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Abstract
The growing use of composite materials in engineering applications accelerated the demand for compu-
tational methods, such as multiscale modeling, to accurately predict their behavior. Combining different
materials with target mechanical properties helps achieve optimal structural performance. Neverthe-
less, the complex nature of composite materials poses several challenges. Current multiscale meth-
ods, such as the FE2 method, are hindered by a computational bottleneck, limiting their widespread
industrial adoption. Most of the existing surrogate modeling techniques that address this bottleneck
are limited to predicting homogeneous materials or require an extensive dataset. The application of
surrogate models in the fracture mechanics field is largely unexplored, where the existing models are
highly convoluted.

The goal of this thesis is to apply surrogate modeling to predict cohesive damage in the fracture me-
chanics field. It focuses on one of the existing techniques using Physically Recurrent Neural Networks
(PRNN). The core idea behind PRNNs is to implement the exact material models from the micromodel
into the material layer of the network. The PRNN, which incorporates an elastoplastic model in what is
referred to as bulk material points has resulted in exceptional performance when predicting elastoplas-
tic behavior in composite materials. The primary objective of this thesis is to extend the existing PRNN
to predict the effect of debonding at the fiber-matrix interface while capturing path-dependent behavior
and minimizing the size of the training dataset with excellent extrapolation ability.

The fundamental capabilities of the existing PRNN with bulk material points only are evaluated in
the microscale cohesive damage framework, particularly when interface elements are implemented
at the fiber-matrix interface of the micromodel. This initial step reveals the limitations of the existing
architecture and it becomes apparent that all types of nonlinearities present in the micromodel must
also be implemented in the network.

This thesis extends the PRNN by incorporating a Cohesive Zone Model (CZM) within the existing
material layer. This new architecture introduces cohesive integration points with the CZM along with the
bulk integration points. Through model selection, various configurations of bulk and cohesive points
are explored, along with different training dataset types and sizes, to maximize predictive accuracy
and extrapolation capabilities. It is observed that training with non-monotonic data is required for the
network to learn both types of nonlinearities. The limitations of the network’s prediction are noted,
which are due to the fact that its architecture does not represent the stress homogenization step of the
multiscale method. This realization highlights the importance of the layout of the PRNN.

Further study investigates new PRNN architectures to improve the physical representation of the
micromodel. The networks are trained on a single curve to select the optimal architecture. The most
promising option is discussed in detail, in which the history parameter of the cohesive points is input to
the bulk points. The network is proven to provide accurate prediction on a small training dataset when
tested on the training dataset. Constraints of the PRNN are discussed and further improvements are
recommended to extend the modified PRNN to a larger dataset.

This research contributes to the field of surrogate modeling for composite materials by investigat-
ing the predictive capabilities of the PRNNs and exploring new architectures. The results provide a
promising outlook for accurately predicting the complex behavior of composite materials, specifically
in the context of cohesive microscale damage considering debonding at the fiber-matrix interface. The
proposed PRNN has the potential to increase computational efficiency of multiscale modeling in engi-
neering applications.
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1
Introduction

1.1. Background and motivation
The use of composite materials as structural elements has been increasing over the years due to
their superior qualities. The overall idea behind designing composite materials is to achieve a material
with better mechanical performance than what its components individually could obtain. For example,
fiber-reinforced polymers (FRPs) used in aircraft structures contribute to a significant weight-reduction
[1]. In the civil engineering context, using composites enables tailoring the materials to obtain desired
mechanical properties for a target structural performance [2].

Combining different materials into a heterogeneous material while utilizing them in the most optimal
way possible has clear advantages. Obtaining these desired mechanical properties requires testing
the composite materials. While modeling techniques mitigate the costs of experimental testing, obtain-
ing a global response from these composite materials is challenging. These challenges arise from the
complex nature of these composite materials. Additionally, it is difficult to capture the non-linear be-
havior of the material on multiple scales. Consider the case of laminates, where a macroscale model is
required to model the overall response of the structure. However, the overall response depends on the
plies that the composite consists of, such as their orientation and thickness, which can be modeled in
mesoscale. The behavior of the piles is dependent on the fiber-to-matrix ratio and their exact material
properties for instance, which are modeled in microscale.

An appealing but expensive computational solution to overcome the difficulties posed by the het-
erogeneous nature of the composite materials is the use of multiscale modeling. In this method, the
structure is modeled in different scales. Multiscale modeling methods can be categorized into two ap-
proaches based on the connection between the scales: the hierarchical and the concurrent multiscale
method [3]. In the hierarchical approach, the model is evaluated on the different scales separately,
one at a time. On the contrary, concurrent models incorporate the different scales into one model, and
the scales are evaluated simultaneously. The concurrent method is able to overcome the difficulties
posed by strain localization that the hierarchical method cannot, which makes it a more advantageous
method.

A specific case of concurrent multiscale modeling method is the FE2 method. In this method, a given
structure is analyzed on two scales: on micro- and macroscale [3]. On the macroscale, the composite
structure is modeled as a homogeneous structure with a micromodel nested at each of its material
points. This heterogeneous micromodel contains all the material complexities along with the consti-
tutive relations and is referred to as the representative volume element (RVE). In the FE2 framework,
scale transitions between micro- and macroscale are established. For the RVE, a microscale boundary
value problem (BVP) is constructed which provides the transition from macro- to microscale. This is
referred to as downscaling. After the full-order solution is evaluated on the microscale, an upscaling
process takes place, in which themicroscopic stresses are homogenized to obtain amacroscopic stress
value. The FE2 method is an appealing computational method since it bypasses directly computing a
complex macroscale constitutive relation between the stresses and strains. However, the downscaling
process, computing the full-order solution for the RVE, and the upscaling process are repeated for each
integration point of the macrostructure, which is a rigorous process and has a high computational cost.
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2 1. Introduction

There are several methods proposed to alleviate the computational bottleneck associated with the
FE2 method. One way is to reduce the computational time required to solve the boundary value prob-
lem in the RVE by using dimensionality reduction techniques. Proper orthogonal decomposition (POD)
[4] and proper generalized decomposition (PGD) [5, 6] are both techniques that create a reduced-order
model of the RVE to solve the micromodel in a low-dimension space. POD and PGD are effectively
reducing the computational time, however, these techniques can still involve a large number of param-
eters. To overcome this problem, a new approach is emerging in the field which involves surrogate
models replacing the full-order microscale BVP. For instance in [7] and [8], the full-order micromodel
is replaced by a recurrent neural network (RNN) at each integration point. The network predicts the
microscale constitutive model while storing history parameters to account for the path-dependency of
composite materials. A drawback of this method can be related to the black-box nature of these RNNs.
Since the network only sees the input strain and output stress values during training with no physical
interpretation, it is not able to extrapolate to unseen loading scenarios. This means that a large amount
of data is required to train the network to cover the loading space. To improve on the extrapolation
capabilities of RNNs, a portion of the literature focuses on using physics-informed neural networks
(PINNs) as surrogate models [9, 10]. In PINNs, physical constraints are implemented in the loss func-
tion of the network. In [9] and [10] the accuracy of the PINNs applied for elastoplastic materials is
showcased while allowing for a more accurate extrapolation based on the actual material properties. A
different approach was presented in a recent work using mechanics-informed machine learning [11]. In
this approach, a priori knowledge of mechanics was implemented in the network to predict elastoplas-
ticity for composites with pressure-independent yielding behavior by mechanics-based decomposition
of stresses and strains. The network showed accurate predictions trained on a small dataset.

Another novel approach applied for composites with elastoplastic behavior showed great accuracy
when trained on a small dataset by using physically recurrent neural networks (PRNNs) [12]. In PRNNs,
the constitutive relations in the full-order micromodel are directly implemented in the hidden layer of the
network, bypassing the need for a complex network while giving physical interpretation to the hidden
layer. The performance of the PRNN was evaluated on a microsctructure and compared to the per-
formance of a Bayesian Recurrent Neural Network (RNN) [12]. Trained on monotonic data, the PRNN
was able to predict with the same accuracy as the RNN, but with one sixteenth of the training data
required for the RNN. Moreover, the PRNN was able to extrapolate to non-monotonic test data even
though it only saw monotonic training data. This level of accuracy could be achieved by the RNN only
when adding non-monotonic data during training and with a much larger dataset. One of the trained
PRNNs was applied within the FE2 framework on a macrostructure, and it was observed that replac-
ing the full-order solution with the network resulted in a reduction of computational time by more than
20,000 times.

Although an increasing number of research has been devoted to modeling the behavior of hetero-
geneous materials with path-dependency in the surrogate modeling field, reducing model complexity
while keeping the training data size small is still quite a challenging endeavor. For instance, the RNNs
applied in the FE2 framework discussed above require a large sampling effort when it comes to predict-
ing path-dependent behavior. Moreover, a large part of the literature focuses on predicting elastic or
elastoplastic behavior. In fracture mechanics, surrogate modeling is even more of an unexplored field.
For example, surrogate models were used to create traction-separation laws using deep reinforcement
learning [13], though this work does not attempt to accelerate multiscale modeling. In the works of
Liu [14, 15], a deep material network (DMN) was developed, which describes the RVE with a network
that is built up from physics-based building blocks. In the first work [14], debonding effects in the RVE
were successfully captured by the adaptable cohesive building blocks included in the network, where a
multi-stage training strategy was explored. In [15] this method was extended to localization problems
with a cell-division scheme, which overcame the difficulties related to selecting the proper size of the
RVE and the length-scale. A probabilistic machine learning approach using Bayesian regression was
proposed in [16], in which full-order models are nested in anchor material points of the structure. These
anchor models are fully solved and used for training the models online, bypassing the offline training
stage.

Another solution to reduce computational time in the FE2 framework applied in fracture mechanics
is to implement model order reduction with a domain separation strategy [17, 18]. In these works,
a domain separation strategy is introduced to focus the computational power on the fracture, which
requires most of the attention.
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These innovative approaches reduce the high computational cost associated with the repeated
evaluation of the full-order micromodel at the integration points. However, a critical gap persists in the
existing literature on surrogate modeling in the fracture mechanics field. Although advanced methods
are capable of capturing elastoplastic behavior, they do not incorporate softening constitutive laws
required for modeling cohesive damage, and the works that do incorporate them are highly convoluted
such as the DMNs. Along this line, the physically recurrent neural networks introduced in [12] showcase
great potential in capturing the underlying physics of material behavior. Therefore, it is interesting to
investigate the capabilities of PRNNs in the fracture mechanics field.

There are different ways of incorporating softening behavior of composites using interface elements
with a cohesive zone model (CZM). When debonding between fibers and matrix is considered, these in-
terface elements are introduced at the fiber-matrix interface in the micromodel. When strain localization
is considered, these interface elements can be implemented at a predefined crack path, or distributed
along the whole micromodel to allow for an arbitrary crack path to form.

1.2. Research objective and scope
In order to address the computational challenge posed in Section 1.1, the following research objective
was established:

The goal of this research is to design a surrogate model based on the current version of physically
recurrent neural network [12] that is able to predict cohesive damage of compositematerials. To achieve
this, the PRNN should ideally meet the following criteria:

• is able to capture path-dependency
• does not require a large training set
• extrapolates accurately to unseen loading scenarios.

This thesis is limited to the case of accounting for debonding at the fiber-matrix interface is considered.
Application for strain localization is out of the scope of this work.

1.3. Methodology
The training, validation, and test dataset for the PRNNs are created to be able to evaluate their per-
formance. This consists of generating the load paths and applying the loading on the full-order FE2

micromodel implemented in the in-house code using the Jem/Jive library of C++. The high-fidelity so-
lution to which the predictions of the networks are compared is obtained and the different datasets are
created.

The parameter study conducted on the existing network developed in [12], implemented in the
Jem/Jive library of C++, is done by an external Python file defining the values of the parameters which
allows for modification of the PRNN. The implementation of the cohesive zone model in the material
layer of the existing PRNN is done by modifying the in-house code in Jem/Jive C++. For the modified
architectures of the PRNN, the PyTorch library of Python is used for ease of implementation. The cohe-
sive zone model written in C++ is converted to Python, and custom layers are created to accommodate
the changes in network layout. For all visualization of results, Python is used.

For each PRNN configuration, 10 initializations are created during training to account for variations
in network performance. The variables that are changed during the study for the different architectures
consist of the size of the training data and the number of fictitious material points with plasticity and/or
with the cohesive zonemodel. During training, stochastic gradient descent is used with Adam optimizer.

1.4. Thesis outline
First, a theoretical background is presented for multiscale modeling and neural networks in Chapter
2, with more emphasis on the physically recurrent neural network. [12]. In Chapter 3, a description is
given of the full-order micromodel, and the material models used in this thesis. Additionally, the data
generation method for training and testing the networks is described. Chapters 4-6 address the perfor-
mance of the PRNNs proposed to achieve the research objective. In Chapter 4, a brief parameter study
is conducted on the PRNN in its current state [12]. In Chapter 5, the architecture of the existing network
is kept but enhanced with cohesive material points. Based on the conclusions drawn from preceding
chapters, new architectures are proposed in Chapter 6. Conclusions are drawn and recommendations
are established in Chapter 7.





2
Theoretical framework

This chapter is dedicated to discussing the theoretical background behind this thesis work. First, a
detailed description of the FE2 method is presented. Then, the use of surrogate models to accelerate
computational time caused by the bottleneck associated with the FE2 method is discussed. Particularly,
a brief introduction to neural networks is presented followed by a detailed description of the physically
recurrent neural network, and its main difference from standard, recurrent, and physics-informed neural
networks is highlighted.

2.1. The FE2 method
The FE2 method is a popular concurrent multiscale finite element analysis used to obtain a homoge-
nized response of heterogeneous materials. In this method, the structure is discretized into a homo-
geneous macrostructure, and a full-order micromodel is nested into each integration point of it. This
full-order micromodel is called a representative volume element (RVE), and it includes all material
heterogeneity. The macroscopic strain values are downscaled to microscopic strain values for the full-
order micromodel, where the microscopic boundary value problem (BVP) is solved. The microscopic
stress values obtained from the BVP are then upscaled back to the macromodel, where equilibrium is
solved.

The schematics of the FE2 method is shown in Figure 2.1. Themacroscopic solid domain is denoted
by Ω, and the surfaces where the Dirichlet and Neumann boundary conditions are applied are denoted
as ΓΩ𝑢 and ΓΩ𝑓 , respectively. The discontinuity in themicroscopic domain is denoted by Γ𝜔𝑑 . At the fracture
surface, the two opposite sides of the crack are differentiated by a + and a − sign. The following key
elements of FE2 applied to fracture mechanics are discussed in this chapter: the macroscale problem
formulation, the microscale RVE problem formulation along with the boundary conditions received from
the macroscale, and the micro- to macroscale transition.

2.1.1. Macroscale problem formulation
The macroscopic BVP, without body forces of the macrostructure, is described by the following equi-
librium equations:

∇ ⋅ 𝜎𝜎𝜎Ω = 0, (2.1)

where ∇ is the divergence operator, 𝜎𝜎𝜎Ω are the macroscale stresses. The Dirichlet and Neumann
boundary conditions are given in Eqs. (2.2) and (2.3), respectively.

𝜎𝜎𝜎Ωn = tΓ𝑓 on ΓΩ𝑓 (2.2)
uΩ = uΓ𝑢 on ΓΩ𝑢 (2.3)

The prescribed traction forces and displacements are denoted by tΓ𝑓 and uΓ𝑢 , respectively, and n
is the unit outward normal vector to the boundary. Since no macroscopic cracks are allowed in the
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6 2. Theoretical framework

Figure 2.1: FE2 framework

applications considered in this work, the formulation of macroscale strains in the continuous domain
can be described by:

𝜀𝜀𝜀Ω =
1
2
(∇uΩ + (∇uΩ)

T
) (2.4)

Next, the constitutive law is defined to relate strains and stresses:

𝜎𝜎𝜎Ω = 𝜎𝜎𝜎Ω (𝜀𝜀𝜀Ω,𝛼𝛼𝛼) (2.5)

where 𝛼𝛼𝛼 are internal variables storing the previous states.
Note, however, that the constitutive relations on the macro level are not defined explicitly, due to

the complexity of the material. This is why full-order micromodels are nested at the integration points,
which bypasses the need for such model.

2.1.2. Microscale RVE
The macroscale strains at the material points are passed to the RVE, where they are used as boundary
conditions. The displacement field in the micromodel with domain denoted as𝜔 can be computed using
these strains:

u𝜔 = 𝜀𝜀𝜀Ω ⋅ x𝜔 + ũ𝜔, (2.6)

where ũ𝜔 is the displacement fluctuation, which vanishes if proper boundary conditions are applied to
the RVE. The the macroscale strain is considered to be constant over the volume due to the assumption
of separation of scales, and it can be computed by:

𝜀𝜀𝜀Ω =
1
‖𝜔‖

∫
𝜔
𝜀𝜀𝜀𝜔 𝑑𝜔 (2.7)

On the lower scale, the following equilibrium equation needs to be solved with 𝜎𝜎𝜎𝜔 being the mi-
croscale stresses:

∇ ⋅ 𝜎𝜎𝜎𝜔 = 0 (2.8)

The additional boundary conditions posed by the discontinuity along the fiber-matrix interface can
be described with equations:



2.2. Feed-forward neural networks 7

+t𝜔𝑑 +
− t𝜔𝑑 = 0; 𝜎𝜎𝜎𝜔𝑑n𝑑 =− t𝜔𝑑 on Γ𝜔𝑑 , (2.9)

where Γ𝜔𝑑 is the fracture surface at the fiber-matrix interface, +t𝜔𝑑 and −t𝜔𝑑 are the traction forces on the
opposite sides of the microcrack, n𝑑 is the unit outward normal vector to the fracture surface and 𝜎𝜔𝑑
is the stress in the bulk point at the fracture surface.

As mentioned before, the exact constitutive models are included directly in the RVE. These are
expressed as the following:

𝜎𝜎𝜎𝜔 = 𝜎𝜎𝜎𝜔 (𝜀𝜀𝜀𝜔,𝛼𝛼𝛼) (2.10)
t𝜔𝑑 = t

𝜔
𝑑 (!u

𝜔",d) , (2.11)

where t𝜔𝑑 is the cohesive traction computed from the displacement jump !u𝜔" and internal variables
d. The displacement jumps are also interpolated from the nodal values in each interface element and
contribute to the global stiffness matrix of the micromodel as:

𝐾𝐾𝐾!u𝜔" = ∫
𝛾𝑖
N𝑇!u𝜔"TN!u𝜔" 𝑑𝛾𝑖 (2.12)

where 𝛾𝑖 represents the interface surfaces, N!u𝜔" is the shape function matrix, and T refers to the
tangent constitutive matrix of the interface element given by:

T =
𝜕t
𝜕!u" (2.13)

As for the regular bulk models, the tangent constitutive matrix is given by:

Du =
𝜕𝜎𝜎𝜎
𝜕𝜀𝜀𝜀

(2.14)

and their contributions to the global tangent stiffness matrix of the micromodel follows:

Ku = ∫
Ω
B𝑇uDuBu 𝑑Ω (2.15)

where Bu is the matrix containing the derivatives of shape functions.
Section 3.1 provides a brief overview of the material models used in this thesis.

2.1.3. Homogenization procedure
After the exact computation of the full-order solution in the micro-scale, the obtained stress values
across the RVE have to go through an averaging procedure called homogenization, so that a final
stress value can be sent back to the macroscale model. The stress homogenization is obtained by
integrating over the volume of the RVE:

𝜎𝜎𝜎Ω =
1
||𝜔||

∫
𝜔
𝜎𝜎𝜎𝜔 𝑑𝜔 (2.16)

For accurate coupling between the two scales, the energy between them must be consistent. For
this, the Hill-Mandel principle has to be satisfied [19].

After the macroscale model receives the stress values at each of the material points of the structure,
global equilibrium can be solved by a chosen computational method (e.g. Newton-Raphson method).

2.2. Feed-forward neural networks
To understand the concept behind the physically recurrent neural network used in this thesis to acceler-
ate the computational time of multiscale modeling, first, an introduction to neural networks is presented.
The simplest type are the feed-forward neural networks, which are a popular foundation for machine
learning and are widely used in pattern recognition. The goal of neural networks is to create a com-
putational framework that is able to learn a certain pattern/behavior given observed data and is able
to utilize this information to generalize and make new predictions at a lower computational cost. It at-
tempts to simulate the act of learning in biological systems, such as the human brain, in which neurons
are connected by axons, resulting in a framework that is able to process information [20].
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A feed-forward neural network is built up by an input layer, hidden layers, and an output layer.
To illustrate that, Figure 2.3 shows a particular architecture choice with 2 hidden layers. Each layer
consists of neurons that are connected by axons to the neurons in neighboring layers, with a weight
and a bias parameter corresponding to each axon. The input values v to the neurons in layer 𝑙 are a
linear combination of the values of the neurons in the previous layer, and are computed by using these
weight and bias parameters (W and b):

v𝑙 =W𝑙a𝑙−1 + b𝑙 (2.17)

where in each neuron, an activation function 𝜙 is applied, introducing non-linearity into the network:

a𝑙 = 𝜙(v𝑙) = 𝜙(W𝑙a𝑙−1 + b𝑙) (2.18)

This gives the output a𝑙 of a layer 𝑙. The activation functions considered in this work are the Linear, the
SoftPlus, the Tanh, and the Leaky ReLU activation functions, and they are shown in Figure 2.2 when
applied to arbitrary values.

Figure 2.2: Activation functions used in this work

The parameters of the network are initialized, and updated during training. The objective of training
the network is to find the optimal set of parameters that give the maximum likelihood of the training
data. To obtain these optimal values, forward and backward passes are required. During the forward
pass, Eq. (2.17) is evaluated for a given batch for every layer until the final predictions are obtained at
the output layer. The fit of the prediction on the data is evaluated by computing an error function, for
example, the mean squared error (MSE):

MSE =
1
𝑁

𝑁

∑
𝑛=1

||y(xn) − ŷ(xn)||2, (2.19)

where y(xn) is the true target value, and ŷ(xn) is the prediction of the network.
This loss function is minimized during training by modifying the parameters. This is done during the

backward pass by using gradient information on the parameters. Detailed descriptions and derivations
on gradient descent optimization and error backpropagation can be found in [21]. In the standard case,
one epoch contains one forward and one backward pass. To accelerate learning, minibatching can be
applied. When minibatching, the dataset is grouped into smaller batches that are passed forward and
backward at the same time, leading to a more frequent update of the parameters.



2.3. Recurrent neural networks 9

Figure 2.3: Feed-forward neural network

The training continues until a maximum number of iterations is reached, or when no significant de-
crease in the training error is observed after a fixed set of epochs, thus a local minimum is obtained. The
model parameters are then stored, and the network is ready to predict unseen data. On an important
note, the network can lose its capacity to obtain a generalized response as it tries to fit its predictions
too closely, which is commonly known as overfitting. To avoid this, a validation set is often considered,
which consists of a certain portion of the data selected randomly prior to training. The error is computed
on this validation set and while minimizing the training error, the model is saved only if the validation
error is smaller than the historical best.

In the case of the simple feed-forward neural network, the only input to the layers is the linear
combination of nonlinear functions of the values in the previous layer. This becomes an issue when
predicting the response of materials with nonlinear behavior, where the stress state of the material point
depends on the loading history. Considering elastoplastic behavior, once thematerial undergoes plastic
deformation, its response not only depends on the current load but also on its prior plastic deformation.
During cyclic loading, there are multiple stress states corresponding to a strain level. The setup of
the network does not allow for it to keep track of its previous state and, therefore cannot account for
path-dependency. For that matter, recurrence can be added to the networks which are discussed in
the next section.

2.3. Recurrent neural networks
In order to use the networks as surrogate models in the FE2 framework for path-dependent heteroge-
neous materials, they have to be capable of keeping track of previous states of the material. This could
be done by using recurrent neural networks (RNNs), in which the state of a layer depends not only on
its input but also on its previous state. The previous state of the neuron is stored in a history variable,
which also has corresponding parameters to optimize. The current hidden state is calculated by:

h𝑡 = 𝜙(Wℎℎh𝑡−1 +W𝑣ℎv𝑡 + bℎ) (2.20)

This relation is represented by Figure 2.4. The hidden state is then used to calculate the output of the
neuron:

a𝑡 = 𝜙(Wℎ𝑎h𝑡 + b𝑎) (2.21)

Although improvements were made to this architecture in order to account for long-term memory
[22], the ability of RNNs to extrapolate to unseen scenarios is limited. In the context of the FE2 frame-
work, a large amount of data is required to cover the possible loading scenarios [12].
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Figure 2.4: Simple recurrent neural network neuron[12]

When applied as a surrogate model at the integration points of the macrostructure, the network can
be viewed as a computational tool that inputs the observed strain values into a black box and outputs
the approximation of the stress values. An important thing to note is that this black box of hidden layers
has no physical meaning behind it.

2.4. Physically recurrent neural network
To tackle the issues related to the black-box nature of neural networks, physically recurrent neural
networks (PRNNs) developed by Maia et al. [12] introduce a new way of implementing the physical
properties present in the microstructure. Unlike in PINNs, where the physical constraints of the problem
are incorporated in the loss function [23], in PRNNs the actual material models used in the full-order
solution are implemented in the hidden layer of the network. Figure 2.5 displays the PRNN in general
terms and with the simplest architecture studied in the reference work.

Figure 2.5: Physically recurrent neural network [12]

The architecture consists of an input, a material, and an output layer. The macroscale strains
𝜀𝜀𝜀Ω at the integration points of the macrostructure are the inputs to this network. In two dimensions
assuming small strains, this corresponds to 3 input values. These macroscale strains are passed
through an encoder layer, which is a dense layer with linear activation functions. This encoder converts
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the macroscale strains to microscale strains, which corresponds to the macro- to micro-scale transition
in the FE2 method. Combining the Linear activation function with Eq. (2.17), the microscale strains 𝜀𝜀𝜀𝜔
are then given by:

𝜀𝜀𝜀𝜔 =W1𝜀𝜀𝜀Ω + b1, (2.22)

whereW1 are the weights connecting the input layer to the material layer and b1 is the bias associated
with the encoder. There are no residual stresses considered in this work, which means that there is
a zero stress state for when no strain is applied to the microstructure. Therefore, the network should
also predict zero stresses when the strain inputs are zeros. This is achieved by setting the bias term
b1 = 0, which ensures zero microscale strain inputs to the material models for zero macroscale strain
values.

Then, these microscale strains are passed through the material layer, which provides the essence
of the physically recurrent neural network. The material layer consists of nodes grouped in threes
(in the two-dimensional case), and each of these groups represents a fictitious integration point. In
these points, a constitutive model D𝜔 is nested which converts the microscale strains 𝜀𝜀𝜀𝜔 to microscale
stresses 𝜎𝜎𝜎𝜔. This constitutive model is the exact same model in the full-order micromodel. This way,
the black box idea of the hidden layer is deciphered, and true physical meaning is given to the layer.

As discussed in the previous sections, an ideal network keeps track of its state in previous time
steps in order to be able to predict path-dependent materials. This is done in the PRNN by storing the
internal variables 𝛼𝛼𝛼 of each material point, which for example in plasticity can be plastic deformation,
in a history vector (h𝑡) as they are computed in the assigned constitutive model. Therefore natural
path-dependency arises. This stands in contrast with regular recurrent networks, where the history
variables are also learned through additional learnable parameters and standard activation functions
(e.g. Tanh and Sigmoid). The operation in the neurons at the fictitious material points can be described
by Eq. (2.23) and is shown in Figure 2.6.

𝜎𝜎𝜎𝜔,h = D𝜔(𝜀𝜀𝜀𝜔,h𝑡−1) (2.23)

Figure 2.6: Neuron in material layer of physically recurrent neural network [12]

After the microscale stresses are computed in the material layer, these stress values are passed
through a decoder. This step corresponds to the stress homogenization step of the FE2 method. Es-
sentially, themacro-scale response of themicrostructure is a combination of the fictitiousmaterial points
present in the material layer. In the particular achitecture shown in Fig. 2.5, the decoder consists of a
dense layer with a SoftPlus activation function applied on the weights only. This is done to represent
the homogenization process through numerical integration, in which weights are strictly positive. The
macroscale stress output of the network is obtained by combining the Softplus activation function and
Eq. (2.17):
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𝜎𝜎𝜎Ω = 𝜙𝑠𝑝(W2)𝜎𝜎𝜎𝜔 + b2, (2.24)

whereW2 are the weights connecting thematerial layer to the output layer, and b2 is the bias associated
with the decoder. This bias term however is also neglected to ensure zero macroscale stresses for zero
microscale stress values, as a stress-free state is assumed at zero strain level.

During training, the following loss function is minimized:

L =
1
𝑁

𝑁

∑
𝑡=1

||𝜎𝜎𝜎Ω(𝜀𝜀𝜀Ω𝑡 ) − 𝜎𝜎𝜎
Ω(𝜀𝜀𝜀Ω𝑡 )||2, (2.25)

where 𝑁 is the number of timesteps during loading and 𝜎𝜎𝜎Ω(𝜀𝜀𝜀Ω𝑡 ) is the target value. Stochastic gradient
descent is used with Adam optimizer.

The full-order micromodel used in [12] is shown in Figure 2.7, where J2 plasticity model was used
for the matrix and a linear elasticity model for the fibers. It is important to highlight a conclusion drawn in
that study: the PRNN was able to find a solution with only the elastoplastic model (i.e. the constitutive
model used to describe the matrix) in the material layer. This was possible due to the presence of the
linear elastic behavior expected by the fiber’s model when small enough strain values are passed by
the encoder and stresses are amplified in the decoder, making the matrix model effectively work like
the linear elastic model of the fiber.

Figure 2.7: Full-order micromodel used in [12]

In the following chapters, the performance of the PRNN and potential modifications are evaluated
in the fracture mechanics context. The next chapter presents the full-order micromodel with interface
elements used in the FE2 method. This micromodel is subjected to different loading scenarios to obtain
high-fidelity solutions used to train and assess the network’s performance. The loading path generation
is discussed in the next chapter as well.
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Data generation

This thesis work is dedicated to predicting microscale damage using the PRNN [12]. To generate the
data required for assessing its performance, the full-order micromodel considered in the reference work
is modified to include a cohesive zone model (CZM) at the fiber-matrix interface to allow for debonding
to take place. This chapter focuses on introducing the micromodel used to create the training and test
datasets, the material models that are included, and different loading conditions considered.

3.1. Full-order micromodel
The micromodel considered in this work consists of a bulk matrix with fibers as inclusions and interface
elements at the boundary of the two constituents. In the FE model of the micromodel shown in Figure
3.1. There are two types of bulk points: the ones corresponding to the matrix which are described
by a plasticity material model, and the ones corresponding to the fibers which are described by a
linear elastic material model. Finally, the cohesive points are described by a cohesive zone model that
accounts for microscale damage of the material. Limiting damage to the fiber-matrix interface means
that no global failure can take place. The material properties of the bulk points are kept as in [12].

Cohesive zone 
model

Elastoplastic
model

Linear elastic 
model

Figure 3.1: Full-order micromodel used in this work

The linear elastic fibers have the following properties:

𝐸 = 74000 MPa (3.1)
𝜈 = 0.2 (3.2)

J2 plasticity was used for describing the matrix material and is commonly known as von Mises
plasticity. The von Mises stress 𝜎vm is defined as:

𝜎vm = √
3
2
tr(𝜎𝜎𝜎2𝑑) = √3J2, (3.3)

13
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with tr(𝜎𝜎𝜎2𝑑) being the trace of the deviatoric stress tensor and J2 a deviatoric stress invariant, which the
J2 model got its name from. The yield function 𝑓(𝜎, 𝜅) is given by

𝑓(𝜎, 𝜅) = 𝜎vm − 𝜎𝑦(𝜅), (3.4)

which states that the material enters plastic deformation after a certain yield stress 𝜎𝑦(𝜅) is reached.
The yield stress depends on the hardening parameter 𝜅, which drives the hardening (or softening) of
the material. The plastic deformation progress ̇𝜀 ̇𝜀 ̇𝜀𝑝𝑝𝑝 is defined by the flow rule:

̇𝜀 ̇𝜀 ̇𝜀𝑝 = �̇�m, (3.5)

where �̇� is the plastic multiplier that represents the magnitude of the plastic flow, andm represents the
direction of the plastic flow.

The properties of the elastoplastic matrix are:

𝐸 = 3130 MPa (3.6)
𝜈 = 0.3 (3.7)

𝜎𝑦 = 64.8 − 33.6𝑒−𝜀
𝑝
𝑒𝑞/0.0003407 (3.8)

𝜀𝑝𝑒𝑞 = √
2
3
𝜀𝜀𝜀𝑝 ∶ 𝜀𝜀𝜀𝑝, (3.9)

with yield function 𝜎𝑦 with isotropic hardening, and plastic and equivalent plastic strain 𝜀𝑝𝜀𝑝𝜀𝑝 and 𝜀𝑝𝑒𝑞,
respectively.

The cohesive zone model used in the micromodel is developed by Turon et al. [24]. The constitutive
model between traction and displacement jump is defined by a bilinear equation and is shown in Figure
3.2.

Figure 3.2: Bilinear constitutive relation between traction and displacement jump

The displacement jump and traction force in local coordinates are denoted by Δ and 𝜏, respectively.
Damage 𝑑 is initiated once the traction force reaches a critical value 𝜏0. Ideally, there is no displacement
jump before damage onset, so the value Δ0 should be zero. However, the displacement jump should
ideally also be zero for traction forces smaller than the critical value before damage is initiated. This
complexity is overcome by including a linear function for 0 ≤ Δ ≤ Δ0 with a high stiffness 𝐾, which is
referred to as dummy stiffness. It is a dummy variable, as it does not arise from material properties
but it is an artificial value to ensure Δ ≈ 0 for the stage with no damage. After reaching the peak
traction force, the force capacity of the point decreases as the microcrack forms. If the microstructure
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is unloaded at time 𝑡, the unloading takes place with the secant stiffness (1 − 𝑑𝑡)𝐾 where 𝑑𝑡 is the
damage at time 𝑡. This is unlike the plasticity model, where the unloading takes place with the linear
elastic stiffness. The damage parameter 𝑑 increases from 0 to 1, with 0 meaning no damage and 1
meaning fully damaged material (i.e. there is no load-bearing capacity of the material point).

In the normal component of the local coordinate of the interface element, no displacement jump is
allowed in compressive forces, since negative displacement is not possible (i.e. interpenetration would
take place). This is achieved by using a linear curve with the dummy stiffness in the negative values.
The shear component of the local coordinate allows slip in the negative direction, therefore the plot in
Figure 3.2 is symmetric with respect to its origin. The constitutive relations for the local normal and
shear components are shown in Figure 3.3.

(a) Normal component (b) Shear component

Figure 3.3: Turon constitutive law between traction and displacement jump in local normal and shear components

𝐾 5 × 107 MPa

𝜏0𝑛 60 MPa

𝜏0𝑠 60 MPa

𝐺𝐼𝑐 0.874 kJ/m2

𝐺𝐼𝐼𝑐 1.717 kJ/m2

Table 3.1: Properties of cohesive points

The properties considered for the cohesive zone model are summarized in Table 3.1, in which 𝜏0𝑛
and 𝜏0𝑠 are the critical traction forces and 𝐺𝐼𝑐 and 𝐺𝐼𝐼𝑐 are the fracture energy values that define the
area under the bilinear curve in normal and shear directions. The damage evolution law is discussed
in [24]. In this work, plane stress conditions are assumed for the micromodel.

3.2. Load path generation
Themicromodel discussed in Section 3.1 is subjected to different loading paths using periodic boundary
conditions. To prevent rigid body rotations, the micromodel was fixed in 𝑥 and 𝑦 direction at corner 0
and fixed in 𝑥 direction at corner y, while the loading was applied in 𝑥 and 𝑦 direction at corner 𝑥, and
in 𝑦 direction at corner y, as illustrated in Figure 3.4. The datasets used for training and testing the
network can be separated into two categories: proportional and non-proportional loading.
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Figure 3.4: Boundary conditions for full-order micromodel

3.2.1. Proportional loading
The loading takes place over a fictitious time 𝑡. During proportional loading, the applied strain incre-
ments have a constant step size 𝑠 = 1.67 × 10−3. These increments are applied in the predefined
directions of the strain space, which are represented by 𝜀𝑥, 𝜀𝑦, and 𝜀𝑥𝑦. A subset of the predefined
directions can be seen in Figure 3.5, where the blue curves display the load paths in 18 directions
from the fundamental loading cases, containing pure tension, compression in 𝑥, 𝑦, and 𝑥𝑦 direction,
biaxial tension, and mixed mode loadings. This dataset generated from the known loading directions
is referred to as the canonical dataset. The orange curves represent load paths in random directions
and the dataset generated from these curves is referred to as the random directions dataset.

Figure 3.5: Proportional loading path directions

Monotonic and non-monotonic loading can be differentiated in the proportional loading set. During
monotonic loading, the step size is always applied in one direction, and the load will only increase.
During non-monotonic loading, however, while the direction in which the step size is kept fixed, unload-
ing takes place at different loading steps for a predefined amount of time. The loading functions that
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define the relation between 𝑡 and the magnitude of loading for monotonic and non-monotonic cases
considered in this thesis are shown in Figure 3.6.

(a) Function with one unloading cycle (b) Function with two unloading cycles

Figure 3.6: Loading functions used to generate proportional loading curves

3.2.2. Non-proportional loading
To create a more diverse loading scenario, non-proportional and non-monotonic loading paths are
generated. Both the direction of loading and step size are varied at each time step. This is achieved
by sampling the strains from Gaussian Processes (GPs). Each strain component is drawn from an
indepndent and multivariate normal distribution given by:

X ∼ 𝒩(𝜇𝜇𝜇,ΣΣΣ) (3.10)

whereX represents a vector containing the strain values at the different time steps, 𝜇𝜇𝜇 is the mean vector
that specifies the expected value of strains, and ΣΣΣ is the covariance matrix. The covariance matrix ΣΣΣ
describes the relationships between the samples in each of the components. The covariance function
between two time steps 𝑖 and 𝑗 is given by:

Σ𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎2𝑓 exp(−
1
2𝓁2

||𝑥𝑖 − 𝑥𝑗||2) (3.11)

with 𝜎2𝑓 being the variance that determines the step size and 𝓁 being the lengthscale that controls the
smoothness of the generated path. With increased variance 𝜎2𝑓 the strains are able to obtain larger
values, and with increased lengthscale the curve becomes smoother. Values 𝜎2𝑓 = 0.0001667 and
𝓁 = 200 were used in this work. The strain values are sampled step by step, which results in the same
stress-strain path if sampling the entire sequence at once for a fixed random seed. The strain paths

(a) Strain paths (b) Stress-strain curves

Figure 3.7: Example of GP-based loading path

are generated independently in the 𝑥, 𝑦, and 𝑥𝑦 components, which are illustrated in Figure 3.7. Figure
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3.7b displays the resulting stress-strain curve from the corresponding generated strain paths. A subset
of the load paths generated by GPs is shown in Figure 3.8, with a curve highlighted in red for clarity.

Figure 3.8: Non-proportional loading path directions
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PRNN with bulk models only

This chapter addresses the research objective by investigating whether the physically recurrent neural
network as proposed in [12] (Figure 4.1) is able to capture microscale damage. Recall that in that
work, the fibers and the matrix in the micromodel are assumed to be fully bonded. Consequently, the
constitutive models in the material layer of the network do not describe softening. Here, however, full
bondage is no longer assumed in the full-order micromodel. Since not all nonlinearities in the full-order
micromodel (Figure 3.1) are implemented in the material layer of the PRNN, this study is an initial step
to understand the network attempts to predict debonding.

In this initial verification, the architecture explored consists of one input, one material, and one
output layer with only bulk integration points in the material layer. The bulk integration points consist
of 3 neural units, in which J2 plasticity model is nested to convert 2D local strains to 2D local stresses.
Note that no damage model is considered at this stage in the network other than in the training data
itself.

Figure 4.1: PRNN with elastoplastic model only

19
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4.1. Training with monotonic and proportional data
The network was trained on 18 curves from the canonical, monotonic, and proportional dataset. The
validation data consisted of 54 curves from the monotonic and proportional dataset but with random
directions. The size of the training and validation dataset are based on [12], and are not varied in this
chapter due to the assumption that increasing the training data will not influence the results qualitatively.
Different material layer sizes were studied, which was kept to be a multiple of 3 to represent the fictitious
material points consisting of 3 neurons. The validation error for these material layer sizes are shown
in Figure 4.2, where the number of material layer units 𝑛𝑢 corresponds to 𝑛𝑢/3 bulk material points.
For each material layer size, the box plot displays the first quartile (Q1), the median, the third quartile
(Q3), and the interquartile range (IQR) which spans between the first and third quartiles. The whiskers
extend to the minimum and maximum values, excluding the outliers. Data lying outside the range
[𝑄1 − 1.5𝐼𝑄𝑅, 𝑄3 + 1.5𝐼𝑄𝑅] are marked with a diamond, which represents the outlier data points. It is
not recommended to consider the outliers when selecting the optimal network size. The sample mean
is marked with a white cross.

Figure 4.2: Validation Error for PRNN trained on monotonic data for different material layer sizes.

The lowest validation error was found for a material layer size of 9 with an MSE of 3.74 MPa.
However, a pattern of increasing averageMSE can be observed for a material layer size of 6 and higher,
with a minimum at 6 units. Since the lowest validation error for 6 units (3.81 MPa) is not significantly
higher than of 9 units, a material layer size of 6 was selected which corresponds to two fictitious material
points in the network.

The selected network was tested with 54 curves from the random, non-monotonic, and proportional
dataset, with one cycle of unloading. The lowest average MSE of the test set is around 5.22 MPa.
The prediction of the network on one of the test curves from this test set is shown on Figure 4.3a, with
a MSE close to the average MSE of the test set (4.53 MPa). To obtain this prediction, the network
outputs a linear combination of the microscopic stresses that were computed using the constitutive
model embedded in the fictitious points in the material layer. Figure 4.4 displays the microscopic stress-
strain relation along with equivalent plastic strain in each fictitious point in the network for the same
representative curve shown in 4.3a.

The network predicts accurately on the monotonic region, which aligns with observations made in
[12]. The material layer with the elastoplastic model is able to learn the nonlinear behavior that the
monotonic training data encloses. However, once unloading is initiated, the network loses its accu-
racy. The PRNN predicts unloading with the initial, linear elastic stiffness following the assumptions
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(a) Regular unloading (b) Longer unloading

Figure 4.3: Network prediction on representative curves from non-monotonic test set

Figure 4.4: Micro and macro response of PRNN on a representative curve from non-monotonic test set
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embedded in the elastoplastic model. In this case, the error is relatively low for a short period of unload-
ing. However, this error increases largely when the micromodel is subjected to unloading for a longer
period of time. Figure 4.3b shows the prediction of the network on a test curve that was generated by
unloading the micromodel for 20 timesteps instead of 10. Even though excellent agreement is observed
between the curves on the monotonic part, the error in the unloading region is more apparent, resulting
in a high error of around 16.64 MPa. Since the training data consists of monotonic curves only, the
network is not given a chance to learn the effect of the second type of nonlinearity that comes from
the result of the full-order micromodel. The fact that the PRNN with bulk points only, trained on curves
that do not contain information on the effect of the cohesive points, is not able to capture microscale
damage is a reasonable conclusion.

In order to develop a model that can extrapolate well to all types of load cases, the network has to
be improved to capture loss of stiffness due to damage. On that note, it is important to verify whether
including non-monotonic data during training improves the network’s accuracy in the non-monotonic
region. This way, the network is exposed to the effect of the cohesive zone model in the RVE by
information coming from the training data.

4.2. Training with non-monotonic and non-proportional data
To observe if training with curves that undergo unloading improves accuracy of the network in the
non-monotonic region of the test set, for training and validation of the network 18 and 54 curves from
the random, non-monotic, non-proportional dataset were used, respectively. The validation error for
different material layer sizes of the network are shown in Figure 4.5.

Figure 4.5: Validation Error for PRNN trained on non-monotonic
data for different material layer sizes

Figure 4.6: Network prediction on a representative
curve from test set

The network with a material layer size of 3 resulted in the lowest validation MSE (12.7 MPa). Having
a network with only one fictitious material point tends to underfit the data, therefore choosing this size
should be avoided. There is a trend of increase in the average validation MSE as the material layer size
is increased, therefore the network with the lowest validation error is selected, other than the network
with 3 units. This corresponds to a network with 9 units of 3 fictitious points of a MSE of 12.8 MPa.

The same test set of 54 curves from the random, non-monotonic, and proportional dataset with one
unloading was used as for the network that was trained on monotonic data, for fair comparison. The
lowest average MSE of the test set was found to be 8.43 MPa. The prediction of the network on a
representative curve from this test set is shown on Figure 4.6.

The network seems to learn that the unloading should occur with a lower stiffness than the initial
linear elastic stiffness. On the stress-strain curve in the 𝑥 component in Figure 4.6, it can be observed
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that the network is able to accurately predict the stiffness on the unloading branch. However, it does
so while compromising its accuracy on the monotonic region. In order to achieve a lower stiffness
value in the unloading branch, the network also decreases the initial linear elastic stiffness to match
the unloading stiffness. Due to this decrease in initial stiffness, the network either under or overshoots
the stress values in the monotonic region.

The fact that the network predicts unloading with the initial linear elastic stiffness suggests that
the PRNN in its current state, with the only source of nonlinearity being the elastoplastic model in the
material layer, is not able to learn the effect of both types of nonlinearities that are present in the RVE.
The network learns only one type of nonlinearity, even with a richer training set. That being the case, it
is concluded that in order for the PRNN to learn all types of nonlinearities that are included in the RVE,
all nonlinear material models that are present in the RVE also have to be included in the network.

The conclusions drawn in this chapter are not surprising, since there is no implementation in the
network that can account for cohesive damage. Moreover, the core idea of the PRNN is to include all
material models in the RVE as they are in the network itself as well. This idea is violated by not including
the cohesive zone model in the network. In spite of these facts, this initial study on the PRNN with bulk
points only represents the foundation for this work and clearly motivates why it is necessary to dedicate
resources to further investigate the case of cohesive damage. Therefore, the following chapters of this
study focus on the implementation and its challenges of the cohesive zone model within the PRNN
framework.





5
Extending the PRNN with cohesive

material points
As discussed in Chapter 4, the physically recurrent neural network cannot predict the effect of debond-
ing at the fiber-matrix interface without including all sources of nonlinearity in the network that are
present in the RVE (Figure 3.1). Therefore, the cohesive zone model (CZM) in the full-order micro-
model has to be implemented in the physically recurrent neural network as well. This chapter investi-
gates whether the physically recurrent neural network with CZM in the existing material layer is able to
capture micro-scale damage.

As a starting point, including the CZM in the network is achieved by adding cohesive integration
points to the same material layer that has bulk integration points. This design choice preserves the
same network architecture as previously discussed in Chapter 4, and is the most straightforward ex-
tension of the network. Therefore, the PRNN proposed in this chapter consists of one input layer
that receives macroscopic strains, one material layer with the nonlinear models, and one output layer
yielding the macro-scale stress predictions (Figure 5.1).

Figure 5.1: PRNN with CZM in material layer

Figure 5.2: Fictitious cohesive material point

The nonlinear material models present in the RVE are incorporated in the material layer by nesting
them in bulk and cohesive fictitious integration points. Recall that 3 neurons represent one bulk integra-
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tion point. In the bulk points, local strains are converted into local stresses, while also storing internal
variables to account for path-dependency. The cohesive integration points, on the other hand, consist
of 2 neurons, which are associated with a cohesive zone model to convert the local displacement jumps
with normal and shear components to local tractions. The cohesive points also store internal variables
to keep track of history. Along with the local strains and displacement jumps (depending on the type
of material point), internal variables also serve as an input to the fictitious integration points. These
material points are illustrated in Figure 5.2.

To assess the performance of the network in several loading scenarios, model selection was per-
formed. The parameters being changed in this study, therefore, are the number of bulk integration
points and the number of cohesive integration points in the material layer. Different training sizes were
also considered to observe the effect of increasing the training data on the performance of the network.
The objective of the model selection is to obtain a configuration that maximizes accuracy of the network
prediction while being able to extrapolate to unseen loading cases.

5.1. Training with monotonic and proportional data
The PRNN with bulk points only in Chapter 4 trained with monotonic data was not able to extrapolate
to cases with unloading and it was concluded that the network should learn both types of nonlineari-
ties during training. The goal of training with monotonic data despite these conclusions is to observe
whether they also hold to the case when cohesive points are included in the material layer. In addition
to that, a brief investigation was also considered to examine the influence of the training size, as the
assumption and the findings in [12] suggest that the size of the training set should have no significant
impact on the accuracy of the prediction on the non-monotonic region.

The PRNN with CZM was trained on 18 curves from the canonical, monotonic, and proportional
dataset. The validation set consisted of 54 curves from a dataset with the same type of loading but with
random directions. First, a study on the size of the material layer was conducted by setting the number
of cohesive points equal to the number of bulk points. The validation errors are plotted in Figure 5.3 for
the various sizes, where the 𝑥 axis represents the number of bulk and cohesive points in the network
(i.e. 2 represents 2 bulk and 2 cohesive points corresponding to 2 ⋅ 3 + 2 ⋅ 2 = 2 ⋅ 5 units).

Figure 5.3: Validation error for PRNN trained on 18 monotonic curves from canonical dataset

Figure 5.3 indicates no clear trend in the lowest MSE across the different material layer sizes, it
is consistent around 3.6 MPa. Networks with smaller material layer sizes seem to have the lowest
average MSE, with 5.00 MPa and 4.58 MPa for 1 and 2 bulk and cohesive points (corresponding to



5.1. Training with monotonic and proportional data 27

5 and 10 units), respectively. An increase in the average MSE is observed for networks larger than 3
bulk and cohesive points. Based on these findings, when different combinations of bulk and cohesive
points are considered, the maximum number of integration points per material model is set to 3 for
the remaining of this section. The goal is to understand whether the accuracy of the network can be
improved with a combination of bulk and cohesive points other than the fixed ratio of points shown in
Figure 5.3.

(a) 1 bulk point (b) 2 bulk points (c) 3 bulk points

Figure 5.4: Validation error for different number of bulk points

For this study, the number of bulk points was fixed and the number of cohesive points was changed
to see the effect of increasing the number of cohesive points on the validation error. Figure 5.4 shows
the validation error for the various sizes. A network with 1 cohesive point results in the lowest average
MSE across the different bulk sizes. For testing, the network with 2 bulk and 1 cohesive points was
selected, with the lowest validation error of 3.13 MPa.

The selected network was tested on 54 curves from the random, non-monotonic, and proportional
dataset, with one cycle of unloading. This test set is the same as the one used in Chapter 4 for a
straightforward comparison. The lowest error of the test set for a material layer with 2 bulk and 1
cohesive points was found to be 4.69 MPa. The prediction of the network on a representative curve
from this test set is shown in Figure 5.5a.

This time, the network makes a fairly accurate prediction in the compressive region, where the
unloading takes place with the initial linear elastic stiffness and has a minimal contribution from the
cohesive zone models in the actual micro-model. However, no qualitative change can be observed
between the prediction of the network with bulk points only from Section 4.1 and the prediction of this
network trained on monotonic data, as the network is visually not accounting for the damage. This is
verified by analyzing the weights associated with the cohesive points.

For the representative curve shown in Figure 5.5a, the microscopic stress-strain relation along with
equivalent plastic strain in the bulk points, and the microscopic traction versus displacement jumps with
damage in the cohesive points are shown in Figure 5.6. The weights connecting the cohesive points to
the output are negative to the magnitude where the softplus activation function applied on the weights
convert these values to a small number close to zero (a maximum value of weight of around 0.02). This
means that the contribution from the cohesive points in the network is negligible.

This phenomenon is more apparent when looking at extreme cases. Figures 5.5b and 5.5c depict
the prediction of the network on curves from the same test set with low and high errors, respectively.
Figure 5.5b shows a case when the micro-structure is loaded mostly in compression, in which case
debonding is not critical, therefore the network with little to no contribution from the cohesive points
performs well. On the other hand, when micro-scale damage is triggered and the micro-model is loaded
in tension, as shown in Figure 5.5c, the lack of ability of the network to predict this loss of stiffness in
the unloading branch is more evident.

Since the best architecture seems to be one where the contribution from the cohesive zone model
is close to zero (i.e. in the extreme case, we would obtain the architecture with bulk points only), there
is no extensive study on whether the network is improved by adding more monotonic curves to the
training data. Moreover, the accuracy of the network when predicting within the monotonic region and
during unloading in the compressive region is remarkable, therefore the improvement in this accuracy
by adding more monotonic curves to the training set would be marginal and thus unnecessary. The
weights associated with the cohesive points in the decoder layer still remain negative enough to make
their contribution to the macroscopic response of the network negligible. These conclusions suggest
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that even though there are cohesive points added to the network, their impact remains insignificant
unless they are actively engaged during training.

From the findings of training with monotonic curves, the conclusions drawn in Section 4.1 are sus-
tained; the network has to be trained in a way that it can learn all nonlinearities present in the full-order
micro-model. Hence, for the remainder of this work, the training and validation datasets comprise only
non-monotonic data.

(a) Representative curve

(b) Curve with low error (c) Curve with high error

Figure 5.5: Prediction on random non-monotonic curves with one cycle of unloading using networks trained with 18 canonical
curves
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Figure 5.6: Micro and macro response of PRNN on representative curve

5.2. Training with non-monotonic and non-proportional data
For the PRNN to be able to predict unloading behavior, the cohesive points in the material layer have
to be active. This can be achieved by training with curves that undergo unloading. In this section,
non-monotonic and non-proportional data was used to train and validate the network.

The goal is then to utilize these activated cohesive points to extrapolate to loading scenarios that
it has not seen during training. First, the training set size was determined while keeping the validation
set at 54 curves of the same type. After selecting the optimal training set size, networks with different
combinations of bulk and cohesive points were considered to obtain the configuration of the material
layer that results in the best performance.

5.2.1. Training size selection
When investigating how the training set size affects the performance of the network, different numbers
of bulk and cohesive points were considered. The networks were then evaluated by comparing their
validation errors across different training sizes. The ratio of 𝑛𝑏𝑢𝑙𝑘/𝑛𝑐𝑜ℎ = 1, where 𝑛𝑏𝑢𝑙𝑘 and 𝑛𝑐𝑜ℎ
correspond to the number of bulk and cohesive points in the material layer, respectively, ranging from a
minimum configuration of one bulk and cohesive point to seven bulk and cohesive points. The training
dataset consisted of 18, 36, 54, 72, and 90 non-monotonic and non-proportional curves.

Figure 5.7 displays the lowest validation MSE across the various training data sizes for the different
material layer configurations. A training data size of 72 was selected, as the average value of the low-
est MSE for different material layer sizes reaches minimum here. It is important to note the increase
in overall validation error of the networks trained on non-monotonic and non-proportional curves com-
pared to the ones trained on monotonic and proportional data. This can be explained by the large
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randomness in the curves, due to which the network is much less prone to overfitting the data.

Figure 5.7: Lowest validation MSE for different material layer sizes across various training data sizes

5.2.2. Varying the material layer configuration
In this section, networks were trained and validated on 72 and 54 curves of the same type, respectively.
The selection of the material layer size was based on the mean squared error (MSE) values obtained
on the validation set. To determine the number of bulk and cohesive points in the network, several
combinations of bulk and cohesive points without the fixed proportion of 1 were tried. This allowed for
a broader exploration of bulk-cohesive point combinations.

Figure 5.8: Validation error for the PRNN with an equal number of bulk and cohesive points trained on 72 GP curves
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Figure 5.8 illustrates the result of the method described above for the particular case where the
number of bulk and cohesive points are equal. In that case, the difference between the lowest MSE
obtained by networks with different material layer sizes is not significant, and there is no clear trend of
increase or decrease in MSE after a certain size. After fine-tuning the material layer size and configu-
ration, the best network, a network with a combination of 2 bulk and 3 cohesive points was selected to
illustrate results in this section with a validation error of 12.8 MPa.

For the test set, 54 curves from the non-monotonic, proportional dataset with one cycle of unloading
considered in the previous sections were kept. Figure 5.9a shows that the selected network is able to
capture the unloading phenomena in some cases. The stiffness of the unloading of the shear compo-
nent of the prediction of the network is captured accurately. The monotonic region of these curves is
also captured quite accurately.

Another interesting property of this network can be seen in this figure; since the network is minimiz-
ing the mean squared error on the data, it prioritizes fitting data with larger stress values. Therefore,
the prediction of the network in Figure 5.9a in 𝑥 direction seems largely inaccurate when zoomed in,
however, relative to the other two directions this error is small.

(a) Prediction of network on a curve with the lowest error (b) Prediction of network on a representative curve

Figure 5.9: Prediction of network with 2 bulk and 3 cohesive points trained on 72 GP curves on test curves with one cycle of
unloading

Even though the considered networks are able to perform well in some cases, their prediction lacks
consistent accuracy. Figure 5.9b shows the prediction of the PRNN with 2 bulk and 3 cohesive points
on a representative curve of the test set with an average test MSE of 9.27 MPa. The network not only
misses capturing the decrease of stiffness during unloading but also loses accuracy on the monotonic
part.

There is a large kink along the initial monotonic part of the curves shown in Figure 5.9b, which is
highlighted by red circles. This new phenomenon prompted an investigation into the factors causing
the sudden change in slope. Recall that the approximation of the network on macro-scale stresses is a
result of a linear combination of the local stresses and tractions derived from the material model nested
in the material layer. Figure 5.10 shows the microscopic stresses and tractions in the material points
in the PRNN with 2 bulk and 3 cohesive points. For example, cohesive points 𝑚4 and 𝑚5 undergo
tension, which is equivalent to what happens at the interface points where the fiber and matrix are
debonding, while cohesive point 𝑚3 undergoes compression.

To account for the loss in stiffness due to microscale damage, the weights associated with the
cohesive points are increased in magnitude so that the unloading branch of these curves can decrease
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Figure 5.10: Micro and macro response of network with 2 bulk and 3 cohesive points on representative curve

the stiffness that would result from the plasticity model. However, as the weights associated with the
cohesive points are increased, the contribution of the initial high dummy stiffness defined in the cohesive
law is also increasing. Consequently, a large initial stiffness is observed in the macro response for small
timesteps, which then causes the kink to appear on the curve.

It is therefore interesting to think about whether the fit on the monotonic part of the curve can be
improved if the dummy stiffness of the cohesive model in the network is decreased. This means a
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smaller initial stiffness of the cohesive model, and also a reduced stiffness on the unloading branch
for the same traction force. The effect of reducing the dummy stiffness from 𝐾1 to 𝐾2 on the cohesive
model is illustrated in Figure 5.11. Damage initiation is at a larger value of displacement jump for the
case with reduced dummy stiffness. Note, however, that changing the dummy stiffness of the cohesive
law in the network while keeping it the same in the full-order micromodel creates an inconsistency
between the PRNNand the FE2method. It also contradicts one of the fundamental ideas of the network,
according to which all nonlinear material models in the RVE have to be included in the network, with the
same material properties as observed in the micro-model. Therefore, the following section dedicated to
observing the effect of reducing the dummy stiffness in the network is an additional study to investigate
whether deviating from the core idea of the network could potentially resolve its current issues.

Figure 5.11: The effect of changing the dummy stiffness on the constitutive relation

5.2.3. Modified model with lower 𝐾
To investigate the effect of reducing the dummy stiffness used in the cohesive zone model in the net-
work, the PRNN with 2 bulk and 3 cohesive points was selected. The dummy stiffness was reduced
by two orders of magnitude, while other parameters were kept the same. The lowest validation MSE
was found to be 12.3 MPa, which is not a significant reduction compared to the one resulting from the
network with the original dummy stiffness (12.8 MPa). The network’s prediction was evaluated on the
same test set as in the foregoing chapters. Figure 5.12 shows the two PRNN’s predictions on the same
test curve using the original and the reduced dummy stiffness.

Two highlights can be drawn from Figure 5.12b. First, the kink becomes less prominent, resulting
in a significantly smoother initial monotonic region. Second, the appearance of the kink is delayed,
occurring at a later timestep compared to Figure 5.12a. The impact of reducing the dummy stiffness
used in the network is clearly visible, the smoothness of the curves is indeed largely influenced by the
dummy stiffness of the cohesive zone model. However, this reduction in dummy stiffness does not
lead to an improvement in the network’s overall accuracy. The average MSE on the test set remains
relatively similar to the case with the original dummy stiffness, with a slight decrease from 9.27 MPa to
9.25 MPa. Thus, reducing the dummy stiffness not only creates a gap between the physics behind the
network and FE2, it also technically does not resolve the issue of kink. It only mitigates its appearance
and delays it.

The fundamental problem causing the kink phenomenon remains unresolved, which exposes an
important inconsistency between the architecture of the network and the underlying physics in the full-
order solution. In the FE2 method, introduced in Section 2.1, the micro-scale tractions computed by
interface elements interact with the bulk points in the equilibrium equations of the RVE. However, these
micro-scale tractions do not contribute to the homogenized macro-scale stresses in the RVE, only the
micro-scale stresses from the bulk points.
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(a) Network with original dummy stiffness in cohesive model (b) Network with reduced dummy stiffness in cohesive model

Figure 5.12: Prediction of networks with 2 bulk and 3 cohesive points with different dummy stiffness trained on 72 GP curves
on test curves with one cycle of unloading

In the PRNN discussed thus far, all types of nonlinearities were incorporated in the same material
layer with the micro-scale tractions connected to the output with a dense layer. This arrangement does
not allow for direct interaction between the micro-scale tractions and the bulk points, and as supported
earlier by the kink phenomenon, the dense connection to the output layer poses some challenges. The
current network architecture does not adequately represent the link between the cohesive and bulk
points, nor does it capture the homogenization procedure.

This conclusion leads to another important realization: while incorporating all sources of nonlinearity
of the micro-model is necessary, it is not sufficient. The architecture of the PRNN also must be carefully
adjusted to better represent the underlying physics of FE2 modeling. This conclusion leads to raise the
question of whether there is an architecture of the PRNN with the plasticity model and cohesive zone
model that is able to capture microscale damage. The following chapter focuses on designing different
architectures of the PRNN to better represent the computation in the full-order micro-model, and on
studying whether the proposed architectures are able to accurately predict micro-scale damage.
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The architecture proposed in Chapter 5 was not able to effectively capture micro-scale damage. When
the cohesive points are incorporated in thematerial layer in the sameway as the bulk points, the network
is unable to accurately represent the loss of stiffness that results frommicro-scale damage. This section
investigates different possible architectures to improve the physical representation of the BVP. The goal
is to design an architecture that creates a connection between the cohesive and bulk points so that this
link is a better reflection of what happens in the RVE when interface elements are considered. For
ease of implementation of the modified architectures, PyTorch with automatic differentiation was used
to construct the modified networks explored in this section.

For that purpose, we take a step back and conduct a focused analysis. First, training and testing
with only a single curve is considered. This approach allows us to observe the network’s capability
to learn and represent the details of that specific curve before a richer training set is considered. It is
important to note that this analysis leads to highly overfitting the data. However, the purpose of the
initial phase of this study is to evaluate whether the specific type of architecture proposed is able to
learn the behavior of the microstructure.

In this section, five different architectures were considered, from which one of these consists of
the architecture shown in Section 5 to serve as a reference, and the other four are new designs. To
conduct the stepping stone for this analysis, a curve was selected from the random, non-monotonic,
and proportional dataset with one unloading cycle. Networks with different architectures were trained
on this individual curve, and their ability to fit it was observed. Once it is established that the network
with the chosen architecture can deliver accurate predictions, the problem can be scaled up to larger
datasets.

6.1. Bulk and cohesive points in the same material layer
The performance of the network on a larger amount of data was seen in Chapter 5. It is interesting
to investigate how well the network is able to predict one curve only. One bulk and cohesive point is
considered for this analysis, which resulted in the lowest MSE of 2.15 MPa. The network’s prediction
on the curve that it was trained on is shown in Figure 6.1.

The network demonstrates excellent accuracy on the unloading branch, indicating that it is able to
learn a part of the micro-structural behavior. However, the accuracy of the monotonic region seems
to be compromised, and the kink phenomenon discussed in the previous chapter is also prominent.
Additionally, training this network on a richer dataset would lead to significant errors, as demonstrated
in Chapter 5.

35
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Figure 6.1: Prediction of network with one bulk and cohesive point from the previous densely connected architecture on training
curve with one cycle of unloading

6.2. Input to bulk points from cohesive points
To better represent the computation in the FE2 method, all the architectures proposed in this section
involve using the outputs of the cohesive points as input to the bulk points. The input of the network
(macroscopic strains) are connected to the cohesive points in different setups. Then, the output of the
cohesive points and the macroscopic strains are densely connected to the bulk points. The last layer
of the network converts the outputs of the bulk points (micro-scale stresses) to the final output of the
network (macroscopic stresses).

By using the outputs (either tractions or the history variable damage) of the cohesive points as an
input to the bulk points, the idea is that the bulk points receive a modified local strain value other than
the global value, allowing for accounting for a different local stress value to occur. This method also
ensures that only the bulk points contribute directly to the stress homogenization procedure, unlike
in the architecture from Section 6.1 with the cohesive points connected to the output directly by the
decoder layer.

6.2.1. Tractions as input to bulk points
In the first new architecture, the tractions of the cohesive points are input to the bulk points. The layout
of the architecture can be seen in Figure 6.2. The idea behind this new design is for the cohesive points
to interact with the bulk points without directly contributing to the homogenized stress output.

However, difficulties arise during training of this network. In the initial steps of training, the tractions
computed by the cohesive zone model are several orders of magnitude higher than the global strain
input of the network. When linearly combined, the values obtained from the cohesive points dominate
the input to the bulk points which have the plasticity model nested in them. These points then immedi-
ately undergo plastic deformation due to the large initial input values, and the model is often unable to
compute the local stresses. Therefore no results are obtained for this architecture.

One solution could be to decrease the initial weights connecting the cohesive points to the bulk
points to match the order of magnitude of the input global strains. On one hand, this would lead to
comparable output values for the shear component, but on the other hand, it would showcase an issue
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Figure 6.2: Layout of a modified architecture with traction as input to bulk point

related to the non-monotonic nature of the output of the cohesive points. The traction forces initially
increase before damage initiation, and once the displacement jump surpasses Δ0 (Figure 3.3b), the
traction values decrease. This creates a discontinuity, which is also present when unloading/reloading
takes place. Moreover, a larger weight reduction is necessary if the cohesive point is in compression
due to the high negative traction values (Figure 3.3a). Therefore, a more suitable solution is needed.

6.2.2. Damage as input to bulk points

Figure 6.3: Layout of a modified architecture with damage as input to bulk point

To overcome the discontinuity posed by passing tractions to the bulk points, the damage from the
cohesive zone model is used instead. Damage is the internal variable stored in the cohesive points,
which is either increasing or remains the same in case of unloading. This damage value modifies the
local strain value that the bulk points receive, resulting in a modified value of local stresses for the same
level of macroscopic strain. This gives rise to a modified tangent stiffness matrix that could capture the
decrease in stiffness during unloading. The layout of the architecture can be seen in Figure 6.3, where
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in this case all bulk points receive the input damage from all the cohesive points when enlarging the
network.

Figure 6.4: Prediction of network that feeds damage to bulk points with one bulk and cohesive point on training curve with one
cycle of unloading

The prediction of this network on the curve it was trained on is shown in Figure 6.4. The accuracy
of the prediction is remarkable with an error of 0.23 MPa, which suggests that the network with this
architecture can account for the damage of the microstructure when considering one curve only. The
response of the material points for two different initializations can be seen in Figure 6.5, where it can
be observed that the network can provide accurate predictions with the cohesive point being either in
tension or compression.

Before enriching the training dataset with non-monotonic curves, it is interesting to investigate its
performance with increased proportional, non-monotonic curves. The training data was first increased
to two non-monotonic curves. This led to an increase in training error (1.87 MPa), and there was
no significant difference between the error of the two curves it was trained on. The prediction of the
network on one of the curves it was trained on is shown in Figure 6.6a, where it can be observed that
he accuracy of the network decreased, but the network was still able to predict the unloading behavior.
When the training data was increased to four non-monotonic curves, the network with one bulk and one
cohesive point was no longer able to provide accurate predictions on the training curves (5.33 MPa).
Therefore, the number of material points was increased keeping the proportion of bulk and cohesive
points even. The network with 3 bulk and cohesive points was found to be the most optimal in this
case, with an error of 2.71 MPa. The network’s prediction on the two curves it was trained on had no
significant difference regarding accuracy. One of these predictions can be seen in Figure 6.6b, which
showcases that the accuracy of the prediction further decreased. This initial study emphasizes the
need for a model selection procedure for increased training set sizes.

In order to be able to generalize the network so that it can predict different loading cases, training
with curves from the non-proportional dataset is recommended. Following the same methodology as
before, the network was first trained with one curve only to evaluate whether it can capture the effect of
microscale damage. This time, the network with one bulk and one cohesive point loses accuracy, which
prompted to study different material layer sizes to observe its effect on the PRNN’s performance. For
that, the number of bulk points was kept equal to the number of cohesive points, and the lowest training
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(a) Cohesive point in compression

(b) Cohesive point in tension

Figure 6.5: Micro and macro response of networks with different initializations that feeds damage to bulk points with one bulk
and cohesive point on training curve with one cycle of unloading

error was found to be 4.36 MPa with a configuration of 3 bulk and cohesive points. The prediction of
this network on the curve it was trained on along with the response of the cohesive points can be seen
in Figure 6.7. Besides the relatively large error, there is an apparent problem with the smoothness
of the curve in the initial region. One of the reasons being the early initiation of damage that can be
observed in material points𝑚4-𝑚6 in Figure 6.7, where the damage reaches a value of 1 already at the
second time step, distorting the solution. Additionally, no significant difference was found among the
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(a) Network with 1 bulk and cohesive point trained with 2 curves (b) Network with 3 bulk and cohesive points trained with 4 curves

Figure 6.6: Prediction of networks trained on non-monotonic curves with one cycle of unloading on training curves

Figure 6.7: Micro and macro response of network that feeds damage to bulk points with three bulk and cohesive points on
non-proportional training curve
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different sizes of the material layers.
An additional observation can be made: Figure 6.7 illustrates that all three cohesive points are in

compression. Once the material point enters the compression phase during training, the point gets
stuck in it for the rest of the training. This is due to the fact that in the normal component, the displace-
ment jump resulting from compressive force is set to zero in the Turon cohesive zone model. Therefore,
perturbing the weights and biases associated with the cohesive point does not influence the output of
the network thus the gradients become zero. This suggests that initialization of the networks plays an
important role.

Though challenges appear when training the network with the non-proportional curve, a larger and
richer training set was considered to observe whether the issue with the early damage initiation persists.
Since the goal of this study is to get an initial idea of how enriching the training dataset influences the
behavior of the network, and whether increasing the number of material points has an effect on network
accuracy, the training size and the number of material points were kept small (between 2 and 3 points
of bulk and between 3 and 6 cohesive points). Training was carried out with 18, and validated on 54
curves from the non-proportional dataset.

From the model selection procedure, a network with a combination of 2 bulk and 3 cohesive points
was selected to illustrate results with a validation error of 16.2 MPa. For the test set, 54 curves from the
non-monotonic, proportional dataset with one cycle of unloading, which were considered in the previous
sections were kept. The prediction of the network on a representative test curve can be seen in Figure
6.8, and as expected, the accuracy of the network is not sufficient. However, interesting observations
are made when looking at the figure, where the response of the fictitious cohesive points is illustrated:
the damage no longer reaches a value of 1 already at the second time step, and not all cohesive points
are in compression, as observed for previous cases.

Figure 6.8: Micro and macro response of network that feeds damage to bulk points with two bulk and three cohesive points
trained on 18 non-proportional curves, on a representative curve from test set

The issue of the early initiation of damage leading to a large influence on the accuracy of the net-
work prediction needs to be addressed so that the good performance observed previously for smaller
datasets can be replicated. Furthermore, there was no significant decrease in validation error due to
increasing the number of material points. Recall that in the current architecture, a single linear layer
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connects the macroscopic strains to local displacement jumps, while in reality, this relation is highly
non-linear. In the micromodel, damage is not likely to initiate at the first time step already, but later
as larger strain values develop. In this setup, damage is already developing at the first time step, and
quickly escalates. Therefore, adding nonlinearity to account for this delayed damage initiation is ex-
plored. This option is investigated in two different ways, by either adding a hidden layer with a nonlinear
activation function before the cohesive layer or by applying nonlinearity directly at the cohesive points.

6.2.3. Damage as input to bulk points with a hidden layer before cohesive points
To account for the nonlinear relation between macroscopic strains and local displacement jumps, a
hidden layer of size 18 with a hyperbolic tangent activation function is added before the cohesive point.
This allows for an arbitrary nonlinear relation but with little physical interpretation behind the chosen
activation function. The layout of the architecture can be seen in Figure 6.9.

Figure 6.9: Layout of a modified architecture with damage as input to bulk point with a hidden layer before the cohesive point

To compare the response of this architecture to the previous cases in Section 6.2.2, training and
testing on one non-proportional curve is again explored. Different material layer sizes were studied
by setting the number of bulk points equal to the number of cohesive points. A network with 5 bulk
and cohesive points had the prediction with the lowest error (3.47 MPa). The micro-scale response
of the cohesive points which are all in compression, and the macro-scale response of the network are
shown in Figure 6.10. The same problem seems to persist, the damage evolution is sudden in all
cohesive points which leads to large strain values in the bulk point. To solve this problem, a new way
of introducing nonlinearity with a more physical meaning behind it is considered so that it can be more
easily manipulated to better understand the underlying issue.
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Figure 6.10: Micro and macro response of network that feeds damage to bulk points with one bulk and cohesive point, with a
hidden layer before the cohesive point, on non-proportional training curve

6.2.4. Damage as input to bulk points with Leaky ReLU at cohesive points
Next, the non-linearity to represent the relation between global strains and local displacement jumps is
applied directly at the cohesive point. The cohesive points are densely connected with the input layer
through a linear relation and the resulting values of that are activated with a leaky ReLU function to
obtain the final local displacement jumps. In that activation function, a bias term is considered. The
idea of using the bias is to replicate the delayed displacement jump compared to the applied strain
since the term allows for a shift of the function.

The choice for this specific activation function comes from the fact that the standard ReLU on its
own does not allow the gradients to update for negative strain values, since the function equates the
negative strain values to zero displacement jumps. For the gradients to update, it is necessary to apply
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a small slope for negative strain values, but it is important to keep it to a very small value close to
zero so that the model does not allow negative displacement jumps to occur in the normal component.
Therefore, Leaky ReLU is used instead of standard ReLU. To work optimally, the slope of the function
and its shift in the 𝑥 direction are implemented in the network as a learnable parameter. In addition
to this, a slight modification of the Leaky ReLU activation function is needed. If the function is applied
as is at the cohesive points, the displacement jumps that are passed to the cohesive points will be
calculated by the following equation:

!u" = leaky_relu(w1 ∗ 𝜖𝜖𝜖𝜔 + b1) (6.1)

with

leaky_relu(𝑥) = {
𝑥 if 𝑥 ≥ 0.0
0.01 ⋅ 𝑥 if 𝑥 < 0.0

(6.2)

applied component-wise. In this method, however, the bias does not act as the value by which the
function is shifted in the 𝑥 direction, which was originally intended. Therefore the function has to be
modified so that the activation function is calculated by:

leaky_relu_mod(𝑥, 𝑤, 𝑏) = {
𝑤 ⋅ (𝑥 − 𝑏) if 𝑥 ≥ 𝑏
0.01 ⋅ 𝑤 ⋅ (𝑥 − 𝑏) if 𝑥 < 𝑏

(6.3)

applied piece-wise. The difference between the standard Leaky ReLU and its modifications using Eqs.
(6.2) and (6.3) with an arbitrary bias of 0.01 and weight of 0.5 is shown in Figure 6.11.

Figure 6.11: Difference between discussed Leaky ReLU
functions for arbitrary bias and weight value

Figure 6.12: Function applied on the shear component of
cohesive points for arbitrary bias and weight value

It is important to mention that this method of shifting the Leaky ReLU function is mainly applicable
to the normal component of the displacement jump. To account for the delay in damage initiation in
the shear component, a different modification is proposed. For small absolute strain values, a small
slope is applied to obtain displacement jump values close to zero. For strain absolute values larger
than the bias parameter, the slope of the curve is defined by the weight parameter corresponding to
the modified function. The function applied in the shear component of the cohesive point is shown in
Figure 6.12 and is described by:

leaky_shear(𝑥, 𝑤, 𝑏) = {
𝑤 ⋅ (𝑥 − 𝑏 + 0.01 ⋅ 𝑏) if 𝑥 ≥ 𝑏
𝑤 ⋅ (𝑥 + 𝑏 − 0.01 ⋅ 𝑏) if 𝑥 ≤ −𝑏
0.01 ⋅ 𝑤 ⋅ 𝑥 otherwise

(6.4)

For physical interpretation of the activation function, the weight and bias values corresponding to the
activation function at the cohesive points were forced to obtain positive values by applying a SoftPlus
activation on the parameters. This, in theory, allows for a delay in damage initiation which corresponds
to a positive bias value, and an increase of local displacement jump for increasing macroscale strain
values.
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The network with the modified activation function applied at the cohesive points was trained on the
non-proportional curve used to train the network in the previous section. When setting the number of
bulk points equal to the number of cohesive points, a network with 5 bulk and cohesive points predicted
the training curve with the lowest error (4.58 MPa). This error is slightly higher than the error of the
prediction of the network with no nonlinearity added to the macroscale strain-local displacement jump
relation (4.36 MPa) and of the prediction of the network with the hidden layer implemented before the
cohesive layer (3.47 MPa). However, Figure 6.13 shows that due to the applied nonlinear activation
function, damage initiation takes place at a later timestep. This result is promising and the network with
this architecture requires further investigation on whether increasing the training dataset with more
non-proportional curves improves network accuracy.

Figure 6.13: Micro and macro response of network that feeds damage to bulk points with 5 bulk and cohesive points, with a
custom nonlinear activation function the cohesive point, on non-proportional training curve





7
Conclusions and recommendations

The motivation of this thesis was to extend an existing surrogate model, namely the Physically Recur-
rent Neural Network (PRNN) [12], to account for microscale damage in composite materials. Investi-
gating the PRNN as a surrogate model was prompted by its exceptional performance when predicting
elastoplastic behavior in composite materials. The main idea of the PRNN is that the constitutive re-
lations in the full-order micromodel are directly implemented in the hidden layer of the network which
allows for a direct link to the micromodel. Path-dependency naturally arises from the material models
in the network, which leads to accurate predictions on a significantly smaller set of training data than
what is required for networks without physical interpretation. The hidden layer of the existing PRNN
comprises bulk material points with elastoplastic material models embedded in them. The objective of
this thesis is to extend the existing PRNN to predict the effect of debonding at the fiber-matrix interface.

For this, the first attempt at using this framework for microscale damage consisted of applying
the network with bulk material points only, as it was proposed in [12]. A brief parameter study was
conducted to investigate whether the network without all nonlinear models included in the RVE can
predict the effect of microscale damage. Following the findings and methodology for testing with bulk
models only, the PRNN was then extended with cohesive points in the material layer. The loss of
prediction accuracy due to the influence of the dummy stiffness in the cohesive zone model prompted
a study on the effect of changing this variable.

Next, new architectures of the PRNN with bulk and cohesive points were proposed. The perfor-
mance of these networks was evaluated by focusing on one training curve only. In this chapter, a
summary of the performance of the proposed PRNNs is presented in the context of their alignment
with the primary research objective outlined in this thesis. Additionally, the limitations of the PRNNs
are discussed along with recommendations for future work.

7.1. Conclusions
The PRNNwithout the cohesive zonemodel introduced in Chapter 4 was not able to capture microscale
damage. The network, in its current state, was only able to learn one out of two types of nonlinearities
present in the full-order micromodel. The only source of nonlinearity in the network comes from the
elastoplastic material model, while the full-order micromodel also accounts for damage. This is reflected
when the prediction of the network was compared to the high-fidelity solution. It was observed that the
network had a good fit on the monotonic region, but unloading was predicted with the elastic stiffness
which comes from the elastoplastic material behavior. Increasing or enriching the training data did
not lead to significant improvements. This is in line with the general guideline in [12] that all types of
nonlinearities present in the RVE need to be included in the network. Therefore, a new architecture
with the cohesive zone model implemented in the PRNN is required.

For the initial design, cohesive points with the CZM was incorporated into the same material layer
of the PRNN as the plasticity model. This PRNN was introduced in Chapter 5, and it was not able to
capture microscale damage. First, when trained on monotonic data, the network was able to predict
accurately only on themonotonic part of the test curves. Since the second type of nonlinearity (damage)
was not seen during training, the cohesive points of the network remained inactive. This resulted in a
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set of weights that minimized the contribution of the cohesive points to almost zero, which resembles
the performance of the network with bulk points only. Therefore an important conclusion was drawn:
it is not enough to include cohesive points in the material layer, they also have to be activated during
training in order to have a significant contribution to the output of the network. Therefore, training with
non-monotonic data is required.

When trained on non-monotonic and non-proportional dataset, the network performed well in some
cases. However, the accuracy was not consistent among the test set and the prediction of the PRNN
lost accuracy on the monotonic region, where a discontinuity was observed in a form of a kink. This kink
resulted from the way the stress homogenization is represented in the network. When the cohesive
points are implemented in the material layer together with the bulk points, the stress output of the net-
work is given by a combination of the outputs of each material point. When the weights connecting the
cohesive points to the output increase, the high dummy stiffness of the cohesive zone model becomes
significant and causes a large initial stiffness of the global output. This phenomenon prompted a study
on the effect of decreasing the dummy stiffness of the CZM in the network. However, reducing the
dummy stiffness contradicts the fundamental idea behind the PRNN, since the material models used in
the full-order micromodel are now different from the one in the network, and therefore it is undesirable
to follow this path further than as a complementary study.

In this study, the value of the dummy stiffness was decreased by two orders of magnitude. The
prediction of the network on the monotonic phase is visually smoother, but the accuracy of the network
prediction did not improve. The kink became less prominent, however, it did not disappear. This led
to an important conclusion: the underlying problem lies in the current architecture of the network. The
layout of the PRNN does not resemble the physics of the full-order solution, where only the bulk points
contribute to the stress homogenization. In contrast to this, the network predicts the stress output as a
linear combination of both stresses coming from the bulk models and tractions coming from cohesive
zone models. Therefore, it was concluded that a new architecture of the network that includes cohesive
and bulk points is necessary.

New architectures were proposed in Chapter 6 based on the conclusions drawn in the previous
chapters. The networks first were trained on a single curve with one cycle of unloading for a more
focused study. When the internal variable of the cohesive point (damage) together with macroscale
strains were weighted together and used as input input to the bulk points, the PRNN with one bulk and
cohesive point was able to accurately capture the loss of stiffness during the unloading cycle on its
training curve. The fit of the monotonic region was also remarkable. This promising result indicates
that the network, in this configuration, is able to capture microscale damage.

Additional curves were introduced to the training data to observe the PRNN’s performance on a
more diverse dataset. The training data was first increased to two and four proportional, non-monotonic
curves. This initial exploration with proportional curves suggested that increasing the material points
could mitigate the loss of accuracy when training size is increased, given accurate prediction on a single
curve. Then, the network was trained on a single non-proportional curve to extend the research to a
more complex scenario where unloading takes place at different loading steps for different duration
of time. An increased number of material points was needed to represent this curve, and a larger
training error was observed than for the non-monotonic but proportional case. When training data
was increased, changing the material layer size did not have a significant influence on the network’s
accuracy. It is important to note however that a relatively small number of material points (a maximum
of 3 bulk and 5 cohesive points) were considered in this initial phase compared to the number of points
used to training with one curve only.

Another important feature was highlighted when training with non-monotonic curves. For the case of
training with one curve, the cohesive points indicated fully damaged condition at the second timestep.
This was not the case when the training dataset was enlarged, however, damage was still initiated in
the second time step. This observation led to investigating the input of the cohesive points more closely.
In this architecture, the macroscale strains are connected to the local displacement jumps by a linear
transformation, which does not represent the actual damage evolution in the micromodel. In reality, the
material is not necessarily damaged right after loading, instead, this relation is highly non-linear. This
resulted in exploring solutions to account for the highly nonlinear relation between macroscale strains
and local displacement jumps.

A hidden layer with nonlinear activation functions was implemented between the input and the co-
hesive material layer to better represent their nonlinear relation. The issue with the fully damaged mi-
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crostructure at the second timestep persisted, therefore amodified function with more physical meaning
was introduced at the cohesive points instead. When trained on a single non-proportional curve, the
damage evolves at a later timestep which showcases the effect of the function and shows potential to
be applied for an increased training dataset.

Though it cannot be concluded yet that the architecture found is able to capture microscale damage
when it is trained on a larger dataset, the results suggest that further investigation of this layout will lead
to finding the optimal network that is able to accurately capture the microscale damage with the right
mitigation strategy.

7.2. Limitations and recommendations
Understanding the challenges and limitations of employing PRNNs as surrogate models for microscale
damage prediction is crucial. One such challenge is associated with the nature of the cohesive zone
model. There is a small range of input values to the cohesive model for which the parameters associ-
ated with the layer connecting the input and cohesive material layer are being updated during training.
As seen in the previous chapter, once the damage reaches a value of 1, the gradients of these pa-
rameters vanish (i.e. become zero) and no new information is learned from the cohesive point after
this point. To overcome this difficulty, a different traction-separation law could be implemented. For
instance, a traction-separation law with exponential decay would ensure that the damage value never
reaches 1 but a value close to it which would allow for the model to never enter a fully damaged state.

Another case when gradients vanish is when the fictitious cohesive point is in compression. Then,
the parameters associated with the normal component of the cohesive point no longer update as chang-
ing this value will not contribute to the damage parameter of the CZM. This leads to utilizing only the
shear component of the cohesive point when using damage as an input to the bulk points and makes
the model highly sensitive to initialization. A more extensive study on the initialization is therefore
recommended.

An additional challenge surfaced when implementing the PRNN in PyTorch compared to C++. The
computational time related to training the network significantly increased, which limited the combina-
tions of material layer size and the size of the training set considered in Chapter 6. Therefore, valuable
information would be obtained if a study on the effect of increasing the material layer size with more
points were conducted. This may show whether the network is able to provide accurate predictions
without introducing more complexities to the problem, such as nonlinearities. If that is the case, imple-
mentation of the network discussed in Section 6.2.2 in C++ is suggested to be able to conduct a more
in-depth analysis with a larger training set if needed.

Additionally, it is interesting to investigate whether the PRNN, in any of its architectures, is able
to predict strain localization if either a predefined crack path or distributed cracking is allowed in the
full-order micromodel.

Once the proposed physically recurrent neural network is optimized and accurate prediction is es-
tablished on the microscale, it can be applied in a multiscale setting to evaluate the overall response
of an arbitrary structure.
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