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Abstract. We solve the three-dimensional acoustic wave equation, discretized on tetrahe-
dral meshes. Two methods are considered: mass-lumped continuous finite elements and the
symmetric interior-penalty discontinuous Galerkin method (SIP-DG). Combining the spatial
discretization with the leap-frog time-stepping scheme, which is second-order accurate and con-
ditionally stable, leads to a fully explicit scheme. We provide estimates of its stability limit for
simple cases, namely, the reference element with Neumann boundary conditions, its distorted
version of arbitrary shape, the unit cube that can be partitioned into 6 tetrahedra with peri-
odic boundary conditions, and its distortions. The CFL stability limit contains a length scale
for which we considered different options. The one based on the sum of the eigenvalues of the
spatial operator for the first degree mass-lumped element gives the best results. It resembles the
diameter of the inscribed sphere but is slightly easier to compute. The stability estimates show
that mass-lumped continuous and SIP-DG finite elements have comparable stability conditions,
with the exception of the elements of the first degree. The stability limit for the mass-lumped
elements is less restrictive and allows for larger time steps.
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1 INTRODUCTION

Solving the three-dimensional wave equation remains a challenging problem in geophysical
applications, especially for seismic imaging of the subsurface. Traditionally, the wave equa-
tion is solved with finite-difference methods. However, their accuracy deteriorates in complex
geological settings with sharp contrasts in the medium and with topography. Finite elements
on tetrahedral meshes are more flexible and accurate if the mesh follows the geometry of the
interfaces and of the topography. We focus on two methods: the mass-lumped continuous finite
elements [1, 2] and the symmetric interior-penalty discontinuous Galerkin (SIP-DG) method
[3], since both allow for explicit time stepping. Because mass lumping of standard finite ele-
ments leads to a degradation of the accuracy, except for the standard linear element, polynomials
of higher degree have to be added in the interior of the element. For 3D, tetrahedral elements
of degree two [[1] and three [2] are known. By borrowing nodes from higher-degree elements
on the faces and in the interior, the mass matrix is made diagonal while preserving the accuracy
of the spatial discretization. The SIP-DG method allows for the approximating functions to be
discontinuous at the element interfaces. However, to impose continuity, additional terms called
fluxes have to be included. The fluxes in an element consist of the outgoing fluxes and the
contribution of the incoming fluxes across faces from the neighbouring elements. The discon-
tinuous representation leads to a local mass matrix that can be easily inverted.

Combining the spatial discretization with the leap-frog time-integration scheme, which is
second-order accurate and conditionally stable, leads to a fully explicit method. We have dis-
cussed the accuracy in an earlier paper [4]. Here, we will focus on the time-stepping stability
for continuous mass-lumped and SIP-DG finite elements. Ideally, the stability condition is split
into a mesh-independent constant CFL and mesh-dependent properties. It is generally of the
form At < CFLmin,(d,/c,), where At is the time step, ¢, is local velocity in element 7, d,
is the diameter of 7, to be specified, and CFL is a mesh-independent constant. In order to es-
timate the stability constant CFL [5] for mass-lumped and SIP-DG tetrahedral finite elements,
we consider a number of simplified problems: the reference element with Neumann boundary
conditions, its distorted version of arbitrary shape, the unit cube that can be partitioned into 6
tetrahedra with periodic boundary conditions, and its distortions. For SIP-DG, we also consider
the unit cube and its distortions with zero values for the solution in neighbouring elements. The
estimates for CFL are obtained by numerical optimization for these examples.

The paper is organized as follows. Section [2]describes the Fourier analysis for mass-lumped
continuous and SIP-DG finite elements and suggests several choices for the diameter d. The
stability estimates for continuous mass-lumped finite elements on different geometries are given
in the Section 3l Section M lists CFL values for the SIP-DG method on the reference element
as well as on the unit cube with 6 tetrahedra and periodic boundary conditions. Section [3]
summarizes the conclusions.

2 METHOD

We consider the scalar wave equation for constant-density acoustics,
——— — Au =5, (1)

on a bounded domain 2 C R? with velocity c¢(x), pressure u(x, t) at time ¢ and position x =
(x,y,2) € Q and source s(x,t). Here we discretize with continuous mass-lumped and
symmetric interior-penalty discontinuous Galerkin finite elements (SIP-DG).
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The weak formulation for the continuous finite elements is given by

2
/czva—ng—/VqudQ—/ (n~Vu)de:/vsdQ,
Q ot Q o9 0

Vo e HY(Q),t € (0,T),u: (0,T) x R}(Q) — HY(Q). After discretization with mass-lumped
continuous finite elements, the spatial operator is given by

L=M1K, (2)

where M is the diagonal mass matrix and K is the stiffness matrix.
The weak formulation in case of discontinuous Galerkin finite elements is given by

2
/c—%a—;‘ dQ—/VqudQ—/(n-Vu)de:/vsdQ. 3)
Q ot Q r Q

for all test functions v that are chosen as polynomials up to degree M. Here, n denotes the
outward normal and I" consists of internal and external boundaries of the domain 2. For the
discontinuous Galerkin finite elements, the solution is discontinuous across the internal bound-
aries. The term with the normal in[3] called flux term, is given by

- / (Vo) dO) + € / W{Vu} dQ + 4 / o] d.
r r r
If w* is the solution inside the element and ™~ lives on one of the neighbouring elements, then
[u] := u* — u~ denotes the jump across the element boundary and {u} := L(u™ + u™) is the
average, whereas -y is a penalty parameter.
Expressing the solution in the basis of the test functions, u(z,y, z,t) = > u;(t)v;(x,y, 2),
the flux term for a face [ for each element is given by

—5 [-(Vo; ) ofulds + 5 [.(Voi -n)tofufds + v [ ufvfofds

—5 [-(Vo; -n) vfuyds — 5 [(Vo - n)Tojugds — v [uj vy vfds

Note that SIP-DG has ¢ = —1. Discretizing the weak formulation (3]), we obtain the spatial
operator for each element

L=MTK+Fr+F), 4)

where M and K are the local mass and stiffness matrix, respectively. We also have the contribu-
tion of the fluxes. The term F* denotes the sum of the outgoing fluxes over the four faces in the
given element. The second term J~ contains the incoming fluxes from the four neighbouring
elements.

In the absence of a source term, the standard second-order discretization in time of (1) gives

u"t —2u” +u"! = AL, 5)

where L is a spatial discretization operator. We assume that the velocity c is constant within an
element. Here, u™ characterizes the discrete solution at time ¢,, = to + nAt,n = 0,1,.... In
the scalar case, we can perform a Fourier transform in time. Let G be the growth factor of the
solution after a time step. Its corresponding Fourier symbol is G = ™2t Then, equation (3]
reduces to

G-2+G " =4,
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with v = 1 At?>c¢2L. The roots of the above equation are

N

G=1-2v£2\/v(l—-v)

and obey |G| < 1if 0 < v < 1. Otherwise, at least one of the solutions has |G| > 1 and the
time-stepping scheme is unstable. Stability leads to the requirement

(6)

Since the spectral radius in (6)) contains information about the mesh, the question is how to
express this stability condition into a a mesh-independent constant CFL and mesh-dependent
properties. A simple scaling argument suggests an expression of the form

At < mTin UTC—T, (7)
of the ratio of some diameter d and the velocity c, per element and the minimum is taken over
all elements 7. Ideally, the number o, should be independent of 7 and be equal to a constant
number CFL. This Courant-Friedrichs-Lewy number [5] can be taken as CFL = 2/(d+/p(L)),
using the spectral radius p of the spatial operator £ and the largest diameter d over all elements.

For higher-order time stepping, CFL has to be multiplied by a constant factor, for instance,
by v/3 = 1.73 for fourth-order time stepping [6]].

We have not been able to find a measure d in (7)) that produces a value of ¢ that is independent
of the problem, but some choices are better than others. As an example, consider the single
reference element with vertices (0,0,0), (1,0,0), (0,1,0), and (0,0, 1). If this is discretized
with a degree 1 mass-lumped finite element with homogeneous Neumann boundary conditions,
the stiffness matrix C and lumped mass matrix M are

3 -1 —1 —1 1
1l =1 1 0 o0 1 1
’C_E 1 0 1 0 ’M_ﬂ 1
-1 0 0 1 1

Following [7]], we can consider a version of this element on an arbitrary tetrahedron and com-
pute the eigenvalues of £ = M~1K. One of those is zero and the other three are the roots of

N — BAHAN =5 =0, (8)
with

4
B=4J2) AL vy =164, 03, §=2567;",
k=1

where Ay, is the area of face £, ¢; the length of edge j, and .J, = 6V with V' the volume of
the tetrahedron. Note that 3 = Z?Zl Aj is the sum and § = H?Zl A; the product of the non-
zero eigenvalues. By symmetry of the spatial operator, all eigenvalues are non-negative, so
0 < \; < 3. We will consider the following 4 choices for a diameter d:

o d;=2Jy/ Zizl Ay, the diameter of the inscribed sphere,

e d; = min; ¢;, the length of the shortest edge,

4
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e d, = 2/+/3, based on the sum of the eigenvalues mentioned above, or

[ ] de = 2/\/man >\j'

To see which of these choices produces a nearly constant o, we first consider the same case as
before, but let the reference element have a varying height. Then, the four vertices are (0,0, 0),
(1,0,0), (0,1,0), and (0,0, h). In this case, Jo = h and

d, = 2h)(1+2h+V1+212),
d, = min(1,h),
db = h/\/2—|—4h2,

de = BJ\J22+ 302 + \/I— W24 — 9D)).

The coefficients in (8) are 3 = 16 + 8/h%, v = 48 + 96/h?, and 6 = 256/h?, leading to
eigenvalues 4 and 2h~2(2+3h%+/4 — 4h? + 9h*), apart from the zero eigenvalue. For stability,
we can define

2 2
CFL = mino(h), o(h) = ———— A = — <2+3h2+\/4—4h2+9h4>,
h o(h), o(h) AV e 12

where d(h) can be one of the four choices mentioned above. By definition, o(h) = 1 for
d(h) = d.. Figure[l]displays o (h) for the other three choices of d(h). Clearly, d; is the second
best in the sense that it has the smallest variation with &, namely 4/3/2 or about 22%.
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Figure 1: Graph of o (h) for three choices of d(h).

The idea of the stability analysis described in this paper is to estimate the spectral radius
of the spatial discretization operator, in our case the mass-lumped continuous finite element
operator and SIP-DG operator. One way to obtain estimates is by considering a single reference
element and distorted version of it. These can be obtained by the coordinate transform

) I p1 @ 1
vy | =10 p2 @ T |, )
Ty 00 g T3
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where p, > 0 and g3 > 0. Other shapes follow by symmetry. To avoid too strong distor-
tions, we require d,/d; < 100, where d, is the diameter of the circumscribed and d; or the
inscribed sphere. Even poor mesh generation software will be able to construct tetrahedra with
this property.

Fourier or plane-wave analysis of the spatial operator is a natural approach in a finite-
difference setting with a regular Cartesian grid. The method is also applicable to finite elements
if the regular Cartesian grid is used packed with tetrahedra. Here, we select a cube divided into
6 tetrahedra as shown on Figure 2| Note that this cube also contains the reference element with
a diameter of the inscribed sphere 0.423 = 1 — 1/4/3 . The diameters of the inscribed sphere
for the 6 tetrahedra in the cube are either 0.360 or 0.423. As with the single tetrahedron, we can
consider distorted versions by using the coordinate transform (9).

The following cases will be considered:

1. Reference element with homogeneous Neumann boundary conditions (mass-lumped) or
zero values in neighbouring elements (DG);

2. distorted versions of the reference element;
3. unit cube containing 6 tetrahedra with periodic boundary conditions;
4. distorted versions of the latter.

For the Fourier case, we will estimate the smallest and largest occurring value of

2 1 :
) ) ) ) = ’ )\ x = a ﬁ
o(Prp2; 41,42, @) = = g A = i p(£)

using d = d;, d,, d., and d;, respectively. Here, the & are normalized wavenumbers, specified
below, and £ = MK is the spatial operator with periodic boundary conditions. Note that d
and £ depend on the five parameters p1, p2, q1, g2, and g3. For the single reference element and
its distorted version, Ayax = p(L), the largest eigenvalue of the operator. We used the Nelder-
Mead method [8]] for finding the extremum. Since this method is not guaranteed to converge to
the global minimum or maximum, several runs with random starting values were performed. In
this way, we increased the chance of reaching the global extremum.

The shortest edge length, d;, resulted in extremely large variations of the estimates, so will
not be considered further on.

Next, we will review the continuous mass-lumped and the SIP-DG elements separately and

provide stability estimates for each.

3 MASS-LUMPED CONTINUOUS FINITE ELEMENTS

We consider the four geometries described above. The construction of the matrices is straight-
forward for the reference element and its distorted versions. Imposing periodic boundary con-
ditions for the 6 tetrahedra requires additional calculations.

To build the matrix £ = M~'/C with periodic boundary conditions, we assembled the ma-
trices M and K for a configuration of 3> = 27 unit cubes on the domain [—1, 2]3. Let N denote
set of degrees of freedom in the central unit cube [0,1)3. We arrange the numerical solution
of (T) on the nodes NV in a vector. The subset of the matrix £ that has rows corresponding to
the nodes inside [0, 1) acts on this vector as well as on the degrees of freedom in neighbouring
cubes.
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Figure 2: Unit cube packed with 6 tetrahedral elements, one of them is the reference element.
We introduce shift operators 7}, j = 1,2, 3 in the x;-direction with the property that
Tiu(zy, T9, x3) = u(w1 + 8015, To + 8095, T3 + 5035),

where d,; = 1if i = j and 0 otherwise. The Fourier symbol of 7} is

~

T; = exp(1k;Axy),

where Az; is the grid spacing in coordinate direction j, in this case of unit length, and k; is the
wavenumber in each coordinate direction. Let us denote &; = k;Az; with § € (—m, 7|, then

Ty = exp(a€;).

The shift operators enable straight-forward expression of the values of the degrees of freedom
in the neighbouring to [0, 1) cubes.

With this plane wave decomposition, the Fourier symbol of £ is readily obtained. Its com-
ponents are

ﬁl,m = Z ‘C_l,n[Tlsl]n,m[T;Q]n,m[T§3]n,ma

with integer shifts s;, 7 = 1,2, 3, in each coordinate. The sum over n involves those indices
for which £;,, is not zero and for which the coordinate shifts are zero (n = m) or £Axz;
(neighbouring elements), where Ax; = 1. Generalization to distorted elements is almost trivial.

Table 1: Values of CFL based on the spectral radius for a single reference element with homogeneous Neumann
boundary conditions for various mass-lumped elements of degree M. The first three columns are based on the
reference element, using d;, d;, or d., but these values are too optimistic. The second set is based on optimization
over eigenvalue computations for single tetrahedral elements of arbitrary shape. The values in brackets correspond
to the largest value of ¢ for the elements considered.

M type | d; dp de d; dp de
1 1.18 1.22 1 0.72  (1.73) 1 (1.73) 1 (1)
2 0.090 0.093 0.076 | 0.062 (0.118) 0.079 (0.118) 0.068 (0.099)
3 1 0.059 0.061 0.050 | 0.042 (0.062) 0.056 (0.062) 0.036 (0.062)
3 0.105 0.109 0.089 | 0.072 (0.121) 0.096 (0.121) 0.070 (0.112)

Table 1] lists the values of CFL for the mass-lumped reference element as well as the smallest
and largest (in brackets) values obtained for a single distorted element for three choices of the
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Table 2: Values of CFL based on the spectral radius for an unit cube with periodic boundary conditions for
various mass-lumped elements of degree M. The left part of the table shows CFL values for an unit cube with
periodic boundary conditions. The values in the right part of the table are based on optimization over eigenvalue
computations for unit cube of arbitrary shape with periodic boundary conditions. Values without brackets and
values in brackets correspond to the smallest and the largest value of o, respectively.

M  type | d; dp de d; dp d

1 1.30 134 101 |08 (141) 101 (141 077 (141)

2 0.104 0.107 0.081 | 0.070 (0.117) 0.094 (0.117) 0.063 (0.111)
3 1 ]0.056 0.058 0.044 | 0.036 (0.062) 0.048 (0.062) 0.034 (0.060)
3 2 10.104 0.107 0.082 | 0.066 (0.120) 0.088 (0.120) 0.065 (0.105)

diameter. The first set of 3 columns refers to the reference element. The last set of 6 columns
is obtained by optimizing over the distorted reference element, with the largest minimum in
brackets. Note that the estimates for the reference element are somewhat optimistic. For d.., we
observe no variation for the continuous mass-lumped element of degree 1, by definition. For
higher-order elements however, the smallest variation appears to be obtained for d,. Note that
the continuous mass-lumped element of degree 3 has a more favourable stability limit for type
2 than for type 1 [2]]. The reader should bear in mind that, since these results were obtained by
numerical optimization, there is chance that the global extrema were missed.

Table [2]shows the smallest and the largest (in brackets) CFL values for unit cube packed with
6 tetrahedra with periodic boundary conditions as well as its distorted versions for three choices
of the diameter. Again, d, provides the smallest ratio over different distortions.

4 DISCONTINUOUS GALERKIN FINITE ELEMENTS

To estimate the spectral radius of the SIP-DG spatial operator, we performed stability analy-
sis on the reference element and its distorted versions as well as the unit cube with 6 tetrahedra
and periodic boundary conditions as shown on Figure [3|and its distortions. As in case of mass-
lumped continuous elements, the two last cases need additional computations for each set of
wavenumbers.

N §
J)r

i

Figure 3: Unit cube with its neighbours for DG.
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Figure 4: Unit cube with 6 tetrahedra. The internal and external faces are marked with black and red color,
respectively.

Considering the unit cube with 6 tetrahedra and natural boundary conditions, the stiffness
matrix of the spatial operator including fluxes is given by

K+ F* Fy
K+ F* Fr Fr
K+Fr Fy
Fr Fy  K+F* Fis
Fy Fr K+F-  Fg
Fis Fis K+ F*

where each line of the matrix represents an element and the subscript of the fluxes from neigh-
bouring tetrahedra identifies the number of the face, see Figure ] The mass matrix is a block
diagonal matrix consisting of local mass matrices.

In order to add periodic boundary conditions, let us introduce shift operators similar to the
mass-lumped continuous elements. The components of the periodic spatial operator are then
given by T]-S]-";L, where F,, denotes a face adjacent to neighbouring elements outside the unit
cube. The Fourier symbol of the periodic spatial operator is then computed as

K+F+ TF; nhrF F S DLF
T \Fe K+Ft T3Fg Fr Fy
fonvt| T3 Fy K+Ft  Fy TR Ty'F
T Fs Fi Fy  K+F* Fh
Fy Fr DFy K+ F* =
T Frs 1o Fg I 5 K+ FT

The spectral radius p is the largest eigenvalue of the Fourier symbol of the spatial operator,
L, over all sets of scaled wavenumbers {1, &2, &3} and can again be found by a numerical
maximization algorithm.
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For the penalty parameter, we generalize the approach proposed by [9]] to three dimensions
withy = (M + 1)(M +2)(M + 3)/(12.A), where M is the degree of the finite element and .4
is the area of a face in the given mesh.

Table [1] lists the values of CFL for the SIP-DG reference element as well as the smallest
and largest (in brackets) values obtained for a single distorted element for three choices of the
diameter. The first set of 3 columns refers to the reference element. The last set of 6 columns
is obtained by optimizing over the distorted reference element, with the largest minimum in
brackets.

The results based on the unit cube packed with 6 tetrahedra with periodic boundary con-
ditions as well as its distorted versions are given in Table |2l The smallest and the largest (in
brackets) CFL values are shown for for three choices of the diameter. Again, d; provides the
smallest ratio over different distortions.

Table 3: Values of CFL based on the spectral radius for a single reference element with homogeneous Neumann
boundary conditions for various single SIP-DG element of degree M. The first three columns are based on the
reference element, using d;, dj, or d., but these values are too optimistic. The second set is based on optimization
over eigenvalue computations for single tetrahedral elements of arbitrary shape. The values in brackets correspond
to the largest value of o for the elements considered. The first four rows were obtained for an element with
homogeneous Neumann boundary conditions implying zero fluxes. The last four rows were obtained for a DG
element with interior fluxes only, so with a zero solution in the neighbours.

M type d; dp de d; dp de

1 DG 053 055 045 |032 (0.77) 045 (0.77) 045 (045
027 028 023 |0.18 (0.37) 023 (0.37) 022 (0.25
0.17 0.175 0.143 | 0.119 (0.23) 0.14 (0.23) 0.13 (0.16)
0.118 0.122 0.100 | 0.083 (0.16) 0.100 (0.16) 0.094 (0.116)
DG+F | 033 034 028 |0.18 (035 021 (045 0.17 (0.45)
0.19 0.19 0.16 | 0.098 (0.20) 0.113 (0.24) 0.095 (0.24)
0.12 0.12 0.102 | 0.062 (0.13) 0.071 (0.15) 0.054 (0.15)
0.083 0.086 0.070 | 0.042 (0.086) 0.049 (0.101) 0.043 (0.101)

A WO =R W

Table 4: Values of CFL based on the spectral radius for a unit cube packed with 6 tetrahedral SIP-DG elements of
degree M with periodic boundary conditions (left part of the table) and its distortions (right part of the table). The
values in the right part of the table are based on optimization over eigenvalue computations for arbitrarily distorted
unit cubes, but with the constraint that d, /d; < 100. Values without brackets and values in brackets correspond to
the smallest and the largest value of o, respectively.

M | 4, dy d. d; dy d.
1 024 025 019 |0.16 (027) 022 (036) 0.146 (0.36)
2 10133 0.138 0.104 | 0.088 (0.15) 0.120 (0.20) 0.081 (0.20)
310086 0089 0.067 | 0.056 (0.097) 0.077 (0.121) 0.053 (0.123)
4 10059 0061 0046 |0.039 (0.067) 0.053 (0.085) 0.036 (0.083)

S CONCLUSIONS

Estimates of the stability constant were considered for the continuous mass-lumped and sym-
metric interior-penalty DG (SIP-DGQG) finite elements. Different choices of the measure of ele-
ment size were suggested such as the diameter of the inscribed sphere, the length of the shortest
edge and measures based on the spectral properties of the spatial operator for the lowest-degree
mass-lumped finite element on a single tetrahedron with natural boundary conditions. Based

10



Elena Zhebel, Sara Minisini & Wim A. Mulder

on each measure, the values of the CFL-number, CFL, were computed for both methods on the
reference element as well as a single tetrahedral element of arbitrary shape. Also, the unit cube
packed with 6 tetrahedra and periodic boundary conditions was considered. We found that the
smallest variation of CFL appears to be obtained for the measure based on the sum of the eigen-
values for the above-mentioned lowest-degree mass-lumped element, both for the higher-order
continuous mass-lumped elements as well as for the SIP-DG elements. This measure resembles
the expression for the diameter of the inscribed sphere but has a slightly lower computational
cost.

The first-degree mass-lumped elements have a much larger CFL, allowing for a larger time
step than required for SIP-DG. The CFL for elements of second degree are comparable for both
schemes. Of the two variants of the third degree mass-lumped element, the second allows for a
larger time step than the cubic SIP-DG. Since mass-lumped elements of degree 4 and higher are
presently unknown, only stability results for SIP-DG were given. The general trend for SIP-DG
is that CFL becomes smaller for higher-order elements. Performance and accuracy comparisons
for these methods were considered elsewhere [4]).
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