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ABSTRACT

The alignment of a pair of spherical particles perpendicular to a horizontally oscillating flow is attributed to a non-zero residual flow, known
as steady streaming. This phenomenon is the basis of complex patterns in denser systems, such as particle chains and the initial stages of
rolling-grain ripples. Previous studies on such self-organization processes used two distinct systems: an oscillating box filled with viscous
fluid and an oscillating channel flow, where the fluid oscillates relative to the bottom boundary. In this paper, we show that particle pair
dynamics in these two systems are fundamentally different, due to the presence of a Stokes boundary layer above the bottom in the oscillating
channel flow. The results are obtained from direct numerical simulations in which the dynamics of a pair of particles are simulated using an
immersed boundary method. The oscillating box and the oscillating channel flow are only equivalent in a limited region of the parameter
space, where both the normalized Stokes boundary layer thickness and the normalized relative particle excursion length are small. Overall,
the particle dynamics in the oscillating channel flow, compared to the oscillating box, are governed by an additional dimensionless parame-
ter, that is, the particle–fluid density ratio.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0115487

I. INTRODUCTION

Patterns in granular systems have been a subject of study for dec-
ades, with applications in both industrial1 and maritime settings.2

Specifically, when the grains are immersed in a fluid (liquid or gas), a
rich variety of pattern-forming behavior emerges.3–5 This is the case,
for example, when a collection of spherical particles is submerged in a
viscous fluid and subjected to horizontal oscillations. The particles,
then, form chains that are aligned perpendicularly to the oscillating
flow.6,7 The driving mechanism of the chain-forming phenomenon is
the non-zero residual flow around the particles, or “steady streaming”
flow, that remains after averaging over a full oscillation period.8 Since
oscillatory flows are common in both nature and industry, steady
streaming are relevant in, for example, biological9 and geophysical10

settings. Moreover, due to their nonlinear nature, steady streaming
flows exhibit a wide range of flow topologies.11–13

Klotsa et al.14 described the equilibrium state of the system for
the shortest possible chains, that is, a pair of aligned particles. They
performed numerical simulations and experiments with pairs of stain-
less steel spheres in a vibrating box filled with a viscous liquid. They
identified that the mean gap between the particles is only a function of

the viscous length scale and the streamwise excursion length of the
particle (i.e., the distance a particle moves within a period of the oscil-
lation) relative to the fluid, both normalized by the particle diameter.
Later, Van Overveld et al.15 confirmed this finding using theoretical
arguments and detailed numerical simulations that show excellent
agreement with the experimental data of Klotsa et al.14 In addition,
Van Overveld et al.15 found two scaling regimes for the mean gap: a
viscous-dominated and an advection-dominated regime. It was further
shown that the gap between the particles oscillates at twice the driving
frequency, with the amplitude of these gap oscillations showing two
different scaling regimes just like the mean gap.

Additionally, Mazzuoli et al.16 extended the results of Klotsa
et al.7 toward larger fluid excursion lengths (i.e., the distance fluid par-
cels move within a period of the oscillation), lower oscillation frequen-
cies, and lower particle densities. This region of the parameter space is
more relevant for sand ripple formation under surface gravity waves.17

Such small-scale sediment patterns are important for modeling large-
scale morphological processes. These patterns cannot be neglected,
since they alter the flow structure and consequently the sediment
transport.18,19 Using direct numerical simulations, Mazzuoli et al.16
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studied the inception of rolling-grain ripples due to steady streaming
flows. They showed that the mechanisms for the formation of particle
chains are, at the origin, similar to the early stages of rolling-grain rip-
ples. Once the chains are formed, they may be considered as perturba-
tions in the bed morphology from which rolling-grain ripples can
further evolve. In a subsequent series of studies, the formation and
dynamics of full rolling-grain ripples were simulated for a larger number
of particles.19,20 The equilibrium wavelengths of the developed ripples
showed good agreement with results from linear stability analysis2 and
experiments.21 Due to computational limitations, it was not possible to
obtain functional dependencies for the ripple characteristics as function
of the flow conditions. Furthermore, extensive validation on the emer-
gence of the particle chains, that is, the perturbed state from which the
patterns may further evolve, remains difficult. There are but few experi-
mental studies in this regime, such as those performed on short chains22

or individual particles in a “U-tube.”23 More often, experimental studies
focus on large systems, containing millions of particles, that have a
closer connection to environmental situations.24,25

It is important to note that Mazzuoli et al.16 not only studied a
different region of the parameter space, but also a fundamentally dif-
ferent system than Klotsa et al.14 The original work on particle chains
by Klotsa et al.14 was done in an oscillating, closed box filled with vis-
cous fluid containing a pair of stainless steel spheres. In this system,
which we call “oscillating box” from here on, the fluid and all con-
tainer walls oscillate in unison, that is, with equal amplitude and fre-
quency. Conversely, the system studied by Mazzuoli et al.16 is a closer
representation of a bed over which an oscillatory flow is induced by
gravity waves at a free surface. The velocity difference between bed
and bulk flow induces the formation of a Stokes boundary layer above
the bed. Alternatively, an oscillating pressure gradient imposed on a
fluid in a channel between two (fixed) horizontal parallel plates yields
a similar flow if the distance between the plates is large with respect to
the boundary layer thickness. Hence, we refer to this system as
“oscillating channel flow” in the remainder of this study.

At first glance, it might seem that the oscillating box and the
oscillating channel flow are equivalent and that one could transform
from one to the other by a change of reference frame. However, this
is not the case. In the oscillating channel flow, there is the stream-
wise motion of the particles, the (bulk) fluid motion, and the (non-
moving) bottom. These can be described as two relative motions:
between the fluid and the boundaries, and between the particles and
(bulk) flow. Three dimensionless quantities are required to uniquely
describe these motions, commonly chosen as: the normalized Stokes
boundary layer thickness, the normalized streamwise excursion
length of the fluid with respect to the boundaries, and the particle–
fluid density ratio.16

Contrarily, in the oscillating box, the (bulk) flow and the bound-
aries move in unison, such that the only relative motion is between the
particles and the fluid. Consequently, the streamwise excursion length
and particle–fluid density ratio can be replaced by a single dimension-
less quantity: the relative excursion length of the particles with respect
to the fluid.14,15 In fact, Van Overveld et al.15 have explicitly shown
that the mean state of the system is independent of the particle–fluid
density ratio, providing that particles are frictionless. The variation of
this density ratio leads to the same scaling relations for the mean gap
as a function of the relative excursion length of the particles with
respect to the fluid.

Due to the additional motion between the fluid and the bound-
aries, we hypothesize that the oscillating channel flow has one addi-
tional degree of freedom and that the particle dynamics are governed
by an additional dimensionless parameter, compared to the oscillating
box. Moreover, the effect of the differences between the systems on the
particle dynamics and flow fields is still unknown. Likewise, it is not
yet clear to what extent a direct comparison between the two systems,
or in other words, between the work by Klotsa et al.7 and Mazzuoli
et al.,16 is valid.

Such knowledge is relevant to determine whether the self-
organization in both systems is governed by the same underlying
physical mechanisms. In addition, the contribution of the steady
streaming flows to pattern formation in environmental settings
remains unexplored. By considering only a single pair of particles, that
is, the building block of larger patterns, the underlying physical mech-
anisms are compared between both systems for different regions of the
parameter space.

The aim of this study was to better understand the particle
pair dynamics in an oscillating channel flow, by comparing it to
the oscillating box. First, we address the differences between both
systems in detail, using theoretical arguments. Then, we present
results for both systems obtained from direct numerical simulations,
in which a pair of particles is simulated using the immersed bound-
ary method (IBM) by Breugem.26 The streamwise particle motion
is described using its relative excursion length as a function of the
flow conditions. The relevant question here is whether the Stokes
boundary layer over the bottom wall significantly affects the stream-
wise particle motion. Next, we focus on the gap between the par-
ticles as a function of the dimensionless parameters governing the
problem: the normalized Stokes boundary layer thickness, the nor-
malized relative excursion length of the particles, and the particle–
fluid density ratio. The parameter space is explored, including the
regions covered by the aforementioned studies of interest.14–16

In particular, we aim at determining if the equilibrium state of
the particle pairs exhibits the same two (viscous- and advection-
dominated) regimes in both systems. In other words, we want to
determine whether the Stokes boundary layer over the bottom
affects the steady streaming flow and thereby the spanwise particle
dynamics.

II. FORMULATION OF THE PROBLEM AND NUMERICAL
APPROACH

Both systems consist of an incompressible Newtonian fluid, with
density qf and kinematic viscosity �, between two infinitely large, par-
allel horizontal plates, which are separated by a distanceH0. Two iden-
tical solid spheres with diameter D and density qs, such that qs > qf ,
are submerged in the fluid. We assume that the spheres stay in contact
with the bottom plate due to gravity, with gravitational acceleration g.
The Coulomb friction coefficient between the particles and bottom is
lc. We have chosen a right-handed Cartesian coordinate system
ðx0; y0; z0Þ with the y-axis parallel to the oscillation (streamwise) direc-
tion, the x-axis in the other horizontal (spanwise) direction, and the
z-axis pointing upward, perpendicular to the plates. The additional rel-
evant variables and parameters are the time t0, the local flow velocity
u0 ¼ ðu0; v0;w0Þ, the pressure p0, the angular frequency of the oscillat-
ing flow x, the excursion length of the bulk flow A0, and the viscous
length scale d0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2�=x

p
.
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The variables (and gradient operator $0) are made dimensionless
using D as typical length scale, 2p=x as typical timescale, and A0x as
typical velocity scale, as follows:

x; y; zð Þ ¼
x0; y0; z0
� �

D
; H ¼ H0

D
; A ¼ A0

D
; d ¼ d0

D
;

$ ¼ D$0; t ¼ xt0

2p
; u ¼ u0

A0x
; p ¼ p0

qf A0Dx2
:

(1)

Alternatively, we could have chosen d as reference length scale, since
variations in the flow fields are typically expected on the scale of the
oscillatory boundary layer thickness. This approach is used by, for
example, Mazzuoli et al..16 Instead, we follow the more classical
approach that was used to fundamentally describe steady streaming
flows by Riley.8

A. Fluid motion

The fluid is driven by an external, oscillating pressure gradient

�$pe ¼ cosð2ptÞŷ; (2)

with ŷ the unit vector in the streamwise direction, such that the veloc-
ity of the bulk flow, far away from boundaries, is

ub ¼ sinð2ptÞŷ: (3)

The corresponding bulk fluid excursion is

xb ¼ �A cosð2ptÞŷ; (4)

where A appears due to the differences in nondimensionalization of
velocities and length scales, according to Eq. (1). An equivalent deriva-
tion for the excursion of the flow is given in Appendix A.

The fluid phase is governed by the continuity equation for an
incompressible fluid

$ � u ¼ 0: (5)

and the Navier–Stokes equation for a Newtonian fluid

1
2p
@u
@t
þ A u � $ð Þu ¼ �$pþ 1

2
d2r2uþ cos 2ptð Þŷ; (6)

both already in dimensionless form. Note that the external pressure
gradient [Eq. (2)] is written explicitly in the last term. The first term
on the right-hand side of Eq. (6) only contains the pressure gradient
due to the flow around the spheres and near the plates.

Halfway between the plates, the stress-free boundary condition

@u
@z

����
z¼H=2

¼ 0;
@v
@z

����
z¼H=2

¼ 0; wjz¼H=2 ¼ 0; (7)

is enforced to reduce the size of the computational domain. This
boundary condition acts as a symmetry plane, such that the computa-
tional domain still describes an oscillating channel flow between two
plates. Formally, this symmetry plane adds virtual particles that touch
the top plate. The effect of these virtual particles can be neglected if
H � 1. For the horizontal directions, periodic boundary conditions
are used, such that

ujx¼0 ¼ ujx¼Lx ; ujy¼0 ¼ ujy¼Ly ; (8)

with Lx and Ly the streamwise and spanwise domain sizes,
respectively.

The description up to this point is valid for either an oscillating
box or an oscillating channel flow. The boundary condition at the bot-
tom of the domain discriminates between the two systems. It is given
by

ujz¼0 ¼
sin ð2ptÞŷ; oscillating boxð Þ;
0; oscillating channel flowð Þ;

(
(9)

such that the no-slip/no-penetration bottom either moves in unison
with the bulk flow or is fixed in space. The latter condition introduces
a shear in the velocity field, which leads to the formation of a Stokes
boundary layer in the region where the viscous forces balance the driv-
ing oscillating pressure gradient. The (dimensionless) thickness of the
Stokes boundary layer is equal to the viscous length scale d.

If the height of the domain is sufficiently large compared to the
boundary layer, that is, H=d� 1, there is no overlap of top and bot-
tom boundary layers. In such a case, the bottom half of the oscillating
channel flow should be equivalent to that of an infinitely deep domain.
To confirm this, Fig. 1 shows vertical profiles of the horizontal velocity
at different phases and for four values ofH=d. The analytical equations
describing these profiles are given in Appendix A. When H=d � 5, the
solution for the oscillating channel flow rapidly converges to that of
the infinitely deep domain, and the two become equivalent from the
perspective of the particles. Hence, in this case, the results hold for
both oscillating channel flows and oscillatory flows over a solid plane
wall in an infinitely deep domain.

B. Particle motion

1. Governing equations

The particle motion is also presented in nondimensional form.
Using the same typical scales (D, 2p=x, and A0x) as in Eq. (1), we
introduce the additional dimensionless variables:

us ¼
u0s
A0x

; s ¼ Ds0

qf �A0x
; xs ¼

Dx0s
A0x

; r ¼ r0

D
; (10)

with the particle velocity u0s, the stress tensor for a Newtonian fluid s0,
the particle’s angular velocity x0s, and the vector r0 going from the par-
ticle’s centroid to its surface.

We assume that the gravitational force on the particles is can-
celed by the sum of the normal force, the lift force, and the buoyant
force. Consequently, there is no vertical motion, such that the particle
motion is restricted to a two-dimensional (2D) horizontal plane and
the particles are always in contact with the bottom wall. Nonetheless,
the particles are free to rotate around any (3D) axis due to, for exam-
ple, gradients in the flow velocity. The motion of the particles is gov-
erned by Newton’s laws of motion

dus

dt
¼ 6

d2

s

þ
s � n̂dSþ 2p

s
cosð2ptÞŷ þ 2p

s� 1
s

� �
lc

C
f̂ ; (11)

dxs

dt
¼ 60

d2

s

þ
r � s � n̂ð ÞdSþ 20p

s� 1
s

� �
lc

C
r � f̂ ; (12)

both in dimensionless form, where s ¼ qs=qf is the particle–fluid den-
sity ratio, n̂ is the outward vector normal to the surface S of the
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spherical particle, C ¼ A0x2=g is the ratio between oscillatory and
gravitational acceleration, and f̂ is the unit vector that accounts for the
relative velocity difference between the bottom plate and particle, as
described in more detail by Van Overveld et al.15

From here on, for the sake of simplicity, we consider that the fric-
tion between the particle and the bottom can be neglected, that is, the
Coulomb friction coefficient lc ¼ 0. In most environmental settings,
like for rolling-grain ripples, this assumption is not valid.16 However,
Van Overveld et al.15 found that simulations where friction is
neglected have good agreement with experimental data of an oscillat-
ing box at high frequencies.14

In the absence of particle-bottom friction, the last term in each of
Eqs. (11) and (12) is equal to zero, such that the particle motion is
independent of C. In combination with the equations for the fluid
motion [Eqs. (5) and (6)], the full system is uniquely defined by three
dimensionless control parameters: A, d, and s.

2. Relative motion

Under the assumption that viscous effects are important, that is,
when the Reynolds number is not too large (�100), the stress tensor
oscillates harmonically over time. According to Eq. (11), the particle
translation (xs) in the streamwise direction should then also be sinu-
soidal, following:

xs ¼ �As cosð2pt þ /Þŷ; (13)

where the (dimensionless) excursion length As and phase lag / are
unknown functions of A, d, and s.

Because both the streamwise particle and bulk fluid motion are
sinusoidal, so is their relative motion.6 The corresponding relative
excursion length is

Ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ A2

s � 2AAs cos /ð Þ
q

; (14)

which follows directly from Eqs. (4) and (13), and is explained in
more detail by Van Overveld et al.15 Similar to As, Ar is an unknown
function of A, d, and s, which cannot be set a priori. For s¼ 1 in the
oscillating box, the particle and fluid have the same inertia, such that
the particle moves in unison with the fluid and Ar ¼ 0. For s!1,
the particle remains stationary in the lab frame, such that Ar ¼ A. For
s¼ 7.5 and A� 10, the empirical scaling Ar � A=d0:5 was found by
Van Overveld et al.15

Klotsa et al.14 used Ar instead of A and s to describe the mean
state of the oscillating box. Later, Van Overveld et al.15 confirmed that
only d and Ar are important for the generation of the steady streaming
flow and its subsequent interaction with the particles. All dependency
of the mean equilibrium state on A and s is implicitly incorporated in
Ar. By replacing the known parameters A and s with the a priori
unknown parameter Ar, the set of dimensionless quantities that
describe the mean equilibrium state of the system is reduced from
three (A, d, s) to two (Ar, d).

Conversely, for the oscillating channel flow, we expect that the
relative excursion Ar is not a useful quantity for all flow conditions,
due to the presence of a Stokes boundary layer above the bottom wall.
While Ar relates the particle motion to the bulk flow, the streamwise
particle motion itself is a result of the local, non-uniform flow. We
would expect that, when d � 0:5, the Stokes boundary layer is suffi-
ciently thick such that the particle feels a non-uniform velocity profile
with an average magnitude significantly lower than that of the bulk
flow, as illustrated in Fig. 1.

We therefore propose a different relative excursion length AR

that takes into account both changes in amplitude and phase of the
flow due to the Stokes boundary layer. We consider the relative
motion between the particle and the undisturbed flow at the particle

FIG. 1. Comparison of laminar velocity
profiles of an oscillating flow in a channel
(solid) and in an infinitely deep domain
(dashed). The profiles are shown side-by-
side at different phases, where the vertical
dotted lines indicate zero velocity. For large
values of H=d, the top and bottom bound-
ary layers do not interact, and the flow
near the bottom of the channel rapidly con-
verges to that of the deep domain. In addi-
tion, the black circle represents the particle
size used in this study (D ¼ H0=10) and
the horizontal dash-dotted line indicates
the boundary layer thickness, that is, where
z ¼ d. (a) Oscillating box, AR � 1:18; A
� 3:33. (b) Oscillating channel flow,
AR � 1:24; A � 3:33. (c) Oscillating box,
AR � 2:67; A � 7:78. (d) Oscillating
channel flow, AR � 2:78; A � 7:78.
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center, that is, at z¼ 1/2. Alternatively, the undisturbed flow averaged
over the particle height (0 < z < 1) could be used. Both options give
approximately the same results. The undisturbed oscillatory flow over
a fixed plane boundary is given by the analytical expression in Eq.
(A3) in Appendix A. The relative motion is again a sinusoidal func-
tion, now with amplitude AR and phase lag /R:

�As cosð2pt þ /Þ þ A cosð2ptÞ � e�1=2d cos 2pt � 1
2d

� �� 	
� AR cosð2pt þ /RÞ: (15)

We can determine AR from Eq. (15), which, with help of Eq. (14), can
be written as

A2
R ¼ A2

r þ A2 e�1=d � 2e�1=2d cos
1
2d

� �� 	

þ2AAse
�1=2d cos /þ 1

2d

� �
: (16)

From this expression, it follows that AR depends on A, d, and (implic-
itly) on s. When either A or d is varied, AR can be kept constant as
long as s is co-varied. Moreover, based on Eq. (16), we expect the larg-
est deviation of AR from Ar when d is large. Contrarily, in the limit of
d! 0, the Stokes boundary layer becomes infinitely thin, such that
the flow conditions at z¼ 1/2 are equal to those in the bulk. In this
limit, the oscillating channel flow becomes equivalent to the oscillating
box, such that AR¼ Ar.

We have previously hypothesized that the oscillating channel
flow has an additional degree of freedom compared to the oscillating
box: the relative excursion between the fluid and the boundaries.
Filling in As ¼ 0 in Eq. (16) yields the relative excursion between the
undisturbed flow at the particle center and the wall:

AR;wall ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�1=d � 2e�1=2d cos

1
2d

� �s
: (17)

This quantity is related to the typical shear rate to which the particle is
exposed and is only a function of A and d. So, when AR is kept con-
stant, by co-varying A and s, the shear at the position of the particle
changes due to the variation in A. So, in the oscillating channel flow, s
cannot be varied without changing AR or the typical shear rate.
Contrarily, for the oscillating box, the walls and bulk fluid move in
unison, such that AR;wall ¼ 0. The aforementioned shear is thus absent.
When A and s are now co-varied, such that AR is kept constant, the
relative fluid motion around the particle is also constant. So, s is not a
relevant parameter for the oscillating box, as its variation leads to the
same relative flow around the particles.

As a consequence of the additional degree of freedom in the oscil-
lating channel flow, the number of dimensionless quantities cannot be
reduced, and three quantities (AR, d, and s) are needed to describe the
system. The local flow conditions around the particles are described by
AR and d. Therefore, a comparison of the oscillating box and the oscil-
lating channel flow at constant values of AR and d implies that the
local flow conditions around the particles are similar in both systems.
The extra degree of freedom can then be explored through variation of
s. Note that changing the value of s, while keeping AR and d constant,
implies that the value of A also changes accordingly.

C. Numerical method

The code used in this study is identical to the one used by Van
Overveld et al.,15 and a related version was recently also used by
Shajahan and Breugem.27 Moreover, it is similar to the one used by
Mazzuoli et al.16 These sources contain a more extensive description
and may be useful to the interested reader. The fluid phase is solved in
the whole domain on a uniform Cartesian grid with grid spacing
D=16, such that flow structures can be resolved on a sub-particle level.
This resolution is similar to those used by, for example, Mazzuoli
et al.16 and Klotsa et al.,14 and it was previously determined to be suffi-
cient to capture the particle dynamics.15 In the horizontal directions,
the periodic boundary conditions [see Eq. (8)] are used, with a domain
size of Lx � Ly ¼ 15� 20 particle diameters. This size is chosen to
keep computational costs relatively low while minimizing the effects of
periodic boundary conditions. For the majority of simulations
(� 90%), the bulk fluid excursion length A is smaller than half the
domain length, that is, A< 10. For the simulations where A> 10, we
have elongated the domain to Lx � Ly ¼ 15� 40 to guarantee that
there is no overlap of the wakes (with approximate length A, see Van
Overveld et al.15) upstream and downstream of the particles. In other
words, the interaction of particles with their own wakes through the
periodic boundaries is minimized. We have verified that for A � 10,
the difference between the two domain sizes in equilibrium is minimal:
derived quantities such as, for example, AR and the mean gap between
the particles, are affected less than 1%. This difference is sufficiently
small such that it does not affect the conclusions of this study. For the
z direction, the no-slip boundary condition Eq. (7) is enforced at z¼ 0.
The stress-free boundary condition Eq. (9) is enforced at z¼ 5, such
that effectivelyH¼ 10.

Each particle is represented by 746 Lagrangian points distributed
over a spherical shell. Furthermore, the Lagrangian points have a fixed
position with respect to the particle center. At each point on the shell,
a force is added to the fluid such that the local flow and surface veloci-
ties match. This is done according to the second-order accurate
immersed boundary method (IBM) by Breugem.26

The dynamics of both the fluid and particles are obtained by inte-
grating Eqs. (6), (11), and (12) over time using an explicit three-step
Runge–Kutta scheme,28 embedded in a pressure-correction scheme.
The time step Dt for each simulation satisfies the von Neumann stabil-
ity criterion.26 Additional restrictions are added to the time step, to
ensure that each oscillation is fully and symmetrically resolved. The
total number of time steps per oscillation period, 1=Dt, is an even inte-
ger. In practice, the number of time steps per oscillation ranges from
400 (for d � 0:18) to 11 700 (for d � 1:0), with most simulations hav-
ing 1000–3000 time steps per oscillatory period. We have verified that
the relevant quantities are not particularly sensitive to changes in the
time step. For example, differences in the particle excursions and aver-
aged vorticity are below 1% and 15%, respectively, upon decreasing
the time step up to two orders of magnitude. Similarly, the topology of
the steady streaming flows is insensitive to changes in Dt.

The interaction between the particles and the bottom is
accounted for by a soft-sphere collision model, based on a spring-
damper model.29 The same model is used for particle-particle colli-
sions, but these are anyway absent in our simulations. We set the dry
coefficients of restitution in the normal and tangential directions to
the collision as en ¼ 0:97 and et ¼ 0:39, respectively. These values are
previously used to describe an oblique particle-wall collision between
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glass materials.29 Similar values are used by Shajahan and Breugem27

and Mazzuoli et al.16 The exact values of these coefficients are likely
irrelevant because particle-bottom friction is neglected in our simula-
tions (lc ¼ 0), and because we are primarily interested in cases where
particles are always in contact with the bottom. Additionally, a lubrica-
tion correction model is used to resolve forces on particles at positions
where the space between the particle and the bottom is smaller than
the grid size. We refer to the work of Costa et al.29 for more details.

At the start of each simulation, two particles are initialized on the
bottom in a side-by-side configuration such that the line between their
centroids is perpendicular to the oscillation direction. The initial dis-
tance between them is varied per simulation since it should be close to
the equilibrium distance to save computational costs.

The specific parameter values used in our simulations are given
below. A concise overview is given in Table I, where additionally an
indication of the parameter values used in other relevant studies is
given. In our simulations, we consider values of d equal to
1=1:0; 1=1:25; 1=1:5; 1=2:25; 1=3:25; 1=4:5, and 1=5:5, here given as
reciprocals because 1=d is set in the code. The simulations for the
oscillating box with 1=5:5 	 d 	 1=1:5 are the same as used by Van
Overveld et al.15 The largest two values, d ¼ 1=1:25 and 1=1:0, have
been added to extend the parameter space. From here on, we refer to
the (approximate) decimal form of d, since it allows for a more
straightforward comparison between simulations. A value of d ¼ 1:0
(i.e., the Stokes boundary layer thickness equal to the particle diame-
ter) could correspond to sediment grains with a diameter of 800lm
(coarse sand) or 400lm (medium sand), submerged in water and
forced at a frequency of 0:50 or 2:0 Hz, respectively.30 We start with
the density ratio s¼ 7.50, which is identical to that used by Klotsa
et al.,7 Klotsa et al.,14 and Van Overveld et al.,15 and similar to s¼ 7.8
used by Wunenburger et al.6 Later, when the effects of Ar and A are
investigated separately, s is lowered up to 2.65, which is used by
Mazzuoli et al.16 to simulate sediment grains. The excursion length of
the bulk flow A is varied between, approximately, 0.37 and 21.2. The
corresponding values of the Reynolds number of the oscillatory
boundary layer, Red ¼ A0xd0=� ¼ 2A=d, are always below 100. This
is well below the onset of intermittent or turbulent regimes, which
occur around Red � Oð103Þ.31 Our results thus always correspond to
the regime where the flow is laminar, while exhibiting non-linear
effects through, for example, steady streaming flows.

III. RESULTS ON PARTICLE DYNAMICS

In this section, we describe the differences in particle dynamics
between the oscillating box and oscillating channel flow. These
dynamics are the result of particle–fluid interactions and are thus
dependent on the flow around the particles. In particular, the

equilibrium configuration of the pair is determined by the averaged
steady streaming flow. If these flows are significantly different in both
systems, we can then expect differences in the particle motion.

The steady streaming flows are typically described using vorticity
patches and often presented in two-dimensional slices of the domain
(see, e.g., the work by Klotsa et al.7) Here, we consider the flow field
characteristics in all three coordinate directions. On the one hand, it is
found that the vorticity in the horizontal xy-plane relates to the equi-
librium configuration and dynamics of the particles.15 On the other
hand, we are interested in the effect of the velocity shear in the vertical
z direction on the steady streaming flow. Even though the residual of
the Stokes boundary layer itself is zero after averaging over an oscilla-
tory period, it can still affect the non-zero steady streaming flow.

Specifically, we visualize the three-dimensional vortex structure
of the flow, averaged over one oscillation period, using isosurfaces
of the k2 criterion, a method introduced by Jeong and Hussain.32

Figure 2 (Multimedia view) shows the vortex structures in the oscillat-
ing box and oscillating channel flow, for s¼ 7.50 and d � 0:67. The
value of d is relatively large to clearly illustrate the effect of the Stokes
boundary layer. Two different values of the relative amplitude AR

(AR � 1:2 and 2.7) are chosen to allow for a comparison between the
oscillating box and oscillating channel flow at similar flow conditions
around the particles. These two values of AR roughly correspond to
the viscous- and advection-dominated regime in the oscillating box,15

for which, we recall that AR¼ Ar.
In Fig. 2(c), half of a ring-like vortex structure is found on the

upstream and downstream sides of each particle. These coherent struc-
tures correspond to the half vortex rings discussed by Klotsa et al.14

Also for higher AR values in the oscillating box, shown in Fig. 2(c), do
the main vortices stay close to the particles. These structures are
stretched in the streamwise direction with respect to the case with
lower AR due to the increase in relative excursion length. Similar struc-
tures are found for the oscillating channel flow for a similar AR value,
shown in Fig. 2(c). However, the surfaces are more stretched and elon-
gated diagonally upward, away from the particles and bottom wall.
The height-dependent stretching of the vortices is a reflection of the
vertical gradients in the flow field in the oscillating channel flow: the
typical excursion length of both the flow and the vortices increases
with distance to the bottom.

The structures in the oscillating channel flow with AR � 1:24
[Fig. 2(c)] and in the oscillating box with AR � 2:67 [Fig. 2(c)] look
very similar. However, there is an important difference close to the
bottom. There, the streamwise extension of the structures is increased
for the oscillating box, while for the oscillating channel flow, it is
almost zero. For the oscillating channel flow at higher AR, shown in
Fig. 2(c), the half-rings around the particles are further elongated in

TABLE I. Range of values of dimensionless numbers considered in relevant previous studies and in this study. The parameter AR represents the particle excursion length rela-
tive to the undisturbed flow at the particle center, as defined in Eq. (16). Note that for the oscillating box, AR ¼ Ar.

System type s d A AR

Klotsa et al.14 Oscillating box 6:9–7:5 0:11–0:45 0:20–6:6 0:073–3:0
VanOverveld et al.15 Oscillating box 2:65–7:50 0:18–0:67 0:14–16:2 0:245–9:2
Mazzuoli et al.16 Oscillating channel flow 2:46–2:65 0:52–1:89 12:1–24:8 �5:4
This study Both 2:65–7:50 0:18–1:00 0:37–21:2 0:18–9:2
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the streamwise direction than for the other three cases, but this elonga-
tion remains restricted close to the bottom. In addition, thin “plumes”
appear on both streamwise sides of the particles. These plumes are
connected to the bottom close to the particle and are angled upward
and away from the particles.

All in all, Fig. 2 illustrates that the averaged flow fields close to the
particle pairs are affected by the vertical velocity gradients in the oscillat-
ing channel flow, especially for large AR-values. In the rest of this sec-
tion, we address how the differences in steady streaming flow are related
to differences in the equilibrium state of the system. We consider the
streamwise particle motion, mean particle separation, and spanwise par-
ticle motion, as a function of AR and d, while keeping s constant.

A. Streamwise particle motion

First, we present the results on the streamwise particle motion as
a function of A, for s¼ 7.50 and different values of d. Figures 3(a) and
3(b) show the normalized excursion length of the particle relative to
the bulk flow Ar and relative to the undisturbed flow at the particle
center AR, respectively. In both cases, we compare the simulations for
the oscillating channel flow against those from the oscillating box,
which otherwise have identical settings. Note again that AR ¼ Ar for
the oscillating box.

For both systems and AR � 5, the relative amplitudes are propor-
tional toA, as indicated by the dashed lines. AroundAR � 5, this propor-
tionality breaks down, as can be seen by the increasing distance between
the symbols and the dashed line. This deviation is due to a superlinear
increase in As [the absolute particle excursion length, see Eq. (13)] with A
and is also found in experiments alike to our simulations.23,33

The behavior of As can be understood based on the local, ambient
flow around the particle, which is characterized by the particle
Reynolds number Rep ¼ A0RxD=� ¼ 2AR=d

2. As AR increases, so
does Rep. When AR ¼ 5, the typical values are Rep � 50 for d � 0:44,
and Rep � 200 for d � 0:22. For these values of Rep, the drag coeffi-
cient becomes larger than what would be expected from Stokes’ law
(based on uniform flow). For example, the drag coefficient of a sphere
in uniform flow at Rep ¼ 100 is about 4.4 times larger than the value
obtained from linear (Stokes) drag.34,35 This non-linear increase in the
drag causes the particles to move more with the surrounding flow, and
as a result, the relative amplitudes are lower than expected from the
linear scaling.

Additionally, at large values of A, the particles sometimes lose
contact with the bottom wall. These simulations are indicated with
gray symbols in Fig. 3 and subsequent figures. We stress that the
assumption of two-dimensional particle motion is violated, and these

FIG. 2. A three-dimensional view of the oscillation-averaged vortex structures using the k2-criterion
32 (isosurfaces of k2 ¼ �2� 10�3, chosen slightly below zero for visuali-

zation purposes) around the particle pairs for d � 0:67 and s¼ 7.50. The colors correspond to the logarithm of the velocity magnitude. (a) Oscillating box, AR � 1.18, A �
3.33; (b) Oscillating channel flow, AR � 1.24, A � 3.33; (c) Oscillating box, AR � 2.67, A � 7.78; and (d) Oscillating channel flow, AR � 2.78, A � 7.78 (Multimedia view:
https://doi.org/10.1063/5.0115487.1)
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results should thus not be considered when drawing conclusions using
the theoretical framework outlined in Sec. IIB. In some extreme cases,
the particles are lifted from the bottom for as much as 50% of each
oscillation period, reaching a maximum height of 0.15 (equivalent to
15% of the particle diameter). Nonetheless, the vertical particle motion
is only found in the oscillating channel flow, which implies that it is
due to the vertical velocity gradients. In fact, it is well known that a
shear flow can exert a net lift force on a sphere.36,37 For low particle
Reynolds numbers, Saffman38 proposed that the (dimensionful) lift
force on a small sphere in a uniform shear flow with shear rate _c is
equal to K 0qf A

0
RxD2 ffiffiffiffiffi

_c�
p

, where K 0 � 81:2. This expression can be
applied to the oscillating channel flow for large values of d, that is,
when the Stokes boundary layer resembles a shear flow on the scale of
the particle. For the maximum shear rate, we use _c ¼ Ax=d, which is
derived from the analytical velocity profiles in Appendix A. The lift
force, using the same nondimensionalization as the other forces on the
right-hand side of Eq. (11), is then given by KAR

ffiffiffiffiffiffiffiffiffiffiffiffi
ðd=AÞ

p
=s, where K

is a constant.
A particularly relevant quantity for the vertical particle motion is

the ratio between the upward lift force and the net downward force
(gravity minus buoyancy). This ratio is proportional to ARC

ffiffiffiffiffiffiffiffiffiffiffiffi
ðd=AÞ

p
=

ðs� 1Þ. So, for increasing values of AR, and the other parameters kept
constant, the lift force becomes larger with respect to gravity. Once it
gets sufficiently large to overcome the net downward force, the particle
gets lifted, which happens for the gray markers in Fig. 3.

The proportionality (i.e., the ratio Ar=A) in Fig. 3(a) clearly
depends on d. For small values of d (d � 0:5, for the oscillating box
indicated by blue symbols in Fig. 3), the values of Ar in both systems
are almost identical for a given value of A. For example, empty
square symbols fall on top of the blue square symbols. In these cases,
the Stokes boundary layer is sufficiently thin, such that the particle
mainly “feels” the bulk flow. Contrarily, for higher values of d
(d � 0:5, for the oscillating box indicated by red symbols in Fig. 3),
the values of Ar in the oscillating channel flow clearly differ from
those of the oscillating box. In this regime, the Stokes boundary layer
is sufficiently thick such that the particle feels a non-uniform

velocity profile over most of its height. The discrepancy in the values
of Ar then emerges, because the streamwise particle motion is gov-
erned by the local, non-uniform ambient flow, whereas Ar relates the
particle motion to the bulk flow.

When considering AR, in Fig. 3(b), the symbols from the oscillat-
ing channel flow (empty symbols) agree with those of the oscillating
box (filled symbols) for all values of d and A considered. This is not a
trivial result, because for given values of d and A, both the ambient
(undisturbed) flow and the absolute particle motion are not the same
in both systems. Still, the relative motion between the two is such that
AR has a similar value in both systems. The good agreement between
the systems supports our choice to use the same relative excursion
length AR in both.

Due to the good agreement in values of AR between the data sets
in Fig. 3(b), we expect that AR is described by the same scaling in both
systems. For the oscillating box, the empirical scaling Ar � A=d0:5 was
proposed by Van Overveld et al.15 However, this scaling fails to accu-
rately describe the data for the additional, larger d values (d ¼ 0:8 and
1.0) considered here. We propose a more general relationship between
AR and A based on theoretical arguments following the analysis of the
translation of a small spherical particle in an unbounded oscillating
flow at low Reynolds numbers. The trajectory of such a particle is
described by the Basset–Boussinesq–Oseen equation, which is analyti-
cally solved in Appendix B. This yields an expression for the ratio
AR=A such that

Fðs; f ; dÞ � AR

A
¼ 2ðs� 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð9f dÞ2ð2f dþ 1Þ2 þ ð9f dþ 2sþ 1Þ2
q ; (18)

where f is a unknown scalar that corrects for the presence of the
bottom.

In Fig. 4, we have scaled AR with 1=Fðs; f ; dÞ, after which the
data collapse onto the identity line for all values of d considered. The
correction factor f¼ 1.5 is empirically determined and implies that
the viscous drag on the particles is approximately 1.5 times larger com-
pared to the drag in an unbounded system. Similar values for f have

FIG. 3. (a) The particle excursion length relative to the bulk flow Ar [given by Eq. (14)] and (b) the particle excursion length relative to the undisturbed flow at the height of the
center of the particle AR [given by Eq. (16)], both as a function of the absolute excursion length of the bulk flow A. For Ar, the data of the oscillating channel flow (empty sym-
bols) agree with those of the oscillating box (filled symbols) for d < 0:5 (in blue) but not for d > 0:5 (in red). For AR, the data from both systems agree well. The dashed lines
have slopes of 1 dec/dec. Cases where the particles lose contact with the bottom are marked in gray.
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been found for slightly different systems in previous studies, such as
the factor f¼ 1.7 for the drag on a spherical particle moving close to a
wall under influence of a Couette flow.39 Alternatively, for a sphere
moving close to a wall in a quiescent fluid, the drag force scales as
�ln ðw=DÞ, with w the gap between particle and wall.40,41 As w tends
to zero, the drag diverges to infinity. We stress that our reported value
f¼ 1.5 is likely not a universal constant, but that it depends on the
interaction between the particle and bottom. In the current numerical
method, the separation between the particle and bottom is ill-defined.
On the one hand, this is due to the spring-damper model that allows
for slight overlap of particle and bottom.29 On the other hand, this is
due to the non-sharp particle–fluid interfaces in the immersed bound-
ary method used here.26 Nevertheless, this value of f signifies that the
bottom plays an important role in the streamwise particle motion,
even in the oscillating box.

B. Mean particle separation

The (normalized) mean gap between the particles L as a function
of AR and d is shown in Fig. 5(a) for both systems. For the oscillating
box, the relation

L � 3:0d1:5 þ 0:03A3
R; (19)

holds. This relation gives a transition around AR � 2 between a vis-
cous- and an advection-dominated regime.15 In the viscous-
dominated regime, the vorticity that is generated around the particles
stays close to the pair, before it dissipates due to viscosity. In the
advection-dominated regime, there is an enhanced advection of vortic-
ity into long tails in the streamwise direction. This redistribution of
vorticity leads to topological changes in the residual flow and hence to
changes in the particle dynamics. For AR � 2, the term 3:0d1:5 can be
subtracted from L [shown in Fig. 5(b)], such that most filled symbols
collapse onto a single curve for all values of AR. Only the cases with
the largest value of d (d ¼ 1:0) are an exception to the collapse, with
lower-than-expected values of L, especially for AR < 1. Above the
transition, the last term of Eq. (19) starts to dominate, such that the
gap rapidly grows as L / A3

R. This significant increase in the mean
gap does not occur for the oscillating channel flow. Instead, for low d
(d � 0:44), the data (in terms of L� 3:0d1:5) collapse onto a different
curve that is weakly dependent on AR and converges to a plateau at
L� 3:0d1:5 � 0:8. The major difference with the oscillating box is
thus the absence of a significant gap increase. However, we have not
been able to isolate the physical mechanism that leads to a smaller
increase in L in the oscillating channel flow, compared to the oscillat-
ing box.

Nonetheless, when d � 0:22 and AR � 2, the data from both sys-
tems (i.e., the empty and filled symbols) show good agreement. This is
expected because, in the limit of d! 0, the particles feel only the bulk
flow and the two systems are equivalent. For small values of d
(d � 0:22), the Stokes boundary layer is sufficiently thin, such that it
hardly affects the mean gap.

FIG. 5. (a) The mean spacing between the particles L as a function of the relative excursion length AR, for s¼ 7.5. Lines are added between symbols to guide the eye. (b)
The same data are adjusted by subtracting 3:0d1:5, such that the filled symbols, corresponding to the oscillating box, collapse onto a curve. Note the divergence for AR � 2
between the data from the oscillating box and the data from the oscillating channel flow (empty symbols). Cases where the particles lose contact with the bottom are shown in
gray.

FIG. 4. The particle excursion length relative to the undisturbed flow at center parti-
cle height AR, scaled with Fðs; f ¼ 1:5; dÞ [see Eq. (18)], as a function of the
amplitude of the bulk flow A, for s¼ 7.5. The symbols are identical to those in Fig.
3. The data from the oscillating channel flow (empty symbols) and the oscillating
box (filled symbols) collapse onto the identity line for all values of d and A consid-
ered, thus AR ’ AFðs; f ; dÞ.
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When d increases (d � 0:31 and 0.44), the mean gap in the oscil-
lating channel flow gets a weak negative dependence on AR [see Fig.
5(a)]. The particles are thus drawn closer to each other when their
excursion length increases. This phenomenon is not found for the
oscillating box and is addressed further in Sec. IV.

Upon increasing d further (d � 0:67), for AR � 1:0, the typical
values of L increase, but do not become much larger than approxi-
mately 2. The particle interactions are weak in this part of the para-
meter space, where AR is small and d is large [e.g., for the circles,
right-pointing triangles, and crosses in Fig. 5(a)]. As a consequence,
the simulations take long to converge: it typically takes hundreds of
oscillation periods for the system to reach an equilibrium state.

In fact, due to the high computational costs of the slow-
converging simulations, instead of simulating until the system reaches
an equilibrium, we extrapolate the numerical particle trajectories to
obtain the numerical values of the quantities that describe the equilib-
rium configuration (e.g., L). Details for the fitting functions can be
found in Appendix C.

The increase in the convergence time is due to the weakness of
the steady streaming flow, which is responsible for the particle interac-
tion. The weakness can be quantified by defining the time-averaged
vorticity in the xy-plane going through the particle centers

hxzi ¼
ðtþ1
t

@uy
@x
� @ux
@y

� �����
z¼1=2

dt0

� 1
N

XN
i¼0

@uy
@x
� @ux
@y

� �����
z¼1=2

; (20)

in which the integral is replaced by an average of the flow fields at
N¼ 20 times within a single oscillation period. Only a few samples are
sufficient to give a good representation of the average flow fields, given
that the period is sampled symmetrically. For example, the typical

difference in the averaged vorticity is approximately 3% when 10
instead of 20 samples are used.

In Fig. 6, the time-averaged vorticity is shown for the three sim-
ulations with d ¼ 1:00 (circles in, e.g., Fig. 6). For the largest excur-
sion length (AR � 1:48), the vorticity distribution around each
particle is qualitatively similar to that found in previous work.14,15,42

Upon halving the value of AR, the vorticity magnitude in the “outer”
patches reduces, such that only a thin layer remains around each
particle, corresponding to the particle boundary layer in which most
vorticity is produced. When halving AR again, the vorticity dimin-
ishes to almost zero in the whole plane, such that there is nearly no
steady streaming flow. For the smaller values of d, a similar decrease

FIG. 6. The time-averaged proxy for the vorticity in the xy-plane going through the centers of the particles for the oscillating box with d ¼ 1:0, corresponding to the filled circles
in Fig. 5. Note the logarithmic color scale.

FIG. 7. The space–time-averaged vorticity C [see Eq. (21)] as a function of Aa
R=d

b.
Least squares analysis on the logarithmic values yields a � 1:96 0:2 and
b � 0:76 0:2 for the data to collapse onto a line. The dashed line has a slope of
1 dec/dec.
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in the vorticity is found, but not as drastic as shown in Fig. 6 for
d ¼ 1:0.

We estimate the total strength of the steady streaming flow using
the spatial average of the absolute value of the time-averaged vorticity,
defined as

C � 1
LxLy

ð ð
jh< xzij dxdy: (21)

The value of C is shown in Fig. 7 as a function of Aa
R=d

b, where a and
b are fitting exponents computed so that the data collapse onto a line
with a slope of 1 dec/dec. We consider only simulations with AR � 2,
to focus on the simulations for which the time-averaged vorticity
diminishes to almost zero, as in Fig. 6. We obtain that

C � A1:9
R =d0:7: (22)

The data collapse suggests that the total steady streaming flow is weak
when either viscous dissipation is strong (large d) or the production of
vorticity is weak (small AR). In either case, the flow field approaches
the Stokes regime in which non-linear effects do not play a role.
Indeed, the cases for which the steady streaming flow is weak or
almost absent correspond to the lowest values of C (typically,
C � 5� 10�2). Nonetheless, the simulations with such low values of
C should be considered with care since most have not reached an equi-
librium configuration due to the long convergence times. It is mainly
for these simulations that the extrapolation of the numerical particle
trajectories needs to be performed (as mentioned before with an
approach discussed in Appendix C).

For the simulations in Fig. 7, the particle Reynolds number
Rep ¼ 2AR=d

2 varies between 0.7 and 10, that is, with a spread of more
than an order of magnitude. The relatively low values of the particle
Reynolds number indicate that viscous effects are important. However,
Rep is not the dimensionless parameter that determines the value of C.

In addition to the physical limitations, the current numerical
method becomes more expensive as C becomes smaller, since the
number of time steps per oscillation period needs to increase rapidly

to account for the increasing viscous dissipation.26 The combination
of smaller time steps and longer convergence times severely limits a
further exploration toward higher values of d.

C. Spanwise particle motion

In both systems, the particles oscillate relative to each other, perpen-
dicularly to the bulk flow. This oscillation of the gap can be characterized
in terms of the (normalized) amplitudes of the oscillations that occur, pri-
marily, at twice and four times the driving frequency. These amplitudes
are denoted by Ag and Bg, respectively, as defined in Appendix C. When
AR � 2, these amplitudes typically decrease with d and increase with AR.
Furthermore, when scaled with d2, as shown in Fig. 8, the amplitudes par-
tially collapse onto a line when plotted as a function ofAR.

Specifically, for AR � 2, the data for the oscillating box (for which
AR¼ Ar) are described by

Ag ¼ CA
AR

d

� �2

; (23a)

Bg ¼ CB
AR

d

� �2

A2
R; (23b)

with CA � 5� 10�4 and CB � 8� 10�6. The data for the oscillating
channel flow are described by similar relations

Ag ¼ C0A
AR

d

� �2

A0:5
R ; (24a)

Bg ¼ C0B
AR

d

� �2

A2:5
R ; (24b)

with C0A � 3� 10�4 and C0B � 4� 10�6. Both scalings in Eq. (24)
contain an additional factor A0:5

R compared to the scalings for the oscil-
lating box. Equation (23) were presented previously by Van Overveld
et al.,15 but the scaling for Bg had an additional factor d�0:5. Based on
the available data, both variations are plausible. Here, we have chosen

FIG. 8. The amplitude of (a) the oscillation of the gap at twice the driving frequency Ag and (b) the oscillation of the gap at four times the driving frequency Bg as a function of
the relative particle excursion length AR, for s¼ 7.5. The symbols are identical to those in Fig. 5. The amplitudes have been multiplied by d2 such that the data for AR � 2 col-
lapses. Two distinct regimes, with a transition around AR � 2, are found for both systems. The dotted and dashed lines correspond to Eqs. (23) and (24), respectively, with
their slopes annotated in the figure.
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for the version in Eq. (23), since it yields an identical difference in
functional dependency for Ag and Bg between the two systems.

For AR � 2, the data for the oscillating box decrease in a scattered
manner due to the widening of the gap as L � 3:0d1:5 þ 0:03A3

R.
15 As

the distance between the particles increases, their instantaneous inter-
actions become weaker, leading to smaller amplitudes. Analogously,
the increase in Ag and Bg for the oscillating channel flow is due to the
particles staying in each other’s vicinity. In this system, the gap does
not widen as drastically, as seen in Fig. 5. The increase in the instanta-
neous particle–fluid interactions with AR then results in larger oscilla-
tions of the gap.

IV. EFFECTS OF VARIATIONS IN THE DENSITY RATIO
A. Effect on particle dynamics

The previous work for the oscillating box by Van Overveld
et al.15 indicated that the mean state of the system (including the mean

gap value L) is governed only by d and AR. Variation of the density
ratio s affected only the value of AR and hence lead to the same scalings
and proportionality constants. Contrarily, we have hypothesized that
the mean state of the oscillating channel flow has an additional degree
of freedom (see Secs. I and II B). Here, we show how this extra degree
of freedom affects the equilibrium state by varying the particle–fluid
density ratio s. We present the results from simulations with s equal to
2.65, 4.00, 6.00, and 7.50. The value s¼ 2.65 is commonly used for sed-
iment transport,16 while s¼ 7.50 corresponds to stainless-steel spheres
in water-like fluids.14 In all other aspects, the simulations are identical
to those from Sec. III B with d � 0:22. This particular value is chosen
because the simulations in this part of the parameter space have a rela-
tively low computational cost, allowing for an extensive scan over val-
ues of s and AR.

The mean values of the gap L as a function of AR are shown in
Fig. 9. For AR � 1, the mean gap decreases with increasing relative
excursion length. The same effect is previously also seen for a range of
d-values (d � 0:22, 0.31, and 0.44) in Fig. 5. In Fig. 9, the gradient of
the slope becomes more negative when s is small, that is, for lighter
particles. Overall, the mean gap approximately follows:

L � 0:4ð Þs=ðs�1Þ 3:5
AR

� �1=ðs�1Þ
; (25)

where the numbers are empirically determined. The set of dotted lines
in Fig. 9 shows that this relation indeed describes the data. Note that
the symbols and lines converge at AR � 1:4. The explicit dependence
of L on both AR and s in Eq. (25) is a significant difference with the
oscillating box.15 In that system, the values of L vary by less than 0.1
for AR � 1, as shown by the blue symbols in Fig. 9. In other words, the
mean gap is effectively only a function of d in the viscous-dominated
regime (AR � 1).

For 1:4�AR � 3:0, the data from the oscillating channel flow in
Fig. 9 collapse for all density ratios without any rescaling. In this range,
the value of L rapidly increases with AR up to L � 1:0 when AR � 3:0.
At the lower end of the collapse, around AR � 1:4, the mean gap has a
minimum at L � 0:41� 0:46 for each value of s. Note that the typical
variations in L (between 0.4 and 1.0) are relatively small compared to
those found for the oscillating box in Fig. 5 (between 0.5 and 3.0).

FIG. 9. The mean value of the gap L as a function of AR, for d � 0:22 and different
values of s, for the oscillating channel flow (black and red). The gray symbols indi-
cate the simulations in which particles lose contact with the bottom, while the
dashed lines indicate above which values of AR the pair becomes unstable and
the particles drift apart. The dotted lines correspond to Eq. (25) for each value of s.
The characters (a)–(f) are placed near the (red) symbols that correspond to subfig-
ures in Fig. 12, where flow fields are shown. The blue symbols correspond to the
oscillating box data for d � 0:22 and s¼ 2.65 (diamonds) or s¼ 7.5 (downward
pointing triangles).

FIG. 10. The amplitudes of the oscillation of the gap (a) Ag and (b) Bg as a function of AR, for d � 0:22 and different values of s. The symbols are identical to those in Fig. 9.
The dashed lines indicate the value of AR at which the pair becomes unstable and the particles drift apart.
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For AR � 3:0 in Fig. 9, the data diverge. For low values of s
(s¼ 2.65), the mean gap increases most with AR, whereas for higher
values (s¼ 7.50), the mean gap remains at approximately 1. Note that
in this part of the parameter space, the particles lose contact with the
bottom wall during as much as 25%–50% of each oscillation period.
Upon increasing AR, the lightest particles (s¼ 2.65) get affected first,
because the ratio between the upward lift force and the net downward
gravitational force [�ðAR=AÞC

ffiffiffiffiffiffi
dA
p

=ðs� 1Þ; see Sec. IIIA] is higher
for lower s values. When the particles get lifted from the bottom, the
particle pair can become unstable, after which the particles drift apart
in both the streamwise and spanwise directions. The gray-dashed lines
indicate the minimum values of AR at which the pairs become unstable
for each value of s. Even in elongated domains (15� 40) and starting
close to the expected equilibrium configuration, the particles drift
apart over typically 10� 50 oscillations.

In addition to the mean gap, we consider the oscillation ampli-
tudes of the gap at twice and four times the driving frequency, Ag and
Bg, respectively, in Fig. 10. For 1�AR � 3, the values of both Ag and
Bg increase by approximately a factor 2 when s decreases from 7.50 to
2.65, at otherwise equal value of AR. So, for these AR values, s only
affects the oscillation of the gap and not the mean gap itself.
Contrarily, for AR � 1, the data of both Ag and Bg collapse onto a sin-
gle curve quite well, without any rescaling. This means that, in this
regime, the oscillation of the particles in the spanwise direction is not
sensitive to variations in s.

According to Figs. 9 and 10, there are simulations [e.g., Figs.
9(a) and 9(b)] for which the streamwise and spanwise particle
translations (in terms of AR, Ag, and Bg) are similar, but the equilib-
rium configuration (in terms of L) is not. This means that the
change in L is due to a different physical mechanism. There are
two mechanisms that can play a role: the shear between bottom
and fluid (addressed in Sec. IV B) and the rotation of the particles
(addressed in this section).

Even without particle-bottom friction, the particles can rotate
around the x axis due to the vertical shear in the flow velocity. We
quantify the rotation of the particles around the x axis using the
maximum angular velocity xmax

s;x . Note that this quantity is non-
dimensionalized according to Eq. (10). The result is shown as a func-
tion of AR in Fig. 11.

For most simulations, the value of xmax
s;x does not significantly

vary with AR, but does depend on s. Based on Fig. 11, the angular rota-
tion scales approximately as xmax

s;x � s�0:5, whereas we expect it to
scale as d2=s, based on Eq. (12). An explanation on the discrepancy
between these scalings is absent. Still, for both the simulation data and
the theory, we find that xmax

s;x is independent of AR (or A).
Increased particle rotation was previously correlated with an

increase in the mean gap15 and could thus explain the increase in L at
low AR values in Fig. 9. As verification, we performed additional simu-
lations of the oscillating channel flow with s¼ 7.50, C ¼ 4:5, and
lc ¼ ½0:2; 0:4
. In these simulations, the particle-bottom friction deliv-
ers a torque that enhances the particle rotation up to xmax

s;x � 3:4,
which is significantly higher than the values in Fig. 11. The mean gap
is approximately 0.1 larger than when lc ¼ 0, which indicates that
particle rotation, induced by particle-bottom friction, increases the
mean gap. More additional simulations in which the particle’s
moment of inertia is (artificially) multiplied or divided by a factor 3,
yield values of L that differ only 0.01 from the base case. The increase
in L due to particle rotation is thus only small compared to the
increase due to lower values of s. Therefore, particle rotation is likely
not the only physical mechanism that causes the increase in the mean
gap.

B. Effect on flow fields

The differences in the equilibrium configuration, as shown in
Sec. IV A are the result of differences in the particle–fluid interactions.
Now that the particle dynamics are described, we investigate whether
the variation of the density ratio also leads to changes in the steady
streaming flows. Note that changing the value of s, while keeping AR

and d constant, implies that A changes accordingly, because there are
only three degrees of freedom that define the system. For the flow, it is
more relevant to consider A instead of s, because A is directly related
to relative movement between bottom and (bulk) flow, and thus to the
vertical shear in the velocity field.

We visualize the time-averaged vorticity field in the horizontal
plane at mid-particle height z¼ 1/2 in Fig. 12. Horizontally aligned
plots have the same value of s, while A and AR both increase from left
to right. Vertically aligned plots have similar values of AR, whereas
diagonally aligned plots have identical values of A.

The comparison in Fig. 12 shows that the average vorticity
strongly depends on AR. To understand this, we recall that this vor-
ticity is produced in the particle boundary layer, where the velocity
shear scales with AR.

8 Upon increasing AR, the patches close to the
pair grow in magnitude and spatial extent. For the largest values of AR

considered here [Figs. 12(c) and 12(f)], the patches are elongated in the
oscillation direction and four additional patches emerge in the spanwise
direction. This confirms that the production of vorticity is determined
by the velocity shear in the particle boundary layers, which scales with
AR.

8

The elongation in the y direction was previously observed in the
oscillating box for AR � 1, when the advection of vorticity becomes
relatively important with respect to the dissipation.15 However, the
additional patches were not observed in the oscillating box system.

On the other hand, the average vorticity is hardly affected by var-
iations in A (or s) at constant value of AR. For low AR values [Figs.
12(a) and 12(d)], the patches close to the particles appear quite similar,
even though L varies by a factor 1.5. For high AR values [Figs. 12(c)

FIG. 11. The maximum (dimensionless) angular rotation of the particles around the
x-axis xmax

s;x as a function of AR for d � 0:22 and different values of s. The symbols
are identical to those in Fig. 9.
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and 12(f)], an increase in a factor 1.8 in A does affect the vorticity close
to the particles. For large A, the patches are elongated further in the
streamwise direction, and the vorticity magnitude inside them is
higher, especially, in the parts further away from the pair. Note that
despite these differences in the flow fields, the value of L is not signifi-
cantly different.

To make a stronger quantitative comparison and better illustrate
these points, we calculate the time-averaged vorticity hxzi [see Eq.
(20)] along the lines y¼ 0.75 and x ¼ L=4 (with values between x
� 0:11 and 0.17). The results are shown in Fig. 13. The positions of
the lines, as indicated in Fig. 12, include the vorticity patches that vary
between the cases, while they exclude the symmetry axes of the config-
uration and the thin layer of vorticity around each particle. The lines
at x ¼ L=4 lie precisely between the symmetry axis (x¼ 0) and the
particle surface (x ¼ L=2). Even though the exact position of the lines

is arbitrary, the interpretation of the results is not sensitive to small
changes in their positions.

In Fig. 13, the two dotted curves [corresponding to Figs. 12(a)
and 12(d)] have similar shapes and magnitudes. Especially close to the
pair (around x¼ 0 and y¼ 0), the curves overlap. Further from the
origin, the gray curve is shifted further outward with respect to
the black curve. The same observations hold for the dashed curves,
which correspond to Figs. 12(b) and 12(e). So, for increasing values of
A, at constant AR, the time-averaged vorticity distribution is situated
further away from the pair. The vorticity patches shown in Fig. 12 are
thus elongated in both the streamwise and spanwise direction.

The solid curves in Fig. 13 have, on top of the outward shift, also a
significant difference in the vorticity magnitude. For example, the maxi-
mum vorticity of the two solid curves in Fig. 13(b) varies from a factor
0.5 at y � �2:5, up to a factor 1.4 at y � �0:5. These different

FIG. 12. The time-averaged proxy for the vorticity in the xy-plane going through the centers of the particles for the oscillating channel flow with d � 0:22, s¼ 7.50 (top row)
and s¼ 2.65 (bottom row). The plots are aligned such that vertically adjacent plots have (approximately) the same value of AR, while diagonally adjacent plots [(b) and (d) and
(c) and (e)] have the same value of A. Specific parameter values are given within each subfigure. The black arrows in (c) and (f) point to the additional patches that emerge at
high values of AR. The vorticity along the dotted lines is plotted in Fig. 13.
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magnitudes could be due to either redistribution or differences in the
production of vorticity. Hence, we average the (absolute) vorticity along
the two lines y¼ 0.75 and x ¼ L=4, and show the results as a function
of AR in Fig. 14. In addition, we have included an average over the full
horizontal plane, which is equal to C, as defined in Eq. (21).

The (total) vorticity in the plane is strongly dependent on AR,
scaling approximately with A1:75

R . This confirms that the production of
vorticity is coupled to the velocity shear in the particle boundary
layers, which scales with AR.

8 Contrarily, variation of A (or s) only
has a small effect on the spatially averaged vorticity. For example, at
AR � 1:7 (rightmost symbols in Fig. 14), the line-averaged vorticity
varies by only 4% and 9%, while the value of A nearly doubles.

Variation of A, at constant AR, does thus not affect the total amount of
vorticity, but rather redistributes it over the horizontal plane.
This redistribution can lead to differences in the particle–fluid inter-
actions and subsequently into differences in the mean gap. More
specifically, we have seen in Fig. 12 that for larger values of A, the
vorticity is spread further away from the particles and the mean gap
increases.

So, for the oscillating channel flow, the two excursion lengths AR

and A can be assigned to different physical mechanisms. While AR is
related to both the production and advection of vorticity, A sets the
vertical shear and can further enhance the transport while keeping the
total amount of vorticity unaffected. For the oscillating box, this latter
mechanism is absent.15

V. DISCUSSION

In Sec. IV, we have shown that the mean state of the system (e.g.,
L) is affected by particle rotation. The rotation is due to a net torque
on the particle, as a result of velocity gradients or particle-bottom fric-
tion, represented by the first and second term on the right-hand side
of Eq. (12), respectively. However, for most of our simulations, we
have neglected particle-bottom friction; an assumption that we discuss
first. Then, we extend the discussion to the influence of the density
ratio on the mean gap and the relevance of our results for different
parts of the parameter space.

Particle-bottom friction is characterized by the dimensionless
parameter lc=C [see Eqs. (11) and (12)], given that the hydrodynamic
lift can be neglected. Van Overveld et al.15 showed that simulations
where the particle-bottom friction is absent (lc ¼ 0) agree well with
experiments at relatively high frequencies,14 such that the oscillatory
acceleration is larger than the gravitational acceleration (C > 1). In
such experiments, strong particle chains have been found.7 Our

FIG. 13. The average vorticity hxzi along
the lines (a) y¼ 0.75 and (b) x ¼ L=4 for
the six cases (a)–(f) that are shown in Fig.
12. The black and gray curves correspond
to the cases with s¼ 7.50 and s¼ 2.65,
respectively. Note that the dashed curves
have approximately the same magnitude
and shape, especially close to the par-
ticles. The same holds for the dotted
curves.

FIG. 14. The magnitude of the time-averaged vorticity hxzi for the six cases shown
in Fig. 12, averaged over the lines y¼ 0.75 and x ¼ L=4. Additionally, the average
over the full xy-plane is shown, which is equivalent to C as defined in Eq. (21). The
black (s¼ 7.50) and gray (s¼ 2.65) symbols correspond to the black and gray
curves in Fig. 13, respectively.
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simulation results, with lc ¼ 0, thus also correspond to this particle-
chain regime. However, the friction needs to be incorporated to accu-
rately simulate systems where C is smaller, for example, for the
rolling-grain ripples.16

Alternatively, particle rotation can also be caused by the addi-
tional velocity gradient due to the Stokes boundary layer, as shown in
Sec. IVA. We can use these results to better understand situations
where particle-bottom friction cannot be neglected. Most likely, the
cause of the rotation is not important, but the subsequent particle–
fluid interactions are. Note that for the oscillating box, there is no
Stokes boundary layer that can induce a net torque on the particle.
The moment of inertia is then not a relevant quantity for the mean
equilibrium state of the system.15

Additionally, we have shown in Sec. IVB through variation in s, at
constant values of AR and d, that A is an important quantity for the dis-
tribution of the period-averaged vorticity over the horizontal plane. We
have shown that the mean gap is larger when the vorticity is smoothed
out over a larger part of the domain. This indicates that the (average)
attraction between the particles is larger when the vorticity is concen-
trated closely around the particles. This interpretation also agrees with
results from the oscillating box, where for small values of d, the vorticity
is concentrated in a thin layer around the particles.15 The mean gap in
these cases is also small and scales as L � d1:5.

In addition to the aforementioned differences, the other parame-
ter values in environmental settings can be different than in our simu-
lations. Hence, we discuss the accuracy and applicability of our results
in the different parts of the parameter space. In particular, when both
AR and d are small, L converges to the values found for the viscous
regime in the oscillating box. The Stokes boundary layer does not play
a large role in this part of the parameter space, and we indeed expect
the two systems to become equivalent.

Only when d is sufficiently large, that is, d0:7 �A1:9
R [see Eq. (22)],

does the viscous dissipation become important relative to the production
of vorticity, such that the formation of steady streaming flow is sup-
pressed. In such a case, the residual flow is almost zero and the subse-
quent interaction with the particles is weak. For the cases where the
steady streaming flow is extremely weak, L changes by only �10�3 per
oscillation period and typically thousands of periods are needed until a
quasi-steady state is reached, even when starting close to the equilibrium
configuration. Therefore, we expect that in this part of the parameter
space, particle pairs are extremely rare in environmental or laboratory
settings. Due to their weak interaction, the pair stability would be too
sensitive to small perturbations due to, for example, bottom roughness.

On the other hand, we have consistently found steady streaming
flows for AR > 1 in the oscillating channel flow, at every value of d.
Specifically for small d, the particles stay close together, where they
would drift apart in the oscillating box. For larger d, as is more com-
mon in environmental settings, the particle–particle interactions are
sufficiently large to reach an equilibrium state with a typical timescale
of �100 oscillation periods, based on values of the fitting parameter s
[discussed in Appendix C in Eq. (C2)]. For the formation of patterns,
however, different time scales could be relevant. For example, the
alignment of the pairs from parallel to perpendicular to the oscillation
direction could occur in fewer oscillation periods. Additionally, the
presence of other particles in denser systems could accelerate the
ordering processes, illustrated by, for example, the formation of parti-
cle chains in approximately 20 oscillation periods by Mazzuoli et al.16

In short, the ordering mechanisms for the oscillating box6,7,14

and for the initiation of rolling-grain ripples16 seem qualitatively simi-
lar, albeit with a large variation in strength and dependence on the
parameters governing the problem. The typically weak ordering mech-
anism at large d-values (at constant AR) would allow for, for example,
more tortuosity in longer sediment chains and the presence of defects
in the pattern. Both these effects are commonly observed in simula-
tions and experiments in this part of the parameter space.16,22,43

VI. CONCLUSIONS

In this paper, we have described the dynamics of a particle pair in
an oscillating channel flow and compared them to those of a particle
pair in an oscillating box. The results are obtained using direct numeri-
cal simulations, where the Navier–Stokes equations are solved in a
double-periodic domain with a no-slip bottom. The motion of the par-
ticles and their interaction with the fluid phase is accounted for using
the immersed boundary method.

The equilibrium states of the two systems have marked differ-
ences in the dynamics of the particles and the steady-streaming
flow around them. In the absence of particle-bottom friction, the
oscillating box is governed by two dimensionless parameters: the
normalized relative excursion length AR and the normalized Stokes
boundary layer thickness d. The particle dynamics in the oscillating
channel flow are governed by an additional dimensionless parame-
ter. The extra degree of freedom is represented by either the parti-
cle–fluid density ratio s, which controls the amount of particle
rotation, or the excursion length of the bulk flow A, which controls
the distribution of the period-averaged vorticity over the horizon-
tal plane. This latter mechanism has a major influence on the mean
gap between the particles.

In general, the oscillating box and oscillating channel flow are
different systems, even though the ordering mechanisms in both
systems are qualitatively similar. Results obtained in one system
cannot be directly translated to the other. Only in a limited part of
the parameter space, when both d and AR are small, can the find-
ings for the oscillating box be applied to the oscillating channel
flow. It is thus of paramount importance to discriminate between
the two systems and regions of the parameter space when compar-
ing seemingly similar phenomena such as the particle chains
described by Klotsa et al.7 and the rolling-grain ripples studied by
Mazzuoli et al.16

ACKNOWLEDGMENTS

We would like to thank the staff in charge of the Reynolds
cluster at the Delft University of Technology.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Timo van Overveld: Conceptualization (equal); Data curation (lead);
Formal analysis (lead); Investigation (lead); Methodology (lead);
Validation (lead); Visualization (lead); Writing – original draft
(lead). Wim Paul Breugem: Conceptualization (supporting);

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 113306 (2022); doi: 10.1063/5.0115487 34, 113306-16

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


Methodology (supporting); Software (lead); Visualization (support-
ing); Writing – review & editing (supporting). Herman Clercx: Con-
ceptualization (supporting); Formal analysis (supporting);
Investigation (supporting); Supervision (supporting); Writing – review
& editing (equal). Matias Duran-Matute: Conceptualization (equal);
Formal analysis (supporting); Investigation (supporting); Methodol-
ogy (supporting); Supervision (lead); Writing – review & editing
(equal).

DATA AVAILABILITY

The data that support the findings of this study are openly avail-
able in 4TU.ResearchData at http://doi.org/10.4121/20375364, Ref. 49.

APPENDIX A: ANALYTICAL VELOCITY PROFILES

We consider an unbounded oscillating flow over a horizontal,
fixed bottom at z¼ 0. A harmonically oscillating pressure gradient
rpe ¼ �cosð2ptÞŷ drives the flow with excursion length A and
angular frequency 2p (both dimensionless). This problem is a varia-
tion on Stokes second problem, given by

1
2p
@u
@t
¼ 1

2
d2r2uþ cosð2ptÞŷ; (A1)

with solution

u ¼ sinð2ptÞ � e�z=d sin 2pt � z
d

� �� 	
ŷ: (A2)

The fluid excursion at the height of the particle center is

xf jz¼1=2 ¼ 2pA
ð

ujz¼1=2dt

¼ �A cosð2ptÞ � e�1=2d cos 2pt � 1
2d

� �� 	
ŷ; (A3)

where the factor 2pA comes from the different scales used in the
nondimensionalization of u (with A0x) and x (with D), see Eq. (1).
The vertical shear is

@ u � ŷð Þ
@z

¼ � 1
d
e�z=d sin 2pt � z

d

� �
þ cos 2pt � z

d

� �� 	
; (A4)

such that, due to the non-dimensionalization of the velocity [see
Eq. (1)], the typical (dimensionful) shear rate is given by
_c ¼ Ax=d.

For an oscillating flow in a channel bounded by horizontal
plates at z¼ 0 and z¼H, the solution to Eq. (A1) is more complex.
It is given by

u ¼ < sinð2ptÞ þ cosh ð1þ iÞð2z �HÞ=2d½ 

cosh ð1þ iÞH=2d½ 
 ie2pit

� 	
ŷ; (A5)

in which <½…
 denotes the real part of the expression between the
brackets. The ratio H=d is related to the Womersley number, which
is used in, for example, the description of pulsatile blood flow.44 In
the limit of H=d� 1, the velocity in the range 0 	 z 	 H=2 con-
verges to that of equation Eq. (A2).

APPENDIX B: ANALYTICAL PARTICLE TRAJECTORY

Here, we present a derivation of the analytical particle trajecto-
ries, given in dimensional form, such that it matches the commonly
used formulation, for example, by Corrsin and Lumley.45 We con-
sider an external pressure gradient

$0p0 ¼ �A0x2qf e
ixt0ŷ; (B1)

that drives an oscillating flow, such that the velocity field is
described by

u0f ¼ �A0xieixt0ŷ: (B2)

We assume that the motion of a spherical particle immersed in
such a flow is described by

u0s ¼ �A0sxieiðxt0þ/Þŷ; (B3)

with As and / the excursion length and phase lag of the particle,
respectively. If the particle is sufficiently small, the flow can be
approximated by the undisturbed flow field of Eq. (B2). Only cases
at low Reynolds numbers are considered, such that Stokes drag
applies. The translation of the particle is then described by the
Basset–Boussinesq–Oseen (BBO) equation, based on fundamental
work from each of the authors.46–48 We use the form similar to that
given by Corrsin and Lumley:45

p
6

qsD
3 du0s
dt0
¼ 3pqf f �Dðu0f � u0sÞ �

p
6
D3$0p0

þ p
12

qf D
3
dðu0f � u0sÞ

dt0

þ 3
2
D2qf

ffiffiffiffiffiffiffiffi
pf �

p ðt0
t0

1ffiffiffiffiffiffiffiffiffiffiffi
t0 � s
p

dðu0f � u0sÞ
dt0

ds: (B4)

This equation equals the force on the particle to the sum of the
Stokes drag, the pressure gradient in the undisturbed flow, the
added mass, and the Basset history force. An a priori unknown fac-
tor f is added to the terms that model the viscous drag, that is, the
Stokes drag and the Basset history force. This factor accounts for
the enhanced drag on a sphere in vicinity of a wall.40 We expect
f¼ 1 for an unbounded domain and f> 1 for the systems consid-
ered in this study. The added mass likely also changes due to the
presence of a wall, but this effect will not be taken into account
here.

We now use expressions Eqs. (B1), (B2), and (B3) as ansatz in
Eq. (B4). For the treatment of the Basset force, we assume that the
system has reached a quasi-steady state, such that we can use the
limit

lim
t0!�1

ðt0
t0

eixsdsffiffiffiffiffiffiffiffiffiffiffi
t0 � s
p ¼ lim

t0!�1

ffiffiffiffiffi
p
ix

r
erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix t0 � t0ð Þ

p
 �
eixt0

¼ 1� ið Þ
ffiffiffiffiffiffi
p
2x

r
eixt0 ; (B5)

in which erfð� � �Þ is the error function. By equating the real and
imaginary parts of Eq. (B4), expressions for the particle excursion
length
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As

A
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9f dÞ2 2f dþ 1ð Þ2 þ 9 3f dþ 1ð Þ2

ð9f dÞ2 2f dþ 1ð Þ2 þ 9f dþ 2sþ 1ð Þ2

s
; (B6)

and phase lag

tan /ð Þ ¼ �18f d 2f dþ 1ð Þ s� 1ð Þ
ð9f dÞ2 2f dþ 1ð Þ2 þ 9f dþ 2sþ 1ð Þ 9f dþ 3ð Þ

; (B7)

are found. Finally, using Eq. (14), we obtain an expression for the
excursion length of the particle relative to the ambient flow

Fðs; f ; dÞ � AR

A
¼ 2ðs� 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð9f dÞ2ð2f dþ 1Þ2 þ ð9f dþ 2sþ 1Þ2
q : (B8)

APPENDIX C: EQUATIONS USED FOR LEAST SQUARES
FITTING

The particle amplitude in the lab frame As is obtained by fit-
ting the function

fAsðtÞ ¼ y0 þ v0t þ As sinð2pt þ hÞ; (C1)

to the particle position in the streamwise direction. The fitting
parameters y0 and v0 correct for transient effects in the mean
position.

Likewise, the mean gap L is obtained from the distance
between the particles, to which the function

fgapðtÞ ¼ Lþ ae�t=s þ A cosð4pt þ h1Þ
þB cosð8pt þ h2Þ þ C cosð2pt þ h3Þ ; (C2)

is fitted. The normalized amplitudes of the oscillation of the gap Ag

and Bg are obtained similarly as L, using

foscðtÞ ¼ aþ bt þ ct2 þ Ag cosð4pt þ h1Þ
þBg cosð8pt þ h2Þ þ Cg cosð2pt þ h3Þ: (C3)

The polynomial part is only used for interpolation over a few peri-
ods of the main oscillation.
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