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Abstract

The study of tumor microenvironments (TMEs) and immune cell composition in cancer, a
disease characterized by uncontrolled growth and spread of tumor cells, has become increas-
ingly important for understanding tumor progression and patient outcomes. Tools such as
the TME-Analyzer enable this kind of research, but their manual workflows highlight a com-
mon problem in medical imaging: the scarcity of labeled data. This limits the efficiency and
applicability of supervised learning algorithms to improve such medical image analysis tools.
Self-supervised learning algorithms offer a promising alternative by learning feature represen-
tations without requiring labeled data. This thesis aims to address the issue of label scarcity
by exploring the potential of self-supervised learning models for TME analysis involving the
classification of individual cells in multiplex immunofluorescence (MxIF) microscopy images
of triple-negative breast cancer (TNBC) tissue.

To enable the learning of feature representations from MxIF images with an arbitrary num-
ber of color channels, this thesis proposes to pre-train an encoder network on every image
channel separately according to the SimCLR algorithm and perform classification of multi-
channel images by feeding the concatenated feature representation outputs of every channel
to a classifier network — referred to as the Siamese configuration. A hyperparameter search
is conducted to optimize the SimCLR encoder’s ability to learn high-quality feature repre-
sentations of individual cells in MxIF images of TNBC tissue. Upon obtaining an optimal
set of hyperparameters, the effectiveness of the learned feature representations in improving
label-efficiency for individual cell classification is assessed.

The results demonstrate that the proposed Siamese configuration improves the accuracy of
classifying the inflammation status of TNBC tumor sections by 2.63 %. Additionally, the op-
timal set of hyperparameters identified through the search include the use of the normalized
temperature cross-entropy loss function with low temperature and an added image intensity
thresholding term, as well as zoom and brightness/contrast augmentations. Furthermore, the
optimized self-supervised learning model improves label-efficiency for individual cell classi-
fication, maintaining performance with only 40 % of labeled data, while performance drops
only when the label percentage is reduced below this threshold.
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Chapter 1

Introduction

Cancer is a class of diseases characterized by uncontrolled growth and spread of tumor cells
throughout the body [1]. It is one of the leading causes of death worldwide and research into its
prevention, detection, and treatment remains a challenge in the medical field to this day. The
most widely used system for classifying cancers is the tumor-node-metastasis (TNM) staging
system, which categorizes cancers by their tumor size, lymph nodes affected, and severity of
metastasis [2]. It is one of the factors taken into account by oncologists for cancer prognosis,
i.e., the estimate of how the cancer disease will proceed, and decisions about treatment.
Besides the aforementioned markers of the TNM staging system, the composition of the tumor
microenvironment (TME), including the presence of certain immune cells, has been shown to
be a predictor of clinical outcomes in various types of cancers, such as colorectal cancer [3] and
triple-negative breast cancer (TNBC) [4]. Moreover, these TME-based biomarkers, particu-
larly the immune response — which includes immune cell abundance, signaling mechanisms,
and non-immune stromal cells that might affect the immune response — may be superior
predictors compared to the TNM, where identically classified cancers across different patients
can have very different clinical outcomes [5]. This has led to discussions in the field of oncol-
ogy and cancer research about appending the TNM staging system with classification systems
based on the TME and immune response, such as the immune contexture or Immunoscore
[5].
The Immunoscore’s accuracy relies on the ability to detect, count, and locate multiple
biomarkers in a large amount of samples. The need to identify the presence of certain im-
mune cells in specific locations of the TME means that tissue-based imaging methods are more
suitable than bulk-assays such as flow cytometry, which destroys the biopsy’s spatial architec-
ture. The promising predictive capabilities of such immune cell based classification systems
create a need for improved digital pathology technology that can address the requirements
for sophisticated image analysis as well as high throughput [6].
A recently developed tool for this purpose is the TME-Analyzer by Balcioglu et al. [7]
at Erasmus MC’s (Erasmus University Medical Center) TME Facility. The TME-Analyzer
provides an interactive graphical user interface that enables the analysis of immune cell popu-
lations within tumors and their spatial distribution, which is critical for understanding tumor
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2 Introduction

evolution and developing new treatments. In a case study of a cohort of TNBC patients [4],
the TME-Analyzer was used to identify specific characteristics of the immune cell populations
that were related to patient survival.

Motivated by the work performed by the colleagues at Erasmus MC, this thesis is a collab-
orative effort between Erasmus MC and TU Delft that investigates the application of self-
supervised learning models for TME analysis in order to address the issue of label scarcity in
medical imaging, with the potential to enhance tools such as the TME-Analyzer.

Thesis Motivation: Addressing Label Scarcity in Medical Imaging — A Self-Supervised
Learning Approach

Advanced image analysis algorithms based on Deep Learning (DL) are gaining traction in
medical fields [8, 9, 10, 11]. Ideally, such algorithms are trained via supervised learning, i.e.
they learn from many annotated examples. This way, an immediate learning signal can be
provided during training, which the algorithm can optimize towards. However, a disadvantage
of supervised learning is that it heavily relies on the quality and quantity of labeled data
available during training. This is particularly critical in the context of medical imaging, since
experts are required to perform such labeling, which can be costly and time-consuming. In
fact, the time-consuming nature of using the TME-Analyzer, which is essentially a labeling
tool for medical images, is one of the key issues we would aim to address by equipping it with
DL capabilities.

To overcome the limitations of supervised learning, self-supervised learning has gained pop-
ularity1 as a promising alternative [13]. This approach involves training an algorithm on a
pretext task to learn feature representations of the data without requiring any labels. One
example of a powerful self-supervised learning algorithm for image processing is the Simple
Framework for Contrastive Learning of Visual Representations (SimCLR) [14], which learns
feature representations by contrasting augmented versions of the same image. The resulting
learned representations of the data can serve as basis for training other models to perform
downstream tasks such as classification, detection, and segmentation, and can be more label-
efficient than supervised learning approaches. SimCLR has shown promising results in medical
image analysis [15] where it was used to improve label-efficiency for tasks such as tumor clas-
sification and segmentation [16], individual cell segmentation [17], and the identification of
novel TMEs [18].

As a result of their study of validating the TME-Analyzer [7], the colleagues from Erasmus MC
have obtained a labeled dataset of multiplex immunofluorescence (MxIF) tissue images from
TNBC patients [4]. Rather than using these labels to train a model via supervised learning,
I could instead aim to train a SimCLR model that learns useful feature representations from
the image data. If successful, this approach could be generalized to learning feature represen-
tations from similar images outside the TNBC dataset, making it useful in future applications
where no labels are available. Furthermore, the resulting model could then be integrated into
the TME-Analyzer, enhancing its capabilities, assisting users throughout the workflow, and
accelerating the overall process.

1A particularly popular example of a model that utilizes self-supervised learning is GPT (Generative Pre-
trained Transformer) [12]: A powerful language model that was pre-trained on hundreds of gigabytes of text
data without requiring any labels.
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Since the TNBC dataset consists of MxIF images with 8 color channels, certain considerations
must be taken into account. This type of image domain is less commonly addressed in the
related literature compared to brightfield images with 3 color channels. Consequently, it is
less obvious how to choose hyperparameters for a SimCLR model to successfully learn from
the TNBC dataset. For example, image augmentations are an important part of the SimCLR
algorithm, but it is unclear if the commonly recommended augmentations [14, 19] work well
with MxIF images. Furthermore, although images from the TNBC dataset have 8 color
channels, other images that we may wish to analyze using the TME-Analyzer could have
different amounts of color channels. The model should therefore be flexible in the amount of
image channels it accepts as its input.

Research Questions

The previous considerations lead me to the following research questions:

• How can a self-supervised learning model be designed to learn features from MxIF images
with an arbitrary number of color channels?

• What are the hyperparameters for such a model that improve feature learning of indi-
vidual cells in MxIF images?

• Can the features learned by such a model improve label-efficiency for the task of indi-
vidual cell classification?

To answer the research questions, a systematic approach can be employed:

Since the model’s performance cannot be compared against actual clinical outcomes within
the scope of this thesis, the evaluation will rely on comparing the results to the labels provided
by the TME-Analyzer. If the model approaches the performance of the TME-Analyzer, this
would be considered validation of its effectiveness.

In order to assess the model’s ability to learn features from MxIF images and the effect of
hyperparameters, the change in performance can be tracked as the model’s hyperparameters
are adjusted and optimized. If performance improves, this would provide answers to the
questions concerning the model’s ability to learn features from MxIF images and the impact
of hyperparameters.

Lastly, to address the question of label-efficiency, the final model’s performance can be assessed
in relation to the amount of labeled data required. If the model can achieve higher performance
with fewer labels compared to a previous iteration, this would provide evidence that the self-
supervised learning model improves label-efficiency for the task of individual cell classification.

Training Pipeline Overview

An overview of the proposed training pipeline is shown in Figure 1-1. The reader is advised
to return to this figure and study it in more detail after reading the individual chapters of
this thesis.
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Document Structure

The remainder of this document is structured as follows:

Chapter 2 provides necessary background information: Section 2-1 starts with an overview of
microscopy imaging and tissue analysis. Section 2-2 gives an introduction to basic concepts in
machine learning, followed by Section 2-3, exploring key components and techniques used in
deep learning. Section 2-4 gives a brief overview of self-supervised learning and highlights the
Simple Framework for Contrastive Learning of Visual Representations (SimCLR), the self-
supervised learning algorithm employed in this work. Lastly, Section 2-5 discusses related
work and its limitations.

Chapter 3 outlines the methodology used, detailing the steps taken to design, train, and
evaluate the self-supervised learning models. Chapter 4 presents the results obtained from
the experiments conducted and Chapter 5 provides a discussion of these results and offers
insights into potential future work. Chapter 6 concludes the document by summarizing the
main findings and their significance in the context of the research questions.
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Chapter 2

Background Information

This chapter provides the background information needed to understand the methodology
and results of this thesis. The content is designed to equip the average MSc student with a
solid understanding of the key concepts and techniques involved in this research. The sections
cover the following topics:

• Section 2-1 delves into microscopy imaging and tissue analysis, discussing various mi-
croscopy techniques and tissue preparation methods, as well as tumor immunology and
cellular markers. For a refresher on basic optics concepts, see Appendix B. Detailed
specifications of the triple-negative breast cancer (TNBC) dataset used in the experi-
ments can be found in Appendix A.

• Section 2-2 introduces the fundamentals of machine learning, including its paradigms,
model evaluation metrics, overfitting, underfitting, generalization, regression, regular-
ization, classification, and the Perceptron. A visual example of the major learning
paradigms is available in Appendix E.

• Section 2-3 explores deep learning concepts, such as multi-layer perceptrons, activa-
tion functions, backpropagation, and optimization algorithms for weight updates. In
particular, this section highlights convolutional neural networks (CNNs) — the deep
networks commonly used for computer vision tasks. Appendix C offers a step-by-step
derivation of the backpropagation equations, while Appendix D provides a brief review
of the state-of-the-art in computer vision over the past decade.

• Section 2-4 presents the intuition behind self-supervised learning and describes the
SimCLR (Simple Framework for Contrastive Learning of Visual Representations) al-
gorithm in detail. Furthermore, the concept of linear evaluation — a simple method to
evaluate performance of self-supervised models — is explained.

• Section 2-5 reviews related work in the field, including state-of-the-art tools for tu-
mor analysis, applications of SimCLR for tumor analysis, and limitations of previous
research.
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8 Background Information

2-1 Microscopy Imaging and Tissue Analysis

This section will give an overview of basic concepts in microscopy imaging and tissue analysis.

The imaging data that was analyzed as part of this thesis was generated by a fluorescence
microscopy imaging system (see Appendix A for a detailed explanation of the dataset) and
features images of tumor tissue. As a result, the objects relevant to the analysis are individual
cells.

The interested reader may consult Appendix B for a refresher on basic properties of optical
systems, but this information is not required to follow the rest of this section.

Section 2-1-1 presents the two microscopy imaging techniques most relevant to this thesis
work, namely bright-field microscopy and fluorescence microscopy.

Section 2-1-2 gives a brief overview of the necessary steps to prepare tissue for imaging, in-
cluding the most relevant staining techniques that are used for bright-field and fluorescence
microscopy.

Lastly, Section 2-1-3 elaborates on common terminology used in the context of tumor im-
munology.

2-1-1 Microscopy Techniques

Various microscopy techniques exist for tissue and cell imaging. Here, we will focus on
techniques which make use of tissue staining, namely bright-field microscopy and fluorescence
microscopy.

Bright-field Microscopy

Bright-field microscopy is perhaps the most well-known method for microscopic imaging.
Figure 2-1 shows the basic configuration: light passing through a condenser lens is illuminating
the specimen and continues through an objective lens to be recorded by a sensor or observed
through an eyepiece. The specimen to be observed becomes visible by attenuating the light
from the source and will appear darker the more opaque it is. Contrast is provided by
varying opacity within the specimen, e.g. a cell’s walls and its contents, which transmits
light in varying intensities. In order to improve contrast, tissue samples may be stained using
chromogenic dyes such as hematoxylin and eosin (H&E) before imaging (see Section 2-1-2).

Fluorescence Microscopy

In fluorescence microscopy, specimens are made visible by making use of their fluorescence
properties rather than their attenuation of light as is the case with bright-field imaging. A
fluorescent substance has the property of absorbing light of a certain wavelength and re-
emitting light of a longer wavelength. For example, a fluorescent substance hit by blue light
may, in turn, emit green light.

Figure 2-2a shows the basic configuration of a wide-field fluorescence (also known as epi-
fluorescence) microscope. Light from the source is filtered in order to illuminate the specimen

Daniel Spengler Master of Science Thesis
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Light 
source

Collector Condenser Specimen Objective

Image

Figure 2-1: Schematic of a bright-field microscope. The light from a light source passes through
a collector/condenser configuration and illuminates the specimen from the opposite side of the
observer. The objective then focuses the illuminated specimen onto an image. Here, only a basic
lens configuration is shown. In practice, configurations similar to the ones shown in Figure B-3
and Figure B-4 are used in order to give more control over focus and magnification.

only with light of a select wavelength. An angled dichroic mirror reflects the light towards
the objective where it hits the specimen. The light of higher wavelength (and therefore lower
energy) fluoresced by the specimen travels back the same path, but is being transmitted by
the dichroic mirror. An additional filter is used to reduce the light to only those wavelengths
that are expected to be emitted by the fluorescent specimen and can then be observed through
an eyepiece or a digital sensor.

A common variant of the fluorescence microscope is the confocal microscope, whose basic
configuration is shown in Figure 2-2b. The light path from the source to the specimen is
similar to that in a wide-field fluorescence microscope. However, in confocal fluorescence
microscopes, lasers are chosen as light source due to better focusability, allowing for precise
spot-illumination of the specimen. The fluoresced light travels back, again being transmitted
by the dichroic mirror and filtered by an emission filter, and has to pass through a pinhole
located such that only light originating from the desired focal plane reaches the detector.

Wide-field fluorescence microscopes have the advantage of the specimen being immediately
visible through an eyepiece, and often allow for simple bright-field illumination as well. Since
the entire specimen is exposed to light at once, it is better suited for thin specimens where
the expected background fluorescence is low. Confocal fluorescence microscopes eliminate
this problem by only illuminating small sections of the specimen at once and only capturing
light from the focal plane. However, this means that specimens must first be scanned before
a complete image can be produced. By altering the location of the focal plane with respect
to the specimen, this scanning procedure can also be extended in the z-direction, allowing for
3D imaging of a specimen.

All fluorescence microscopes require the specimen to be fluorescent. Although biological tissue
is autofluorescent to some degree, this source of fluorescence is usually considered noise in
practical applications. Instead, tissue samples are treated with fluorescent dyes in order to
make them visible to a fluorescent microscope. By utilizing immunohistochemistry (IHC),
different dyes can be attached to different types of cells in a process called immunostaining.
This is addressed in more detail in Section 2-1-2.

Master of Science Thesis Daniel Spengler
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Light
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Specimen
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(a) Wide-field fluorescence microscope.

Specimen

Light source
(Laser)

Objective

Dichroic mirror

Pinhole
aperture

Emission
filter

Detector

Multiple
z-planes

Excitation light
Emission light (in focus)
Emission light (out of focus)

Excitation
filter

(b) Confocal fluorescence microscope.

Figure 2-2: Schematics of different fluorescence microscope configurations. The configuration
of filtering and directing light of certain wavelengths by the use of excitation filters, dichroic
mirrors and emission filters is shared by both configurations. A wide-field fluorescence microscope
illuminates the entire object plane and a complete image is formed immediately. A confocal
fluorescence microscope only illuminates a small point in the object plane and has to scan across
the object plane before an image can be generated. The pinhole aperture prevents light emitted
from z-planes other than the one in focus to reach the detector.

2-1-2 Tissue Preparation

In order to prepare tissue samples for imaging under a microscope, typically some form of
fixation, embedding, and staining are performed [20]. Fixation is the process of thermally
and/or chemically treating a sample such that natural biological processes such as decay are
halted. The most common chemical agents for this process are aldehydes and alcohols. The
result of fixation is that the tissue sample is essentially “killed” while preserving its shape
and structure (and possibly even mechanically reinforcing it). Samples are then embedded
in wax in order to provide rigidity (an alternative to this is freezing them) for being sliced
into thin sections — in the range of 5 µm to 30 µm — such that they can be viewed under a
microscope.

Staining is performed in order to improve contrast and visibility of the sample. The type of
stain used and the method application depends on which type of microscope is used and which
parts of the tissue sample need to be examined in more detail. We can broadly distinguish
between conventional staining, which is a relatively straightforward application of a dye or
stain to a sample, and immunostaining, which utilizes the relationship between antibodies
and antigens in order to target specific cells with a dye or stain.

Daniel Spengler Master of Science Thesis
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Conventional Staining

Due to the relatively low contrast of tissue samples, they are stained with chromogenic dyes
for the purposes of bright-field microscopy. Although various illumination techniques and mi-
croscope configurations to improve contrast exist, staining has the advantage of pronouncing
certain cellular features with different dyes, providing not only contrast but also color for bet-
ter visibility. The most commonly used stain for this purpose is hematoxylin and eosin (H&E)
[21]. Hematoxylin colors cell nuclei in shades of purple and blue whereas eosin colors cyto-
plasm, certain tissue fibers and the extracellular matrix in shades of red and pink. When
observed through a microscope, this results in the common purple and pink colored tissue
image which many readers may be familiar with (see Figure 2-3a). Due to its widespread use,
the majority of pathologists are trained in analyzing H&E stained tissue sections.

Immunostaining

Another process of staining a sample involves utilizing the immune system’s chemistry to
attach certain dyes and stains to specific proteins present in tissue. This process is called
immunostaining and more specifically, in the case of staining tissue, immunohistochem-
istry (IHC) [22]. It can be used to stain tissue for bright-field microscopy (chromogenic
immunohistochemistry) as well as fluorescence microscopy (immunofluorescence). IHC makes
use of the fact that antibodies only attach to a specific antigen. With the knowledge that
certain antigens are only presented by certain structures, such as specific cells or the extra-
cellular matrix, corresponding antibodies tagged (or conjugated) with a dye, or fluorophores
in the case of immunofluorescence, are introduced to the tissue sample and, as a result, make
those structures visible to a microscope. This is not only useful to target specific cells, but
also to quantify the general amount of cells or extracellular matrix.

By repeating this process using fluorophores with varying light wavelengths for excitation
and emission to target different antigens, multiplexed images can be generated, visualizing
multiple cell types within the same tissue sample. An example of this can be seen in Figure 2-
3b, which shows a 7-plex image of a breast tissue section stained using the Opal workflow
[23]. Here, seven individual monochrome image channels are composited such that they can
be displayed as a 3-color channel RGB (red green blue) image. This is useful for analysis by
humans, but introduces a loss of information from the individual channels. For the purposes
of computer vision analysis, it is therefore more useful to analyze the individual monochrome
channels individually.

Immunofluorescence staining, as used in multiplexed imaging, often incorporates a coun-
terstain to visualize cell nuclei, in addition to the specific cellular markers targeted by
the fluorophore-conjugated antibodies. One such counterstain is DAPI (4’,6-diamidino-2-
phenylindole), which binds to DNA and fluoresces blue when exposed to ultraviolet light.
The inclusion of DAPI enables the localization of individual cells within the tissue sample
and provides a reference for the distribution and organization of various cell types.

In the example shown in Figure 2-3b, DAPI is used to stain cell nuclei, while the other six
channels target specific cell surface markers (Cytokeratin, CD3, CD68, CD8, CD56, CD20)
using fluorophore-conjugated antibodies. This allows for the simultaneous visualization of
multiple cell types and their interactions within the same tissue section. DAPI staining helps

Master of Science Thesis Daniel Spengler
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(a) Hematoxylin and eosin stained section
showing ductal carcinoma in situ (pre-cancer).
Image from [24].

(b) Multiplex image from section stained with
the Opal 7 Kit showing triple-negative breast
cancer [4].

Figure 2-3: Histological images of breast tissue stained for bright-field and fluorescence mi-
croscopy. Hematoxylin and eosin stains result in the common pink and purple colored images as
seen in (a), but other bright-field stains exist for various purposes and tissue types. Note that
the image shown in (b) is a composite image of seven monochrome channels (DAPI, Cytokeratin,
CD3, CD68, CD8, CD56, CD20, see also Appendix A) that have been colored and combined to
be displayed as a 3-color channel (i.e. RGB) image.

distinguish individual cells and assess their spatial organization, while the other stains target
antigens presented on the cell surfaces, providing insights into the immune landscape of the
tissue sample. Table A-1 in Appendix A provides a list of the specific fluorophores used as
part of the Opal 7 staining kit [25].

2-1-3 Tumor Immunology and Cellular Markers

This thesis is concerned with the analysis of multiplex immunofluorescence (MxIF) images
such as the one shown in Figure 2-3b. (Please refer to Appendix A for a detailed explanation
about the individual channels and how they make up the entire image.) The images them-
selves feature TNBC tissue, with the chosen fluorophores highlighting cells of interest for this
analysis. The purpose of this section is to give the reader a brief overview of the relevant
concepts and terminology related to tumor immunology and tumor microenvironment (TME)
analysis.

Tumor immunology and the TME

Tumor immunology is the study of the complex interplay between the immune system and
cancerous cells within the body [26]. The immune system is responsible for identifying and
getting rid of abnormal cells, including cancer cells. However, some cancer cells can avoid
the immune system and continue to grow, leading to tumor formation. Understanding the
relationships between tumor cells and the immune system is essential for creating effective
cancer treatments and diagnostics.

Daniel Spengler Master of Science Thesis



2-1 Microscopy Imaging and Tissue Analysis 13

The tumor microenvironment (TME) refers to the area surrounding a tumor, which includes
not just the cancer cells but also various support cells, immune cells, blood vessels, and
the extracellular matrix [26, 27]. The TME plays a significant role in tumor development,
progression, and response to therapy. Various factors within the TME can either promote or
inhibit tumor growth, and this dynamic environment is a focus of ongoing cancer research
[3, 5, 4, 7].

Cellular markers

Cytokeratin (CK) is a family of intermediate filament proteins that are predominantly ex-
pressed in epithelial cells [28]. They play a vital role in maintaining the structural integrity
of epithelial tissues and are often used as markers to identify and classify different types
of epithelial-derived tumors [29]. In the context of tumor biology and cancer research, CK
expression can be used to distinguish between cancerous and normal cells or to categorize
various tumor subtypes.

Clusters of Differentiation (CD) are cell surface molecules that serve as markers for identi-
fying and characterizing different cell types within the immune system [30]. They are often
used as molecular signatures to classify immune cells based on their function, maturation
status, and activation state. In the context of tumor immunology, the presence or absence of
specific CD markers on immune cells within the TME can provide insights into the immune
response and the functional state of immune cells. Additionally, CD markers can be used to
identify and classify different types of immune cells within the TME, which can be critical
for understanding the immune landscape of tumors and developing targeted therapies.

In this thesis, cellular marker names are used to describe various concepts related to the
analysis and classification of the MxIF images in question. When referring to a particular
cell itself, it will simply be called by its marker abbreviation, e.g. “CK cells” or “CD8 cells”.
When referring to a MxIF image channel, which is intended to capture the cell in question,
the word “channel” will be appended in order to reduce ambiguity, e.g. “the signal intensity
in the CD3 channel is low compared to the CD8 channel”. When referring to cell labels as
they are assigned within the context of machine learning classification, they will be printed
in monospaced font, include a plus sign (+ to mark the label’s positivity for the particular
cell) and surrounded by quotation marks, e.g. “the classifier performance on "CK+" cells was
better than those with the "CD56+" label”.
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2-2 Machine Learning

Machine Learning (ML) is “the study of computer algorithms that improve automatically
through experience” [31] and is considered a branch or subset of Artificial Intelligence (AI).
Rather than through explicit programming, ML algorithms are expected to perform certain
tasks through learning from data. A formal definition of this process specifies: “a computer
program is said to learn from experience E with respect to some class of tasks T and per-
formance measure P , if its performance at tasks in T , as measured by P , improves with
experience E.” [31] Typically, the experience E is a data input to the learner. A dataset may
be described as “a collection of examples, which are in turn collections of features.” [32]

This section provides an introduction to some of the most important concepts in ML.
Section 2-2-1 begins by providing an overview of the main learning paradigms in ML. Sec-
tion 2-2-2 illustrates an example problem and shows two ways to solve it in the context of
ML. The example is concluded in Section 2-2-3, where several important model evaluation
metrics are discussed. Section 2-2-4 introduces the important concepts of over- and under-
fitting. Section 2-2-5 and Section 2-2-6 explain the basics of the two most common tasks in
ML: regression and classification, respectively. Lastly, Section 2-2-7 presents a special type
of classification algorithm, the Perceptron, which serves as the basis for neural networks in
deep learning.

2-2-1 Overview of the Machine Learning Paradigms

There are three major learning paradigms in ML: supervised learning, unsupervised
learning, and reinforcement learning (see Figure 2-4). However, there is often overlap
between these paradigms and they can be further subdivided into more specific categories.

In supervised learning, the algorithm learns from labeled datasets (experience E) and its
objective is typically to predict the unknown label in previously unseen data (task T ), for
example to determine whether a picture contains a cat or a dog, or predict a patient’s clinical
outcome based on measured biomarkers. Performance measures P might include accuracy,
precision, recall, F1-score, or others depending on the specific problem.

In unsupervised learning, data is provided without labels (experience E) and the objective is
to extract useful information from this data such that more insight can be gained from new
and unseen data. Typical tasks (T ) are clustering, which is essentially the assignment of
labels to data based on observable characteristics, and dimensionality reduction, which
puts the data into a representation of lower dimension such that it can be analyzed visually
or via other algorithms that do not perform well on high-dimensional data. Performance
measures P might include metrics like silhouette score for clustering or reconstruction error
for dimensionality reduction.

Semi-supervised learning describes the overlap between supervised and unsupervised
learning: In general, a large amount of unlabeled data is used to learn features and pat-
terns present in the data (experience E). This provides “context” to the smaller amount of
labeled data, which can then be used to learn aforementioned supervised tasks more easily.

Self-supervised learning is a method where an algorithm learns from unlabeled data by
generating its own labels from the data available (experience E). For example, given an
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unlabeled image, the algorithm may cut out a section of the image and learn to reconstruct it
from the remaining information (task T ). The cut out section now serves as a label to measure
its performance P using metrics such as reconstruction error or similarity scores. Essentially,
self-supervised learning is an application of unsupervised learning where an algorithm can be
trained in a supervised fashion.

Lastly, reinforcement learning describes the application of machine learning in live environ-
ments where the algorithm obtains feedback based on its actions. Typical applications include
self-driving cars and game-playing AI. Since we are concerned with the analysis of microscopy
images that have already been gathered, we will not consider reinforcement learning in further
detail.

A visual example of the aforementioned supervision paradigms can be found in Appendix E.

2-2-2 Practical Example: Prediction of Student Grades

In this section, we will walk through a practical example that illustrates the use of basic
ML techniques. The example will be concluded in Section 2-2-3, where important evaluation
metrics for classification tasks are presented.

Consider a class of 50 students who took an exam and obtained grades between 1 and 10.
Shortly after the exam, the students filled out a survey where they indicated how many hours
per week they spent studying for the exam. As shown in Figure 2-5, we can plot the self-
reported hours spent studying against the grades obtained in a scatter plot and fit a line
on the distribution using regression1, giving us an estimate for the relationship between
studying time and exam grades. Using this estimate, we may be able to predict the grades
of students who will take the same exam in the future, allowing us to identify students who
may be at risk of failing the exam. Referring back to the given definition of ML, the dataset
of exam grades/studying time may be considered the experience E, linear regression the task
T , and the minimization of the squared residuals the performance measure P .

What happens if we do not have numerical grades available, but only grades specified by
“pass” or “fail”? This is an example of a classification problem, where we are interested
in predicting one or multiple discrete classes. This task can be solved by training a logistic
regression model: if we consider every numerical grade below 6 a failing grade2 (0) and every
numerical grade of 6 and above a passing grade (1), we can plot the new distribution and fit
a sigmoid that models the probability of a student passing or failing the exam depending on
their studying time.

This is shown in Figure 2-6, which also includes three decision thresholds for 10 %, 50 %, and
90 %. The point where each of these thresholds (horizontal lines) intersects with the fitted
sigmoid, we obtain a classification boundary (vertical lines). Every point to the left of this
boundary is assigned the negative class (fail) and everything to the right of this boundary is
assigned the positive class (pass).

1For this toy example, we can easily obtain a closed-form solution via the ordinary least-squares estimator.
However, for more complex datasets or when dealing with non-linear relationships, machine learning techniques
such as polynomial regression or nonlinear regression models may be more appropriate.

2In this example, we will act as a very strict teacher and won’t consider rounding up grades.
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Figure 2-5: Distribution of exam grades obtained by students against their self-reported time
spent studying for the exam. The red line is given by the least-squares estimator and provides a
model that can predict a student’s grade based on their self-reported studying time.
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Figure 2-6: The same distribution as shown in Figure 2-5, but with grades converted to pass (1)
and fail (0) Here, the red curve was obtained by fitting a logistic regression model, which is an
estimator for the probability that a student passed (or failed), given the time spent studying. In
order to obtain discrete values from these probabilities, a decision threshold can be placed (given
by the horizontal dashed lines) and everything to the left of the obtained boundary (vertical dashed
lines) will be assigned fail whereas everything to the right will be assigned pass.
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Figure 2-7: The same distribution with logistic regression model as shown in Figure 2-6, only
with the decision boundary for 0.5 displayed. The chosen decision boundary can be used to
divide the distribution into 4 quadrants corresponding to true positives (top right), false positives
(bottom right), true negatives (bottom left), and false negatives (top left).

We have considered a new task T (classification), but the prospect of choosing between various
decision thresholds raises the question about an appropriate performance measure P . This
will be investigated further in the following section.

2-2-3 Model Evaluation Metrics

For the logistic regression model trained for estimating the probability of passing an exam
based on studying time, we may pick a threshold t = 0.5 and realize that the plot can be
divided into four quadrants as shown in Figure 2-7:

• The top right contains all students who are predicted to pass the exam and actually
passed the exam: true positive (TP)

• The bottom right contains all students who are predicted to pass the exam but actually
failed the exam: false positive (FP)

• The bottom left contains all students who are predicted to fail the exam and actually
failed the exam: true negative (TN)

• The top left contains all students who are predicted to fail the exam but actually passed
the exam: false negative (FN)

These are common concepts in statistical classification and are essential for evaluating the
performance of a predictive model. Note that these are dependent on the selected decision
threshold: As we slide the boundary in Figure 2-7 to the left and right, the amount of TP,
FP, TN, and FN predictions will vary. Let t ∈ [0, 1] be the decision threshold and we can
derive the following performance metrics:

Accuracy is the proportion of correct predictions (both positive and negative) made by
the model compared to the total number of predictions:
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Accuracy(t) = TP(t) + TN(t)
TP(t) + TN(t) + FP(t) + FN(t) (2-1)

Precision is the proportion of true positive predictions among all positive predictions made
by the model:

Precision(t) = TP(t)
TP(t) + FP(t) (2-2)

Specificity is the proportion of true negative predictions among all negative predictions made
by the model:

Specificity(t) = TN(t)
TN(t) + FP(t) (2-3)

Recall is the proportion of true positive predictions among all actual positive instances in
the dataset:

Recall(t) = TP(t)
TP(t) + FN(t) (2-4)

While accuracy is a good metric when dealing with a balanced dataset, i.e. positive and
negative classes are distributed roughly equally, it can be misleading when datasets are im-
balanced. For example, consider the scenario where 99.9 % of the samples in our dataset
have a positive class label and only 0.1 % a negative class label. In this case, we can obtain
a classifier with 99.9 % accuracy by always predicting the positive class label. Whether this
would be a good classifier or not depends on the application, but this example highlights the
fact that we may sometimes want to put more importance on correctly classifying a minority
class rather than achieving overall high accuracy.

Measures such as precision, recall, and specificity put importance on minimizing certain types
of classification errors. In some applications, such as medical tests or cancer screenings, the
trade-off between minimizing false positives and false negatives is crucial. In these cases, the
primary concern is identifying as many true positive instances as possible (high recall), while
also minimizing false positives (high precision). For example, in cancer screening tests, a high
false positive rate may lead to unnecessary invasive procedures, while a high false negative
rate may lead to missed cancer cases.

The F1-Score is a metric that is often used in machine learning to strike a balance between
precision and recall, defined as their harmonic mean:

F1-Score(t) = 2 · Precision(t) · Recall(t)
Precision(t) + Recall(t) (2-5)

By considering both precision and recall, the F1-Score provides a more balanced assessment
of the model’s performance, particularly in cases where one type of error is more important
than the other or when the dataset is imbalanced. In such scenarios, the F1-Score serves as
a better performance metric compared to accuracy, which might not fully capture the true
effectiveness of the classifier.
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Figure 2-8: Receiver Operating Characteristic (ROC, left) and Precision-Recall (PR, right) curves
for the exam pass/fail classifier. A good ROC curve approaches the top left corner of the graph
as closely as possible, whereas a good PR curve should approach the top right corner. In both
graphs, the dashed line denotes the “chance level”, which corresponds to a classifier that only
makes random guesses. Both ROC and PR curves can be used for threshold tuning: For the ROC
curve, the Upper Left (UL) index is used to determine the optimal decision theshold. Due to its
definition, the F1-score is typically used to determine the best threshold in a PR curve. For both
curves, the Area Under the Curve (AUC), provides a performance measure of the classifier that
does not depend on threshold tuning.

The aforementioned metrics depend on the decision threshold and may therefore not be ideal
if we want to compare the performance of various classifiers with each other. To address this
issue, we can make use of plots such as the Receiver Operating Characteristic (ROC)
curve (shown on the left in Figure 2-8) and the Precision-Recall (PR) curve (shown on
the right in Figure 2-8).

The ROC curve is a plot of Recall (also known as True Positive Rate) against 1−Specificity
(also known as the False Positive Rate) by varying the threshold from 0 to 1 (left plot in
Figure 2-8). The dashed diagonal line represents the chance level, i.e., a classifier that makes
random guesses. The ROC curve can be used to determine a decision threshold: the red
dot indicated in the upper left corner is the point where the Upper Left (UL) index3 is
minimized. The Area Under the Receiver Operating Characteristic Curve (ROC-AUC) is a
performance measure that does not depend on the threshold, making it a suitable
metric for comparing the performance of different classifiers.

Similarly, the PR curve is a plot of Precision (also known as Positive Predictive Value) against
Recall by varying the threshold from 0 to 1 (right plot in Figure 2-8). Here, the dashed
horizontal line represents the chance level, i.e., a classifier that makes random guesses. The
PR curve can be used to find a threshold based on the maximum F1-score, which is indicated
by the red dot in the upper right corner. In this case as well, the Area Under the Precision-
Recall Curve (PR-AUC) is a performance measure that does not depend on the
threshold. The PR-AUC is considered to be a better performance measure in cases dealing
with imbalanced datasets [34].

This concludes our practical example of applying ML techniques to fit models on a distribution
of students’ exam grades and their self-reported studying time and, in the case of a binary

3The UL index is just one example of numerous other indices that can be considered. The choice of an
appropriate index depends on the specific application and the goals of the analysis.
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classifier, evaluating these models. According to Figure 2-8, both the UL index as well as the
maximum F1-score tell us that the optimal decision threshold for our binary classifier is 0.54
(note that these are not always the same, necessarily). An important aspect of training ML
models that we did not consider yet is the separation of data into training sets and test
sets, which helps to prevent overfitting and underfitting, ensuring that our models generalize
well to new, unseen data. The following sections will address these concepts, as well as provide
more formal definitions of the regression and classification techniques that were used to obtain
the models in this example.

2-2-4 Overfitting, Underfitting, and Generalization

In the previous sections, we introduced a simple example that illustrates regression and clas-
sification in Section 2-2-2 and investigated performance metrics in Section 2-2-3. It is crucial
to understand the concepts of overfitting, underfitting, and generalization, which are key as-
pects to consider when building and evaluating machine learning models. These concepts are
closely related to the training and test sets and the model’s capacity to fit the data. Un-
derstanding these ideas will help us choose the right model architecture, training strategies,
and evaluation techniques to ensure our models are robust and effective in handling unseen
data.

Essentially, a ML algorithms learns by (repeatedly) solving optimization problems. However,
minimizing the training error, that is the error observed during training, is not of primary
concern: since we are interested in the learning algorithm performing well on unseen data,
a portion of the available data is withheld during training so it can be used to test the
model afterwards. The two resulting sets of this split are referred to as the training set
and test set. The error observed when testing the model against the test set is called the
generalization error and is a measure of how well the model is expected to perform on
unseen data. In general, the training error being too high is a sign of underfitting and the
training error being much lower than the generalization error is a sign of overfitting. The
measure of a model’s fitting capability is referred to as capacity: a model with low capacity
tends to underfit and a model with high capacity tends to overfit.

One way to alter a model’s capacity is by increasing or decreasing its complexity. Consider the
task of fitting a curve to n data points that are randomly drawn from a 2nd order polynomial

y = w0 + w1x + w2x2 (2-6)

where (x, y) is a pair of coordinates and wi the unknown coefficients of the polynomial to be
determined. Let the solving model be of the form

y = Xw (2-7)

where y ∈ Rn×1 is the observation vector, X ∈ Rn×m the data matrix, and w ∈ R1×m a
vector of weights to be determined. The data matrix has the form

X =
[
1 x x2 . . . xm−1

]
(2-8)

where 1 is a n× 1 ones vector and x ∈ Rn×1 the data vector corresponding to y. Clearly, the
optimal choice for the model order should be m = 3. As long as n ≥ m , the solution is then
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Figure 2-9: Example of underfitting, overfitting and appropriately fitting a least squares solution
to a 2nd order polynomial by varying the solution polynomial’s order. The blue curve simply
represents the mean of all points but does not represent the underlying model accurately. The
green curve, although hitting all the points, also does not seem to represent the underlying model.
The orange curve appears to match the underlying model perfectly.

given by the ordinary least squares solution [35]

w = (XTX)−1XTy. (2-9)

Figure 2-9 shows the results of choosing models with m ∈ {1, 3, 7} and n = 5. For m = 1 we
can see underfitting and m = 7 (where the pseudo-inverse was used to compute the solution)
overfitting. Although the m = 7 model is perfectly fitting through every point given (the
training set), we can clearly see that any additional points (as part of a test set) would not
fall on its curve. In this example, m = 3 is the optimal model capacity since it minimizes
generalization error.
Figure 2-10 shows a typical relationship between training error, generalization error, and the
location of optimal capacity. In our previous example, the underfitting zone would correspond
to m < 3 and the overfitting zone to m > 3.
Altering the model complexity in order to minimize generalization error is not always feasible,
desirable, or possible. In the least squares case, the available data may result in a (nearly)
singular XTX matrix which may lead to convergence on an infeasible or unrealistic solution.
For example, we may have more knowledge about a data-generating model than the obtained
data shows. In this case, we may be able to add more information to the cost function to
be minimized by means of regularization. In the case of ordinary least squares, which
minimizes the cost function ||Xw − y||22, we may add a weight decay term such that the
cost function becomes

min
w
∥Xw− y∥22 + λwTw (2-10)

where λ is the regularization weight. The solution is then given by

w = (XTX + λI)−1XTy (2-11)
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Figure 2-10: Typical relationship between model capacity and error. The model’s optimal
capacity is where the generalization error is lowest, that is, the error when it is applied to data
it has not seen during training. Although the training error can be minimized further than the
generalization error, doing so typically leads to overfitting as the model learns to remember
examples from the training data and fails to properly predict unseen data. Image from [32].

where I is the identity matrix. By tuning λ, we determine the trade-off between minimizing
the least squares solution and keeping the magnitude of the weights low, which can help
to mitigate bad training results if the learner encounters an abundance of “bad data”. The
regularization term added in Eq. (2-10) is also known as L2 regularization and a multitude of
other regularization methods exist which may be chosen depending on the task to be learned.

2-2-5 Regression and Regularization

Regression tasks are one of the primary problems in supervised learning (see Section 2-2-
2 where treated a simple example). The goal of regression is to approximate an unknown
function with only its inputs and outputs known. Importantly, these are functions with
continuous (non-discrete) outputs. Recall the example in Section 2-2-4 and Figure 2-9 of
fitting polynomials of varying degrees to a set of points. Although the approximated functions
are not linear functions themselves, they are linear with respect to the parameters to be
estimated and can be expressed as in Eq. (2-7), which allows us to perform linear regression.
Commonly, regularization terms are used in order to prevent overfitting as shown in Eq. (2-
10). A more general cost function can be written as

J(θ) = e(θ) + λ∥θ∥p (2-12)

where e(θ) is the error to be minimized, θ the minimizing variable vector (previously expressed
as w), and p the order of regularization. The most commonly used norms are with p = 1
(lasso regression) and p = 2 (ridge regression) which are graphically shown in Figure 2-
11: The regularization terms force the solution closer to the origin by requiring them to be
contained within the red areas. Lasso regression tends to force sparse solutions, i.e. solutions
where one or several elements of the solution vector are 0, and is useful for performing feature
selection, for example if variables are suspected to be highly correlated. Note that, as λ→ 0
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Figure 2-11: Visualization of two commonly applied regularization terms. The optimal solution
without regularization θ∗ is given by the point surrounded by the blue contour curves. Regu-
larization forces the solution closer to the origin by finding the intersection between one of the
contour curves and the area defined by the regularization term. Ridge regression forces solutions
closer to the origin whereas lasso regression typically forces solution on one of the axes, leading
to a sparser vector representation of the solution vector θ̂. Image adapted from [36].

in Eq. (2-12), the size of the red areas in Figure 2-11 tends towards infinity, returning the
non-regularized solution.

2-2-6 Discriminative Classification

Another one of the primary problems in supervised learning is classification (see Section 2-2-2
where treated a simple example). The goal is to assign class labels to unseen data with only
knowledge of data and their labels obtained from the same distribution source (ideally, the
test data and training data are independent and identically distributed (i.i.d.)). Assuming
the data is drawn from distribution p(x), there is a (posterior) probability p(y|x) linking the
class label y to the data x. A simple formulation for a binary classifier (two classes) can
then be given by

if p(y1|x) > p(y2|x), assign to y1.

Otherwise, assign to y2.

For k classes, we can express the posterior probability using Bayes’ theorem

p(yk|x) = p(x|yk)p(yk)
p(x) (2-13)

relating it to the class conditional distribution p(x|yk), the class prior probability p(yk), and
the unconditional data distribution p(x). In this case, the Bayes classifier would compute
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Discriminative Generative

Figure 2-12: Visualization of discriminative and generative classification. Discriminative methods
attempt to separate the data by drawing boundaries between them such that new data can be
classified depending on where they land with respect to the drawn boundaries. Generative models
attempt to model the underlying distribution of the data such that new data can be assigned a
probability of belonging to any class. Image adapted from [37].

the maximum a posteriori probability (MAP) with respect to k and assign a point to class yk

respectively.
In practice, p(x) is given by the available data and p(yk) can be estimated from it. The
class conditional distribution, however, is not straightforward to determine. Two approaches
to solve this are discriminative classification and generative classification. A visual
example of the difference is shown in Figure 2-12: Discriminative classifiers directly estimate
the boundaries between classes, whereas generative classifiers model the underlying probabil-
ity distributions of the data in order to determine class labels of new data. In the following,
we will focus on discriminative classifiers.
Discriminative classifiers model the posterior probability distribution directly as f(x) =
p̂(yk|x). A common discriminative classifier is the logistic classifier which makes use of
performing logistic regression on the input data (this is the same type of classifier we have
used in Section 2-2-2). For binary classification, assume we can model the log odds ratio of
the two posteriors as an affine function

ln
(

p̂(y1|x)
p̂(y2|x)

)
= θTx. (2-14)

With p̂(y1|x) = 1− p̂(y2|x) and taking the exponent of both sides, we obtain

p̂(y2|x) = fθ(x) = 1
1 + exp(θTx)

(2-15)

which is a logistic function with parameter vector θ to be determined. By setting a threshold
to the value of p̂(y2|x), we can make a decision between assigning to class y1 or y2. The
logistic loss function is its negative log-likelihood function

J(θ) = −
∑

i

(
yi log

(
fθ(xi)

)
+ (1− yi) log

(
1− fθ(xi)

))
(2-16)
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where xi refers to the ith point in the dataset and yi ∈ {0, 1} to its respective label. This is
also known as the binary cross-entropy loss function and is a commonly used loss function
in machine learning and deep learning models for binary classification tasks. Although J(θ)
is convex and its derivative can be used to find the global minimum with respect to θ, no
closed form solution exists. Therefore, the gradient descent algorithm is used in order to
vary the elements of θ and find the solution:

θj ← θj − η
∂

∂θj
J(θ0, θ1, . . . , θn) (2-17)

where θj is jth element of θ and η is the learning rate determining by how much θj will vary
per iteration.

2-2-7 Perceptron Algorithm for Classification

An important discriminative classifier which forms the basis for neural networks is the per-
ceptron. Similar to logistic regression, we assume that the data can be separated by the
hyperplane

θTx = 0 (2-18)

with the difference that the decision boundary is learned on the data directly without the
use of regression. To this end, we define the label for point xi in our dataset as yi = ±1 and
furthermore that

if yi = +1, θTxi > 0,

if yi = −1, θTxi < 0.

These conditions can be combined into

−yiθ
Txi < 0 (2-19)

which holds true whenever a point is correctly classified. In order to optimize the perceptron’s
performance, we are only interested in the points it incorrectly classified, leading to the
formulation of the cost function

J(θ) =
∑
i∈Y

yiθ
Txi =

∑
i

max(0,−yiθ
Txi). (2-20)

where Y is the set of indices of all misclassified datapoints. This cost function has the trivial
solution θ = 0 but is otherwise optimally solved when J(θ∗) = 0. Its derivative is

∂

∂θj
J(θ0, θ1, . . . , θn) =

∑
i∈Y

yixi,j (2-21)

and can be substituted in the gradient descent update equation Eq. (2-17) to obtain

θj ← θj − η
∑
i∈Y

yixi,j . (2-22)

A disadvantage of this update algorithm is that it does not converge if the dataset x is
not linearly separable. If the dataset is linearly separable, however, it has the advantageous
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property of being able to perform updates on-line, that is, without considering the entirety
of the dataset in its update calculation, while still converging on the optimal solution. This
is in contrast to the gradient descent update equation used for optimizing the logistic (or any
other) regression cost function, which requires the entire dataset in its computation in order
to find the optimal solution.

The ability to perform the gradient descent optimization using only a minibatch of data
points randomly sampled from the entire dataset is called stochastic gradient descent
(treated in more detail in Section 2-3-3) and is an important algorithm since it reduces
computation time when training models on very large datasets.

The Perceptron algorithm forms the basis for more complex machine learning models, such as
neural networks used in deep learning architectures, which will be explored in the following
section.
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2-3 Deep Learning

Deep Learning (DL), as a sub-field of Machine Learning (ML), comprises learning algo-
rithms making use of artificial neural networks (ANNs) — usually simply called neural
networks (NNs). Below, the basic steps to train a neural network are summarized. The
short explanations of every step provide this section’s outline (for clarity, the sections that
will introduce new concepts are printed in bold face).

1. Input the training example(s): The first step is to input a training example into the
neural network. Very simply, the input could just be a vector (for example: a vector
containing the student-reported hours spent studying for an exam as shown in Section 2-
2-2).

2. Forward propagation: The input is passed through the neural network one layer at
a time, with each layer transforming the input into a higher-level representation by
means of an activation function. The necessity of layers and activation functions
is presented in Section 2-3-1.

3. Compute the loss: The predicted output is then compared to the true output (i.e., the
labels — in the example of Section 2-2-2, those were the predicted exam grades) using
a loss function. The loss function depends on the task, with some examples already
provided in Section 2-2-5 and Section 2-2-6.

4. Backpropagation: Once the loss is computed, the gradients of the loss with respect to
the weights of the network are computed using backpropagation. Backpropagation
is an algorithm for efficiently computing these gradients and is presented in
Section 2-3-2.

5. Update the weights: The gradients of the loss with respect to the network’s weights
are then used to update the weights of the network using an optimizer. With gradient
descent (Section 2-2-7), we have already seen a simple optimizer for weight updates.
Some advanced optimizers that are used in training neural networks are
presented in Section 2-3-3.

6. Repeat: The previous steps are repeated until the network stops improving or an ac-
ceptable performance is achieved.

Neural networks are not limited to one-dimensional inputs, but can handle higher-dimensional
inputs such as images. In these cases, specialized types of neural networks called CNNs are
used. Important concepts of CNNs for image recognition tasks are presented in
Section 2-3-4.

2-3-1 Extending the Perceptron: Multi-layer Perceptrons and Activation Func-
tions

In Section 2-2-7, we have shown the perceptron classifier. In the context of DL, a single
perceptron, or several perceptrons acting in parallel, are referred to as single-layer perceptron
(SLP) networks due to them constituting a single layer of calculation units between input and
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OutputInput

Hidden layers

Figure 2-13: Schematic of a multilayer perceptron — a simple type of neural network. The
network has an input layer of size 3, an output layer of size 5, and two hidden layers of size 7
each. Since every neuron of one layer is connected to every neuron of the next layer, this is also
an example of a fully-connected network.

output. This is in contrast to multilayer perceptrons (MLPs), with a simple example provided
in Figure 2-13, where multiple layers of perceptrons are placed in series. These additional
layers that act between the input layer and the final output layer are called hidden layers.
The MLP is a simple example of a deep neural network where the amount of hidden layers
determines its depth. Individual perceptron nodes are often referred to as neurons.
Figure 2-14 graphically shows the working principle of a perceptron: The sum of weighted
inputs is passed to an activation function which produces the perceptron’s output. Alge-
braically, we can write

y = ϕ(Wx) (2-23)
where ϕ is the activation function, W the weight vector (or matrix), x the input vector,
and y the output vector. The activation function marks an important difference between
perceptrons (or neurons) within an MLP and the perceptron classifier as seen previously.
Whereas the perceptron classifier uses a step function, which outputs either −1 or +1, the
neurons in MLPs may utilize a wide range of nonlinear activation functions.
The necessity for nonlinearity of the activation function can be demonstrated by a simple
example: Consider a MLP with a single hidden layer such that

y = ϕ(W1x)
z = ϕ(W2y)
z = ϕ(W2ϕ(W1x))

where y is the output of the hidden layer and z is the output of the output layer. With a
linear activation function ϕ(x) = x we obtain

z = W2W1x = Vx (2-24)
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Figure 2-14: Schematic overview of Rosenblatt’s Perceptron. The inputs x are multiplied with
tunable weights W, summed and passed as argument to a step function, whose output is the
perceptron’s output.

showing that the MLP collapses into a SLP with linear activation function. For nonpolynomial
activation functions, however, the universal approximation theorems state that any function f
may be arbitrarily well approximated by a neural network with a single hidden layer containing
arbitrarily many nodes [38, 39]4.
One of the most commonly used activation functions in neural networks is the Rectified Linear
Unit (ReLU) [40]. It can be simply defined as

ϕReLU(z) = max(0, z) (2-25)

or in words: it returns the positive part of its argument. Many more activation functions exist
and an overview of commonly used ones is given in Table F-1 in Appendix F. Depending on
the choice of activation function at the output layer, a neural network can perform regression
or classification.
The definition of the MLP and activation functions enables a regularization technique that
is commonly used in neural networks: dropout. Dropout is a method that helps prevent
overfitting by randomly setting a fraction of input units within a layer to zero at each training
update (e.g., a dropout of 0.2 will disable a random 20 % of neurons within a layer). In essence,
during training, dropout can be considered as an activation function for the selected neurons,
where:

ϕ(z) = 0 (2-26)

This process encourages the network to learn more robust features, as it cannot rely on the
presence of specific neurons and must adapt to the absence of some input information.

2-3-2 Training Neural Networks Efficiently with Backpropagation

The example of the MLP has shown that, mathematically, neural networks are the repeated
and cascading application of nonlinear functions to weighted sums. neural networks serve as
function approximators allowing for more complexity than the classic ML models for regres-
sion and classification. As such, they can be trained by optimization via gradient descent,

4For mathematically similar reasons, Fourier series can approximate functions arbitrarily well by summing
weighted sinusoidal terms.

Daniel Spengler Master of Science Thesis



2-3 Deep Learning 31

but with the added computational challenge of its loss function depending on a large amount
of parameters, namely the weight and bias for each neuron. Successful training of a neural
network is therefore dependent on efficient gradient calculation, which is facilitated by the
backpropagation algorithm.

The backpropagation algorithm makes use of four equations (their derivation based on [41] is
shown in Appendix C):

δ(L) = ∇aJ ◦ ϕ′
(
z(L)

)
, (2-27)

δ(l) =
(
W(l+1)

)T
δ(l+1) ◦ ϕ′

(
z(l)
)

, (2-28)
∂J

∂w
(l)
jk

= δ
(l)
j a

(l−1)
k , (2-29)

∂J

∂b
(l)
j

= δ
(l)
j . (2-30)

Importantly, δ
(l)
j is the error of the jth neuron in layer l and gives an indication as to how

much a change in that neuron’s value is influencing the loss function J . The backpropagation
algorithm then follows:

1. Input: Set one training data sample input x as the activation of the first layer a(1).

2. Feedforward: Compute the weighted inputs z(l) and activations a(l) for all subsequent
layers l ∈ {2, 3, . . . , L− 1, L}.

3. Output error: Starting at the output layer L, compute its neurons’ errors δ(L) with
Eq. (2-27).

4. Backpropagate the error: Compute the remaining neurons’ errors by recursively using
Eq. (2-28) moving backwards through the network’s layers l ∈ {L− 1, L− 2, . . . , 3, 2}.

5. Output: Use Eq. (2-29) and Eq. (2-30) to compute the gradient of the loss function
with respect to every neuron’s weight w

(l)
jk and bias b

(l)
j .

2-3-3 Optimization Algorithms for Weight Updates

Whereas the backpropagation algorithm can efficiently compute the loss function’s gradient
with respect to the weights and biases of every neuron, it is the purpose of an optimization
algorithm, or simply optimizer, to use these gradients to update their values.

Let us re-write the gradient descent update equation (2-17) from Section 2-2-6 with the
notation for weights and biases introduced in Section 2-3-2:

w
(l)
jk ← w

(l)
jk − η

∂J

∂w
(l)
jk

, b
(l)
j ← b

(l)
j − η

∂J

∂b
(l)
j

, (2-31)

where η is the learning rate and the derivatives of the loss function with respect to the weights
and biases are as given in Eq. (2-29) and Eq. (2-30), respectively.
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We do not need to compute the loss and its gradients for every example in our input dataset
all at once. Instead, we can split the input data into randomly sampled minibatches and
compute the loss, its gradients and the weight updates in sequence. One complete pass
through the entire dataset, covering all minibatches, is referred to as an epoch. During the
training process, multiple epochs are performed to iteratively refine the model’s parameters.

This is called Stochastic Gradient Descent (SGD) and is an important algorithm in deep
learning due to several key advantages:

• Online Learning: SGD’s ability to work with mini-batches supports online learning,
where the model can be updated continuously as new data becomes available.

• Computational and Memory Efficiency: SGD’s mini-batch approach allows for
faster convergence compared to batch gradient descent, as the model can be updated
more frequently with smaller sets of data. This also results in a reduced memory
requirement for the optimization process, enabling the training of models on devices
with limited memory.

• Noise-induced Exploration: The inherent randomness in selecting mini-batches in-
troduces noise into the optimization process, helping the optimizer escape local minima
and potentially find better global solutions.

There are numerous advanced optimization algorithms used in modern deep learning algo-
rithms. Two of these, which have been used for training the models as part of this thesis, are
explained below.

Adam

The Adam5 optimizer [42] is an enhancement over the standard SGD technique. It incor-
porates the advantages of two other well-known optimization techniques, AdaGrad [43] and
RMSprop [44], and maintains separate learning rates for each parameter. These learning rates
are adaptively updated based on the first and second moments of the gradients. Consequently,
Adam provides the following key benefits:

• Faster Convergence: Adam converges faster and exhibits reduced oscillations com-
pared to SGD, making it particularly effective for training deep learning models with
noisy and sparse gradients.

• Less Sensitivity to Initial Learning Rate: The Adam optimizer is less sensitive
to the choice of the initial learning rate and more robust to variations in the gradients,
which leads to improved convergence properties compared to SGD.

LARS

The Layer-wise Adaptive Rate Scaling (LARS) optimizer [45] is an optimization algorithm
that distinguishes itself from the Adam optimizer by employing a separate learning rate for

5Not an acronym, but derived from Adaptive Moment Estimation
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each layer in the network. This approach addresses the challenge of different layers in the
network requiring distinct learning rates to achieve optimal performance. LARS offers the
following notable features:

• Magnitude-based Update Control: LARS controls the magnitude of the update
with respect to the weight norm, which allows for better control of training speed and
improved stability during training.

• Adaptive Learning Rates: By incorporating a separate learning rate for each layer,
LARS can adaptively adjust the learning rates based on the magnitude of the gradients,
leading to better convergence properties compared to traditional SGD.

• Effective for Large-Scale Training: The layer-wise adaptive rate scaling allows for
more effective training of deep learning models with varying gradient magnitudes across
layers, making it particularly suitable for large-scale training tasks.

2-3-4 Convolutional Neural Networks (CNNs)

CNNs are a class of deep learning models specifically designed for image recognition and
analysis tasks. They are particularly adept at identifying patterns and features within images
by exploiting spatial information.

To understand how CNNs process images, let us start with an example: Figure 2-15 shows
three representations of a grayscale image. Figure 2-15a shows the image as we would normally
see it on a computer screen. All digital images can be represented as an array of pixel
brightness values. This is shown in Figure 2-15b, where all pixels in the image are overlaid
with their respective brightness value ranging between 0 and 255. For a color image, the
image would have three channels (typically corresponding to the intensity values of the colors
red, green, and blue) rather than just one, and microscopy images for digital pathology may
have even more channels depending on how many different spectral conditions the image has
been captured at. Figure 2-15c shows the image information simply as those numerical values,
which is closer to how a computer would “see” this image.

In order to train a neural network to recognize and classify this image, it may be tempting
to stack the image’s pixel brightness values in Figure 2-15c in a tall vector and feed it as
input to a simple network like we have seen previously. In Section 2-3-1, we have only
considered networks that are fully connected, that is, every neuron in layer l is connected
to every neuron in layers l− 1 and l + 1. However, using a fully connected network for image
recognition may not be ideal, as it does not effectively capture spatial information or identify
local patterns that make up features like eyes, nose, and mouth. Furthermore, if the pixels
in the image were to be shifted slightly in a given direction, the input to the neural network
could look radically different despite it essentially representing the same image.

For image recognition, we are therefore interested in robustness to spatial variance as well as
the network’s ability to perform feature extraction such that it can perform classification
on a set of high-level features it has detected in an image. The solution to this problem is
to use convolutions in order to propagate information through the network. Neural net-
works utilizing convolution are therefore called convolutional neural networks (CNNs)
or ConvNets.
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(a) Image representation.

157 155 173 166 148 149 128 148 170 162 156 156

156 179 157 78 76 63 36 24 112 200 178 155

179 173 57 19 36 11 13 34 54 109 156 178

201 108 14 115 125 106 116 193 156 24 60 176

189 74 136 243 233 234 234 227 220 89 73 196

170 108 200 232 231 215 220 235 221 100 75 200

183 94 178 208 187 213 209 162 141 76 27 166

185 100 160 91 24 165 135 22 37 60 25 145

197 166 188 188 155 220 176 139 173 102 41 184

203 173 160 243 231 226 153 174 215 54 93 220

191 208 123 155 233 186 96 148 87 44 196 229

191 219 145 112 226 205 127 103 39 99 244 222

190 211 169 71 108 141 94 52 7 110 242 216

187 198 223 78 11 80 47 6 14 195 251 212

183 201 222 138 2 7 16 93 181 143 236 234

194 201 130 192 160 113 113 185 168 29 101 216

(b) Added pixel brightness
values.

157 155 173 166 148 149 128 148 170 162 156 156

156 179 157 78 76 63 36 24 112 200 178 155

179 173 57 19 36 11 13 34 54 109 156 178

201 108 14 115 125 106 116 193 156 24 60 176

189 74 136 243 233 234 234 227 220 89 73 196

170 108 200 232 231 215 220 235 221 100 75 200

183 94 178 208 187 213 209 162 141 76 27 166

185 100 160 91 24 165 135 22 37 60 25 145

197 166 188 188 155 220 176 139 173 102 41 184

203 173 160 243 231 226 153 174 215 54 93 220

191 208 123 155 233 186 96 148 87 44 196 229

191 219 145 112 226 205 127 103 39 99 244 222

190 211 169 71 108 141 94 52 7 110 242 216

187 198 223 78 11 80 47 6 14 195 251 212

183 201 222 138 2 7 16 93 181 143 236 234

194 201 130 192 160 113 113 185 168 29 101 216

(c) Matrix representation.

Figure 2-15: Three representations of a grayscale image. The purely visual representation in
(a) is most useful for human interpretation. For interpretation by a computer, however, it has to
be represented purely as a numerical array as shown in (c). Computer image formats typically
represent pixel brightness as integer values between 0 (black) and 255 (white), as is shown here,
but values ranging between 0 and 1 are also possible. Image adapted from [46].

Convolutions

The application of convolutions is similar to the way they are used in image processing in
order to apply sharpening, blurring, edge detection, or other filtering to the image. The way
information propagates through a CNN via convolution is shown in Figure 2-16. A convolution
filter (also referred to as kernel) is applied to a subset of pixels in the source layer, with the
resulting value of this matrix operation being written to a pixel in the destination layer.
This operation is repeated by sliding the filter across the source layer until all pixels in the
destination layer are populated.

To put this into the context of neural networks as seen previously, it is important to note that
the convolution filter contains the weights that are learned during training and that it only
connects a subset of neurons (pixels) in a layer with a single neuron in the next layer. After
this matrix calculation, a bias term (subject to training) is added to the result and input
to that neuron’s activation function. Since the result of a convolution is assumed to contain
some information about detected features, it is called a feature map rather than an image.

Multiple convolutions with different filters may be applied per layer, resulting in the feature
map not only having a width and a height, but also a depth which corresponds to the amount
of convolution operations.

Pooling

Another important operation within CNNs is pooling. An example of pooling is shown in
Figure 2-17: A group of pixels in the source layer is combined a to represent a single pixel
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Input

Output

Source pixel

Destination pixel

Convolution filter

(-1×3)+(0×0)+(1×1)+
(-2×2)+(0×6)+(2×2)+
(-1×2)+(0×4)+(1×1)= -3

Figure 2-16: Visualization of a convolution operation between two layers. Note that it is the
convolution filter (or kernel) that is containing the trainable weights of the neural network layer.
In order to prevent the convolution operation from shrinking the feature map in width and height,
the input layer can be padded with zeros. Image adapted from [47].

in the destination layer. In this case, max pooling is applied, which selects the maximum
value of each pixel within a group to output at the destination layer. Other examples are min
pooling, which selects the minimum value, or average pooling, which computes the average
value.

Pooling is a form of downsampling and important in order to reduce computational com-
plexity: as more convolutions are applied within a CNN, the feature maps gain more depth
with pooling being used to shrink them with respect to their width and height. The reason
that this has a small impact on the network’s performance is that as more feature maps are
computed, their spatial information becomes less important and their presence or absence
represented by a lower amount of numerical values becomes more important. It is therefore
important to choose a suitable pooling method in order to retain important information about
the feature maps.

CNNs for Image Classification

Figure 2-18 shows a typical CNN architecture to perform image classification. Here, the
input is a 3-channel image. The first four displayed steps show a repeated use of convolution,
application of activation functions (here ReLU), and pooling. The further the information
propagates through the network, the more depth the feature maps obtain and the less width
and height they have due to pooling. This is the portion of the network that has learned to
extract features that are ultimately useful in determining the class label of the image. Ideally,
the CNN will have extracted features relevant for classification well enough such that only a
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Figure 2-17: Example of max-pooling to reduce width and height of a feature map. Here, a filter
of size 2× 2 with stride 2 is used, meaning that the input map is separated into 2× 2 windows in
an interval (stride) of 2 pixels. The max operator then chooses the maximum value within each
window to generate the next feature map. Image adapted from [46].

single fully connected layer of neurons is sufficient to determine the correct class label for the
image based on those extracted features.

A notable CNN architecture that is relevant for this thesis is the Residual Network (ResNet)
[48] as it is used as the backbone for the self-supervised learning algorithm Simple Framework
for Contrastive Learning of Visual Representations (SimCLR) that is presented in Section 2-4.
ResNet introduces the concept of residual blocks, which allow information to skip over one
or several layers, effectively enabling the network to learn feature mappings that represent
a trade-off between transformations via convolution and direct passthrough of information
(please refer to Appendix D for a slightly more detailed explanation of ResNets and the
architectures that it is built upon).

ResNets have been largely responsible for enabling the training of very deep CNNs. The
depth of a ResNet architecture is specified by adding the amount of convolutional layers and
the amount of skip connections. For example, ResNet-50 has 34 convolutional layers and 16
skip connections. The numbers appended to the ResNet name, such as 18, 34, 50, 101 or 152,
indicate the total number of layers in the network, including both convolutional layers and
skip connections.
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Figure 2-18: Diagram of a CNN for image classification. The 3-channel input image of a car is
passed through several layers performing convolution and pooling operations, here referred to as
the feature learning step. The result is a feature map that contains a, hopefully useful, feature
representation of the input image. This feature representation serves as input to several fully
connected layers, here titles as the classification step. For the final layer, the softmax function is
chosen, which will cause the output vector to contain a list of probabilities that specify how likely
it is that the input image belongs to one of the known class labels. Image from [46].

2-4 Self-supervised Learning for Vision Tasks

In the previous section, we have seen a simple diagram of a convolutional neural network
(CNN) for image classification in Figure 2-18. The two major steps that are distinguished in
this diagram are feature learning and classification. When training such a network using
supervised learning, the feature learning and classification steps happen at the same time:
the prediction made by the fully-connected layers at the end of the network (the classification
part), is evaluated using a loss function, whose gradient is propagated backwards through the
network all the way to the very first input layer in the feature learning part. However, these
two steps do not necessarily have to occur at the same time during training. Performing the
feature learning step separately is a key aspect of self-supervised learning approaches,
which aim to learn meaningful representations of the data without relying on explicit labels.

This section aims to provide an understanding of self-supervised learning approaches and
their potential applications in various computer vision tasks. Section 2-4-1 will first discuss
the intuition behind self-supervised learning and highlight the differences between contrastive
and non-contrastive learning approaches. Section 2-4-2 will provide a detailed overview of
the Simple Framework for Contrastive Learning of Visual Representations (SimCLR) — the
self-supervised learning algorithm that was used to train the models to learn feature rep-
resentations of tumor tissue images as part of this thesis work. Lastly, Section 2-4-3 will
explain the linear evaluation protocol — a common method to evaluate the quality of feature
representations that a self-supervised learning algorithm learns.

2-4-1 The Intuition Behind Self-supervised Learning

Consider the example of an image classifier separating images of cats and dogs: in supervised
learning, we would train such a classifier on a large dataset containing images of cats and
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dogs, which are labeled appropriately. However, this is very different from how humans learn
to recognize objects [49]. Humans, especially when we are young, learn to recognize objects
by repeatedly being exposed to them, “not by being told the name of every object” [50]. We
may become experts in identifying objects before we learn their names and, in fact, before
we have even learned a language at all. It is then just a matter of being taught the words
corresponding to objects after which we can point to previously unseen objects, such as cats
and dogs, and exclaim their names with high accuracy.

Albeit very simplified, this example highlights the intuition behind self-supervised learning:
first, a model learns to extract meaningful features from the data in an unsupervised manner
without explicit labels (pre-training), then it uses the learned features to perform a super-
vised task with a limited amount of labeled data (fine-tuning or transfer learning). This
two-stage process allows the model to improve label efficiency, as it can leverage the structure
and patterns present in the data itself during the first stage, reducing the need for extensive
labeled data during the second stage.

However, it is not immediately obvious how one should design an algorithm that achieves the
desired learning process outlined in the first stage. A crucial aspect of self-supervised learning
involves creating pre-text tasks, which are carefully designed tasks that force the model to
learn meaningful features from the data in order to solve them.

Pre-training: Contrastive Learning vs. Non-contrastive Learning

Self-supervised learning can be broadly categorized into contrastive and non-contrastive
approaches [13]. The main difference between these approaches lies in the way training
examples are generated and which type of pre-text task should be solved during pre-training.

Contrastive methods often involve designing a pre-text task that encourages models to learn
representations that bring similar data points closer together (positive pairs) while pushing
dissimilar data points further apart (negative pairs). One popular way to achieve this is by
creating two views of the same image, such as adding color or cropping, and mapping them
to similar representations (see Figure 2-20). State-of-the-art contrastive learning methods for
vision tasks include MoCo [51, 52] and SimCLR (see Section 2-4-2) [14, 53].

Non-contrastive learning methods, on the other hand, provide only positive pairs and focus on
solving a task related to the input data without explicitly modeling the relationships between
different examples. In natural language processing, an example of this is to remove a word
in the input text and define the pre-text task to determine the removed word based on the
surrounding words. This is called context prediction, and an example in the visual domain
is shown in Figure 2-19 [54]: Here, the pre-text task is to predict the relative locations of
two randomly extracted patches from an image. State-of-the-art non-contrastive learning
algorithms for vision tasks include BYOL [55], SwAV [56], and SEER [57].

After Pre-training: Fine-tuning vs. Transfer Learning and Feature Extraction

After the pre-training stage in self-supervised learning, models have acquired meaningful rep-
resentations of the data. However, they need to be adapted for specific downstream tasks.
This can be achieved through fine-tuning or transfer learning and feature extraction.

Daniel Spengler Master of Science Thesis



2-4 Self-supervised Learning for Vision Tasks 39

Figure 2-19: Example context prediction task for computer vision. The center crop (blue) is
paired with a random surrounding crop (red) and given as inputs X to a network during pre-
training. By learning to correctly predict the location Y of the image crops, the network learns
about the spatial make-up of objects and the relationship between objects within images. The
resulting feature representations the network learns are useful for computer vision tasks such as
object detection. Image from [54].

Fine-tuning involves updating the entire pre-trained model with labeled data from the target
task. In other words, the pre-trained model’s layers are “unfrozen” and can be changed during
the fine-tuning process.

Transfer learning, on the other hand, involves using the pre-trained model as a fixed fea-
ture extractor. In this approach, the pre-trained model is used to extract features from
the labeled data of the target task, and these features are then fed into a new model, e.g., a
classifier, which is trained from scratch. This process leaves the pre-trained model unchanged
(“frozen”), and only the new model is updated during training. The linear evaluation protocol
explained in Section 2-4-3 is an application of transfer learning.

2-4-2 SimCLR: A Simple Framework for Contrastive Learning of Visual Repre-
sentations

SimCLR (Simple Framework for Contrastive Learning of Visual Representations), proposed
by Chen et al., is a state-of-the-art contrastive learning algorithm that focuses on learning
feature representations from unlabeled data by recognizing similarities between differently
augmented views of the same base image and recognizing dissimilarities between augmented
views of different base images [14, 53].

The pre-training stage of SimCLR is illustrated in Figure 2-20 and can be summarized in the
following steps:
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1. Randomly augment an input image twice, generating two distinct views of the same
base image. Common augmentations include flipping, rotating, cropping, resizing, etc.
as shown in see Figure 2-21.

2. Independently feed both augmented views of the image into an encoder CNN to obtain
intermediate feature representations (displayed in blue).

3. Process the intermediate feature representations using a MLP that serves as a projection
head, resulting in feature projections (displayed in violet).

4. Optimize the model using a contrastive loss function that maximizes the similarity
between projections of the two augmented views of the same base image (positive pairs,
green “Attract” arrows), while minimizing the similarity between projections of different
base images (negative pairs, red “Repel” arrows).

5. Once the pre-training is complete, use the intermediate feature representations output
by the encoder CNN as input to other networks for downstream tasks.

Note that all the networks denoted with CNN (convolutional neural network) and MLP
(multilayer perceptron), respectively, share the same weights during training. In the standard
implementation of SimCLR, the CNN is a ResNet encoder and the MLP is a fully-connected
network with 3 hidden layers and ReLU (Rectified Linear Unit) activations.

The SimCLR Algorithm and the NT-Xent Loss Function

Figure 2-22 shows a symbolic representation of the diagram shown in Figure 2-20. Here, x
represents an input image, which is augmented by transformations t and t′, resulting in the
augmented image pair x̃i, x̃j . The transformations are randomly drawn from the set of all
pre-defined transformations T . A base encoder f(·) (represented by a CNN in Figure 2-20)
processes the augmented image pair and computes their feature representations hi, hj .
The feature representations are further processed by a projection head g(·) (represented by a
MLP in Figure 2-20), which computes their feature projections zi, zj .

As a pre-training loss function SimCLR uses a variation of the InfoNCE (Information Noise-
Contrastive Estimation) loss [59], which the authors call NT-Xent (normalized temperature
cross-entropy) loss

LNT-Xent = − 1
N

∑
i,j∈MB

log
(

exp (sim (zi, zj) /τ)∑2N
k=1 1[k ̸=i] exp (sim (zi, zk) /τ)

)
. (2-32)

Here, N is the amount of images (before generating augmentation pairs), i, j ∈ MB corre-
sponds to all positive pairs in the minibatch (after generating augmentation pairs), zi is the
feature projection of the ith image in the minibatch, τ is a temperature normalization con-
stant, and 1[k ̸=i] is an indicator function that is equal to 1 iff k ̸= i and 0 otherwise. sim(a, b)
is the cosine similarity between two vectors a and b:

sim(a, b) = a · b
∥a∥∥b∥ (2-33)
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Figure 2-20: Diagram of the SimCLR pre-training procedure. The image of the cat and car
are augmented in two different ways and fed into the encoder CNN. The resulting intermediate
feature representations are further processed by a MLP whose outputs serve as the training signal:
the two representations originating from the cat image and car image, respectively, should be as
similar as possible. The representations originating from another image should be as dissimilar as
possible. The intermediate feature representation as output by the encoder CNN can then serve
as input to other networks for downstream tasks. Note that all the networks denoted with CNN
and MLP, respectively, share the same weights during training. Image adapted from [58].
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Figure 2-21: Example of typical image augmentations for deep learning. Augmentations are
generally applied to image datasets in order to artificially increase sample size as well as making
the trained network more robust against noise and other image variations. In SimCLR specifically,
these augmentations are applied twice to the same image and the pre-training task is to be able
to recognize when an image pair originated from the same source image or not. Image from [14].

Figure 2-22: Symbolic diagram of the SimCLR pre-training procedure. The input image x
is augmented two separate ways by transformations randomly drawn from T , resulting in an
augmented image pair xi, xj . A base encoder network f(·) and a projection head g(·) are trained
to maximize agreement between feature projections zi, zj . After training, g(·) is discarded and
only f(·) is used to compute representations h for downstream tasks [14].
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Figure 2-23: Three example images of handwritten digits. The “4”, “7”, and “9” digits all share
similar features (e.g., diagonal lines, horizontal lines near the top of the digit). In the context of
SimCLR, a lower value of τ in the NT-Xent loss function may be necessary to better distinguish
between these very similar images. Digit images are taken from the MNIST dataset [61].

By making use of logarithmic properties, the function can be re-arranged as [60]

LNT-Xent =− 1
N

∑
i,j∈MB

sim (zi, zj) /τ

︸ ︷︷ ︸
=LA

(2-34)

+ 1
N

N∑
i

log
( 2N∑

k=1
1[k ̸=i] exp (sim (zi, zk) /τ)

)
︸ ︷︷ ︸

=LD

where the alignment loss LA and the distribution loss LD correspond to the numerator
and denominator in Eq. (2-32), respectively. LA can be considered the non-contrastive part
of the loss function as it only evaluates similarity of positive pairs, whereas LD is the
contrastive part which evaluates similarity of negative pairs.

The Effect of the Temperature Parameter τ

The temperature parameter τ in the NT-Xent loss function plays an important role in con-
trolling the scale of the similarity scores between feature projections. By dividing the cosine
similarity by τ , the similarity scores are normalized, affecting the sharpness of the distribution
of these scores. In other words, the temperature parameter influences the relative importance
of positive and negative pairs during optimization.
Consider the example of three handwritten digits in Figure 2-23 where the “4”,“7”, and “9”
digits all share similar features (e.g., diagonal lines, horizontal lines near the top of the digit).
If we set a large value of τ in the NT-Xent loss function during training, the similarity scores
between the feature projections of these similar images will be normalized to similar values.
As a result, the model might treat these similar images as equally similar, potentially causing
confusion during pre-training and resulting in worse feature representations.
On the other hand, if we set a smaller value of τ , the similarity scores will be more sensitive
to the differences between these similar images, leading to a sharper distribution of scores.
This means that the model will be better able to distinguish between these similar images
during pre-training and learn better feature representations as a result.
In certain situations, however, a larger value of τ can be advantageous. For example, consider
a dataset with a high degree of intra-class variation, where instances of the same class exhibit
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a wide range of features or characteristics (e.g., many different cat and dog breeds in a cat
and dog image dataset). In such cases, using a larger value of τ can help the model focus on
the broader similarities between instances of the same class, rather than being overly sensitive
to small differences.

Augmentations in SimCLR

The role of data augmentations in SimCLR is crucial, as they directly influence the quality
of the learned representations. Chen et al. [14] observed that the choice of augmentations
significantly affects the performance of SimCLR. In particular, they found that using multiple
augmentations, such as cropping with random resizing, flipping, color jittering, and blurring,
was more effective than using a single augmentation. This is because a diverse set of aug-
mentations allows the model to learn more robust and generalizable features that are useful
for a wide range of downstream tasks.

Tian et al. [19] have investigated the effect of augmentations on contrastive learning per-
formance and argued that a good set of augmentations should reduce mutual information
between views while keeping task-relevant information intact. In other words, the augmenta-
tions should introduce sufficient variation between the views of the same image to challenge
the model, but not to the extent that the underlying semantic content is altered or lost. This
balance enables the model to focus on learning features that are relevant to the task at hand
and less sensitive to irrelevant variations introduced by the augmentations.

Jing et al. [62] have found that augmentations that are too strong will result in dimensional
collapse of the feature representations. This means that, when the augmentations are overly
aggressive, the learned feature representations may become overly simplified, losing their dis-
criminative power and collapsing into a low-dimensional subspace. This limits the model’s
ability to distinguish between different images and may lead to poor performance on down-
stream tasks. Therefore, it is important to carefully select and tune the augmentations to
achieve the optimal trade-off between encouraging the model to learn robust features and
preserving the discriminative power of the learned representations.

2-4-3 Assessing Pre-trained Encoders with Linear Evaluation

The goal of pre-training an encoder network using self-supervised learning is to learn high-
quality feature representations it generates from the given input. There are multiple
methods to evaluate the quality of these feature representations, but here we will only highlight
the most popular [13] one: linear evaluation, which was introduced by Zhang et al. [63, 64]
and involves training a linear classifier on top of the learned feature representations.

Figure 2-24 illustrates the process: the pre-trained encoder’s output feature representations
are used as input for the supervised training of a linear classifier. The performance of the
classifier reflects the quality of the feature representations learned by the pre-trained encoder.
Since a linear classifier has low discriminative power (i.e., it has a low capacity), its ability
to predict the correct class is highly dependent on the quality of the feature representations.
Consequently, the performance of the trained linear classifier serves as an indirect measure of
the quality of the pre-trained encoder’s feature representations.
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Figure 2-24: Schematic overview of linear evaluation of a pre-trained encoder. The pre-trained
encoder computes a feature representation of the given input image. This feature representation
serves as input to a linear classifier, which consists of a single layer of neurons. The linear classifier
is trained to predict the correct class with supervision (i.e., labels are available). The pre-trained
encoder’s weights remain unchanged (frozen) during this.

During linear evaluation, the weights of the pre-trained encoder remain unchanged (frozen)
while training the linear classifier. This approach allows for an assessment of the feature
representations’ quality without modifying the pre-trained model. The performance of each
linear classifier, specifically trained for its corresponding pre-trained encoder, can then be used
as a benchmark for comparing the effectiveness of different pre-trained encoders in learning
meaningful feature representations.
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2-5 Related Work

In recent years, significant progress has been made in the field of tumor analysis, with the
development of various computational tools and approaches aimed at better understanding
tumor tissues and the tumor microenvironment (TME). This section provides an overview of
the current state of the art tools, as well as techniques that leverage self-supervised learning
— specifically SimCLR. Lastly, a discussion of the limitations of these existing tools and
techniques is provided, and how the work in this thesis can address them.

2-5-1 State of the Art Tools for Tumor Analysis

QuPath, short for Quantitative Pathology, is an open-source tool for digital pathology and
whole slide image analysis [65]. It can be used to perform various image analysis tasks, includ-
ing cell detection, segmentation, and classification. In the context of tumor tissue analysis,
QuPath can be used to classify individual cells based on their morphological and phenotypic
features. The software allows users to train and apply ML algorithms, such as random forests
and support vector machines, to differentiate between various cell types, including tumor
cells, immune cells, and stromal cells. Additionally, QuPath offers the possibility to analyze
spatial relationships between different cell populations, providing a better understanding of
the TME.

CellProfiler is an open-source image processing and analysis software that enables high-
throughput analysis of cell-based assays [66]. It can be used for various tasks, notably for
segmentation and quantification of individual cells in images. In the context of tumor tissue
analysis, CellProfiler can be employed to preprocess histological images, segment cells, and
extract relevant features for classification. CellProfiler’s flexible pipeline system allows users
to integrate various image processing modules to tailor the analysis workflow to their specific
needs. It is often complemented by ImageJ [67], an open-source tool that focuses on single-
image processing and investigation. Both CellProfiler and ImageJ have established themselves
as leading open-source platforms in the field of bioimage analysis with thousands of citations
[68].

TME-Analyzer (developed at Erasmus University Medical Center) is a versatile tool de-
signed to facilitate the analysis of TMEs and address the challenges posed by high patient-
to-patient and tissue-to-tissue variations in MxIF image intensities [7]. The TME-Analyzer
workflow is organized into several key stages: image loading, foreground selection, tissue seg-
mentation, nucleus/cell segmentation, cell phenotyping, and data analysis and exportation.
By offering the user an intensity profile histogram during the foreground selection and tis-
sue segmentation steps, the tool allows for easy threshold selection and correction for uneven
background signals. Nucleus segmentation can be performed manually using a watershed algo-
rithm [69] or by using a pre-trained neural network called StarDist [70]. By applying Voronoi
segmentation to the segmented nuclei, cell segmentation masks can be generated. TME-
Analyzer has demonstrated its utility in the analysis of triple-negative breast cancer (TNBC)
tissue samples, where it was used to obtain a classifier that significantly predicted short versus
long survivors and was benchmarked against inForm [71, 72], a commercially available tool
for MxIF image analysis.
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2-5-2 Applications of SimCLR for Tumor Analysis

Self-supervised learning has emerged as a promising approach to address the scarcity of labeled
datasets in medical image analysis. Here, we will look at two studies related to the problem
of tumor analysis using the self-supervised learning algorithm SimCLR (Simple Framework
for Contrastive Learning of Visual Representations).

Self-supervised contrastive learning for digital histopathology by Ciga et al.

In their study, Ciga et al. [16] utilized the SimCLR algorithm to analyze digital histopathology
data. A diagram of the pre-training pipeline is shown in Figure 2-25 (note the similarity
to Figure 2-20). The authors investigated the use of several pre-training augmentations,
including random flipping, rotations, Gaussian blurring, and color jittering.

Ciga et al. pre-trained the SimCLR models on 57 histopathology datasets without any labels
and found that combining multiple multi-organ datasets with different staining and resolu-
tion properties enhanced the quality of the learned features. They also found that using more
images for pre-training led to better performance in the downstream tasks of tissue classifi-
cation and segmentation. They highlighted that the success of the contrastive pre-training
heavily relies on the diversity of the unlabeled training set, rather than the number of images.
Furthermore, they noted that the organ from which the training images were extracted did
not substantially affect the quality of learned representations. This is a significant insight,
since it suggests that SimCLR models can improve by learning from more datasets than just
those that focus on a specific organ and implies that a single model may successfully learn
features for a broad range of tissue types.

The study focused on pre-training networks to learn features from images on a tissue-level
rather than individual cells. The authors point out that images that are visually similar but
only feature small variations, for example single-cell tumors in a larger tissue image, “were not
suitable for contrastive learning, and led to noisy representations” [16], and that addressing
those domain-specific issues requires further research.

NaroNet: Discovery of tumor microenvironment elements from highly multiplexed images

NaroNet is a deep learning framework that can analyze TMEs and provide patient-level
predictions [18]. The NaroNet pipeline analyzes tumors in three levels of spatial complexity
thanks to its multi-stage layout:

• The patch-contrastive learning (PCL) module employs the SimCLR algorithm and
learns features from small image patches extracted from the input images,

• the features learned by the PCL are arranged in a graph that captures the spatial
relationship of the original image patches,

• the graph is fed into a series of graph neural networks, which learn higher-level features
(“neighborhood learning” and “area learning”).
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Figure 2-25: Diagram of the SimCLR pre-training procedure applied by Ciga et al. Note the
similarities to Figure 2-20. The networks were pre-trained on various datasets featuring brightfield
microscopy images of a broad range of tissue types. Input images were of size 224 × 224 pixels
and captured larger tissue areas rather than individual cells. Image from [16].
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A diagram of the pre-training pipeline for the PCL is shown in Figure 2-26 (note the similarity
to Figure 2-20). The PCL learns from small image patches of sizes between 10×10 and 15×15
pixels, which are randomly extracted from the input MxIF images with the condition that a
patch must contain one or more cells. The only augmentations used during pre-training are
random rotations, flipping and cropping of the extracted patches.

By using the features learned by the PCL, whole tissue images can be represented in a com-
pressed yet enriched format, which NaroNet utilizes in its downstream graph neural networks
to perform TME analysis.

2-5-3 Limitations of Previous Work

Although tools for bioimage analysis such as QuPath, CellProfiler, TME-Analyzer, etc. are
very capable, their main limitation stems from the fact that they are, at best, semi-automatic.
The deep learning capabilities that these tools offer are either facilitated by networks that
were (supervisedly) trained on separate data or require the users to provide labels on their
own if they want to train models on their data. Even unsupervised learning capabilities
require tuning of hyperparameters and the obtained results can be difficult to interpret.

Since these traditional tools require expert users to perform annotation, labeled datasets in
bioimaging are scarce as a result. Self-supervised learning techniques is a way to address this
label scarcity and the work by Ciga et al. [16] as well as NaroNet [18] show that useful features
can be learned from tissue images. Furthermore, these features can be used to improve the
performance of downstream applications.

While the results obtained by Ciga et al. are promising, it is not clear if their proposed
networks would work well on MxIF images, since their study only considered brightfield
microscopy images. The difference in image modality may require an entirely different con-
sideration for pre-training augmentations. Furthermore, MxIF images often have more than
3 color channels, which means that typical neural network architectures may not be suitable
as those are primarily focused on analysis of natural images.

NaroNet is capable of analyzing MxIF images, but its PCL architecture is limited to analyzing
datasets of images that all have the same amount of image channels. Given the results by
Ciga et al., a big advantage of self-supervised learning on tissue images is that data from
various organs and tissue types can improve performance. Since not all MxIF image datasets
have the same amount of image channels (or even target the same immune cells), NaroNet is
limited to analyzing images from small subsets of all available data.
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Figure 2-26: Diagram of the SimCLR pre-training procedure of NaroNet’s PCL module. Note
the similarities to Figure 2-20. The PCL is trained on small image patches (sizes between 10×10
and 15 × 15 pixels) randomly extracted from the tissue images, with the condition that one or
more cell must be present in an extracted patch. Image from [18].
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Chapter 3

Methodology

This chapter describes the steps taken to perform the training and evaluation of the self-
supervised neural networks.

Section 3-1 gives an overview of the algorithms and evaluation metrics used. Section 3-2
presents the main dataset used for the training — the triple-negative breast cancer (TNBC)
dataset — and details every step taken to adjust the dataset to be used for the purpose
of tumor section classification and individual cell classification. Section 3-3 presents two
more datasets that were used — the CellPose and STL-10 datasets. Lastly, Section 3-4 and
Section 3-5 detail the steps taken in the two training experiments: tissue section classification
and individual cell classification, respectively.

3-1 Algorithms and Evaluation Metrics

The training procedure for a complete network, capable of being evaluated, can be summarized
in two steps following the outline of self-supervised learning algorithms in Section 2-4:

1. Self-supervised pre-training of an encoder network according to the SimCLR algorithm
(Simple Framework for Contrastive Learning of Visual Representations) [14, 53].

2. Supervised training of a linear classifier on top of the pre-trained encoder.

To evaluate the quality of the feature representations learned by the pre-trained encoders
following the linear evaluation protocol (Section 2-4-3), I trained the linear classifiers on top
of the base encoders to perform two separate classification tasks, along with their respective
evaluation metrics as follows:

1. Determine the inflammation status of entire tumor sections in TNBC images (described
in Section 3-4).
Evaluation metric: Classification accuracy (see Section 2-2-3).
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Table 3-1: Summary of spatial immunophenotypes per patient, and corresponding images in the
TNBC dataset. The spatial immunophenotype labels are assigned per patient and therefore every
image belonging to a particular patient inherits this label.

Spatial
immuno-

phenotype
Label Patients Images

Excluded "excl" 17 (27.4%) 272 (26.9%)
Ignored "ign" 24 (38.7%) 389 (38.5%)
Inflamed "infl" 21 (33.9%) 349 (34.6%)
Total 62 1010

2. Determine the phenotypes of individual immune cells within tumor sections in TNBC
images (described in Section 3-5).
Evaluation metric: The classifier’s Area Under the Precision-Recall Curve (PR-AUC)
(see Section 2-2-3).

It is important to note that the linear classifiers serve a dual purpose in this context: they
not only perform tasks of interest but also provide a means to evaluate the quality of the base
encoder’s feature representations through their performance on these tasks.

3-2 TNBC Dataset

The TNBC (triple-negative breast cancer) dataset is the primary dataset used in this thesis
for training the networks and evaluating their performance. It consists of 1010 multiplex
immunofluorescence (MxIF) microscopy images of TNBC tissue sections from 62 patients.
These images have been gathered as part of a previous study at Erasmus University Medical
Center (Erasmus MC) [4] and have been labeled using TME-Analyzer [7]. Notably, the avail-
able labels include the identified spatial immunophenotype per patient (Table 3-1) as well
as the location and cell phenotype of every located cell within the images (Table 3-2).

Pre-processing of the Image Data

The original images are available as size 1340×1004×8 (width×height×color channels) .tif
files with 32-bit color depth. As a first pre-processing step, I split the 8 individual channels
into separate .png files with 8-bit color depth and normalized their intensities such that the
dimmest pixel obtained intensity 0 and the brightest pixel obtained intensity 255. These
images were used for training the networks for tissue image classification.

For individual cell classification, I used the cell location information as determined by TME-
Analyzer and extracted small image patches of size 64 × 64 pixels centered around every
cell.
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Table 3-2: Summary of individual cell phenotypes in all images in the TNBC dataset. Note that
a single cell can be assigned multiple phenotype labels (multilabel): the given “Cells” quantities
specify the amount of cells that were assigned a particular label. Cells that were assigned none of
the labels of interest were assigned the "other" label. The last row specifies the total amount
of cells that were identified by TME-Analyzer.

Cell
phenotype Label Cells

Cytokeratin "CK+" 726 101 (31.64%)
CD3 "CD3+" 140 426 (6.12%)
CD8 "CD8+" 190 615 (8.31%)
CD20 "CD20+" 108 444 (4.73%)
CD56 "CD56+" 5 291 (0.23%)
CD68 "CD68+" 54 700 (2.38%)
Other cells "other" 1 226 886 (53.46%)
Total 2 295 083

Train/test Split

For all experiments involving supervised learning, unless stated otherwise, I performed an
identical split of the dataset on a patient level putting 47 (75.8 %) patients into the training
set and 15 (24.2 %) patients into the test set. Subsequently, this results in a split of 761/249
(75.3 %/24.7 %) on an image level and 1 732 096/562 987 (75.5 %/24.5 %) on an individual cell
level.

The following subsections describe how the dataset was further processed for the purposes of
tumor section classification (Section 3-2-1) and individual cell classification (Section 3-2-2).

3-2-1 TNBC Dataset for Tumor Section Classification

For the task of entire tumor section classification, I applied the following change to the
patient-level spatial phenotype label data:

• Combine labels "excl" (“excluded” phenotype) and "ign" (“ignored” phenotype) into
the new label "non-infl" (“non-inflamed” phenotype).

The resulting training and test sets are summarized in Table 3-3.

To give a visual impression of the image data that is being analyzed when classifying tumor
sections, Figure 3-1 shows an example tissue image from the TNBC dataset, where Figure 3-1a
is a composite image of all color channels as it would be considered when analyzed by humans,
and Figures 3-1b through 3-1i are the respective individual channels (note: for better visibility
in this document, these images have their colors inverted, their brightness reduced by 20 %,
and contrast increased by 40 %).
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Table 3-3: Summary of training and test sets for the task of tumor section classification.

Spatial
immuno-

phenotype
Label Images,

training set
Images,
test set

Non-inflamed "non-infl" 497 (65.3%) 164 (65.9%)
Inflamed "infl" 264 (34.7%) 85 (34.1%)
Total 761 249

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3-1: Example image from the TNBC dataset. (a) shows a composite of 7 color channels
(excluding the background channel) flattened into a 3-channel RGB image. The remaining images
show the intensity-normalized individual color channels in grayscale (for better visibility in this
document, the colors have been inverted, brightness reduced by 20 %, and contrast increased by
40 %): (b) DAPI, (c) CK (Cytokeratin), (d) CD3, (e) CD68, (f) CD8, (g) CD56, (h) CD20, (i)
background. Note that the colors of the subfigure indices from (b)–(h) correspond to the colors
these respective channels contribute to the composite in (a).
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Table 3-4: Summary of the TNBC dataset for the task of individual cell classification with
training set and test set split. The training set was balanced to mitigate class imbalance issues
during supervised training. The imbalanced training set (displayed in gray) was not used during
experiments. Note that a single cell can be assigned multiple phenotype labels (multilabel), so
percentage values do not add up to 100 %. Cells that were assigned none of the labels of interest
were assigned the "other" label. The last row specifies the total amount of cells contained within
a set.

Cell
phenotype Label Image patches,

training set imbalanced
Image patches,

training set balanced
Image patches,

test set

Cytokeratin "CK+" 530 458 (30.63%) 4 698 (19.84%) 195 643 (34.75%)
CD3 "CD3+" 116 036 (6.70%) 4 984 (21.04%) 24 390 (4.33%)
CD8 "CD8+" 157 270 (9.08%) 4 760 (20.01%) 33 345 (5.92%)
CD20 "CD20+" 95 088 (5.49%) 5 235 (22.10%) 13 356 (2.37%)
CD56 "CD56+" 4 698 (0.27%) 4 698 (19.84%) 593 (0.11%)
CD68 "CD68+" 40 138 (2.32%) 4 913 (20.74%) 14 562 (2.59%)
Other cells "other" 919 274 (53.07%) 4 698 (19.84%) 307 612 (54.64%)
Total 1 732 096 23 684 562 987

3-2-2 TNBC Dataset for Individual Cell Classification

For the task of individual cell classification, in order to mitigate the effects of class imbalance
during supervised training, I balanced only the training set such that every cell phenotype
is represented in approximately equal proportion. The resulting training and test sets are
summarized in Table 3-4.

Since the "CD56+" label is the least common in the dataset, all other labels were undersampled
to occur in similar quantities, resulting in every phenotype label being represented in about
20 % of cells in the training set (note that a single cell can be assigned multiple phenotypes,
so these percentages will not add up to 100 %). For completeness, the training set before
applying this balancing is also shown in Table 3-4, but this imbalanced training set was
not used during the experiments.

To give a visual impression of the image data that is being analyzed when classifying individual
cells, Figure 3-2 shows an example cell image patch from the TNBC dataset, where Figure 3-2a
is a composite image of all color channels as it would be considered when analyzed by humans,
and Figures 3-2b through 3-2i are the respective individual channels (note: for better visibility
in this document, these images have their colors inverted).

3-3 Other Datasets

For the purpose of investigating the effect of including image data from outside the TNBC
dataset during pre-training, I used two more publicly available datasets: CellPose [73] (Sec-
tion 3-3-1) and STL-10 [74] (Section 3-3-2).
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3-2: Example 64×64 image patch centered around a cell from the TNBC dataset. Similar
to Figure 3-1, (a) shows a composite of 7 color channels (excluding the background channel)
flattened into a 3-channel RGB image. The remaining images show the intensity-normalized
individual color channels in grayscale (with inverted colors for better visibility): (b) DAPI, (c) CK
(Cytokeratin), (d) CD3, (e) CD68, (f) CD8, (g) CD56, (h) CD20, (i) background. Note that
the colors of the subfigure indices from (b)–(h) correspond to the colors that these respective
channels contribute to the composite in (a). We can confirm that the image patch is centered
around a cell by looking at the DAPI channel, which shows that a cell nucleus is indeed present
near the center of the image patch. However, assigning the cell to a phenotype is not trivial,
since the CK, CD68, and CD8 channels have a high signal intensity near the image center. The
chosen image patch size of 64 × 64 pixels results in surrounding cells being generously included
in the patch — this will provide the encoder some spatial information that it can learn in order
to produce better feature representations of the cell of interest.

3-3-1 Cellpose Dataset

The Cellpose dataset comprises a diverse set of images that encompass a wide range of cell
types and other experimental conditions, which allows for the development and evaluation of
robust image classification and segmentation algorithms [73]. The dataset was created with
the goal of enabling improved performance in various cell analysis tasks, such as identifying
cell types, understanding cell behavior, and tracking cell movement over time.

The images in the dataset are derived from both fluorescence microscopy and bright-field
microscopy, as well as photographs of objects arranged in various patterns. Some example
images are shown in Figure 3-3.

Pre-processing of the Image Data

The CellPose dataset consists of about 600 images with sizes around 512 × 512 pixels and
between 1 and 3 color channels in .png format with a color depth of 8-bit. The dataset
was only used during experiments for individual cell classification. In order to integrate its
images into the training process, I split the original images into its individual color channels
(if applicable) and randomly extracted a total of 102 400 image patches of size 64× 64 pixels
from the CellPose dataset.

The CellPose dataset was not used for supervised training and I therefore discarded its label
data.

3-3-2 STL-10 Dataset

The STL-10 dataset is a popular benchmark dataset used in computer vision research for
image classification tasks [74] and is based on the ImageNet dataset [75]. The images feature
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Figure 3-3: Example images from the Cellpose dataset. Aside from typical microscopy im-
ages from various modalities, the dataset includes unusual images of objects such as bananas or
seashells arranged in patterns.

objects from 10 classes with some examples shown in Figure 3-4: "airplane", "bird", "car",
"cat", "deer", "dog", "horse", "monkey", "ship", and "truck".

Figure 3-4: Example images from the STL-10 dataset. Every image is of size 96× 96 pixels and
loosely centered around an object of interest from 10 different classes.

Pre-processing of the Image Data

The STL-10 dataset contains over 100 000 images of size 96× 96 pixels with 3 color channels.
The dataset was only used during experiments for individual cell classification. In order to
integrate its images into the training process, I converted the original images to grayscale and
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extracted patches of the center 64×64 pixels from a random 102 400 images from the STL-10
dataset.

The STL-10 dataset was not used for supervised training and I therefore discarded its label
data.

3-4 Experiment 1: Classification of Entire Tumor Sections

For the classification of entire tumor sections, I benchmarked the performance of an encoder
network that I pre-trained on the TNBC dataset (from now on referred to as the TNBC encoder)
against two publicly available encoder networks:

• CIGA encoder: pre-trained on bright-field microscopy images by Ciga et al. [16] according
to the SimCLR algorithm.

• SIMCLR encoder: pre-trained on the ImageNet [75] dataset as part of the original
SimCLR paper by Chen et al. [14]

Encoder Pre-training

I pre-trained the TNBC encoder according to the SimCLR algorithm [14] with parameters
similar to those used by Ciga et al. [16] for the CIGA encoder:

• ResNet-18 encoder architecture,

• normalized temperature cross-entropy (NT-Xent) loss function with temperature τ = 1,

• batch size B = 512 and Layer-wise Adaptive Rate Scaling (LARS) optimizer with
learning rate η = 0.3B/256 = 0.6,

• training for 100 epochs.

For the data source, I used every individual image channel of every image of the TNBC dataset
(see Section 3-2-1), meaning that the encoder saw 1010× 8 = 8080 different grayscale images
during the pre-training run. Furthermore, I used the following parameters for processing and
augmentation of the images (again, based on the parameters used for CIGA [16] and SIMCLR
[14]):

• Crop of a random size corresponding to 1 %–100 % of the original image size (maintaining
the original aspect ratio) at a random location,

• resize (and scale) the crop to 224× 224 pixels,

• 50 % random flip and rotation augmentation,

• random brightness/contrast variation of up to 80 %.
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Classifier Transfer Learning and Linear Evaluation

To achieve the dual objectives of performing linear evaluation of the pre-trained encoders and
training classifiers for tumor section classification, I connected the encoders’ outputs with
simple linear classifiers. Supervised training was performed using the train set as given in
Table 3-3 with the following parameters (same as the original SimCLR implementation [14]):

• cross-entropy loss function,

• batch size B = 64 and Adam optimizer with learning rate η = 0.1, weight decay λ = 0.9
and 0 momentum

During the supervised training of the classifier, the encoder weights remained frozen. Perfor-
mance was evaluated using classification accuracy as the performance metric on 10 randomly
divided batches of the test set, each of equal size.

To account for all 8 channels of an MxIF image, I employed two different configurations for
training and testing the classifiers: Single (Figure 3-5) and Siamese (Figure 3-6).

In the Single configuration (Figure 3-5), each of the 8 image channels is fed individually into
the pre-trained encoder. The resulting output feature representation is then used as input for
a linear classifier. For every encoder (TNBC, CIGA, SIMCLR), this leads to 8 distinct classifiers,
each of which being responsible for classifying the tumor section based on a specific image
channel.

In the Siamese configuration (Figure 3-6), the pre-trained encoder is replicated 8 times in
parallel, and its outputs are concatenated into a larger feature representation vector. This
combined feature representation vector serves as input for a single linear classifier, enabling
classification of a tumor section based on all 8 image channels at once.

3-5 Experiment 2: Classification of Individual Cells

For the classification of individual cells, I benchmarked the performance of encoder networks
that I pre-trained on the TNBC dataset against each other as I changed their hyperparam-
eters. Essentially, this results in benchmarking against TME-Analyzer, where an increase in
performance of an encoder indicates that it is approaching the ability to generate the same
labels that Balcioglu et al. obtained with TME-Analyzer [7].

Hyperparameter Optimization in Multiple Rounds

In order to find a network that performs well in classifying individual cells, several hyper-
parameters need to be determined and optimized. Since the amount of hyperparameters of
interest is vast, performing a full grid search optimization would be computationally infeasi-
ble. Rather, I split the optimization of network hyperparameters into 4 rounds, where in each
round a subset of hyperparameters was optimized and would be used as default parameters
when moving to the next round.

Master of Science Thesis Daniel Spengler



60 Methodology

Linear
Classifier 1

“non-infl“
/“infl“

Pre-trained
encoder

Pre-trained
encoder

Pre-trained
encoder

Pre-trained
encoder

Pre-trained
encoder

Pre-trained
encoder

Pre-trained
encoder

Pre-trained
encoder

DAPI

CK

CD3

CD68

CD8

CD56

CD20

back-
ground

Feature
representations

(each length 512)

Input
(from each channel)

Linear
Classifier 2

“non-infl“
/“infl“

Linear
Classifier 3

“non-infl“
/“infl“

Linear
Classifier 4

“non-infl“
/“infl“

Linear
Classifier 5

“non-infl“
/“infl“

Linear
Classifier 6

“non-infl“
/“infl“

Linear
Classifier 7

“non-infl“
/“infl“

Linear
Classifier 8

“non-infl“
/“infl“

Figure 3-5: Single configuration for tumor section classifier training. In this configuration, 8
separate classifiers are trained per pre-trained encoder (TNBC, CIGA, SIMCLR). Every classifier
takes the encoded feature representation of only one image channel as input and learns to assign
the class labels "non-infl" or "infl". When performing inference on unseen images from the
test set, this configuration results in 8 class predictions — one for each image channel.
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Figure 3-6: Siamese configuration for tumor section classifier training. In this configuration, a
single classifier is trained per pre-trained encoder (TNBC, CIGA, SIMCLR). The classifier takes a
concatenation of the encoded feature representations of all image channel as input and learns
to assign the class labels "non-infl" or "infl". When performing inference on unseen images
from the test set, this configuration results in one class prediction based on all 8 image channels.
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Figure 3-7: Overview of the rounds-based hyperparameter optimization scheme for individual
cell classification. In every round, a set of hyperparameters corresponding to a specific aspect
of the pre-training or classification is investigated. The hyperparameters that result in the best
performance in linear evaluation in one round are carried over to the following round.

An overview of this round-based optimization scheme is shown in Figure 3-7. Here, we consider
SimCLR(θ1, θ2, θ3, θ4) an abstract function which takes four sets of hyperparameters θi as
input and produces a classification network whose performance we want to optimize. The
four sets of hyperparameters θi are:

• θ1: The loss function to use during pre-training and its hyperparameters (such as
temperature τ for the NT-Xent loss function), also including a data sampling strategy
to improve the convergence of the pre-training loss.

• θ2: The set of augmentations to use during pre-training.

• θ3: The datasets and the amount of data to use during pre-training.

• θ4: The amount of labeled examples to use during supervised training of the linear
classifier.

Note that rounds 3 and 4 were not necessarily aimed at finding optimal hyperparameters
θ⋆

3 and θ⋆
4, but were rather intended to serve as an investigation of concerns that may arise

when implementing the SimCLR algorithm in a practical setting. Namely, “how much and
what kind of unlabeled data do we need to provide during unsupervised pre-training, and
how much labeled data do we need during supervised training, in order to meaningfully affect
performance?”

Within each round, the steps of training a complete classification network were the same as
the classification of entire tissue images described in Section 3-4: First, I trained an encoder
network via unsupervised pre-training and then connected that encoder to a simple linear
classifier, which I trained to assign one or multiple class labels in the transfer learning step.

Encoder Pre-training

I pre-trained encoders according to the SimCLR algorithm [14] with following parameters:
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• Residual Network (ResNet)-18 encoder architecture,

• NT-Xent loss function with temperature τ = 1 (subject to change in round 1),

• batch size B = 2048 and LARS optimizer with learning rate η = 0.3B/256 = 2.4,

• training for 5 epochs (subject to change in round 3),

• 409 600 image patches of size 64× 64 (as the completely available amount of 18 360 664
would be too computationally expensive, subject to change in round 3),

• 50 % random flip and rotation augmentations (more were added in round 2).

Classifier Transfer Learning and Linear Evaluation

Similar to the case of tumor section classification, I connected the encoders’ outputs with
simple linear classifiers in order to perform individual cell classification and enable linear
evaluation of the base encoder. Supervised training was performed using the train set as
given in Table 3-4 with the following parameters:

• Binary cross-entropy loss function,

• batch size B = 2048 and Adam optimizer with learning rate η = 10−4, weight decay
λ = 10−4,

• a 30 % dropout layer (this and the previous parameters were experimentally determined
to provide a good trade-off between training time and convergence of validation loss),

• 23 684 image patches as described in Table 3-4, which were further split into 80 %
training data and 20 % validation data for computation of the validation loss (subject
to change in round 4),

During the supervised training of the classifier, the encoder weights remained frozen. Perfor-
mance was evaluated using the classifier’s PR-AUC as the performance metric on 11 randomly
divided batches of the test set, each of equal size.

For individual cell classification, I only considered the Siamese configuration. The general
configuration is the same as the case of tumor section classification and shown in Figure 3-8.
Here, the image patches centered around individual cells are fed into the encoder and the
linear classifier learns to predict immune phenotype labels for each cell.

3-5-1 Round 1: Loss Function/Sampling

In round 1, I varied several aspects of the loss function used during pre-training as well as
the data sampling strategy.
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Figure 3-8: Siamese configuration for individual cell classifier training. The general configuration
is identical to the Siamese configuration for tumor section classification shown in Figure 3-6.
Instead of images of the entire tumor section, smaller patches centered around every cell are fed
to the network. The classifier learns to predict one or multiple cell phenotype class labels (note
that the "other" class label is only assigned if none of the other class labels are assigned).

Varying τ in NT-Xent

Consider the NT-Xent loss function (see Eq. (2-32) in Section 2-4-2, repeated here for conve-
nience):

LNT−Xent =− 1
N

∑
i,j∈MB

sim (zi, zj) /τ

︸ ︷︷ ︸
=LA

(3-1)

+ 1
N

N∑
i

log
( 2N∑

k=1
1[k ̸=i] exp (sim (zi, zk) /τ)

)
︸ ︷︷ ︸

=LD

where LA is the alignment loss, and LD is the distribution loss. I pre-trained encoders using
temperature values τ ∈ {0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0}.

Non-contrastive cosine similarity

A simplified loss function can be obtained by simply dropping the distribution loss and using
only the alignment loss:

LNC = LA =− 1
N

∑
i,j∈MB

sim (zi, zj) . (3-2)

I pre-trained one encoder using this loss function.
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NT-Xent with Black Image Marking

The indicator function 1[k ̸=i] in the regular NT-Xent loss function prevents the inclusion of
sim(zi, zi) = 1 in the sum of the distribution loss LD. This indicator function can be adjusted
such that it excludes samples based on additional criteria:

LBM
D = 1

N

N∑
i

log
( 2N∑

k=1
1[k ̸=i,img(i)/∈Black(t)] exp (sim (zi, zk) /τ)

)
(3-3)

where the new indicator function 1[k ̸=i,img(i)/∈Black(t)] = 1 if and only if k ̸= i and img(i) /∈
Black(t) (i.e. the image corresponding to index i is not considered a black image based on
a threshold t). The purpose of this filter is to prevent multiple black images from being
considered in the distribution loss, since their computed feature representations would be
very similar. To this end, I defined the filter such that img(i) ∈ Black(t) if the brightest
pixel in img(i) is below a threshold t ∈ [0, 255]. I pre-trained encoders using the adjusted loss
function LBM = LA + LBM

D with τ = 1 and thresholds t ∈ {10, 20, 30, 40, 50}.

NT-Xent with rejection sampling

Using the same filter as described above, I modified the sampling of a pre-training minibatch
such that it would only contain one image that fulfills img(i) /∈ Black(t). In other words, only
one black image would be put in the minibatch and all subsequent ones would be rejected
and replaced by different images in the dataset. I pre-trained encoders using this sampling
strategy with the regular NT-Xent loss function LNT−Xent with τ = 1 and using the same
thresholds to determine whether an image is black or not as in the black image marking
example: t ∈ {10, 20, 30, 40, 50}.

3-5-2 Round 2: Augmentations

In round 2, I varied the augmentations that are applied to the images during the pre-training
process. A visual overview of the augmentations is provided in Figure 3-9. They are as
follows:

• Gaussian blur: Apply Gaussian blurring to the image patch in varying degrees of
intensity.

• Translation: Shift the center of the image patch in x and y direction, bounded by a
radius r of varying length.

• Zoom: Zoom in or out of the image patch by zoom factors of varying size.

• Brightness: Adjust the brightness of the image patch by varying intensities.

• Contrast: Adjust the contrast of the image patch by varying intensities.

In the following, the implementation of these augmentations is elaborated further.
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Figure 3-9: Visual overview of the augmentations used during encoder pre-training in round 2.
For every column, the third row shows the unaugmented image, and the images above and below
show examples of the augmentation applied with positive and negative intensity, respectively.
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Gaussian blur

The function for applying Gaussian blur to an image patch depends on a single parameter
θgb, which defines the Gaussian kernel size

kernel_size(θgb) = 2× θ + 1

as well as the standard deviation, which is drawn from a uniform distribution between 0 and
θgb:

sigma(θgb) ∼ U(0, θb).

Note that, for sigma = 0, no blurring is applied. I pre-trained networks using this augmenta-
tion with θgb ∈ {2, 4, 6, 8, 10}.

Translation

The function for applying translation to an image patch depends on a single parameter θtr,
which specifies the largest radius ρ that the image patch center may be shifted, as drawn
from a uniform distribution:

ρ ∼ U(0, θtr)

Furthermore, a random angle ϕ to specify the translation direction is drawn from a uniform
distribution

ϕ ∼ U(0, 360◦),

in other words, the function translates the image patch center by a distance up to the specified
length θtr in a random direction. Note that, for ρ = 0, no translation is applied. I pre-trained
networks using this augmentation with θtr ∈ {5, 10, 15, 20, 25}. Furthermore, I investigated a
special case of this augmentation where, instead of only one, both image patches would be
translated by the same radius and in the same direction. I pre-trained networks using this
augmentation with θtr,ident ∈ {5, 10, 15, 20, 25, ∆ρ} where ∆ρ corresponds to a translation to
a random location within the tumor tissue image.

Zoom

The function for applying zoom to an image patch depends on a tuple of parameters
(θzmin, θzmax), which specify the lower and upper bounds, respectively, of the zoom factor
Z that is applied to the image patch, as drawn from a uniform distribution

Z ∼ U(θzmin, θzmax).

Note that, for Z = 1, no zoom is applied. I pre-trained networks using this augmentation
with θzmin ∈ {0.75, 0.5, 0.25} and θzmax ∈ {1.5, 2, 3, 4}.
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Brightness

The function for applying brightness adjustment to an image patch depends on a single
parameter θb, which specifies the lower and upper bound of the brightness modifier B, as
drawn from a uniform distribution

B ∼ U(−θb, θb).

Note that, for B = 0, no brightness adjustment is applied, for B = −1, the image patch is
made as dark as possible and that, for B = 1, the image is made as bright as possible. I
pre-trained networks using this augmentation with θb ∈ {0.25, 0.5, 0.75, 1}.

Contrast

The function for applying contrast adjustment to an image patch depends on a single param-
eter θc, which specifies the lower and upper bound of the contrast modifier C, as drawn from
a uniform distribution

C ∼ U(−θc, θc).

Note that, for C = 0, no contrast adjustment is applied, for C = −1, the image patch contrast
is made as low as possible and that, for C = 1, the image patch contrast is made as high as
possible. I pre-trained networks using this augmentation with θc ∈ {0.25, 0.5, 0.75, 1}.

3-5-3 Round 3: Pre-training Sample Size

In round 3, I varied the amount of data that was used during the unsupervised pre-training
and added images from foreign datasets (CellPose and STL-10)

Up to this point, the amount of image patches used from the TNBC dataset during pre-
training was 409 600 (corresponding to 51 200 individual cells). I tested the effect of lowering
and increasing this amount by multiplying the amount of images by 1/n and n, respectively,
and pre-training encoders with n ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}.

For testing the effect of images from foreign data sources, I included the CellPose (Section 3-
3-1) and STL-10 (Section 3-3-2) datasets during pre-training in the following combinations

• TNBC only → Ntotal = 102 400

• CellPose only → Ntotal = 102 400

• STL-10 only → Ntotal = 102 400

• TNBC (N = 102 400) &
CellPose (N = 102 400) → Ntotal = 204 800

• TNBC (N = 102 400) &
STL-10 (N = 102 400) → Ntotal = 204 800

• CellPose (N = 102 400) &
STL-10 (N = 102 400) → Ntotal = 204 800
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• TNBC (N = 204 800) &
CellPose (N = 102 400) &
STL-10 (N = 102 400) → Ntotal = 409 600

The images used per dataset were identical for every combination. For the last combination,
I sampled an additional 102 400 images for TNBC.

3-5-4 Round 4: Supervised Training Label Amount

In round 4, I varied the amount of labeled data that was available during the supervised
transfer learning. The balanced training set used for the supervised transfer learning, shown
in Table 3-4 contains all cells with the "CD56+" label present in the total training set (see
Table 3-4). Effectively, this means that the supervised classifiers trained on this balanced
training set are using 100 % of the available label data. In order to study the effects of
classifier performance when only a fraction of labeled data is available, I re-balanced this
training set such that no class label occurs more than an amount corresponding to P , where
P ∈ {100, 90, 80, 70, 60, 50, 40, 30, 20, 10}% is the percentage of the amount of class labels in
relation to the unbalanced training set.

The proportions of cells in relation to the unbalanced training set are shown in Table 3-5.
Here, the column for “≤100%” corresponds to the balanced train set specified in Table 3-4.
For every re-balancing, whenever a certain cell was removed from the dataset, a cell of the
"other" class was added back in, such that the total amount of cells in every set remained
at 23684.

In a separate experiment, I deviated from the previously defined train/test split and con-
structed three new splits according to the patient-level spatial phenotype labels (see Table 3-
1): In each set, only cells from patients with a specific spatial phenotype were put in the
training set and all remaining cells were put in the test set. I then trained three classifiers
using each of these training sets.

In this round, I did not pre-train any new encoders. Instead, all classifiers were trained on
top of the best-performing encoder from round 3.
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Table 3-5: Summary of label percentages per re-balanced training set for the task of individual
cell classification. The percentages in every column specify the upper limit of the amount that
any class label may occur in the re-balanced set. For example, for the re-balanced training set
specified by the column under “≤60%”, no class label may occur more than 60 % in relation to
the entire training set. Note that this re-balancing primarily affects cells with the "CD56+" label,
which is by far the rarest label in the TNBC dataset. Whenever cells were removed from the
dataset due to this re-balancing, an equal amount of cells with the "other" label were added
back in such that the total amount of cells in every re-balanced training set remained at 23684.

Label ≤100% ≤90% ≤80% ≤70% ≤60% ≤50% ≤40% ≤30% ≤20% ≤10%
"CK+" 0.89 % 0.88 % 0.88 % 0.87 % 0.87 % 0.87 % 0.87 % 0.86 % 0.86 % 0.86 %
"CD3+" 4.30 % 4.28 % 4.27 % 4.25 % 4.22 % 4.21 % 4.20 % 4.18 % 4.17 % 4.16 %
"CD8+" 3.03 % 3.02 % 3.01 % 3.00 % 2.99 % 2.99 % 2.98 % 2.97 % 2.96 % 2.84 %
"CD20+" 5.51 % 5.50 % 5.50 % 5.48 % 5.46 % 5.46 % 5.44 % 5.44 % 5.43 % 5.44 %
"CD56+" 100.00 % 89.87 % 79.84 % 69.86 % 59.79 % 50.00 % 39.89 % 29.93 % 19.92 % 9.98 %
"CD68+" 12.24 % 12.25 % 12.25 % 12.25 % 12.27 % 12.28 % 12.31 % 12.32 % 12.32 % 10.02 %
"other" 0.51 % 0.54 % 0.57 % 0.60 % 0.62 % 0.65 % 0.68 % 0.70 % 0.73 % 0.81 %
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Chapter 4

Results

This chapter presents the results of the conducted experiments outlined in Chapter 3.
It is structured in a way such that each section presents results that are relevant to the
research questions:

• How can a self-supervised learning model be designed to learn features from multiplex
immunofluorescence (MxIF) images with an arbitrary number of color channels?

– This question is addressed in Section 4-1, which shows the effectiveness of the
Siamese architecture to facilitate learning of features in MxIF images.

• What are the hyperparameters for such a model that improve feature learning of indi-
vidual cells in MxIF images?

– This question is addressed in Section 4-2, which lists the hyperparameters obtained
after the rounds-based optimization scheme, as well as notable results related to
these hyperparameters.

• Can the features learned by such a model improve label-efficiency for the task of indi-
vidual cell classification?

– This question is addressed in Section 4-3, which shows results related to how the
amount and type of labels used during supervised training affects performance in
the cell classification task.

4-1 Self-Supervised Learning Model for Multi-Channel MxIF Image
Feature Extraction

In this section, the effectiveness of a self-supervised learning model using the SimCLR al-
gorithm and Siamese configuration for feature extraction from multi-channel MxIF images
is explored. The following subsection presents the results of the experiments for the entire
tumor section classification task. All results shown are computed as an ensemble across 10
batches of the test set (see Table 3-3).
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4-1-1 Effective Feature Learning from MxIF Images with Multiple Color Chan-
nels using SimCLR and Siamese Configuration for Tumor Classification

Figure 4-1 shows the accuracy scores achieved by encoder/classifier pairs trained in the Single
configuration (see Figure 3-5). For all encoders, the classifiers trained on feature represen-
tations from the CD3 or CD8 image channels were able to achieve performance higher than
most other channels. This is in accordance with the fact that these channels give the best
information regarding whether a tumor is inflamed or not [4]. The TNBC encoder resulted in
overall best performance, with the most useful features being learned from the DAPI channel
for a median accuracy of 0.913.
Notably, the SIMCLR encoder achieved the second best performance, with the most useful
features being generated from the CD8 channel for a median accuracy of 0.898. Despite the
encoder not being trained on microscopy images, it provides useful features for this classifi-
cation task.
The CIGA encoder achieved the worst performance. In the figure, CIGA_INV represents the
same encoder, but it was provided with color-inverted images to make them visually more
similar to the bright-field images that the CIGA encoder was pre-trained on. In both cases, the
CD8 channel generated the most useful features, resulting in median accuracy scores of 0.845
for both variants. In the color-inverted case, the CD3 channel also generated slightly better
representations resulting in an accuracy score of 0.83, compared to 0.786 in the non-inverted
case.
Figure 4-2 shows the accuracy scores achieved by encoder/classifier pairs trained in the
Siamese configuration (see Figure 3-6). Using this configuration, performance according to
the median accuracy scores improved for TNBC with 0.937 (+2.63 %), for CIGA with 0.864
(+2.25 %), for CIGA_INV with 0.879 (+4.02 %), but deteriorated for SIMCLR with
0.864 (−3.79 %) when compared to the best-performing classifiers in the Single configura-
tion.
The fact that the TNBC encoder obtains the best performance indicates that the SimCLR
algorithm can be used to learn useful feature representations from MxIF images. Furthermore,
the Siamese configuration provides a recipe for a network architecture that can learn to classify
images with an arbitrary amount of color channels.

4-2 Hyperparameters for Improved Feature Learning of Individual
Cells in MxIF Images

In this section, the results related to the hyperparameter optimization are presented. The
optimal hyperparameters obtained in each round of the optimization scheme described in
Section 3-5 are as follows:

• Round 1 (Loss function/data sampling): normalized temperature cross-entropy
(NT-Xent) loss function with temperature parameter τ = 0.05 combined with black
image marking using a maximum pixel intensity threshold of t = 30.

• Round 2 (Augmentations): Maximum zoom-out of ×2 and brightness and contrast
adjustment of 50 %. No translation, zoom-in, and Gaussian blur.
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Figure 4-1: Violin plot of the classification accuracy scores for classifiers trained in the single
configuration. The TNBC encoder has been pre-trained on the TNBC dataset, the CIGA encoder
[16] has been pre-trained on bright-field microscopy images and the SIMCLR encoder [14] has been
pre-trained on ImageNet [76]. Note that CIGA_INV is the same encoder as CIGA, but it was fed
with color-inverted images to make them more similar to bright-field images. Each colored violin
represents an encoder that has been trained on top of the respective encoder and its color denotes
which image channel it was trained on. All encoders were able to provide useful features using
at least either the CD3 or CD8 color channels for tumor classification between inflamed and non-
inflamed. Notably, the TNBC encoder provided particularly good features using the DAPI channel,
indicating that it learned meaningful spatial patterns in the tumor. Results are computed as an
ensemble across 10 batches of the test set. Note that, due to the train/test split composition, an
accuracy score of 0.65 is as good as a random guess.
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Figure 4-2: Violin plot of the classification accuracy scores for classifiers trained in the Siamese
configuration. The TNBC encoder has been pre-trained on the TNBC dataset, the CIGA encoder
[16] has been pre-trained on bright-field microscopy images and the SIMCLR encoder [14] has
been pre-trained on ImageNet [76]. Note that CIGA_INV is the same encoder as CIGA, but it was
fed with color-inverted images to make them more similar to bright-field images. The Siamese
configuration resulted in an improvement of performance for all encoder/classifier pairs. The TNBC
encoder learned particularly useful features which resulted in it clearly outperforming the other
encoders that were not pre-trained on the TNBC dataset. Results are computed as an ensemble
across 10 batches of the test set. Note that, due to the train/test split composition, an accuracy
score of 0.65 is as good as a random guess.

• Round 3 (Pre-training datasets): In general, more pre-training data of the triple-
negative breast cancer (TNBC) dataset lead to better performance, with the maximum
amount of images tested being 4 096 000. No performance improvement from including
CellPose and STL-10 datasets during pre-training.

• Round 4 (Supervised training label availability): The initially constructed bal-
anced dataset, corresponding to an inclusion of 100 % of "CD56+" class labels, resulted
in best performance, but larger datasets for supervised training were not tested. For
the particular case of training on only cells of one kind of tumor phenotype, with the re-
maining ones serving as test set, using cells from the excluded tumor phenotype resulted
in best performance (see Section 4-3-2).

In the following subsections, notable results observed during the experiments for the individual
cell classification task are presented. All results shown are computed as an ensemble across
11 batches of the test set (see Table 3-4).

4-2-1 SimCLR Loss Function has the Largest Impact on Feature Quality

Figure 4-3 shows the Area Under the Precision-Recall Curve (PR-AUC) scores after every
round of the hyperparameter optimization scheme explained in Section 3-5. Here, round0
refers to the beginning of the optimization scheme. Overall, the MoM(PR-AUC) increased
from 0.34 at the beginning of the optimization scheme to 0.75 at the end of round 3 (the
results of round 4 are shown separately in Section 4-3-1). As we can see, the jump in mean
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Figure 4-3: Violin plot of the PR-AUC scores for the best encoders obtained in the round-based
hyperparameter optimization scheme. Note that the displayed results are of the encoders obtained
at the end of the specified round and round0 refers to the beginning of the optimization — before
any hyperparameters have been changed. round1 affected hyperparameters related to the pre-
training loss function, round2 affected hyperparameters related to pre-training augmentations,
and round3 affected pre-training dataset size. Results are computed as an ensemble across 11
batches of the test set. The colored markers for each cell phenotype denote the median of the
distribution of scores across the 11 batches. The dashed black line denotes the mean of all
individual class medians (MoM(PR-AUC)).

performance after finishing round 1 is the largest, indicating that tuning of the loss function
has the biggest impact on feature quality of the encoders. Note, however, that features
for the "CD56+" class were more affected by optimizing the pre-training augmentations in
round 2 where the PR-AUC("CD56+") increased by 0.18 compared to an increase of 0.08
after round 1. The reason for this can be seen in Figure 4-4, which shows the PR-AUC
scores for varying values of τ in the standard NT-Xent loss function: values of τ < 1 heavily
improved feature quality for all classes except "CD56+", which instead improved more strongly
for values of τ > 1. Having to make a trade-off, I chose τ = 0.05 since the improvement in
mean performance was larger overall.

Figure 4-5 shows the PR-AUC scores for the four different loss functions and sampling strate-
gies explained in Section 3-5-1. Here, all scores are for τ = 1 and the best-performing bright-
ness thresholds for the black image marking (t = 20) and rejection sampling (t = 30). Overall,
the non-contrastive loss function (ntxentNC) performed the worst with a MoM(PR-AUC) of
0.25, whereas the NT-Xent loss function with black marking and intensity threshold of 30
performed best with a MoM(PR-AUC) of 0.39.
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Figure 4-4: Violin plot of the PR-AUC scores for varying values of the temperature parameter
τ of the NT-Xent loss function. We can observe a change in τ having a different effect on
performance for different cell phenotypes. Notably, PR-AUC("CD56+") increases more strongly
for τ > 1 whereas all other PR-AUCs increase more strongly for τ < 1. Results are computed
as an ensemble across 11 batches of the test set. The colored markers for each cell phenotype
denote the median of the distribution of scores across the 11 batches. The dashed black line
denotes the mean of all individual class medians (MoM(PR-AUC)). The vertical gray line denotes
the default value at the start of the optimization.
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Figure 4-5: Violin plot of the PR-AUC scores for various pre-training loss functions. ntxent is
the standard NT-Xent loss function, ntxentNC is only the alignment loss term of the NT-Xent
loss function, ntxent_mark is the NT-Xent loss function with a black image marking term based
on a pixel intensity threshold and ntxent_reject is the standard NT-Xent loss function, but
utilizing rejection sampling based on a pixel intensity threshold. Results are computed as an
ensemble across 11 batches of the test set. The colored markers for each cell phenotype denote
the median of the distribution of scores across the 11 batches. The dashed black line denotes the
mean of all individual class medians (MoM(PR-AUC)). The vertical gray line denotes the default
value.
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Figure 4-6: Violin plot of the PR-AUC scores for varying intensities of the translation augmen-
tation applied during unsupervised pre-training. In general, any amount of translation negatively
impacted the quality of the learned features. An exception are cells with the "CD56+" class label,
where performance was unaffected or even increased with translation distances of up to 10 pixels.
A harsh drop can be observed for distances larger than 15 pixels, indicating that the encoders
require the contents of the augmented image pairs to be spatially coherent in order to learn
good features. Results are computed as an ensemble across 11 batches of the test set. The col-
ored markers for each cell phenotype denote the median of the distribution of scores across the 11
batches. The dashed black line denotes the mean of all individual class medians (MoM(PR-AUC)).
The vertical gray line denotes the default value at the start of the optimization.

4-2-2 Cell Locations are not Required during Pre-training to Learn High-quality
Feature Representations

Figure 4-6 shows the PR-AUC scores obtained from varying the translation augmentation
during pre-training (see Section 3-5-2). The translation augmentation has an exclusively
negative effect on the MoM(PR-AUC), which ranges from 0.636 to 0.476 between translation
radii of 0 and 15, respectively. With radii larger than that, the MoM(PR-AUC) values harshly
dropped to around 0.15. This indicates that the encoders have a preference for positional
coherence of the center of the augmented image pairs that are compared during pre-training.

Figure 4-7 shows the PR-AUC scores obtained from varying the translation augmentation
using the special case described in Section 3-5-2: both image patches in the augmented image
pair were shifted by the same distance and in the same direction, including a shift to a
random location within the tumor tissue image. As we can see, this augmentation has a
minimal impact on the PR-AUC scores and the MoM(PR-AUC) remains relatively constant
around values of 0.63–0.64. This indicates that the encoder does not necessarily require image
patches centered around cells in order to learn high-quality feature representations for the
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Figure 4-7: Violin plot of the PR-AUC scores for varying intensities of the special translation
augmentation applied during unsupervised pre-training. This translation augmentation shifted
both images of the augmented image pair by the same distance and in the same direction. The x-
tick labeled random indicates that the center of the image patch was shifted to a random location
in the tumor tissue image. The resulting scores a largely invariant to this type of augmentation,
indicating that the encoder does not actually require image patches to be centered around cells
in order to learn useful features during pre-training. Results are computed as an ensemble across
11 batches of the test set. The colored markers for each cell phenotype denote the median of
the distribution of scores across the 11 batches. The dashed black line denotes the mean of all
individual class medians (MoM(PR-AUC)). The vertical gray line denotes the default value at the
start of the optimization.

purpose of cell classification.

4-2-3 Longer Pre-training Improves Feature Quality for CD56+ and CD20+
Cells

Figure 4-8 shows the effect of pre-training encoders on a varying amount of unlabeled data.
Specifically, the amount of cells ranged from 5120 (×1/10) to 512 000 (×10) (Nimg = 40 960
to Nimg = 4 096 000 for the corresponding amount of image patches). In this experiment, only
the amount of images was varied and the amount of training steps was kept constant. We can
see a slight upward trend in MoM(PR-AUC) from 0.712 when using only 1/10 of the dataset
to 0.749 (+5.2 %) when using 10 times the base amount. This trend is largely influenced by
PR-AUC("CD56+") scores, which range from 0.319 to 0.42 (+31.7 %), respectively. Another
slight improvement can be seen in PR-AUC("CD20+") scores, which range from 0.759 to 0.811
(+6.85 %), respectively. Although an upward trend is visible for the PR-AUC("CD56+") and
PR-AUC("CD20+") medians, their variance fluctuates strongly.
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Figure 4-8: Violin plot of the PR-AUC scores for varying the amount of unlabeled data available
during unsupervised pre-training. The values on the x-axis denote the relative amount to the
default amount of images, which was 409 600 in this case. Upward trends for PR-AUC("CD56+")
and PR-AUC("CD20+") are noticeable with an increase in pre-training data, but variance remains
high overall for the "CD56+" class. Results are computed as an ensemble across 11 batches of
the test set. The colored markers for each cell phenotype denote the median of the distribution
of scores across the 11 batches. The dashed black line denotes the mean of all individual class
medians (MoM(PR-AUC)). The vertical gray line denotes the default value.
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4-2-4 Inclusion of CellPose and STL-10 Datasets during Pre-training does not
Improve Feature Quality

Although pre-training on more samples from the TNBC dataset resulted in better learned
feature representations (see Section 4-2-3), the inclusion of images from the CellPose dataset
(Section 3-3-1) and STL-10 dataset (Section 3-3-2) during pre-training did not improve the
quality of learned feature representations according to the MoM(PR-AUC).

Figure 4-9 shows the PR-AUC scores from pre-training encoders on various combinations
of these datasets with amounts of images Nimg ∈ {102 400, 204 800, 409 600}. In every case,
performing pre-training on only the TNBC dataset resulted in the best performance. However,
some performance scores are notable. The encoder pre-trained on 102 400 images from the
STL-10 dataset resulted in a PR-AUC("CD56+") of 0.37 compared to the 0.39 achieved by
the encoder pre-trained on the same amount of images from the TNBC dataset. While the
PR-AUC("CD56+") of 0.23 from the encoder pre-trained on 102 400 images from the CellPose
dataset is not nearly as high, its PR-AUC("CK+") of 0.89 is close to the 0.91 achieved by
the encoder pre-trained on TNBC. A similar effect can be observed in the case of 204 800
pre-training images: the encoder pre-trained on an equal amount of TNBC and CellPose
images achieved a PR-AUC("CK+") of 0.9 and the encoder pre-trained on only TNBC images
achieved a PR-AUC("CK+") of 0.91.

4-3 Improving Label-efficiency for Individual Cell Classification

The results in the following subsections are from experiments for the individual cell classifi-
cation task, using the best encoder network (see hyperparameters in Section 4-2) and only
considering changes in the labeled data available during the supervised training. All results
shown are computed as an ensemble across 11 batches of the test set (see Table 3-4).

4-3-1 SimCLR Improves Label-efficiency for Individual Cell Classification

Figure 4-10 shows the PR-AUC scores obtained from performing the experiment for round
4 (see Section 3-5-4 and Table 3-5). Since "CD56+" is the rarest class where 100 % of labels
is used, compared to 12.24 % of labels used for the second rarest "CD68+" class, the imposed
limit on the label percentage primarily affects the "CD56+" class.

During the supervised transfer learning of the classifier, the amount of available labels could
be decreased down to 40 % before the PR-AUC("CD56+") dropped from about 0.4 between
100 % and 40 % to 0.26 (−35 %) at 10 % and the MoM(PR-AUC) from 0.73 to 0.71 (−2.74 %),
respectively.

These results can be compared to the performance by the classifiers (with 100 % labels avail-
able) based on the best encoder networks obtained after rounds 1 and 2 as shown in Figure 4-3:

• With only 10 % available labels, the best encoder from round 1 is outperformed in
MoM(PR-AUC) with 0.71 to 0.64 (−9.86 %) and in PR-AUC("CD56+") with 0.26 to
0.17 (−34.62 %).
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Figure 4-9: Violin plot of the PR-AUC scores for various combinations of data sources for
the pre-training datasets. Datasets included were the TNBC, CellPose and STL-10 datasets.
The numbers in parentheses denote the amount of images comprising the datasets. In case
multiple data sources were included, image amounts were split evenly — except for the case of
TNBC+CellPose+STL10 where the former was represented with 204 800 images and the latter two
with 102 400 images each. Usage of only the TNBC dataset resulted in best performance overall,
but the encoder pre-trained on only the STL-10 dataset learned relatively good features for the
"CD56+" class and inclusion of the CellPose dataset alone or in combination with TNBC resulted
in an improvement of learned features for the "CK+" class. Results are computed as an ensemble
across 11 batches of the test set. The colored markers for each cell phenotype denote the median
of the distribution of scores across the 11 batches. The dashed black line denotes the mean of all
individual class medians (MoM(PR-AUC)).
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Figure 4-10: Violin plot of the PR-AUC scores for varying the amount of labeled data available
during supervised transfer learning. The percentages on the x-axis denote an upper limit to
the amount of cells that was included in the respective dataset. In practice, only cells with
the "CD56+" and "CD68+" labels were affected by this limitation. Results are computed as an
ensemble across 11 batches of the test set. The colored markers for each cell phenotype denote
the median of the distribution of scores across the 11 batches. The dashed black line denotes the
mean of all individual class medians (MoM(PR-AUC)). The vertical gray line denotes the default
value.

• With only 30 % available labels, the best encoder from round 2 is outperformed in
MoM(PR-AUC) with 0.731 to 0.727 (−0.55 %) and in PR-AUC("CD56+") with 0.366 to
0.354 (−3.28 %).

This indicates that the encoders which received more hyperparameter optimization improve
the label-efficiency of a classifier trained on top of them.

4-3-2 Supervised Training on “Excluded” Tumor Phenotype Results in Best Gen-
eralization of Classification Performance

Figure 4-11 shows the PR-AUC scores obtained from training classifiers only on cells from
patients with the spatial phenotype labels "infl", "excl", and "ign" and testing the classifier
on the remaining two spatial phenotypes. The resulting PR-AUC scores give an insight into
how well a cell classifier trained on a certain type of tumor generalizes to other tumors. Here,
the classifier trained on cells from tumors of the excluded phenotype achieves the highest
MoM(PR-AUC) of 0.719, the one trained on the inflamed phenotype achieves 0.677 and the
one trained on the ignored phenotype achieves 0.632. Notable are the PR-AUC("CD56+")
scores which are 0.448 for excluded, 0.208 for ignored, and 0.144 for inflamed.
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Figure 4-11: Violin plot of the PR-AUC scores for various combinations of supervised train/test
splits according to patient-level tumor phenotypes. The x-tick labels denote which tumor pheno-
type was used for the training set, whereas the other two were used for the test set (e.g. "ign"
indicates that the classifier was trained on cells belonging to tumors of the ignored phenotype and
was tested on cells from the inflamed and excluded phenotypes). The scores indicate that training
on cells of excluded phenotype tumors, in general, results in the best generalization performance
when testing on cells from other tumor phenotypes. Results are computed as an ensemble across
11 batches of the test set. The colored markers for each cell phenotype denote the median of
the distribution of scores across the 11 batches. The dashed black line denotes the mean of all
individual class medians (MoM(PR-AUC)).
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Chapter 5

Discussion and Future Outlook

This chapter provides a discussion of the results shown in Chapter 4. Furthermore, whenever
applicable, recommendations are offered on how the work in this thesis could be further
developed in future research.

5-1 Comparison of TNBC Encoder to Publicly Available Pre-trained
Encoders

In the case of classifying entire tumor sections, I have taken a similar approach as Ciga
et al. [16] and included a pre-trained encoder in my comparison that was pre-trained on
ImageNet [76] and published as part of the original study presenting the Simple Framework
for Contrastive Learning of Visual Representations (SimCLR) [14] (here referred to as the
SIMCLR encoder).

ImageNet pre-training is generally considered state of the art for initializing encoder networks
and transferring to other vision tasks, but this is not guaranteed to ensure good results in
all image domains or tasks [77]. Similar to the findings by Ciga et al., I observed that
the encoder network pre-trained on ImageNet, despite providing generally useful features for
tumor classification, was easily outperformed by an encoder network pre-trained on images
directly related to the task at hand (in this case, the TNBC encoder which was pre-trained on
triple-negative breast cancer (TNBC) images). In fact, the median classification accuracy for
the SIMCLR encoder even decreased when its encoded feature representations for all channels
of a multiplex immunofluorescence (MxIF) image were considered at once in the Siamese
configuration. Conversely, the median classification accuracy for the TNBC and CIGA encoders
increased in this case.

The CIGA encoder was pre-trained on bright-field microscopy images of tumor tissue from
various organs. Arguably, the domain of bright-field microscopy images is closer to the domain
of MxIF images than it is to the domain of natural images, i.e., photographs as they appear
in ImageNet. Both image domains capture the same underlying subject — biological tissue
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— and you could argue that their main difference is simply due to the imaging modality.
One very obvious difference is the fact that, for bright-field images, the background consists
of bright pixels and the signal of dark pixels, whereas the opposite is the case in fluorescence
images. In order to test if the performance of the CIGA encoder could transfer better to
MxIF images if they only were visually more similar, I color-inverted all images I provided to
the encoder, in a scenario I refer to as CIGA_INV. Interestingly, for (CIGA_INV), the median
classification accuracy increase was the highest in the Siamese configuration, whereas the
performance in the Single configuration was relatively poor.

I believe that this observation warrants further investigation. Can we pre-train a more general-
purpose encoder that learns useful feature representations from both bright-field as well as
MxIF images? One key ingredient to this could be a color-inversion augmentation during
the pre-training, making the learned features invariant to such color differences and instead
focusing on capturing the underlying structural and morphological patterns present in the
images.

5-1-1 Regarding Resource Requirements for Training

It is worth noting that the SIMCLR reference encoder is a ResNet-50 (Residual Network)
network that has been trained with an incomparably large amount of computational resources.
In contrast, the encoder network by Ciga et al. (CIGA) [16] as well as the encoder network
which I trained on the TNBC dataset (TNBC) are ResNet-18 networks. Those have been
trained for approximately one day using a high-end consumer grade graphics processing unit
(GPU) 1. The fact that relatively high classification accuracy could be achieved with relatively
small resources is promising, since we may be able to achieve even better results with more
resources and improved algorithms.

5-2 Importance of Spatial Features in Tumor Classification

A notable result of the tumor classifier training in the single configuration shown in Section 4-
1-1 is the fact that the TNBC encoder was able to produce particularly useful features from the
DAPI channel (i.e., containing cell nuclei) for the classification task. In fact, the classifier that
was trained on these feature representations outperformed the classifiers that were trained on
feature representations generated from the CD3 and CD8 image channels — cell phenotypes
whose presence and absence were associated with the identified tumor phenotypes in the study
by Hammerl et al. that originally analyzed these images [4].

Hammerl et al. did study the spatial aspect of cell distributions and densities in these tumors
(which is why they are referred to as spatial tumor phenotypes) and used the "CD8+" (and
"CD3+") cells to identify the spatial phenotypes, depending on whether they occur in the
tumor border, tumor center, or not at all. Figure 5-1 shows representative examples of these

1In my case, an NVIDIA RTX3090. Ciga et al. have published the training time and hardware used for
their model, allowing me to train my own network accordingly for a fair comparison. Note that SimCLR is
a Google Research publication. The authors are not explicitly stating their numbers, but I estimate that the
pre-trained encoder of theirs received about ×250 compute compared to the encoders trained by Ciga et al.
and me.
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Figure 5-1: Representative stained bright-field microscopy images of the spatial tumor phenotypes
“excluded”, “ignored”, and “inflamed”. The percentages indicate the amount of cells labeled
"CD8+", which are targeted by the darker colored stain. Scale bars correspond to 5 mm. Image
from [4].

spatial tumor phenotypes as bright-field images with an immunohistochemistry (IHC) stain
targeting "CD8+" cells. Given the highlighting of "CD8+" cells, we can clearly see a visual
pattern that identifies these tumor phenotypes. The feature representations from the CD8
or CD3 channels of the MxIF images may conceivably contain this information, resulting in
good performance for classifiers that were trained on these feature representations. Indeed,
all encoder networks were able to embed this information in their feature representations for
at least either the CD8 or CD3 channels, leading to the corresponding classifiers achieving
relatively high accuracy.

The TNBC encoder’s ability to generate useful feature representations from the DAPI image
channel, which led to higher classification accuracy, indicates that it not only learned a simple
“yes/no” representation based on cell detection but also captured spatial features that are
indicative of inflammation. This highlights the predictive capabilities of spatial features in
tumor microenvironments (TMEs) (as is suggested by ongoing research [3, 5, 4, 7]), even in
the absence of specific immune cell phenotype markers.

This observation, however, also has broader implications for the analysis of medical image
datasets using self-supervised models: Since DAPI is a widely used stain in fluorescence mi-
croscopy, and almost every MxIF dataset includes images with DAPI channels, there are
vast amounts of data available that potentially contain valuable spatial information that a
self-supervised encoder could use to learn meaningful feature representations. By focusing
on extracting and incorporating spatial features from this widely available image data, fu-
ture research could potentially create more powerful and generalizable classification models
applicable to a broader range of MxIF datasets and medical image analysis tasks.

5-3 Pre-trained Encoders and the Siamese Architecture

It should be noted that my proposed Siamese architecture (see Figure 3-6 and Figure 3-8)
is not particularly novel on its own, but simply an application of standard neural network
design ideas. It is not uncommon to concatenate, or otherwise combine, outputs of several
parts of one or several neural networks and feed them into a different part. However, the
important implication of using this architecture is that it allows us to pre-train a single

Master of Science Thesis Daniel Spengler



88 Discussion and Future Outlook

encoder network on all image channels of a MxIF image individually. The intuition
behind this is that every channel of a MxIF image might as well be considered a separate
image that we can extract features from — independently of all its other channels. As a
result, the encoder can effectively pre-train on images with an arbitrary amount of channels,
potentially making it viable to process modalities such as multiplexed ion beam imaging by
time of flight (MIBI-TOF) [78].

By providing the encoder with several image channels and concatenating its feature vector
outputs generated from each input, we obtain a representation of a multi-channel image. A
disadvantage of using this concatenated feature vector as input to a linear classifier is the loss
of flexibility in the number of channels: the input size of the linear classifier must be pre-
defined, limiting it to processing feature vectors of a fixed size. However, this limitation could
potentially be addressed by employing more advanced architectures, such as transformers [79],
which can adapt to varying input sizes and potentially learn complex relationships between
channels that a linear (or nonlinear) classifier cannot.

Furthermore, it is worth noting that the feature representations generated by the pre-trained
encoder can be utilized for purposes beyond linear classification. They could also be employed
for unsupervised methods such as clustering or dimensionality reduction, opening up a range
of potential applications in biomedical image analysis.

A specific application that I would propose to investigate is to use a pre-trained encoder,
trained according to the methods outlined in this thesis, as a drop-in replacement for the
patch-contrastive learning (PCL) module in the NaroNet architecture [18]. NaroNet has
proven to be effective for the analysis of complex spatial interactions within the TME. How-
ever, its PCL module is limited to self-supervised training on images with a fixed amount
of color channels. An encoder network pre-trained on individual image channels could pro-
vide NaroNet with a flexibility in image channels while leveraging its powerful architecture.
Another recommended application would be the integration into the TME-Analyzer, which I
outline in Section 5-9.

5-4 Evaluating Individual Cell Classification and Hyperparameter
Optimization

For the classification of individual cells, I could no longer rely on reference encoder networks
to compare performance against, since the domain of small image patches centered around
individual cells has not been widely considered yet in the application of self-supervised learning
(and SimCLR in particular). I therefore decided to simply compare performance internally
against my own networks as I optimized their hyperparameters (effectively benchmarking
against the labels generated by TME-Analyzer [7]). A useful metric for this was the Area
Under the Precision-Recall Curve (PR-AUC), since it is independent of decision thresholds
that influence a classifier’s performance more strongly if the class distribution of the dataset is
imbalanced. This approach also allowed me to investigate the effect of various augmentations
used during the pre-training stage, which has not studied as thoroughly in related literature.
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5-4-1 Impact of Augmentations in Individual Cell Classification

Although Ciga et al. [16] investigated the effects of augmentations, their approach focused
on classifying larger scale tumor images and not on the individual cell level. Furthermore,
they analyzed bright-field microscopy images with 3 color channels — an image modality
that may require an entirely different set of augmentations compared to MxIF microscopy
images. For NaroNet [18], which contains a network that performs contrastive learning on
small patches extracted from MxIF microscopy images, the authors did not investigate the
effects of augmentations. Furthermore, the image patches used in NaroNet are relatively small
with sizes between 10×10 and 15×15 pixels. Whereas NaroNet learns spatial relationships by
feeding the learned feature representations into a graph neural network, I decided to capture
these spatial features by choosing an image patch size (64 × 64 pixels) that would include a
particular cell and its immediate neighbors. Again, this difference in approach likely facilitates
the need for different image augmentations, which is why I did not rely on NaroNet for design
decisions of my network.

Choice of Augmentations

Introducing an augmentation in SimCLR teaches the encoder network to make its feature
output invariant to that augmentation. The augmentations I have chosen to investigate are
somewhat related to microscopy and cell biology:

• Gaussian blur: Can help offset blurring due to various factors, such as optical aber-
rations, imperfections in lenses, or limitations in the resolution of the imaging system.

• Translation: Not directly related to microscopy, but can help offset inaccuracies in
cell positions obtained from label data.

• Zoom: Can help offset slight changes in magnification as well as create robustness
against varying size of cells that otherwise have the same phenotype.

• Brightness/contrast: Can help offset overexposure or underexposure due to factors
such as photobleaching of fluorophores, inconsistent fluorophore concentration during
staining, differences in tissue autofluorescence across patients, differences in microscopy-
/imaging equipment used, etc. all of which have an effect on brightness and contrast
levels.

The augmentations that resulted in best performance may appear relatively “mundane” at
first sight: a moderate zoom out of up to ×2 and moderate contrast/brightness adjustment of
up to 50 %. The level of contrast and brightness adjustment are lower compared to the 80 %
found to be optimal by Ciga et al. [16] for bright-field microscopy images. Interestingly, 80 %
for contrast and brightness adjustment were also proposed in the original SimCLR paper [14].

Effects of Zoom

The moderate zoom out of up to ×2 causes the encoder network to produce similar feature
outputs for image patches containing cells of different sizes. The center of the image patch

Master of Science Thesis Daniel Spengler



90 Discussion and Future Outlook

always remains the same and merely becomes slightly smaller when the zoom out causes the
network to observe more of the center’s surroundings. This suggests that the encoder puts
high importance on whatever object or pattern is located at the center of the image and
learns to produce similar feature outputs for this object or pattern appearing in different
surroundings, which results in better cell classification performance when a classifier uses
these features as input. I can propose a few interesting ideas for augmentations that could
be applied to investigate this further:

• Cut out the center of an image patch: Depending on whether this improves performance
or not, we can get a better understanding of how important the image center is for
learning cell features.

• Cut out anything but the center: Depending on whether this improves performance or
not, we can get a better understanding of how important the cell’s surroundings are for
learning cell features.

• Cut out the center of an image patch and “transplant” it into a different image patch:
Depending on whether this improves performance or not, we can get a better under-
standing of how important the spatial relationship between a cell and its surroundings
is.

Effects of Translation

The focus on the image patch center may also explain why the translation augmentation
resulted in a decrease of performance for even the smallest shift, as shown in Section 4-2-2.
The performance decreased very strongly beyond translation shifts of 15 pixels. According
to the label data obtained by TME-Analyzer [7], the average cell diameter in the dataset is
roughly 30 pixels. Introducing a shift of 15 or more pixels means that the cell that the image
patch is centered around is most likely no longer part of the center at all.

For this reason, I tested the special translation augmentation that simply shifts both image
patches of the augmentation pair by the same amount and in the same direction. While this
would eventually result in an image patch no longer being centered on a cell, it turns out that
this type of augmentation had virtually no impact on the quality of feature outputs. This
suggests that, while the encoder has a strong focus on whatever is located at the center of an
image patch, it does not matter whether it is the actual center of a cell, the edge of a cell or
simply empty space.

The last assumption is supported by the fact that even a shift to a completely random location
within the tissue image had no effect on performance. This result is significant, because it
suggests that we do not need to know the cell locations for pre-training an encoder
network that is supposed to improve cell classification performance.

If randomly sampled image patches are enough, a lot of time can be saved trying to determine
cell locations before beginning to pre-train the encoder. When using the pre-trained encoder to
generate feature representations for cells, however, we will need to know cell locations. There
are several methods to obtain cell locations via segmentation in MxIF images, particularly
when a DAPI channel is available, which highlights cell nuclei. For example: the watershed

Daniel Spengler Master of Science Thesis



5-4 Evaluating Individual Cell Classification and Hyperparameter Optimization 91

algorithm [69], StarDist [70] (both of which are featured in TME-Analyzer) or a powerful
general-purpose segmentation network such as Segment Anything [80].

It may also be possible to use the pre-trained encoder without requiring cell location data
at all. When dividing a full tissue image into (overlapping) patches at regular intervals, an
encoder could compute feature representations for each of these patches. This would result in
a lower resolution “heatmap” of the original image, which could be analyzed to find interesting
patterns and features in the tumor.

Interesting Augmentations for Future Research

For future research, it may be interesting to consider more augmentations. In a recent paper
by Toth et al. [81], the authors could demonstrate improved cell classification performance of
a supervised network by introducing a fisheye transformation, which they argue is due to the
fact that the transformed images contain more of the cell’s “surrounding microenvironment”.
This fisheye transformation, as well as other biologically/microscopy inspired augmentations
could be explored further:

• Elastic deformation: Applying elastic deformations to images can simulate variations
in cell shape and morphology, which could be beneficial in learning more generalizable
features for cell classification.

• Noise injection: Adding different types of noise to the images can simulate the effects
of imaging noise, helping the network become more robust to real-world variations in
image quality.

5-4-2 Impact of Loss Functions and Sampling in Individual Cell Classification

As shown in Section 4-2-1, the choice of loss function and data sampling turned out to
have a stronger impact on performance than the augmentations. The thorough investigation
was motivated by the fact that, due to MxIF images not containing the same amount of
information in every channel, many of the extracted image patches from the TNBC dataset
were very dark and contained little or no information. This can cause an issue when sampling
from the dataset and applying the normalized temperature cross-entropy (NT-Xent) loss
function to the computed feature projections.

Consider the example minibatch of 8 image patch augmentation pairs shown in Figure 5-2:
The image pairs (3, 4), (5, 6) and (13, 14) may be considered mostly void of information. The
computed feature projections of all images of these pairs will consequently be very similar.
The alignment loss term in NT-Xent will be low since the cosine similarity within each image
pair is high. However, the distribution loss term will also be low when computed across these
three pairs, since the cosine similarity across each image pair is also high. This could lead to
the encoder network not being able to learn properly, since it receives conflicting information
during pre-training (“these 2 projections of identical images should be made as similar as
possible, whereas these 2 projections of identical images should be made as dissimilar as
possible”).
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Minibatch, N=8
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Figure 5-2: Minibatch with N = 8 resulting in 8 augmented image pairs for a total of 16 images
with indices as shown. In the TNBC image set, many image patches are dark and contain little
to no information. This can cause a contrastive loss function to fail learning properly by receiving
conflicting information during training. For better visibility, images are displayed with a brightness
adjustment of 90 % and contrast adjustment of 50 %.

Although the temperature parameter τ of the NT-Xent loss function can help to mitigate this
type of problem to some degree, I decided to try out more ideas in the form of modifying the
loss function or data sampling strategy. While rejection sampling of images that fell below a
certain brightness threshold seemed promising, it turned out to be computationally expensive
during training and did not produce good results. This is most likely because black images
make up a significant amount of the dataset and, as a result, the encoder network should get
an appropriate amount of opportunities to learn features for these images during pre-training.
The use of rejection sampling artificially lowers the relative amount of black images in the
dataset to 1/N where N is the chosen batch size. The degraded performance of contrastive
learning methods when dataset diversity is low is a known problem, which methods such as
prototypical contrastive learning [82] aim to address.
As a simple alternative, I tested using only the alignment loss term of the NT-Xent loss
function. While this did not result in good performance, future work could investigate more
sophisticated non-contrastive methods, such as Barlow Twins [83] and VICReg [84].
The strategy of “black image marking” turned out to result in best performance when com-
bined with an optimal τ parameter. The modification I made to the NT-Xent loss function es-
sentially results in it only selectively applying the distribution loss term based on an arbitrary
criterion. In this case, I chose the relatively simple criterion of the intensity of the brightest
pixel in the image patch needing to be below a certain threshold. While this introduced an-
other hyperparameter to optimize for, it also improved the learned feature representations of
the encoder. Using this modified loss function, there are certainly more sophisticated marking
criteria that could be investigated in future work such as thresholds based on the mean and
standard deviation of pixel intensities within an image patch.

5-5 Exploring Dataset Diversity and Size for Improved Pre-training

An idea to improve dataset diversity was to include images from datasets other than the
TNBC dataset in the pre-training process. This was inspired by the CellPose dataset [73], a
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dataset for training and improving cell segmentation algorithms, which contains various un-
usual images (see Figure 3-3) aside from microscopy images of tissue and cells. Consequently,
I chose to include CellPose to investigate whether it could accomplish the same in the context
of self-supervised pre-training of an encoder network.
The second dataset I chose to include for this purpose was the STL-10 dataset [74]. Since the
STL-10 dataset itself is based on the ImageNet dataset [76], including it in the pre-training
might provide the same benefit that ImageNet provides for the pre-training of encoders for
larger size images. STL-10 was a convenient choice for this, since its small image format
of 96 × 96 pixels loosely centered on an object of interest meant that it would require little
pre-processing and could potentially reinforce the same learning patterns that are required to
learn good features for individual cells in the TNBC dataset.
While the inclusion of these datasets did not lead to improved performance in this thesis, it
may be an approach worth investigating further in future work. It is likely that image data
from foreign image domains can improve learning of better feature representations, but this
might require re-evaluation of the augmentations used.
Part of the work by Ciga et al. [16] has focused on gathering datasets of bright-field microscopy
images to include during the pre-training process of their encoder network. The TNBC dataset
itself was more than large enough for a network that could be feasibly trained within this
thesis. Furthermore, Erasmus University Medical Center could potentially provide more MxIF
images to analyze. The result that increasing the dataset size during pre-training improves
the performance of a downstream task such as classification (see Section 4-2-3) is in line with
Ciga et al.’s findings (as well as self-supervised learning literature in general) and gives a
promising outlook for future work where larger networks could be trained and provide even
better performance.
Examples of images that could possibly be included during pre-training are:

• Images of other tumors,

• bright-field microscopy images (as well as phase-contrast microscopy, etc.), including a
color-inversion augmentation (as mentioned in Section 5-1),

• MIBI-TOF [78] images (as mentioned in Section 5-3) and images from other high-
plex modalities such as imaging mass cytometry (IMC) and Cyclic Immunofluorescence
(CycIF) [85].

5-6 Addressing Label Scarcity

The optimizations in pre-training leading to more label-efficiency in the downstream clas-
sification task (Section 4-3-1) strongly indicate that self-supervised learning methods could
indeed be used to address the issue of label scarcity in medical imaging data. The cells most
heavily affected by this investigation were those with rare phenotype labels such as "CD56+"
and "CD68+", whereas the amount of labels used was already very low for the remaining
phenotypes (Table 3-5).
For example, less than 0.9 % of "CK+" labels were used for the supervised training of the
classifiers, with performance for these cells being consistently high. For the cells that are
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currently undersampled in the training set, it is worth investigating how much higher the
classification performance can increase if we add more labels. Doing this would also give
us a better understanding of the encoder’s “performance ceiling” (which we currently only
know for "CD56+") and would help us investigate which augmentations could add even more
performance.

5-7 High Variance in Classification Performance for Rare Cells

A notable effect that can be observed in every violin plot shown in Section 4-2 and Section 4-3
is that variance for PR-AUC("CD56+") and, to a lesser extent, PR-AUC("CD20+"), is relatively
high. This can be partly explained by the fact that both "CD56+" and "CD20+" are rare labels.
However, note that "CD68+", which is less common than "CD20+", is not as heavily affected.

Although I balanced the training set such that every label occurs with similar frequency, the
dataset that was provided during the self-supervised pre-training was sampled randomly. As
a result, the encoder networks encountered these rare cells infrequently during pre-training,
causing them to not learn feature representations as well for rare cells as opposed to more
common cells. In the downstream task, this can lead to more uncertainty.

Furthermore, it must be stressed that the TME-Analyzer labels, despite shown to be predictive
for patient outcomes [7], are not ground truth and could also include inaccuracies caused by
certain cell phenotypes being less common and therefore more difficult to label accurately.
This can have a compounding effect when we use these labels to train classifiers.

5-8 Practical Application: Leveraging Higher-level Information for
Efficient Annotation

To give an example of how the resulting network of this thesis could be used, I constructed
an example where I performed supervised training of a classifier on cells exclusively from one
of the spatial phenotypes (see Figure 5-1) and tested those classifiers on cells from the other
spatial phenotypes (Section 4-3-2). In this example, I showed that a classifier trained on
cells from tumors of the excluded phenotype gave the best performance when tested on cells
from the inflamed and ignored phenotypes. In other words, cells from the excluded tumor
phenotypes lead to the best generalization performance.

This type of result can be used when making a decision on where the labor of annotating
medical images should be allocated in order to make the most of the limited amount of man
hours available2. This is an example of how higher-level information, such as broad knowledge
of a tumor phenotype, can guide us to better determine lower-level information, such as cell
phenotypes.

2Ideally, we would simply be able to order more cells with a rare phenotype, such as CD56, to be labeled in
order to be able to increase classification performance on those cells. This, however, would require an algorithm
that can reliably detect those cells in the first place...
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5-9 Potential Integration into TME-Analyzer

The TME-Analyzer tool, developed by Balcioglu et al. [7], was used to generate the label
data for the TNBC dataset. It is a semi-automatic analysis tool that can be used to perform
individual cell classification with the following workflow:

1. Load a MxIF image of a tumor section

2. Segment cell nuclei using StarDist [70]

3. Perform Voronoi expansion of nuclei segmentation masks to approximate cell segmen-
tation masks

4. Perform interactive thresholding using various metrics to determine cell phenotypes

An encoder network pre-trained on MxIF images of tumor tissue could be integrated into
TME-Analyzer and assist the user during the workflow. Upon loading the image, the pre-
trained encoder could compute a feature embedding of the entire image, which, together with
the image, could serve as input to a modern segmentation algorithm such as Segment Anything
[80] to improve cell segmentation based on the detected tumor phenotype. With the cells
segmented, their respective image patches could be fed into the pre-trained encoder in order to
compute feature embeddings for every detected cell or other regions of interest. These feature
embeddings could be integrated into the thresholding step to assist the user in determining cell
phenotypes or perform clustering analysis to discover new regions of interest. This human-in-
the-loop approach may even result in discovery of novel features and phenotypes that could
be further investigated [86].

Master of Science Thesis Daniel Spengler



96 Discussion and Future Outlook

Daniel Spengler Master of Science Thesis



Chapter 6

Conclusion

In this thesis, as part of a collaboration between TU Delft and Erasmus University Medical
Center (Erasmus MC), I explored the potential of self-supervised learning algorithms, specif-
ically SimCLR (Simple Framework for Contrastive Learning of Visual Representations), to
extract meaningful feature representations from multiplex immunofluorescence (MxIF) mi-
croscopy images of triple-negative breast cancer (TNBC) tissue.

The primary motivation for this investigation was to enhance the capabilities of the TME-
Analyzer, a tool developed by Erasmus MC for the analysis of tumor microenvironments
(TMEs), which currently relies on manual annotation of image data. The widespread issue of
label scarcity in medical imaging, along with the promising ability of self-supervised learning
algorithms to mitigate this challenge, inspired this research to improve the efficiency and
automation of the TME-Analyzer’s workflow.

In light of the images in the TNBC dataset including 8 color channels, this study aimed to
address the less explored domain of MxIF images and adapt the SimCLR model accordingly,
ensuring its flexibility in handling varying numbers of image channels and learning feature
representations that are useful for improving the label-efficiency in the downstream task of
cell classification.

Research Question 1: How can a self-supervised learning model be designed to learn
features from MxIF images with an arbitrary number of color channels?

MxIF images can be split into their individual image channels, which can be supplied to the
SimCLR encoder individually during pre-training. As a result, the encoder can learn feature
representations from images with an arbitrary amount of color channels. In order to use these
features to perform classification of MxIF images, I explored two configurations:

1. Single configuration: Feed the 8 individual channel’s feature representations into 8
separate classifiers.
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2. Siamese configuration: Feed the concatenation of all 8 channel feature representations
into one classifier.

In an experiment of classifying entire tumor sections in the TNBC dataset, I showed that the
Siamese configuration achieved a median classification accuracy of 0.937, compared to the
Single configuration where the best performing classifier (using the DAPI channel) achieved
a median classification accuracy 0.913, marking a +2.63 % increase. Furthermore, encoder
networks that were not pre-trained on the TNBC dataset resulted in worse classification
performance.

Research Question 2: What are the hyperparameters for such a model that improve
feature learning of individual cells in MxIF images?

To answer this question, I performed a hyperparameter search, which I divided into 4 rounds:

1. Determine best loss function and data sampling strategy during pre-training.

2. Determine the best augmentations to use during pre-training.

3. Investigate the effects of varying dataset size and data sources during pre-training.

4. Investigate the effects of changing the amount of labeled data available during the
supervised classifier training (this round addresses the next question).

Following the previous results, I employed the Siamese configuration and performed exper-
iments of classifying individual cells in the TNBC dataset. Every hyperparameter change
resulted in a different encoder/classifier pair to be evaluated. As a performance metric, I
used the classifier’s Area Under the Precision-Recall Curve (PR-AUC). I benchmarked the
performance of every network internally against each other, with the network that achieved
the highest classifier PR-AUC indicating the best performance and therefore marking the best
hyperparameters.

The best hyperparameters found were:

1. Use the normalized temperature cross-entropy (NT-Xent) loss function with tempera-
ture parameter τ = 0.05 and a modification to the loss function that excludes images
from the distribution loss if their brightest pixel has an intensity of 30 or lower.

2. Apply rotation and flipping with 50 % probability, apply a zoom out with a random
zoom factor up to 2×, and adjust the contrast and brightness with random intensities
up to ±50 % .

3. Pre-train the encoder on 4 096 000 image patches (maximum amount tested) from the
TNBC dataset.
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Research Question 3: Can the features learned by such a model improve label-efficiency
for the task of individual cell classification?

The answer to this question follows from the investigation performed in round 4 as specified
above. Using the pre-trained encoder with the best hyperparameters obtained after round 3,
I trained multiple classifiers on top of it and varied the amount of labeled data available.

I found that I could decrease the amount of labels available to 40 % before a noticeable
decrease in classifier PR-AUC occurred. Furthermore, the best encoder from round 3 with
a classifier trained on only 10 % of label data outperformed the best encoder from round 1
with a classifier trained on 100 % label data. The best encoder from round 3 with a classifier
trained on only 30 % of label data outperformed the best encoder from round 2 with a classifier
trained on 100 % label data.

The results show that the features learned by the encoder in round 3, which has the best
hyperparameters, are of high enough quality that only a fraction of labeled data available is
required to match classification performance of encoders from earlier rounds. This demon-
strates that the optimized self-supervised learning model can indeed improve label-efficiency
for individual cell classification, reducing the reliance on labeled data without sacrificing
performance.

Future Outlook

The promising results of using SimCLR for feature learning of tumor sections and individual
cells serve as a basis for future research.

During pre-training on tissue section images, the encoder networks learned spatial features
from the DAPI channel that were useful for tissue classification. This can be investigated
further by leveraging the large amount of DAPI channel images publicly available. Further-
more, the inclusion of images from other image modalities such as bright-field microscopy or
other high-plex imaging techniques may improve the quality of learned features.

The hyperparameter search, particularly with respect to augmentations, can be extended
in future research. Applying augmentations that are relevant to the microscopy domain
and address specific challenges in cell imaging could further improve the performance and
generalization of the learned features.

The SimCLR encoders trained as described in this thesis can be used for more tasks than
image classification. Possible applications to consider in the future are:

• Enhancing TME-Analyzer: The pre-trained encoder could be incorporated into the
TME-Analyzer workflow, potentially improving cell segmentation and assisting users in
determining cell phenotypes or performing clustering analysis to discover new regions
of interest.

• Integration into NaroNet: The pre-trained encoder could be used as a drop-in replace-
ment for the patch-contrastive learning (PCL) module, providing flexibility in the num-
ber of image channels and leveraging the powerful architecture of NaroNet for the anal-
ysis of complex spatial interactions within the TME.
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In conclusion, this thesis demonstrates the potential of self-supervised learning algorithms,
specifically SimCLR, in extracting biologically relevant features from multiplexed immunoflu-
orescence images and improving label-efficiency for tasks like individual cell classification in
the context of triple-negative breast cancer. The results lay a foundation for future work in
refining self-supervised encoder networks, exploring additional data sources, and developing
advanced techniques to enhance existing tools such as the TME-Analyzer or NaroNet. Poten-
tial directions for future research include the investigation of domain-specific augmentations,
leveraging large amounts of DAPI channel images, and exploring diverse and large datasets
for pre-training. This work ultimately contributes to the broader goal of enhancing our un-
derstanding of tumor microenvironments and has the potential to improve the capabilities
of machine learning models for making accurate predictions in clinical settings, aiding in the
development of personalized treatments for patients suffering from cancer.
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Appendix A

TNBC Image Dataset Specification

The triple-negative breast cancer (TNBC) dataset consists of 1010 fluorescence microscopy
images from 63 patients. Each image corresponds to a stamp of size 670 µm × 502 µm at a
resolution of 0.5 µm2/px, resulting in a digital image of size 1340 px × 1004 px. As specified
in [7], patients were either determined to have inflamed tissue (25 patients, 349 images) or
non-inflamed tissue (38 patients, 661 images). Furthermore, images were either captured at
center locations (513 images) or border locations (497 images) of the tumor.

The images were captured by an Akoya Vectra 3 Imaging System [87] with the tissue being
stained using the Opal 7 staining kit [25]. Table A-1 specifies the fluorophores used and their
targeted markers. During imaging, the Vectra 3 cycled through combinations of 5 excitation
filters and 22 emission filters (see Figure 2-2) for a total of 35 spectral images per tissue
section. Table A-2 shows the combinations of excitation filters and emission filters used for
each of these images. According to the specification of the filters and fluorophores used, the
spectral images were then unmixed to produce 8 color channel images per tissue section: one
for every fluorophore and an additional one for tissue autofluorescence (background).

The resulting spectral images are of size 1340 × 1004 × 35 with 16-bit color depth and are
saved in the proprietary .im3 file format. The resulting color channel images are of size
1340× 1004× 8 with 32-bit color depth and are saved in the .tif file format. More detailed
specifications of both formats are given in the inForm user manual [72].

An example of all 35 spectral image channels for a given tissue section is shown in Figure A-
1. Here, the channel numbers run from left to right and top to bottom. Note that the pixel
brightness values have been normalized for each channel individually. The brightness of these
images is normally much lower and this should only serve to give a qualitative insight. It is
worth comparing how the visible tissue changes whenever an excitation filter changes (e.g.
between channel 9 and channel 10).

The spectrally unmixed 8 color channel images of the same tissue section are shown in Fig-
ure A-2. For reference, the fluorophore and its targeted marker corresponding to the unmixed
channel are specified. Note that the pixel brightness values have been normalized for each
channel individually.
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Figure A-1: 35 normalized spectral channels of a tissue sample from the TNBC dataset.
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(a) DAPI: Cell nuclei (b) OPAL 690: Cytokeratin

(c) OPAL 520: CD3 (d) OPAL 540: CD68

(e) OPAL 570: CD8 (f) OPAL 620: CD56

(g) OPAL 650: CD20 (h) Autofluorescence

Figure A-2: 8 normalized color channels of a tissue sample from the TNBC dataset.
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Table A-1: Fluorophores and target markers for TNBC images. Some images have the markers
for channels 6 and 7 switched.

Color
channel # Fluorophore Marker

1 DAPI Cell nuclei/DNA
3 OPAL520 CD3
4 OPAL540 CD68
5 OPAL570 CD8
6 OPAL620 CD56/CD20
7 OPAL650 CD20/CD56
2 OPAL690 Cytokeratin
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Table A-2: Excitation and emission filter combinations for TNBC spectral images. The emission
filters are band-pass filters with a range of 20 nm, the quantities in parentheses mark their central
wavelength.

Spectral
channel #

Excitation
filter λ [nm]

Emission
filter λ [nm]

1

410–550

430–450 (440)
2 450–470 (460)
3 470–490 (480)
4 490–510 (500)
5 510–530 (520)
6 530–550 (540)
7 550–570 (560)
8 570–590 (580)
9 590–610 (600)

10

510–650

510–530 (520)
11 530–550 (540)
12 550–570 (560)
13 570–590 (580)
14 590–610 (600)
15 610–630 (620)
16 630–650 (640)
17 650–670 (660)
18 670–690 (680)
19

575–650

560–580 (570)
20 580–600 (590)
21 600–620 (610)
22 620–640 (630)
23 640–660 (650)
24 660–680 (670)
25 680–700 (690)
26

610–750

570–590 (580)
27 590–610 (600)
28 610–630 (620)
29 630–650 (640)
30 650–670 (660)
31 670–690 (680)
32 690–710 (700)
33

660–740
670–690 (680)

34 690–710 (700)
35 710–730 (720)
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Appendix B

Refresher on Basic Optics Properties

Figure B-1 shows various objects of interest in the life sciences on a size scale, with the average
size of cells found in human and animal tissue in the range between 10 µm and 100 µm. The
size of cells, specifically with respect to the indicated Abbe’s diffraction limit, imposes a
requirement on the magnification and resolution of an optical system. Furthermore, the
contrast of the imaged cells plays an important role in our ability to analyze the resulting
images.

This appendix will give a quick review of these basic optics properties.

B-1 Lenses & Magnification

The thin-lens equation (see also Figure B-2),

1
f
≈ (n− 1)

( 1
R1
− 1

R2

)
, (B-1)

Figure B-1: Various objects of interest in the life sciences on a size scale. The diffraction limit
specifies a lower bound on the size of objects that can be observed with conventional optical
imaging systems. Image from [88]

Master of Science Thesis Daniel Spengler



108 Refresher on Basic Optics Properties

d

f
R     

    
    

    
 

2

    
 R 1

Optical axis
Focal point

Lens

Figure B-2: Geometrical properties of a lens. Negative radii R will result in a concave lens that
diverges light, i.e., the focal point f will be located in front of the lens. For the thin-lens equation,
the thickness d is assumed to be much smaller than the lens’ radii. Image adapted from [90].

relates the lens’ focal length f to its shape expressed by the radii of curvature R1 and R2
and its material specified by the refractive index n [89]. Common refractive indices are 1.00
for air, 1.33 for water and between 1.50 and 2.00 for typical glass lenses. For thin lenses, the
lens thickness d is assumed to be much smaller than R1 and R2.

Figure B-3 shows a typical two-lens system configuration. Here, the specimen O is located in
the focal plane of the objective lens at distance fobj and projected as image B in the image
plane located at distance ftl from the tube lens. Using this lens placement, the magnification
M of the system can be expressed as (see [89])

M = B

O
= ftl

fobj
. (B-2)

Note that the light between the two lenses is collimated, i.e., all light beams are parallel. This
is also referred to as infinity-correction and provides the main advantage that the distance
between the two lenses does not affect the system’s magnification.

Figure B-4 shows a microscope configuration comprising two infinity-corrected magnification
steps. The left part of the system is identical to that shown in Figure B-3 and its primary
image output serves as input to the right part, consisting of an eyepiece lens and focusing lens
(e.g. the observer’s eye), which projects a secondary image. The magnification of the right
part of the system can be similarly determined by Eq. (B-2) and the total magnification of
the system is simply Mtotal = Mleft ×Mright. By arranging several lens configurations, high
magnifications can be achieved. Although, in theory, magnification can be arbitrarily high,
higher magnification does not improve the optical resolution of a system.

B-2 Optical Resolution

So far, we have only considered geometrical optics, which models light simply as rays redi-
rected by various optical elements such as lenses. In order to determine an optical system’s
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Objective Tube lens

Specimen

f
obj f

tl

Primary image
plane

O

B

o2

o1

b1

b2

Figure B-3: Infinity-corrected two-lens system. Light is emitted from the object O to form an
image B. The red paths show light emitted from the base of the object o1 and the green paths
show light emitted from the top of the object o2, which arrive at the base b1 and top b2 of the
image, respectively. Note that all light rays are parallel in-between the objective and tube lens.
Image adapted from [91].

Objective Tube lens

Specimen Primary image
plane

Back focal plane Secondary image
plane

Back focal plane
of eyepiece

Eyepiece

Focusing lens

Figure B-4: Two infinity-corrected two-lens systems in series can provide greater magnification.
Light paths are simplified compared to Figure B-3. In case of an analog microscope, the focusing
lens will be the eye of the observer. Image adapted from [91].
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(a) Twice the distance to
the first minimum.

(b) Exactly the distance
to the first minimum (the
Rayleigh criterion).

(c) Half the distance to
the first minimum.

Figure B-5: Two airy disks at various spacings. The Rayleigh criterion marks the distance at
which projections of two separate point sources can no longer be reliably distinguished from each
other. Image from [92].

resolving power, however, we need to consider wave optics, which models light as electromag-
netic waves. As a result, image formation is partially determined by diffraction of light rather
than being simply a point-to-point mapping between object plane and image plane.

An optical system’s resolving power is typically expressed as an angular or lateral resolution.
In case of lateral resolution, it is the minimum distance between two separate entities such
that they are still distinguishable as such. There are many estimates that give a theoretical
lower limit to optical resolution, one of which is the Rayleigh resolution criterion [91] (see
Section B-4 for a derivation):

dR = 0.61λ

NA for incoherent light, (B-3)

dR = 1.22λ

NA for coherent light. (B-4)

Here, dR is the minimum distance required between two light point sources in order to be
resolved, λ is the wavelength of light considered and NA = n sin(θ) is the numerical aperture,
which describes a system’s effective angular range over which it can transmit light by relating
it to the refractive index n and its half angular aperture θ . For example, consider a fluo-
rescent microscope with a relatively high NA of 1.4 and whose specimen fluoresce green light
(λ = 550 nm). Since the fluorescent light emitted by the multiple fluorophores is typically
considered incoherent, we can determine the theoretical resolution in this scenario to be about
240 nm.

The Rayleigh resolution criterion assumes that a point source in the object plane is diffracted
by the optical system to form an Airy disk pattern in the image plane. This is illustrated
in Figure B-5: In Figure B-5a, the two Airy disks projected onto the image plane are at a
sufficient distance to still be distinguishable. In Figure B-5b, the two Airy disks are located
at a distance specified by the Rayleigh resolution criterion and are just barely distinguishable.
In Figure B-5c, the two Airy disks are located too close to each other to be distinguishable
and the resulting image may be misinterpreted to have originated from a single point source
in the object plane.

Although magnification has, in theory, no impact on resolution as previously stated, there are
practical considerations when choosing magnification for a given resolution when capturing
images using digital image sensors. Consider the case as in Figure B-5b where the maxima
of two Airy disks are located at a distance dres and an individual pixel of the image sensor
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Figure B-6: Two Airy disks located at the Rayleigh resolution criterion dres with unit magnifi-
cation (M = 1). The top shows an image representation and the bottom an intensity histogram
when cutting the image at y = 0. The sensor’s pixel size dd must be chosen small enough de-
pending on the magnification in order to optimally resolve small details. Image from [91].

is of size dd. Figure B-6 illustrates this with an additional section view through the center
of the Airy disks to show the resulting light intensity on a 2D plot. In order for the two
disks to be individually distinguishable in an image of discrete pixels, we require at least one
pixel distance between the two pixels corresponding to the disk maxima. This leads to the
requirement that the pixel size must not be larger than half the resulting Airy disk diameter
dAiry. Since dAiry is dependent on magnification, we can express the condition for optimal
magnification as follows [91]:

Mopt ≈
2dd
dR

, (B-5)

where dR is the Rayleigh resolution distance as specified in Eqs. (B-3) and (B-4). Figure B-7
shows the projected image of Figure B-6 captured by sensors of varying pixel size. Notably,
the critical condition dd = 0.5MdR specified in Eq. (B-5) can be seen in Figure B-7a, the case
of super-resolution dd < 0.5MdR in Figure B-7b, and the case of sub-resolution dd > 0.5MdR
in Figure B-7c. Returning to the example fluorescence microscope with resolution of 240 nm
and choosing an image sensor with pixel size of 6 µm×6 µm, we would require a magnification
of at least ×50 in order to optimally capture the image.

B-3 Contrast

Proper magnification and resolution alone are not enough to make an object visible under a
microscope, but sufficient contrast is also required in order to be able to tell apart an object
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(a) dd = 0.5MdR, the
two points are distin-
guishable (critical con-
dition).

(b) dd = 0.24MdR,
the two points are
distinguishable (super-
resolution).

(c) dd = 0.9MdR,
the two points are
indistinguishable (sub-
resolution).

Figure B-7: The two Airy disks in Figure B-6 projected by an optical system with magnification
M and resolution dR as captured by a digital image sensor of varying pixel size dd. Image from
[91].

from its surroundings (i.e. distinguish foreground from background).

A possible mathematical definition for contrast is

C = Iobj − Isur
Iobj + Isur

, (B-6)

where Iobj and Isur are the light intensities of an object and its surroundings, respectively [91].
Clearly, a large difference between Iobj and Isur is desired in order to obtain high contrast.

For the purpose of microscopic imaging, tissue samples are typically sliced very thinly, which
results in low contrast according to the ratio in Eq. (B-6). This is necessary in order for light
to be able to penetrate the sample and make details visible, so increasing slice thickness is not
an option for increasing contrast. In practice, samples are usually stained in order to make
the objects of interest (tissue and cells) more easily distinguishable from the background.
This staining essentially increases the contrast C as given in Eq. (B-6), which is useful for
both human as well as algorithmic analysis of tissue images. The staining methods relevant
for this thesis are explained in more detail in Section 2-1-2.

B-4 Rayleigh Resolution Criterion

For incoherent light, the far-field intensity diffraction pattern of a plane wave hitting a circular
aperture (for example, a lens) is given by

I(θ) = I0

(
2J1

(
2πa sin(θ)/λ

)
2πa sin(θ)/λ

)2

, (B-7)

where θ is the projection angle between aperture and image plane, I0 is the light intensity of
the central maximum (θ = 0), a is the aperture’s radius, λ is the light’s wavelength, and J1
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is the Bessel function of the first kind. The Bessel function of the first kind has its first zero
at J1(3.8317) = 0, which results in I(θ) = 0 for 2πa sin(θ)/λ = 3.8317 or sin(θ) ≈ 0.61λ/a.

f

M
sin(θ) = 0.61λ

n

f

Ma
, (B-8)

rim
M

= 0.61λ

nM sin(β) , (B-9)

robj = 0.61λ

n sin(α) , (B-10)

robj = 0.61λ

NA . (B-11)
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Appendix C

Derivation of Equations for the
Backpropagation Algorithm

The derivation in this section closely follows the procedure in [41]. Consider the neural
network in Figure C-1: the network has L layers and we consider the connection between the
kth neuron in layer l − 1 and the jth neuron in layer l.

Figure C-2 gives a detailed view of the jth neuron in layer l: activations a
(l−1)
n of neurons

from the previous layer l − 1 are multiplied with weights w
(l)
jn and summed with a bias b

(l)
j .

The output of the jth neuron in layer l is its activation

a
(l)
j = ϕ

(∑
k

w
(l)
jk a

(l−1)
k + b

(l)
j

)
, (C-1)

that is, it is the neuron’s activation function ϕ applied to the weighted sum of activations
from the previous layer and its own bias. For the activations of the entire layer l, we can

k j

l-1 l l+1 L

...

...

...

...

ak

( l−1) aj

( l)

aj

( l)

aj

( l)

1

x1

xN

xn
an

(0)

a1
(0)

aN

(0)

J
⋮

⋮

OutputInput

Figure C-1: Schematic overview of a fully-connected neural network. The network has L layers.
Highlighted are the connections from the kth neuron in layer l − 1 to the jth neuron in layer l
and its connections to the subsequent layer l + 1 with their activation terms a specified. Layer 1
presents a special case where the inputs x to the network are treated as the activation of the 0th
layer. The outputs from layer L are passed to a cost function J .
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Σ

wj 1
( l)

b j

(l)

wjk

( l)

⋮

⋮

a1
( l−1)

ak

( l−1)

⋮

⋮

a
1
( l−1)

w
j 1
(l)
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( l−1)
wjk

(l) ϕ
z j

(l)
aj

( l)

Figure C-2: Schematic detail view of the jth neuron in layer l from Figure C-1 The activations
a

(l−1)
n from the previous layer are multiplied with weight terms w

(l)
jn and summed with a bias

term b
(l)
j . The sum of weighted inputs z

(l)
j is passed to an activation function ϕ, which produces

the neuron’s activation a
(l)
j , i.e., its output. The principle is similar to the Perceptron shown in

Figure 2-14.

express this as a vector

a(l) = ϕ
(
W(l)a(l−1) + b(l)

)
, (C-2)

a(l) = ϕ
(
z(l)
)

, (C-3)

where z is a vector containing the weighted inputs z
(l)
j to the jth neurons in layer l. Note that

we assume ϕ is applied individually to each element of its input vector.
Furthermore, we introduce an additional intermediate quantity

δ
(l)
j = ∂J

∂z
(l)
j

, (C-4)

which relates the cost function J to be optimized to the weighted input of the jth neuron in
layer l. δ

(l)
j is the error of the jth neuron in layer l. A neuron’s error gives an indication as

to how strongly a it affects the final cost, whose minimization with respect to every neuron’s
weight and bias we are interested in. The definition of δ will prove useful in computing this
efficiently.
We can now define

δ
(L)
j = ∂J

∂z
(L)
j

= ∂J

∂z
(L)
j

∂a
(L)
j

∂a
(L)
j

= ∂J

∂a
(L)
j

∂a
(L)
j

∂z
(L)
j

, (C-5)

= ∂J

∂a
(L)
j

ϕ′
(
z

(L)
j

)
, (C-6)

where we used the chain rule and the definition of the activation in Eq. (C-3) in order to
express the error of the jth neuron at the final layer L in terms of the partial derivative of
the cost function with respect to the activation in layer L and the derivative of the activation
function itself. Again, we can write Eq. (C-6) in vector notation:

δ(L) = ∇aJ ◦ ϕ′
(
z(L)

)
, (C-7)
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where ◦ denotes the element-wise multiplication between two matrices of the same size
(Hadamard product), and ∇a is the gradient with respect to a. For the error at any other
layer l, note that the error at layer l + 1 is δ

(l+1)
k = ∂J/∂z

(l+1)
k :

δ
(l)
j = ∂J

∂z
(l)
j

= ∂J

∂z
(l)
j

∑
k

∂z
(l+1)
k

∂z
(l+1)
k

=
∑

k

∂J

∂z
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

, (C-8)

=
∑

k

δ
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

, (C-9)

and furthermore
z

(l+1)
k =

∑
j

w
(l+1)
kj ϕ

(
z

(l)
j

)
+ b

(l+1)
k (C-10)

with its partial derivative
∂z

(l+1)
k

∂z
(l)
j

= w
(l+1)
kj ϕ′

(
z

(l)
j

)
. (C-11)

Substituting Eq. (C-11) in Eq. (C-9) results in

δ
(l)
j =

∑
k

w
(l+1)
kj δ

(l+1)
k ϕ′

(
z

(l)
j

)
(C-12)

which relates the error of the jth node in layer l to the errors of the nodes in layer l + 1. In
vector notation, this becomes

δ(l) =
(
W(l+1)

)T
δ(l+1) ◦ ϕ′

(
z(l)
)

(C-13)

We can now derive the expression of the derivatives of the cost function with respect to the
weights and biases. For the weights, we write

∂J

∂w
(l)
jk

= ∂J

∂w
(l)
jk

∂z
(l)
j

∂z
(l)
j

= ∂J

∂z
(l)
j

∂z
(l)
j

∂w
(l)
jk

= δ
(l)
j

∂z
(l)
j

∂w
(l)
jk

(C-14)

and evaluate the derivative

∂z
(l)
j

∂w
(l)
jk

= ∂

∂w
(l)
jk

(∑
k

w
(l)
jk a

(l−1)
k + b

(l)
j

)
= a

(l−1)
k , (C-15)

giving us the expression
∂J

∂w
(l)
jk

= δ
(l)
j a

(l−1)
k . (C-16)

For the bias, we simply have

∂J

∂z
(l)
j

= ∂J

∂z
(l)
j

∂b
(l)
j

∂b
(l)
j

= ∂J

∂b
(l)
j

∂b
(l)
j

∂z
(l)
j

= ∂J

∂b
(l)
j

, (C-17)
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giving us the expression
∂J

∂b
(l)
j

= δ
(l)
j . (C-18)

With Eq. (C-7) and Eq. (C-13) we now have expressions relating a neuron’s error to known
quantities which have been computed in the forward-pass of the neural network. Utilizing
these neuron errors, the derivative of the cost function with respect to a neuron’s weight can
be determined using Eq. (C-16) and with respect to a neuron’s bias using Eq. (C-18).
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Appendix D

Progression of the State of the Art in
Computer Vision

The field of computer vision has experienced tremendous advancements over the years, largely
due to the development of innovative neural network architectures and the availability of large-
scale datasets for training. This appendix provides an overview of the progression of the state
of the art in computer vision, using the annual ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) as a framework to showcase various milestone architectures such as
AlexNet, InceptionNet, ResNets, and Vision Transformers. Starting with the foundational
MNIST dataset and moving through CIFAR and other large datasets like Microsoft COCO
and ImageNet, this appendix is intended to give some insight on how these datasets have
helped shape computer vision models and push the boundaries of performance in object
recognition tasks.

D-1 Benchmark Datasets for Vision Tasks

In order to quantify the performance of neural networks, particularly novel architectures, it
is common to train them on public image datasets and benchmark their performance. One
of the oldest and most well-known datasets for this purpose is the Modified National Insti-
tute of Standards and Technology (MNIST) handwritten digit database [61, 93] (often simply
referred to as MNIST). The dataset features 70 000 grayscale 28 × 28 pixel images of hand-
written digits 0 to 9. Due to its simplicity, even classic Machine Learning (ML) algorithms
can achieve good classification performance on the MNIST dataset, although convolutional
neural networks (CNNs) are by far the best performers with modern state-of-the-art networks
typically achieving error rates below 1 % and the best performance to date achieved by a CNN
with an error rate of 0.09 % [94].

Two similarly sized but more complex datasets have been created by the Canadian Institute
For Advanced Research (CIFAR). The datasets feature 60 000 color 32 × 32 pixel images of
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everyday objects and animals. CIFAR-10 has images of 10 classes (6000 each) and CIFAR-100
images of 100 classes (600 each).

In order to train algorithms to better perform computer vision tasks on full-sized photographs
of everyday objects and situations, rather than tiny image crops, datasets such as Microsoft
Common Objects in Context (COCO) [95, 96] and ImageNet [76, 75] have been created.
COCO features 328 000 images with 91 classes and ImageNet features almost 15 million
images with over 20 000 classes, not all of which are manually reviewed however.

D-2 ImageNet and the CNN Revolution

Since 2010, the ImageNet project runs the annual ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) which requires contestants to classify a manually reviewed subset of
images from the ImageNet dataset. As a result of the ILSVRC, major breakthroughs in
computer vision have been accomplished. In 2012, AlexNet [97] was the first CNN to win
the challenge with a top-51 error rate of 15.3 %. Figure D-1 shows the network architecture
of AlexNet: the input image is fed into a combination of convolution and pooling layers and
then through a series of densely connected layers where the final output is 1 of 1000 class
labels. We can compare the network architecture to Figure 2-18, where the feature learning
portion is performed by the cyan and lavender colored layers, and the classification portion
is performed by the yellow colored layers.

AlexNet uses a single kernel of fixed size per convolutional layer. This yields good results if the
relevant information (i.e. the object to be classified) within an image is always roughly in the
same position and has the same size, which is not the case in real-life scenarios. A solution is
to use multiple kernels of varying size per convolutional layer, effectively making the network
wider. This idea has been implemented in the form of inception modules in GoogLeNet (also
known as InceptionNet) [99] which won the ILSVRC in 2014 with a top-5 error rate of 6.67 %.
Figure D-2 shows diagrams of the inception module, which places convolutions with kernels
of varying size and a pooling operation in parallel. In the naïve version (Figure D-2a), the
outputs of these operations are concatenated and serve as input to the next layer. and in
the version with dimension reductions (Figure D-2b), additional 1× 1 convolution operations
are placed in series in order to decrease the depth of the feature maps and therefore the
computational load per layer.

Another approach to improving classification performance is to simply build a deeper network.
VGG Net [100], the second place in the 2014 ILSVRC, has achieved a top-5 error rate of
7.3 % by stacking more convolutional layers. Compared to the 5 convolutional layers used by
AlexNet, VGG uses up to 19 3× 3 convolutional layers.

Increasing network depth indefinitely comes with negative side-effects. Recall the backpropa-
gation algorithm from Section 2-3-2: since neuron errors are defined as product of the deriva-
tive of the activation function, weight terms, and the neuron errors of the next layer, those
neuron error terms can become very small in very deep networks. Since the neuron errors are
directly related to the gradients computed to optimize the network’s weight and bias terms,

1Top-5 refers to the fact that one of the five class labels deemed most likely by the network must match
the actual label in order to be considered correct. In contrast, top-1 requires the most likely label to match
the actual label. The top-5 error rate on ImageNet of a human expert is estimated to be about 5 % [76].
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LeNet

Output: 1 of 10 classes

sigmoid

sigmoid

flatten

sigmoid

sigmoid

Image: 28 (height) × 28 (width) × 1 (channel)

Convolution with 5×5 kernel+2 padding:28×28×6

Convolution with 5×5 kernel (no pad): 10×10×16

Pool with 2×2 average kernel+2 stride: 14×14×6

Pool with 2×2 average kernel+2 stride: 5×5×16

Dense: 120 fully connected neurons

Dense: 84 fully connected neurons

Dense: 10 fully connected neurons

AlexNet

Output: 1 of 1000 classes

ReLu

ReLu

ReLu

ReLu

ReLu

flatten

ReLu, dropout p=0.5

ReLu, dropout p=0.5

Image: 224 (height) × 224 (width) × 3 (channels)

Convolution with 11×11 kernel+4 stride:54×54×96

Pool with 3×3 max. kernel+2 stride: 26×26×96

Convolution with 5×5 kernel+2 pad:26×26×256

Pool with 3×3 max. kernel+2 stride: 12×12×256

Convolution with 3×3 kernel+1 pad:12×12×384

Convolution with 3×3 kernel+1 pad:12×12×384

Convolution with 3×3 kernel+1 pad:12×12×256

Pool with 3×3 max. kernel+2 stride: 5×5×256

Dense: 4096 fully connected neurons

Dense: 4096 fully connected neurons

Dense: 1000 fully connected neurons

Figure D-1: Diagram of the AlexNet architecture. The network performs five convolution oper-
ations and three max-pooling operations with kernels of varying size. Note that these operations
collectively correspond to the feature learning step as seen in Figure 2-18. Then, the feature
representation is passed through three fully connected layers before the predicted class label is
output. These operations correspond to the classification step in Figure 2-18. Image from [98].

those gradients may become too small to be useful in the gradient descent algorithm: this is
referred to as the vanishing gradient problem. Since the neuron errors are also defined by
the derivative of the neuron’s activation function, one solution to this problem is to use ac-
tivation functions with piecewise constant derivatives such as Rectified Linear Unit (ReLU).
Other solutions include improved weight initialization [101] as well as batch normalization
[102] of inputs to individual layers.

Whereas the vanishing gradient problem occurs during the backpropagation stage of train-
ing, the feedforward stage suffers from a degradation problem as information has to pass
through more layers in deeper networks, which causes deeper networks to perform worse
than shallower counterparts beyond a certain amount of layers. Inspired by Long Short-Term
Memory (LSTM) [103] and similar to Highway Networks [104], this degradation problem has
been addressed by Residual Networks (ResNets) [48], which won the 2015 ILSVRC with a
top-5 error rate of 3.57 %.

ResNet features residual blocks (see Figure D-3): The information x is allowed to skip over
one or several layers, which are denoted to apply the function F(x). The outputs of the
two paths are then added y = F(x) + x and serve as input to the next residual block.
Since the skipped connection is equivalent to an identity mapping, this leads to no added
computational complexity and can be optimized using backpropagation and gradient descent.
The network now learns feature mappings which represent a trade-off between transformations
via convolution and direct passthrough of information. In the extreme case where an identity
mapping between layers is ideal, F(x) = 0 and the effective depth of the network is reduced.
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(a) Inception module, naïve version.
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1x1 convolutions

(b) Inception module with dimension reductions.

Figure D-2: Two implementations of the inception module. Rather than performing a single
convolution or pooling operation per layer, an inception module performs convolution operations
of varying size and a pooling operation in parallel, whose outputs get concatenated for the output
of the module. Compared to the naïve version in (a), additional 1 × 1 convolutions can be
performed in series as shown in (b) in order to reduce the depth of the feature map and reduce
computational complexity. Image from [99].
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Figure D-3: A residual block as implemented in ResNet. The information x is allowed to skip
over several layers where it is added to the output of the skipped layers F(x). As a result, the
undisturbed input information x is allowed to travel much deeper into the network, which enables
successful training of deeper networks compared to those without residual blocks. Image from
[48].

The depth of ResNet networks is specified by adding the amount of convolutional layers and
the amount of skip connections. For example, ResNet-50 has 34 convolutional layers and 16
skip connections.

By combining the ideas of inception modules from GoogLeNet and residual blocks from
ResNet, the ResNeXt [105] architecture was developed, which won the 2016 ILSVRC with
a top-5 error rate of 4.1 %. The concept of residual blocks has proven to be very useful
for networks learning feature representations of images and modern state-of-the-art networks
employ variations of this architecture, most notably EfficientNet [106] and RegNet [107]: Effi-
cientNet is a scaling method that determines the width, depth, and resolution of networks like
ResNet using a compound coefficient and RegNet performs neural architecture search (NAS)
on various architectures including ResNet in order to find an optimal network for a given
task.

D-3 Beyond CNNs: Transformer Networks and the Future of Com-
puter Vision

In recent years, transformer-based networks have replaced CNNs as the top performers in
ImageNet classification. Transformers, first introduced by Vaswani et al. in their 2017 paper
“Attention Is All You Need” [79], have gained significant popularity due to their self-attention
mechanism, which allows the model to focus on different parts of the input data in a more
flexible manner. Originally designed for natural language processing (NLP) tasks, trans-
formers have shown their potential in applications such as the powerful GPT-3 (Generative
Pre-trained Transformer) language model [12]. However, transformers have been adapted for
computer vision tasks as well, as demonstrated by the Vision Transformer (ViT) architecture
[108].

The current top performer in ImageNet classification is Microsoft’s Florence network [109],
which integrates transformers in its architecture, achieving a top-5 error rate of 0.98 %. Other
examples of networks integrating the ViT architecture are Meta AI’s DINOv2 [110], which
is a general-purpose network that generates robust feature representations of images across
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a variety of domains, and Segment Anything (SAM) [80], which is a general-purpose image
segmentation network.
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Appendix E

Visual Example of Supervision Levels
in Machine Learning

This appendix provides visual examples of supervised, unsupervised, semi-supervised, and
self-supervised learning. All examples are based on the data distribution shown in Figure E-
1a: a “half-circle” or “banana” distribution of data points with two class labels. This data
could originate from a list of data points, such as the example of student grades from Section 2-
2-2, or be the feature representation of image data that a convolutional neural network (CNN)
generates (compare feature learning step in Figure 2-18.)

E-1 Supervised Learning

For supervised learning, the labels associated with every data point serve as the training
signal: depending on whether the algorithm correctly or incorrectly determines a label during

(a) (b)

Figure E-1: Ideal distribution of a “half-circle” dataset (a) and a neural network classification
boundary (b).
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(a) (b)

Figure E-2: (a): Noise corrupted distribution of the dataset from Figure E-1. Since there are
many data points available, the classification boundary in (b) manages to separate the two classes
relatively well.

(a) (b)

Figure E-3: (a): The same data distribution as shown in Figure E-2 but with only a few data
points available. (b): The classifier trained on these few data points fails to generalize to the
actual data distribution.

training, its internal parameters (weights) are adjusted accordingly such that its accuracy
improves. If many labeled examples are available, this learning paradigm yields good results
in a variety of tasks.

In Figure E-2a, a noise-corrupted distribution of the data from Figure E-1a is shown. Despite
the noise, the learned classification boundary shown in Figure E-2b can separate the classes
relatively well. In the case of a CNN, the network may not only learn to draw good classifica-
tion boundaries, but also improve the representation of the data itself. In the extreme (and
unrealistic) case, it may learn the ideal representation as shown in Figure E-1a, which would
allow it to draw a very good classification boundary as shown in Figure E-2a.

Having more labeled data available will typically result in better performance. A counter-
example is shown in Figure E-3a, where only a few data points are available. Training a
classifier on these few data points (shown in Figure E-3b leads to underfitting: the classifier
does not generalize well to the actual distribution which can be seen by the shape of the
classification boundary strongly deviating from those in Figure E-2b or Figure E-1b.

The amount of labeled data that is required also depends on how representative the data is.
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(a) (b)

Figure E-4: (a): The ideal distribution from Figure E-1 with the same amount of data points
as in Figure E-3. (b): Since the few data points that are available are very representative of the
true distribution, the classifier performs better compared to Figure E-3b.

An example of this is shown in Figure E-4a where the same amount of data points is available
as in Figure E-3a, but they are drawn from the true distribution. The corresponding classifier
(Figure E-4b) performs much better since representation of the data is of higher quality.
Of course, the data following the true distribution is not the only factor that improves the
classification performance, but also that its sampling is representative of the true distribution:
we can easily see that only drawing points from the rightmost part of the red half-circle and
only from the leftmost part of the blue half-circle would lead to a very inaccurate classification
boundary.

E-2 Unsupervised Learning

For unsupervised learning, no labels are available. The training signal is instead generated
from the representation of the data. For example, in the case of a clustering algorithm, the
training signal is determined by how easily the data points can be grouped into a pre-defined
amount of clusters. An example clustering of the noise-corrupted data distribution into two
clusters is shown in Figure E-5. Depending on error metrics of the particular clustering
method used (e.g. the sum of distances of every point belonging to a cluster to the center of
that cluster), a network can learn representations of the data that minimizes that error (e.g.
it will learn to group data points in its feature representation).

The resulting distribution in Figure E-5d clearly shows two distinct clusters of data points.
The obvious question that follows: Do these two clusters correspond to the two class labels
that we had available in the supervised learning case? The answer is most likely no. Let
us pretend that we had access to the labels all along and re-introduce them to the clustered
distribution. This is shown in Figure E-6a: we can see that parts of the blue points are
clustered with the majority of the red points an vice-versa. If we were to train a classifier on
this distribution in a supervised manner, the performance may still be acceptable (Figure E-
6b), but this is in no way guaranteed. In fact, if we do have labeled data available, naïve
clustering of the data would most likely just unnecessarily decrease performance compared to
simply training a classifier in a supervised fashion. The main takeaway is that unsupervised
algorithms can perform their task fairly well, but the features that these algorithms focus
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(a) (b)

(c) (d)

Figure E-5: (a): The same noise-corrupted distribution as in Figure E-2 but without any labels
available. (b)–(d): Given the input that there should be 2 clusters, a clustering algorithm will
learn a feature representation such that the data points are placed into 2 distinguishable clusters.
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(a) (b)

Figure E-6: (a): An example clustering similar to Figure E-5d but with the labels re-introduced.
Although the clusters are well-defined, they do not correspond to the two class labels. (b): In
this scenario, a classifier may still be able to separate the two classes relatively well, but in an
unsupervised learning situation the necessary labels would not be available.

(a) (b)

Figure E-7: (a): The same distribution as in Figure E-2 but only a few data points are labeled.
The majority of data points are unlabeled and cannot be used for supervised learning. (b): A
classifier trained on the labeled data points does not generalize to the actual data distribution.
The true labels of the unlabeled data points are displayed slightly transparent.

on may not be the features that we are interested in. This is particularly important in the
case of semi-supervised learning, where we attempt to combine unsupervised and supervised
learning methods.

E-3 Semi-supervised Learning

For semi-supervised learning, only a few labeled data points may be available compared to
a large amount of unlabeled ones. An example of this is shown in Figure E-7a. Similar to
Figure E-3b, a classifier trained on these few labeled points will most likely overfit and not
generalize well on the actual data (Figure E-7b).

However, what if we could shape the distribution of the data to match the true distribution
as closely as possible? This ideally reshaped distribution is shown in Figure E-8a and its
corresponding classification performance in Figure E-8b (compare also Figure E-4). If we
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(a) (b)

Figure E-8: (a): The same distribution as in Figure E-1 but only a few data points are labeled.
The majority of data points are unlabeled and cannot be used for supervised learning. (b): Since
the labeled data points are very representative of the true distribution, a classifier trained on these
points performs much better than the one in Figure E-7b. The true labels of the unlabeled data
points are displayed slightly transparent.

could train an algorithm to learn a high quality representation of the data, only a few la-
beled examples would suffice to train a classifier with acceptable performance. We have seen
previously that an algorithm such as clustering may not be suitable for this, but there are
algorithms that can achieve this goal.

E-4 Self-supervised Learning

Self-supervised learning algorithms are unsupervised learning algorithms. However, the train-
ing signal is not generated from characteristics of the learned representation of the data (e.g.
clustering), but is instead dependent of the domain of the data and, in the case of a semi-
supervised learning scheme, the downstream task we are interested in performing. This results
in a pretext task (or pre-training task) that an unsupervised learning algorithm learns to per-
form on the input data. Examples of those pretext tasks are shown in Figure 2-19 (putting
together a self-generated puzzle of an input image) and Figure 2-20 (learning that different
views of the same input image should have similar representations). In terms of shaping
the representation of the input data, the desired outcome is shown in Figure E-9: Rather
than simply clustering the data, we would like to obtain a representation of the data that
closely matches the true distribution (Figure E-9d). This is not straightforward, since the
true distribution is usually not known. However, several self-supervised learning algorithms
with pretext tasks tailored to a desired downstream task have been shown to be successful in
improving feature representation of data and resulting in more efficient training when only a
limited amount of labels are available [111, 13].

The increase in training efficiency with a limited amount of available labels is illustrated in
Figure E-10: by introducing the labels after the self-supervised pre-training is completed, we
can train a classifier with higher accuracy compared to having no pre-training performed.
This is a combination of self-supervised and semi-supervised learning.
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(a) (b)

(c) (d)

Figure E-9: (a): The same noise-corrupted distribution as in Figure E-2 but without any labels
available. (b)–(d): Unlike a clustering algorithm that learns to group the data into a pre-defined
number of clusters, a self-supervised learning algorithm may attempt to learn a representation of
the data that is close to the true distribution (ideally).

(a) (b)

Figure E-10: (a): The resulting distribution of the example self-supervised learning algorithm
from Figure E-9d with a few labeled data points available. (b): Since the distribution of the
data is close to the true distribution (i.e. the learned representation is “good”), the few available
labeled data points allow for a much more efficient training of a classifier. The true labels of the
unlabeled data points are displayed slightly transparent.
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Table F-1: Typical activation functions used in neural networks. One main feature is that
functions saturate, i.e., they approach a finite output value for very large input values. This is not
always desired, in which case the ReLU function can be used. Many activation functions share
similar properties but vary in smoothness and biasing. Note that the linear function is useful as
activation function of an output layer for tasks like regression. Adapted from [112].

Activation
function Equation Example

application 1D graph

Unit step
(Heaviside) ϕ(z) =


0, z < 0
0.5, z = 0
1, z > 0

Perceptron
variant

Sign (Signum) ϕ(z) =


−1, z < 0
0, z = 0
1, z > 0

Perceptron
variant

Linear ϕ(z) = z Linear regression

Piece-wise linear ϕ(z) =


0, z ≤ −1

2
z + 1

2 , −1
2 < z < 1

2
1, z ≥ 1

2

Support vector
machine

Logistic (sigmoid) ϕ(z) = 1
1+e−z

Logistic regression,
multi-layer NN

Hyperbolic tangent ϕ(z) = ez−e−z

ez+e−z Multi-layer NN

Rectifier: ReLU ϕ(z) = max (0, z) Multi-layer NN

Rectifier: softplus ϕ(z) = ln (1 + ez) Multi-layer NN
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List of Acronyms

TU Delft Delft University of Technology
Erasmus MC Erasmus University Medical Center
ACE TI-IT Academic Center of Excellence for Tumor Immunology and Immune Therapy
AI Artificial Intelligence
ANN artificial neural network
CD Clusters of Differentiation
CIFAR Canadian Institute For Advanced Research
CK cytokeratin
CNN convolutional neural network
COCO Common Objects in Context
DAPI 4’,6-diamidino-2-phenylindole
DL Deep Learning
FN false negative
FP false positive
GPU graphics processing unit
H&E hematoxylin and eosin
IHC immunohistochemistry
i.i.d. independent and identically distributed
ILSVRC ImageNet Large Scale Visual Recognition Challenge
InfoNCE Information Noise-Contrastive Estimation
LARS Layer-wise Adaptive Rate Scaling
LSTM Long Short-Term Memory
MAP maximum a posteriori probability
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MIBI-TOF multiplexed ion beam imaging by time of flight
MLP multilayer perceptron
ML Machine Learning
MNIST Modified National Institute of Standards and Technology
MoM mean of medians
MxIF multiplex immunofluorescence
NAS neural architecture search
NN neural network
NT-Xent normalized temperature cross-entropy
PCL patch-contrastive learning
PR-AUC Area Under the Precision-Recall Curve
PR Precision-Recall
ReLU Rectified Linear Unit
ResNet Residual Network
RGB red green blue
ROC-AUC Area Under the Receiver Operating Characteristic Curve
ROC Receiver Operating Characteristic
SGD Stochastic Gradient Descent
SimCLR Simple Framework for Contrastive Learning of Visual Representations
SLP single-layer perceptron
TME tumor microenvironment
TNBC triple-negative breast cancer
TNM tumor-node-metastasis
TN true negative
TP true positive

List of Symbols

δ(l) Vector of neuron errors in layer l of a neural network
θ Optimization variable vector (see also w)
δ

(l)
j Error of the jth neuron in layer l of a neural network

η Learning rate
λ Regularization weight (machine learning)
λ Wavelength of light
∇a Gradient vector operator for derivatives with respect to a

ϕ(·) Activation function
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τ Temperature parameter (NT-Xent loss function)
θ Half angular aperture (optics)
θj Optimization variable (see also wi)

h Feature representation (SimCLR)
x Input image (SimCLR)
z Feature projection (SimCLR)
∥ · ∥p Mathematical norm of order p

1 Ones vector
1[k ̸=i] Indicator function that is equal to 1 iff k ̸= i and 0 otherwise
A ◦B Hadamard product of A and B
e(·) Error vector function
I Identity matrix
w Weight vector
W(l) Matrix of weights of connections between neurons of layers l and l − 1
X Data matrix
x Data vector
y Observation vector
z(l) Vector of weighted inputs to the activation functions of neurons in layer l

LNT-Xent NT-Xent loss function
LA Alignment loss (NT-Xent loss function)
LD Distribution loss (NT-Xent loss function)
MB Minibatch (set)
T Set of transformations (SimCLR)
NA Numerical aperture
a

(l)
j Activation of the jth neuron in layer l of a neural network

B Image (geometrical optics)
b

(l)
j Bias of the jth neuron in layer l of a neural network

C Contrast
d Lens thickness
dR Rayleigh resolution distance
f Focal length
I Light intensity (optics)
J(·) Cost function or loss function
J1(·) Bessel function of the first kind
M Magnification
m Degree of a model (e.g. polynomial)
N Batch size, sample size
n Refractive index
O Object (geometrical optics)
p(x) Probability of x
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p(x | y) Probability of x given y

R Lens radius
t Transformation (SimCLR)
wi Weight coefficient
w

(l)
jk Weight of connection between the j th neuron in layer l and the kth neuron in

layer l − 1 of a neural network
z

(l)
j Sum of weighted inputs to the activation function of the jth neuron in layer l of

a neural network
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