

Delft University of Technology

Quantum codes for quantum simulation of fermions on a square lattice of qubits

Steudtner, Mark; Wehner, Stephanie

DOI
10.1103/PhysRevA.99.022308
Publication date
2019
Document Version
Final published version
Published in
Physical Review A

Citation (APA)
Steudtner, M., & Wehner, S. (2019). Quantum codes for quantum simulation of fermions on a square lattice
of qubits. Physical Review A, 99(2), Article 022308. https://doi.org/10.1103/PhysRevA.99.022308

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1103/PhysRevA.99.022308
https://doi.org/10.1103/PhysRevA.99.022308

PHYSICAL REVIEW A 99, 022308 (2019)

Quantum codes for quantum simulation of fermions on a square lattice of qubits

Mark Steudtner1,2 and Stephanie Wehner2

1Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
2QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 23 October 2018; published 8 February 2019)

Quantum simulation of fermionic systems is a promising application of quantum computers, but to program
them, we need to map fermionic states and operators to qubit states and quantum gates. While quantum
processors may be built as two-dimensional qubit networks with couplings between nearest neighbors, standard
fermion-to-qubit mappings do not account for that kind of connectivity. In this work we concatenate the
(one-dimensional) Jordan-Wigner transform with specific quantum codes defined under the addition of a certain
number of auxiliary qubits. This yields a class of mappings with which any fermionic system can be embedded
in a two-dimensional qubit setup, fostering scalable quantum simulation. Our technique is demonstrated on the
two-dimensional Fermi-Hubbard model, which we transform into a local Hamiltonian. What is more, we adapt
the Verstraete-Cirac transform and Bravyi-Kitaev superfast simulation to the square lattice connectivity and
compare them to our mappings. An advantage of our approach in this comparison is that it allows us to encode
and decode a logical state with a simple unitary quantum circuit.

DOI: 10.1103/PhysRevA.99.022308

I. INTRODUCTION

It is believed that quantum computers will help to increase
our understanding of large molecules and strongly correlated
materials. Simulating these systems with classical computers
is difficult, as they are populated by fermions. The Hilbert
space that these particles span, has a dimension that scales
exponentially with the system size, and thus, if no further
efforts are undertaken, the same scaling applies for the amount
of computational resources required to simulate it. Building
on the works of Feynman, Lloyd, and Abrams [1–3], one can,
however, hope to simulate these problems with other quantum
systems of similar size. In digital quantum simulation, we not
only absorb the fermionic Hilbert space in a system of qubits,
but also use a gate-based quantum computer to solve the
problem with quantum algorithms [4–7]. However, until quan-
tum computers can outperform their classical counterparts and
some day even tackle real-world problems, many challenges
must be overcome. While small quantum simulations have
been performed on few-qubit devices across all platforms
[8–14], and efforts are undertaken to scale devices up, the
simulation of larger systems is still a challenge. Critical
factors that determine the feasibility of an algorithm would
be its qubit requirements, its gate cost (in terms of magic
states when error-corrected, and in terms of two-qubit gates
when noisy) [15,16] and circuit depth (a measure of the
algorithm run time, where each time step is the duration of
one quantum gate). Quantum algorithms are generally to be
kept shallow to ensure that they can be run before the qubit
system has decohered. It is thus in our interest to decompose
the algorithms into many parts that can be run in parallel, i.e.,
at the same time. Obviously, one can hope for parallelization
if the algorithm is composed of gate sequences that act on
subsets of as few qubits as possible and these subsets do not
overlap much. Another factor is that actual quantum devices
can have geometric limitations which negatively influence

the circuit depth. In a practical setting not every qubit can
reach every other qubit, i.e., they cannot be entangled with
a single two-qubit gate. To entangle distant qubits, it takes
additional efforts in gates and time. Thus, another criterion
for the reduction of the circuit depth is that gate sequences
only act on qubits adjacent on a certain connectivity graph.
Although this graph depends on the actual quantum device,
we can make an educated guess: devices on which surface
code can be run, require a square lattice connectivity graph.

Unfortunately, it is nontrivial to embed fermionic problems
in those lattices, which opposes shallow-depth quantum sim-
ulation. Let us illustrate the exact issue. To bring the problem
into a form the quantum computer can process, the fermionic
modes need to be embedded into a (two-dimensional) lattice
structure related to the qubit connectivity graph. After that, a
fermion-to-qubit mapping translates the interactions of those
system to a qubit Hamiltonian fit to be simulated. It is this last
step in which the problem lies, as simulating the interaction
between as little as two fermionic modes usually requires
gates acting on large subsets of qubits. This is a consequence
of the fermionic wave functions being antisymmetric under
particle permutations, which causes the interaction of two
fermionic modes to also be sensitive to the occupation of
seemingly uninvolved modes, turning into gates on the qubits
representing them. This is the same issue that prohibits us
from describing fermions on (two-dimensional) lattices in
terms of Bosons, which could be simulated more easily.
In fact, the problems are somewhat intertwined considering
that those bosonic descriptions can double as fermion-to-
qubit mappings. The Jordan-Wigner transform for instance
is widely used as a fermion-to-qubit mapping [8,10,11,14]
today, but its appearance in 1928 [17] predates the work
of Feynman by half a century. The original work of Jordan
and Wigner was rather meant to compare fermionic operators
to the operators of (hard-core) Bosons, which, however, are

2469-9926/2019/99(2)/022308(32) 022308-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.022308&domain=pdf&date_stamp=2019-02-08
https://doi.org/10.1103/PhysRevA.99.022308

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

easily mapped to (1/2)-spins. For our purposes, the spins are
immediately identified as qubits, rendering the transform a
default for fermion-to-qubit mappings. However, the Jordan-
Wigner transform is effectively one-dimensional and exhibits
large deficits in the treatment of two-dimensional systems. In
particular, it fails to map a fermionic lattice model with local
interactions (meaning their interaction range is bounded by a
constant) to a model of locally interacting spins. In contrast
to that, locally interacting spins on a lattice can be mapped
to a locally interacting Boson lattice, due to the bosonic wave
function not being antisymmetric [18]. While there are tricks
and generalizations to circumvent the deficits of the Jordan-
Wigner transform [19–22], not all of them are useful for its
role in quantum simulation: there is no ultimate choice for
a two-dimensional fermion-to-qubit mapping. However, there
is a mapping with which locally interacting fermion and qubit
lattices can be related: the Verstraete-Cirac transform (VCT)
[23] also known as auxiliary fermion mapping [24–26], can be
regarded as a manipulation of the Jordan-Wigner transform,
in which additional auxiliary particles are added, hence the
name. Other works on fermion-to-qubit mappings [25,27–29]
are based on two transforms proposed by Bravyi and Kitaev
in Ref. [30]. First, there is what is commonly known as the
Bravyi-Kitaev transform, that, compared to the Jordan-Wigner
transform, exhibits an up to exponential improvement on the
number of qubits that each fermionic interaction term acts
on. The Bravyi-Kitaev transformation, however, demands a
qubit connectivity that is higher than what a square lattice
can offer. Second, the mapping referred to as “superfast
simulation of fermions on a graph” (BKSF) has the power
to map local fermion lattices to local qubit lattices, but the
square lattice connectivity is generally only sufficient when
the underlying model is an interacting square lattice as well:
To make interactions local, the mapping requires a qubit
connectivity graph set by the Hamiltonian. When the given
connectivity turns into a limitation, classical tools like sorting
networks might be applied [31]. Most notably, there are recent
attempts to incorporate swapping networks into the fermion-
to-qubit mapping. With so-called fermionic swaps [30], not
only qubits are swapped but also fermionic modes, in the
sense that swapping operations can change the locality of their
interactions in the Jordan-Wigner transform. This effectively
eliminates the contribution of the fermion-to-qubit mapping to
the gate cost and algorithmic depth which is then dominated
by the swapping network alone [32,33].

In this work, we want to abstain from swapping and sorting
networks to make use of the (two-dimensional) geometric
proximity of qubits inside the quantum device. In this way,
the gate cost is determined by the range of interactions on the
fermionic lattice and distant interactions can be simulated in
parallel. For this purpose, we define two-dimensional (non-
perturbative) fermion-to-qubit mappings that generalize the
Jordan-Wigner transform on the square lattice. We here not
only demand that local Hamiltonians of fermions are mapped
to local qubit Hamiltonians but want to go beyond nearest-
neighbor interactions. The exchange interaction between two
(distant) modes should involve only the two qubits that these
modes correspond to, and some chain of qubits that connects
them geometrically. This means that when we imagine the
system as a fermion lattice with dimension (�1 × �2), we

want the an interaction term of any two modes to transform
into a term acting on O(m) qubits, when the modes have a
Manhattan distance of m. As a consequence, we can bound
the weight of the largest terms by O(�1 + �2), rather than
O(�1 × �2) as in the case of the Jordan-Wigner transform.
In this way the entire simulation only considers operators
acting on the shortest possible strings along adjacent qubits,
fostering parallelization.

II. RESULTS

In this work, we introduce a class of fermion-to-qubit map-
pings that are two-dimensional generalizations of the Jordan-
Wigner transform on a �1 × �2 lattice of fermionic sites. The
auxiliary qubit mappings (AQMs) are based on the (one-
dimensional) Jordan-Wigner transform, concatenated with
specific quantum (stabilizer) codes. Stabilizer codes, which
play an important role in quantum error correction, encode a
logical basis of 2N degrees of freedom (here N = �1 × �2) in
a subspace of a larger system with n > N qubits. The degrees
of freedom left are constrained with so-called stabilizer condi-
tions, which means there are n − N (independent) qubit oper-
ators {Si}i that stabilize this basis, i.e., in the logical subspace
the expectation value of all stabilizers is one, 〈Si〉 = 1. In our
case, the logical basis encoded is the one of the Jordan Wigner
transform, to which r = n − N auxiliary qubits have been
added and constrained. The entire procedure is illustrated in
Fig. 1, where the AQM performs the transition from layer (a)
to (c), effectively avoiding the nonlocal interactions on layer
(b). The codes used for AQMs are planar on the square lattice,
and we devise a unitary quantum circuit that switches in
between the layers (b) and (c). This circuit has an algorithmic
depth that scales with �1, the length of one of the lattice sides.

FIG. 1. Visualizing an auxiliary qubit mapping (AQM) as a con-
catenation of the Jordan-Wigner transform and a particular quantum
code. The three layers represent the lattices of fermions and qubits.
We have highlighted the same three exchange terms on each lattice,
so there transformation can be observed. (a) The starting point: a
fermionic lattice or two-dimensional embedding of a fermion system
with �1 × �2 modes. The three (local) interactions highlighted are
brought via the Jordan-Wigner transform onto the (data) qubit layer.
(b) The data qubit layer, in which two of the formally local interac-
tions now assume a nonlocal form. To restore locality, we need to
define a quantum code on the data qubits register and some auxiliary
qubits, added to the next layer. (c) The final layer: a composite system
of n qubits, where we have placed n − N auxiliary qubits in between
the data qubits. By the auxiliary qubit code, interactions that were
local in the top layer can now be made local again. Note also that
the interaction in the center of the lattice, which has involved many
qubits in the middle layer, is now reduced to act on few qubits again
by the Manhattan-distance property.

022308-2

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

TABLE I. All fermion-to-qubit mappings discussed in this work. We consider a N = (�1 × �2) square lattice block of fermionic modes,
and compare the number of auxiliary qubits, or more generally the total number of qubits minus N . We also compare the scaling of the number
of qubits involved in two types of Hamiltonians: generic ones, in which we expect interactions between every mode, and lattice models, with
only nearest-neighbor interactions. For the former, we also ask whether long-range interactions can be mapped to operators involving qubits
along a direct path (Manhattan-distance property). For the lattice models, we specify the expected algorithmic depth for simulating the entire
Hamiltonian by, e.g., Trotterization and whether their locality is restored after the transformation. Note that the simulation time is obtained
using simulation gadgets that adhere to the square lattice connectivity of the qubits, however, we take into account that some simulation
algorithms allow for partial cancellation of overlapping Pauli strings in the Hamiltonian. Note also that I is a parameter of the last mapping
that can be chosen as some integer number: 1 � I � �1 − 1. This parameter determines how well the Manhattan-distance property and locality
is approximated.

Jordan-Wigner Verstraete-Cirac Superfast Square lattice E -type Sparse
(S pattern) transform simulation AQM AQM AQM

Origin [17] [23] [30] [here] [here] [here]

Aux. qubits 0 �1�2 �1�2 − �1 − �2 �1�2 − �1 �2 (�2 − 1)(�1−1
I + 1)

String length (general) O(�1�2) O(2�1 + �2) O(2�1 + 2�2) O(�1 + 2�2) O(2�1 + �2) O(�1 + 2�2)

Manhattan-distance property? ✗ ✓ ✓ ✓ ✗ Approximately

String length (lattice) O(�1) O(1) O(1) O(1) O(�1) O(I)

Simulation time (lattice) O(�1�2) O(1) O(1) O(1) O(�1�2) O(I2)

—with cancellations O(�1) O(1) O(1) O(1) O(�1) O(I)

Restores locality? ✗ ✓ ✓ ✓ ✗ Approximately

There is no such operation for mappings found in prior works,
the Verstraete-Cirac transform and superfast simulation. To
compare them with the AQMs, we modify the VCT and
BKSF, rendering them planar codes with the Manhattan-
distance property. The contributions of this paper are:

(a) We introduce three types of auxiliary qubit mappings,
each requiring a different amount of auxiliary qubits. Our
main result of this paper is the square lattice AQM, which uses
2N − �1 qubits in total. Note that in general, mappings with
more auxiliary qubits will in some sense deal better with the
second dimension, but none of the mappings generalizing the
Jordan-Wigner transform has a total qubit number exceeding
2N . However, one might be interested in using fewer auxiliary
qubits: This can be the case for instance when simulating
lattice models, where we would like to make the physical
lattice as large as possible and “being on a fixed qubit budget”
accept a trade-off between circuit depth and the number of
auxiliary qubits. A qubit-economic version of this mapping
would be the sparse AQM, which introduces the parameter
I to regulate the tradeoff. Furthermore, with adding only a
few qubits we can already obtain a modified version of this
mapping which has easy-to-prepare logical states and is called
E-type AQM. A comprehensive list of all considered fermion-
to-qubit mappings, that allows us to compare their properties,
is compiled into Table I. For all auxiliary qubit mappings, we
provide the initialization circuits of O(�1) depth.

(b) We demonstrate the auxiliary qubit mappings on the
Fermi-Hubbard model, decreasing its algorithmic depth from
being linear with the number of data qubits, O(N), to being
constant, O(1). This is an important step towards making its
simulation scalable (at the expense of more qubits). Lattice
models are in general not just interesting by themselves, but
also test on how a fermion-to-qubit mapping deals with the
second dimension, i.e., the criteria mentioned in the intro-
duction, in a minimal fashion. We explicitly show how the
mappings transform the Fermi-Hubbard model into a model
of local qubit interactions on the lattice.

(c) We compare our work, the auxiliary qubit mappings,
to the Verstraete-Cirac transform [23] and the superfast simu-
lation [30] from the literature. As indicated above, we adjust
the latter two slightly to make all three mappings comparable.
Advantages and disadvantages of each mapping eventually
lead us to conclude which of them to recommend for different
situations.

While these contributions are covered in Secs. V, VI,
and VII, the rest of the paper is organized as follows: in
Sec. III, we provide a more structured introduction to the
layout of the quantum device and the established fermion-
to-qubit mappings. We discuss criteria for a “good” mapping
in detail and that the Jordan-Wigner transform has deficits in
those regards. In Sec. IV, we illustrate the effect of quantum
codes, such as the ones that are the blueprint for the AQMs,
on a given Hamiltonian. While the AQMs are an original idea,
we cannot claim the same about their theoretical backbone:
the foundations for auxiliary qubit codes are basically used
in Ref. [34], although there the stabilizer formalism was not
employed. As a consequence, one auxiliary qubit would have
to be added for each term in the Hamiltonian, which is a large
overhead that can be avoided by using the underlying principle
to define quantum codes. We derive these codes from scratch
in Appendix A. Some minor contributions are provided out-
side the main text of this work. In Appendix B, we study
the class of tree-based mappings, to which the Bravyi-Kitaev
transform belongs. The Bravyi-Kitaev transform itself does
not do well with the square lattice, but we provide a general
method to tailor and embed similar mappings to arbitrary two-
dimensional setups. Appendix C is mostly providing details
on the Verstraete-Cirac transform and superfast simulation,
but we also tackle some side issues by deriving the logical
basis of both mappings.

III. PRELIMINARIES

In this section we describe the influence of fermion-
to-qubit mappings on the algorithmic depth of quantum

022308-3

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

FIG. 2. Simulation of Pauli strings in a system with limited connectivity. (a) Qubit connectivity graph: the vertices are qubits. Two-qubit
gates can be performed only between qubits coupled by an edge. (b) Simulating a Pauli string on the quantum device: the qubits involved, and
the edges along which entangling gates are performed, are highlighted. Inscriptions X, Y, and Z indicate which Pauli operator acts on each
qubit. (c) Simulating a Pauli string, here we simulate the propagator exp(i φ X ⊗ Z⊗6 ⊗ X), where φ is an angle. The Pauli string could be the
one in (b). In general, this circuit stores the parity information of the involved qubits on one of them, which is done by chains of controlled
NOT gates (CNOT). The inscriptions X, Y, and Z determine for each individual qubit whether it is in the Hadamard, computational or Y-basis
in the process. Note that it does not play a role on which of the qubits the parity of the others is collected, but to optimize the simulation
time, a qubit in the middle of the chain is chosen. On that qubit the phase rotation Z (φ) = exp(i φ Z) is performed, after which the chains are
uncomputed.

simulation in a setup of square-lattice qubit-connectivity. In
particular we will discuss criteria which render mappings
“good” in the sense that they allow for parallelization and low
gate costs. For that purpose, we will give a theoretical descrip-
tion of the qubit layout and sketch the simulation algorithms.
Let us start, however, by stating the role of fermion-to-qubit
mappings for quantum simulation in general. We generally
advise the reader familiar with the subject to skip ahead to
Sec. IV.

The goal of quantum simulation is to approximate the
ground state and the ground-state energy of a given Hamil-
tonian. When the Hamiltonian acts on a space of fermions,
a fermion-to-qubit mapping serves as translator between the
quantum system to be simulated and the qubit system inside
the quantum computer. That not only entails a correspondence
of basis states, but also a transformation of the Hamiltonian.
The Hamiltonian after its transformation with the mapping,
is henceforward acting on the qubits inside the quantum
computer. We here consider the case where the qubit system
underlies architectural constraints, that we want to abstract
with the following model.

Our setup is a two-dimensional quantum device that we
describe with a planar graph, where each of the n vertices is a
qubit. In this model, it is assumed that we can individually
and simultaneously perform Pauli-rotations on every single
qubit. However, entangling gates can only be applied between
two qubits that share an edge in the graph. We assume that
we can perform two-qubit gates individually per edge, but
qubits involved in one gate cannot be part in another at the
same time. Although we do not want to specify which kind
of two-qubit gate is native to the quantum device, we want
to assume that we can do CNOT-gates in O(1) time using
only a few native gates. The full qubit connectivity graph
will furthermore be assumed to be a square lattice, so we
can only perform entangling gates between qubits that are
nearest neighbors, see Fig. 2(a). Note that the individual
connectivity graphs, that every fermion-to-qubit mapping in
this work comes with, are subgraphs of Fig. 2(a), such that
every mapping can be embedded in the considered qubit
system.

A. Simulating a qubit Hamiltonian

To elucidate the connection between the mapping and
the depth and cost of the simulation algorithms, we need
to understand these algorithms better. Let us assume the
fermion-to-qubit mapping transforms a Hamiltonian into the
form of Pauli strings, i.e., the sum H =∑h �h h, where {�h}
are real coefficients associated to a Pauli string on n qubits,
h ∈ {X, Y, Z, I}⊗n. Note that we will refer to the number of
qubits, that a string h acts on nontrivially, as (operator) weight
and (string) length, interchangeably.

Quantum simulation algorithms have different ways to
search for the ground state of H . Depending on which algo-
rithm is used, the Pauli strings h have to be either measured, or
their propagator simulated (conditionally) [4,5]. With a prop-
agator we mean the operator exp(i φ h), where φ is an angle
that typically is some function of �h. Using CNOT-gates, we
simulate such a propagator with the gadget like in Fig. 2(c),
where chains of these gates copy parity information across the
lattice onto a single qubit, on which then a Z-rotation around
the angle φ is performed and afterwards the CNOT-chain is
uncomputed. For quantum eigensolvers [7], this qubit will be
measured instead. Often we need the rotation to be conditional
on the state of another qubit, so conventionally the Z-rotation,
Z (φ) = exp(i φ Z), is to be replaced with a controlled rotation,
I ⊗ |0〉〈0| + Z (φ) ⊗ |1〉〈1| where the first qubit is the one that
holds the parity information, and the second is the control,
typically an auxiliary qubit of a phase estimation procedure.
Alternatively, the quantum phase estimation algorithm can
be adapted to include control qubits in the string, namely,
to simulate the propagator exp(−i φ

2 h ⊗ Z) = exp(−i φ

2 h) ⊗
|0〉〈0| + exp(i φ

2 h) ⊗ |1〉〈1| instead.
For phase estimation-based algorithms, the propagator of

the entire Hamiltonian, exp(iHφ) needs to be simulated,
which invokes the propagator of each string at least once (e.g.,
Refs. [35,36]). Other algorithms invoke each string multiple
times: Trotterization [37,38] approximates the Hamiltonian
propagator as repeating sequences of all string propagators
exp(i φ h), and in iterative phase estimation [6], a repeated ap-
plication of exp(iHφ) increases the accuracy of the computed
energy. In general, H does not even have to be a Hamiltonian:

022308-4

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

it could also be an operator that prepares a trial state with
Givens rotations [33] or implements a unitary coupled-cluster
operator [39]. In any case, we will expect there to be a
large number of strings in H , so we would like to apply the
gadgets [Fig. 2(c)] in parallel to keep the simulation shallow
whenever possible. Let us coordinate the simulation of all
those propagators by switching to layout diagrams like the one
in Fig. 2(b), instead of using circuit diagrams like in Fig. 2(c).
This gives us an idea of all the qubits involved and how they
are coupled, but leaves out certain details about for instance
the specific simulation algorithm. Our ability to parallelize the
simulation is determined by the fermion-to-qubit mapping, in
particular in the shape of the strings that it outputs. In regard
of our connectivity setup [Fig. 2(c)], we consider a fermion-
to-qubit mapping as good if it outputs Hamiltonians H with
Pauli strings that are short, continuous, and nonoverlapping.
We will now explain these criteria:

Short—The length of a Pauli string is the number of qubits
that it acts on nontrivially. While the gadget in Fig. 2(c)
implements a propagator in a number of time steps that scales
linearly with the amount of qubits involved, other implemen-
tations have been conceived. As can be seen in Refs. [40,41],
the gadget can be replaced with one that performs the same
operation with an up to exponential improvement in the circuit
time, so at most O(log n). However, taking into account the
(limited) qubit connectivity of the square lattice, we want to
stick to the gadget of Fig. 2(c). Although a time reduction
can be achieved for Pauli strings acting on a nonlinearly
distributed subset of qubits, we generally expect a time scaling
linear in the string length. As the number of time steps is
interchangeably connected to the circuit depth, we have an
interest in keeping the Pauli strings as short as possible.

Continuous—in general, Pauli strings in H will not only
act on nearest neighbors, this means we cannot connect the
qubits involved along shared edges as it is done in Fig. 2(b).
Connectivity problems are symptomatic for layouts like this,
in which only nearest neighbors are coupled. Let us assume
that two qubits need to be connected in a gadget like Fig. 2(c),
but they do not share an edge and the shortest path along
edges encompasses a number of m uninvolved qubits. To skip
these qubits, O(m) additional two-qubit gates and time steps
are required. In case the native two-qubit gates are either
i SWAP or

√
SWAP, the outer qubits can be connected by

a chain of SWAP gates, which costs 2m native gates in the
former case and 4m in the latter. For systems with native
CNOT-gates the formation SWAP gates with three CNOTs is
unnecessary expensive, so instead we amend gadgets like in
Fig. 2(c) with a construction that includes the m inner qubits
in the CNOT-chains, but compensates for their contribution.
We present two versions of such a compensation circuit in
Fig. 3, where the left panel shows us the gate that we would
like to perform but cannot: We would like the configuration
of the first qubit to be added to the last qubit by a nonlocal
CNOT-gate. In the end, the circuits in the center and on the right
achieve that task but render the m uninvolved qubits useless
until the circuit is uncomputed. The additional cost in time
and gates is 4m, which means that it is cheaper to include a
qubit in a string than to skip it. In conclusion, compensating
or swapping of qubits is possible, but we would prefer to avoid
the additional cost and rather deal with continuous strings.

Nonoverlapping—The overlap of two (or more) Pauli
strings is the number of qubits in the intersection of the sets of
qubits the strings act on. Two Pauli strings that are both acting
nontrivially on a common subset of qubits are hard to simulate
in parallel, as these qubits get parity information attached to
them like in Fig. 2(c). Unless these qubits are located at the
beginning of a chain or if one string is a substring of the
other, this parity would have to be corrected for. Later, we will
briefly discuss the possibility of gate cancellations between
similar, overlapping strings. While this has been suggested for
Trotterization in Ref. [40], its impact on the approximation
error is not well understood yet. Product formula approaches
based on coalescing or randomization offer little or no choice
in the term ordering [16,42–44]. Thus, avoiding the need for
cancellations, we ideally would like our mapping to transform
all pairs of commuting fermionic operators into nonoverlap-
ping Pauli strings.

B. Fermion-to-qubit mappings based on linear transforms

Here we will review fermion-to-qubit mappings that are
based on linear transforms of binary vectors, as these serve as
foundation for the auxiliary qubit mappings later. Let us start
this section at the fermionic side of the problem, that we seek
to map onto qubits.

In general, we search for the ground state of a system of
fermions, that live on N modes, governed by a Hamiltonian. It
is convenient for us to formulate this problem in the language
of second quantization, where we consider fermion creation
c†

j and annihilation operators c j of modes j ∈ [N], with [N]
just being a shorthand for the set of integers {1, 2, ..., N} and
[0] = ∅, a notation that will be used continuously throughout
this work. The fermionic operators c†

j , c j create and annihilate
particles on the jth fermionic mode, and the antisymmetricity
of the wave functions is built into these operators by their
anticommutation relations

[ci , c j]+ = 0, [c†
i , c†

j]+ = 0, [ci , c†
j]+ = δi j . (1)

A Hamiltonian can now be formulated by means of these
terms, where they will typically appear in pairs. A form
typical for a molecular Hamiltonian is∑

i, j ∈ [N]

hi j c†
i c j +

∑
i, j, k, l ∈ [N]

hi jkl c†
i c†

j ckcl , (2)

where {hi jkl} and {hi j} are complex coefficients dictated by the
problem, but they always take values such that the Hamilto-
nian is Hermitian. Hamiltonians in second quantization have
notoriously no regard for the particle number of the system
but rather map the entire fermionic Fock space to itself,
where physical Hamiltonians like Eq. (2) conserve subspaces
with a fixed particle number. A basis encoding the (N-mode)
Fock space of fermions can be parametrized by N-fold binary
vectors ν = (ν1, ν2, ..., νN)� ∈ Z⊗N

2 , where each component
νi is an element of Z2 = {0, 1}. Conventionally, the corre-
spondence is

ν = (ν1, ν2, . . . , νN)� ←→
⎡⎣∏

j∈[N]

(c†
j)

ν j

⎤⎦|�〉, (3)

022308-5

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

FIG. 3. Skipping several qubits in a CNOT-chain. Here we consider the effect of the circuits on a computational basis state (
⊗

i |ωi〉),
mapping it to a state (

⊗
i |ω′

i〉). We denote the qubit values ωi and ω′
i (mod 2) on the left and right side of each circuit. Left: The desired circuit,

a CNOT-gate that adds the parity from the first qubit to the last. For connectivity reasons, this gate is not possible: we can only connect adjacent
qubits. Center/Right: Two circuits in which the middle qubits are compensated for to entangle the first and last qubit. To get rid of the effect
on qubits 2–5, the gadgets have to be partially uncomputed, but in propoagators like in Fig. 2(c), this is not necessary.

where |�〉 is the fermionic vacuum state and we define
(c†

j)
0 = 1, such that the component ν j indicates the occupa-

tion of the jth fermionic mode. At this point we need to raise
awareness of a subtle but important point of that parametriza-
tion: We have imposed a certain labeling of fermion modes
that implies an order in the basis states. This order, called
canonical order, needs to be chosen carefully since it is as
crucial for the transformed operators as the fermion-to-qubit
mapping.

To encode all 2N basis elements Eq. (3) into quantum
states, one needs a minimum of N qubits. We will now
describe how basis states and operators are mapped to the
qubit system, but first set up some further notation.

A single qubit will be assigned a label j, which will appear
as a subscript on its states, e.g., on its basis configurations
|0〉 j, |1〉 j . The label will also be carried by single qubit
operators to indicate on which qubit they act on, e.g., Zj

acts on qubit j. In Pauli strings, identities will be omitted,
so e.g., X ⊗ I ⊗ X = X1 ⊗ X3 = (

⊗
i∈{1, 3} Xi), but an identity

over all qubits will generally be denoted by I. Multiqubit
states and operators, however, will be branded with a subset
of [n] as subscript, for the qubits they have support on. Let us
consider an example: as mentioned before, we only need N
qubits to encode the entire Fock space but will usually have
more, i.e., n � N . In the mappings we consider the first N
qubits already describe the system and the other qubits are just
there for auxiliary purposes. Hence, we will group qubits 1 to
N into a set referred to as the data register. N-qubit states |ϕ〉 in
that register as well as operators U acting on it will be denoted
by the index dat = [N], e.g., |ϕ〉dat and Udat. This notation will
be used throughout this work, as n > N , but for the moment
we stick to the case of n = N . First, the bases of fermions and
qubits need to be matched. As a counterpart to Eq. (3), the
qubit basis can be parametrized by binary vectors ω ∈ Z⊗N

2 ,
where the components ω j indicate the quantum state of the
jth qubit in a product state. The correspondence is

ω = (ω1, ω2, . . . , ωN)� ←→ |ω〉dat =
⊗
j∈[N]

|ω j〉 j .

(4)

The set of states {|ω〉}ω constitutes the computational basis on
N qubits, and an arbitrary state in that basis can be defined as

|ϕ〉dat =
∑

ω∈Z⊗N
2

aω|ω〉dat, (5)

where aω are complex coefficients that normalize the state∑
ω |aω|2 = 1.
A linear fermion-to-qubit mapping now implies a one-

to-one correspondence between all possible basis-defining
vectors ν ↔ ω, which is done by multiplication with the
invertible binary (N × N)-matrix A, such that [27,28]

ω = A ν mod 2, ν = A−1ω mod 2

with A−1A mod 2 = I, (6)

where I is the (N × N) identity matrix. Thus, by the transform
Eq. (6), we have related the basis of fermions Eq. (3) to the
qubit basis Eq. (4). We will now show how this transform
translates the Hamiltonian Eq. (2). Mimicking the effect of
the fermion operators c†

j , c j on the basis states, we find [45]

c†
j =̂ 1

2

⎛⎝⊗
k∈U (j)

Xk

⎞⎠⎛⎝I +
⊗

l∈F (j)

Zl

⎞⎠⎛⎝ ⊗
m∈P(j)

Zm

⎞⎠,

(7)

c j =̂ 1

2

⎛⎝⊗
k∈U (j)

Xk

⎞⎠⎛⎝I −
⊗

l∈F (j)

Zl

⎞⎠⎛⎝ ⊗
m∈P(j)

Zm

⎞⎠,

where the hatted equal signs =̂ denote the correspondence be-
tween operators on the fermion and qubit space. The relations
Eq. (7) feature the generalized update, flip, and parity sets of
modes j ∈ [N]: U (j), F (j), and P(j) (in a notation slightly
different from Ref. [27]). These are sets of integers, subsets
of [n] to be exact. The sets F (j) and P(j) are made up by the
column indices of all “1” entries, in the jth row of the matrices
A and RA mod 2, where R is the lower triangular matrix,

R =

⎡⎢⎢⎢⎢⎢⎢⎣

0

1 0

1 1 0
...

...
. . .

1 1 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎦. (8)

The update sets U (j) are comprised of all row numbers of
“1” entries in the jth column of A−1. Operators in Eq. (2) will
have to be transformed into Pauli strings according to Eq. (7).

C. S-pattern Jordan-Wigner transform

Based on the insights of the previous sections, we will
now review what is probably the standard fermion-to-qubit
mapping [17]. In case of the Jordan-Wigner transform, the

022308-6

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

FIG. 4. (a) The connectivity graph for the S-pattern Jordan-Wigner transform. (b) Simulating a Pauli string (Xi ⊗ Zi+1 ⊗ · · · ⊗ Zj−1 ⊗ Xj),
that can be considered half of a hopping term. (c) Simulation of a Pauli string associated with a fermionic hopping between the two encircled
qubits (dotted line). The hopping is in the vertical direction (diagonal to the S pattern) which unfortunately involves gates on all qubits on the
S pattern between the two qubits.

transformation matrix A can be regarded as the identity: A =
A−1 = I. From Eq. (7), we derive the number operators

c†
j c j =̂ 1

2 (I − Zj) (9)

and hopping terms (for i < j)

hi j c†
i c j + (hi j)

∗ c†
j ci

=̂ 1

2
Re(hi j)

(
j−1⊗

k=i+1

Zk

)
(Xi ⊗ Xj + Yi ⊗ Yj)

+ 1

2
Im(hi j)

(
j−1⊗

k=i+1

Zk

)
(Yi ⊗ Xj − Xi ⊗ Yj). (10)

While the number operator is transformed into just a con-
stant term and a term that acts on one qubit only, the hopping
terms are transformed into a string that exhibits long sub-
strings of Z operators, (

⊗ j−1
k=i+1 Zk), sometimes called parity

(sub-)strings. The right-hand side of Eq. (10), which describes
an interaction of the fermionic modes i and j, translates into
several strings with X and Y operators on the corresponding
qubits of i and j, and all qubits of indices k, with i < k < j,
are part of the parity substring. Although the parity string
does us the service of connecting the qubits i and j in that
way, it is also the reason that Pauli strings produced by the
Jordan-Wigner transform are of length O(N).

While the nature of our problem determines the
Hamiltonian coefficients (such as hi j) with respect to the
fermionic wave functions, it is up to us to label each
fermionic mode such that we minimize the appearance of
long Pauli strings in H . While problems that are intrinsically
one-dimensional can be mapped to local Hamiltonians, long
strings can generally not be avoided for systems in higher
spatial dimensions.

The question is how to incorporate the Jordan-Wigner
transform into the square lattice layout. There is a natural
solution: given a N = (�1 × �2) matrix of qubits, we need to
use only N − 1 edges to connect them in canonical order like
beads on a string, see Fig. 4(a). Due to the windings of the
pattern on the block boundaries, we will refer to this particular
way of using the Jordan-Wigner transform on a square lattice
as S-pattern Jordan-Wigner transform. Let us now describe
its properties to assert how good a mapping it is. The map-
ping produces strings that are continuous: although arbitrary
terms (like c†

i c†
j ckcl) will in general not be transformed into

continuous Pauli strings, creation/annihilation operator pairs
c†

i c j will. Unfortunately, the resulting Pauli strings are neither

short nor nonoverlapping. As the parity strings encompass all
the qubits in between i and j, the string can even span several
rows, see Fig. 4(b). This leads not just to a high gate count and
algorithmic depth, but also occupies a large portion of qubits
at once, effectively hindering parallelization.

Let us consider an illustrative example: If we want our
quantum device to simulate a two-dimensional lattice of sites
with fermionic occupation and nearest-neighbor hopping, we
encounter two kinds of terms. Short ones, where the ex-
change between nearest neighbors c†

i ci+1 + H.c. yields the
Pauli strings (Xi ⊗ Xi+1 + Yi ⊗ Yi+1)/2, and long ones, as the
nearest-neighbor hoppings in the vertical direction will result
in strings that can be seen in Fig. 4(c). Although these are
nearest-neighbor interactions, they use all qubits around the
winding linking the two rows, so all vertical hopping terms
between two sites in the same two rows will overlap. The
S-pattern Jordan-Wigner transform thus has the property to
transform operators, that are geometrically local in second
quantization into nonlocal Pauli strings on the lattice. In
Sec. VI, we will learn that it is those vertical hopping terms,
that prevent us from simulating lattice models efficiently.

The verdict for the S-pattern Jordan-Wigner transform is
that it is not good in the sense of our criteria, but good
enough to serve as a foundation for better mappings. In the
following, we will introduce mappings modifying the Jordan-
Winger transform in using quantum codes to cancel nonlocal
parity strings, which will make the resulting strings short
and nonoverlapping. This will lead to a certain overhead in
auxiliary qubits, placed along with the original (�1 × �2)-
block of data qubits on a square lattice. In contrast to the
S-pattern Jordan-Wigner transform, the mappings to follow
embrace the second dimension as a useful tool.

Note that there are other alternatives to the Jordan-
Wigner transform. The Bravyi-Kitaev transform [25,27,28,30]
is known to produce Pauli strings of weight O(log N) instead
of O(N). For N > 16 it can, however, be rather difficult to
embed the mapping into a square lattice such that it out-
puts continuous strings. For a geometric interpretation of the
Bravyi-Kitaev transform and related mappings we would like
to refer the reader to Appendix B.

IV. TECHNIQUES

A. Motivation

Here we motivate the general concept of auxiliary qubit
mappings. The starting point will be a nonlocal Hamiltonian

022308-7

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

obtained by transformation with some linear mapping from
Sec. III B. We then define quantum codes to restore operator
locality. These codes will act on the original system extended
by several “auxiliary” qubits. The effect of such codes on the
Hamiltonian will be studied.

Consider that we have an N-qubit Hamiltonian Hdat,

Hdat =
∑
h∈S

�h hdat, (11)

where S is the set of all Pauli strings occurring in the
Hamiltonian, S ⊆ {X,Y, Z, I}⊗N with all �h being real,
nonzero coefficients. Let us omit the qubit subscripts for
now. Although we want to remain fairly general at this point,
the reader can already think of Eq. (11) as the result of a
Jordan-Wigner-transformed Hamiltonian Eq. (2). In general,
the problem with this Hamiltonian is that S contains variations
of Pauli strings that are either too long, discontinuous or
otherwise inconvenient to us. Thus, we would like to some-
how replace these strings inside the Hamiltonian, even if it
means that we need to add qubits to the system. Let us first
consider a naïve approach which indicates the challenges of
the method. We then tackle these challenges with a more so-
phisticated proposal. For the moment, let there be for exactly
one inconvenient string p ∈ {X,Y, Z, I}⊗N , that either appears
in the Hamiltonian directly, or is the nonlocal substring of
some Hamiltonian strings {h′} ⊂ S . To bring the Hamiltonian
in a convenient form, we would like to multiply every such
string h′ with p. Now we entangle an additional qubit to
the system. Ideally, we would like to find the Pauli operator
σ ∈ ±{X,Y, Z}, acting on the added qubit, such that for every
state |ϕ〉 on the original system of N qubits, there exists a state
|̃ϕ〉 on the system extended by the (N + 1)th qubit, on which
H has the same effect as on |ϕ〉, but (p ⊗ σ) is a stabilizer:

(p ⊗ σ)|̃ϕ〉 = |̃ϕ〉,
implying (p ⊗ I)|̃ϕ〉 = (I⊗N ⊗ σ)|̃ϕ〉. (12)

If this was true, then every time p appears as a string in
the Hamiltonian we could just replace it with σ , or multiply
inconvenient strings (h′ ⊗ I) by (p ⊗ σ) to cancel the nonlo-
cal substrings. However, this is generally not possible: When
there are terms in S that anticommute with p, then H will
destroy the stabilizer state |̃ϕ〉. This means that the state is al-
tered in a way that Eq. (12) is no longer valid. The simulation
of the adjusted Hamiltonian on such a broken stabilizer state
subsequently no longer describes the correct time evolution
of the underlying N-qubit system. We thus need to adjust the
Hamiltonian H → H (κ), where H (κ) generally acts on N + 1
qubits even without having its terms multiplied by stabilizers
yet. This has to be done in a way as to ensure that the time
evolution of |̃ϕ〉 according to H (κ) can be mapped back to
the time evolution of |ϕ〉 according to H . At the same time
we need to demand [H (κ), p ⊗ σ] = 0 and that (p ⊗ σ) is a
stabilizer like in Eq. (12). Only then we can use (p ⊗ σ) to
cancel p inside the terms of H (κ) and so obtain a convenient
Hamiltonian H̃ .

We now refine our approach accordingly, considering also
the appearance of multiple strings p (and picking up qubit
subscripts as well). In Hdat, we identify r Pauli strings pi

dat (for
i ∈ [r]) that we would like to cancel as we have done with

a single string p above. Furthermore, we would like to have
the option for every Hamiltonian term hdat to multiply it with
either several, one or none of the strings {pi

dat}. This is done by
repeating the above procedure for each of the r strings. To that
end, we add r qubits to the system: grouping them together we
introduce the r-qubit auxiliary register aux = {N + 1, N +
2, . . . , N + r}. We assume that at the beginning, the aux-
register is initialized in the state |0r〉 = |0〉⊗r . Our goal is to
cancel the ith string pi

dat with a single Pauli operator on the
(N + i)th qubit: σ i

N+i. Thus, we need to find a unitary quantum
circuit which entangles the aux-register with the data qubits in
a certain way: It has to implement a unitary Vaux dat, such that
for every state |ϕ〉dat Eq. (5), we have a state in the composite
system, |̃ϕ〉aux dat with

Vaux dat |ϕ〉dat ⊗ |0r〉aux = |̃ϕ〉aux dat

and
(
pi

dat ⊗ σ i
N+i

)|̃ϕ〉aux dat = |̃ϕ〉aux dat, (13)

for all i ∈ [r]. To make this work even on a conceptual level,
we need to demand that all pi

dat commute pairwise, otherwise
there cannot be a common stabilizer state of all (pi

dat ⊗ σ i
N+i).

Once the stabilizer state is obtained, we maintain it by ad-
justing every term of Hamiltonian Eq. (11) with a Pauli string
on the auxiliary register. This is done in a way such that the
action of the adjusted term on the enlarged system is the same
as the action of the original term on the original system. The
adjustments are

hdat → (
hdat ⊗ κh

aux

)
,

with V †
aux dat

(
hdat ⊗ κh

aux

) |̃ϕ〉aux dat

= hdat |ϕ〉dat ⊗ |0r〉aux, (14)

where κh
aux is the Pauli substring on the auxiliary register that

is correcting hdat. Note that in case hdat already commutes with
all the stabilizers, κh

aux is the identity. Of course, we would like
the above relation to hold for every string in the Hamiltonian,
hdat ∈ S , but as we have effectively defined a quantum code
encoding the entire Hilbert space of the N data qubits, hdat

can be an arbitrary N-qubit Pauli string. Now by virtue of the
stabilizer conditions Eq. (13), we can multiply the adjusted
terms (hdat ⊗ κh

aux) by any of the operators (pi
dat ⊗ σ i

N+i) and
thus get rid of their detrimental parts. The resulting logical
operators h̃aux dat define a convenient (logical) Hamiltonian,

H̃aux dat =
∑
h∈S

�h h̃aux dat. (15)

B. Definitions

Generally, the auxiliary qubits can be added in the compu-
tational basis to cancel strings pi

dat ∈ {I, Z}⊗N with Z oper-
ators σ i

N+i = ZN+i. As an enhancement of the Jordan-Wigner
transform, codes like this can be used to cancel nonlocal parity
strings. The adjustment strings (of a term hdat) κh

aux would
then for all k ∈ [r] contain XN+k if hdat anticommutes with
pk

dat. Note that the codes defined in this way (with only Z
stabilizers) have the property to map N-qubit computational
basis states to states in the computational basis on n qubits, a
trait that is useful for state preparation. These codes, however,
have their limitations, as they can easily demand adjustment
strings κh

aux of weight O(r).

022308-8

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

FIG. 5. E-type AQM. (a) A block of (4 × 5) data qubits (white) enhanced with 5 auxiliary qubits (gray). A single stabilizer is highlighted
in the graph. (b) Initializing one of the stabilizers (

⊗16
i=13 Zi) ⊗ Z24. (c) Simulating Pauli strings hdat = (X ⊗ Z ⊗ · · · ⊗ Z ⊗ X) on the E-type

AQM. While long strings are rerouted to skip rows, extending along the corresponding auxiliary qubits instead, shorter strings that do not
switch rows can be simulated in parallel.

Other schemes specifically minimize the weight of κh
aux.

The methods of Subaşı and Jarzynski [34] effectively define
codes with auxiliary qubits in Hadamard basis that allow
for an arbitrary choice of Pauli strings pi

dat, as long as all
r strings commute pairwise. The p strings are subsequently
replaced with X operators, σ i

N+i = XN+i, and the adjustments
κh

aux contain ZN+k for every string pk
dat, that anticommutes with

hdat. In Ref. [34] some concern is expressed that the operator
weight might generally scale with the number of auxiliary
qubits added—a key problem addressed by our work. We will
in the following pick a set of strings {pi

dat} such that every
term hdat ∈ S , resulting from any fermionic Hamiltonian,
anticommutes with only a small number of stabilizers.

In Appendix A we give more details about these auxiliary
qubit codes, such as their logical basis and the derivation
of their stabilizers, adjustment terms as well as of the ini-
tialization unitaries Vaux dat. There are a few ways to extend
the auxiliary qubit mappings. In replacing the Pauli operators
{σ i

N+i} with a set of Pauli strings {γ i
aux}, we can even stabilize

Pauli strings {pi
dat} that anticommute. In a similar vein, we

can express the Verstraete-Cirac transform as a quantum code,
which allows us to make modifications and to verify its
operator transforms, see Appendix C.

V. AUXILIARY QUBIT MAPPINGS

A. E-type AQM

Here we present a mapping that remedies the biggest
drawback of the S-pattern Jordan-Wigner transform under
a moderate overhead of qubits. Given a (�1 × �2) block of
data qubits, we are going to add �2 qubits as auxiliaries in
computational basis. With this overhead, we will not manage
to achieve any advantage for lattice models, but the scaling of
long-range interactions (on the fermionic lattice) is improved.
The following mapping will be referred to as E-type AQM. We
will first illustrate its graph, along with instructions on how to
initialize the stabilizer state from |ϕ〉dat ⊗ |0r〉aux. Afterwards,
a discussion of the resulting Pauli strings will elucidate the
advantages of the E-type AQM.

The idea of the E-type AQM is to store the parity of distinct
data-qubit subsets permanently on auxiliary qubits. As we
will see shortly, choosing to attach an auxiliary qubit to each
of the �2 data-qubit rows is providing us with a geometric
interpretation of the resulting strings. The result is shown
in Fig. 5(a). Note that two things are different between the
S-pattern Jordan-Wigner transform and the E-type AQM: first,
the connectivity graph has changed. A row of qubits is now

coupled to one auxiliary qubit, and only those auxiliary qubits
are coupled together, data qubits in different rows are not
coupled anymore. Although such connections between data
qubits might be useful for simulating many-body terms, they
are not necessarily required. Second, we have also changed
the labeling of the qubits: the indices i ∈ [�1�2] still corre-
spond to the indices attached to fermion operators in Eq. (3),
but their order in the graph does no longer resemble an S
pattern of the canonical indices.

From |ϕ〉dat ⊗ |0r〉aux the logical state |̃ϕ〉aux dat can be
initialized in O(�1)-time and a total of O(�1�2) gates. Here a
chain of CNOTs is used to mirror the collective parity informa-
tion of an entire row of qubits on the attached auxiliary. The
scaling in time is due to the fact that the preparation circuit in
Fig. 5(b), can theoretically be implemented on every row in
parallel. The stabilizers of the system are(⊗

i ∈ row k

Zi

)
⊗ ZN+k, (16)

for all rows k ∈ [�2] in the data qubit block. We now turn
to describe the resulting Pauli strings, for which we need
to discuss the adjustments κh

aux. Diagonal terms Eq. (10) in
the Hamiltonian do not influence the stabilizer state, as well
as hopping terms Eq. (9) between qubits in the same row.
Our attention is thus focused on Pauli strings of the form
hdat = (Xi ⊗ Zi+1 ⊗ · · · ⊗ Zj−1 ⊗ Xj), where qubits i and j
are situated in different rows k and l , where k < l . Those Pauli
strings are subsequently adjusted by κh

aux = (XN+k ⊗ XN+l).
To make these terms more convenient, we multiply the

adjusted strings with the corresponding stabilizers Eq. (16)
of rows k′, for all k � k′ < l . Here we discover the benefit of
this mapping: wherever Pauli strings act as Z strings on entire
rows, the parity is inferred instead from the auxiliary qubits
attached. This limits the length of parity substrings and so
Pauli strings (originating from hopping terms) have a maximal
length 2�1 + �2, instead of �1�2. This is not just a benefit
in time and gates, but also allows us to simulate single-row
strings at the same time as long strings spanning these rows,
see Fig. 5(c).

Although we expect the E-type AQM to be useful for prob-
lems long-range interactions, it has no advantage compared to
the S-pattern Jordan-Wigner transform if one considers locally
interacting lattice Hamiltonians. With only single-row Pauli
strings or strings between adjacent rows, no savings in gates
and algorithmic depth can be anticipated. In the following, we
will define a mapping that can transform those models into
local qubit-Hamiltonians.

022308-9

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

B. Square lattice AQM

Our main result, the square lattice AQM, is a mapping that
requires a square lattice connectivity graph of �1 × (2�2 −
1) qubits for a (�1 × �2) fermionic lattice. With the large
amount of �1(�2 − 1) qubits added, we make sure that the
code space can be initialized in O(�1) time steps; a time
frame that is better than linear in the total number of data
qubits. In the resulting mapping, we will be able to reroute
and deform Pauli strings, such that strings originating from
hopping terms have an operator weight of the order of the
Manhattan distance between the two qubits on the lattice.
The implication of this mapping for lattice Hamiltonians is
that vertical hopping terms have a constant weight, and the
algorithmic depth required to simulate such a model (after
the stabilizer state is prepared) is constant, i.e., independent
of the lattice dimension.

Before we start describing the mapping, we want to in-
troduce some helpful notation concerning qubit labeling. For
the sake of a geometric interpretation, we will migrate to
a geometric labeling, where each qubit index denotes its
coordinate on a grid. In the following, qubits in the data
register will bear labels (i, j) ∈ [�1] ⊗ [�2], so each data qubit
sits on integer positions of a grid and the qubit in the southwest
corner of the block has coordinate (1, 1). Beginning from that
very qubit, the index of each qubit is given according to the
canonical order of the S pattern in Fig. 4.

We will now describe the placement of the auxiliary qubits
on the lattice. The idea of the square lattice AQM is to insert
auxiliary qubits in between data qubits of different rows,
so in between (i, j) and (i, j + 1) into half-integer posi-
tions (i, j + 1

2), to cancel the parity strings in between those
qubits. However, we also want the p strings to have (anti-
)commutation relations like Majorana-pair operators. This is
an integral ingredient to avoid long adjustments substrings
κh

aux. To that end, we use a Hadamard-basis Auxiliary Qubit
code with stabilizers,

p
(i, j+ 1

2)
dat ⊗ X(i, j+ 1

2), (17)

which act on the data qubits at (i, j) and (i, j + 1) as X
or Y operators and as Z operators on all other data qubits
along the S pattern in between them. The position of the
auxiliary qubits and the choice of stabilizers can be seen in
Fig. 6. Note that it is unnecessary for the auxiliary qubits
to be connected to each other in the horizontal direction,
although it might come in handy in the process of initializing
the code space. As indicated in the figure, the Pauli terms on
(i, j) and (i, j + 1) in the stabilizers of qubits (i, j + 1

2) are
different for even and odd rows numbers j. The sole reason
for this decision is to render both terms of the vertical hopping
terms with real coefficients Eq. (10) of the same weight. For
every vertical connection (i, j + 1

2), the p substrings of the
stabilizers Eq. (17) are defined as(

�1⊗
k=i+1

Z(k, j)

)⎛⎝ i+1⊗
l=�1

Z(l, j+1)

⎞⎠ ⊗ Y(i, j) ⊗ X(i, j+1), (18)

(
1⊗

k=i−1

Z(k, j)

)(
i−1⊗
l=1

Z(l, j+1)

)
⊗ X(i, j) ⊗ Y(i, j+1), (19)

FIG. 6. Square lattice AQM, defined on a �1 × (2�2 − 1) square
lattice of qubits, here �1 = �2 = 6. The gray qubits form the aux-
register. Some qubits are labeled with their coordinates (dotted lines),
where the auxiliary qubits generally sit on half-integer positions. The
dashed lines do not couple qubits, but only indicate the windings
of the S pattern of the underlying Jordan-Wigner transform. The
highlighted qubits and edges are two examples of stabilizers for odd
and even rows, respectively.

for odd and even j, respectively. Now we are going to give
instructions on how to initialize the state |̃ϕ〉 within O(�1)
depth, starting from a disentangled state |ϕ〉dat ⊗ |0r〉aux. First,
we applying Hadamard gates on all auxiliary qubits. In all
rows with odd [even] row numbers j, we then simultaneously
apply the strings (Y(�1, j) ⊗ X(�1, j+1)) [(X(1, j) ⊗ Y(1, j+1))] con-
ditionally on the qubit at (�1, j + 1

2) [(1, j + 1
2)]. Entangling

these auxiliaries is easy as the stabilizers are at the windings
and therefore local, the operation can be performed in O(1)
time steps. We then proceed by applying the strings

X(�1−s+1, j) ⊗ Y(�1−s+1, j+1) ⊗ Y(�1−s, j)

⊗ X(�1−s+1, j+ 1
2) ⊗ X(�1−s, j+1)

[Y(s, j) ⊗ X(s, j+1) ⊗ X(s+1, j) ⊗ X(s, j+ 1
2) ⊗ Y(s+1, j+1)] (20)

conditionally on the qubits (�1 − s, j + 1
2) [(s + 1, j + 1

2)].
We do this sequentially from s = 1 to s = (�1 − 1), which
means we require O(�1) time steps in total. This concludes
the definition Vaux dat, as can be verified considering its formal
definition in Appendix A, and where we use that Eq. (20)
is obtained from the multiplication of a p string with the
closest stabilizer. A measurement-based approach for state
preparation is discussed in Sec. VII.

We are now going to describe the logical operators of the
code space defined. In Fig. 7(a), the adjusted term h̃aux dat

to a string hdat = (X ⊗ Z ⊗ · · · ⊗ Z ⊗ X) is presented. One
can show, either directly from definitions of strings like hdat

with p
(i, j+ 1

2)
dat or by relations between Majorana-pair operators,

that for Pauli strings originating from hopping terms Eq. (10)
between two sites (i, j) and (k, l), it is sufficient to check
for adjustments on only the auxilairy qubits at (i, j ± 1

2) and
(k, l ± 1

2). If j and l are different rows, it follows that the
string is not continuous, see Fig. 7(a). We then choose to
multiply the adjusted term with the stabilizers involving the
auxiliary qubits on which we wish the string to cross rows.
For vertical hoppings of lattice Hamiltonians, this choice is

022308-10

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

FIG. 7. A hopping term hdat = (X ⊗ Z ⊗ · · · ⊗ Z ⊗ X) spanning
several rows and columns in the square lattice. (a) Adjusted term
(hdat ⊗ κh

aux), not yet multiplied with any stabilizer. Note that this
string is not connected on the lattice, and the windings on which the
string is disconnected are highlighted. (b)–(d) Pauli strings h̃aux dat

that are equivalent to (hdat ⊗ κh
aux) by multiplication with stabilizers.

All those strings are continuous on the connectivity graph. The
strings in (b) and (d) have the same weight [and the string in (c) is
just slightly longer] which is determined by the Manhattan distance
of the string endpoints.

trivial. For arbitrary hoppings, however, it is not. Considering
that we likely have several such terms inside one Hamiltonian,
we want commuting strings not to overlap so we would
deform them (by multiplying other stabilizers) to go around
each other. This allows us to simulate them in parallel. In
Figs. 7(b)–7(d), different paths have been chosen for the
logical operator h̃aux dat to run along. Only deformed by the
multiplication of stabilizers, all of those choices are in fact
equivalent. Note that taking a direct path, the resulting strings
will always be of roughly the same length, as every direct
path connecting two nodes on a square lattice has the same
distance: the Manhattan distance.

In the following, we will generalize this mapping to yield
and AQM-version that requires fewer auxiliary qubits.

C. Sparse AQM

The sparse AQM is a modification of the square lattice
AQM that allows us to make a trade-off between the number
of auxiliary qubits required and the locality in the resulting
strings. The latter directly influences the performance of any
quantum simulation algorithm.

In the square lattice AQM, each data qubit (of the interior)
has two nonlocal connections in the vertical direction. This
can be regarded as quite wasteful, as a mapping with fewer
vertical connections would work in the same way while
effectively reducing the number of auxiliary qubits. Here

FIG. 8. Sparse AQM with a periodicity of three (I = 3). Top:
Structure and stabilizers. The gray qubits are auxiliaries, placed
sparsely on half-integer positions, connecting different rows. We
depict one of the stabilizers in an odd and an even row, respec-
tively. Bottom: Mappings of different hdat = (X ⊗ Z ⊗ · · · ⊗ Z ⊗ X)
strings originating from vertical hoppings. (a) A vertical hopping
along a vertical connection. The mapping yields the same (Z ⊗ Z ⊗
Y) string as we would expect from the square lattice AQM. (b) The
string is connecting (3, 3) and (3, 4). This example shows the virtue
of the sparse AQM: the parity string takes a shortcut along the closest
vertical connection. (c) Here we connect the qubits on (6, 1) and
(6, 2) from the other direction: over the vertical connection between
(4, 1) and (4, 2). (d) A next-nearest-neighbor vertical hopping term
between (9, 1) and (9, 3).

we introduce the sparse AQM, in which vertical connections
have a certain distance from each other. Let us say vertical
connections are always placed I qubits apart. The periodicity
I thus becomes a parameter of the mapping and is gener-
ally an integer number I ∈ [�1 − 1], where the case I = 1
reproduces the square lattice AQM. We have excluded the
case in which we have only one vertical connection between
every pair of rows, as it is covered by the E-type AQM
already. For convenience let us say that (�1 − 1)/I is an
integer such that we can place vertical connections at the right
and left boundary of the grid without spacing unequally. The
connectivity graph that puts auxiliary qubits on half integer
positions along I-spaced columns can be seen in Fig. 8(a),
along with the typical stabilizers. In this mapping the auxiliary
register holds r = (�2 − 1)(�1−1

I + 1) qubits, which is some-
where in between the square lattice and E-type AQM. For the
initialization circuit, Vaux dat, the sequence Eq. (20) has to be
changed into applying the strings(

X(�1−s+I, j+ 1
2) ⊗ p

(�1−s+I, j+ 1
2)

dat

)
p

(�1−s, j+ 1
2)

dat[(
X(s+1−I, j+ 1

2) ⊗ p
(s+1−I, j+ 1

2)
dat

)
p

(s+1, j+ 1
2)

dat

]
(21)

conditionally on qubits (�1 − s, j + 1
2) [(s + 1, j + 1

2)] for
s = I, 2I, 3I, . . . , �1 − 1. All those strings in the sequence

022308-11

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

are of weight O(I), but there are just (�1 − 1)/I of them,
which brings the depth of the entire circuit to O(�1).

Figure 8(b) shows some output strings of this mapping.
While crossing rows works like in the square lattice AQM,
the sparsity of vertical connections makes for a more limited
choice on where the strings can run along. As a consequence,
hopping terms between modes with a horizontal distance
smaller than I will transform into strings like in the E-type
mapping. The effect of sparsity on simulations of a lattice
model is discussed in the following section.

Note that we have made two arbitrary design choices for
the connectivity graph of this mapping: first, we have chosen
for the auxiliary qubits to be situated in between rows of data
qubits. To fit this mapping to a compact square lattice, we can
take the auxiliary qubits from in between the rows and insert
them into the rows, so e.g., take them from (i, j + 1

2) and
insert them at (i + 1

2 , j). Then, the auxiliaries have to be con-
nected to the data qubits (i, j) and (i + 1, j), as well as the
auxiliary qubits at (i + 1

2 , j ± 1). In the end, no qubits will be
in the spaces between rows—this makes the array more dense
and we can map it to a square lattice, but also requires us to
skip auxiliary qubits in some horizontal hopping strings. Sec-
ond, we have decided to place auxiliary qubits inside the same
column of every other vertical connection. Alternatively, the
vertical connections could be arranged in a brickwork pattern
to minimize the weight of the adjustments κh

aux, but then ver-
tical connections along a straight line are no longer possible.

VI. EXAMPLE: FERMI-HUBBARD LATTICE MODEL

A. Second quantization and Jordan-Wigner transform

Here we demonstrate the use of AQMs on the Fermi-
Hubbard model. In this model, we describe spin- 1

2 fermions
hopping on a square lattice, with a repulsion term whenever
spin-up and -down particles are present on the same site. In the

following, we will describe the Hamiltonian in both, second
quantization and in terms of Pauli strings after Jordan-Wigner
transform. Investigating the shortcomings of this mapping
with respect to circuit depth will be the motivation for the
application of AQMs in the next step. Let us consider an
(L × L)-site square lattice of spatial sites populated by spin-
(1/2) fermions: As every such site hosts a spin-up and -down
mode, a total of N = 2L2 qubits are minimally required. For
convenience, the spin-up and -down modes of the fermionic
site with the physical location (x, y) shall be placed at the co-
ordinates (2x, y) and (2x − 1, y) in the two-dimensional em-
bedding. This means the spin-partners are horizontal neigh-
bors, which is advantageous for the Jordan-Wigner transform
(and square lattice AQM). The Fermi-Hubbard Hamiltonian is
defined as∑

(i, j)

(
t↔
i j c†

(i, j)c(i+2, j) + H.c.
)

[horizontal hoppings]

+
∑
(i, j)

(
t�
i j c†

(i, j)c(i, j+1) + H.c.
)

[vertical hoppings]

+
∑
(i, j)

εi j c†
(i, j)c(i, j) [on-site detunings]

+
∑
(2i, j)

Ui j c†
(2i, j)c(2i, j)c

†
(2i−1, j)c(2i−1, j)

[Hubbard interactions], (22)

where t↔
i j , t�

i j , εi j and Ui j are real parameters. In this partic-
ular example sums run over all possible coordinates (i, j),
(2i, j), respectively, but implement open boundary condi-
tions. With an S-pattern Jordan-Wigner transform, the Hamil-
tonian can now be mapped onto an (2L × L) square lattice of
qubits:

H =
∑
(i, j)

t↔
i j

2
(X(i, j) ⊗ Z(i+1, j) ⊗ X(i+2, j) + Y(i, j) ⊗ Z(i+1, j) ⊗ Y(i+2, j))

+
∑

(i, j), odd j

t�
i j

2

(
2L⊗

k=i+1

Z(k, j)

)(
i+1⊗

l=2L

Z(l, j+1)

)
(X(i, j) ⊗ X(i, j+1) + Y(i, j) ⊗ Y(i, j+1))

+
∑

(i, j), even j

t�
i j

2

(
1⊗

k=i−1

Z(k, j)

)(
i−1⊗
l=1

Z(l, j+1)

)
(X(i, j) ⊗ X(i, j+1) + Y(i, j) ⊗ Y(i, j+1))

+
∑
(i, j)

εi j

2
(I − Z(i, j)) +

∑
(2i, j)

Ui j

4
(I − Z(2i, j))(I − Z(2i−1, j)). (23)

Let us discuss the terms of this Hamiltonian, and finally
arrive at the shortcomings of the mapping applied. We note
that the vertical hopping terms are different with respect to
even and odd columns, due to different directions of the S
pattern. All terms but the vertical hoppings have a constant
weight and can be simulated in O(1) time: only the latter can
assume a length of up to 4L. Unfortunately, we have O(L)
terms of weight O(L) per row pair. Although these strings
commute, they do overlap, which means we cannot simulate

them in parallel: If no cancellations are possible, then the
entire algorithm has an algorithmic depth of O(L2), so it
scales with the lattice area. In this case the simulation time
and the gate count cannot be better than being proportional
to the total number of qubits, which renders increasing lattice
size expensive. If the simulation algorithm allows us to can-
cel substrings of consecutively simulated Pauli strings (see,
for instance, Ref. [40]), the algorithmic depth can improve
to up to O(L). To achieve even better scalings, we will

022308-12

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

employ the square lattice AQM and sparse AQM on Eq. (22).
A detailed consideration of the E-type AQM is omitted,
as it does not improve upon the scaling in case of lattice
models.

B. Square lattice and sparse AQM

With the square lattice AQM, the Fermi-Hubbard Hamil-
tonian can be simulated in constant time, neglecting the
algorithmic depth necessary to initialize the code space, which
is O(L) or O(1) depending on the exact method used. We will
now describe how the square lattice AQM modifies the terms

of the Hamiltonian Eq. (23), after which we will discuss the
sparse AQM in that regard.

We now use the square lattice AQM to render the vertical
hopping terms local: after adjusting each term of Eq. (23)
by hdat → hdat ⊗ κh

aux, the multiplication of adjusted hop-
ping terms between (i, j) and (i, j + 1) with stabilizers

(p
(i, j+ 1

2)
dat ⊗ X(i, j+ 1

2)) is resulting in local operators of weight
3. While the hopping terms in Eq. (22) only have real coeffi-
cients, the operator weight of more general vertical hopping
terms varies, but remains 3 on average. For complex hopping
amplitudes t�

i j , we find

t�
i j c†

(i, j)c(i, j+1) + (t�
i j

)∗
c†

(i, j+1)c(i, j) =̂ (−1) j

2
Re
(
t�
i j

)(
Z(i, j− 1

2) ⊗ Z(i, j) ⊗ Y(i, j+ 1
2)

)− (−1) j

2
Re
(
t�
i j

)(
Y(i, j+ 1

2) ⊗ Z(i, j+1) ⊗ Z(i, j+ 3
2)

)
− (−1) j

2
Im
(
t�
i j

)
X(i, j+ 1

2) + (−1) j

2
Im
(
t�
i j

) (
Z(i, j− 1

2) ⊗ Z(i, j) ⊗ X(i, j+ 1
2) ⊗ Z(i, j+1)

⊗ Z(i, j+ 3
2)

)
. (24)

The improvements that we make on vertical terms come at
the cost of the adjustments κh

aux to other terms in Eq. (23).
However, as already mentioned, the structure of the strings
{pi

dat} guarantees to keep those other terms local. For hor-
izontal hopping terms that are (like the vertical strings) of
the form hdat = (Ai ⊗ Zi+1 ⊗ ... ⊗ Zj−1 ⊗ B j), with A, B ∈
{X, Y }, the substrings κh

aux invoke Z operators at the end of the
strings which makes for an additional weight of 2. However,
if A, B = Z , κh

aux features Z operators along the entire string.
This means that while single Z operators are in this way
adjusted to Z(i, j) → Z(i, j− 1

2) ⊗ Z(i, j) ⊗ Z(i, j+ 1
2), the two-qubit

Hubbard terms gain 4 qubits worth of weight.
With the square lattice AQM, we have thus managed to

reduce the weight of every term to a constant independent
of the system size. A list of relevant terms, that compares
Jordan-Wigner and square lattice AQM can be found in
Table II. Having achieved locality of every Hamiltonian term,
we can trotterize H̃aux dat by for instance applying all horizon-
tal hopping terms in O(1) time, then continue with a time
slice in which we simulate all vertical hoppings, follow-up
with all on-site interactions and Hubbard terms, and so on.
Alternatively, one may apply Hamiltonian simulation strate-
gies to simulate patches of the lattice more accurately and then
interweave these patches with the HHKL algorithm [46].

With the square lattice AQM, we have made the simula-
tion scalable in terms of algorithmic depth and gate count.
The requirement on the qubit number has, however, almost
doubled. To be more economic with the number of auxiliary
qubits, we consider the sparse AQM, which will help us to
maximize the size of the simulated lattice on a fixed qubit
budget. Placing vertical connections I qubits apart, the re-
quired number of auxiliary qubits is r = (2L2−2L+1

I + L − 1).
The weight of vertical hopping strings now largely depend
upon their distance to the next vertical connection: let us say
there is a vertical connection across (i, j + 1

2), then the ver-
tical hoppings between (i, j) and (i, j + 1) are of (constant)
weight 3, like in the square lattice AQM, while the vertical

hoppings of modes to their left and right rather resemble the
strings of E-type AQM. The worst case is certainly met for
vertical hoppings in the middle of two vertical connections, so
between (i ± 1

2I, j) and (i ± 1
2I, j + 1). Thus, per vertical

connection, there are O(I) strings of weight O(I) overlapping
with one another. The simulation time is thus O(I) if we allow
cancellations and O(I2) in the general case.

C. Verstraete-Cirac transform and superfast simulation

The Fermi-Hubbard model can also be made local by the
Verstraete-Cirac transform or superfast simulation. In this
section, we will compare the weights of Pauli strings appear-
ing in those cases to the strings resulting from transforming
the Hubbard model with the square lattice AQM. We have
compiled a list of the operator weights in Table III, and the
interested reader may find a visual representation of the strings
from BKSF and VCT in Appendix C. Let us briefly discuss
how the weights of the terms come to be. The VCT and
AQM are quite similar in the sense that both concatenate
the Jordan-Wigner transform with a quantum code. However,
the data-qubit substrings of the VCT stabilizers just consist
of Z strings, which has two consequences: first, the stabiliz-
ers commute with diagonal terms like on-site detunings and
Hubbard interactions, leaving them unadjusted and without
any gain of weight. With this feature, the VCT distinguished
itself from the other mapping in producing strings of the
lowest weight. Second, while in the AQM a hopping string
would just be adjusted on its end points, adjustments have
to be made all along the strings in the VCT: fortunately, the
auxiliary-qubit substring of the VCT stabilizers cancel these
adjustments, causing this mapping to have shorter strings in
the vertical direction (see Sec. VII). We thus place spin-up
and -down modes of the same spatial site vertically adjacent,
like we have placed them horizontally adjacent in the AQM.
This leads to the weights of horizontal and vertical hoppings
to be interchanged between VCT and AQM (on average). The

022308-13

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

TABLE II. Comparing the Jordan-Wigner transform Eq. (23) to square lattice AQM when applied to
the Hubbard model Eq. (23). Vertical hopping terms are displayed between odd rows j and even rows
j + 1 only. For j even, the two h̃aux dat terms are exchanged. Not on display are the onsite terms and
single-qubit contributions from Hubbard interactions, Z(i, j), which are adjusted into (Z(i, j− 1

2) ⊗ Z(i, j) ⊗
Z(i, j+ 1

2)).

stabilizers of both mappings can be made local with a weight
of 6 (and weight-3 stabilizers at the boundaries), which is also
the weight of stabilizers in the BKSF. The BKSF, defined on
the least amount of qubits, has surprisingly the longest strings.
The reason for this is that logical Z operators have weight
4—a consequence of the square lattice connectivity. With this,
the BKSF has also the largest variety of weights in hopping
strings, while in the VCT, there is no variety at all among
strings in the same direction. While the VCT appears to be the
favorable option when comparing string lengths (followed by
the AQM), it also uses the most qubits, as becomes apparent
in Appendix C.

VII. COMPARISON OF AQM, VCT AND BKSF

In this section, we will compare the auxiliary qubit map-
ping, superfast simulation, and Verstraete-Cirac transform.
Not only can the latter two be used to simulate the Hubbard

model with local interactions, but we can also give them the
Manhattan-distance property to align them with our notions
of a good mapping for square lattices of qubits. This is
done in Appendix C. The reader completely unfamiliar with
those mappings may also find an introduction reviewing the
original proposals [23,30]. Let us here compare AQM, VCT,
and BKSF regarding state preparation, qubit requirements,
Manhattan-distance property and the possibility of error mit-
igation. Afterwards, we can conclude and identify cases in
which each mapping is advantageous.

State preparation—As we have shown, there is a unitary
quantum circuit for the AQM to elevate an N-qubit state to
its equivalent in the logical basis. The VCT, however, has a
logical basis that is entangled in a more complicated way,
such that we cannot find a unitary quantum circuit of the
same simplicity. Although the BKSF has no clear distinction
between data and auxiliary qubits, there is a set of N − 1
qubits that is only relevant for an S pattern and one could argue

022308-14

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

TABLE III. String lengths of the Fermi-Hubbard model transformed by all three mappings. We compare the weight of the Pauli strings,
that originate from the square lattice AQM, the Verstraete-Cirac transform and the superfast simulation. For hopping terms, we consider the
strings hdat = (Ai ⊗ Zi+1 ⊗ · · · ⊗ Zj−1 ⊗ B j), with all variations of A, B ∈ {X, Y }. For vertical hoppings (in the AQM) we fix the case of j
being in an even row. Two-qubit Hubbard terms are of the form hdat = (Z ⊗ Z), and onsite terms are singular Z operators. In the BKSF it is
required to skip a qubit, which we penalize with an additional cost of two gates. In conclusion, the Verstraete-Cirac transform seems to exhibit
the shortest strings, with the weights of the hopping terms being the same for all Ai, B j . Regarding string lengths, the square lattice AQM is
in between the Verstraete-Cirac transform and the superfast simulation, where the latter has the longest strings and largest variations in length.

Square lattice AQM Verstraete-Cirac transform (VCT) Superfast simulation (BKSF)

Stabilizer (interior) 6 6 6
Vertical hoppings XX |YY | XY |Y X 3|3|5|1 5|5|5|5 2|6|5|4
Horizontal hoppings XX |YY | XY |Y X 5|5|5|5 3|3|3|3 8|4|5|7
Two-qubit Hubbard terms 6 2 6 + 2
On-site terms 3 1 4

that only vertical connections add the remaining qubits and
introduce stabilizers. As each connection is implemented by
just one entangled qubit, we believe that there might be a uni-
tary circuit as simple as Vaux dat. As of now, we would have to
resort to syndrome measurements to initialize the code space
of VCT and BKSF. By syndrome measurements, we mean the
measurement and readout of a generating set of stabilizers and
correct for outcomes inconsistent with the code space. While
measurement and readout-times of state-of-the-art quantum
devices might make this strategy challenging at present, we
can at least arrange for local stabilizers such that the time
overhead per measurement cycle is constant. In Figs. 9(c) and
9(d) the local stabilizer tilings of VCT and BKSF are shown.
A planar tiling for stabilizers of square lattice and sparse AQM
follows from multiplication of adjacent stabilizer generators(

p
(i, j+ 1

2)
dat ⊗ X(i, j+ 1

2)

)× (p(i+1, j+ 1
2)

dat ⊗ X(i+1, j+ 1
2)

)
and(

p
(i, j+ 1

2)
dat ⊗ X(i, j+ 1

2)

)× (p(i+I, j+ 1
2)

dat ⊗ X(i+I, j+ 1
2)

)
, (25)

excluding the stabilizers at the windings, which are local
already. The result is a repeating pattern of tiles with ears
at the windings, shown in Figs. 9(a) and 9(b). Note that we
have implicitly used these tilings already in the respective
definitions of Vaux dat. While with the unitary quantum circuit
we can prepare the state on only the data qubits before
encoding it into the logical basis, the same thing seems im-
possible with syndrome measurements. Even if the protective
operations would not change the data-qubit state, there is still
an ambiguity in the logical bases of VCT and AQM, that
we now want to discuss. As can be seen in Appendix A,
the quantum code layer included in these mappings transform
any computational basis state |ω〉dat into a logical basis state
[
∏

i∈[r]
1√
2
(I + Si

aux dat)]|ω〉dat ⊗ |χ〉aux, where {Si
aux dat}i is a

generating set of stabilizers and χ = (χ1, χ2, ..., χr)� ∈ Z⊗r
2

is a constant binary vector. While in the VCT, the set of
stabilizers limit (not constrain) the choice of χ (square lattice
and sparse) AQMs are properly stabilized for all possible χ ∈
Z⊗r

2 . However, for both mappings the (signs of) adjustments
made to operators hdat depend on χ. For AQMs we rely on χ =
(0)⊗r for the substrings κh

aux to be free of signs. Obviously, for
any basis with an unintended χ-shift, the logical Hamiltonian
H̃aux dat will not replicate the action of Hdat. As we cannot
detect this χ-offset, we have to ignore it, e.g., pretend that

|χ〉 = |0r〉 in AQMs: This effectively means that the state
|̃ϕ〉aux dat, which is created with an unknown χ-shift in the aux-
register, becomes a state (

∏
i [pi

dat]
χi)|̃ϕ〉aux dat without shift, a

state we have not intended to prepare. To combat ambiguities
in all mappings, the system has to be constrained to the correct
subspace before any state preparation can happen. This means
we have to measure not only the stabilizers, but also logical
operators until all degrees of freedom are eliminated. Apart
form the tiles, we could measure all logical Z operators, i.e.,
all logical encodings of (2c†

j c j − 1). When all measurement
outcomes yield “+1,” we have prepared the logical zero state,
|0̃N 〉aux dat. From there on, we directly prepare |̃ϕ〉aux dat by,

FIG. 9. Tilings of local stabilizers for square lattice and sparse
AQMs, BKSF, and VCT. Every tile represents a local stabilizer
involving qubits along its perimeter. Inside the tiles, X, Y, and
Z indicate the Pauli operators that every qubit contributes to the
corresponding stabilizer. We have shaded the tiles to as a visual
aid for error mitigation. (a) Square lattice AQM with dimensions
�1 = �2 = 6. The stabilizers of all tiles are the same, except at the
windings. (b) Sparse AQM with dimensions �1 = 7, �2 = 6, and
I = 2. (c) BKSF of a �1 = �2 = 6 fermionic lattice. The tiling is
a three-colorable brickwork pattern. (d) VCT with dimensions �1 =
�2 = 6. The stabilizer tiles are alternating in a checkerboard pattern,
that resembles the rotated surface code except for the Z operators on
the data qubits.

022308-15

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

e.g., Givens rotations [33,47] using logical operators. This
strategy appears to be the only option for measurement-based
preparation of states in any mapping, although practically one
will certainly want to perform only one cycle of measure-
ments form the outcome of which the logical state and the
(signs of the) stabilizers are defined. For the modest E-type
AQM, however, neither syndrome measurements nor unitary
quantum circuits are necessary to prepare a logical state.
Due to the fact that its logical basis is in the computational
basis, the product state (|0N 〉dat ⊗ |0r〉aux) is in fact the logical
zero state, even though the two registers are obviously not
entangled. Initializing all qubits in zero at first is thus a
sufficient preliminary to prepare the state |̃ϕ〉aux dat with logical
operators.

Qubit requirements—For all mappings we find the highest
number of qubits they require to be � 2N , in fact only the
VCT demands exactly 2N qubits, the square lattice AQM,
however, requires �1 qubits less, and the BKSF requires even
�2 less than the AQM. As for the AQM, we can think about
reducing the amount of qubits with sparse AQMs. For the
VCT such a modification is discussed in Appendix C. As the
qubits added to the VCT are generally added into the rows, its
sparse version can be mapped back to a compact square lattice
more easily than the AQM. In the BKSF, we can also make
vertical connections more sparse, but as its layout is rotated,
mapping the sparse BKSF to a compact square lattice requires
changes in the connectivity graph, which will influence the
continuity of resulting strings.

Manhattan-distance property—With all mappings we
manage to transform long-range hopping terms of a �1 × �2

fermionic lattice to continuous Pauli strings on a qubit lattice,
that can be deformed by the multiplication of stabilizers. For
all mappings, the shortest version of those strings involve
a number of qubits scaling with the Manhattan distance of
the fermionic modes on their lattice, but their exact weight
differs from mapping to mapping—and is an interesting figure
of merit. Let us say that on the fermionic lattice we have a
hopping term

t c†
(i, j)c(i+x, j+y) + t∗ c†

(i+x, j+y)c(i, j), (26)

where t and t∗ is a complex coefficient and its Hermitian
conjugate. Here the shortest path connecting those modes is
over x modes in horizontal and y in vertical direction, the
Manhattan distance is x + y. Transforming a string with such
a distance by one of the three mappings, the connecting string
is supported on roughly O(x + y) qubits, but its operator
weight is not going to be x + y exactly. In the case of the
AQM, we will have twice the number of qubits per mode
in the vertical direction, which means that overcoming a
vertical distance is more difficult, the string has the weight
x + 2y. In the VCT, the situation is exactly opposite and the
horizontal distance is more costly to overcome due to the
adjustment costs of the auxiliary modes: the operator weight
of the connecting string is 2x + y. For the BKSF, we find
that horizontal and vertical paths are of equal weight, unfor-
tunately the cost is doubled, so 2(x + y). Note that different
versions of the BKSF exist, where the one version that yields
these results is similar to the mapping in Ref. [22]—others
produce strings of higher weight, for some they are even
disconnected.

Note that so far we have omitted the discussion of constant
weight overheads, that can arise at the end points of each
string, and as such they are just relevant for small Manhattan
distances. Around the modes labeled (i, j) and (i + x, j +
y), BKSF and AQM can yield additional terms that matter
predominantly for the local hoppings. As discussed, strings
in the AQM can have one additional Z operator around each
end-mode, due to costs of the adjustments κh

aux. In the BKSF,
the strings might differ by up to one logical Z operator on
each end, meaning there can be an additional cost of up to
three (physical) Z operators per end. Most notably, the VCT
does not have such additional costs making it attractive for the
simulation of lattice models, where x + y is small.

Error mitigation—The reduction of the algorithmic depth,
that all three mappings aim at, is the main tool in the reduction
of noise. However, as the mappings can be regarded as stabi-
lizer codes, it is fair to ask if they can be used for mitigating
the effect of noise, as has recently been proposed on a small
scale [48,49]. Intriguingly, the AQM and VCT have local
stabilizer tilings that resemble the stabilizers of surface code
[50]. However, in contrast to those error correction codes, we
cannot achieve topological protection against logical errors.
For the planar code of the VCT to correct errors, we necessar-
ily would need the data qubits [the qubits with Z on them in
Fig. 9(d)] to be error free, as X and Y errors would masquer-
ade syndromes of errors on the auxiliary qubits. Furthermore,
the code cannot detect Z errors on the data qubits, and even
increases their Z-error rate, as syndromes which are stabilizers
in surface code differ by some Z operators from the stabilizers
of the VCT. A similar statement can be made for the square
lattice AQM, where the auxiliary qubits would have to be
perfect, and their X -error rate is increased; see Fig. 9(a). Using
fewer auxiliary qubits, the square lattice AQM has fewer
ears to mitigate errors with [as compared to Fig. 9(d)], they
could, however, be added with more auxiliary qubits encoding
the corresponding horizontal (local) connections. Unlike the
surface code, the BKSF [Fig. 9(c)] has a three-colorable
brickwork pattern in its tiling, that theoretically allows to
detect all single-Pauli errors, but like before some weight-two
errors tend to masquerade themselves and go undetected when
too close together. Although none of the codes allow for
topological error correction, they exhibit a limited potential
for error mitigation, in which one might be able to catch some
errors if the rate is low enough. Whether this is feasible is left
to be decided.

In conclusion, although the BKSF has the longest opera-
tors, it also requires the fewest qubits. As it is defined on a
rotated square lattice, its shape might be the perfect fit for
actual devices, as a patch of rotated surface code (including
measurement qubits) is a rhombus. The BKSF is probably the
most feasible candidate for error mitigation strategies. With its
output strings having the lowest weight of all three mappings,
the VCT is perhaps the most sophisticated. However, its the-
oretical backbone is also the most complicated—when using
the VCT one would probably have to adhere to the surface-
code-like structure of the original proposal. With the weight
of the output strings in between the two mappings, AQMs are
a compromise for the cases that demand more flexibility. The
most unique feature of the AQMs is that we can just use a
unitary circuit to promote a data-qubit state into its logical

022308-16

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

equivalent and if necessary even release it from the auxiliary
qubits. The stabilizer state can also be manipulated during the
simulation, e.g., accounting for swaps or basis transforms. The
state preparation with Vaux dat might make this mapping even
interesting for NISQ devices [51], especially for cloud-based
quantum computing.

VIII. CONCLUSION AND OUTLOOK

In this work, we have developed a class of fermion-to-qubit
mappings that truly generalize the Jordan-Wigner transform
to two dimensions. Moreover, this class can be regarded as a
quantum code layer on top of the mapping provided by the
Jordan-Wigner transform, and with the unitary V (†)

aux dat we find
a means to encode (decode) quantum states in the code layer.
The quantum code is shown to require a certain number of
auxiliary qubits that is close to N , but this number is not
strict. In fact, sparse mappings with a reduced number of
auxiliary qubits can achieve similar results, which might be of
great practical advantage. More generally, there is a statement
that we can make not just about the auxiliary qubit mapping,
but also the Verstraete-Cirac transform and the Bravyi-Kitaev
superfast simulation. Versions of all these transforms can
be used as one-dimensional linear fermion-to-qubit mapping
with N (respectively, N − 1) qubits, but at the expense of
additional qubits we can precompute certain Pauli strings,
which allows us to take shortcuts when mapping operators.
This precomputation is done when said strings are stabilized
in a quantum code that entangles data qubits with the qubits
added. The usage of these codes allows a quantum computer
to do what was not manageable classically: the local treatment
of two-dimensional fermion systems. In this way we can not
only simulate fermionic lattices but embed every fermion
system on a two-dimensional layout.

We hope that future work will extend these results: we for
instance have not taken into account specific limitations on
either the qubit connectivity graph or the ability to perform
quantum gates, which can be found in proposals for actual
devices [52,53]. It would also be interesting to incorporate
the mappings into specific simulation algorithms, to see for
instance how phase estimation or qubitization could deal with
the planar layout.

ACKNOWLEDGMENTS

We thank Jonas Helsen and Ben Criger for the many scien-
tific discussions about this work, as well as Kenneth Goode-
nough for his help with the manuscript. We also thank C. W. J.
Beenakker for his support. M.S. was supported by the Nether-
lands Organization for Scientific Research (NWO/OCW) and
an ERC Synergy Grant. S.W. was supported by STW Nether-
lands, an NWO VIDI Grant and an ERC Starting Grant.

APPENDIX A: AUXILIARY QUBIT CODES

Here we will set up the quantum codes used for the
AQMs, which includes the review of the methods developed
in Ref. [34]. We adapt those methods for quantum codes
and contribute ideas which can be used to speed up the
initialization of the logical basis.

As mentioned before, the stabilizing the Pauli strings
(pi

dat ⊗ σ i
N+i) effectively describes a quantum code: a larger

Hilbert space of n = N + r qubits is constrained to the di-
mension 2N by r stabilizer conditions. In contrast to codes
for quantum error correction, we do not want to encode
information nonlocally, i.e., obtain nonlocal logical operators,
but want to localize operators that were nonlocal to begin
with. When characterizing a quantum error correction code,
one is usually interested in the generating set of stabilizers, the
logical basis states, e.g., |0〉, |1〉 and the logical operators, X ,
Z . In the following, we will look at the AQM equivalents of
those quantities: while {pi

dat ⊗ σ i
N+i clearly are the stabilizer

generators, the extended computational basis Vaux dat|ω〉dat ⊗
|0r〉aux spans the logical subspace and the adjusted Pauli
strings h̃aux dat are its logical operators.

In the initialization of the code space via the unitary Vaux dat,
the auxiliary qubits are entangled with data qubits, but not
before the former are possibly rotated into some basis other
than the computational basis: the basis choice of the auxiliary
qubits can have consequences for other methods of state
preparation and for sure determines the form of the operators
σ i

N+i and κh
aux. In the following, we will introduce the two

logical bases, to which AQMs resort. For each of these we
will outline the following points:

(i) Extended basis. Relation of N-qubit states |ϕ〉dat to
(N + r)-qubit states |̃ϕ〉aux dat with respect to their bases.

(ii) Entangling operation. The unitary Vaux dat, for initializ-
ing the stabilizer state by quantum gates.

(iii) Hamiltonian adjustments. Adjustments to be made to
Pauli strings and operator mappings to obtain H̃aux dat.

We want to deliver the last point in a twofold way: On
the one hand, we present the adjustments to a Hamiltonian
in Pauli string form Eq. (11), where we replace every term
hdat → (hdat ⊗ κh

aux). The origin of such a Hamiltonian can
be arbitrary. On the other hand, we want to focus on Hamil-
tonians that originate from certain many-body problems of
fermions. Therefore, we fuse the Hamiltonian adjustments
with the linear transform Eq. (6), such that terms (hdat ⊗ κh

aux)
can be obtained directly from second quantization Eq. (2). The
result is a redefinition of relation Eq. (7):

c†
j =̂ 1

2

⎛⎝⊗
k∈Ũ (j)

Xk

⎞⎠⎛⎝I +
⊗

l∈F̃ (j)

Zl

⎞⎠⎛⎝ ⊗
m∈P̃(j)

Zm

⎞⎠,

c j =̂ 1

2

⎛⎝⊗
k∈Ũ (j)

Xk

⎞⎠⎛⎝I −
⊗

l∈F̃ (j)

Zl

⎞⎠⎛⎝ ⊗
m∈P̃(j)

Zm

⎞⎠. (A1)

The redefined transform stays close to the spirit of the original
in the sense that only the flip, parity and update sets are
replaced by adjusted versions F̃ (j), P̃(j), and Ũ (j).

Apart from the two bases, we also take a look at an
extension of the principle, that allows to build a stabilizer
set with strings {pi

dat}, that might anticommute. Interestingly,
one could in this way encode all terms of a Hamiltonian into
a mapping. The resulting code is perhaps most akin to the
original method [34], where a new auxiliary qubit is spent for
every Hamiltonian term to be multiplied with a stabilizer.

022308-17

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

1. Auxiliary qubits in computational basis

With the parity strings being the detrimental substrings of
the Jordan-Wigner-transformed Hamiltonians, our main goal
is to cancel long strings of Z operators. In Ref. [54], this is
achieved in collecting the parity information of subsets of
qubits with a circuit QED resonator. In a hardware-unspecific
approach, computational basis AQMs store parity information
on auxiliary qubits, which can be updated and they have never
to be uncomputed.

We generally restrict computational-basis auxiliary qubit
codes to strings pi

dat ⊆ {I, Z}⊗N . The pi
dat strings are here

canceled with auxiliary Pauli-Z operators σ i
N+i = ZN+i. Let us

say that the stabilizers are characterized by the (r × N) binary
matrix B, such that an entry “1” in the jth column on line i of
B means that Zj is part of pi

dat:

pi
dat ⊗ σ i

N+i =
⎛⎝⊗

j∈[N]

(Zj)
Bi j

⎞⎠⊗ ZN+i. (A2)

(i) Extended basis. A quantum state |̃ϕ〉aux dat that is based
on the generic N-qubit state |ϕ〉dat Eq. (5) and stabilized by
Eq. (A2) takes the form

|̃ϕ〉aux dat =
∑

ω∈Z⊗N
2

aω|ω〉dat ⊗ |Bω mod 2〉aux. (A3)

From Eq. (5) to Eq. (A3), the computational basis has
obviously been extended: |ω〉dat → |ω〉dat ⊗ |Bω mod 2〉aux,
where (mod 2) acts on every component separately.

It is easy to verify that this new basis is stabilized by
Eq. (A2) considering Zj |b〉 j = (−1)b|b〉 j , where b ∈ Z2.

(ii) Entangling operation. The entangling operation can
be described as a (commuting) sequence of CNOT-gates that
depend on the matrix B. If Bi j = 1, then there is a CNOT-gate
in Vaux dat, that, controlled on data qubit j, targets the auxiliary
qubit labeled N + i:

Vaux dat =
∏
i∈[r]

∏
j ∈ [N]

with Bi j = 1

CNOT(j → N + i). (A4)

The unitary Vaux dat, acting on a basis element (|ω〉dat ⊗
|0r〉aux) yields the extended basis of Eq. (A3), consider-
ing that (CNOT(j → k)|a〉 j ⊗ |b〉k = |a〉 j ⊗ |a + b mod 2〉k ,
where a, b ∈ Z2. The entangling operation basically stores
parity information of subsets of data qubits (as defined by
the rows of B) on auxiliaries. For the exact implementation
of Vaux dat, Eq. (A4) needs to be adjusted to the connectivity
graph of the qubit layout. For square lattice connectivity, the
above formula requires O(rN) time steps in the worst case, but
there is a way to improve the depth of Vaux dat: for the auxiliary
qubits i and k, we can replace the circuit

⎡⎣ ∏
j:Bi j=1

CNOT(j → N + i)

⎤⎦⎡⎣ ∏
l:Bkl =1

CNOT(l → N + k)

⎤⎦ (A5)

by

⎡⎣ ∏
j:Bi j+Bk j=1

CNOT(j → N + i)

⎤⎦ CNOT(N + k → N + j)

⎡⎣ ∏
l:Bkl =1

CNOT(l → N + k)

⎤⎦. (A6)

In this (noncommuting) sequence of gates, we let the ith
auxiliary qubit inherit the parity information of the kth aux-
iliary qubit by a CNOT-gate inside the aux-register. This is a
useful trick when the parity information that is to be stored on
these two auxiliary qubits has a large overlap in data qubits,
i.e., when the vectors

⊕
x(Bix) and

⊕
y(Bky) have a small

Hamming distance. In that case, the leftmost product contains
only few CNOT-gates, as the bulk of the parity information has
been inherited from the (N + k)th qubit.

(iii) Hamiltonian adjustments. To maintain the stabilizer
state Eq. (14), we adjust a Pauli string hdat on the data qubits
by hdat → (hdat ⊗ κh

aux) with

κh
aux =

⊗
m∈[r]

(XN+m)λm , (A7)

where λ = (λ1, λ2, . . . , λr)� ∈ Z⊗r
2 is obtained by

λ =
∑

j

Buj mod 2 (A8)

with uj being the jth unit vector of Z⊗N
2 , and the sum

extending over all j ∈ [N], for which hdat acts on the qubit
space as Xj or Yj . Hamiltonian of adjusted terms (hdat ⊗ κh

aux)
as in Eq. (14) can be obtained by the redefined transforms

Eq. (A1), with the same flip and parity sets, F̃ (j) = F (j) and
P̃(j) = P(j), but the sets Ũ (j) defined from the columns of
the matrix [

A

B

]
. (A9)

We recall that A is the matrix the underlying linear transform
is based on Eq. (6) and B is defining the stabilizers as in
Eq. (A2).

In case a Pauli string hdat flips a data qubit, that is entangled
with a qubit in the aux-register, we have to flip the latter qubit
as well. In fact we need to flip all other auxiliaries to which
the data qubit contributes: so if we apply the operator Xj to a
basis state |ω〉dat ⊗ |Bω mod 2〉aux for j ∈ [N], we leave the
stabilized basis, unless we update the configuration of the
auxiliary qubits by Bω → B(ω + uj).

a. Example

Let us consider a minimal example, in which the data
register holds five qubits, and a sixth, an auxiliary qubit, is in
the configuration Bω, where B is a (1 × 5) binary matrix. We
consider a Hamiltonian term hdat = (X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗
X5). After adjusting hdat → (hdat ⊗ κh

aux), we have the choice

022308-18

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

TABLE IV. Adjusted Hamiltonian terms h̃aux dat with respect to the original string hdat =
(X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5), depending on the matrix (1 × 5) matrix B.

B hdat ⊗ κh
aux (hdat ⊗ κh

aux) × (p1
dat ⊗ Z6)

[0 1 0 0 0] (X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5) (X1 ⊗ Z3 ⊗ Z4 ⊗ X5 ⊗ Z6)
[0 1 1 1 0] (X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5) (X1 ⊗ X5 ⊗ Z6)
[1 1 1 0 0] (X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5 ⊗ X6) −(Y1 ⊗ Z4 ⊗ X5 ⊗ Y6)
[1 1 1 1 1] (X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5) −(Y1 ⊗ Y5 ⊗ Z6)

to multiply with the stabilizer or not. In Table IV we present
the adjusted Hamiltonian before and after multiplication with
the stabilizer, considering different choices of B.

2. Auxiliary qubits in Hadamard basis

Extending the idea of Ref. [34], we can cancel a set of arbi-
trary (commuting) strings {pi

dat}, where pi
dat ∈ {X,Y, Z, I}⊗N ,

by X operators: σ i
N+i = XN+i. Let us characterize the choice

of the strings pi
dat by three (r × N) binary matrices CX , CY

and CZ . Here an entry “1” in Cs
ji, with s ∈ {X,Y, Z}, indicates

that the string pi
dat acts as s on the jth qubit.

(i) Extended basis. An extended state |̃ϕ〉aux dat, stabilized
by {pi

dat ⊗ XN+i}i∈[r] and based on an arbitrary state N-qubit
state |ϕ〉dat Eq. (5) is given by

|̃ϕ〉dat =
[∏

i∈[r]

1√
2

(
I + pi

dat ⊗ XN+i
)]|ϕ〉dat ⊗ |0r〉aux.

(A10)

This state can be regarded as being of the form Eq. (5), where
the computational basis is replaced by

|ω〉dat → 1

2r/2

∑
μ∈Z⊗r

2

⎡⎣∏
k∈[r]

(
pk

dat

)μk

⎤⎦|ω〉dat ⊗ |μ〉aux.

(A11)

The sums in Eq. (A11) invoke all the possible qubit con-
figurations μ ∈ Z⊗r

2 with equal weight. This is a result of the
auxiliary qubits being in Hadamard basis. This choice of basis
becomes plausible by multiplying a basis state Eq. (A11) with
one of the stabilizers (pi

dat ⊗ XN+i):

(
pi

dat ⊗ XN+i
) 1

2r/2

∑
μ∈Z⊗r

2

⎡⎣∏
k∈[r]

(
pk

dat

)μk

⎤⎦|ω〉dat ⊗ |μ〉aux

= 1

2r/2

∑
μ∈Z⊗r

2

⎡⎣∏
k∈[r]

(
pk

dat

)μk+δik

⎤⎦|ω〉dat

⊗|μ + ui mod 2〉aux. (A12)

If we now shift the binary vector in the sum by the ith unit
vector ui to μ → μ + ui mod 2, the original basis element on
the right-hand side of Eq. (A11) is recovered and thus the set
of Pauli strings (pi

dat ⊗ XN+i) stabilizes every state |̃ϕ〉aux dat

that is in the subspace spanned by Eq. (A11).

(ii) Entangling operation. Following Ref. [34], the entan-
gling operation can be described as

Vaux dat =
∏
i∈[r]

(|0〉〈0|N+i + pi
dat ⊗ |1〉〈1|N+i

)
HN+i, (A13)

where HN+i is the Hadamard gate on the (N + i)th qubit. In
words, Vaux dat can be realized by a unitary quantum circuit that
first applies Hadamard gates to every auxiliary qubit, and then
applies each string pk

dat controlled by the kth auxiliary qubit.
We notice that the circuit Eq. (A13), when acting on a

state |ϕ〉dat ⊗ |0r〉aux, first changes the basis of the auxiliary
register into |+r〉aux = (

⊗
i∈[r] |+〉N+i) = r− 1

2
∑

μ∈Z⊗r
2

|μ〉aux.

Then the controlled application of the strings pi
dat entangles

auxiliary and data qubits. In principle, this can be done by
CNOT, CPHASE, and controlled-Y gates according to the action
of a string pi

dat on each data qubit, see Fig. 10 (left). In
practice, the required qubit connectivity might, however, not
be available, such that we may resort to an implementation
of the circuit as in Fig. 10 (right). Like for the codes with
computational-basis auxiliary qubits, we can here apply tricks
to make Vaux dat more shallow whenever two strings pi

dat,
pk

dat are similar to one another: after the Hadamard-gates are
applied to the auxiliary qubits i and k, we can replace the
circuit (|0〉〈0|N+i + pi

dat ⊗ |1〉〈1|N+i
)

× (|0〉〈0|N+k + pk
dat ⊗ |1〉〈1|N+k

)
(A14)

by
(|0〉〈0|N+i + (pi

dat × pk
dat

)⊗ XN+k ⊗ |1〉〈1|N+i
)

× (|0〉〈0|N+k + pk
dat ⊗ |1〉〈1|N+k

)
, (A15)

which means that instead of applying the string pi
dat, we condi-

tionally apply the string that results from the operator product
of pi

dat with pk
dat, and an X operator on the kth auxiliary qubit.

What we use here is the fact that the (N + k)th qubit is already
entangled with the data qubits after the right sequence of

FIG. 10. Two versions of the controlled application of the Pauli
string pi

dat = (Xj ⊗ Zk ⊗ Zl ⊗ Xm) on the ith qubit in the auxiliary
register.

022308-19

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

controlled gates, such that we can use the stabilizer condition
in the sequence on the left. For this to work, the order in
which the two resulting strings are initialized is now fixed.
A minus sign that might occur in the operator product can be
reproduced by adding a ZN+i [55].

Before presenting the Hamiltonian adjustments, it is left for
us to verify that the controlled applications of pi

dat on |ω〉dat ⊗
|+r〉aux yield the corresponding element of the extended basis
Eq. (A11). Let us consider the following reformulation of the
controlled-(pi

dat) terms:∏
i∈[r]

(|0〉〈0|N+i + pi
dat ⊗ |1〉〈1|N+i

)

=
∏
i∈[r]

⎛⎝∑
μ′

i∈Z2

(
pi

dat

)μ′
i ⊗ |μ′

i〉〈μ′
i|N+i

⎞⎠
=
∑

μ′∈Z⊗r
2

⎡⎣∏
k∈[r]

(
pk

dat

)μ′
k

⎤⎦⊗ |μ′〉〈μ′|aux. (A16)

Considering the expansion of |+r〉aux in the computational
basis, we can proceed to arrive at Eq. (A11) by inspection.

(iii) Hamiltonian adjustments. For a Pauli string hdat to
maintain the stabilizer state Eq. (14), we adjust it by

κh
aux =

⊗
j∈T (h)

ZN+ j, (A17)

where the set T (h) ⊆ [r] contains k if pk
dat anticommutes with

hdat. As a consequence, a Hamiltonian of terms (hdat ⊗ κh
aux)

can be obtained from second quantization using the redefined
transformations (A1), where the update sets are defined as
before Ũ (j) = U (j), but flip and parity sets F̃ (j), P̃(j) are
redefined by the rows of the matrices

[A|CX + CY] mod 2, [RA|R(CX + CY) + CY + CZ] mod 2.

(A18)

As explained above, the C-matrices define the stabilizers
while A and R stem from the underlying linear mapping, see
Eqs. (6) and (8).

We will now show that the adjusted Pauli string (hdat ⊗
κh

A) acts on a state |̃ϕ〉aux dat such that after application of
V †

aux dat, we recover hdat|ϕ〉dat ⊗ |0r〉aux. We start by applying
the adjusted term to the extended state. The goal is to use
(anti-)commutation relations with the strings pk

dat to let hdat

act on the data register first. It turns out that minus signs that
we pick up by anticommutations are exactly canceled by sign
changes originating from κh

A acting on the aux-register.
In general, we find if hdat now anticommutes with a string

pk
dat, then k ∈ T (h) such that (hdat ⊗ κh

aux) commutes with
(I + pk

dat ⊗ XN+k), and we find Eq. (13) satisfied. For the
transform Eq. (A18), we take into account all sorts of Pauli
operators that originate from parity, update and flip operators,
by which we mean the strings (

⊗
m∈P(j) Zm), (

⊗
k∈U (j) Xk) and

(
⊗

l∈F (j) Zl) in Eq. (7). If X and Y operators in a string pi
dat

anticommute with the Z operators in the jth flip operator, we
have to counteract by adjusting it with a Z operator on the
ith auxiliary: (

⊗
l∈F (j) Zl) ⊗ ZN+i. The same argument holds

for the parity operators, but we also add Z operators there,

stemming from anticommutations of the update operator with
Z and Y operators in pi

dat. Considering that the operators X , Y
and Z appear in the strings pi

dat according to the C-matrices,
we can use these matrices to describe the contents of the flip
and parity sets, by which we obtain Eq. (A18).

a. Example

As an example we examine a 5-qubit Hamiltonian
term, hdat = (X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5). The sixth qubit is a
Hadamard-basis auxiliary, used to cancel various substrings
p1

dat. In Table V, we find the adjusted terms (hdat ⊗ κh
aux)

and the deformed terms, (p1
dat ⊗ X6)(hdat ⊗ κh

aux), for various
choices of the stabilizer (p1

dat ⊗ X6).

3. Stabilizing anticommuting data-qubit strings

We present a more general quantum code based on aux-
iliary qubits in Hadamard basis, but in which the strings
{pi

dat} do not necessarily have to commute. Using this code,
an entire Hamiltonian can in principle be transformed into
interactions on only the auxiliary qubits. The general idea
here is to amend the scheme by the following notion: To
counter anticommutations, we replace the (single-qubit) Pauli
operators σ i

N+i with Pauli strings on the auxiliary register γ i
aux,

such that γ i
aux contains XN+i as before, but for every other

string pk
dat with k < i, that anticommutes with pi

dat, it contains
a Z operator, ZN+k . For convenience we define the operation �

as

i � k =
{

0 if
[
pi

dat, pk
dat

] = 0

1 if
[
pi

dat, pk
dat

]
+ = 0.

(A19)

Using this notation, we define the stabilizers of our system as

pi
dat ⊗ γ i

aux = pi
dat ⊗

⎛⎝ ⊗
k∈[i−1]

(ZN+k)i�k

⎞⎠⊗ XN+i, (A20)

since all Pauli strings (pi
dat ⊗ γ i

aux) have to commute pairwise
for all i ∈ [r] as defined above. We will now turn to describe
the mapping in the established way.

(i) Extended basis. The computational basis |ω〉dat is ex-
tended to

|ω〉dat → 1

2r/2

∑
μ∈Z⊗r

2

[(
p1

dat

)μ1 · · · (pr
dat

)μr
]|ω〉dat ⊗ |μ〉aux.

(A21)

This basis resembles Eq. (A11), with the subtle difference
that the order of the strings pi

dat matters here. When stabilizer
(pi

dat ⊗ γ i
aux) are multiplied to Eq. (A21) from the right, the

operators γ i
aux cancel all minus signs from anticommutations,

and flip the ith qubit in the auxiliary register. Note that the
order of the strings pi

dat in Eq. (A21) is to be taken into account
when we attempt to encode |̃ϕ〉aux dat from |ϕ〉 ⊗ |0r〉aux.

(ii) Entangling operation. We pick a sequence i1, i2, ..., ir
that is some permutation of 1, 2, ..., r, in which we want to
perform the entangling operation for the stabilizers (pim

dat ⊗
γ im

aux), where the stabilizer of number ir is taken care of
first, and the one labeled i1 last. The entangling operation

022308-20

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

TABLE V. Adjusted Hamiltonians h̃aux dat to hdat = (X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5), depending on the choice of p1
dat.

p1
dat (hdat ⊗ κh

aux) (p1
dat ⊗ X6) × (hdat ⊗ κh

aux)

(Z2 ⊗ Z3 ⊗ Z4) (X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5) (X1 ⊗ X5 ⊗ X6)
(X1 ⊗ Z2 ⊗ Z3 ⊗ X4) (X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5 ⊗ Z6) −(Y4 ⊗ X5 ⊗ Y6)
(X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5) (X1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ X5) X6

associated with that sequence is

Vaux dat =
r∏

m=1

(
|0〉〈0|N+im + pim

dat ⊗ |1〉〈1|N+im

⊗
[⊗

k>m

(ZN+ik)(im � ik) θim ik

])
HN+im , (A22)

where θi j is a binary version of the Heaviside function,

θi j =
{

1 i > j

0 else.
(A23)

Note that if the we pick the original order, im = m, the
circuit almost looks like Eq. (A13), but, again, here the exact
order matters. The Hamiltonian adjustments are identical to
Eqs. (A17) and (A18), as the only difference, the ordering
of the strings pi

dat, does not matter there: a Hamiltonian term
h̃aux dat needs to pass all pk

dat in Eq. (A21), picking up all minus
signs possible.

We have thus obtained an auxiliary qubit mapping with
completely arbitrary set of strings pi

dat. If this string is a
Hamiltonian term hdat = pi

dat, we can eliminate its action on
the data qubits by replacing

hdat → (
hdat ⊗ κh

aux

)× (pi
dat ⊗ γ i

aux

)
= XN+i ⊗

[⊗
k>i

(ZN+k)i�k

]
. (A24)

The entire Hamiltonian can in this way be pre-computed and
reduced to an action on only the auxiliary register.

APPENDIX B: TREE-BASED TRANSFORMS

In this section, we consider fermion-to-qubit mappings
defined on tree structures for a setup with limited connectivity.
This particular class of mappings is part of the mappings
considered in Sec. III B (so n = N), where the tree structures
are inherent in the definition of the transformation matrix A.
Although this class technically contains the Jordan-Wigner
transform, our motivation is to obtain mappings that are more
akin to the Bravyi-Kitaev transform, to keep parity strings
short. While the Bravyi-Kitaev transform itself does this job
perfectly, we will show that it cannot be reconciled with a
square lattice connectivity graph: In this section, we instead
develop a method to tailor mappings to preexisting connectiv-
ity graphs, and provide an algorithm with which short parity
strings can be guaranteed and the operator weight bounded.
Let us start by reviewing the Bravyi-Kitaev transform.

In Ref. [30], the mapping is introduced to reduce the weight
of transformed fermionic operators to O(log N), which is an
exponential improvement over the Jordan-Wigner transform.

In the original paper, the (classical) encoding and decoding are
defined by a partially ordering the mode indices according to
some rules defined by their representation as binary numbers.
Later works then developed the notion of flip, update and
parity sets and provided a method to construct the binary
matrices A−1 and A in log N steps [27,28]. Instead of being
one-dimensional, the partial order can be regarded placing all
mode indices onto nodes inside a tree structure, which is the
reason the mapping is sometimes referred to as binary-tree
transform (even though the tree is not a binary tree). As
pointed out in Ref. [25], the flip and update operators of every
mode j, (

⊗
k∈F (j) Zk) and (

⊗
l∈U (j) Xl), have a geometric

interpretation on that tree (as will be illustrated shortly), so we
would naturally like to match it with the qubit-connectivity
graph. While an embedding is possible for small such trees,
increasing N will make the tree outgrow the square lattice
rather quickly. In fact, the binary rule implies that the node
with index 2 j has exactly j children, and all nodes with indices
below 2 j have fewer than j children. This means that trees
with N > 16 modes, cannot be embedded in the square lattice
where every site has four nearest neighbors. The tree for
N = 16 can be found in Fig. 11(a) and its embedding in the
square lattice is presented in Fig. 11(b). This particular tree is,
however, not the end of the story. In Ref. [25], it was argued
that the Bravyi-Kitaev transform can be optimized to produce
more local strings, in particular when considering Hamil-
tonians of locally interacting fermions. For that purpose,
the “binary” trees are replaced with segmented Fenwick-tree
structures. These structures are explicitly allowed to contain
multiple trees, and the number of trees is even a parameter
of the mapping. This number can range from 1 to N (the
number of modes), where at N the mapping is identical to the
Jordan-Wigner transform and at 1 it corresponds the Bravyi-
Kitaev transform (in case N is an integer power of two).
However, we can go even further and define mappings based
on an arbitrary number of arbitrary trees. In particular, we can
define tree structures that can be embedded on arbitrary qubit
connectivity graphs, like our square lattice, and the associated
mappings still yield small parity operators (

⊗
m∈P(j) Zm). Let

us consider one specific connectivity graph.
We need to pick a forest (a set of trees) which in total has

a number of N nodes. As each node will correspond to one
qubit, the trees need to be connected to each other, and so
we connect their respective roots. It is sufficient here for each
root to be connected to two others, such that they are linked
like a chain with their order foreshadowing some canonical
ordering. We now choose a set of trees, such that the graph
created by connecting them can be embedded in the actual
qubit-connectivity graph. Let us now turn to the description
of the mapping itself. For that purpose, we first need to assign
an index to every node, a process for which we later will
provide an algorithm, but for now let us assume we have done

022308-21

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

FIG. 11. (a) Tree of the Bravyi-Kitaev transform for 16 qubits.
Qubits are labeled from 1 to 16 according to the underlying binary
tree rule. (b) Embedding the tree of 16 qubits into a (4 × 4) square
lattice. (c, d) Pauli strings (

⊗
i∈U (10) Xi) and (

⊗
i∈F (8) Zi) on the

tree and the square lattice, where the arrows indicate the rules that
determine the update set U (10), and the flip set F (8), respectively:
F (i) would involve node i and all its children, whereas U (j) would
involve involves node j and all its ancestors including the root.

so in a prudent way. For the definition of the transform, it is
sufficient to give a definition of all update and flip sets, as by
corresponding sets F (j) and U (j) the matrices A and A−1 can
be inferred column- and row-wise. For the flip set of index j,
F (j), we consider the node with index j and all its children
in the tree it is on, i.e., all the nodes directly connected to j
on edges that lead away from the root. The update set U (j)
includes the node j and all its ancestors, i.e., all nodes on the
direct line to the root (of the tree it is on), where the root is
also included. A visual representation of these operators can
be found in Fig. 11(c), where the direction with respect to the
root is indicated by arrows. Their embedded version can be
found in Fig. 11(d) of the figure. Note that this means that
by the encoding of this mappings, qubit j stores the parity
information of mode j and all other modes whose index is
beneath j in the tree.

For anticommutation relations like [ci , c†
j]+ = δi j , it is

important that⎛⎝⊗
k∈F (i)

Zk

⎞⎠⎛⎝⊗
l∈U (j)

Xl

⎞⎠ = (−1)δi j

⎛⎝⊗
l∈U (j)

Xl

⎞⎠⎛⎝⊗
k∈F (i)

Zk

⎞⎠,

(B1)

which we now want to verify by the definitions of the flip and
update sets. If j is any descendant of i, then the two operators
overlap on two qubits, which means they commute. If it is
not an ancestor, then the only case where the operators have

overlap is when i = j, where they exactly overlap on that very
qubit and anticommute.

We so far have suppressed the discussion of the parity
operators, that will now lead into an algorithm for the index
assigning and a bound for the operator weight. Let us assume
that our forest consisted of τ trees, each of which has at
most � levels and every node at most � children. We know
that the operator weight of update and flip operators scales
as O(� + 1) and O(� + 1), the structure of the parity set,
however, now depends on the index assigned to the nodes. By
a binary rule, the Bravyi-Kitaev transform manages to only
involve O(log N) qubits in the parity operators, and we can
devise a labeling that mirrors its principle. The parity operator
of j is only the product of flip operators of i < j. However,
multiplying the flip operator of a parent node k with all flip
operators of its descendants will cancel all Z operators but
Zk . Thus, in order for the parity operator of j to have low
weight, as many nodes with labels i < j as possible need
to be descendants of j. Subsequently, the mapping with the
smallest parity sets is characterized by a tree where every
node has only one child, i.e., a vertical line. This mapping,
described in [27] as parity transform, has, however, the prob-
lem of O(N)-weight update operators, and is thus of the same
quality as the Jordan-Wigner transform. Indeed, one being
characterized by a vertical line, the other by a horizontal line
(connected one-node trees), makes both mappings effectively
one-dimensional. To minimize the weight of update and parity
operators altogether, we need to reconcile the cancellation
strategy with the tree structure. The idea is to involve only
qubits in P(j), which are children of the nodes in U (j). Of
course, this is not quite possible. If an entire tree only contains
nodes i < j, then P(j) will always contain the root of this tree.
According to Eqs. (7), transforming c(†)

j thus results in strings
of weight O(τ + ��). Not only this, but the strings produced
will also be continuous for transforms of single operators.
Unfortunately, for pairs of operators like c†

i c j , the strings are
discontinuous on the first qubit that is both, an ancestor of i
and j—a situation we cannot remedy.

The question is now how to assign the labels to the nodes
such that this mapping is implemented, or in other words:
given an unlabeled forest with connected roots, how can we
obtain a mapping that outputs strings of weight O(τ + ��)?
For that purpose, we put labels 1 to N (in order) on the nodes
according to the little program below.

Line 1. Consider the first tree in line.
Line 2. Choose a leaf and put a label on it.
Line 3. Check whether there are unlabeled siblings. If

there are, then choose such a sibling for the consideration in
the following step. If not, proceed to Line 5.

Line 4. Check whether the current node is a leaf, and if it
is, then label it; otherwise, put a label on a leaf chosen from
the subtree of which the current node is the root. Continue
from Line 3 with the last-labeled node.

Line 5. Check whether the last node considered has a
parent. If there is a parent, then put a label on it and continue
from Line 3 with it. In case there is none, the previous node
was a root, and we label it and proceed with the next line.

Line 6. If the root is the top of the last tree, the program
ends, but if it is not, then the next tree in line is considered and
the program continues from Line 2.

022308-22

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

By the end of the program, all nodes are labeled in a
way such that the resulting mapping outputs strings of weight
O(τ + ��). Note that there might be variations on how this
process can turn out, since in several lines an element of
choice is involved. We can now consider customized trees and
root-connected forests. For instance, we can consider a perfect
binary tree (a real one this time), which yields a O(log N)
scaling as well. Although with such a tree, every node is only
required to have three nearest neighbors, the embedding of an
arbitrarily sized tree into a square lattice is still not possible.
This is due to the children that run into each other as we
expand the tree-embedding on the lattice. We hope, however,
that for future work the tools provided in this section will
help to tailor tree-based transforms directly to specific device
layouts.

APPENDIX C: SUPERFAST SIMULATION
AND VERSTRAETE-CIRAC TRANSFORM

The goal of this section is to review the superfast simu-
lation [30] and Verstraete-Cirac transform [23], adapt them to
the square lattice layout and give them the Manhattan-distance
property. Last, we obtain the strings of the Hubbard model that
are referenced in Table III. This is going to be done within
four parts: first, we will make some general remarks about
the Manhattan-distance property that applies to all mappings,
even the AQMs. The second and third part will concern
the review and adaption of the Verstraete-Cirac transform
and superfast simulation, respectively. Each mapping will be
treated as some linear transform concatenated with a quantum
code: we study the logical bases of the codes to learn how the
mappings might be practically implemented. Last, we turn to
the Hubbard model.

1. Manhattan-distance property

Verstraete-Cirac transform, superfast simulation and the
square lattice AQM—all three mappings inherently posses
the Manhattan-distance property, which means that when we
use them to transform hopping interaction of two fermionic
modes, the weight of the (shortest) resulting Pauli string can
be bounded with the Manhattan distance of the modes on the
fermionic lattice. Here we will show that all mappings work
in a similar fashion that enables us to use this property and
elucidate why it is necessary to make use of it in a limited
qubit layout. However, before we begin, we need to introduce
the tools provided by the properties of Majorana modes.

Majorana particles are fermions as their many-body wave-
functions are anti-symmetric under permutation. Majorana
operators m(†)

j thus satisfy anticommutation relations like (1),
but they are also their own antiparticles, making the operators
Hermitian: m†

j = mj . In general, these operators describe the
relations

[mi, mj]+ = 2δi j and mimi = 1. (C1)

Per fermionic mode, we need two Majoranas, such that
the fermionic operators c(†)

j are described by two Majorana
species mj and m j , where m j obey the same relations Eq. (C1),
and are indistinguishable to mj , so mim j = −m jmi. We

define

c†
j = 1

2 (mj − i m j) and c j = 1
2 (mj + i m j). (C2)

We thus can represent the operators mj , m j with the Jordan-
Wigner transform as

mj =̂
(

j−1⊗
k=1

Zk

)
⊗ Xj and m j =̂

(
j−1⊗
k=1

Zk

)
⊗ Yj . (C3)

Majorana-pair operators (mj mk) are used in the original
proposals of VCT and BKSF, and their structure is also an
element in the AQM. This is because these operators can be
transformed into single Pauli strings that describe the interac-
tion of two fermionic modes j and k, making them a useful
tool for modeling it. As already established, they also have
quite convenient (anti-)commutation relations. All mappings
introduce extra qubits to encode operators corresponding to
Majorana pairs (mj mk) ∝̂O jk . In one or the other way, all
mappings use these operators to prevent hopping terms, as
they occur in fermionic Hamiltonians, to become nonlocal
Pauli strings in the qubit Hamiltonian. When nonlocal connec-
tions of modes i with k, and k with j, as well as i with j appear
in a fermionic Hamiltonian, one might think of encoding three
operators Oik , Ok j , and Oi j . However, all mappings exhibit
repercussions for adding qubits to encode these operators,
such as a weight increase in the substrings κh

aux in case of the
AQM. There is also the issue that we need to connect all the
modes in a way that would mimic the connectivity graph of
the fermionic Hamiltonian—a Hamiltonian that is generally
more complicated than a lattice model. To be modest with
the amount of qubits to be added and to be able to deal with
the limited connectivity of the setup, we reconsider encoding
operators Oi j of all possible combinations i j by adding qubits.
Instead, under the cost of a slightly higher operator weight, we
can obtain some nonlocal Oi j by multiplying operators that
are already encoded: Oi j ∝ OikOk j .

This is possible since for Majorana pairs we find
(mi mj) = (mi mk) · (mk mj). We report only a “slightly”
higher weight as Oik and Ok j have been introduced to
localize their respective links in the first place. With the same
argument we can take a walk over an arbitrary sequence of
indices k1, k2, . . . , kl , where ks and ks+1 are connected by an
operator Oksks+1 , just to obtain the operator that links the first
and the last mode k1 and kl ,

Ok1kl ∝
l∏

s=1

Oksks+1 . (C4)

This is the foundation for the Manhattan-distance property of
all three mappings.

2. Verstraete-Cirac transform

a. Review

Here we will review the Verstraete-Cirac transform starting
with the original proposal [23], which, like the AQMs, can be
regarded as manipulation of the Jordan-Wigner transform in
which nonlocal strings are canceled with stabilizers. There,
the auxiliary degrees of freedom that produce these stabilizers
are added on the side of the model, where we find them in

022308-23

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

the form of Majorana modes. However, in the investigation of
this mapping we found the consideration of the mapping as a
quantum code more practical for a rigorous derivation of the
stabilizers and outputs. This is why after a short motivation in
the original language, we will describe the general concept of
this mapping as a quantum code quite similar to the concept
of the auxiliary qubit codes, which allows for the description
of customized mappings such as a mapping with an odd
number of rows or a qubit-economic version.

The idea of Ref. [23] is to extend the fermionic systems by
doubling the number of modes, where the modes added are
denoted by primed numbers from 1′ to N ′. For all indices k,
k′ does not denote another variable but is the primed version
of the value of k. For the Jordan-Wigner transform, we need
to impose the canonical order of 2N sites, and so we stagger
primed and unprimed indices: 1, 1′, 2, 2′, . . . N, N ′.

Adding those primed sites, we practically increase the
length of Pauli strings, since all hopping terms on the original
system hop over primed sites, even turning horizontal nearest-
neighbor hoppings into next-nearest-neighbor interactions.

(i < j) : c†
i c j + c†

j ci

=̂ 1

2

[
j−1⊗

k=i+1

Zk

](
Xi ⊗ Xj + Yi ⊗ Yj

)

→ 1

2

[
j−1⊗

k=i+1

(Zk ⊗ Zk′)

](
Xi ⊗ Zi′ ⊗ Xj + Yi ⊗ Zi′ ⊗ Yj

)
.

(C5)

The hopping terms are thus made sensitive to the primed
subsystem, and the original system is recovered if all primed
modes are empty. In their original work, Verstraete and
Cirac define a fermionic quantum code, that constrains the
primed subsystem completely by means of majoranic stabi-
lizers (i m j′ mk′) for certain pairs of modes j′ and k′. These
are translated to the qubit side by Jordan-Wigner transform
(i m j′ mk′) =̂P jk . While in the original proposal, the majoranic
stabilizers (im j′mk′) are fixed as gap terms in the model
Hamiltonian, it is suggested in Ref. [24] to prepare the en-
tangled state by making syndrome measurements with the
transformed stabilizers P jk .

Stabilizers like (im j′mk′) are useful to cancel nonlocal con-
nections between j and k. Let us here assume that such a sta-
bilizer is present, then the hopping between those modes can
be modified by multiplication of the corresponding fermionic

terms in the model Hamiltonians:

(c†
j ck + c†

kc j)i m j′ mk′ =̂ − 1
2 Xj ⊗ Xj′ ⊗ Yk ⊗ Yk′

+ 1
2 Yj ⊗ Xj′ ⊗ Xk ⊗ Yk′ . (C6)

As one can see, the resized parity string has been canceled.
Although all operators involved satisfy the correct (anti-
)commutation relations, it is not possible to attribute the
correct sign to all stabilizers and Hamiltonian terms without
considering the code space. To do so, we now derive the
quantum code version of the VCT, starting by the constructing
the logical basis, that has to determine the adjustments to the
Jordan-Wigner-transformed Hamiltonian terms.

Although it was recently pointed out in Ref. [24] that
keeping the stabilizers majoranic is unnecessary, we will stick
to the original concept and merely add the freedom to “flip”
the stabilizer by introducing a sign

Pbs
αsβs

=̂ (−1)bs i mα′
s
mβ ′

s
, (C7)

where β, α = (α1, α2, . . . , αr) ∈ [N]⊗r and b =
(b1, b2, . . . , br) ∈ Z⊗r

2 are sequences that parametrize
the mapping. A “flipped” stabilizer would practically be
implemented by requiring that syndrome measurements
have the outcomes (−1), so a stabilizer Pbs

αsβs
constrains the

code space to 〈P0
αsβs

〉 = (−1)bs . Instead of the primed and
unprimed subspace to host indistinguishable fermions and
being interleaved in the canonical order, we separate those
modes (qubits) in an attempt to regard the primed subspace as
the auxiliary register. The aux-register is not even required to
have size N , instead a smaller number of auxiliary qubits can
be chosen, r � N . Although separated into different registers,
each auxiliary qubit is still affiliated with a data qubit, or
rather their corresponding modes are. Our intention is to keep
the previous notation and let the auxiliary register contain the
primed labels. For that purpose, we introduce the set W as a
r-sized subset of the mode numbers, W ⊆ [N], such that the
auxiliary register is comprised of qubits labeled (

⋃
k∈W k′).

In this way every data qubit k ∈ W has an auxiliary qubit k′
associated with it. Let us now characterize a general version
of this mapping. We consider the (�1 × �2) block of data
qubits and for every s ∈ [r] connect the qubits αs and βs

in a directed graph. For every qubit k that is a vertex of
this graph, we add an auxiliary qubit k′ somewhere, and the
number k becomes a member of W . Generalizing Eq. (C7),
the stabilizers of the qubit system are

Pbs
αsβs

= (−1)bs

⎛⎝ βs⊗
j=αs+1

Zj

⎞⎠⊗ Yα′
s
⊗

⎛⎜⎜⎜⎝ ⊗
k ∈ W

αs < k < βs

Zk′

⎞⎟⎟⎟⎠⊗ Yβ ′
s

if αs < βs

= (−1)bs

⎛⎝ αs⊗
j=βs+1

Zj

⎞⎠⊗ Xβ ′
s
⊗

⎛⎜⎜⎜⎝ ⊗
k ∈ W

βs < k < αs

Zk′

⎞⎟⎟⎟⎠⊗ Xα′
s

if αs > βs. (C8)

022308-24

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

FIG. 12. Verstraete-Cirac transform. (a) An arbitrary mapping showcasing the constraints on the VCT code space. The black dots
correspond to data qubits. Directed loops of operators Pb

jk are drawn into this grid, where the direction of one loop is indicated by arrows.
With 9 vertices involved, we entangle 9 auxiliary qubits to that system. (b) Graph of the original proposal [23]. (c) One possibility for a
qubit-economic version of the VCT.

Note that for the quantum code, that we intent to construct
with the set {Pbs

αsβs
}α,β as stabilizer generators, certain con-

ditions on α and β are to be met. While these conditions are
intrinsically fulfilled for the mappings in Ref. [23], we want to
briefly spell them out for the sake of generality. The following
conditions must be met by the directed graph on which α and
β are defined: (i) the graph must be composed of closed loops
on the (�1 × �2)-grid. (ii) The loops do not overlap in their
vertices. (iii) The loops are uniformly directed, which means
that within one loop no two edges point towards the same
vertex.

Statement (i) is just a consequence of the fact that we
need to constrain the auxiliary system completely. As the
stabilizers Eq. (C8) are associated with edges, we need to
consider closed loops, otherwise degrees of freedom remain
undetermined. We also need to make sure that all stabilizes
commute and so, considering Eq. (C7), we find that every
vertex can host one incident and one outbound edge. This,
together with statement (i), explains statements (ii) and (iii).
An example of such a mapping, for which all three statements
hold, is depicted in Fig. 12(a), where we consider two loops
in counter-clockwise directions. While in (a), we eliminate
some arbitrary nonlocal connections, Fig. 12(b) exhibits the
original proposal, where the stabilizer implement the vertical
connections. Of course we need to involve a few horizontal
connections to comply with statement (i). As loops cannot be
closed in it, the original proposal deals with an odd number
�1 in ignoring the last column. Alternatively, we suggest that
one could just create loops between vertically adjacent modes
in that last column, like it is done in the right-most loop in
Fig. 12(a). It is of course only possible to stabilize roughly
half of all vertical connections in this way, i.e., all even
or all odd pairs. Assuming an underlying S pattern of the
canonical ordering, nothing else would be required, since half
of the links are local anyways. The original proposal yields a
decent mapping already, as we can shorten vertical hoppings
along the last column by multiplications stabilizers of the
second-to-last column. In fact, the idea that not every column
needs to have their own auxiliary qubits is the foundation
for qubit-conserving versions of the VCT, as is shown in
Fig. 12(c). Note that to comply with the three statements,
the periodicity I has to be chosen such that (�1 − 1)/I is an
odd number, the size of the auxiliary register subsequently
becomes r = �2 + (�1 − 1)�2/I. Note that a loop of one
vertex is counterproductive, resulting in a stabilizer Pb

j j =
(−1)1+bZ j′ . This only fixes the parity of the auxiliary qubit,

which renders it redundant since it is not entangled with the
rest of the system. Not just that, it blocks the mode from being
part in another loop.

Let us now take a look to the basis of the extended system.
As before, the N original modes describing the fermionic Fock
space shall make up the data qubit register and the primed
auxiliary qubits be in the register aux = (

⋃
k∈W k′). An ansatz

for a logical basis stabilized by all {Pbs
αsβs

} is

|ω〉dat → ∝
⎛⎝ ∑

μ∈Z⊗r
2

r∏
s=1

[
Pbs

αsβs

]μs

⎞⎠ |ω〉dat ⊗ |χ〉aux, (C9)

where |χ〉aux = (
⊗

k∈W |χk〉k′) is a product state on the auxil-
iary register that can be chosen inside a certain range of parity
constraints, which we now want to explain.

These parity constraints are related to a certain freedom in
the characterization of the mapping. We have not determined
b yet, as up to now the only restrictions we had were on
the choice of α and β. To understand the role of b, let us
for a moment assume that the graph spanned by α and β is
only one loop, which means that βs = αs+1 and βr = α1. No
matter the number of loops, the sum in the basis Eq. (C9) will
always contain the product of all stabilizers around a closed
loop, here it is (

∏r
s=1 P

bs
αsβs

), met by the summand for which
μ = (1)⊗r . In fact, half of the terms in the sum will differ
from the other half only by these operators: (having omitted
the normalization factor for that reason) it is alright for some
stabilizers to be linearly dependent, as long as they stabilize
|ω〉dat ⊗ |χ〉aux. Since we are stabilizing a loop, we find by
Eq. (C7) that

r∏
s=1

Pbs
αsβs

= (−1)1+∑r
k=1 bk

⊗
j∈W

Zj′ . (C10)

Since Eq. (C10) acts only on |χ〉aux, it becomes apparent that
b determines the parity of all auxiliary qubits associated with
the loops in the mapping. According to the choice of b, we
now need to pick a state |χ〉aux that meets all parity constraints
Eq. (C10). Since we in general have more than one loop in our
mapping, we need to fix the parity on several distinct subsets
of |χ〉aux. For instance if we pick the parity of every loop to be
even, we can choose |χ〉aux = |0r〉aux.

We last show that Z strings on the primed qubits come nat-
urally as adjustments to Hamiltonian terms hdat, together with
minus signs from the loop parity constraints. The data-qubit

022308-25

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

substring of the stabilizers Eq. (C8) is purely a Z string, so we
do not need to adjust a string hdat ∈ {I, Z}⊗N . This means that
it is sufficient to consider the changes to be made to a string
(
⊗k−1

j=1 Zj) ⊗ Xk , to describe all fermionic operators c(†)
k . This

string anticommutes with all stabilizers, that have data qubit
substrings (

⊗t
j=s Z j), where s � k. These stabilizers, Pb

(s−1)t

or Pb
t (s−1), act on the aux-register as

(−1)b Y(s−1)′ ⊗

⎛⎜⎜⎜⎝ ⊗
j ∈ W

t < j < (s − 1)

Zj′

⎞⎟⎟⎟⎠⊗ Yt ′ or

(−1)b X(s−1)′ ⊗

⎛⎜⎜⎜⎝ ⊗
j ∈ W

t < j < (s − 1)

Zj′

⎞⎟⎟⎟⎠⊗ Xt ′ , (C11)

which means they change the parity of the subsystem that
is spanned by all auxiliary qubits with the labels j′, where
j � (k − 1) and j ∈ W . The total parity of all auxiliary qubits
is, however, constant i.e., it does not change with the multipli-
cation of either stabilizer. The total parity is predetermined by
|χ〉aux and the action of a Majorana-pair operator conserves it.

If we now multiply (
⊗k−1

j=1 Zj) ⊗ Xk to a basis element
Eq. (C9), we can determine whether it anticommutes with an
even or odd number of stabilizers as we move it to the right
until it reaches |ω〉dat ⊗ |χ〉aux: it anticommutes with an odd
number of stabilizers if the parity of the subsystem, spanned
by all auxiliary qubits with labels at most as large as (k − 1)′,
is changed. We therefore extract the parity of said subsystem
by the operator (

⊗
j∈W <k Z j′) and add a minus sign in case

(
⊗

j∈W <k Z j′)|χ〉aux = (−1)|χ〉aux. We hence find(
k−1⊗
i=1

Zi

)
⊗ Xk → ±

⎛⎝ k−1⊗
j=1

Zj

⎞⎠⊗ Xk ⊗
⎛⎝ ⊗

j∈W <k

Z j′

⎞⎠,

(C12)

where the sign is determined by |χ〉. When we consider the
planar code of the original proposal, we find that string has
become

±
⎡⎣ k−1⊗

j=1

(Zj ⊗ Zj′)

⎤⎦⊗ Xk, (C13)

which is the expected string with perhaps a minus sign,
depending on whether we have flipped any stabilizers. Note,
however, that the loop parity constraints have to be fulfilled
somewhere, either by minus signs in the logical operators or
by flipping stabilizers.

b. Adaption to the layout and Manhattan-distance property

We here adapt the Verstraete-Cirac transform to the square
lattice connectivity, such that it has the Manhattan-distance
property. In doing so, we will not stray too far from the
original proposal, that is built upon the connectivity graph in
Fig. 12(b). The layout is roughly motivated by an S pattern of
the qubits ordered 1 1′ 2 2′ . . . N N ′. For reasons that become

FIG. 13. VCT as a planar code. (a) Connectivity graph, in which
we alternate data (white) and auxiliary qubits (gray), but shift every
second row such that the auxiliary qubits align vertically. The label-
ing of the qubits follows an S pattern. (b) Stabilizers of the VCT for
a graph as in Figure 12(b), the original proposal. We here give the
connectivity graph a two-coloring of the stabilizer plaquettes, where
the Pauli operators, that make up each stabilizer, are denoted by
letters inside the plaquettes close to where their corresponding qubits
are. Note that we have not indicated the signs that each stabilizer
possibly has attached to it.

clear later, we need the rows to be connected vertically by
the auxiliary qubits, which leads us to shift every second row
to align the primed qubits. The vertical connections are also
placed along the windings of the S pattern, resulting in a graph
that can be studied in Fig. 13(a). For the initialization of a
state, stabilizers that are horizontally adjacent are multiplied
pairwise. We fully constrain the auxiliary systems by those
localized stabilizers, plus the stabilizers that are local already:
the ones along the windings and the horizontal connections
in the first and �2th row. The stabilizer tiling to the layout
of Fig. 13(a) is presented in panel (b) of the same figure. As
already remarked in Ref. [23], the analogy of the stabilizer
tilings of this code and the rotated surface code [50] comes
to mind easily. The tiles of the VCT are identical to the
surface code on the primed qubits, but the stabilizers contain
some additional Z strings on the data qubits. Also, not all of
the stabilizers might have the same sign according to b in
the definition Pb

jk . Curiously, only the first qubit of the data
register is not entangled with the auxiliary system in any way.

Using the interpretations of the stabilizers Eq. (C7), we can
define O jk ∝ (−1)b Pb

jkZk′ and obtain arbitrary long-range
vertical connections over the sequence of vertically aligned
stabilizers Pbs

ksks+1
, where k ∈ [N]⊗l and b ∈ Z⊗l

2 , via Eq. (C4):

l−1∏
t=1

Pbt
kt kt+1

= Pa
k1kl

l−1⊗
u=2

Zk′
u
, (C14)

where a = (
∑l

s=1 bs). Equation (C14) means that the multipli-
cation of these vertical stabilizers yields a nonlocal connection
Pa

k1kl
, which (is not a stabilizer and) is missing the operators

Zk′
u

for 1 < u < l . The absence of these Z operators does
not cancel them in Pauli strings originating from fermionic
terms like c†

i c j , where i � k1 < kl � j. These operators sub-
sequently serve as connection between the qubits labeled k′

1
and k′

l , as the qubits are vertically aligned by our layout. With
this building block we can multiply various stabilizers and so
connect the qubits i and j via different paths but with the same
number of gates. In Fig. 14, we present an example of such a
term.

022308-26

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

FIG. 14. Simulating the term (im20 m1) via the VCT, where
we have arbitrarily deformed the string by the multiplication of
stabilizers.

3. Superfast simulation

a. Review

We here review the original proposal of the Bravyi-Kitaev
superfast simulation [30], which includes the transform of the
operators and the structure of the stabilizers.

In contrast to the other mappings, the superfast simulation
is not defined to transform fermionic operators, but pairs of
majoranas. Thus, the BKSF only allows us to conveniently
consider Hamiltonians that conserve the fermionic parity i.e.,
are composed of operator pairs c jck , c†

j c
†
k and c†

j ck . By the
relations Eq. (C2), these Hamiltonians can then be expressed
using only the operators

A jk =̂ − i m j mk, (C15)

Bk =̂ − i mk mk, (C16)

where A jk and Bk are some Pauli strings. Using these opera-
tors, fermionic Hamiltonians can be transformed via

c j ck =̂ i

4
(A jk − A jkBk + B jA jk − B jA jkBk), (C17)

c†
j c

†
k =̂ i

4
(A jk + A jkBk − B jA jk − B jA jkBk), (C18)

c†
j ck =̂ i

4
(A jk − A jkBk − B jA jk + B jA jkBk). (C19)

The BKSF is furthermore not based on the Jordan-Wigner
transform, so A jk and Bk are not going to be obtained by
transforming the right-hand side of Eqs. (C15) and (C16)
under Eq. (C3). Instead, the A- and B operators will be defined
on a unique qubit layout, that we now introduce.

The Hamiltonian that we want to simulate describes a
certain graph of pairwise interactions between modes, for
example, there is an edge between vertices j, k when it
contains at least one of the term Eqs. (C17)–(C19). The
qubit connectivity graph of the superfast simulation is then
the line graph of this Hamiltonian graph. Here the operators
A jk are associated with edges in the Hamiltonian graph,
i.e., interactions of the Hamiltonian, and the operators Bk

are associated with vertices, i.e., fermionic modes. Let E be
the set of undirected edges of the Hamiltonian graph, and
ε jk a number associated to the index pair jk, that yields
zero if jk /∈ E . By means of ε jk a direction on the graph
is fixed by imposing that if jk ∈ E , then ε jk = 1, in case

the edge is directed from j → k, and ε jk = −1 when the
direction is opposite. With that construction, we will take
into account that A jk = −Ak j , which is straightforward to see
from Eq. (C15). Also, on every vertex k, we need to impose
an ordering of the edges connected to it. To that end Bravyi
and Kitaev introduce the symbolic operator <

k
, such that two

different edges jk, lk ∈ E , j �= l on vertex k are ordered by
a relation like jk <

k
lk. As we place the qubits on the edges

of that graph, both jk and k j shall be identifiers for the same
qubit (given ε jk �= 0). In the original BKSF, the number of
qubits equals the number of edges in the graph, so the qubit
requirements do not depend on the system size, but on the size
of the Hamiltonian. The operators A jk and Bk are defined by

Bk =
⊗

a: ak∈E

Zak, (C20)

A jk = ε jkXjk

⎛⎜⎝ ⊗
b: bk <

k
jk

Zbk

⎞⎟⎠
⎛⎜⎝ ⊗

c: jc <
j

jk

Z jc

⎞⎟⎠. (C21)

As shown in Ref. [30], these operators fulfill all algebraic rela-
tions that we would expect from representations of Eqs. (C15)
and (C16) but one. As it is now, the mapping would al-
low a Majorana to unphysically interact with itself via hop-
ping terms around a closed loop. For a length-l sequence
a1, a2, a3, . . . , al , which describes a closed loop along edges,
i.e., a ja j+1 ∈ E and a1 = al , we must impose that

(i)l
l−1∏
j=1

Aa j a j+1 (C22)

is a stabilizer of the system. As not all closed loops are linearly
independent, one needs to stabilize only the smallest closed
loops of the system.

b. Adaption to the layout and Manhattan-distance property

We now adapt the superfast simulation to the square lattice
layout and give it the Manhattan-distance property. As we are
interested in simulating more than square lattice Hamiltoni-
ans, we are going to depart a bit from the original concept of
the qubit connectivity being related to the Hamiltonian.

Instead, we will show that we can adapt the mapping
adequately by pretending that the Hamiltonian graph is a
square lattice. On this lattice, modes that are actually subject
to hopping interactions in the Hamiltonian, should be locally
close. Such a lattice of modes is shown in Fig. 15(a), where
the direction of every edge is indicated. As the direction of
every edge jk only determines the factor ε jk ∈ {+1, −1} in
Eq. (C20), it has not much influence on the transformation.
We will see later that the choice of the order of the edges on
every mode is way more relevant for the strings that such a
mapping produces. In Fig. 15(a), we have already outlined the
tiling of the line graph, to which we now switch. The resulting
qubit connectivity graph can be seen in Fig. 15(b), where the
plaquettes enclosing a fermionic mode are darkened. Starting
from a general set of �1 × �2 modes, we have now ended up
with a rotated patch of the square lattice that has 2�1�2 −
(�1 + �2) qubits on it. The number of white plaquettes, that

022308-27

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

FIG. 15. Connectivity graphs for superfast simulation in lim-
ited connectivity. (a) Hamiltonian graph: all vertices correspond
to fermionic modes, and in the original setting all edges would
indicate the presence of hopping terms between the two modes in the
Hamiltonian. We have displayed the direction of every edge in this
graph. (b) Qubit connectivity graph: A qubit is placed on each vertex
of this rotated square lattice. The underlying checkerboard pattern
indicates which qubits are associated with which fermionic modes.
Each dark plaquette is associated with an index k, such that the qubits
on each of its corners have indices jk ∈ E .

are enclosed in the graph, describes the number of smallest
possible loops, which means it is the total number of linearly
independent stabilizers. We have (�1 − 1)(�2 − 1) of those
white plaquettes, which means the system has 2�1�2−1 degrees
of freedom left: since we have mapped only pairs of oper-
ators Eqs. (C17)–(C19), we are now seemingly stuck in the
subspace with an even number of fermions. This situation
is, however, not terminal: We can simulate the odd-parity
subspace separately as well as the entire Fock space. Let us
further illuminate this issue by considering the logical basis of
the even-parity subspace first. For that purpose we pick a set
{Si}i of (�1 − 1)(�2 − 1) linearly independent stabilizers from
Eq. (C22). The set fully constrains the system. Automatically,
all stabilizers Si are orthogonal in the computational basis,
such that the fermionic vacuum state is encoded as

|�〉 =̂
[∏

i

1√
2

(
I + Si

)]|0n〉. (C23)

We can then apply operators A jk and B j to prepare other states
with an even particle number. While the A jk are different for
every ordering, the operators Bk , are independent of it: An
operator Bk is the string of Z operators around the shaded
plaquette associated with mode k. If this plaquette is in the
interior of the lattice in Fig. 15(b), then the string has weight
four, three if it is on the boundary edge, and two if in a
corner. The one feature that the operators A jk have in common
for every ordering, is that they include an X operator on
the qubit (jk). Apart from the administration of some minus
signs, the A jk has generally the effect to flip qubit (jk) in
the all-zero state |0n〉 of Eq. (C23). Comparing the encoded
operators Eqs. (C15) and (C16) to the toy picture of the A
and B operators we have just suggested, we find that a qubit
configuration |ξ〉 = (

⊗
jk∈E |ξ jk〉 jk), with all ξ jk ∈ Z2, has the

following correspondence to a fermionic quantum state:[∏
i

1√
2

(
I + Si

)]|ξ〉 ∝̂
⎡⎣ N∏

j=1

(c†
j)
∑

i: (i j)∈E ξi j mod 2

⎤⎦|�〉.

(C24)

FIG. 16. State preparation in the superfast simulation. Black dots
are flipped qubits and plaquettes with an odd number of flipped
qubits are marked with 1, as a fermion is created on the corre-
sponding mode. (a) Flipping a qubit with label (jk) creates fermions
on the adjacent modes j and k. (b) X strings (here emphasized by
linking the qubits) create nonlocal pairs of fermions, as long as we
ensure to flip always an even number of qubits on each plaquette,
which means winding around white plaquettes when the string has to
change direction. (c) Flips like this result from stabilizers, and do not
excite fermions, as on all dark plaquettes an even number of qubits
is flipped.

Note that (as denoted by ∝̂) this is not an exact mapping of
the bases, as we have not kept track of any minus signs in
Eq. (C24). The relation is, however, sufficient to show that
a fermionic mode k is occupied, if an odd number of qubits
around the plaquette k are in |1〉. The product of the stabilizers∏

i
1√
2
(I + Si) mixes all possible configurations that conserve

the common parity of qubits around a shaded plaquette (as
the stabilizers need to commute with Bk , a logical operator),
and so the fermionic occupations are conserved as well. To
prepare a pure fermionic state different from the vacuum, we
need to consider a qubit configuration |ξ〉, in which we flip
strings of adjacent qubits to create fermions on the plaquettes
at their ends, see Fig. 16.

So far, we still have not left the even-parity subspace, but
we might have systems to solve that are populated by odd
numbers of fermions. In Ref. [29], it is suggested to add
another mode to the system that is, however, not coupled to
any other term in the Hamiltonian. From the original concept
of the BKSF it is, however, not clear how this mode is brought
into the system, since all qubits correspond to couplings of
modes in the Hamiltonian, which here do not exist. Let us
suggest to couple this mode to exactly one other, without
ever using the A operator of this link in the Hamiltonian.
For state preparation we, however, can have strings that end
at that outer plaquette, creating a mode that does not play
a role and so effectively increase the degrees of freedom to
2N , modeling the entire Fock space. The cost of this increase
is the overhead of one qubit. Alternatively there is a way to
only map the odd-parity subspace without using additional
quantum resources: the idea is to consider the plaquette k
as being switched to “filled,” such that the configuration on
the right-hand side of Eq. (C23) does not correspond to the
vacuum state (which is in the even-parity subspace), but to the
state c†

k |�〉. Flipping the qubit (jk) will lead to the fermion on
k being annihilated and re-created on j, a string of flips that

022308-28

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

TABLE VI. Different versions of BKSF. The ordering of the edges on each vertex is displayed
as well as the operators this ordering entails: horizontal and vertical edge operators A jk and the
stabilizers (signs are omitted). The upper version is the one used in Ref. [25], while the lower one is
related to the mapping in Ref. [22].

ends at k will in general move the fermion to the other end. We
therefore make the replacement

∑
i ξik → (1 +∑i ξik) in the

exponent of the mode-k creation operator c†
k on the right-hand

side of Eq. (C24). To account for the switched occupation,
we also need to update Bk → (−1)Bk and add minus signs to
some A operators.

After having established an abstract idea of BKSF on the
square lattice, we will now consider different versions of
this mapping as we delve into detail. As mentioned before,
the stabilizers of this mapping roughly flip qubits around
white plaquettes. Due to Eq. (C22), their exact structure is
determined by the operators A jk , which, however, depend
on the ordering of edges on every vertex in the Hamiltonian
graph, Fig. 15(a). In the qubit graph, this means that with
every shaded plaquette we associate numbers with the qubits
on its edges. The decision for an ordering has to be made
consciously, as it influences the weight of strings simulating
long-range hoppings. For now let us consider two different
versions of this mapping in Table VI. For each version we
assume that the ordering on every dark plaquette (leaving
out missing vertices at the boundaries) is the same. From
Eq. (C20), we therefore just need to differentiate between
vertical and horizontal version of the operators A jk , i.e.,
considering the directions of the edges, we need to separate
the cases where (1) the plaquette k is the right neighbor of the
plaquette j and (2) where the plaquette j is below k. In the
Table VI, we sketch these operators, along with the stabilizers
that follow from the multiplication of four of those operators
to describe a closed loop around a white plaquette. The first
version is the one already considered in Ref. [25], and second
one is related to the mapping in Ref. [22].

We can now describe fermion operator-pairs via Table VI
with Eqs. (C17)–(C19). The latter equations hold for operators
A jk of every link, whereas the table only provides us with
operators in which j and k are adjacent plaquettes. We will
now cease to pretend that the Hamiltonian is just composed of
nearest-neighbor interactions, and derive nonlocal operators

A jk . By Eq. (C15) we set A jk ∝ O jk and using Eq. (C4) we
find

Ak1kl = (i)l−1
l−1∏
s=1

Aksks+1 (C25)

for any sequence k1, k2, . . . , kl , where for all s ∈ [l − 1]:
ksks+1 ∈ E . This means we can multiply several of the nearest-
neighbor A operators from Table VI. The choice of the
ordering turns out to be crucial, as for various orderings, the
resulting mapping is not a good one according to the criteria
of Sec. III. The first mapping in Table VI for instance does not

FIG. 17. Superfast simulation of a hopping operator in the be-
tween modes k1 and k13, coupling the respective shaded plaquettes in
a string of length scaling with their Manhattan distance, where the
path taken is defined by the locally connected chain of modes k2 to
k12. The string simulated is (−iBk1Ak1k13), which in Jordan-Wigner
transform would be hdat = (Xk1 ⊗ Zk1+1 ⊗ · · · ⊗ Zk13−1 ⊗ Xk13). The
plaquettes (k1, ..., k13) are labeled on this lattice.

022308-29

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

TABLE VII. Transforming terms of the Hubbard model according to the Verstraete-Cirac and
superfast simulation mapping. For the hoppings, we consider the real hopping terms, i.e., transforms
of (imjmk) and (imk m j) for j < k. Note that for the Verstraete-Cirac transform, the vertical hopping
terms are different for even/odd rows and columns. Here the south east qubit is in an even column
and odd row. The qubit marked, but not labeled with X, Y, or Z, is skipped.

produce a continuous Pauli string Eq. (C25) when making a
chain of several horizontal A jk . For a vertical chain, we have
a maximal operator weight. The second mapping, however,
is better behaved: Horizontal and vertical A operators are
connected and their weight is minimal. In Fig. 17, we present
an example of the simulation of the Pauli string (−iBk1Ak1kl),
where Ak1kl is nonlocal as in Eq. (C25), with l = 13. The
string here extends on a zig zag line along the edges of the
plaquettes involved, {ks}s connecting the plaquettes k1 and k13.
The weight of this string can perhaps be optimized in cutting
more corners like at plaquette k5. In any case, we have adapted
the BKSF as a two-dimensional fermion-to-qubit mapping on
the square lattice.

4. Fermi-Hubbard model

In this section we test the proposed square lattice imple-
mentations of the superfast simulation and the Verstraete-
Cirac transform on the Fermi-Hubbard model.

For both mappings, we have to decide where to place
spin-up and -down modes of the same spatial site. On the one
hand, should the qubits representing these modes be locally
close, perhaps even horizontally or vertically adjacent, but on

the other hand, they will increase the weight of the strings
simulating hopping terms, as they are “in the way.” For the
BKSF, it is almost inconsequential whether the spin pairs are
vertically or horizontally stacked, so we decide for the latter.
For the VCT, the situation is different as it produces shorter
hopping strings in the vertical direction, which leads us to
make the spin pairs vertical neighbors on the grid. To do
that, we need to compensate for the shift that has emerged
aligning the primed qubits: in Fig. 13(a), qubit 4 is for instance
below qubit 6, not qubit 5. Without this shift, there would
be additional costs for horizontal or vertical hoppings, but
with the shift, additional costs emerge for the Hubbard terms.
As a fix, we simulate the model with �2 additional modes,
that remain empty. The qubits corresponding to those modes
are the ones at the horizontal perimeter of the qubit lattice,
i.e., the qubits labeled 1, 5, 9, 13, 17, and 21 in Fig. 13(a).
Those data qubits, fixed to |0〉, can as well be removed, but
their primed counterparts must remain and be part of the
code. The spin-partners can now be placed vertically adjacent
on the grid. The Hubbard model with L × L spatial sites is
thus simulated with 4L2 + 2L qubits in the VCT, and with
4L2 − 3L qubits in the BKSF. The resulting Pauli strings can
be found in Table VII.

[1] R. P. Feynman, Simulating physics with computers, Int. J.
Theoret. Phys. 21, 467 (1982).

[2] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[3] D. S. Abrams and S. Lloyd, Simulation of Many-Body Fermi
Systems on a Universal Quantum Computer, Phys. Rev. Lett.
79, 2586 (1997).

[4] A. Yu. Kitaev, Quantum measurements and the Abelian stabi-
lizer problem, arXiv:quant-ph/9511026.

[5] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quan-
tum algorithms revisited, in Proceedings of the Royal So-
ciety of London A: Mathematical, Physical and Engineer-
ing Sciences (The Royal Society, London, 1998), Vol. 454,
pp. 339–354.

022308-30

https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.1103/PhysRevLett.79.2586
http://arxiv.org/abs/arXiv:quant-ph/9511026

QUANTUM CODES FOR QUANTUM SIMULATION OF … PHYSICAL REVIEW A 99, 022308 (2019)

[6] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon,
Simulated quantum computation of molecular energies, Science
309, 1704 (2005).

[7] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
The theory of variational hybrid quantum-classical algorithms,
New J. Phys. 18, 023023 (2016).

[8] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P.
Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell,
M. Barbieri et al., Towards quantum chemistry on a quantum
computer, Nat. Chem. 2, 106 (2010).

[9] J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu, NMR
Implementation of a Molecular Hydrogen Quantum Simulation
with Adiabatic State Preparation, Phys. Rev. Lett. 104, 030502
(2010).

[10] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor, Nat.
Commun. 5, 4213 (2014).

[11] R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A. G.
Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y.
Mutus et al., Digital quantum simulation of fermionic models
with a superconducting circuit, Nat. Commun. 6, 7654 (2015).

[12] Y. Wang, F. Dolde, J. Biamonte, R. Babbush, V. Bergholm,
S. Yang, I. Jakobi, P. Neumann, A. Aspuru-Guzik, J. D.
Whitfield et al., Quantum simulation of helium hydride cation
in a solid-state spin register, ACS Nano 9, 7769 (2015).

[13] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero,
J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter,
N. Ding et al., Scalable Quantum Simulation of Molecular
Energies, Phys. Rev. X 6, 031007 (2016).

[14] C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen,
P. Jurcevic, B. Lanyon, P. Love, R. Babbush et al., Quantum
Chemistry Calculations on a Trapped-Ion Quantum Simulator,
Phys. Rev. X 8, 031022 (2018).

[15] N. C. Jones, J. D. Whitfield, P. L. McMahon, M.-H. Yung,
R. Van Meter, A. Aspuru-Guzik, and Y. Yamamoto, Faster
quantum chemistry simulation on fault-tolerant quantum com-
puters, New J. Phys. 14, 115023 (2012).

[16] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and
M. Troyer, Gate-count estimates for performing quantum chem-
istry on small quantum computers, Phys. Rev. A 90, 022305
(2014).

[17] E. P. Wigner and P. Jordan, Über das Paulische Äquivalenzver-
bot, Z. Phys. 47, 631 (1928).

[18] T. Holstein and H. Primakoff, Field dependence of the intrinsic
domain magnetization of a ferromagnet, Phys. Rev. 58, 1098
(1940).

[19] E. Fradkin, Jordan-Wigner Transformation for Quantum-Spin
Systems in Two Dimensions and Fractional Statistics, Phys.
Rev. Lett. 63, 322 (1989).

[20] Y. R. Wang, Ground state of the two-dimensional antiferro-
magnetic Heisenberg model studied using an extended Wigner-
Jordon transformation, Phys. Rev. B 43, 3786 (1991).

[21] R. C. Ball, Fermions without Fermion Fields, Phys. Rev. Lett.
95, 176407 (2005).

[22] Y.-A. Chen, A. Kapustin, and Đ. Radičević, Exact bosonization
in two spatial dimensions and a new class of lattice gauge
theories, Ann. Phys. 393, 234 (2018).

[23] F. Verstraete and J. I. Cirac, Mapping local Hamiltonians of
fermions to local Hamiltonians of spins, J. Stat. Mech.: Theory
Exp. (2005) P09012.

[24] J. D. Whitfield, V. Havlíček, and M. Troyer, Local spin opera-
tors for fermion simulations, Phys. Rev. A 94, 030301 (2016).

[25] V. Havlíček, M. Troyer, and J. D. Whitfield, Operator locality
in the quantum simulation of fermionic models, Phys. Rev. A
95, 032332 (2017).

[26] E. Zohar and J. I. Cirac, Eliminating fermionic matter fields in
lattice gauge theories, Phys. Rev. B 98, 075119 (2018).

[27] J. T. Seeley, M. J. Richard, and P. J. Love, The Bravyi-Kitaev
transformation for quantum computation of electronic structure,
J. Chem. Phys. 137, 224109 (2012).

[28] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean,
R. Babbush, P. V. Coveney, F. Mintert, F. Wilhelm, and P. J.
Love, The Bravyi–Kitaev transformation: Properties and appli-
cations, Int. J. Quantum Chem. 115, 1431 (2015).

[29] K. Setia and J. D. Whitfield, Bravyi-Kitaev superfast simulation
of fermions on a quantum computer, J. Chem. Phys. 148,
164104 (2018).

[30] S. B. Bravyi and A. Yu. Kitaev, Fermionic quantum computa-
tion, Ann. Phys. 298, 210 (2002).

[31] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin,
N. Linden, D. Shepherd, and M. Stather, Efficient distributed
quantum computing, Proc. R. Soc. A 469, 20120686 (2013).

[32] R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven,
and G. K. Chan, Low Depth Quantum Simulation of Electronic
Structure, Phys. Rev. X 8, 011044 (2018).

[33] I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney, A. Aspuru-
Guzik, G. Kin-Lic Chan, and R. Babbush, Quantum Simulation
of Electronic Structure with Linear Depth and Connectivity,
Phys. Rev. Lett. 120, 110501 (2018).

[34] Y. Subaşı and C. Jarzynski, Nonperturbative embedding for
highly nonlocal Hamiltonians, Phys. Rev. A 94, 012342 (2016).

[35] D. Poulin, A. Kitaev, D. S. Steiger, M. B. Hastings, and
M. Troyer, Quantum Algorithm for Spectral Measurement with
a Lower Gate Count, Phys. Rev. Lett. 121, 010501 (2018).

[36] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean,
A. Paler, A. Fowler, and H. Neven, Encoding Electronic Spectra
in Quantum Circuits with Linear T Complexity, Phys. Rev. X 8,
041015 (2018).

[37] M. Suzuki, Fractal decomposition of exponential operators with
applications to many-body theories and Monte Carlo simula-
tions, Phys. Lett. A 146, 319 (1990).

[38] M. Suzuki, General theory of fractal path integrals with appli-
cations to many-body theories and statistical physics, J. Math.
Phys. 32, 400 (1991).

[39] R. J. Bartlett, S. A. Kucharski, and J. Noga, Alternative
coupled-cluster ansätze II. The unitary coupled-cluster method,
Chem. Phys. Lett. 155, 133 (1989).

[40] M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer, Improv-
ing quantum algorithms for quantum chemistry, Quantum Inf.
Comput. 15, 1 (2015).

[41] F. Motzoi, M. P. Kaicher, and F. K. Wilhelm, Linear and Loga-
rithmic Time Compositions of Quantum Many-Body Operators,
Phys. Rev. Lett. 119, 160503 (2017).

[42] D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C. Doberty,
and M. Troyer, The Trotter step size required for accurate

022308-31

https://doi.org/10.1126/science.1113479
https://doi.org/10.1126/science.1113479
https://doi.org/10.1126/science.1113479
https://doi.org/10.1126/science.1113479
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1038/nchem.483
https://doi.org/10.1038/nchem.483
https://doi.org/10.1038/nchem.483
https://doi.org/10.1038/nchem.483
https://doi.org/10.1103/PhysRevLett.104.030502
https://doi.org/10.1103/PhysRevLett.104.030502
https://doi.org/10.1103/PhysRevLett.104.030502
https://doi.org/10.1103/PhysRevLett.104.030502
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1021/acsnano.5b01651
https://doi.org/10.1021/acsnano.5b01651
https://doi.org/10.1021/acsnano.5b01651
https://doi.org/10.1021/acsnano.5b01651
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.8.031022
https://doi.org/10.1103/PhysRevX.8.031022
https://doi.org/10.1103/PhysRevX.8.031022
https://doi.org/10.1103/PhysRevX.8.031022
https://doi.org/10.1088/1367-2630/14/11/115023
https://doi.org/10.1088/1367-2630/14/11/115023
https://doi.org/10.1088/1367-2630/14/11/115023
https://doi.org/10.1088/1367-2630/14/11/115023
https://doi.org/10.1103/PhysRevA.90.022305
https://doi.org/10.1103/PhysRevA.90.022305
https://doi.org/10.1103/PhysRevA.90.022305
https://doi.org/10.1103/PhysRevA.90.022305
https://doi.org/10.1007/BF01331938
https://doi.org/10.1007/BF01331938
https://doi.org/10.1007/BF01331938
https://doi.org/10.1007/BF01331938
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRevLett.63.322
https://doi.org/10.1103/PhysRevLett.63.322
https://doi.org/10.1103/PhysRevLett.63.322
https://doi.org/10.1103/PhysRevLett.63.322
https://doi.org/10.1103/PhysRevB.43.3786
https://doi.org/10.1103/PhysRevB.43.3786
https://doi.org/10.1103/PhysRevB.43.3786
https://doi.org/10.1103/PhysRevB.43.3786
https://doi.org/10.1103/PhysRevLett.95.176407
https://doi.org/10.1103/PhysRevLett.95.176407
https://doi.org/10.1103/PhysRevLett.95.176407
https://doi.org/10.1103/PhysRevLett.95.176407
https://doi.org/10.1016/j.aop.2018.03.024
https://doi.org/10.1016/j.aop.2018.03.024
https://doi.org/10.1016/j.aop.2018.03.024
https://doi.org/10.1016/j.aop.2018.03.024
https://doi.org/10.1088/1742-5468/2005/09/P09012
https://doi.org/10.1088/1742-5468/2005/09/P09012
https://doi.org/10.1088/1742-5468/2005/09/P09012
https://doi.org/10.1103/PhysRevA.94.030301
https://doi.org/10.1103/PhysRevA.94.030301
https://doi.org/10.1103/PhysRevA.94.030301
https://doi.org/10.1103/PhysRevA.94.030301
https://doi.org/10.1103/PhysRevA.95.032332
https://doi.org/10.1103/PhysRevA.95.032332
https://doi.org/10.1103/PhysRevA.95.032332
https://doi.org/10.1103/PhysRevA.95.032332
https://doi.org/10.1103/PhysRevB.98.075119
https://doi.org/10.1103/PhysRevB.98.075119
https://doi.org/10.1103/PhysRevB.98.075119
https://doi.org/10.1103/PhysRevB.98.075119
https://doi.org/10.1063/1.4768229
https://doi.org/10.1063/1.4768229
https://doi.org/10.1063/1.4768229
https://doi.org/10.1063/1.4768229
https://doi.org/10.1002/qua.24969
https://doi.org/10.1002/qua.24969
https://doi.org/10.1002/qua.24969
https://doi.org/10.1002/qua.24969
https://doi.org/10.1063/1.5019371
https://doi.org/10.1063/1.5019371
https://doi.org/10.1063/1.5019371
https://doi.org/10.1063/1.5019371
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1103/PhysRevX.8.011044
https://doi.org/10.1103/PhysRevX.8.011044
https://doi.org/10.1103/PhysRevX.8.011044
https://doi.org/10.1103/PhysRevX.8.011044
https://doi.org/10.1103/PhysRevLett.120.110501
https://doi.org/10.1103/PhysRevLett.120.110501
https://doi.org/10.1103/PhysRevLett.120.110501
https://doi.org/10.1103/PhysRevLett.120.110501
https://doi.org/10.1103/PhysRevA.94.012342
https://doi.org/10.1103/PhysRevA.94.012342
https://doi.org/10.1103/PhysRevA.94.012342
https://doi.org/10.1103/PhysRevA.94.012342
https://doi.org/10.1103/PhysRevLett.121.010501
https://doi.org/10.1103/PhysRevLett.121.010501
https://doi.org/10.1103/PhysRevLett.121.010501
https://doi.org/10.1103/PhysRevLett.121.010501
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.529425
https://doi.org/10.1016/S0009-2614(89)87372-5
https://doi.org/10.1016/S0009-2614(89)87372-5
https://doi.org/10.1016/S0009-2614(89)87372-5
https://doi.org/10.1016/S0009-2614(89)87372-5
https://doi.org/10.1103/PhysRevLett.119.160503
https://doi.org/10.1103/PhysRevLett.119.160503
https://doi.org/10.1103/PhysRevLett.119.160503
https://doi.org/10.1103/PhysRevLett.119.160503

MARK STEUDTNER AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 022308 (2019)

quantum simulation of quantum chemistry, Quantum Inf.
Comput. 15, 361 (2015).

[43] A. M. Childs, A. Ostrander, and Y. Su, Faster quantum simula-
tion by randomization, arXiv:1805.08385.

[44] E. Campbell, A random compiler for fast hamiltonian simula-
tion, arXiv:1811.08017.

[45] M. Steudtner and S. Wehner, Fermion-to-qubit mappings with
varying resource requirements for quantum simulation, New J.
Phys. 20, 063010 (2018).

[46] J. Haah, M. B. Hastings, R. Kothari, and G. H. Low, Quantum
algorithm for simulating real time evolution of lattice Hamilto-
nians, arXiv:1801.03922.

[47] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak,
and M. Troyer, Solving strongly correlated electron models on
a quantum computer, Phys. Rev. A 92, 062318 (2015).

[48] S. McArdle, X. Yuan, and S. Benjamin, Error mitigated quan-
tum computational chemistry, arXiv:1807.02467.

[49] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E.
O’Brien, Low-cost error mitigation by symmetry verification,
Phys. Rev. A 98, 062339 (2018).

[50] H. Bombin and M. A. Martin-Delgado, Optimal resources
for topological two-dimensional stabilizer codes: Comparative
study, Phys. Rev. A 76, 012305 (2007).

[51] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[52] R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider,
D. J. Michalak, A. Bruno, K. Bertels, and L. DiCarlo, Scalable
Quantum Circuit and Control for a Superconducting Surface
Code, Phys. Rev. Appl. 8, 034021 (2017).

[53] R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen,
M. Steudtner, N. K. Thomas, Z. R. Yoscovits, K. J. Singh,
S. Wehner et al., A crossbar network for silicon quantum dot
qubits, Sci. Adv. 4, 3960 (2018).

[54] G. Zhu, Y. Subaşı, J. D. Whitfield, and M. Hafezi, Hardware-
efficient fermionic simulation with a cavity-QED system,
NPJ Quant. Info. 4, 16 (2018).

[55] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H.
Weinfurter, Elementary gates for quantum computation, Phys.
Rev. A 52, 3457 (1995).

022308-32

http://arxiv.org/abs/arXiv:1805.08385
http://arxiv.org/abs/arXiv:1811.08017
https://doi.org/10.1088/1367-2630/aac54f
https://doi.org/10.1088/1367-2630/aac54f
https://doi.org/10.1088/1367-2630/aac54f
https://doi.org/10.1088/1367-2630/aac54f
http://arxiv.org/abs/arXiv:1801.03922
https://doi.org/10.1103/PhysRevA.92.062318
https://doi.org/10.1103/PhysRevA.92.062318
https://doi.org/10.1103/PhysRevA.92.062318
https://doi.org/10.1103/PhysRevA.92.062318
http://arxiv.org/abs/arXiv:1807.02467
https://doi.org/10.1103/PhysRevA.98.062339
https://doi.org/10.1103/PhysRevA.98.062339
https://doi.org/10.1103/PhysRevA.98.062339
https://doi.org/10.1103/PhysRevA.98.062339
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevApplied.8.034021
https://doi.org/10.1103/PhysRevApplied.8.034021
https://doi.org/10.1103/PhysRevApplied.8.034021
https://doi.org/10.1103/PhysRevApplied.8.034021
https://doi.org/10.1126/sciadv.aar3960
https://doi.org/10.1126/sciadv.aar3960
https://doi.org/10.1126/sciadv.aar3960
https://doi.org/10.1126/sciadv.aar3960
https://doi.org/10.1038/s41534-018-0065-3
https://doi.org/10.1038/s41534-018-0065-3
https://doi.org/10.1038/s41534-018-0065-3
https://doi.org/10.1038/s41534-018-0065-3
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457

