hence its value can be
cleared from the second and third equations in which it is involved obtaining
finally the system of equations that represents Figure 4.9 (b):

Y1 = X1 +X2

Y2 = X2 + · · ·
Y3 = X2 + · · ·

⇒
X2 = Y1 +X1

Y2 = X2 + · · ·
Y3 = X2 + · · ·

⇒

⇒ Y2 = Y1 +X1 + · · ·
Y3 = Y1 +X1 + · · ·

}

⇒ Y2 + Y1 = X1 + · · ·
Y3 + Y1 = X1 + · · ·

}

(4.1)

As BP, the TEP algorithm removes an output node and an input node per iteration,
therefore its complexity is comparable to the BP algorithm complexity. This is unlike
the Maxwell decoder, which complexity grows exponentially with the number of guesses.
The only counter back of the TEP decoder is that the value of the removed input node
will be known only once the input node that was also neighbor of the removed output
node has been decoded. For that reason, the relation between both input nodes should
be stored in memory. In Figure 4.9, that means X2 is known once X1 is decoded.
The procedure that we have just seen removes input and output nodes although will
not create a new degree one output node unless we are able of finding a degree two
output node which input nodes also share another output node of degree three, as it is
illustrated in Figure 4.10 (a), where the input nodes X1 and X2 share the output node
Y1 of degree two, and the output node Y4 of degree three. Once we remove output node
Y1 and input node X2, a new degree one output node is created, Y4, as it is shown in
Figure 4.10 (b), and therefore the BP algorithm can be restarted.

Below can be seen again matrix interpretation of this decoding process:

Y1 = X1 +X2

Y2 = X2 + · · ·
Y3 = X2 + · · ·
Y4 = X1 +X2 +X3

⇒
X2 = Y1 +X1

Y2 = X2 + · · ·
Y3 = X2 + · · ·
Y4 = X1 +X2 +X3

⇒

⇒
Y2 = Y1 +X1 + · · ·
Y3 = Y1 +X1 + · · ·
Y4 = Y1 +X1 +X1 +X3

⇒
Y2 + Y1 = X1 + · · ·
Y3 + Y1 = X1 + · · ·
Y4 + Y1 = X3

(4.2)

At the beginning, when the TEP algorithm starts running over the graph, it is
rather unlike that two input nodes share at the same time an output node of degree

4.3. ALGORITHMS IMPROVING BELIEF PROPAGATION 41� ��� � � � � � � � ���

�

��������
� � �� � �� � � � � �

����

��
�����

���� ��� ��

���

���

� � ���

Figure 4.10: In (a) it can be seen two input nodes, X1 and X2, which share the degree two
output node Y3 and the degree three output node Y4. In (b) a new degree one output node
Y4 has been created after removing X2 and Y1 from the graph.

two and another output node of degree three, but as the algorithm removes more and
more input and output nodes, this probability grows since we are reducing the number
of nodes in the graph but at the same time increasing the degree of the remaining input
nodes. The TEP decoder stops once the graph runs out of degree one or degree two
output nodes, meaning that the decoding process fails, or once all the input nodes have
been decoded, meaning that the decoding has been successful.

42 CHAPTER 4. BP DECODING OPTIMIZATION

4.4 Double Tree-structure Expectation Propagation algo-
rithm

We propose the Double Tree-structure Expectation Propagation (DTEP) algorithm for
trying to recover from the TEP decoding failure once it runs out of output nodes of
degree one or two. It works in a similar way than the TEP decoder, but instead of
looking for redundancies in output nodes of degree two, it looks for redundancies in
output nodes of degree three. The DTEP decoder works as follows, it looks for an
output node of degree three, if there is one, the algorithm removes it from the graph
together with one of its three input nodes and the associated edges. An example can be
seen in Figure 4.11 (a), where the selected output node of degree three Y1 is removed
together with one of their input nodes, in this case X2, and the corresponding edges.
After performing this operation, the other two neighbors of Y1, which are the input
nodes X1 and X3, are attached to the neighbors that X2 had which are in this example
Y2 and Y3. The result of this operation can be seen in Figure 4.11 (b).

We show now a matrix interpretation in the form of a system of equation of the
TEP decoding process:

Y1 = X1 +X2 +X3

Y2 = X2 + · · ·
Y3 = X2 + · · ·

⇒
X2 = Y1 +X1 +X3

Y2 = X2 + · · ·
Y3 = X2 + · · ·

⇒

⇒ Y2 = Y1 +X1 +X3 + · · ·
Y3 = Y1 +X1 +X3 + · · ·

}

⇒ Y2 + Y1 = X1 +X3 + · · ·
Y3 + Y1 = X1 +X3 + · · ·

}

(4.3)

As well as in the TEP algorithm, where the objective is to create new output
nodes of degree one after the BP failure due to the lack of them, the objective of the
DTEP algorithm is to create output nodes of degree two or one in order to be able of
triggering again the TEP or the BP decoding algorithm. For achieving such situation, it
is necessary, as in TEP, that the three input nodes of the chosen output node of degree
three also share another output node, which can be of degree four of five, because now
we have two extra algorithms that can be used, the TEP and the BP. One depends on
finding output nodes of degree two, and the other on finding them of degree one. This
situation is showed in Figure 4.12 where a new degree one output symbol is created.

We present the matrix equivalence of this process:

Y1 = X2 + · · ·
Y2 = X2 + · · ·
Y3 = X1 +X2 +X3

Y4 = X1 +X2 +X3 +X4

⇒
Y1 = X2 + · · ·
Y2 = X2 + · · ·
X2 = Y3 +X1 +X3

Y4 = X1 +X2 +X3 +X4

⇒

4.4. DOUBLE TREE-STRUCTURE EXPECTATION PROPAGATION ALGORITHM 43

����

����������

�� ��� � �

� � �� � �

� � �� � �

� � �

� � ���

� � �
����

������

 !

"#$

"%$
Figure 4.11: In (a) we show the output node Y1 of degree three connected to the input nodes
X1, X2, and X3. In (b) we can see the graph once Y1 and X2 have been removed. The parity
of Y1 is added to Y2 and Y3.

⇒
Y1 = Y3 +X1 +X3 + · · ·
Y2 = Y3 +X1 +X3 + · · ·
Y4 = X1 + Y3 +X1 +X3 +X3 +X4

⇒
Y1 + Y3 = X1 +X3 + · · ·
Y2 + Y3 = X1 +X3 + · · ·
Y4 + Y3 = X4

(4.4)

44 CHAPTER 4. BP DECODING OPTIMIZATION&' &()))))))))))))))&* &+

&*&'

,(-,*,'-,*
)))))))))))))))

,+-,*

&+
,* ,+,(,'

,+,' ,(. ..

/01

/21
Figure 4.12: In (a) it can be seen three input nodes, X1, X2, and X3, which share the degree
three output node Y3 and the degree three output node Y4. In (b) we can see the graph once
Y3 and X2 have been removed. The value of Y3 is added to Y1, Y2, and Y4.

4.5 Triple Tree-structure Expectation Propagation algorithm

As well as Double Tree-structure Expectation Propagation algorithm is used once BP
runs out of output symbols of degree one, the Triple Tree-structure Expectation Prop-
agation algorithm is presented for improving the performance of DoubleTEP once runs
out of degree two output symbols. It works exactly as DoubleTEP, but instead of look-
ing for degree two output nodes, looks for degree three output nodes trying to create
new output nodes of degree three, two or one, thus one of the other algorithms can be

4.6. CONCLUSIONS 45

applied again.

4.6 Conclusions

In this chapter we review the classical decoding algorithms Gaussian Elimination and
Belief Propagation. The first one exhibits optimal efficiency, although a rather high
complexity. The second one displays a very low efficiency for LT codes using a small
number of input symbols, but its decoding time complexity is linear. We present also
existing algorithms improving Gaussian Elimination, however all they show at least a
cuadratic complexity, hence they are not suitable for live-streaming applications. After
that, we introduce the Maxwell decoder, which complexity increases exponentially with
the number of guesses needed to decode successfully, and we also present the Tree-
structure Expectation Propagation decoder, which shows linear complexity. Finally,
to improve the efficiency of the Tree-structure Expectation Propagation decoder, we
present the main contributions of this thesis, the Double Tree-structure Expectation
Propagation decoder and the Triple Tree-structure Expectation Propagation decoder,
which improve the efficiency of the BP decoding algorithm when used with LT codes
of small size while keeping a linear time decoding complexity.

46 CHAPTER 4. BP DECODING OPTIMIZATION

Simulation results 5
We introduced LT codes and presented the BP and the TEP decoding algorithms in the
last chapter. We also developed two new decoding algorithms based on the TEP one.
In this chapter, we show Matlab simulation results when those decoding algorithms are
applied to LT codes and the number of input symbols is small. The performance of the
decoding algorithms for several small values of input symbols is analyzed in terms of
success rate and complexity as the percent overhead increases.

5.1 Overview

We study LT decoding using BP, TEP, DoubleTEP and, TripleTEP on the following
performance parameters:

• Success rate: Represents the probability of successful decoding.

• Number of operations: Meaning the number of xor operations used for decoding,
i.e., , it is used as a measure of the decoding time complexity.

• Percent overhead: Extra percent number of output symbols over the input symbols
used to attempt decoding, i.e., , the number of output symbols equals the number
of input symbols plus the indicated percent overhead which is calculated over the
number of input symbols. As an example, a percent overhead of 100 means that the
number of output symbols used to decode doubles the number of input symbols.

In the next section, we analyze the performance of BP, TEP, DoubleTEP and,
TripleTEP decoders in terms of these parameters for the following values of input
symbols: 50, 100, 200, 500 and 1000.

5.2 Decoding analysis

In this section, we focus on analyzing the behavior of the four decoding algorithms
applied to LT codes in terms of success rate and complexity against percent overhead.
The LT encoder and the decoding algorithms are implemented using Matlab. All the
simulations used a BEC with a erasure probability of 0.5. The LT code parameters
used are δ = 0.5 and c = 0.3. For sizes of input symbols equal to 50, 100, and,
200, the percent overhead is moved from 0 to 100 in steps of 5 and the results are
calculated over 1000 iterations. For sizes of input symbols equal to 500, and 1000, the
percent overhead is moved from 0 to 70 in steps of 5 and the results calculated over
100 iterations. This is due to the enormous amount of time needed by the simulations
for high sizes of input symbols. In Figure 5.1 (a), we show the probability of success
as a function of the overhead for k = 50. BP presents a low decoding performance as
expected for small sizes of input symbols. TEP improves BP performance in success

47

48 CHAPTER 5. SIMULATION RESULTS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

Percent overhead

S
uc

ce
ss

 r
at

e

BP

TEP

DoubleTEP

TripleTEP

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

100

200

300

400

Percent overhead

O
pe

ra
tio

ns

BP

TEP

DoubleTEP

TripleTEP

Figure 5.1: Success rate and complexity vs percent overhead for k = 50.

rate. DoubleTEP also gets better results than TEP, and finally, TripleTEP improves
even more the performance of the decoding process in terms of efficiency. In Figure 5.1
(b) we can see the decoding complexity, which is always less than 10k, keeping it linear.

In Table 5.1 we show numbers of the simulation results from Figure 5.1 (a) and
Figure 5.1 (b) for overheads of 20, 30, and 40. From these numbers, we see that a gain
in performance of 0.1 means an increase of complexity approximately of 50 operations,
i.e., k extra operations.

Figure 5.2 (a) presents the success probability of BP, TEP, DoubleTEP and,
TripleTEP as a function of the overhead for a size of input symbols of 100. BP per-
formance is better, as expected with bigger sizes, while the other three algorithms still
improve the performance of BP.

Again, the same numbers as in Table 5.1 are printed down in Table 5.2, this time
with simulation results from Figure 5.2. Once more time, a success rate gain of 0.1
means a complexity increase of 100 operations, i.e., k.

In Figure 5.3 (a), Figure 5.4 (a), and Figure 5.5 (a), we present the same simulation
results for k=200, 500, and 1000. Even the new decoding algorithms still behave better
than BP, as k grows, and therefore BP performance improves, the gain of the new

5.2. DECODING ANALYSIS 49

Percent overhead Algorithm Success rate Complexity

20 BP 0.15 25

20 TEP 0.45 160

20 DoubleTEP 0.65 250

20 TripleTEP 0.7 270

30 BP 0.3 80

30 TEP 0.65 225

30 DoubleTEP 0.78 280

30 TripleTEP 0.8 300

40 BP 0.45 120

40 TEP 0.85 260

40 DoubleTEP 0.95 300

40 TripleTEP 0.95 300

Table 5.1: Comparation of BP, TEP, DoubleTEP, and TripleTEP success rate and complexity
for k=50 and overhead=20, 30, 40.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

Percent overhead

S
uc

ce
ss

 r
at

e

BP

TEP

DoubleTEP

TripleTEP

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

200

400

600

800

1000

Percent overhead

O
pe

ra
tio

ns

BP

TEP

DoubleTEP

TripleTEP

Figure 5.2: Success rate and complexity vs percent overhead for k = 100.

50 CHAPTER 5. SIMULATION RESULTS

Percent overhead Algorithm Success rate Complexity

20 BP 0.1 50

20 TEP 0.4 300

20 DoubleTEP 0.6 500

20 TripleTEP 0.68 650

30 BP 0.25 160

30 TEP 0.65 530

30 DoubleTEP 0.8 750

30 TripleTEP 0.85 800

40 BP 0.5 350

40 TEP 0.85 700

40 DoubleTEP 0.9 750

40 TripleTEP 0.9 750

Table 5.2: Comparation of BP, TEP, DoubleTEP, and TripleTEP success rate and complexity
for k=100 and overhead=20, 30, 40.

Percent overhead Algorithm Success rate Complexity

20 BP 0.05 50

20 TEP 0.2 400

20 DoubleTEP 0.35 750

20 TripleTEP 0.45 1100

30 BP 0.2 300

30 TEP 0.55 1100

30 DoubleTEP 0.75 1600

30 TripleTEP 0.8 1750

40 BP 0.55 800

40 TEP 0.85 1500

40 DoubleTEP 0.95 1750

40 TripleTEP 0.95 1750

Table 5.3: Comparation of BP, TEP, DoubleTEP, and TripleTEP success rate and complexity
for k=200 and overhead=20, 30, 40.

algorithms decreases compare with smaller sizes of input symbols. Once again, from
Figure 5.3 (b), Figure 5.4 (b), and Figure 5.5 (b) we see that the extra complexity
is always proportional to the gain in success rate, and less than 10k. In fact from
Table 5.3, Table 5.4, and Table 5.5 we check that for these values of k also a success
rate gain of 0.1 means an increase in complexity of k operations.

5.3 Conclusions

As the number of input symbols k increases, the slope of the curves in the graph
representing the decoding success rate versus is more pronounced. The new decoding

5.3. CONCLUSIONS 51

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

0.2

0.4

0.6

0.8

1

Percent overhead

S
uc

ce
ss

 r
at

e

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

250
500
750

1000
1250
1500
1750
2000

Percent overhead

O
pe

ra
tio

ns

BP

TEP

DoubleTEP

TripleTEP

BP

TEP

DoubleTEP

TripleTEP

Figure 5.3: Success rate and complexity vs percent overhead for k = 200.

Percent overhead Algorithm Success rate Complexity

20 BP 0 0

20 TEP 0 0

20 DoubleTEP 0.05 500

20 TripleTEP 0.05 500

30 BP 0.15 500

30 TEP 0.3 1500

30 DoubleTEP 0.4 3000

30 TripleTEP 0.5 3500

40 BP 0.6 2800

40 TEP 0.85 4800

40 DoubleTEP 0.9 5500

40 TripleTEP 0.9 5500

Table 5.4: Comparation of BP, TEP, DoubleTEP, and TripleTEP success rate and complexity
for k=500 and overhead=20, 30, 40.

52 CHAPTER 5. SIMULATION RESULTS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

0.2

0.4

0.6

0.8

1

Percent overhead

S
uc

ce
ss

 r
at

e

BP

TEP

DoubleTEP

TripleTEP

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

1000

2000

3000

4000

5000

6000

7000

8000

Percent overhead

O
pe

ra
tio

ns

BP

TEP

DoubleTEP

TripleTEP

Figure 5.4: Success rate and complexity vs percent overhead for k = 500.

algorithms offer higher decoding improvements in terms of efficiency for smaller sizes of
k, when BP behavior is worse. The gain in success rate is proportional to the increase in
complexity for all the decoding procedures, in fact, it turns out to be k extra operations
per 0.1 increase in success rate for all sizes of input symbols. The complexity is always
less than 10k, i.e., linear.

5.3. CONCLUSIONS 53

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

0.2

0.4

0.6

0.8

1

Percent overhead

S
uc

ce
ss

 r
at

e

BP

TEP

DoubleTEP

TripleTEP

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

2000

4000

6000

8000

10000

12000

14000
15000

Percent overhead

O
pe

ra
tio

ns

BP

TEP

DoubleTEP

TripleTEP

Figure 5.5: Success rate and complexity vs percent overhead for k = 1000.

54 CHAPTER 5. SIMULATION RESULTS

Percent overhead Algorithm Success rate Complexity

20 BP 0 0

20 TEP 0 0

20 DoubleTEP 0 0

20 TripleTEP 0 0

30 BP 0.05 1000

30 TEP 0.25 4000

30 DoubleTEP 0.4 6000

30 TripleTEP 0.5 8000

40 BP 0.8 8500

40 TEP 0.95 11000

40 DoubleTEP 0.97 11500

40 TripleTEP 0.99 12000

Table 5.5: Comparation of BP, TEP, DoubleTEP, and TripleTEP success rate and complexity
for k=1000 and overhead=20, 30, 40.

Conclusion 6
6.1 Summary

We developed two new linear complexity decoding algorithms based on the existing
Tree-structure Expectation Propagation algorithm that improve the decoding efficiency
of belief propagation while keeping its linear complexity for LT codes of small size.

In Chapter 3, we introduced several erasure correcting codes as an alternative to
TCP for offering reliability in live-streaming Internet applications. These applications
are characterized by strict deadline times and high bandwidth demands. We discussed
the different schemes advantages and disadvantages in terms of efficiency, time complex-
ity, and rateless capacity, showing that the best choice for this kind of applications are
Raptor codes due to their high efficiency, low complexity, and rateless property. How-
ever, Raptor codes are cascade codes of a LT code and a pre-code, and LT codes exhibit
a linear decoding complexity as long as they are decoded through belief propagation,
in that case they are asymptotically efficient, meaning that they need a high overhead
for small input sizes. Live-streaming applications, due to their deadline constraints,
can not afford waiting for a high number of output symbols to attempt decoding.

In Chapter 4, we discussed several existing LT decoding approaches that try to solve
the high decoding overhead problem of belief propagation. The Tree-structure Expecta-
tion Propagation algorithm improves the efficiency of belief propagation while keeping
a low complexity. Based on this algorithm, two new decoding algorithms were de-
veloped, namely Double Tree-structure Expectation Propagation algorithm and Triple
Tree-structure Expectation Propagation algorithm, that improve the performance of
the Tree-structure Expectation Propagation algorithm.

Finally, in Chapter 5, we compared the belief propagation, Tree-structure Expec-
tation Propagation, Double Tree-structure Expectation Propagation, and Triple Tree-
structure Expectation Propagation algorithm performance for LT codes of small sizes
in terms of success rate and complexity as a function of the overhead. These results
proved that the new decoding approaches improve the success rate for a given over-
head compared to with belief propagation and Tree-structure Expectation Propagation
algorithm while keeping a linear complexity.

6.2 Suggestions for further Work

• We recommend to use Double Tree-structure Expectation Propagation and Triple
Tree-structure Expectation Propagation algorithms to decode LT codes with a
higher number of input symbols, comparing their complexity and success rate
performance with belief propagation.

• We suggest to apply the new decoding algorithms for improving LDPC codes

55

56 CHAPTER 6. CONCLUSION

efficiency, as they are already provided with fast encoding and decoding algorithms
but its decoding efficiency is low.

• Deeper redundancies could be used once Triple Tree-structure Expectation Prop-
agation algorithm fails due to the lack of degree three output nodes. In this case,
degree four output nodes could be used and so on. The growth in complexity
should be watched out.

• A mathematical analysis of the decoding algorithms could help to provide prop-
erties and asymptotic bounds in performance, per example, the change in number
of output symbols of a given grade could be modeled as a system of differential
equations and solved using a numerical method trying to prove exponential growth
as the algorithm evolves. Also could be interesting to prove that the processing
order of the nodes does not affect the success rate, although it affects the decoding
complexity, as simulation results in Chapter 5 showed.

Bibliography

[1] R. M. Roth, Introduction to coding theory. Cambridge Univ. Press, 2006.

[2] C. Shannon, “E.(1948) A Mathematical Theory of Communication,” Bell System
Technical Journal, vol. 27, pp. 379–423.

[3] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of
the Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300–304,
1960.

[4] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain approach
to reliable distribution of bulk data,” in Proceedings of the ACM SIGCOMM’98
conference on Applications, technologies, architectures, and protocols for computer
communication, pp. 56–67, ACM, 1998.

[5] R. Gallager, “Low-density parity-check codes,” Information Theory, IRE Trans-
actions on, vol. 8, no. 1, pp. 21–28, 1962.

[6] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002. Proceedings, pp. 271–280, 2002.

[7] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann, 1988.

[8] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory,
vol. 52, no. 6, pp. 2551–2567, 2006.

[9] “http://www.digitalfountain.com/standards.html.”

[10] R. Hamming, “Error detecting and error correcting codes,” Bell System Technical
Journal, vol. 29, no. 2, pp. 147–160, 1950.

[11] E. Galois, “Memoire sur les conditions de rsolubilit des questions par radicaux,”
Journal de Mathematiques Pures et Appliques, vol. 11, p. 381444, 1846.

[12] H. Edwards, “Galois theory,” vol. 11, 1984.

[13] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: Turbo-codes. 1,” in Communications, 1993. ICC
93. Geneva. Technical Program, Conference Record, IEEE International Confer-
ence on, vol. 2, pp. 1064 –1070 vol.2, may 1993.

[14] D. MacKay and R. Neal, “Near shannon limit performance of low density parity
check codes,” Electronics Letters, vol. 32, p. 1645, aug 1996.

[15] M. Luby, M. Mitzenmacher, A. Shokrollah, and D. Spielman, “Analysis of low
density codes and improved designs using irregular graphs,” in STOC ’98: Pro-
ceedings of the thirtieth annual ACM symposium on Theory of computing, (New
York, NY, USA), pp. 249–258, ACM, 1998.

[16] M. Luby, M. Amin Shokrolloahi, M. Mizenmacher, and D. Spielman, “Improved
low-density parity-check codes using irregular graphs and belief propagation,” in
Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on,
p. 117, aug 1998.

57

58 CHAPTER 6. CONCLUSION

[17] C. Di, D. Proietti, I. Telatar, T. Richardson, and R. Urbanke, “Finite-length anal-
ysis of low-density parity-check codes on the binary erasure channel,” Information
Theory, IEEE Transactions on, vol. 48, pp. 1570 –1579, jun 2002.

[18] M. Mitzenmacher, “Digital fountains: A survey and look forward,” in IEEE In-
formation Theory Workshop, 2004, pp. 271–276, 2004.

[19] D. J. MacKay, Information theory, inference and learning algorithms. Cambridge
Univ. Press, 2003.

[20] A. Shokrollahi, “Fountain codes,” in Procedings of the annual Allerton conference
on communication control.

[21] D. MacKay, “Fountain codes,” IEE Proceedings-Communications, vol. 152, no. 6,
pp. 1062–1068, 2005.

[22] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. A. Spielman, and V. Stemann,
“Practical loss-resilient codes,” pp. 150–159, 1997.

[23] M. Sipser and D. Spielman, “Expander codes,” IEEE Transactions on Information
Theory, vol. 42, no. 6, pp. 1710–1722, 1996.

[24] D. Spielman, “Linear-time encodable and decodable error-correcting codes,” in
Proceedings of the twenty-seventh annual ACM symposium on Theory of comput-
ing, p. 397, ACM, 1995.

[25] N. Alon, J. Edmonds, and M. Luby, “Linear time erasure codes with nearly optimal
recovery,” in focs, p. 512, Published by the IEEE Computer Society, 1995.

[26] R. U. TJ Richardson, Modern coding theory. Cambridge Univ. Press, 2008.

[27] R. Karp, M. Luby, and A. Shokrollahi, “Finite length analysis of LT-codes,” in
IEEE International Symposium on Information Theory, pp. 39–39, 2004.

[28] P. Cataldi, M. Shatarski, M. Grangetto, and E. Magli, “Implementation and per-
formance evaluation of LT and Raptor codes for multimedia applications,” in In-
ternational Conference on Intelligent Information Hiding and Multimedia Signal
Processing, 2006. IIH-MSP’06, pp. 263–266, 2006.

[29] E. A. Bodine and M. K. Cheng, “Characterization of luby transform codes with
small message size for low-latency decoding,” in Conference on Communication,
IEEE, 2008.

[30] S. Kim, K. Ko, and S.-Y. Chung, “Incremental gaussian elimination decoding of
raptor codes over bec,” in Communications Letters, vol. 12, pp. 307–309, IEEE,
2008.

[31] R. G. M. S. V Bioglio, M Grangetto, “On the fly gaussian elimination for lt codes,”
in Communications letters, IEEE, 2009.

[32] C. Measson, A. Montanari, and R. Urbanke, “Maxwell’s construction: The hid-
den bridge between maximum-likelihood and iterative decoding,” in Information
Theory, 2004. ISIT 2004. Proceedings. International Symposium on, p. 225, IEEE,
2005.

[33] P. Olmos, J. Murillo-Fuentes, and F. Pérez-Cruz, “Tree-structure expectation
propagation for decoding LDPC codes over binary erasure channels,” in Informa-
tion Theory Proceedings (ISIT), 2010 IEEE International Symposium on, pp. 799–
803, IEEE, 2010.

6.2. SUGGESTIONS FOR FURTHER WORK 59

[34] P. Olmos, J. Murillo-Fuentes, and F. Pérez-Cruz, “Tree-Structure Expecta-
tion Propagation for LDPC Decoding in Erasure Channels,” Arxiv preprint
arXiv:1009.4287, 2010.

[35] H. Tarus, J. Bush, J. Irvine, and J. Dunlop, “Exploiting redundancies to improve
performance of lt decoding,” Communication Networks and Services Research,
Annual Conference on, vol. 0, pp. 198–202, 2008.

	Introduction
	Motivation: rateless coding for reliable communication
	Fountain codes challenges
	Outline and contributions

	Background
	A Theory of communication
	Error detection and error correction: Hamming codes
	Error correction, error detection and erasure correction 40
	Stopping sets

	Codes definitions and properties
	Summary

	Erasure Correcting Codes
	Reed-Solomon codes
	Low-Density Parity-Check codes
	Digital Fountain Codes
	Tornado codes
	LT codes
	Raptor codes

	Conclusions

	BP Decoding Optimization
	Belief Propagation vs Gaussian Elimination
	Algorithms improving Gaussian Elimination complexity
	Algorithms improving Belief Propagation
	Double Tree-structure Expectation Propagation algorithm
	Triple Tree-structure Expectation Propagation algorithm
	Conclusions

	Simulation results
	Overview
	Decoding analysis
	Conclusions

	Conclusion
	Summary
	Suggestions for further Work

