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Uncertain uncertainty in data-driven stochastic optimization:
towards structured ambiguity sets

Lotfi M. Chaouach Dimitris Boskos Tom Oomen

Abstract— Ambiguity sets of probability distributions are
a prominent tool to hedge against distributional uncertainty
in stochastic optimization. The aim of this paper is to build
tight Wasserstein ambiguity sets for data-driven optimization
problems. The method exploits independence between the
distribution components to introduce structure in the ambiguity
sets and speed up their shrinkage with the number of collected
samples. Tractable reformulations of the stochastic optimization
problems are derived for costs that are expressed as sums
or products of functions that depend only on the individual
distribution components. The statistical benefits of the approach
are theoretically analyzed for compactly supported distributions
and demonstrated in a numerical example.

I. INTRODUCTION

Uncertainty is abundant in today’s real-world systems.
Their increasing complexity, sophistication, and connectivity
generate further sources of uncertainty that need to be taken
into account when optimizing their performance. These un-
certainties can be handled through deterministic or stochastic
approaches. While we account for the worst-case scenario
in the deterministic framework, the probabilistic approach
provides the flexibility of excluding events that are highly
unlikely to occur, thus, reducing the potential conserva-
tiveness of worst-case designs. Probabilistic models usually
assume the existence of a distribution that fully describes
their stochastic attributes. In practice, this distribution is
often not known and needs to be approximated by leveraging
information regarding the system of interest. Typically, it is
inferred using collected data from the system to formulate
data-driven stochastic optimization problems that optimize
the system’s performance.

To hedge against uncertainty about the probabilistic model,
stochastic optimization problems are reinforced via distri-
butionally robust formulations that optimize the worst-case
performance over an ambiguity set of plausible distribution
models [31]. This distibutionally robust optimization (DRO)
framework is attracting increasing attention to solve stochas-
tic optimization problems across fields such as operations
research [1], statistical learning [17], and control [20].

There are several methods to build ambiguity sets that
robustify the decisions of optimization problems. Among
the most prominent tools to group distributions into an
ambiguity set are statistical divergences [7], [16], moment
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constraints [10], [23], total variation metrics [27], and op-
timal transport metrics [21], such as the Wasserstein dis-
tance [29]. Optimal transport ambiguity sets are widely used
for data-driven problems. Among the main reasons are that
they are accompanied by statistical guarantees [12] and that
they facilitate tractable reformulations of the associated DRO
problems [3], [14], [19].

Applications of DRO formulations are widespread across
control engineering and related fields. The work [28] devel-
ops a distributionally robust LQR framework. Data-driven
aspects of Wasserstein distributionally robust stochastic con-
trol are found in [32], while [25] considers the problem of
Kalman filtering under distributional uncertainty. Dynamic
aspects of data-driven ambiguity sets with probabilistic guar-
antees are considered in [5] and [6], which accounts for
data assimilation nonidealities. Further applications of DRO
include economic dispatch in power systems [22], congestion
avoidance in traffic control [18], and motion planning in
dynamic environments [15].

One type of statistical guarantees for Wasserstein ambi-
guity sets is to ensure that they contain the data-generating
distribution with prescribed probability. This approach suf-
fers from the curse of dimensionality since the size of
Wasserstein ambiguity sets exhibits very slow decay rates
with respect to the number of samples for high-dimensional
data [11], [12], [30]. To ameliorate this drawback, a recent
line of work informs the ambiguity sets by the specific
optimization problem, restoring favorable decay rates [2],
[4], [13], [24]. Still, the curse of dimensionality persists
when solving multiple optimization problems under the same
uncertainty as for instance in model predictive control [8].

Although it is important to construct optimal transport
ambiguity sets with probabilistic guarantees of containing the
distribution of the data, existing approaches for this purpose
provide conservative characterizations for high-dimensional
uncertainty. In this paper we tackle the curse of dimension-
ality by leveraging independence between lower dimensional
components of the random variables.

We develop structured Wasserstein ambiguity sets that
only contain product distributions and deduce confidence
guarantees from their constituent components. These am-
biguity sets shrink at much faster rates compared to their
monolithic counterparts while containing the data-generating
distribution with the same confidence level. For certain
classes of cost functions we provide tractable dual refor-
mulations of the associated DRO problems. A simulation
example is also provided to demonstrate the effectiveness of
the presented approach. Due to space constraints, the proofs
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are omitted and will appear elsewhere.

II. PRELIMINARIES AND NOTATION

Throughout this paper, we use the following notation. We
denote by ‖·‖p the pth norm in Rd, p ∈ [1,∞] and omit the
index in the Euclidean case p = 2. The diameter of S ⊂ Rd
is diam(S) := sup{‖x− y‖∞ |x, y ∈ S}.

Probability theory: We denote by B(Rd) the Borel σ-
algebra on Rd, and by P(Rd) the space of probability
measures on (Rd,B(Rd)). The Dirac distribution centered
at ξ ∈ Rd is denoted by δξ. Given p ≥ 1, we denote by
Pp(Rd) the set of probability measures in P(Rd) with finite
pth moment. Given P, Q ∈ Pp(Rd), their pth Wasserstein
distance is

Wp(P,Q) :=

(
inf

π∈M(P,Q)

{∫
Rd×Rd

‖x− y‖p π(dx, dy)

}) 1
p

,

(cf. [29]). Each π ∈ M(P,Q) is a transport plan, i.e.,
a distribution on Rd × Rd with marginals P and Q, re-
spectively. Namely, π(A × Rd) = P (A) for any A ∈
B(Rd) and analogously for Q. We denote by P ⊗ Q the
product measure of P and Q. For any P ∈ P(Rd), its
support is the closed set supp(P ) := {x ∈ Rd |P (U) >
0 for each neighborhood U of x}. Given a function X :
Ω → R with the σ-algebra B(R) we denote by σ(X) the
σ-algebra generated by X on Ω.

III. PROBLEM FORMULATION

Here we introduce stochastic optimization problems and
focus on their robustification in data-driven scenarios.

A. Data-driven stochastic optimization
The central problem in stochastic optimization is to make

optimal decisions in problems affected by randomness. A
stochastic optimization problem takes the form

inf
x∈X

EPξ
[
f(x, ξ)

]
(1)

where f is the objective function, x ∈ X is the decision
variable, and ξ ∈ Rd is a random variable with distribution
Pξ. In practice, this distribution is often unknown and there
is only access to a finite number of i.i.d. samples ξ1, . . . , ξN

of ξ. A typical approach to solve (1) in this case is to approx-
imate Pξ by the empirical distribution PNξ := 1

N

∑N
i=1 δξi

of the samples. This problem formulation, also known as
the sample average approximation (SAA) converges to the
solution of (1) in the asymptotic limit [26], and provides
reliable decisions for large amounts of data.

B. Distributionally robust optimization
When the amount of available data is limited, the SAA

approach may lead to inaccurate approximations of the true
distribution. In this case, the empirical distribution PNξ may
exhibit significant deviations from the true distribution Pξ
and lead to overly optimistic values of the SAA. To address
this issue, uncertainty in the distribution is incorporated into
problem (1) under the robust formulation

inf
x∈X

sup
Pξ∈PN

EPξ
[
f(x, ξ)

]
. (2)

In this distributionally robust optimization (DRO) problem,
PN is an ambiguity set of distributions that contains plausi-
ble models for the true distribution and can be inferred from
the collected samples.

A suitable way to build data-driven ambiguity sets for
problem (2) is to group all distributions up some distance ε
from the empirical distribution PNξ in the Wasserstein metric.
Namely, PN in (2) is selected to be the ball

Bp(PNξ , ε) := {P ∈ Pp(Rd) |Wp(P
N
ξ , P ) ≤ ε},

for certain p ≥ 1, with center PNξ and radius ε. Among
the benefits of this choice are that Wasserstein distances
penalize horizontal distribution variations, and hence, their
effect on the optimization problem, and that Wasserstein
balls lead to tractable DRO problems [19]. In addition, these
ambiguity balls do not rely on absolute continuity conditions
between the associated distributions and they have finite-
sample guarantees of containing the true distribution. In
particular, using concentration of measure results [12], we
can tune the radius of Bp(PNξ , ε) so that it contains the true
distribution with prescribed confidence. This way, the value
of (2) provides an upper bound for the expected cost (1) with
prescribed confidence.

C. Structured ambiguity sets

The size of the ambiguity set PN has a direct effect on
the solution of (2) since ambiguity balls of larger sizes may
lead to conservative upper bounds for (1). This motivates the
consideration of appropriate structure for the ambiguity sets
to mitigate their potential conservativeness.

Problem formulation: Given a fixed amount of data, de-
termine an ambiguity set of appropriate structure so that it
contains the true distribution with prescribed confidence and
its size is as small as possible.

To address the problem, we make the following assump-
tion regarding the class of the random variable.

Assumption 3.1: (Independence of random variable
components). The components of ξ = (ξ1, . . . , ξn) ∈ Rd1 ×
. . .× Rdn ≡ Rd are independent random variables.

This assumption is reasonable in several problems such
as in networked systems, where random inputs at different
network locations do not essentially affect each other, or the
deployment of multi-robot systems where the sensing capa-
bilities of the individual agents are subject to independent
disturbances.

Due to Assumption 3.1, the probability distribution of ξ
is expressed as the product measure

Pξ = Pξ1 ⊗ . . .⊗ Pξn , (3)

with Pξk , k = 1, . . . , n denoting the distributions of its
components. Thus, instead of looking for plausible proba-
bilistic descriptions of Pξ in an ambiguity ball, the idea is
to represent these descriptions through an ambiguity set that
only contains product measures. Since this set contains a re-
stricted class of distributions, it should yield less conservative
solutions for (2) under the same confidence.
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D. Ambiguity radius

Using tools from concentration of measure it is possible to
tune the ambiguity radius so that it contains the true distribu-
tion with prescribed probability. These results leverage prior
assumptions about the class where the unknown distribution
belongs. Such assumptions are the size of its support (e.g.,
[12, Proposition 10], [30]), its tail decay rate (e.g., [12,
Theorem 2 cases (1) and (2)]), or bounds on its moments
(e.g., [12, Theorem 2 case (3)], [9]). Based on these results,
for any confidence 1−β and number of samples N , we can
select the ambiguity radius ε(N, β) so that

P(Pξ ∈ Bp(PNξ , ε)) ≥ 1− β. (4)

When we are interested in highlighting the decrease rate
of the ambiguity radius with the number of samples, we will
consider compactly supported distributions, which facilitate
the derivation of convenient concentration bounds. In partic-
ular, choosing the ambiguity radius

ε(N, β, ρ) :=



(
ln(Cβ−1)

c

) 1
2p

ρ

N
1
2p
, if p > d/2,

h−1
(

ln(Cβ−1)
cN

) 1
p

, if p = d/2,(
ln(Cβ−1)

c

) 1
d

ρ

N
1
d
, if p < d/2,

(5)

guarantees that (4) holds, where h−1 is the inverse of
h(x) = x2

(ln(2+1/x))2 , x > 0, and ρ is the diameter of the
support of Pξ (cf. [5, Corollary 3.3]). For high-dimensional
random variables, (5) implies that the radius decreases with
the slow rate of the order of N−

1
d . As a consequence, the

exploitation of more data does not guarantee any significant
improvement of the closeness between the true distribution
and its empirical approximation, and hence, also of the size
of the ambiguity ball. This brings us to the quantitative
question that we address under Assumption 3.1: Exploiting
independence of the components of ξ determine an ambiguity
set structure that does not suffer from the curse of dimen-
sionality with respect to d.

IV. AMBIGUITY HYPERRECTANGLES

To address the conservative radius decrease of high-
dimensional ambiguity balls, we exploit independence of
lower-dimensional components of the random variable ξ =
(ξ1, . . . , ξn). Using N i.i.d. samples ξ1, . . . , ξN , we first
build a lower-dimensional ambiguity ball Bp(PNξk , εk) for
each component of ξ, where PNξk := 1

N

∑N
i=1 δξik denotes

its corresponding empirical distribution. From these balls,
we construct the ambiguity (Wasserstein) hyperrectangle

Hp(PN
ξ , ε) := {P ′ξ1 ⊗ · · · ⊗ P

′
ξn |

P ′ξk ∈ Bp(P
N
ξk
, εk), k = 1, . . . , n} (6a)

PN
ξ := PNξ1 ⊗ . . .⊗ P

N
ξn , ε = (ε1, . . . , εn), (6b)

by taking the product measures across the individual distri-
butions from the balls. We will also refer to PN

ξ in (6b) as
the product empirical distribution.

𝑃true

𝑁2 ≫ 𝑁1𝑁1

Fig. 1. High-dimensional hyperrectangles (in blue) shrink much faster
with the number of samples compared to Wasserstein ambiguity balls while
containing the true distribution with the same confidence.

We next establish probabilistic guarantees for the Wasser-
stein hyperrectangles, which ensure that they contain the
distribution of ξ with prescribed confidence. We also exploit
them to alleviate the curse of dimensionality regarding the
convergence of Wasserstein balls for specific distribution
classes, cf. Figure 1. The following result establishes the
guarantees that an ambiguity hyperrectangle inherits from
its lower-dimensional constituent ambiguity balls.

Theorem 4.1: (Probabilistic guarantees for Wasserstein
hyperrectangles). Assume that the random variable ξ satis-
fies the independence Assumption 3.1 and that Pξ ∈ Pp(Rd).
Given i.i.d. samples ξ1, . . . , ξN of ξ, let PNξ1 , . . . , P

N
ξn

be the
empirical distributions of the individual components. Assume
also that each Wasserstein ball Bp(PNξk , εk) contains Pξk
with confidence 1−βk. Then, the hyperrectangle Hp(PN

ξ , ε)
given by (6) contains Pξ with confidence

∏n
k=1 1− βk.

The proof of Theorem 4.1 is based on the following
lemma.

Lemma 4.2: (Independent Wasserstein distances across
empirical distributions). Assume that the random vari-
able ξ satisfies the independence Assumption 3.1 and that
Pξ ∈ Pp(Rd). Given i.i.d. samples ξ1, . . . , ξN of ξ, let
PNξ1 , . . . , P

N
ξn

be the empirical distributions of the individ-
ual components. Then for any ε1, . . . , εn ≥ 0 the events
{Wp(P

N
ξk
, Pξk) ≤ εk}, k = 1, . . . , n are independent.

We next quantify the size reduction of Wasserstein hyper-
rectangles compared to Wasserstein balls that are constructed
using the same samples and the same confidence. The results
are focused on compactly supported distributions that facil-
itate the exact computations of the ambiguity radii. We will
use the following probabilistic bounds for the Wasserstein
distance between the true and the empirical distribution.

Proposition 4.3: (Ambiguity radius [6, Proposition 24]).
Assume that the probability distribution Pξ is supported on
Ξ ⊂ Rd with ρ := diam(Ξ) < ∞. Assume also that d ≥
2p + 1 and let ξ1, . . . , ξN be i.i.d. samples of ξ. Then the
ambiguity radius

ε ≡ ε(N, β, ρ, p, d) := ρε?(β, p, d)N−
1
d , (7)

where

ε?(β, p, d) :=
√
d2

1
2p (C(d, p) + (lnβ−1)

1
2p )

C(d, p) := 2(d−2)/2p
( 1

21/2 − 1
+

1

21/2 − 21/2−p

) 1
p

,
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and 1− β is a desired confidence level, guarantees that

P(Pξ ∈ Bp(PNξ , ε)) ≥ 1− β.
We use this ambiguity radius characterization and the guar-

antees of Theorem 4.1 to determine a ball around the product
empirical distribution that contains the hyperrectangle with
prescribed probability.

Proposition 4.4: (Ambiguity rectangle containment). As-
sume that the random variable ξ is supported on Ξ ⊂ Rd with
ρ := diam(Ξ) < ∞ and satisfies Assumption 3.1. For any
confidence 1 − β, consider the Wasserstein hyperrectangle
Hp(PN

ξ , ε) given by (6) with each εk = ε(N, βk, ρ, p, dk)

as in (7) and βk = β dkd . Then the hyperrectangle contains
Pξ with confidence 1− β and satisfies

Hp(PN
ξ , ε) ⊂ Bp(PN

ξ , ε
′), (8)

where

ε′ = cn1/p+max{0,1/2−1/p}ρε?(β, p, d)N−
1

dmax ,

c = (
√

5 + 1)/
(
2e

(
√

5+1)2

4

)
≈ 1.1043, dmax :=

maxk=1,...,n dk, and ε? is defined in Proposition 4.3.
Remark 4.5: (Ambiguity rectangle vs ball shrinkage).

Under the assumptions of Proposition 4.4, we can compare
the size of a hyperrectangle and a monolithic ball that contain
Pξ with the same confidence. The radius ε′ of the Wasserstein
ball that encloses the hyperrectangle is guaranteed to be
strictly smaller than the radius ε of the monolithic ball when
N ≥

(
cn1/p+max{0,1/2−1/p}) 1

dmax
− 1
d , and decreases much

faster for larger N (cf. Figure 2(a)). The “centroid” of the
hyperrectangle, namely, the center PN

ξ of its enclosing ball
is different from the center PNξ of the monolithic ball, since
the latter is the empirical distribution 1

N

∑N
i=1 δξi , whereas

the former is the product empirical distribution

PNξ1 ⊗ · · · ⊗ P
N
ξn =

1

Nn

∑
(i1,...,in)∈{1,...,N}n

δ
(ξ
i1
1 ,...,ξinn )

.

(cf. Figure 2(b)). This also implies that under Assump-
tion 3.1, an ambiguity ball that is centered at the product
empirical distribution PN

ξ will contain the true distribution
with significantly higher probability compared to when it is
centered at the empirical distribution PNξ . As a result, when
the components of the random variable are independent,
shifting the center of the ambiguity ball to the product
empirical distribution PN

ξ provides an ambiguity set that is
better informed about the true distribution.

V. DRO REFORMULATIONS OVER HYPERRECTANGLES

In this section, we provide tractable reformulations of
the DRO problem (2) when the ambiguity set PN is a
Wasserstein hyperrectangle. Namely, we provide tractable
equivalent forms of the problem

inf
x∈X

sup
Pξ∈Hp(PNξ ,ε)

EPξ
[
f(x, ξ)

]
. (9)

As common in DRO, computational tractability relies on
the reformulation of the inner maximization problem. To

𝑃𝜉
𝑁

𝑷𝜉
𝑁

𝑃𝜉1
𝑁

𝑃𝜉2
𝑁

𝜉 = (𝜉1, 𝜉2) 𝜉1 ∈ ℝ𝑑1

𝜉2 ∈ ℝ𝑑2

ℬ𝑝(𝑷𝜉
𝑁, 𝜀′)

ℋ𝑝(𝑷𝜉
𝑁, 𝜺)

ℬ𝑝(𝑃𝜉
𝑁, 𝜀)

(a) (b)
Fig. 2. (a) shows the Wasserstein hyperrectangle Hp(PN

ξ , ε), its enclosing
ball Bp(PN

ξ , ε′) around the product empirical distribution PN
ξ , and the

monolithic Wasserstein ball around the empirical distribution PNξ for a
random variable with two components. (b) depicts the empirical distribution
PNξ from (a) with the filled red stars, which correspond to the N samples,
and the product empirical distribution PN

ξ with the N2 purple stars. The
purple stars are formed by taking the product of the marginal empirical
distributions PNξ1 and PNξ2 of the independent components of ξ, depicted
by the hollow red stars.

facilitate notation, we fix the decision variable x and denote
g(ξ) := f(x, ξ). Thus, we are interested in reformulating the
inner problem

sup
Pξ∈Hp(PNξ ,ε)

EPξ [g(ξ)]. (10)

We make the following assumption for g.
Assumption 5.1: (Sum/product decomposition). The ob-

jective function can be expressed as the sum of upper semi-
continuous functions or the product of nonnegative upper
semicontinuous functions that depend only on the respective
components of the random variable. Namely,

g(ξ) =

n∑
k=1

gk(ξk) (11a)

or g(ξ) =

n∏
k=1

gk(ξk), gk(ξk) ≥ 0. (11b)

Notice that this assumption is satisfied if and only if f
can also be written as the sum or product of appropriate
functions, respectively, that depend only on the individual
components of ξ. To reformulate (10) we will leverage the
following strong duality result for the maximization over
Wasserstein balls.

Proposition 5.2: (DRO dual over Wasserstein balls [3,
Theorem 1 & Remark 1]). Consider the i.i.d. samples
ξ1, . . . , ξN of the random variable ξ, the Wasserstein ball
Bp(PNξ , ε), and the upper semicontinuous function g. Then

sup
Pξ∈Bp(PNξ ,ε)

EPξ [g(ξ)]

= inf
λ≥0

{
1

N

N∑
i=1

sup
ξ∈Rd
{g(ξ) + λ(εp −

∥∥ξ − ξi∥∥p)}}. (12)

We next establish strong duality for DRO problems with
Wasserstein hyperrectangles when the objective function
satisfies Assumption 5.1.

Proposition 5.3: (DRO dual over Wasserstein hyperrect-
angles). Consider the optimization problem (10) and let
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the objective function g satisfy Assumption 5.1. Then (10)
admits the equivalent dual formulations

inf
λ≥0

n∑
k=1

1

N

N∑
i=1

sup
ξk∈Rdk

{gk(ξk) + λk(εpk −
∥∥ξk − ξik∥∥p)}

(13a)

inf
λ≥0

n∏
k=1

1

N

N∑
i=1

sup
ξk∈Rdk

{gk(ξk) + λk(εpk −
∥∥ξk − ξik∥∥p)},

(13b)

corresponding to Assumptions (11a) and (11b), respectively,
where λ = (λ1, . . . , λn) and λ ≥ 0 holds componentwise.

Remark 5.4: The additive duality result of Proposition 5.3
can be applied to optimization problems that have separable
additive costs with respect to the uncertainty. In an analogous
manner, the multiplicative version can be applied to problems
with nonnegative multiplicative costs, such as uncertainty
quantification problems which seek to determine the product
of probabilities across independent events.

VI. SIMULATION EXAMPLE

In this section, we present an uncertainty quantification
problem that illustrates the advantage of using ambiguity
hyperrectangles compared to monolithic ambiguity balls. We
consider four drones that need to reach a region within
a specific deadline to assist a team with a collaborative
search-and-rescue mission. The probability that they reach
the region before the deadline determines if a fallback plan
will be used for the mission or not. The drones are operating
in different locations and are simultaneously informed by
distinct operators to reach the region as fast as possible. Each
operator sends to the team information about the distance
and maximum velocity of the drones, which are unknown,
independent across the drones, and inferred by a limited
amount of data. The goal is to build an ambiguity set from
these data and determine a lower bound for the probability
that all drones can reach the region before the deadline.
Namely, we seek to determine the worst-case (smallest)
probability that this happens among all distributions in the
ambiguity set.

Denote by τ the deadline and by rk and vk the initial
distance and maximum velocity of each drone. A necessary
and sufficient condition for the drones to reach the region is

τvk − rk ≥ 0 ⇐⇒ akξ ≤ 0 ∀k = 1, . . . , 4,

where ak ∈ R1×8, with ak(j) = 1, if j = 2k − 1, ak(j) =
−τ , if j = 2k, ak(j) = 0, otherwise, and ξ = (ξ1, . . . , ξ4) ≡
(r1, v1, . . . , r4, v4) is the random variable of our problem.
Denoting by A ∈ R4×8 the matrix with rows ak and

Bk := {ξ | akξ ≤ 0} (14a)

B := ∩4k=1Bk ≡ {ξ |Aξ ≤ 0}, (14b)

we seek to determine the probability bound

min
Pξ∈PN

Pξ(B) = min
Pξ∈PN

EPξ [1B(ξ)], (15)

where the ambiguity set PN is built by N independent
samples of ξ. We will compare these probability bounds
when PN is either an ambiguity ball or a hyperrectangle.

We assume that the distribution of ξ is compactly sup-
ported and build the ambiguity set using the results from
Section IV. Since the confidence bounds of Proposition 4.3
may become conservative (see e.g., [6, Section 6.5]), we use
them to tune the relative sizes between a monolithic ambigu-
ity ball and an associated hyperrectangle. In particular, using
the exact same reasoning as in the proof of Proposition 4.4,
under the same confidence level, it can be shown that the
radius εk of each hyperrectangle component satisfies

εk ≤ c
ρk
ρ
N−

1
3+

1
8 ε,

with ρk, ρ the diameters of the supports of ξk, ξ, and ε the
radius of the monolithic ambiguity ball. Thus, after selecting
the radius of the monolithic ball, we pick the radii of the
hyperrectangles to satisfy the above relation as an equality.

To solve the optimization problem (15) over the monolithic
ball PN ≡ Bp(PNξ , ε), we rewrite it as

min
Pξ∈Bp(PNξ ,ε)

Pξ(B) = 1− max
Pξ∈Bp(PNξ ,ε)

Pξ(B
c), (16)

where Bc denotes the complement of the set B. To obtain
(15) for the case of the Wasserstein hyperrectangle PN ≡
Hp(PN

ξ , ε), we compute (15) by following the reasoning of
the proof of Proposition 5.3, namely

min
Pξ∈Hp(PNξ ,ε)

Pξ(B) = min
Pξ∈Hp(PNξ ,ε)

EPξ [1B(ξ)]

= min
Pξ∈Hp(PNξ ,ε)

EPξ
[ 4∏
k=1

1Bk(ξk)
]

= min
Pξk∈Bp(P

N
ξk
,εk),k=1,...,4

4∏
k=1

EPξk [1Bk(ξk)]

=

4∏
k=1

(
1− max

Pξk∈Bp(P
N
ξk
,εk)

Pξk(Bck)
)
. (17)

Due to (14), both (16) and (17) involve robust uncertainty
quantification problems over polytopic sets and can be com-
puted using the reformulations [19, Corollary 5.3] for the
1-Wasserstein distance (i.e., for p = 1).

For the simulations, the initial distances (in km) of the
drones 1–3 and 4 follow the distributions 0.95U [6, 10] +
0.05U [10, 11] and 0.95U [9, 10]+0.05U [10, 11], respectively,
where U denotes the uniform distribution. All velocities (in
m/sec) follow the distribution U [50, 50.5] and the deadline is
set to τ = 200sec. The exact supports of the distributions are
assumed known (but not the distributions themselves). Using
this information, we selected a radius for the monolithic ball
and the relative size of the hyperrectangle as exemplified
above. Figure 3 shows the results across 30 realization
of the simulations that leverage 100 samples each. The
Wasserstein hyperrectangle exhibits superior performance
compared to the monolithic ball, since the worst-case values
are above the probability threshold (set at 0.45) in 83%
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Fig. 3. The figure shows the lower probability bound (15) of reaching the
region across 30 realizations. The results obtained by using the monolithic
ball are depicted by the diamonds and the results with the hyperrectangle
by the stars. In both cases, the ambiguity sets are built using 100 samples.
The results obtained by the hyperrectangle outperform those obtained by
the monolithic ball, since the lower probability bound is above the desired
threshold (solid line) in considerably more occasions.

of the realizations in the former case compared to 10% in
the latter. This improvement is also aided by the fact that
the hyperrectangle can take advantage of the heterogeneity
across the components of the random variable, which in this
example is captured by the narrower support of drone 4.

VII. CONCLUSION

In this paper, we introduced structured ambiguity sets for
data-driven DRO problems where the random variables have
independent constituent components. These ambiguity sets
are hyperrectangles in the Wasserstein space and can be
tuned to contain the true distribution with prescribed con-
fidence. We showed that Wasserstein hyperrectangles exhibit
faster decay rates for high-dimensional data compared to
monolithic ambiguity balls. We also obtained dual reformula-
tions of the associated DRO problems for specific classes of
cost functions. Future research includes the extension of the
duality results to general cost functions and the development
of tractable optimization algorithms to solve the reformulated
DRO problems.
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