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Abstract

Algebraic effects and handlers have become a popular abstraction for effectful computa-
tion, with implementations even in mainstream programming languages, such as OCaml.
The operations of an algebraic effect define the syntax of the effect, while handlers define
the semantics. This provides modularity, because we can choose which handler to apply
to a computation. However, we cannot write handlers for many higher-order operations;
operations that take effectful computations as parameters. Such higher-order operations
can therefore not enjoy this modularity. Hefty algebras provide an additional layer of
abstraction in the form of elaborations to make implementations of higher-order opera-
tions modular as well. Several languages, such as Koka, natively support algebraic effects
and handlers. However, until now, no languages have been created with native support
for higher-order effects. In this thesis, we introduce Elaine, a language featuring both
handlers for algebraic effects and elaborations for higher-order effects. Additionally, we
introduce implicit elaboration resolution; a type-directed procedure which infers the ap-
propriate elaborations from context. We conjecture that hefty algebras are the semantics
for Elaine. We provide a specification for Elaine, including its syntax definition, typing
judgments and reduction semantics. This specification is implemented in a publicly avail-
able prototype which can type check and evaluate the set of example programs included
with this thesis.
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Preface

There is a curse surrounding algebraic effects: once you know about them, you want to use
them everywhere. Since I started writing this thesis, I wished countless times that some
language I was working with had support algebraic effects or elaborations. So, I think it is
incredibly exciting that mainstream language are starting to pick up on the research done on
algebraic effects and are slowly adopting this feature. I hope that this thesis can contribute
ever so slightly to this adoption.

In any case, tread carefully reading this thesis, for you may be cursed.

Terts Diepraam
Delft, the Netherlands

September 23, 2023

About the cover illustration The cover image depicts Rubin’s Vase in the shape of the
Holy Grail. Rubin’s Vase is a shape that is bi-stable, meaning that it can be viewed in
two ways. One might see either the two faces or the vase. This represents how effectful
computations in Elaine can be given different interpretations with different handlers and
elaborations. This version of Rubin’s Vase is meant to resemble the Holy Grail. After having
chosen the name Elaine for the language developed for this thesis, we learned that several
characters in Arthurian legend are called Elaine. One of these characters is Elaine of Corbenic,
who is also called the “Grail Bearer” or the “Grail Maiden”.
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Chapter 1

Introduction

In many programming languages, computations are allowed to have effects. This means that
they can perform operations besides producing output, and interact with their environment.
A computation might, for instance, read or modify a global variable, write to a file, throw an
exception, or even exit the program.

Historically, programming languages have supported effects in different ways. Some pro-
gramming languages opt to give the programmer virtually unrestricted access to effectful
operations. For instance, any part of a C program can interact with memory, the filesystem,
or the network. The program can even yield control to any location in program with the
goto keyword, which has famously been criticized by Dijkstra (1968), who argued that goto
breaks the structure of the code and therefore makes the program harder to understand. The
same reasoning extends to other effects: the more effects a function is allowed to exhibit, the
harder it becomes to reason about.

The “anything goes” approach to effects therefore puts a large burden of ensuring correct
behaviour of a program on the programmer. If the language cannot provide any guarantees
about what (a part of) a program can do, the programmer has to check instead. For instance,
if a function somewhere in the code sets global variable to some incorrect value. This can
then cause seemingly unrelated parts of the program to behave incorrectly. The programmer
tasked with debugging this issue then has to examine the program as a whole to find where
this modification takes place. In languages where this is possible, effectful operations therefore
limit our ability to split the code into chunks to be examined separately.

A solution is to treat effects in a more structured manner. For example, instead of
allowing goto for error handling, a language might provide exceptions. In a language like
Java, checked exceptions are part of the type system, so that the type checker can verify
that all exceptions are handled. However, with this approach, any effect must be backed by
the language. That is, the language needs to have a dedicated feature for every effect that
should be supported, and new effects cannot be created without adding a new feature to the
language. This means that the support for various effects is limited to what the language
designers have decided to add.

In contrast, languages adhering to the functional programming paradigm disallow effectful
operations altogether.1 Here, all functions are pure, meaning that they always return identical
outputs for identical inputs and do not interact with the environment. By requiring that all
functions are pure, a type signature of a function becomes almost a full specification of what
the function can do.

However, effectful operations are often still desired. Consider the following program
written in Koka, a functional language where functions need to be pure. In this program,

1Usually there are some escape hatches to this rule, such as Haskell’s trace function, which is built-in
and effectful, but only supposed to be used for debugging.
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1. Introduction

there is a set of users that are considered administrators. The all_admins function checks
whether all user ID’s in a list are administrators.

Koka
1 val admins = [0,1,2]
2
3 fun is_admin(user_id: int): bool
4 admins.any(fn(x) x == user_id)
5
6 fun all_admins(l: list<int>): bool
7 l.map(is_admin).foldl(True, (&&))
8
9 val result = all_admins([0,1,2,3])

Now, we would like the program to tell us which users are not admins. In an imperative
language, we could just add a print call in is_admin to log any user that was not an admin
and call it a day. But in a functional language, that is not possible. Instead, each message
we want to log needs to be returned by the is_admin. These messages then need to be
concatenated to build up the string that should be printed.

Koka
1 fun is_admin(user_id: int): (bool, string)
2 if admins.any(fn(x) x == user_id)
3 then (True, "")
4 else (False, "Denied " ++ show(user_id) ++ "\n")
5
6 fun all_admins(list: list<int>): (bool, string)
7 match list
8 Nil() -> (True, "")
9 Cons(x, xs) ->

10 val (y, s) = is_admin(x)
11 val (ys, s') = all_admins(xs)
12 (y && ys, s ++ s')
13
14 val (result, log) = all_admins([1,2,3,4])

Adding some logging has made the program much more complicated than it was originally.
For larger programs, one might imagine that programming with effects in a functional lan-
guage therefore quickly becomes laborious. Additionally, the functions above are adapted
specifically to our logging effect; using any other effect would require a different implemen-
tation. Therefore, we should abstract over the effects in the computation.

This abstraction can be found in the form of monads (Peyton Jones and Wadler 1993;
Wadler 1992). For our purpose, a monad represents a computation with some effect. It is a
type constructor that takes the return type of the computation as a parameter. For a type
constructor to be a monad, it needs to define two functions: return and >>= (pronounced
“bind”). The return function wraps a value in the monad and >>= sequences 2 monadic
computations. In Koka, we cannot call these functions return and >>=, so we call them
pure and bind, respectively.

2



Koka
1 alias log<a> = (v: a, msg: string)
2
3 fun pure(v: a): log<a>
4 (v, "")
5
6 fun bind(m: log<a>, k: a -> log<b>): log<b>
7 val (a, s) = m
8 val (b, s') = k(a)
9 (b, s ++ s')

10
11 fun log(msg: string): log<()>
12 ((), msg)

The is_admin and all_admins can then be written using these functions instead of dealing
with the strings in the tuples directly. If we then create another monadic effect, we can then
change which effect is_admin uses without changing the implementation of all_admins.

Koka
1 fun all_admins(list)
2 match list
3 Nil() -> pure(True)
4 Cons(x, xs) -> is_admin(x).bind fn(y)
5 all_admins(xs).bind fn(ys)
6 pure(y && ys)
7
8 fun is_admin(user_id: int): log<bool>
9 if admins.any(fn(x) x == user_id)

10 then pure(True)
11 else
12 log("Denied " ++ show(user_id) ++ "\n").bind fn(())
13 pure(False)

In fairness, Koka is not designed for monadic operations and other languages provide more
convenient syntax for monads. However, the structure of this program in, for example, Haskell
would be roughly the same.

A limitation of the monad approach becomes apparent when we want to use multiple
effects. The problem is that the composition of two monads does not yield a monad. This
limitation can be worked around with monad transformers. A monad transformer takes a
monad and adds operations to it. The operations of every effect then need to be implemented
on every transformer. Adding a single effect therefore requires additional implementations
of its operations every other monad transformer. The number of implementations therefore
grows quadratically with the number of effects.

To overcome these limitations, we instead turn to the theory of algebraic effects, which
allows effects to be defined modularly. In this theory, an effect consists of a set of effect
operations, which form an interface for the effect. A computation using these operations then
needs to be wrapped in a handler, which defines the semantics for the operations. Different
handlers can then give different semantics to the effect.

We can adapt our program to this model, because Koka natively supports algebraic effects
and handlers. In the listing below, we first declare the algebraic effect log. This effect has
a single operation also called log. Then, we define a handler hLog for the log effect. The
handler transforms the effectful computation into a tuple of the log and the return value. Note
that the return branch matches the pure function and that the log branch combines the

3



1. Introduction

bind and log functions from the monadic version. The is_admin and all_admin functions
declare that they use the log effect with the effect row <log>. Additionally, Koka’s map
function is polymorphic over effects, so it can take effectful functions as an argument.

Koka
1 effect log
2 ctl log(msg: string): ()
3
4 val hLog = handler
5 return(x) (x, "")
6 ctl log(msg)
7 val (x, msg') = resume(())
8 (x, msg ++ msg')
9

10 fun is_admin(user_id: int): <log> bool
11 val result = admins.any(fn(x) x == user_id)
12 if !result then
13 log("Denied " ++ show(user_id) ++ "\n")
14 result
15
16 fun all_admins(l): <log> bool
17 l.map(is_admin).foldl(True, (&&))
18
19 val (result, log) = hLog { [1,2,3,4].all(is_admin) }

This implementation looks very much like imperative code, but the type system still resembles
the type system of functional languages. Effects are handled in a structured way, but are
still convenient to use. There are several other advantages too. The effects are modular and
can be combined easily. Additionally, the handlers are modular; any handler can be swapped
out for another handler, changing the semantics of the effect. For example, we could write a
handler that ignores all log calls or stores the logged messages in a list.

Koka is not the only language with support for algebraic effects; other notable examples
include Frank (Lindley, McBride, and McLaughlin 2017), Effekt (Brachthäuser, Schuster, and
Ostermann 2020), Eff (Bauer and Pretnar 2015), Helium (Biernacki et al. 2019), and OCaml
(Sivaramakrishnan et al. 2021).

However, many higher-order operations, which are operations that take effectful compu-
tations as parameters, cannot be expressed as algebraic effects. Therefore, it is not possible
to write modular handlers for these operations. This is known as the modularity problem
for higher-order effects (Wu, Schrijvers, and Hinze 2014). Several extensions to algebraic
effects have been proposed to accommodate for higher-order effects (van den Berg et al.
2021; Wu, Schrijvers, and Hinze 2014). One such extension is the theory of hefty algebras
by Bach Poulsen and van der Rest (2023), which introduces elaborations to modularly de-
fine higher-order effects. Elaborations give semantics to higher-order effects by transforming
them into computations with only algebraic effects. This means that evaluation of a compu-
tation becomes a two-step process: a computation with higher-order effects is first elaborated
into a computation with only algebraic effects, which can then be handled. Like handlers,
elaborations are modular, and it is possible to define multiple elaborations for a single effect.

Therefore, there currently exist languages with algebraic effects and there is a theory for
hefty algebras, but there are no languages based on hefty algebras yet. This is the gap in
research that this thesis aims to fill. The question we aim to answer is:

How can we design a language with native support for higher-order effects and
elaborations based on hefty algebras?

4



In this thesis, we introduce a novel programming language called Elaine. This language
features elaborations and higher-order effects as native constructs. This brings the theory of
hefty algebras into practice. We also present a set of example programs written in Elaine to
demonstrate the use of elaborations as a language feature.

Like handlers for algebraic effects, elaborations require the programmer to specify which
elaboration should be applied. In practice, we find that the set of elaborations to apply is
often unambiguous. Therefore, we introduce implicit elaboration resolution, a type-directed
procedure that infers the set of elaborations to apply from context.

We provide a specification for Elaine, including its syntax definition, typing judgments,
and reduction semantics. Along with this specification, we provide a prototype implementing
this specification written in Haskell in the artifact accompanying this thesis. This implemen-
tation includes a parser, type checker, interpreter, pretty printer, and the transformations
mentioned above.

Contributions The main contribution of this thesis is the specification and implementation
of Elaine. This consists of several parts.

• We present a language with both handlers and elaborations based on hefty algebras
(Chapter 4). The language specification consists of a syntax definition, typing judg-
ments and reduction semantics (Chapter 6). We conjecture that hefty algebras are the
semantics of the language, but we do not prove this. We also generalize effect rows to
higher-order effects (Section 6.5.1). The type system of the language is based on these
generalized effect rows.

• We provide a prototype for the language with a parser, a type checker based on Hindley-
Milner type inference and an interpreter for this language implemented in Haskell. This
prototype is available in the artifact.

• We provide a set of examples for programming with higher-order effect operations in
Elaine (Appendix A). These examples provide evidence that elaborations are a suit-
able and convenient construct for writing programs with higher-order effects. These
examples can be executed and produce the expected results with the prototype. The
examples include the reader effect, the writer effect, structured logging and parser com-
binators, all of which are implemented using higher-order effects.

• We provide a type-directed procedure for inferring elaborations, which alleviates the
programmer from specifying which elaboration should be applied when it can be inferred
from the context (Chapter 5).

This thesis consists of the following parts. First, we give an overview of the relevant theory
of algebraic effects in Chapter 2 and higher-order effects, including hefty algebras, in Chap-
ter 3. Then, we present Elaine in Chapter 4. Implicit elaboration resolution is discussed in
Chapter 5, followed by the specification of Elaine in Chapter 6. Finally, we discuss related
work in Chapter 7 and conclude in Chapter 8. Appendix A contains additional examples of
Elaine programs.

Artifact The artifact accompanying this thesis contains a full prototype implementation
for Elaine, written in Haskell. The README.md file contains instructions for building and
executing the interpreter.

The source code of the parser, type checker, interpreter, and other aspects of the im-
plementation can be found in the src/Elaine directory. The examples directory contains
various example programs written in Elaine, including implementations of the reader effect,
writer effect, exception effect, structured logging, and a set of parser combinators.

The artifact is available online at https://github.com/tertsdiepraam/elaine.
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Chapter 2

Algebraic Effects

The theory of algebraic effects makes working with effectful operations easier in two ways: it
makes effects composable and separates the use and interpretation of effects, which provides a
high degree of modularity. Crucially, however, it does not cover many higher-order operations;
effect operations that take effectful computations as arguments. The theory of hefty algebras
extends the theory of algebraic effects with elaborations for higher-order effects. Since Elaine
is based on the theory of hefty algebras, the theory of algebraic effects also applies to Elaine.
In this chapter, we give an introduction to algebraic effects. In the next chapter, we discuss
its limitations regarding higher-order effects and describe how hefty algebras overcome those
limitations.

2.1 Monads

We will build up the notion of algebraic effects from monads. Monads were introduced as an
abstraction for effectful computation by Moggi (1989a,b). Shortly afterwards, monads were
popularized as a technique for writing effectful programs in pure languages (Peyton Jones
and Wadler 1993; Wadler 1992).

Many definitions of monads can be given, and various analogies can be employed in ex-
plaining them. However, for our purposes, a monad is a type constructor with two associated
functions: return and >>=, with the latter pronounced “bind”. In Haskell, this concept is
easily encoded in a type class.

Haskell
1 class Monad m where
2 return :: a -> m a
3 (>>=) :: m a -> (a -> m b) -> m b

This type class dictates that return constructs a value of type m a for any monad m and
any type a. This represents a computation that has no further effects and just “returns” a
value. Additionally, we can compose two monadic computations using >>=, which takes a
monadic computation and a continuation. The continuation is the function that should be
called after the operation has been performed. The continuation is passed the return value
of the operation. Intuitively, the >>= operator therefore sequences two computations.

To explain how effectful operations can be encoded with this, we can look at a simple
example: the Maybe monad. Our goal with this monad is to create an “abort” effect, where
the computation stops and returns immediately once the abort operation is used, without
evaluating the rest of the computation. While the returned value is wrapped in Just, the
computation continues, but once a computation returns Nothing, the computation should
abort. So, we define the abort operation as Nothing.

7



2. Algebraic Effects

Haskell
1 data Maybe a
2 = Just a
3 | Nothing
4
5 class Monad Maybe where
6 return = Just
7
8 Just a >>= k = k a
9 Nothing >>= k = Nothing

10
11 abort :: Maybe a
12 abort = Nothing

With this definition, we can chain functions returning Maybe. For example, we can define a
head function with the type [a] -> Maybe a that returns the first element of a list if it is
non-empty and Nothing otherwise. We also define a division function which checks that the
divisor is non-zero. These functions can then be composed using the >>= operator, such that
the composed computation returns Nothing if one of these functions returns Nothing.

Haskell
1 head :: [a] -> Maybe a
2 head (x:xs) = Just x
3 head _ = Nothing
4
5 safeDiv :: Int -> Int -> Maybe Int
6 safeDiv _ 0 = Nothing
7 safeDiv x y = Just $ div x y
8
9 main = do

10 print $ head [] >>= safeDiv 10 -- -> Nothing
11 print $ head [0,1,2] >>= safeDiv 10 -- -> Nothing
12 print $ head [2,3,4] >>= safeDiv 10 -- -> Just 5

A more involved example is the State monad. A function that modifies state needs to take
the current state and return the new state. For example, a function that takes a, returns b,
and modifies state s needs to have the type a -> s -> (s, b). The new state then needs
to be passed to the next function that modifies state.

Haskell
1 -- Increment the state by `a` and return the old state
2 inc :: Int -> Int -> (Int, Int)
3 inc a s = (s + a, s)
4
5 multipleIncs :: Int -> (Int, Int)
6 multipleIncs s = let
7 (s' , _) = inc 5 s
8 (s'', _) = inc 6 s'
9 in inc 7 s''

The types of all functions using state now end with the same pattern: s -> (s, b). This
is an opportunity for abstraction, because we can define a type for that pattern. Since this
type represents the state effect, this type is called State.

8



2.1. Monads

Haskell
1 newtype State s a = State (s -> (s, a))
2
3 -- so that the inc function becomes:
4 inc :: Int -> State Int Int
5 inc a = State (\s -> (s + a, s))

This State s type becomes a monad if we implement return and >>= for it. This allows
us to compose functions returning the State type. Additionally, we define the get and put
functions as a basic interface for interacting with state.

Haskell
1 instance Monad (State s) where
2 return x = State (\s -> (s, x))
3
4 State fa >>= k = State $ \s ->
5 let (s', a) = fa s
6 State fb = k a
7 in fb s'
8
9 get :: State s s

10 get = State (\s -> (s, s))
11
12 put :: s -> State s ()
13 put s = State (\_ -> (s, ()))

To retrieve the final value of the computation, we define a function runState, which takes
an initial state and returns a pair of the final state and the returned value.

Haskell
1 runState :: s -> State s a -> (s, a)
2 runState initialState (State func) = func initialState

The inc operations can then be sequenced using the >>= operator. Because the return value
of inc is irrelevant in the computation, we define a shorthand operator >>, which ignores the
return value of the first operation.

Haskell
1 (>>) :: Monad m => m a -> m b -> m b
2 a >> b = a >>= \_ -> b
3
4 inc :: Int -> State Int Int
5 inc x = get >>= \s -> put (s + x) >>= return s
6
7 multipleIncs :: State Int Int
8 multipleIncs = inc 5 >> inc 6 >> inc 7
9

10 main = print (runState 0 bar) -- prints 0 + 5 + 6 + 7 = 18

This is the power of monads: they allow us to abstract over the effectful operations, while
also declaring the effects that a function requires in its return type. In the final example, we
do not have to think about how the State monad works any more, but only use the get and
put operations to build complex computations. The abstraction separates the interface from
the implementation. This modularity is one of the core motivations of the study of effects.

9



2. Algebraic Effects

To make working with monads more convenient, Haskell also features do-notation, which
is syntactic sugar for the >>= and >> operators. Using do-notation, the multipleIncs
computation from the previous example can be written as:

Haskell
1 multipleIncs = do
2 inc 5
3 inc 6
4 inc 7

If the results from the inc computations needs to be used, the <- operator, which is part of
do-notation, can be used to bind the result of a computation to a variable. For example, the
sum of all the results from the inc calls can be returned.

Haskell
1 multipleIncs' = do
2 a <- inc 5
3 b <- inc 6
4 c <- inc 7
5 return (a + b + c)
6
7 -- which is equivalent to
8 multipleIncs' =
9 inc 5 >>= \a ->

10 inc 6 >>= \b ->
11 inc 7 >>= \c ->
12 return (a + b + c)

Monads are a convenient model for programming with effects in Haskell, while also staying
true to its functional paradigm. However, monads are also limited, since they cannot be
composed. Imagine, for instance, a computation that decrements some state and returns the
new value, but also asserts that the value never becomes negative and returns Nothing in
that case. This computation might look as follows.

Haskell
1 decrement :: State Int (Maybe Int)
2 decrement = get >>= \s ->
3 if s > 0
4 then put (s - 1) >> return (return (s - 1))
5 else return abort

The abort effect has to be wrapped in additional return calls and does not interact with
the state. The type State Int (Maybe Int) is not a combined monad for both effects, but
one monad wrapped in another. Instead, we need some combined monad MaybeState that
combines the operations of both monads.

Haskell
1 decrement :: MaybeState Int Int
2 decrement = get >>= \s ->
3 if s > 0
4 then put (s - 1) >> return (s - 1)
5 else abort

While it is possible to define such a monad, we would need to define one for every combination
of monad operations that we would like to use, which quickly becomes cumbersome. Hence,
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we need to look elsewhere for a solution. One solution to this is to use monad transformers,
as explained in Section 7.1. Another solution is to compose effects in the free monad.

2.2 Composing Effects with the Free Monad

The free monad is a monad that encodes the structure of a program without imposing seman-
tics (Swierstra 2008). The free monad takes a functor f as an argument. The free monad
then gives a syntactic description of the operations given by that functor. It is therefore the
trivial monad parametrized by the operations of f. In Haskell, the free monad is implemented
as the Free data type. The definitions in this section are based on the implementation by
Kammar, Lindley, and Oury (2013) and the encoding of the free monad by Bach Poulsen
and van der Rest (2023).

Haskell
1 data Free f a
2 = Pure a
3 | Op (f (Free f a))
4
5 instance Functor f => Monad (Free f) where
6 return = Pure
7 Pure x >>= f = f x
8 Op g >>= f = Op (fmap (>>= f) g)

This type class states that, if f is some functor, then Free f is monad. For example, if
we make some functor State s, then Free (State s) is a monad. Of course, this is only
useful if Free (State s) is a monad with the same functionality as the original state monad.
These functors are defined with a constructor for each effect operation. Since the free monad
encodes the syntax of the effect operations, we define the State functor with constructors
corresponding to the operations of the state effect: get and put. This is a functor over the
k parameter, which represents the continuation. Note that we do not have to give definitions
of return and >>= since those are defined generically for any f on Free. We only have to
derive the default Functor instance.

Haskell
1 data State s k = Put s k | Get (s -> k)
2 deriving Functor

Similarly, we can write the abort effect as a free monad, which we previously implemented
using the Maybe monad. Recall that there is only one operation for this effect: abort. Hence,
the Abort functor only needs a single constructor, which we also call Abort. The Abort
constructor does not use the continuation because it signals that evaluation should stop.

Haskell
1 data Abort k = Abort
2 deriving Functor

In contrast with monads, these functors can be meaningfully composed. We define a type-
level operator +, which represents a coproduct for functors. This operator can be thought
of as Either for functors, since Either is the coproduct for types. We use this operator to
build lists of functors. Just like lists have a Cons and Nil, these lists consist of + and End,
where End is a functor without any constructors.
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Haskell
1 infixr 6 +
2 data (f + g) a = L (f a) | R (g a)
3 deriving Functor
4
5 data End k
6 deriving Functor

The End functor has the property that it does not add any operations. Therefore, we have
that Free (f + End) is functionally the same as Free f and that Free End a is equivalent
to a. We can then make monads for any combination of the functors we have defined, such as
Free (State s + End), Free (Abort + End), or Free (State s + Abort + End). In
general, we can construct a monad for any set of functors.

However, we have no way to use any of the effect operations. For example, if we have
the monad Free (State s + Abort + End), how would we use the get operation that we
expect from the state monad? The solution is to give a definition for get for the free monad
if and only if State is one of the composed functors. We do this with a type class relation <,
which defines an injection from a functor f to any composed functor g that contains f. We
can use this injection to define the get, put, and abort functions. These functions are called
smart constructors.

Haskell
1 class f < g where
2 inj :: f k -> g k
3
4 instance f < f where inj = id
5 instance f < (f + g) where inj = L
6 instance f < h => f < (g + h) where inj = R . inj
7
8 get :: State s < f => Free f s
9 get = Op $ inj $ Get Pure

10
11 put :: State s < f => s -> Free f ()
12 put s = Op $ inj $ Put $ Pure ()
13
14 abort :: Abort < f => Free f ()
15 abort = Op $ inj $ Abort

This makes it possible to construct a computation using all those operations. For example, a
computation that checks the state, asserts that it is larger than 0, and then decrements the
state by 1.

Haskell
1 decrement :: Free (State Int + Abort + End) Int
2 decrement = get >>= \s ->
3 if s > 0
4 then put (s - 1) >>= return (s - 1)
5 else abort

To evaluate this computation, we need to define an algebra for the Free data type. Con-
ceptually, the evaluation should remove the effects one by one from the monad. To do that,
there needs to be a function with the type

Free (f + f') a -> Free f' b
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for every f and finally a function Free End a -> a to reduce the free monad to a final
value. Following Plotkin and Pretnar (2009), these functions are called handlers. In general,
any handler operating on Free needs two take two cases into account, since Free has two
constructors: Pure and Op. By using a fold over Free we can define a handler in terms of
two smaller functions, corresponding to these two constructors:

Haskell
1 fold :: Functor f => (a -> b) -> (f b -> b) -> Free f a -> b
2 fold gen _ (Pure x) = gen x
3 fold gen alg (Op f) = alg (fmap (fold gen alg) f)
4
5 -- the return case
6 ret :: a -> Free f' b
7 -- and the case for handling operations
8 op :: f (Free f' b) -> Free f' b

However, to generalize the handler, we add a parameter p as well, This parameter can be
used by the handlers can thread some value through the computation. For some effects,
this parameter will simply be the unit value (), but for the state effect, this parameter will
represent the state. With this parameter, the handle function, which constructs handlers, is
defined as follows:

Haskell
1 handle :: (Functor f, Functor f')
2 -- a function for the return case:
3 => (a -> p -> Free f' b)
4 -- a function for handling operations:
5 -> (f (p -> Free f' b) -> p -> Free f' b)
6 -- the type of the resulting handler:
7 -> Free (f + f') a -> p -> Free f' b
8 handle ret f = fold ret $
9 \case

10 L x -> f x
11 R x -> \p -> Op $ fmap (\m -> m p) x

Handlers for the various effects can then be constructed using handle. For each computation,
we need a handler for each effect to remove them from the free monad so that only the End
functor remains.

Haskell
1 handleAbort :: Functor f => Free (Abort + f) a -> Free f (Maybe a)
2 handleAbort c = handle
3 (\a _ -> return $ Just a)
4 (\Abort () -> return Nothing)
5 c ()
6
7 handleState :: Functor f => s -> Free (State s + f) a -> Free f (s, a)
8 handleState = flip $ handle
9 (\x s -> return (s, x))

10 (\x s -> case x of
11 Put s' k -> k s'
12 Get k -> k s s)

Applying the handlers for all effects leaves us with Free End a, which should be reduced to
a. This is done with the handleEnd function.
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Haskell
1 -- The Op case does not need to be handled since End
2 -- cannot be constructed
3 handleEnd :: Free End a -> a
4 handleEnd (Pure a) = a

Finally, we can reduce a free monad with multiple effects to a single result by applying all
handlers for the effects. So, the decrement function above requires handlers for State s,
Abort, and End and can be evaluated as follows:

Haskell
1 result :: (Int, Maybe Int)
2 result = handleEnd $ handleState (0::Int) $ handleAbort decrement

With this encoding, we can use the abort and state effects together, while providing sep-
arate handlers per effect. Note that the order in which the handlers are applied matters
for the return type of result. If abort is handled first and state second, the final type is
(Int, Maybe Int). If state is handled first, it is Maybe (Int, Int).

While the plumbing needed for a free monad is extensive, it has many advantages over
regular monads. First, we can combine multiple functors in our type signatures. Second, we
can define operations that work for any effect composition that contains an effect. Third, we
can provide modular handlers that handle a single effect from the composed functors. If all
effects are defined in this way, then effect is automatically compatible with all other effects.

Finally, we have not only gained modularity for the effects themselves, but also for the
handlers. The effects have become an interface, while the handlers provide the semantics.
Within this framework, the semantics of effects can be changed without touching the type
and definition of the computation. There is nothing preventing different implementations of
the handlers. It is, for example, possible to define a state handler in which put operations
are ignored, keeping the state is constant.

2.3 Algebraic Effects
The free monad encoding in the previous section is an implementation of algebraic effects in
Haskell. The term “algebraic” comes from the fact that this method works for effects that
can be described as algebraic theories (Plotkin and Power 2001). Later, Plotkin and Power
(2003) showed that this is only possible for effects that satisfy the algebraicity property.

The algebraicity property states that the >>= operation distributes over the computation
parameters of an operation. This means that if there is some operation op that has some pa-
rameter of type k then the following computations should be equivalent for some continuation
k':

(op k) >>= k' == op (k >>= k')

So, if the state effect satisfies the algebraicity property, the following equality should hold for
any continuations k and k':

(Op (Put s k)) >>= k' == Op (Put s (k >>= k'))

Intuitively, this matches how we expect state to behave: if the state is changed, it will remain
changed throughout the rest of the continuation, until it is changed again.

By construction, the algebraicity property holds for any effect we have defined in the
previous section. This can be derived from the definitions of >>= on Free and fmap for
the effects. Indeed, we can apply the definitions to Free (State s) to verify that the
algebraicity property holds.
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Haskell
1 Op (Put s k) >>= k'
2 -- apply >>= of Free:
3 Op (fmap (>>= k) (Put s k'))
4 -- apply fmap of Put:
5 Op (Put s (k >>= k'))

Consequently, any effect that does not satisfy the algebraicity property cannot be written as
the free monad. While the state and abort effects satisfy this property, higher-order effects,
do not. Examples of higher-order effects are exception catching and the reader effect with a
local operation. Those effects are discussed in Chapter 3.

2.4 Building a Language with Algebraic Effects
Although the previous sections contain an encoding of algebraic effects, there are details in
this encoding that we might like to hide. For instance, writing all return types as Free f a
for every function becomes repetitive. Every returned value also needs to be wrapped in pure
to be mapped to the monad. Our goal is then to remove as much of the additional syntax
that is required to work with effects when compared to pure functions.

This is where we reach the limits of what we can achieve with the encoding of the free
monad in Haskell. If we instead design a new language which integrates algebraic effects as a
core feature of the language, we have much more freedom in designing a syntax and semantics
that work well for this purpose.

Elaine is a language with support for algebraic effects, but it also supports higher-order
effects. Therefore, this section focuses on Koka (Leijen 2014, 2023), which only supports
algebraic effects. Since Elaine is heavily inspired by Koka, the same concepts apply to Elaine.

At the core of such languages lies the following concept: all functions implicitly return
the free monad with some effects. Therefore, we write a -> e b, which is analogous to
a -> Free e b in the Haskell encoding. In that signature, we call e the effect row and its
elements as effects. So, the function signature a -> e b should be read as: “this function
takes an a and returns b with effect row e.”

Instead of using type-level operators, we can introduce special syntax for effect rows, too.
Following Koka, we will write effect rows as

<e1,e2,...,eN>.

Additionally, effects becomes a special construct separate from monads and functors. There-
fore, effect rows can get special treatment in the type system. It should be able to, for
example, reason about equality between effect rows with the same effects in different orders,
such as <a,b> and <b,a>. In the type system, we are then allowed to use different orders
of effects interchangeably. We can reason about inclusion of effects in an effect row with the
following notation:

<e1,e2,...,eN|es>,

where es is the tail of the effect row; a variable representing the effect row with which this
effect row can be extended. For example, the effect row <abort|e> consists of the abort
effect and some other effect row e. x We can define the same effects as before, such as the
state and abort effects, but in Koka, we do not define them as functors. Instead, we define
them using the effect keyword and each constructor of the functors is then declared with
the ctl keyword.
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Koka
1 effect abort
2 ctl abort(): a
3
4 effect state<a>
5 ctl get(): a
6 ctl put(x: a): ()

The equivalent of Free (State s + Abort + End) a is then <state<s>,abort> a. The
equivalent of a handler would then be a function which takes () -> <f|e> a and returns
<|e> a. In Koka, such a function can be defined with the handler construct, which requires
an implementation for each operation of an effect and a special function for the return case.

Note the similarity to the handle function we defined in Haskell before. In the case
of abort effect, this handler is assigned to variable for later use. The state handler re-
sembles the original state monad: it takes a computation () -> <state<s>|e> a and
returns s -> e (s, a). For example, the return arm yields the anonymous function
fn(x) (s, x). The continuation can be called in a handler with the resume function in
Koka. Since handling is defined by a fold, just like in the Haskell encoding, the effect is al-
ready handled in the continuation. For the state effect, resume therefore returns a function
with the type s -> e (s, a).

Koka
1 val hAbort = handler
2 return(x) Just(x)
3 ctl abort() Nothing
4
5 fun hState(init, c)
6 fun h(c')
7 with handler
8 return(x) fn(s) (s, x)
9 ctl get() fn(s) resume(s)(s)

10 ctl put(n) fn(_) resume(())(n)
11 c'()
12
13 h(c)(init)

In the free monad encoding in Haskell, the state had to be passed through the handlers
as a parameter. Koka is a bit more flexible and allows us to return values with effectful
computations. Therefore, it does not need the additional parameter.

Koka helps us hide some details, but the structure in the listing above is largely the same
as with the free monad encoding. The larger differences become apparent when we want to
use the effects in some computation. A port of the decrement function is listed below.

Koka
1 fun decrement(): <state<int>,abort> int
2 val s = get()
3 if s == 0 then
4 abort()
5
6 put(s - 1)
7 s - 1
8
9 val x = hAbort { hState(3, decrement) } // -> Just(2)

10 val y = hAbort { hState(0, decrement) } // -> Nothing

16



2.4. Building a Language with Algebraic Effects

The >>= operator is entirely implicit here. Therefore, it is similar to Haskell’s do-notation.
However, in do-notation, every effectful operation needs to be on a separate line. For example,
if the state needs to be incremented by 1, this can be achieved in one line in Koka, but in
Haskell using do-notation requires two lines.

Koka
1 put(get() + 1)

Haskell
1 do
2 x <- get
3 put (x + 1)

In Koka, effectful operations can be used anywhere as long as they are wrapped in a corre-
sponding handler. In the end, the syntax is closer to imperative programming languages than
functional programming languages. However, the type system still very much resembles that
of a functional language. This is important because this means that we have not lost any of
the type safety that the monadic treatment of effects provides. The signature of a function
in Koka still gives a complete specification of all effects that a function might perform. In
imperative languages, this information is entirely missing from the function signature. For
example, the type system can assert that a function is entirely pure. In the listing below,
the <> in the type of the function asserts that it does not require effects, yet the println
function requires an effect. Hence, Koka’s type checker will yield a type error.

Koka
1 fun should_be_pure(x: int): <> int
2 println("This will give a type error!")
3 x + 10

As will become clear in Chapter 4, Elaine takes a lot of inspiration from Koka. Handlers
and effects are defined in the same way, modulo some syntactic differences. What sets Elaine
apart, is that it also supports higher-order effects, which will be explained in the next chapter.
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Chapter 3

Higher-Order Effects

In the previous chapter, we explained the concept of algebraic effects. Any effect that satisfies
the algebraicity property is algebraic. However, many higher-order effects are not algebraic.
An effect is higher-order if one of its operations takes effectful computations as parameters
(Bach Poulsen and van der Rest 2023). As a result, it is not possible to give modular imple-
mentations for these operations using effect handlers, like we can do for algebraic operations.
This chapter details the difficulties around higher-order effects and discusses hefty algebras,
the theory that Elaine is based on.

3.1 Computation Parameters
Recall that an effect in the free monad encoding is a functor over some k with some construc-
tors. The type k represents the continuation of the computation. Naturally, it is possible
to write a constructor with multiple parameters of type k. For example, we could make a
Branch functor which takes a boolean and two computations. Based on the boolean value, it
selects the branch to evaluate. It is essentially an if-else expression expressed as an effect.

Haskell
1 data Branch k = Branch Bool k k
2
3 branch :: Branch < f => Bool -> Free f a -> Free f a -> Free f a
4 branch b ifTrue ifFalse :: Op $ inj $ Branch b ifTrue ifFalse

The important observation with this effect is that both ifTrue and ifFalse behave like
continuations. To examine why, consider the following computation.

Haskell
1 branch b (pure 0) (pure 1) >>= \x -> pure (x + 1)

Like previously established, the >>= operator defined by Free distributes over the computa-
tion parameters. This yields the following expression.

Haskell
1 branch b
2 (pure 0 >>= \x -> pure (x + 1))
3 (pure 1 >>= \x -> pure (x + 1))
4 -- which reduces to
5 branch b (pure 1) (pure 2)

This computation has the same intended semantics as the original. The distribution of >>=
therefore does not change the semantics and hence the effect is algebraic. Therefore, there
would be no problem encoding this effect in Haskell using the encoding in the previous chapter
and, by extension, in Koka.
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This is what we mean by saying that the parameters are computation-like: the continua-
tion can be appended to the parameters without changing the semantics of the effect.

3.2 Breaking Algebraicity
For other effects, however, the intended semantics are not such that the computation param-
eters are continuation-like.

One such effect is the Reader effect. Traditionally, the Reader monad has two operations:
local and ask. The latter functions much like the get operation from the state effect and
is algebraic. However, the local operation is more complex. It takes two parameters, a
function f and a computation c. The intended semantics are then that whenever ask is used
within c, the function f is applied to the returned value. To see why the local operation
breaks algebraicity, consider the following computation.

Haskell
1 local (* 2) ask >>= \x -> ask >>= \y -> pure x + y

Only the first ask operation is inside the local operation and should therefore be doubled.
If the Reader effect was algebraic, we should be able to distribute the >>= operator again
without changing the semantics of the program. However, doing so yields the following
computation.

Haskell
1 local (* 2) (ask >>= \x -> ask >>= \y -> pure x + y)

Now, both ask operations are inside the local operation, so both values will be doubled. For
example, if we had installed a handler that makes ask return 1, the first computation would
return 2+ 1 = 3 and the second 2+ 2 = 4. Therefore, we have shown with a counterexample
that the Reader effect cannot be algebraic.

A similar argument holds for the Except effect, which also has two operations: catch and
throw. In the simplest form, throw resembles the abort effect, but it takes a parameter that
represents an error message. The catch operation evaluates its first parameter and jump to
the second if it fails, much like the try-catch constructs of languages with effects. Again, we
examine a simple example program to show that Except violates algebraicity.

Haskell
1 catch (pure False) (pure True) >>= throw -- -> throws False
2 -- then distributing >>= yields
3 catch
4 (pure False >>= throw)
5 (pure True >>= throw)
6 -- which simplifies to
7 catch (throw False) (throw True) -- -> throws True

Before distributing the >>= operator the computation should throw False, but after it should
throw True. So, again, the semantics have changed by distributing the >>= and therefore
Except is not algebraic.

3.3 The Modularity Problem
Taking a step back from effects, defining a function for exception catching is possible. Recall
that the throw operation is algebraic, therefore, a handler for it can be defined. If we assume
some handler for it called handleThrow returns an Either where Left is the value from
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throw and Right is the value from a completed computation, we can define catch in terms
of that function.

Haskell
1 catch c1 c2 =
2 case handleThrow c1 of
3 Left e -> c2
4 Right a -> return a

The distinction between effects which are and which are not algebraic has been described
as the difference between effect constructors and effect deconstructors (Plotkin and Power
2003). The local and catch operations have to act on effectful computations and change
the meaning of the effects in that computation. So, they have to deconstruct the effects in
their computations using handlers. An imperfect heuristic for whether a function can be
an algebraic effect is to check whether the implementation requires a handler. If it uses a
handler, it probably cannot be an algebraic effect.

An algebraic effect can have a modular implementation: a computation can be reused in
different contexts by using different handlers. For these higher-order effects such as catch
and local, this is not possible. This is known as the modularity problem with higher-order
effects (Wu, Schrijvers, and Hinze 2014). This is the motivation behind the research on
higher-order effects, including this thesis. It is also the problem that the theory of hefty
algebras aims to solve.

3.4 Hefty Algebras

Several solutions to the modularity problem have been proposed (van den Berg et al. 2021;
Wu, Schrijvers, and Hinze 2014). Most recently, Bach Poulsen and van der Rest (2023)
introduced a solution called hefty algebras. The idea behind hefty algebras is that there is
an additional layer of modularity, specifically for higher-order effects.

For a full treatment of hefty algebras, we refer to Bach Poulsen and van der Rest (2023).
In addition, the encoding of hefty algebras is explained in more detail by Bach Poulsen
(2023a).

At the core of hefty algebras are hefty trees. A hefty tree is a generalization of the free
monad to higher-order functors, which will write HFunctor. In the listing below, we also
repeat the definition of a functor from the previous chapter for comparison.

Haskell
1 -- a regular functor
2 class Functor f where
3 fmap :: (a -> b) -> f a -> f b
4
5 -- a higher-order functor
6 class (forall f. Functor (h f)) => HFunctor h where
7 hmap :: (f a -> g a) -> (h f a -> h g a)

The definition of a hefty tree, with the free monad for reference, then becomes:
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Haskell
1 -- free monad
2 data Free f a
3 = Pure a
4 | Op (f (Free f a))
5
6 -- hefty tree
7 data Hefty h a
8 = Return a
9 | Do (h (Hefty h) (Hefty h a))

A hefty tree and a free monad are very similar. Like for the free monad, we can define return
and >>= for Hefty h, so that it can be used as a monad. Additionally, we define injH, :<:,
and :+: as analogues for inj, <, and + from the previous chapter, respectively. We refer to
Bach Poulsen (2023a) for the definition of these operators. Furthermore, any functor can be
lifted to a higher-order functor with a Lift data type.

Haskell
1 data Lift f (m :: * -> *) k = Lift (f k)
2 deriving Functor
3
4 instance Functor f => HFunctor (Lift f) where
5 hmap _ (Lift x) = Lift x

In algebraic effects, the evaluation of a computation can be thought of as a transformation
of the free monad to the final result:

Free f a handle−−−−→ b.

Using hefty algebras, the evaluation instead starts with a hefty tree, which is elaborated into
the free monad. The full evaluation of a computation using hefty algebras then becomes:

Hefty h a elaborate−−−−−→ Free f a handle−−−−→ b.

This elaboration is a transformation from a hefty tree into the free monad, defined as an
algebra over hefty trees. The algebras are then used in hfold; a fold over hefty trees.

Haskell
1 hfold :: HFunctor h
2 => (forall a. a -> g a)
3 -> (forall a. h g (g a) -> g a)
4 -> Hefty h a
5 -> g a
6 hfold gen _ (Return x) = gen x
7 hfold gen alg (Do x) =
8 alg (fmap (hfold gen alg) (hmap (hfold gen alg) x))
9

10 elab :: HFunctor h
11 => (forall a. h (Free f) (Free f a) -> Free f a)
12 -> Hefty h a
13 -> Free f a
14 elab elabs = hfold Pure elabs

For any algebraic – and thus lifted – effect, this elaboration eLift is trivially defined by
unwrapping the Lift constructor. Applying eLift to elab then gives a function which
elaborates Hefty (Lift f) a to Free f a for any functor f.
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Haskell
1 eLift :: g < f => Lift g (Free f) (Free f a) -> Free f a
2 eLift (Lift x) = Op (inj x)

To elaborate multiple effects, elaborations can be composed using the ^ operator as defined
by Bach Poulsen and van der Rest (2023). The composed elaborations are then applied all
at once, because an elaboration of a Hefty h a returns a Free f a, which cannot contain
any higher-order effects.

Using elaborations, we can modularly define higher-order operations, such as catch and
local operations. For example, the Except effect can be elaborated to a computation using
only the algebraic ThrowA effect. This elaboration is given in Figure 3.1.1

For the Reader effect, the local operation needs to be elaborated, but the ask operation
can be handled. So, we define an algebraic effect AskA with only the ask operation. This
effect is handled by handleAskA. The implementation of both the handler and elaboration
are listed in Figure 3.2.

The catch and local operations in these examples are modular, because the elaborations
can be swapped out for different elaborations. Additionally, we can write computations using
both effects. For example, the elaboration of a computation with both a catch and reader
effect looks as follows:

Haskell
1 main = handleThrow $ handleAsk 0 $
2 elab (eCatch ^ eReader ^ eLift) c

Similar to how Koka is based on the theory of algebraic effects, Elaine is based on hefty
algebras. Therefore, Elaine supports elaborations for higher-order effects. While the intended
semantics for expressions in Elaine are hefty trees, the semantics of Elaine’s elab construct
are currently unclear, as discussed in Section 6.5.1.

1This code is simplified and does not compile in this form. In reality the result of the handler needs to
be wrapped in a function hup, which reorders the effects in the effect row to match the context. The same
goes for the example for the reader effect below. This hup requires some additional machinery as explained
by Bach Poulsen (2023b).
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Haskell
1 data ThrowA e k = ThrowA e
2 deriving Functor
3
4 handleThrowA :: Functor f
5 => Free (Abort + f) a -> Free f (Maybe a)
6 handleThrowA c = handle
7 (\a _ -> Pure $ Right a)
8 (\(Throw e) () -> Pure $ Left e)
9 c ()

10
11 data Except e f k
12 = Throw e
13 | Catch (f a) (f a) (a -> k)
14
15 deriving instance Functor (Except e f)
16
17 instance HFunctor (Except e) where
18 hmap _ (Throw x) = Throw x
19 hmap f (Catch m1 m2 k) = Catch (f m1) (f m2) k
20
21 throw :: Except e :<: h => e -> Hefty h a
22 throw x = Op (injH (Throw x))
23
24 catch :: Except :<: h
25 => Hefty h a -> Hefty h a -> Hefty h a
26 catch m1 m2 = Do $ inj $ Catch m1 m2 Return
27
28 eExcept :: ThrowA e < f
29 => Except e (Free f) (Free f a)
30 -> Free f a
31 eExcept (Throw e) = Do (inj (ThrowA e))
32 eExcept (Catch m1 m2 k) =
33 handleThrowA c1 >>= \v ->
34 case v of
35 Left e -> c2 >>= k
36 Right x -> k x
37
38 comp :: Hefty (Except e :+: Lift (ThrowA e)) Int
39 comp = catch (throw) (return 4)
40
41 result = handleAbort $ elab (eExcept ^ eLift) comp

Figure 3.1: Definition, elaboration and use of the Except effect.
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Haskell
1 data AskA r k = AskA (r -> k)
2 deriving Functor
3
4 handleAskA :: Functor f
5 => r -> Free (AskA + f) a -> Free f a
6 handleAskA v m =
7 handle
8 (\a () -> Pure a)
9 (\(Ask k) -> k v)

10 m ()
11
12 data Reader r m k =
13 = Ask (r -> k)
14 | forall a. Local (r -> r) (m a) (a -> k)
15
16 deriving instance Functor (Reader r m)
17
18 instance HFunctor (Reader r) where
19 hmap _ (Ask k) = (Ask k)
20 hmap f (Local f m k) = Local g (f m) k
21
22 ask :: Reader r :<: h
23 => Hefty h r
24 ask = Do $ injH $ Ask Pure
25
26 local :: Reader r :<: h
27 => (r -> r) -> Hefty h a -> Hefty h a
28 local f m = Do $ injH $ Local f
29
30 eReader :: AskA r < f
31 => Reader r (Free f) (Free f a)
32 -> Free f a
33 eReader (Ask k) = Op $ inj $ AskA k
34 eReader (Local f m k) =
35 askA >>= \r ->
36 handleAskA (f r) m >>=
37 k
38
39 comp :: Hefty (Reader Int :+: Lift Abort) Int
40 comp = ask >>= \x ->
41 local (* 2) (ask >>= \y -> return (x + y))
42
43 result = handleAbort $ elab (eReader ^ eLift) comp

Figure 3.2: Definition, elaboration and use of the Reader effect.
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Chapter 4

A Tour of Elaine

The language designed for this thesis is called “Elaine”. The distinguishing feature of this lan-
guage is its support for higher-order effects via elaborations. The basic feature of elaborations
has been extended with implicit elaboration resolution, which is detailed in Chapter 5.

4.1 Overview

At its core, Elaine is based on the lambda calculus, extended with algebraic and higher-order
effects. The feature set has been chosen to be comprehensive enough for fairly extensive
programs, which are given in Appendix A.

Elaine’s syntax is mostly inspired by Koka (Leijen 2014, 2017) and Rust (Matsakis and
Klock 2014). The keywords of the language will be particularly familiar to Rust programmers.
It is designed to be relatively simple to parse, which is most clearly reflected in the fact that
whitespace is ignored and that there are no infix operators. Elaine requires semicolons at
the end of each statement and requires computations consisting of multiple statements to be
wrapped in braces.

All expressions in Elaine are statically and strongly typed with a type system based on
Hindley-Milner style type inference (Hindley 1969; Milner 1978). The type system has a
special treatment for effect rows similar to Koka’s approach. In most cases, types can be
completely inferred and do not need to be specified. Additionally, algebraic data types and
tuples are supported for modelling complex data.

Like Koka, Elaine has strict semantics. This means that effects can only occur during
function application (Leijen 2014). Additionally, the order in which effects are performed
is very clear in this model. We believe this makes effects easier to reason about than in a
language with lazy evaluation. Naturally, lazy evaluation can still be encoded into a strict
language (Wadler 1996). It also matches the more imperative style Elaine programs are
written in. There is currently no way for Elaine programs to interact with the operating
system; there is no equivalent to the IO monad from Haskell or the console and fsys effects
from Koka.

The source code for the Elaine prototype and additional examples are included in the arti-
fact accompanying this thesis. The full specification for Elaine, including typing judgements
and reduction semantics are given in Chapter 6.

4.2 Basics

As is tradition with introductions to programming languages, we start with a program that
shows the string "Hello, world!".
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Elaine
1 # The value bound to main is the return value of the program
2 let main = "Hello, world!";

This example highlights several aspects of Elaine. Comments start with # and continue
until the end of the line. We bind variables with the let keyword. The main variable is
required, and the value assigned to it is printed at the end of execution. In contrast with
other languages, main is not a function in Elaine. Note that statements are required to end
with a semicolon.

In addition to strings, Elaine features integers and booleans as built-in types. To operate
on these types, we need functions to perform the operations. By default, there are no functions
in scope, however, we can bring them in scope by importing the functions from the std module
with the use keyword. For example, we can write a program that computes 5 · 2 + 3:

Elaine
1 use std;
2 let main = add(mul(5, 2), 3);

The std module contains functions for boolean and integer arithmetic, comparison of values,
and more. The full list of functions is given in Section 6.6. To show off some more functions,
below is a program that compares the results of two calculations. Note that - is allowed as
part of an integer literal, but not as an operator. The functions used here are “greater than”
(gt), exponentiation (pow), negation (neg), and multiplication (mul).

Elaine
1 use std;
2 let main = gt(
3 pow(2, 5),
4 neg(mul(25, -30)),
5 );

Let-bindings can be used to split up a computation, both at the top-level and within braces,
which are used to group sequential expressions. Like in Rust, a sequence of expressions
evaluates to the last expression. Expressions are only allowed to contain variables that have
been defined above the expression, so the order of bindings is significant. This rule also
disallows recursion. Below is the same comparison written with some bindings.

Elaine
1 use std;
2 let a = pow(2, 5);
3 let main = {
4 let b = mul(25, -30);
5 gt(a, neg(b))
6 };

Functions are defined with fn, followed by a list of arguments and a function body. Unlike
Haskell, functions are called with parentheses. Note that Elaine does not support function
currying.
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Elaine
1 use std;
2 let double = fn(x) {
3 mul(2, x)
4 };
5 let square = fn(x) {
6 mul(x, x) # or pow(x, 2)
7 };
8 let main = double(square(8));

Tuples are written as comma-separated lists of expressions surrounded with (). Tuples have
a fixed length and can have elements of different types.

Elaine
1 let main = (9, "hello");

Additionally, Elaine features if expressions. The language does not support recursion or any
other looping construct. Figure 4.1 contains a program that uses the basic features of Elaine
and prints whether the square of 4 is even or odd.

Elaine
1 # The standard library contains basic functions for manipulation
2 # of integers, booleans and strings.
3 use std;
4
5 # Functions are created with `fn` and bound with `let`, just like
6 # other values. The last expression in a function is returned.
7 let square = fn(x: Int) Int {
8 mul(x, x)
9 };

10
11 let is_even = fn(x: Int) Bool {
12 eq(0, modulo(x, 2))
13 };
14
15 # Type annotations can be inferred:
16 let square_is_even = fn(x) {
17 let result = is_even(square(x));
18 if result { "even" } else { "odd" }
19 };
20
21 let give_answer = fn(f, s, x) {
22 let prefix = concat(concat(s, " "), show_int(x));
23 let text = concat(prefix, " is ");
24 let answer = f(x);
25 concat(text, answer)
26 };
27
28 let main = give_answer(square_is_even, "The square of", 4);

Figure 4.1: A simple Elaine program. The result of this program is the string
"The square of 4 is even".
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4.3 Types

Elaine is strongly typed with Hindley-Milner style type inference. Let bindings, function
arguments, and function return types can be given explicit types. By convention, we will
write variables and modules in lowercase. Types and type constructors are capitalized.

The primitive types are String, Bool, and Int for strings, booleans, and integers respec-
tively.

Elaine
1 let x: Int = 5; # ok!
2 let x: String = 5; # type error!
3
4 let triple = fn(x: Int) Int { mul(3, x) };
5 let y = triple("Hello"); # type error!

We also could have written the type of the function as the type for the let binding. The type
for a function is written like a function definition, without parameter names and body.

Elaine
1 let triple: fn(Int) Int = fn(x) { mul(3, x) };

Type parameters start with a lowercase letter. Like in Haskell, they do not need to be
declared explicitly.

Elaine
1 let f = fn(x: a) (a, Int) {
2 (x, 5)
3 };
4 let y = f("hello");
5 let z = f(5);

4.4 Algebraic Data Types

Complex programs often require custom data types. That is what the type construct is for.
It is analogous to Koka’s type, Haskell’s data or Rust’s enum construct.

A type declaration consists of a list of constructors each with a list of parameters. These
constructors can be used as functions. A type can have type parameters, which are declared
with [] after the type name. It is not possible to put constraints on type parameters.

Data types can be deconstructed with the match construct. The match construct looks
like Rust’s match or Haskell’s case, but is more limited. It can only be used for custom data
types and only matches on the outer constructor. For example, it is not possible to match
on Just(5), but only on Just(x). Since the Maybe type is very common, it is provided in
the standard library is the maybe module.
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Elaine
1 use std;
2
3 type Maybe[a] {
4 Just(a),
5 Nothing(),
6 }
7
8 let safe_div = fn(x, y) Maybe[Int] {
9 if eq(y, 0) {

10 Nothing
11 } else {
12 Just(div(x, y))
13 }
14 };
15
16 let main = match safe_div(5, 0) {
17 Just(x) => show_int(x),
18 Nothing => "Division by zero!",
19 };

Data types can be recursive. For example, we can define a List with a Cons and a Nil
constructor.

Elaine
1 type List[a] {
2 Cons(a, List[a]),
3 Nil(),
4 }
5
6 let list: List[Int] = Cons(1, Cons(2, Nil()));

The List type is also provided in the standard library in the list module. There is also
syntactic sugar for lists: we can write a list with brackets and comma-separated expressions
like [1, 2, 3].

4.5 Recursion & Loops

The let-bindings in the previous sections are not allowed to be recursive. In general, let-
bindings can only reference values that have been defined before the binding itself. However,
recursion or some other looping construct is necessary for many programs. Therefore, Elaine
has special syntax for recursive definitions: let rec. Let-bindings with rec are desugared
into the Y combinator. However, it is impossible to write the Y combinator manually, because
it would have an infinite type. The type checker therefore has special case for recursive
definitions. An example of a recursive function is the factorial function listed below.
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Elaine
1 use std;
2
3 let rec factorial = fn(x: Int) {
4 if eq(x, 0) {
5 1
6 } else {
7 mul(x, factorial(sub(x,1)))
8 }
9 };

A word of caution: Elaine has no guards against unbounded recursion of functions or even
recursive expressions. For example, the statements below are valid according to the Elaine
type checker, but will cause infinite recursion when evaluated, which in practice means that
it will run until the interpreter runs out of memory and crashes.

Elaine
1 # Warning: these declarations will not halt!
2 let rec f = fn(x) { f(x) };
3 let rec x = x;

Using recursive definitions, we can define functions like map, foldl, and foldr to operate
on our previously defined List type. The implementation for map might look like the listing
below. Note that, in contrast with Haskell, Elaine evaluates these functions eagerly; there is
no lazy evaluation.

Elaine
1 let rec map = fn(f: fn(a) b, list: List[a]) List[b] {
2 match list {
3 Cons(a, as) => Cons(f(a), map(f, list)),
4 Nil() => Nil(),
5 }
6 };
7
8 let doubled = map(fn(x) { mul(2, x) }, [1, 2, 3]); # -> [2, 4, 6]

The list module provides the most common operations on lists. Such head, concat_list,
range, map, foldl, and foldr. It also provides a sum function for lists of integers and a
join function for lists of strings.

4.6 Modules

Modules can be used to group declarations. We have previously introduced the std module,
which is available by default. However, we can also define new modules. The contents of
any module can be brought into scope with the use declaration. However, only the public
declarations in a module are imported. A declaration is public if it is prefixed with the pub
keywords. This also applies to mod and use declarations. A public module can be imported
after importing its parent module and a pub use brings the public declarations into the
current module and makes them public.
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Elaine
1 use std;
2 mod math {
3 pub mod multiplication {
4 pub let square = fn(x: Int) Int { mul(x, x) };
5 }
6 pub let add3 = fn(x: Int, y: Int, z: Int) Int {
7 add(add(x, y), z)
8 };
9 }

10
11 use math;
12 use multiplication;
13
14 let main = add3(square(4), square(5), square(6));

4.7 Algebraic Effects
The programs in the previous sections are all pure and contain no effects. While a monadic
approach is possible, Elaine provides first class support for algebraic effects and effect handlers
to make working with effects more ergonomic. The design of effects in Elaine is heavily
inspired by Koka (Leijen 2014).

An effect is declared with the effect keyword. An effect needs a name and a set of
operations. Operations are the functions that are associated with the effect. They can have
an arbitrary number of arguments and a return type. Only the signature of operations can
be given in an effect declaration, the implementation must be provided via handlers (see
Section 4.7.1).

Figure 4.2 lists examples of effect declarations for the Abort, Ask, State, and Write
effects. We will refer to those declarations throughout this section. For the listings in this
section, one can assume that these declarations are used. The Abort effect is meant to exit
the computation. Ask provides some integer value to the computation, much like a global
constant. State corresponds to the State monad in Haskell. Finally, Write allows us to
write some string value somewhere. We will be using this to provide a substitute for writing
to standard output.

1 effect Abort {
2 abort() (),
3 }

1 effect Ask {
2 ask() Int,
3 }

1 effect State {
2 get() Int,
3 put(Int) (),
4 }

1 effect Write {
2 write(String) (),
3 }

Figure 4.2: Examples of algebraic effect declarations for some simple effects.

4.7.1 Effect Handlers
To define the implementation of an effect, we have to define a handler it. Handlers are first-
class values in Elaine and can be created with the handler keyword. They can then be
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applied to an expression with the handle keyword. When handle expressions are nested
with handlers for the same effect, the innermost handle applies.

For example, if we want to use an effect to provide an implicit value, we can make an effect
Ask and a corresponding handler, which resumes execution with some values. The resume
function represents the continuation of the program after the operation. The simplest handler
for Ask we can write is one which yields some constant value.

Elaine
1 let hAsk = handler { ask() { resume(10) } };
2
3 let main = handle[hAsk] add(ask(), ask()); # evaluates to 20

Of course, it would be cumbersome to write a separate handler for every value we would like
to provide. Since handlers are first-class values, we can return the handler from a function
to simplify the code. This pattern is quite common to create dynamic handlers with small
variations.

Elaine
1 let hAsk = fn(v: Int) {
2 handler { ask() { resume(v) } }
3 };
4
5 let main = {
6 let a = handle[hAsk(6)] add(ask(), ask());
7 let b = handle[hAsk(10)] add(ask(), ask());
8 add(a, b)
9 };

The true power of algebraic effects, however, lies in the fact that we can also write a
handler with entirely different behaviour, without modifying the computation. For example,
we can create a stateful handler which increments the value returned by ask on every call
to provide unique identifiers. The program below will return 3, because the first ask call
returns 1 and the second returns 2. This is accomplished in a very similar manner to the
State monad.

Elaine
1 let hAsk = handler {
2 return(x) { fn(s: Int) { x } }
3 ask() {
4 fn(s: Int) {
5 let f = resume(s);
6 f(add(s, 1))
7 }
8 }
9 };

10
11 let c = handle[hAsk] add(ask(), ask());
12 let main = c(1);

Calling the resume function is not required. All effect operations are executed by the
handle expression, hence, if we return from the operation, we return from the handle ex-
pression.

The Abort effect is an example which does not call the continuation. It defines a single
operation abort, which stops the evaluation of the computation. The canonical handler for
Abort, which returns the Maybe monad. If the computation returns, it should wrap the
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returned value in Just. Otherwise, if the computation aborts, it should return Nothing().
In Elaine, if a sub-computation of a handler returns, the optional return arm of the handler
will be applied. In the code below, this wraps the returned value in a Just. All arms of a
handler must have the same return type.

Elaine
1 effect Abort {
2 abort() a
3 }
4
5 let hAbort = handler {
6 return(x) { Just(x) }
7 abort() { Nothing() }
8 };
9

10 let main = handle[hAbort] {
11 abort();
12 5
13 };

Alternatively, we can define a handler that defines a default value for the computation in
case it aborts. This is more convenient that the first handler if the abort case should always
become

Elaine
1 let hAbort = fn(default) {
2 handler {
3 return(x) { x }
4 abort() { default }
5 }
6 };
7
8 let safe_div = fn(x, y) <Abort> Int {
9 if eq(y, 0) {

10 abort()
11 } else {
12 div(x, y)
13 }
14 };
15
16 let main = add(
17 handle[hAbort(0)] safe_div(3, 0),
18 handle[hAbort(0)] safe_div(10, 2),
19 );

Just like we can ignore the continuation, we can also call it multiple times, which is
useful for non-determinism and logic programming. In the listing below, the Twice effect
is introduced, which calls its continuation twice. Combining that with the State effect as
previously defined, the put operation is called twice, incrementing the initial state 3 by two,
yielding a final result of 5. Admittedly, this example is a bit contrived. A more useful
application of this technique can be found in Appendix A.1, which contains the full code for
a very naive SAT solver in Elaine, using multiple continuations.
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Elaine
1 effect Twice {
2 twice() ()
3 }
4
5 let hTwice = handler {
6 twice() {
7 resume(());
8 resume(())
9 }

10 };
11
12 let main = {
13 let a = handle[hState] handle[hTwice] {
14 twice();
15 put(add(get(), 1));
16 get()
17 };
18 a(3)
19 };

4.7.2 Effect Rows
All types in Elaine have an effect row. So far, we have omitted the effect rows, because effect
rows can be inferred by the type checker. Effect rows represent the set of effects that need to
be handled to obtain the value in a computation. For simple values, that effect row is empty,
denoted <>. For example, an integer has type <> Int. With explicit effect row, the square
function in the previous section could therefore have been written as below.

Elaine
1 let square = fn(x: <> Int) <> Int {
2 mul(x, x)
3 };

Simple effect rows consist of a list of effect names separated by commas. The return
type of a function that returns an integer and uses the Ask and State effects has type
<Ask,State> Int or, equivalently <State,Ask> Int. The order of effects in effect rows is
irrelevant. However, the multiplicity is important, that is, the effect rows <State,State>
and <State> are not equivalent.

Like in Koka, we can extend effect rows with other effect rows. This is denoted with
the | at the end of the effect row: <A,B|e> means that the effect row contains A, B and
some (possibly empty) set of remaining effects. We call a row without extension closed and
a row with extension open. Effect rows are considered equivalent up to reordering by the
type checker. When a function is applied, the effect row of its return type is opened. This
ensures that a function using only the state effect can be called in a computation wrapped
in handlers for both the state and abort effect.

4.8 Functions Generic over Effects
We can use extensions of effect rows to ensure equivalence between effect rows without spec-
ifying the full rows. For example, the following function uses the Abort effect if the called
function returns false, while retaining the effects of the wrapped function.
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Elaine
1 let abort_on_false = fn(f: fn() <|e> Bool) <Abort|e> () {
2 if f() { () } else { abort() }
3 };

When an effect is handled, it is removed from the effect row. The main binding is required
to have an empty effect row, which means that all effects in the program need to be handled.
Therefore, to use the abort_on_false function defined above, it needs to be called from
within a handler.

Elaine
1 let main: <> Maybe[()] = handle[hAbort] {
2 abort_on_false(fn() { false })
3 };

Recall the definition of map in Section 4.5, which was written without any effects in its
signature. Adding the effect rows yields the following definition:

Elaine
1 let rec map = fn(f: fn(a) <|e> b, l: List[a]) <|e> List[b] {
2 match l {
3 Nil() => Nil(),
4 Cons(x, xs) => Cons(f(x), map(f, xs)),
5 }
6 };

Note that the parameter f and map use the same effect row variable e. This means that map
has the same effect row as f for any effect row that f might have, including the empty effect
row. This makes map quite powerful, because it can be applied in many situations.

Elaine
1 let pure_doubled = map(fn(x) { mul(2, x) }, [1,2,3]);
2 let ask_added = handle[hAsk(5)] map(fn(x) { add(ask() x) }, [1,2,3]);

If we were two write the same expressions in Haskell instead, we would need two different
implementations of map: one for applying pure functions (map) and another for applying
monadic functions (mapM). Our definition of map is therefore more general than Haskell’s map
function. The same reasoning can be applied to other functions like foldl and foldr or
indeed any higher-order function.

Functional languages like Haskell usually do not feature constructs for looping, such as
while loops. This is partly because folds, maps, and recursion are preferred to loops, but also
because a looping construct relies on effects, since a loop does not return a value. In Elaine,
we can define a while function which is generic over effects. This enables both functional
and imperative styles of programming.
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Elaine
1 let rec while = fn(
2 predicate: fn() <|e> Bool,
3 body: fn() <|e> ()
4 ) <|e> () {
5 if predicate() {
6 body();
7 while(predicate, body)
8 } else {
9 ()

10 }
11 };

4.9 Higher-Order Effects
Higher-order effects in Elaine are supported via elaborations, as introduced by Bach Poulsen
and van der Rest (2023) and explained in Section 3.4. In this framework, higher-order effects
are elaborated into a computation using only algebraic effects. They are not handled directly.
This means that we cannot write handlers for them as we did for algebraic effects in the
previous section.

To distinguish higher-order effects and operations from algebraic effects and operations,
we write them with an ! suffix. For example, a higher-order Except! effect is written Except!,
and its catch operation is written catch!.

Higher-order effects are treated exactly like algebraic effects in the effect rows. The order
of effects still does not matter, and we can create effect rows with arbitrary combinations of
algebraic and higher-order effects.

The higher-order effect operations differ from other functions and algebraic operations
because they have call-by-name semantics; the arguments are not evaluated before they are
passed to the elaboration. Hence, the arguments can be effectful computations.

Just like we have the handler and handle keywords to create and apply handlers for
algebraic effects, we can create and apply elaborations with the elaboration and elab
keywords. Unlike handlers, elaborations do not get access to the resume function, and
always resume exactly once.

An illustrative example of this feature is the Reader effect with a local operation. This
effect enhances the previously introduced Ask effect with a local operation that modifies the
value returned by ask. To motivate the implementation, let us first imagine how to emulate
the behaviour of local. Our goal is to make the following snippet return the value 15.

Elaine
1 let main = handle[hAsk(5)] {
2 let x = ask();
3 let y = local(double, fn() { ask() });
4 add(x, y)
5 };

This means that the local operation would need to handle the ask effect with the modified
value. This is easily achieved, since the innermost handler always applies. If the function to
modify the value is called f, then the value we should provide to the handler is f(ask()).

Elaine
1 let local = fn(f: fn(Int) Int, g: fn() <Ask|e> a) <|e> a {
2 handle[hAsk(f(ask()))] { g() }
3 };
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This works but is not implemented as an effect. For example, we cannot modularly provide
another implementation of local. To turn this implementation into an effect, we start with
the effect declaration.

Elaine
1 effect Reader! {
2 local!(fn(Int) Int, a) a
3 }

It might be surprising that the signature of local does not match the signature of the function
above. That is because of the call-by-name nature of higher-order operations: instead of a
function returning a, we simply have a computation that will evaluate to a. The effect row is
irrelevant and therefore implicit. Now we can provide an elaboration, which is not a function,
but better described as a syntactic substitution.

Elaine
1 let eLocal = elaboration Reader! -> <Ask> {
2 local!(f, c) {
3 handle[hAsk(f(ask()))] c
4 }
5 };

Note how similar the elaboration for local! is to the local function above. In the first
line, we specify explicitly what effect the elaboration elaborates (Reader!) and which effects
should be present in the context where this elaboration is used (<Ask>). This can be an effect
row of multiple effects if necessary. In this case we only require the Ask effect. This means
that we can use this elaboration in any expression that is wrapped by at least a handler for
Ask.

Elaine
1 let main = handle[hAsk(5)] elab[eLocal] {
2 let x = ask();
3 let y = local!(double, ask());
4 add(x, y)
5 };

That is the full implementation for the higher-order Reader! effect in Elaine. Appendix A.2
contains a listing of all these pieces put together in a single example.

Another example is the Except! effect. This effect should allow us to use the catch!
operation to recover from a throw. The latter is an algebraic, so we can start there.

Elaine
1 type Result[a, b] {
2 Ok(a),
3 Err(b),
4 }
5
6 effect Throw {
7 throw(String) a
8 }
9

10 let hThrow = handler {
11 return(x) { Ok(x) }
12 throw(s) { Err(s) }
13 };
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We assume here that we want to throw some string with an error message, but we could put a
different type in there as well. The throw operation has a return type a, which is impossible
to construct in general, so it cannot return. The higher-order Except! effect should then
look like this:

Elaine
1 effect Except! {
2 throw!(String) a
3 catch!(a, a) a
4 }

In contrast with the Reader! effect above, we alias the operation of the underlying algebraic
effect here. This makes no functional difference, except that it allows us to write functions
with explicit effect rows with Except! and without Throw. We might even choose to elaborate
to a different effect than Throw. The downside is that it requires us to provide the elaboration
for the throw! operation.

Elaine
1 let eExcept = elaboration Except! -> <Throw> {
2 throw!(s) { throw(s) }
3 catch!(a, b) {
4 match handle[hThrow] a {
5 Ok(x) => x,
6 Err(s) => b,
7 }
8 }
9 };

We can then use the Except! effect like we used the Reader! effect: with an elab for
Except! and a handle for Throw. In the listing below, we ensure that we do not decrement
a value of 0 to ensure it will not become negative.

Elaine
1 let main = handle[hThrow] elab[eExcept] {
2 let x = 0;
3 catch!({
4 if eq(x, 0) {
5 throw!("Whoa, x can't be zero!")
6 } else {
7 sub(x, 1)
8 }
9 }, 0)

10 };

Since the elaborations can be swapped out, we can also design elaborations with different
behaviour. Assume, for instance, that there is a Log effect. Then we can create an alternative
elaboration that logs the errors it catches, which might be useful for debugging.
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Elaine
1 let eExceptLog = elaboration Except! -> <Throw,Log> {
2 throw!(s) { throw(s) }
3 catch!(a, b) {
4 match handle[hThrow] a {
5 Ok(x) => x,
6 Err(s) => {
7 log(s);
8 b
9 }

10 }
11 }
12 };

We could also disable exception catching entirely if we so desire. This might be helpful
if we are debugging a piece of a program that is wrapped in a catch! to ensure it never
fully crashes, but we want to see errors while we are debugging. Of course, this changes
the functionality of the program significantly. We should therefore be careful not to change
computations that rely on a specific implementation of the Except!.

Elaine
1 let eExceptIgnoreCatch = elaboration Except! -> <Throw> {
2 throw!(s) { throw(s) }
3 catch!(a, b) { a }
4 };

What these examples illustrate is that elaborations provide a great deal of flexibility, with
which we can define and alter the functionality of the Except! effect. We can change it
temporarily for debugging purposes or apply another elaboration to a part of a computation.
We can also define more effects like Except! and use them at the same time.
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Chapter 5

Implicit Elaboration Resolution

With Elaine, we aim to explore further ergonomic improvements for programming with ef-
fects. We note that elaborations are often not parametrized and that there is often only
one elaboratrion in scope per effect at a time. Hence, when we encounter an elab, there is
only one possible elaboration that could be applied. Therefore, the language can infer the
elaborations. Take the example in the listing below, where we let Elaine infer the elaboration.

Elaine
1 let eLocal = elaboration Reader! -> <Ask> {
2 local!(f, c) {
3 handle[hAsk(f(ask()))] c
4 }
5 };
6
7 let main = handle[hAsk(2)] elab {
8 local!(double, add(ask(), ask()));
9 };

A use case of this feature is when an effect and elaboration are defined in the same module.
When this module is imported, the effect and elaboration are both brought into scope and
elab will apply the standard elaboration automatically.

Elaine
1 mod local {
2 pub effect Ask { ... }
3 pub let hAsk = handler { ... }
4 pub effect Reader! { ... }
5 pub let eLocal = elaboration Reader! -> <Ask> { ... }
6 }
7
8 use local;
9

10 # We do not have to specify the elaboration, since it is
11 # imported along with the effect.
12 let main = handle[hAsk] elab { local!(double, ask!()) };

However, while useful, this feature only saves a few characters in the examples above. It
becomes more important when multiple higher-order effects are involved: an elab without
argument will elaborate all higher-order effects in the sub-computation. For instance, if
elaborations for both Except! and Reader! are in scope, the following program works.
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Elaine
1 let main = handle[hAsk(2)] handle[hThrow] elab {
2 local!(double, {
3 if gt(ask(), 3) {
4 throw()
5 } else {
6 add(ask(), 4)
7 }
8 })
9 }

To make the inference predictable, we require that an implicit elaboration must elaborate all
higher-order effects in the sub-computation.

A problem with this feature arises when multiple elaborations for a single effect are in
scope; which one should then be used? To keep the result of the inference predictable and
deterministic, the type checker should yield a type error in this case. Hence, if type checking
succeeds, then the inference procedure has found exactly one elaboration to apply for each
higher-order effect. If not, the elaboration cannot be inferred and must be written explicitly.

Elaine
1 let eLocal1 = elaboration Local! -> <Ask> { ... };
2 let eLocal2 = elaboration Local! -> <Ask> { ... };
3
4 let main = elab { local!(double, ask!()) }; # Type error here!

The elaboration resolution consists of two parts: inference and transformation. The inference
is done by the type checker and is hence type-directed, which records the inferred elaboration.
After type checking the program is then transformed such that all implicit elaborations have
been replaced by explicit elaborations.

To infer the elaborations, the type checker first analyses the sub-expression. This will
yield some computation type with an effect row containing both higher-order and algebraic
effects: <H1!, ..., HN!, A1, ..., AM>. It then checks the type environment to look for
elaborations e1, ..., eN which elaborate H1!, ..., HN!, respectively. Only elaborations that are
directly in scope are considered, so if an elaboration resides in another module, it needs be
imported first. For each higher-order effect, there must be exactly one elaboration.

The elab is finally transformed into one explicit elab per higher-order effect. Recall that
the order of elaborations does not matter for the semantics of the program, meaning that we
apply them in arbitrary order.

A nice property of this transformation is that it results in readable code. Because the
elaboration is in scope, there is an identifier for it in scope as well. The transformation
simply inserts this identifier. The elab in the first example of this chapter will, for instance,
be transformed to elab[eVal]. A code editor could then display this transformed elab as
an inlay hint.
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Chapter 6

Elaine Specification

This chapter contains the specification for Elaine. This specification includes the syntax defi-
nition, type inference rules, reduction semantics, and the functions provided by the standard
library.

6.1 Syntax Definition
The Elaine syntax was designed to be easy to parse. The grammar is not white-space sensitive
and most constructs are unambiguously identified with keywords at the start.

The full syntax definition is given in Figure 6.1 as a context-free grammar. In this
grammar, x represents an identifier. We use the following notation for the grammar:

• a sort is declared with ::=,

• the alternatives of a sort are separated by |,

• tokens are written in monospace font,

• p? indicates that the sort p is optional,

• p . . . p indicates that the sort p can be repeated zero or more times, and

• p, . . . , p indicates that the sort p can be repeated zero or more times, separated by
commas.

The sorts x, i and s denote identifiers, integers and strings respectively. Identifiers must
match the regex expression [a-zA-Z_][a-zA-Z_0-9]*'* and cannot be a keyword. Integers
consist of numeric digits. Strings are delimited by double quotes.

6.2 Effect Rows
The syntax definition in Figure 6.1 describes a layer of syntactic sugar for effect rows. The
desugared syntax for effect rows is given as follows:

∆ ::= <> | <ϕ|∆>

We transform the syntactic sugar form into the standard form with the N operation defined
in Figure 6.2a, which maps R to ∆. This operation is applied to all occurrences of R in the
syntax tree. Additionally, our typing judgments require operations that split an effect row
into algebraic and higher-order effects, denoted A and H, respectively. The definition of these
operations is given in Figure 6.2b.

Effect rows should be considered equivalent up to reordering. Following Leijen (2014),
we define the ≡ relation to denote effect row equivalence in Figure 6.2c. This equivalence is
implicitly used whenever effect rows are asserted to be equivalent in the typing judgments.
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program p ::= d . . . d

declaration d ::= pub? mod x {d . . . d}
| pub? use x;
| pub? let rec? p = e;
| pub? effect ϕ {s, . . . , s}
| pub? type x {c, . . . , c}

block b ::= { es }
expression list es ::= e

| e; es

| let rec? p = e; es

expression e ::= x

| () | true | false | i | s

| (e, . . . , e)
| fn(p, . . . , p) T ? b

| if e b else b

| e(e, . . . , e) | ϕ(e, . . . , e)
| handler {o, . . . , o}
| handler {return(x) b, o, . . . , o}
| handle[e] e

| elaboration x! -> R {o, . . . , o}
| elab[e] e | elab e

| b

annotatable variable p ::= x : T | x

signature s ::= x(T, . . . , T) T

effect clause o ::= x(x, . . . , x) b

constructor c ::= x(T, . . . , T)

type T ::= R τ | τ

value type τ ::= x

| () | Bool | Int | String
| fn(T, . . . , T) T

| Handler[x,τ,τ]
| Elab[x!,R]
| x[τ, . . . , τ]

effect row sugar R ::= <ϕ, . . . , ϕ> | <ϕ, . . . , ϕ|R> | ∆

effect row ∆ ::= <> | <ϕ|∆>
effect ϕ ::= x | x!

Figure 6.1: Syntax definition of Elaine
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N(<>) = <>
N(<|R>) = N(R)

N(<ϕ1>) = <ϕ1|<>>
N(<ϕ1, . . . ,ϕn>) = <ϕ1|N(<ϕ2, . . . ,ϕn>)>

N(<ϕ1, . . . ,ϕn|R>) = <ϕ1|N(<ϕ2, . . . ,ϕn|R>)>

(a) Definition of normalization N from the syntactic sugar for effect rows R to an effect row ∆.

H(<>) = <> A(<>) = <>
H(<x|∆>) = H(∆) A(<x|∆>) = <x|A(∆)>
H(<x!|∆>) = <x!|H(∆)> A(<x!|∆>) = A(∆)

(b) Definition of the H and A operations, which reduce an effect row to only higher-order or algebraic
effects, respectively.

∆1 ≡ ∆2

Eq-Refl

∆ ≡ ∆

Eq-Head
∆1 ≡ ∆2

<ϕ|∆1> ≡ <ϕ|∆2>

Eq-Trans
∆1 ≡ ∆2 ∆2 ≡ ∆3

∆1 ≡ ∆3

Eq-Swap
ϕ1 6≡ ϕ2

<ϕ1|<ϕ2|∆>> <ϕ2|<ϕ1|∆>>

(c) Effect row equivalence

Figure 6.2: Operations and relations on effect rows.

6.3 Type System
We give a declarative specification of the type system of Elaine. This specification consists
of two parts: inference rules for expressions and inference rules for declarations.

The context Γ = (ΓM ; ΓV ; ΓE ; ΓΦ) consists of the following parts:

ΓM : x → Γ module to context
ΓV : x → σ variable to type scheme
ΓT : x → T identifier to custom type
ΓΦ : x → {s1, . . . , sn} effect to operation signatures

In the typing judgments, we often need to extend just one of these sub-contexts. Therefore,
if we extend one, the rest is implicitly passed to. For example, the following expressions are
equivalent:

Γ′
V = ΓV , x : T

Γ′ = (ΓM ; ΓV , x : T ; ΓE ; ΓΦ)

In the typing judgments below, we assume that all types are explicitly specified for func-
tion arguments and return types. Hindley-Milner type inference can be used to infer the types
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if missing. This is also done in the Elaine prototype. In addition to the typing judgments,
we assert that all effects, effect operations and modules have unique names within any scope.

The typing judgments for expressions inductively define a ternary relation

Γ ` e : ∆τ,

where Γ ranges over contexts, e ranges over expressions and ∆ τ ranges over pair of effect
rows and value types. This relation should be read as: “in the context Γ, the expression
e has type ∆τ”. This relation is fairly standard, apart from the inclusion of the effect row.
Note that in this specification, the effect row is an overapproximation of the effect which are
present. This means, for example, that the (pure) boolean value true has the type ∆Bool
for every effect row ∆, as rule E-True shows. A common pattern in the judgments is that
many expressions that are evaluated in sequence all have the same effect row. This can be
seen clearly in the E-If and E-Tuple rules. A function application (E-App) has an effect
row that matches the same effect row on the return type of the called function.

Handlers have the type Handler[ϕ,τ,τ ′]. In this type, the ϕ variable represents the
effect that it handles, τ is the type of the sub-computation and τ ′ is the type of the handle
that handles a computation with type τ . The τ and τ ′ types may be related. For example, a
handler for the abort effect can be represented by the following type scheme:

∀α. Handler[Abort,α,Maybe[α]].

If no return branch is specified, it is assumed to be the identity function and hence τ is
equal to τ ′ in that case, as written in rule E-Handler.

Elaborations have a similar type to handlers: Elab[ϕ,∆]. Here, ϕ again represents the
effect this elaboration is for. The effect row ∆ is the set of algebraic effects it elaborates into.
Therefore, E-Elaboration asserts that ∆ is algebraic. When an elaboration is applied
(E-Elab), this effect row must be unifiable with the effect row for the return type of of elab.

Rule E-ImplicitElab is different from E-Elab, because it elaborates all higher-order
effects. Therefore, it requires that exactly one elaboration is in scope for each higher-order
effect. In this rule, A(∆′) represents the algebraic subset of the effects in ∆′. The uniqueness
is important here to keep the implicit elaboration resolution predictable as explained in
Chapter 5.

The inference rules for declarations define a different relation

Γ ` d ⇒ (Γpriv,Γpub),

where Γ again ranges over contexts and d ranges over declarations and sequences of declara-
tions. The pair of contexts represent the private and public context that d generates. The
relation should be read as “in the context Γ, the declaration d generates the bindings in Γpriv
and exposes the bindings in Γpub.” Both contexts only contain new bindings; they are not
additive. The private context is always a subset of the public context.

All declarations generate only private bindings with an empty context for public bindings,
written ε. The D-Pub rule then ensures that this private context is duplicated to the public
context. Therefore, if the declarations in a module generate (Γpriv; Γpub), then only Γpub
should be stored in ΓM , which is specified by the D-Mod rule.

The D-Type rule ensures two things: it adds the type to the type context ΓT and adds all
constructors as functions to the variable context ΓV . Because all constructors are modelled
as functions, we do not need special rules for constructors in the expression inference rules.
The D-AlgebraicEffect and D-HigherOrderEffect rules are split to ensure that all
higher-order operations have an ! suffix. Apart from that difference, these rules are identical.
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Γ ` e : T

E-Gen
Γ ` e : σ α 6∈ ftv(Γ)

Γ ` e : ∀α.σ

E-Inst
Γ ` e : ∀α.σ

Γ ` e : σ[α 7→ T ′]

E-Var
ΓV (x) = ∆ τ

Γ ` x : ∆ τ

E-Block
Γ ` es : ∆ τ

Γ ` {es} : ∆ τ

E-Unit

Γ ` () : ∆ ()

E-Int

Γ ` i : ∆ Int

E-True

Γ ` true : ∆ Bool

E-False

Γ ` false : ∆ Bool

E-String

Γ ` s : ∆ String

E-Tuple
[Γ ` ei : ∆τi]1≤i≤n

Γ ` (e1, . . . ,en) : ∆ (τ1, . . . , τn)

E-Seq
Γ ` e : ∆ τ Γ ` es : ∆ τ ′

Γ ` e; es : ∆ τ ′

E-Let
Γ ` e : ∆ τ ΓV , x : τ ` es : ∆ τ ′

Γ ` let x = e; es : ∆ τ ′

E-LetRec
ΓV , x : τ ` e : ∆ τ1 ΓV , x : τ ` es : ∆ τ2

Γ ` let rec x = e; es : ∆ τ2

E-FuncDef
ΓV , x1 : <>τ1, . . . , xn : <>τn ` b : T

Γ ` fn(x1: τ1, . . . , xn: τn) T b : ∆ (τ1, . . . , τn) → T

E-App
Γ ` e : (τ1, . . . , τn) → ∆ τ

[Γ ` ei : ∆ τi]1≤i≤n

Γ ` e(e1, . . . ,en) : ∆ τ

E-If
Γ ` e : ∆ Bool
Γ ` b1 : ∆ τ
Γ ` b2 : ∆ τ

Γ ` if e b1 else b2 : ∆ τ

E-Match
Γ ` e : ∆ τ {c1, . . . , cn} = ΓT (τ)[

xi(xi,1, . . . ,xi,mi) = pi xi(τi,1, . . . , τi,mi) = ci

Γ, xi,1 : τi,1, . . . , xi,mi : τi,mi ` ei : ∆τ ′

]
1≤i≤n

Γ ` match e { p1 => e1, . . . ,pn => en } : ∆τ ′

E-Elab
Γ ` eE : ∆ Elab[x!,∆]

Γ ` ec : <x!|∆> τ

Γ ` elab[eE] ec : ∆τ

E-ImplicitElab[
∃! x. ΓV (x) = Elab[ϕ,∆]

]
ϕ∈H(∆′)

Γ ` e : ∆′ τ ∆ = A(∆′)

Γ ` elab e : ∆ τ

E-Handle
Γ ` eh : ∆ Handler[ϕ, τ, τ ′]

Γ ` ec : <ϕ|∆> τ

Γ ` handle[eh] ec : ∆ τ ′

E-HandlerNoRet
Γ ` handler { return (x){x},o1, . . . ,on} : Handler[ϕ, τ, τ ]

Γ ` handler {o1, . . . ,on} : Handler[ϕ, τ, τ ]

E-Handler
ΓΦ(ϕ) = {s1, . . . , sn} Γ, x : τ ` eret : τ

′[
si = xi(τi,1, . . . ,τi,mi) → τi oi = xi(xi,1, . . . ,xi,mi) {ei}

ΓV , resume : (τi) → τ ′, xi,1 : τi,1, . . . , xi,mi : τi,mi ` ei : τ
′

]
1≤i≤n

Γ ` handler { return (x){eret},o1, . . . ,on} : Handler[ϕ, τ, τ ′]

E-Elaboration
ΓΦ(x!) = {s1, . . . , sn} ∆ = A(∆)[

si = xi!(τi,1, . . . ,τi,mi) τi oi = xi!(xi,1, . . . ,xi,mi){ei}

Γ, xi,1 : ∆ τi,1, . . . , xi,mi : ∆ τi,mi ` ei : ∆ τi

]
1≤i≤n

Γ ` elaboration x! → ∆ {o1, . . . , on} : Elab[x!,∆]

Figure 6.3: Inference rules for expressions.
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6.4 Desugaring
To simplify the reduction rules, we simplify the AST by desugaring some constructs. This
transform is given by a fold over the syntax tree with the operation D defined below. If a
construct does not match one of the cases below, it is not transformed.

D(fn(x1 : T1, . . . , xn : Tn) T {e}) = λx1, . . . , xn.e

D(let x = e1; e2) = (λx.e2)(e1)

D(let rec x = e1; e2) = (λx.e2)((λx.x(x))(λx.e1[x 7→ x(x)]))

D(e1; e2) = (λ_.e2)(e1)

D({e}) = e

6.5 Semantics
We give two descriptions of the semantics of Elaine. First, we give an informal description
of the denotational semantics to highlight the connection between Elaine and hefty algebras.
There is no full specification for the denotational semantics of Elaine. Second, we give a
formal small-step reduction semantics for the evaluation of expressions.

6.5.1 Denotational Semantics
In this section, we give an intuition for the intended denotational semantics of Elaine. TheJ·K operator is used to represent the denotational semantics.

In languages based on algebraic effects, such as Koka, the semantics of effect rows are free
monad. So, the denotational semantics of Koka’s effect row notation would then be given as
follows: J() -> e aK = () -> Free JeK JaK .
However, the semantics for Elaine’s effect rows are hefty trees instead of free monads. There-
fore, effects correspond to higher-order functors of a hefty tree and algebraic effects need to
be lifted. In general, this can be expressed as:

Jfn() -> e aK = () -> Hefty (Lift JA(e)K + JH(e)K ) JaK .
We conjecture that the denotational semantics of Elaine expressions are hefty trees. However,
the semantics of Elaine are still unclear, because the elab construct does not correspond
directly to hefty algebras. To see why, recall that elaboration in hefty algebras returns a free
monad. To elaborate multiple higher-order effects, the elaborations of the effects need to be
composed using ^ operator. Elaine’s elab construct, however, returns a type with only the
elaborated effect removed and allows other higher-order effects to be left in the effect row.
Composition of elaborations is then no longer necessary, because individual elaborations can
be applied in sequence. For example, to elaborate a computation that uses both the catch
and reader effect, Elaine allows the following expression:

Elaine
1 let main = elab[eCatch] elab[eReader] { ... };

This provides more flexibility than composition, since elaborations can then be applied to
specific sub-computations of elaborations. This means that Elaine is more flexible than hefty
algebras. For example, the following example does not have a clear semantics as hefty tree:
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Elaine
1 # Note: valid in Elaine, but not in hefty algebras!
2 let main = elab[eReader] {
3 elab[eCatch1] a();
4 elab[eCatch2] b()
5 };

Therefore, the semantics for Elaine’s elab construct are left to future work.

6.5.2 Small-step Reduction Semantics
The reduction semantics for Elaine are given in Figure 6.5. It is given in the form of two
contexts E and Xop and a reduction relation −→.

The E context is used for all reduction rules except effect operations, such as if, let,
and function applications. The Xop context is the context in which a handler can reduce an
operation op. The two contexts are mostly equivalent, except for the fact that an Xop cannot
enter the sub-computation of a handle or elab construct. This is important to ensure correct
behaviour for when there are multiple nested handlers for a single effect. In that case, only
the innermost handler should be able to handle said effect. The same reasoning applies to
elaborations. We use the ∈ symbol to mean that an operation is not handled by a handler,
or elaborated by an elaboration.

Figure 6.5 with semantics does not include semantics for declarations and modules. A
sequence of declarations is evaluated in order. The bindings from each declaration get sub-
stituted in the remainder of the program. If the declarations are inside a module declaration,
then the public bindings get collected. These bindings are substituted when a module is
imported with the use declaration.

In this semantics, we assume that all elaborations are explicit. If they are implicit, they
first need to be transformed according to the procedure from Chapter 5.

6.6 Standard Library
To simplify parsing, Elaine does not include any operators. For the lack of operators, any
manipulation of primitives needs to be done via the standard library of built-in functions.
These functions reside in the std module, which can be imported like any other module with
the use statement to bring its contents into scope.

The full list of functions available in the std module, along with their signatures and
descriptions, is given in Figure 6.6a. The std module also contains several other modules
that can be imported. These modules are all written in Elaine itself. An overview of these
modules is given in Figure 6.6b with the signatures of the functions and types they contain.
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Γ ` d ⇒ (Γpriv; Γpub)

D-Seq
Γ ` d1 ⇒ (Γpriv,1,Γpub,1) Γ,Γpriv,1 ` d2 . . . dn ⇒ (Γpriv,n,Γpub,n)

Γ ` d1 . . . dn ⇒ (Γpriv,1,Γpriv,n; Γpub,1,Γpub,n)

D-Mod
Γ ` d1 . . . dn ⇒ (Γpriv; Γpub) ΓM,x = x : Γpub

Γ ` mod x {d1 . . . dn} ⇒ (ΓM,x; ε)

D-Pub
Γ ` d ⇒ (Γ′; ε)

Γ ` pub d ⇒ (Γ′; Γ′)

D-Use

Γ ` use x; ⇒ (ΓM (x); ε)

D-Let
Γ ` e : τ Γ′

V = x : τ

Γ ` let x = e; ⇒ (Γ′; ε)

D-LetRec
Γ, x : τ ` e : τ Γ′

V = x : τ

Γ ` let rec x = e; ⇒ (Γ′; ε)

D-Type
fi = ∀α.(τi,1, . . . , τi,ni) → α x

Γ′
V = x1 : f1, . . . , xm : fm Γ′

T = x : {x1(τ1,1, . . . , τ1,n1), . . . , xm(τm,1, . . . , τm,nm)}
Γ ` type x {x1(τ1,1, . . . ,τ1,n1), . . . ,xm(τm,1, . . . ,τm,nm)} ⇒ (Γ′; ε)

D-AlgebraicEffect
si = opi(τi,1, . . . ,τi,ni) : τi Γ′

Φ(x) = {s1, . . . ,sn}
Γ ` effect x {s1, . . . ,sn} : (Γ′; ε)

D-HigherOrderEffect
si = opi!(τi,1, . . . ,τi,ni) : τi Γ′

Φ(x!) = {s1, . . . , sn}
Γ ` effect x! {s1, . . . ,sn} : (Γ′; ε)

Figure 6.4: Inference rules for declarations.
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E ::= [] | E(e1, . . . , en) | v(v1, . . . , vn, E, e1, . . . , em)

| if E {e1} else {e2}
| match E { p1 => e1, . . . , pn => en }
| let x = E; e | E; e

| handle[E] e | handle[v] E

| elab[E] e | elab[v] E

Xop ::= [] | Xop(e1, . . . , en) | v(v1, . . . , vn, Xop, e1, . . . , em)

| if Xop {e1} else {e2}
| match Xop { p1 => e1, . . . , pn => en }
| let x = Xop; e | Xop; e

| handle[Xop] e | handle[h] Xop if op 6∈ h

| elab[Xop] e | elab[ϵ] Xop if op 6∈ ϵ

(λx1, . . . , xn.e)(v1, . . . , vn) −→ e[x1 7→ v1, . . . , xn 7→ vn]

if true {e1} else {e2} −→ e1

if false {e1} else {e2} −→ e2

match c(v1, . . . , vn) {
. . .

c(x1, . . . , xn) => e

. . .

}

−→ e[x1 7→ v1, . . . , xn 7→ vn]

handle[h] v −→ e[x 7→ v]

where return(x){e} ∈ h

handle[h] Xop[op(v1, . . . , vn)] −→ e[x1 7→ v1, . . . , xn 7→ vn, resume 7→ k]

where op(x1, . . . , xn){e} ∈ h

k = λy . handle[h] Xop[y]

elab[ϵ] v −→ v

elab[ϵ] Xop![op!(e1, . . . , en)] −→ elab[ϵ] Xop![e[x1 7→ e1, . . . , xn 7→ en]]

where op!(x1, . . . , xn){e} ∈ ϵ

Figure 6.5: Reduction semantics for Elaine.
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Name Type signature Description
Arithmetic add fn(Int, Int) Int addition

sub fn(Int, Int) Int subtraction
neg fn(Int) Int negation
mul fn(Int, Int) Int multiplication
div fn(Int, Int) Int division
modulo fn(Int, Int) Int modulo
pow fn(Int, Int) Int exponentiation

Comparisons eq fn(Int, Int) Bool equality
neq fn(Int, Int) Bool inequality
gt fn(Int, Int) Bool greater than
geq fn(Int, Int) Bool greater than or equal
lt fn(Int, Int) Bool less than
leq fn(Int, Int) Bool less than or equal

Boolean operations not fn(Bool) Bool boolean negation
and fn(Bool, Bool) Bool boolean and
or fn(Bool, Bool) Bool boolean or

String operations concat fn(Bool, Bool) Bool string concatenation
is_prefix fn(String, String) Bool is prefix of
str_eq fn(String, String) Bool string equality
drop fn(Int, String) String drop characters
take fn(Int, String) String take characters
length fn(String) Int string length

Conversions show_int fn(Int) String integer to string
show_bool fn(Bool) String integer to string

(a) The built-in functions in the std module in Elaine.

Module Item Type signature
loop while fn(fn() <|e> Bool, fn() <|e> ()) <|e> ()

repeat fn(Int, fn(Int) <|e> ()) <|e> ()
maybe Maybe[a] type Maybe[a] { Just(a), Nothing() }
abort abort effect Abort { abort() a }

hAbort Handler Abort a Maybe[a]
list List type List[a] { Cons(a, List[a]), Nil() }

head fn(List[a]) Maybe[a]
concat_list fn(List[a], List[a]) List[a]
range fn(Int, Int) List[Int]
map fn(fn(a) <|e> b, List[a]) <|e> List[b]
foldl fn(fn(a, b) <|e> b, b, List[a]) <|e> List[b]
foldr fn(fn(a, b) <|e> b, b, List[a]) <|e> List[b]
sum fn(List[Int]) Int
join fn(List[String]) String
explode fn(String) List[String]

state State effect State { get() Int, put(Int) () }
hState Handler[State,a,fn(Int) a]

state_str State effect State { get() String, put(String) () }
hState Handler[State,a,fn(String) a]

(b) Sub-modules of std

Figure 6.6: Overview of Elaine’s standard library.
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Chapter 7

Related Work

This chapter discusses extensions to algebraic effects and alternatives to algebraic effects and
hefty algebras. Additionally, we discuss some other languages with algebraic effects.

7.1 Monad Transformers
Monad transformers provide a way to compose monads (Moggi 1989a). This makes them an
alternative to the free monad. While monad transformers predate algebraic effects, they do
support higher-order effects. A popular implementation of monad transformers is Haskell’s
mtl1 library. In the rest of this section, we adopt the terminology from that library.

The goal of monad composition is to make the operations of all composed monads available
to the computation. Given two monads A and B, a naive composition would result in the type
A (B a). However, this type represents a computation using A that returns a computation
B a, meaning that it is not possible to use operations of both monads.

A monad transformer is a type constructor that takes some monad and returns a new
monad. Usually, the transformation it performs is to add operations to the input monad.
Composing A and B then requires some transformer AT to be defined, such AT B is a monad
that provides the operations of both A and B. An arbitrary number of monad transformers
can be composed this way. The representation of a monad then becomes much like that of a
list of monad transformers. The Identity monad marks the end of the list, and is defined
as below.

Haskell
1 newtype Identity a = Identity a

A neat property of monad transformers is that a monad can be easily obtained by applying
the transformer to the identity monad. Haskell’s mtl library, for instance, defines a monad
transformer StateT and then defines State as StateT Identity. The operations of the
state effect are then not implemented on StateT directly, but on are part of a type class
MonadState. The StateT is then an instance of MonadState class. Every other transformer
is an instance of MonadState if its input monad is an instance of MonadState. For example,
for the WriterT instance, there is the following instance declaration.

Haskell
1 instance MonadState s (StateT s m) where
2 -- definitions omitted
3
4 instance MonadState s m => MonadState s (WriteT m) where
5 -- definitions omitted

1https://github.com/haskell/mtl
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A computation can then be generic over the monad transformers, requiring only that StateT
is present somewhere in the stack of monad transformers.

Haskell
1 usesState :: MonadState Int m => Int -> m Int
2 usesState a = get >>= \x -> put (x + a)

This is analogous to the State s < f constraint from the free monad encoding. However,
there is a cost to this approach. For every effect, a new type class needs to be introduced
and there need to be instance definitions on all existing monad transformers. The number of
instance declarations therefore scales quadratically with the number of effects.

Another downside to monad transformers is that the order in which the monads need
to be evaluated is entirely fixed. In the free monad encoding and languages with algebraic
effects, the effects in the effect row can be reordered. To evaluate a computation with monad
transformers, the transformers need to be run one at a time. The order of the monad trans-
formers determines the order in which they must be run: the outermost monad transformer
must be run first. This is in contrast with algebraic effects, which can be handled in any
order.

7.2 Other Solutions to the Modularity Problem

An alternative to hefty algebras for solving the modularity problem is the theory of scoped
effects (Piróg et al. 2018; Wu, Schrijvers, and Hinze 2014; Yang et al. 2022). This theory
replaces the free monad by a Prog monad, which features one additional constructor called
Enter. Along with the continuation, this constructor takes a sub-computation. The return
value of this sub-computation is passed to the continuation. In that sense, the Enter construc-
tor matches the >>=, but without distributing the continuation over its sub-computation.

Instead of defining evaluation as a single algebra, scoped effects requires two algebras:
an endo-algebra for scoped operations and a base-algebra for the other operations. This
is somewhat similar to the distinction between elaboration and handling for hefty algebras,
however, in hefty algebras, the algebras are not applied at the same time.

Many higher-order effects, such as the exception and reader effects, can be expressed in
this framework. However, it is less general than hefty algebras, because there are some higher-
order effects that cannot be expressed as scoped effects. This concerns effects that defer some
computation, such as the lambda abstraction (van den Berg et al. 2021). Hefty algebras are
therefore more general than scoped effects (Bach Poulsen and van der Rest 2023).

The limitations of scoped effects can be understood intuitively by emulating them in
Elaine. The endo-algebra of scoped effects corresponds roughly with a handle operation in an
elaboration. Since the result of the sub-computation in scoped effect must directly be passed
to the continuation, the elaboration contains only a handle and nothing else. Therefore, any
higher-order effect that can be expressed as the elaboration below (up to renaming) can be
defined in the theory of scoped effects. However, this an informal and imperfect comparison,
since scoped effects and hefty algebras have very different semantics.
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Elaine
1 effect ScopedEffect! {
2 scoped_operation!(a) a
3 }
4
5 let eScoped = elaboration ScopedEffect! -> AlgebraicEffect {
6 scoped_operation!(a) {
7 handle[endoAlg] a
8 }
9 };

Scoped effects have been generalized by van den Berg et al. (2021) to latent effects, which
supports the same set of effects as hefty algebras. Bach Poulsen and van der Rest (2023)
note that while latent effects are powerful, they require weaving glue to ensure unhandled
operations are treated correctly through sub-computations. In contrast, hefty algebras do
not require any weaving.

7.3 Languages with Native Support for Algebraic Effects
The motivation of adding support for effects to a programming language is twofold. First, it
enables effects to be implemented into languages with type systems in which effects cannot be
encoded as a free monad or a similar model. Second, built-in effects allow for more ergonomic
and performant implementations. Naturally, the ergonomics of any given implementation are
subjective, but we undeniably have more control over the syntax by adding effects to the
language.

Notable examples of languages with first-class support for algebraic effects are Koka (Lei-
jen 2014), Frank (Lindley, McBride, and McLaughlin 2017), Effekt (Bach Poulsen and van
der Rest 2023), Eff (Bauer and Pretnar 2015), Helium (Biernacki et al. 2019), and OCaml
(Sivaramakrishnan et al. 2021). In all of these languages, effect row variables can be used
to abstract over effects. For example, the signature of the map function is in Koka is given
below and is similar to the signature of map in Elaine.

Koka
1 fun map ( xs : list<a>, f : a -> e b ) : e list<b>
2 ...

Other languages choose a more implicit syntax for effect polymorphism. Frank (Lindley,
McBride, and McLaughlin 2017) opts to have the empty effect row represent the ambient
effects. Any effect row then becomes not the exact set of effects that need to be handled, but
the smallest set. The equivalent signature of map is then written as

Frank
1 map : {X -> []Y} -> List X -> []List Y

In contrast with Elaine, languages such as Koka and Frank do not have dedicated types
for handlers and handle constructs. Instead, they represent handlers as functions that take
computations as arguments. In Elaine, there are dedicated types and constructs for effect
handlers so that they are symmetric with elaborations. That is, the counterpart of elab is
handle and the counterpart of elaboration is handler.

Koka implements several extensions to standard algebraic effects. First, it supports named
handlers (Xie et al. 2022), which provide a mechanism to distinguish between multiple occur-
rences of an effect in an effect row. Additionally, Koka features scoped handlers, which are
different from the previously mentioned scoped effects. Scoped handlers make it possible to
associate types with handler instances (Xie et al. 2022).
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7.4 Effects as Free Monads
There are many libraries that implement the free monad in various forms in Haskell, including
fused-effects2, polysemy3, freer-simple4, and eff5. Each of these libraries give
the encoding of effects a slightly different spin in an effort to find the most ergonomic and
performant representation. They are all not just based on the free monad, but on freer
monads (Kiselyov and Ishii 2016) and fused effects (Wu and Schrijvers 2015) which yield
better performance than the free monad. Some of these libraries support scoped effects as
well, but apart from the work by Bach Poulsen and van der Rest (2023), no libraries with
support for hefty algebras have been published.

Effect rows are often constructed using the Data Types à la Carte technique (Swierstra
2008), which requires a fairly robust type system. Hence, many languages cannot encode
effects within the language itself. In some languages, it is possible to work around the limita-
tions with metaprogramming, such as the Rust library effin-mad6, though the result does
not integrate well with the rest of language and its use in production is strongly discouraged
by the author.

The programming language Idris (Brady 2013) also has an implementation of algebraic
effects in its standard library. It is an interesting case study since Idris is a dependently
typed language. Due to its dependent typing, it can distinguish multiple occurrences of a
single effect in the same effect row by assigning them different labels. This is similar to what
named handlers (Xie et al. 2022) aim to accomplish.

2https://github.com/fused-effects/fused-effects
3https://github.com/polysemy-research/polysemy
4https://github.com/lexi-lambda/freer-simple
5https://github.com/hasura/eff
6https://github.com/rosefromthedead/effing-mad
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Chapter 8

Conclusion

We have presented a language specification based on hefty algebras. This specification in-
cludes the syntax definition, typing judgements and reduction semantics. Our focus in this
endeavour was to show the viability and explore the ergonomics of such a language. The
result is, in our opinion, a language in which higher-order effects can be represented with
relative ease.

Additionally, we introduced implicit elaboration resolution, which reduces the syntactic
overhead of elaborations. Of particular interest is how this feature interacts with the module
system for any language, to allow effects to be imported along with their elaborations.

The prototype implementing this specification allowed us to create a set of example pro-
grams available in Appendix A and in the artifact, which show off various applications of
elaborations.

8.1 Future Work
Because Elaine’s elab does not require all elaboration to be applied at once, the denotational
semantics of Elaine are unclear. We conjecture that the semantics of expressions in Elaine
are hefty trees, but we have no proof for this claim. This is a gap that could be filled by
future work.

A missing feature in Elaine is type parameters for effects. In Koka, for example, the
state effect state<s> is parametrized by a type s, which is not possible in Elaine. Another
omission are IO operations. An Elaine program cannot write to files, accept input or print
text apart from the value it returns. Furthermore, Elaine does not include any extensions of
algebraic effects, such as named handlers.

The prototype for Elaine only features an interpreter, not a compiler. So, another di-
rection for future work is towards efficient compilation of elaborations. Since compilation
of algebraic effects is well-established (Leijen 2017), a transformation from a program with
elaborations to a program that only uses algebraic effects should enable full compilation of
program with higher-order effects.
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Appendix A

Elaine Example Programs

This chapter contains longer Elaine samples with some additional explanation.

A.1 A naive SAT solver
This program is a naive brute-forcing SAT solver. We first define a Yield effect, so we can
yield multiple values from the computation. We will use this to find all possible combinations
of boolean inputs that satisfy the formula. The Logic effect has two operations. The branch
operation will call the continuation twice; once with false and once true. With fail, we
can indicate that a branch has failed. To find all solutions, we just branch on all inputs and
yield when a correct solution has been found and fail when the formula is not satisfied.
In the listing below, we check for solutions of the equation ¬a ∧ b.

Elaine
1 use std;
2
3 effect Yield {
4 yield(String) ()
5 }
6
7 effect Logic {
8 branch() Bool
9 fail() a

10 }
11
12 let hYield = handler {
13 return(x) { "" }
14 yield(m) {
15 concat(concat(m, "\n"), resume(()))
16 }
17 };
18
19 let hLogic = handler {
20 return(x) { () }
21 branch() {
22 resume(true);
23 resume(false)
24 }
25 fail() { () }
26 };

65



A. Elaine Example Programs

27
28 let show_bools = fn(a, b, c) {
29 let a = concat(show_bool(a), ", ");
30 let b = concat(show_bool(b), ", ");
31 concat(concat(a, b), show_bool(c))
32 };
33
34 let f = fn(a, b, c) { and(not(a), b) };
35
36 let assert = fn(f, a, b, c) <Logic,Yield> () {
37 if f(a, b, c) {
38 yield(show_bools(a, b, c))
39 } else {
40 fail()
41 }
42 };
43
44 let main = handle[hYield] handle[hLogic] {
45 assert(f, branch(), branch(), branch());
46 };

A.2 Reader Effect
The implementation of the reader effect is a standard application for higher-order effects.
We start with a higher-order Reader! effect with an operation local! and an algebraic Ask
effect. The local! operation is elaborated into a computation that handles the Ask with the
modified value.

This effect corresponds to the Reader monad as defined by Haskell’s mtl library.

Elaine
1 use std;
2
3 effect Ask {
4 ask() Int
5 }
6
7 effect Reader! {
8 local!(fn(Int) Int, a) a
9 }

10
11 let hAsk = fn(v: Int) {
12 handler {
13 return(x) { x }
14 ask() { resume(v) }
15 }
16 };
17
18 let eReader = elaboration Reader! -> <Ask> {
19 local!(f, c) {
20 handle[hAsk(f(ask()))] c
21 }
22 };
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23
24 let double = fn(x) { mul(2, x) };
25
26 let main = handle[hAsk(2)] elab[eReader] {
27 local!(double, add(ask(), ask()));
28 };

A.3 Writer Effect
The implementation of the writer effect is similar to the implementation of the reader effect.
Again, we elaborate a higher-order effect, Writer!, into an algebraic effect, Out, with a subset
of the operations. The higher-order censor! operation handles the algebraic effect to access
the output and applies the censoring function to it.

This effect corresponds to the Writer monad as defined by Haskell’s mtl library.

Elaine
1 use std;
2
3 effect Writer! {
4 censor!(fn(String) String, a) a
5 tell!(String) ()
6 }
7
8 effect Out {
9 tell(String) ()

10 }
11
12 type Output[a] {
13 Output(String, a)
14 }
15
16 let hOut = handler {
17 return(x) { Output("", x) }
18 tell(s) {
19 match resume(()) {
20 Output(s', x) => Output(concat(s, s'), x)
21 }
22 }
23 };
24
25 let eWriter = elaboration Writer! -> <Out> {
26 tell!(s) { tell(s) }
27 censor!(f, c) {
28 match handle[hOut] c {
29 Output(s, x) => {
30 tell(f(s));
31 x
32 }
33 }
34 }
35 };
36
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37 let main = handle[hOut] elab {
38 tell("foo");
39 censor!(fn(s) { "bar" }, {
40 tell("baz");
41 5
42 });
43 };

A.4 Structured Logging
Since higher-order effects are suitable for delimiting the scope of effects, we can make an effect
for structured logging. The idea is that every log call appends a message to the output, but
the message is prefixed with some context. This context start out as the empty string, but
within every context! call, a string is added to this context.

Elaine
1 use std;
2
3 effect Write {
4 write(String) ()
5 }
6
7 effect Read {
8 ask() String
9 }

10
11 effect Log! {
12 context!(String, a) a
13 log!(String) ()
14 }
15
16 let hRead = fn(v: String) {
17 handler {
18 return(x) { x }
19 ask() { resume(v) }
20 }
21 };
22
23 let hWrite = handler {
24 return(x) { "" }
25 write(m) {
26 let rest = resume(());
27 let msg = concat(m, "\n");
28 concat(msg, rest)
29 }
30 };
31
32 let eLog = elaboration Log! -> <Read,Write> {
33 context!(s, c) {
34 let new_context = concat(concat(ask(), s), ":");
35 handle[hRead(new_context)] c
36 }
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37 log!(m) {
38 write(concat(concat(ask(), " "), m))
39 }
40 };
41
42 let main = handle[hRead("")] handle[hWrite] elab[eLog] {
43 context!("main", {
44 log!("msg1");
45 context!("foo", {
46 log!("msg2")
47 });
48 context!("bar", {
49 log!("msg3")
50 })
51 })
52 };

A.5 Parser Combinators
Monadic parser combinators (Hutton and Meijer 1996) are a popular technique for construct-
ing parsers. The parser for Elaine is also written using megaparsec1, which is a monadic
parser combinator library for Haskell. Attempts have been made to implement parser combi-
nators using algebraic effects. However, it requires higher-order combinators for a full feature
set matching that of monadic parser combinators. For example, the alt combinator takes
two branches and attempts to parse the first branch and tries the second branch if the first
one fails. This is remarkably similar to the catch operation of the exception effect and is
indeed higher-order.

Below is a full listing of a JSON parser written in Elaine using a variation on parser
combinators using effects. It is implemented using a higher-order Parse! effect, which is
elaborated into a state and an abort effect, which are imported from the standard library.
The try! effect is a higher-order effect which takes an effectful computation as an argument.
It applies the computation and returns its value if it succeeds, otherwise it will reset the state
and return Nothing().

Higher-order effects are convenient for parser combinators, but not necessary. Instead of
the try! operation, the non-determinism effect can be used to write a backtracking parser.
An implementation of that technique in Effekt available at https://effekt-lang.org/
docs/casestudies/parser.

Elaine
1 use std;
2 use maybe;
3 use list;
4 use state_str;
5 use abort;
6
7 effect Parse! {
8 # Signal that this branch has failed to parse
9 fail!() a

10 # Try to apply the parser, reset the state if it fails
11 try!(a) Maybe[a]

1https://github.com/mrkkrp/megaparsec
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12 # Remove and return the first character of the input
13 eat!() String
14 }
15
16 let eParse = elaboration Parse! -> <State,Abort> {
17 fail!() { abort() }
18 try!(x) {
19 let old_state = get();
20 match handle[hAbort] x {
21 Just(res) => Just(res),
22 Nothing() => {
23 put(old_state);
24 Nothing()
25 }
26 }
27 }
28 eat!() {
29 let state = get();
30 put(drop(1, state));
31 take(1, state)
32 }
33 };
34
35 ### Combinators
36 let alt2 = fn(a, b) {
37 match try!(a()) {
38 Just(x) => x,
39 Nothing() => b(),
40 }
41 };
42
43 let rec alt = fn(parsers) {
44 match parsers {
45 Cons(p, ps) => alt2(p, fn() { alt(ps) }),
46 Nil() => fail!(),
47 }
48 };
49
50 let rec many = fn(p) {
51 match try!(p()) {
52 Just(x) => Cons(x, many(p)),
53 Nothing() => Nil(),
54 }
55 };
56
57 let separated = fn(
58 p: fn() <Parse!> a,
59 separator: fn() <Parse!> b,
60 ) <Parse!> List[a] {
61 match try!(p()) {
62 Just(x) => Cons(x, many(fn() {separator(); p()})),
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63 Nothing() => Nil()
64 }
65 };
66
67 ### Parsers
68 # Parse a token specified as a string
69 let token = fn(s) {
70 let c = eat!();
71 if str_eq(s, c) {
72 c
73 } else {
74 fail!()
75 }
76 };
77
78 let rec contains_str = fn(s, l) {
79 match l {
80 Cons(x, xs) => {
81 if str_eq(x, s) {
82 true
83 } else {
84 contains_str(s, xs)
85 }
86 },
87 Nil() => false,
88 }
89 };
90
91 let one_of = fn(s) {
92 let list_of_chars = explode(s);
93 fn() {
94 let c = eat!();
95 if contains_str(c, list_of_chars) {
96 c
97 } else {
98 fail!()
99 }

100 }
101 };
102
103 # Parse a single digit
104 let digit = one_of("0123456789");
105 let str_char = one_of(join([
106 "0123456789",
107 "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
108 "abcdefghijklmnopqrstuvwxyz",
109 "_- ?!",
110 ]));
111 let white_one = one_of(" \n\t");
112 let white = fn() { many(white_one); () };
113
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114 let tokenws = fn(s) {
115 let t = token(s);
116 white();
117 t
118 };
119
120 let comma_separated = fn(p: fn() <Parse!> a) <Parse!> List[a] {
121 separated(p, fn() { tokenws(",") })
122 };
123
124 # Parse as many digits as possible
125 let number = fn() { join(many(digit)) };
126
127 type Json {
128 JsonString(String),
129 JsonInt(String),
130 JsonArray(List[Json]),
131 JsonObject(List[(String, Json)]),
132 }
133
134 let string = fn() <Parse!> String {
135 token("\"");
136 let s = join(many(str_char));
137 tokenws("\"");
138 s
139 };
140
141 let key_value = fn(value: fn() <Parse!> Json) <Parse!> (String, Json) {
142 let k = string();
143 tokenws(":");
144 (k, value())
145 };
146
147 let object = fn(value: fn() <Parse!> Json) <Parse!> Json {
148 tokenws("{");
149 let kvs = comma_separated(fn() { key_value(value) });
150 tokenws("}");
151 JsonObject(kvs)
152 };
153
154 let array = fn(value) {
155 tokenws("[");
156 let values = comma_separated(value);
157 tokenws("]");
158 JsonArray(values)
159 };
160
161 let rec value = fn() {
162 alt([
163 fn() { array(value) },
164 fn() { object(value) },
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165 fn() { JsonString(string()) },
166 fn() { JsonInt(number()) },
167 ])
168 };
169
170 let parse = fn(parser, input) {
171 let f = handle[hState] handle[hAbort] elab[eParse] parser();
172 f(input)
173 };
174
175 let main = parse(
176 value,
177 "{\"key1\": 123, \"key2\": [1,2,3], \"key3\": \"some string\"}"
178 );
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