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LogDLR: Unsupervised Cross-System Log Anomaly
Detection Through Domain-Invariant Latent

Representation
Junwei Zhou , Member, IEEE, Shaowen Ying , Shulan Wang , Dongdong Zhao ,

Jianwen Xiang , Member, IEEE, Kaitai Liang , Member, IEEE, and Peng Liu , Member, IEEE

Abstract—Log anomaly detection aims to discover abnormal
events from massive log data to ensure the security and reliability of
software systems. However, due to the heterogeneity of log formats
and syntaxes across different systems, existing log anomaly detec-
tion methods often need to be designed and trained for specific sys-
tems, lacking generalization ability. To address this challenge, we
propose LogDLR, a novel unsupervised cross-system log anomaly
detection method. The core idea of LogDLR is to use universal
sentence embeddings and a Transformer-based autoencoder to
extract domain-invariant latent representations from log entries,
which can effectively adapt to log format changes and capture
semantic information and dependencies in log sequences. To ob-
tain domain-invariant latent representations, we adopt a domain-
adversarial training strategy, introducing a domain discriminator
that competes with the Transformer-based encoder through a gra-
dient reversal layer, forcing the encoder to learn shared knowledge
between different system logs. Finally, the Transformer-based de-
coder detects anomalies based on the domain-invariant represen-
tations obtained by the encoder. We evaluate LogDLR in simulated
cross-system scenarios using three publicly available log datasets.
The experimental results show that LogDLR can handle heteroge-
neous logs effectively in cross-system scenarios and achieve efficient
and accurate anomaly detection on both source and target systems.

Index Terms—Anomaly detection, log analysis, adversarial
training.

I. INTRODUCTION

MODERN software systems are prone to various anoma-
lies due to their increasing scale and complexity, which

poses a serious threat to their stability and sustainability. There-
fore, timely detection and diagnosis of anomalies is essential for
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Fig. 1. An example of semantic similarity of log entries.

ensuring the quality of software services. System logs, which
record various events during software operation, are a valuable
resource for effective anomaly detection, as they provide crucial
insights into the system behavior [1]. However, contemporary
software services often involve multiple types of software sys-
tems, each generating specific logs with unique structures and
formats [2]. This leads to the challenges of scale and hetero-
geneity of logs for log-based anomaly detection.

In recent years, deep learning-based log anomaly detection
methods [3], [4], [5], [6], [7], [8] have attracted widespread atten-
tion due to their ability to automatically learn complex patterns
and representations from large-scale log data. However, most
existing methods are usually system-specific, meaning that they
cannot be directly applied to a new system without substantial
retraining or adaptation efforts [2]. To address this issue, some
cross-system log anomaly detection methods based on transfer
learning have been proposed [2], [9]. Cross-system log anomaly
detection methods aim to detect anomalies in a new system
(the target system or domain) by using the knowledge learned
from another system (the source system or domain). This can
reduce the cost and effort of developing and maintaining separate
detection models for different systems. However, cross-system
log anomaly detection methods face two main challenges:

1) Differences in log formats and syntaxes between systems
can hinder the direct application of detection models
across diverse software environments [2]. Cross-system
log anomaly detection methods assume that logs from
different systems have some semantic similarity, even
though they may have different syntactic structures [2],
[9]. As shown in Fig. 1, we can observe some semantic
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similarity between the logs generated on system 1 and
system 2. For example, log entry “# sshd[4677]: Remote
host disconnected: Key exchange failed” on system 1
and log entry “# sshd[1122]: Remote host disconnected:
Server host key changed” on system 2 are semantically
both indicating a failed SSH connection attempt. There-
fore, the detection model needs to be generalizable enough
to handle heterogeneous logs across systems.

2) The scarcity of sufficient anomaly labels in real-world sce-
narios. This challenge often arises from the inherent rarity
of anomalous events in software systems, especially for
newly deployed systems [9]. Supervised detection meth-
ods [2], which rely on labeled data to learn the underlying
patterns that distinguish normal and anomalous logs, are
severely limited by this lack of labeled data. Unsupervised
detection methods, which do not require any labeled data,
can overcome this limitation, but they may suffer from low
accuracy or robustness [10].

To tackle the above two challenges, we propose LogDLR, an
unsupervised cross-system log anomaly detection method that
leverages domain-invariant latent representation. The key idea
of LogDLR is to capture the essential features of log sequences
that are invariant across different systems, regardless of their
format and syntax differences. For example, in Fig. 1, both
System 1 and System 2 have the similar indicative behavior, such
as the remote host disconnection, the public key or password
authentication, and the missing file or directory. These invariant
features can be used to measure the semantic similarity of log se-
quences and detect anomalies. Therefore, LogDLR aims to map
log sequences into a latent space, where the domain-invariant
latent representation can be extracted and used for anomaly
detection.

Specifically, LogDLR first applies a system-independent pre-
processing step to the raw log data, followed by using a shared
pre-trained sentence embedding model to extract semantic vec-
tors from the preprocessed log entries. Next, LogDLR uses an
autoencoder based on Transformer [11], which consists of an
encoder and a decoder, to learn latent representations from the
semantic vectors of log entries. To ensure the domain-invariance
of the latent representations, LogDLR employs a gradient re-
versal layer [12] and an extra domain discriminator to engage
in domain-adversarial training with the encoder. Finally, the
decoder detects anomalies based on whether the latent repre-
sentations can be correctly reconstructed.

The main contributions of this work are as follows:
1) We propose LogDLR, a novel unsupervised cross-system

log anomaly detection method that can handle the vari-
ability and heterogeneity of log formats and syntaxes in
cross-system scenarios.

2) We combine a Transformer-based autoencoder with
domain-adversarial training to extract domain-invariant
latent representations of log sequences, which capture the
essential features of the system behavior while eliminating
the format and syntax differences.

3) We evaluate LogDLR on three public log datasets from
different systems, and the simulation results indicate that
LogDLR can achieve high F1-scores on both source and

target systems. We also open-source the implementation
of LogDLR on Github1 for reproducibility and further
research.

II. BACKGROUND AND MOTIVATION

A. Unsupervised Cross-System Anomaly Detection

Cross-system anomaly detection seeks to substantially reduce
development and maintenance costs by identifying detection
patterns in source systems and transferring them to target sys-
tems. This approach eliminates the need to develop separate
detection models for each system.

The earliest cross-system method, LogTransfer [2], employs
transfer learning to transfer abnormal patterns learned from
a source system to a target system through a shared fully
connected network. However, LogTransfer is supervised and
requires anomaly-annotated data for both systems, which is
often challenging to obtain in practical applications, especially
in newly deployed or unlabeled system environments. To address
this issue, LogTAD [9] introduces an unsupervised cross-system
anomaly detection framework. This framework uses a Long
Short-Term Memory (LSTM) [13] generator to cluster normal
log data from different systems near the center of a hypersphere
and applies domain-adversarial adaptation to align the distribu-
tions of log data from different systems, detecting anomalies
that deviate significantly from the center.

However, LogTAD [9] employs the LSTM model, which
has inherent limitations in capturing long-distance dependencies
and complex semantic features. For log data with diverse and
long sequence feature distributions, LSTM can only focus on
previous information at each time step due to its cyclic struc-
ture, and therefore cannot capture the global information of the
sequence [6]. Although LogTAD utilizes domain-adversarial
adaptation to align the distributions of the source and target
systems, its generator’s ability is constrained by the LSTM
model, preventing it from fully capturing fine-grained feature
differences between systems.

To address these issues, we utilize a Transformer-based au-
toencoder to learn the latent representations of log sequences.
Through the self-attention mechanism, the Transformer can
simultaneously focus on all positions in a sequence, efficiently
capturing long-distance dependencies and complex contextual
associations within the log sequence [11]. It can extract tem-
poral patterns and deeply explore the semantic features of the
logs. Compared to LogTAD, the Transformer-based autoencoder
more comprehensively reflects the internal structure and behav-
ioral characteristics of logs, enhancing adaptability to heteroge-
neous log data across systems.

B. Log Semantic Feature Extraction

System logs are event records generated during software
execution, stored in text form, and contain rich semantic infor-
mation. However, logs from different systems may vary signif-
icantly in format, structure, and syntax, complicating the direct

1https://github.com/yingsw79/LogDLR
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extraction and comparison of log semantics in cross-system
scenarios [2].

Traditional methods, such as LogTransfer [2] and Log-
TAD [9], use word embedding techniques like GloVe [14] and
Word2Vec [15] for semantic feature extraction. However, the
embeddings generated by GloVe and Word2Vec are static and
cannot dynamically adjust word meanings based on context,
underperforming when processing semantically complex or am-
biguous log entries [7]. To address this issue, several works, such
as NeuralLog [6] and SwissLog [8], use pre-trained Bidirectional
Encoder Representations from Transformers (BERT) [16] word
embeddings to significantly improve the quality of log semantic
representations. BERT’s primary design goal is to generate
contextual word embeddings, dynamically adjusting each input
word’s vector to capture local contextual relationships [16].
However, for sentence embeddings, BERT typically generates
representations by pooling word vectors (e.g., average pooling or
using [CLS] token vectors) [6]. This approach is not specifically
optimized for sentence-level semantic relationships, especially
in cross-system semantic comparisons of log entries [17].

In LogDLR, we adopt the BERT-based Sentence-BERT
(SBERT) [17] sentence embedding model for tasks requir-
ing sentence-level semantic representation in cross-system log
anomaly detection. SBERT is designed to generate high-quality
sentence embeddings for computing semantic similarity be-
tween sentences. It introduces a sentence-pair architecture based
on BERT and is fine-tuned through contrastive learning or
sentence-pair tasks (such as natural language inference) to make
the generated sentence embeddings more suitable for semantic
comparison and measurement [17]. By leveraging SBERT’s
pre-trained sentence embedding model, we treat log entries as
natural language text and efficiently adapt to the diversity of log
formats and syntax.

C. Domain Shift

In cross-domain tasks, differences in data distribution be-
tween the source domain and the target domain (i.e., domain
shift) often hinder models trained on the source domain from
performing well on the target domain [18]. This issue is par-
ticularly prominent when models trained on source system logs
cannot generalize to other target systems due to changes in data
distribution [9].

To address the domain shift problem, domain adaptation
methods enable models to share feature representations across
different domains by reducing data distribution differences be-
tween the source and target domains, thereby improving gen-
eralization ability [19], [20], [21]. Domain-adversarial neural
networks (DANN) [19] are fundamental domain adaptation
methods that aim to learn domain-invariant features through
adversarial training. The core idea is to introduce a domain
discriminator and a gradient reversal layer (GRL) [12] to make
the features generated by the model indistinguishable between
the source and target domains through adversarial training.
This mechanism encourages the model to focus on extracting
task-relevant, domain-invariant features while ignoring domain-
specific differences.

In this work, we extend the principles of DANN [19] to
autoencoder-based anomaly detection tasks to achieve univer-
sal anomaly detection across system log data. Specifically,
LogDLR integrates domain-adversarial training with the re-
construction mechanism of autoencoders. Domain-adversarial
training guides the encoder through a domain discriminator to
generate domain-invariant latent representations, significantly
reducing distribution differences between the source and target
systems. The autoencoder’s reconstruction loss ensures that
the latent representation effectively captures the structural and
semantic patterns of normal logs, thereby maintaining the ability
to distinguish between normal and abnormal logs. This synergy
enables LogDLR to overcome the differences in log distribution
and achieve cross-system anomaly detection.

III. THREAT MODEL AND ASSUMPTIONS

This work focuses on detecting anomalies in cross-system
log scenarios, where logs from different systems may differ
in structure, format, and semantics. The proposed LogDLR
method is designed for unsupervised anomaly detection and is
not specific to any particular type of threat or attack. A log entry
is considered an anomaly if its pattern deviates significantly from
the typical pattern learned during training on normal log se-
quences. The anomaly detection process targets point anomalies,
where individual log entries or sequences are evaluated based on
their domain-invariant representation and reconstruction error.

We assume that logs contain meaningful textual descriptions
of system events. LogDLR leverages a pre-trained sentence em-
bedding model to extract semantic features from logs. However,
if the log contains unreadable or uninformative entries (such as
hexadecimal memory addresses or raw binary data), the seman-
tic extraction process may not capture their potential meaning.
In such cases, LogDLR treats these entries as part of the normal
training data, assuming that their patterns do not significantly
affect the model’s ability to detect anomalies. Additionally, we
assume that logs from different systems exhibit a certain degree
of semantic similarity despite differences in format and syntax.

IV. DESIGN OF LOGDLR

A. Overview

We consider a source system s and a target system t, each of
which generates a log sequenceB = {bi}wi=1, where bi is the i-th
log entry and w is the length of the log sequence. Given a mixed
training dataset D = {Bi}n=ns+nt

i=1 , which contains ns normal
log sequencesDs = {Bs

i }ns
i=1 from the source system and nt (<

ns) normal log sequencesDt = {Bt
i}nt

i=1 from the target system,
we expect LogDLR to extract domain-invariant representations
and achieve unified anomaly detection regardless of log formats
and syntaxes.

Fig. 2 illustrates the framework of LogDLR. The framework
takes log sequences from both the source and target systems
as input. It preprocesses the log sequences with a system-
independent method and then transforms them into semantic
vectors using a universal sentence embedding. The Transformer-
based autoencoder consists of a Transformer-based encoder and
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Fig. 2. The overall framework of LogDLR.

Fig. 3. An example of log parsing (for illustration only, not used in LogDLR).

a Transformer-based decoder. In the training stage, the encoder
learns the latent representations of the normal log sequences
from their semantic vectors. The domain discriminator, con-
nected to the encoder through a gradient reversal layer, enables
domain-adversarial training to obtain domain-invariant repre-
sentations. The Transformer-based decoder reconstructs the se-
mantic vectors of the log sequences from the representations. In
the detection stage, the decoder detects anomalies based on the
reconstruction errors of the log sequences exceeding a certain
threshold.

B. Preprocessing

Existing log anomaly detection methods typically rely on log
parsers (such as Drain [22], Spell [23], etc.) to parse the raw logs
into event templates during the preprocessing step [2], [9]. Fig. 3
shows an example of the log parsing. However, log parsing errors
can compromise the integrity of log entries, leading to semantic
loss or misunderstanding [6]. Moreover, the parsing process is
system-specific, and usually requires writing suitable regular
expressions for the log structure of a specific system, to ensure
the quality of templates [24], [25], [26]. This processing step is
time-consuming and laborious, and different systems generally

have different templates due to the diversity of log formats and
syntaxes [27]. Therefore, parsing is not suitable for cross-system
anomaly detection scenarios.

Instead of parsing the raw logs with complex methods, we use
simple text preprocessing methods from the natural language
processing (NLP) field. We first extract the content field of log
entries, then convert it to lowercase and remove non-alphabetic
characters. Table I illustrates examples of preprocessing steps
applied to three different datasets. Our processing step is simple
and does not involve manual addition of system-specific regular
expressions. It can be easily implemented with standard NLP
toolkits. We denote the preprocessed log sequence as C =
{ci}wi=1, where ci = preprocessing(bi) is the i-th preprocessed
log entry.

C. Sentence Embedding

The sentence embedding model we use is based on Sentence-
BERT (SBERT)2 [17], a variation of BERT [16] specifically
designed for generating high-quality sentence embeddings. Un-
like standard BERT, which primarily focuses on token-level
representations, SBERT adopts a siamese network architecture.
This architecture consists of two identical BERT models that
share parameters and are trained on sentence pairs [17]. Each
sentence is processed independently by one of the BERT models
to produce an embedding, and the similarity between the two
embeddings is then measured.

The goal of SBERT is to generate sentence embeddings
that reflect semantic similarity by fine-tuning BERT on labeled
sentence pairs. This ensures that embeddings of semantically
similar sentences are closer in the vector space, while embed-
dings of dissimilar sentences are farther apart [17]. This training

2https://www.sbert.net
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TABLE I
EXAMPLES OF THE PREPROCESSING STEP ON THREE DIFFERENT DATASETS: THUNDERBIRD, SPIRIT, AND BGL

strategy enables the model to effectively capture sentence-level
semantics, making it particularly well-suited for tasks involving
semantic similarity and comparison. By leveraging this capabil-
ity, SBERT generates robust sentence embeddings that can be
directly used to encode log entries, preserving their contextual
and semantic information.

In our framework, we utilize the SBERT model E to trans-
form preprocessed log entries into de-dimensional embedding
vectors. Formally, given a log sequence with w entries, the
embedded log sequence is represented as X = {xi}wi=1, where
xi = E(ci) denotes the embedding vector of the i-th log entry.

D. Transformer-Based Autoencoder

The Transformer-based autoencoder consists of a
Transformer-based encoder and a Transformer-based decoder,
as shown in Fig. 2. Given an embedded log sequence
Xi ∈ Rw×de in D, the encoder compresses it into a latent
representation, and the decoder reconstructs the log sequence
from this latent representation.

The Transformer-based encoder is composed of l identical
Transformer layers, each with two sub-layers. The first sub-
layer is multi-head self-attention, and the second sub-layer is
a position-wise feed-forward network (FFN) [11]. The core
component of the Transformer layer is the multi-head attention
mechanism, which consists ofh parallel self-attention heads that
allow the model to weigh the importance of different parts of the
input sequence. It is expressed as:

Hi = MultiHeadAttn(Xi)

= Concat(head1, . . . , headj , . . . , headh) θO, (1)

where

headj = Attention
(
XiθQj

, XiθKj
, XiθVj

)
, (2)

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V ; (3)

θQj
, θKj

, θVj
∈ Rde×dk and θO ∈ Rhdk×de are learnable pa-

rameter matrices; dk is the dimension of a self-attention head.
Additionally, each sub-layer in the Transformer layer applies
residual connections and layer normalization [11]. Therefore,
the output of the self-attention layer is defined as:

H̃i = LayerNorm(Xi +Hi). (4)

The FFN is applied after the self-attention sub-layer. It con-
sists of two linear transformations with a ReLU activation func-
tion in between:

FFN(H̃i) = ReLU
(
H̃iθ1 + b1

)
θ2 + b2, (5)

where θ1 ∈ Rde×dff , θ2 ∈ Rdff×de , b1 ∈ Rdff , and b2 ∈ Rde

are learnable parameter matrices and biases; dff is the di-
mension of FFN. After the FFN sub-layer, another residual
connection and layer normalization are applied. Therefore, the
output of the Transformer layer is defined as the result of the
second layer normalization:

TransformerLayer(Xi) = LayerNorm
(
H̃i + FFN

(
H̃i

))
.

(6)
Finally, we use a linear layer to reduce the output of the

Transformer layer to a dz-dimensional vector Zi, which is the
latent representation of the log sequence Xi:

Zi = Encoder(Xi)

= TransformerLayer(Xi)θ3 + b3, (7)

where θ3 ∈ Rwde×dz and b3 ∈ Rdz are learnable parameters of
the linear layer.

The Transformer-based decoder has a network structure com-
pletely symmetrical to the encoder. It decodes the latent repre-
sentation Zi into a log sequence X̂i ∈ Rw×de . To make it easy,
we denote the operation as:

X̂i = Decoder(Zi). (8)

To ensure that the autoencoder can learn latent representations
of normal log sequences while reconstructing them correctly. We
use mean squared error as the measure of reconstruction error,
that is:

RE(Xi) = ‖Xi − X̂i‖22, (9)

where ‖ · ‖2 denotes the L2 norm and X̂i is the reconstruction
ofXi by the autoencoder model. The reconstruction error is also
used as an anomaly score to detect abnormal log sequences, as
we will explain in Section IV-G. The corresponding objective
function is defined as:

LRE =
1

n

n∑
i=1

RE(Xi). (10)
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By minimizing (10), normal log sequences will have lower
reconstruction errors because their latent representations are
correctly learned by the encoder, while abnormal log sequences
will have higher reconstruction errors.

In addition, we apply L2 regularization to the latent represen-
tation Z [28], as follows:

LEM =
1

n

n∑
i=1

‖Zi‖22, (11)

where Zi is the latent representation of Xi. This regulariza-
tion term encourages the latent representations to have smaller
magnitudes, preventing them from becoming too large and po-
tentially overfitting the data.

Combining the two parts above, we define the objective
function of the autoencoder part as:

LAE = LRE + αLEM, (12)

where α is a hyperparameter controlling the weight of LEM.

E. Domain-Adversarial Training

In this section, we describe the domain-adversarial training
method that we use to learn domain-invariant representations
(Z) of the system’s normal log sequence.

We introduce an additional domain discriminator D and
connect it to the Transformer-based encoder through a gradi-
ent reversal layer (GRL) [12]. The discriminator models the
probability that the encoder generates the latent representation
from the source system or the target system. The discriminator
consists of two linear layers with a LeakyReLu [29] function.
Formally, we can calculate the probability distribution pi that
the latent representation Zi comes fromDs orDt by applying a
softmax function to the output of the discriminator:

pi = Softmax (LeakyReLU (GRL(Zi)θ4 + b4)θ5 + b5) ,
(13)

where θ4, θ5, b4, and b5 are learnable parameters of the discrim-
inator.

During forward propagation, the GRL acts as an identity func-
tion, allowing the representations to flow through unchanged.
However, during backward propagation, the GRL modifies the
gradients that flow back from the discriminator to the encoder.
It multiplies the gradients by a negative constant λ, effectively
changing their direction. Fig. 4 shows the role of GRL in for-
ward and back propagation. Consequently, the encoder and the
discriminator optimize in opposite directions: the encoder aims
to generate representations that obscure their domain source,
while the discriminator seeks to accurately identify the domain
source.

With the inclusion of the discriminator, the encoder now
has two objectives. Firstly, it learns a latent representation of
the system’s normal log sequence. Secondly, it ensures that
the representations for different systems are domain-invariant
and indistinguishable by the discriminator. The objective of
the Transformer-based decoder remains the same, which is to
reconstruct the log sequence from the domain-invariant rep-
resentation provided by the encoder. This adversarial training

Fig. 4. The role of GRL in forward and back propagation.

process encourages the encoder to learn representations that are
insensitive to the domain shift between the source and target
systems. It effectively aligns the feature distributions of different
domains, producing domain-invariant representations that can
be shared and transferred across systems.

The theoretical foundation of domain-invariant latent repre-
sentations is supported by minimizing the H-divergence [12],
[30] between pS(Z) and pT (Z), which represent the latent fea-
ture distributions of the source and target domains, respectively.
As noted by Ganin et al. [12],H-divergence dH(pS(Z), pT (Z))
can be estimated as follows:

dH (pS(Z), pT (Z))

= 2 sup
H

∣∣PZ∼pS(Z) [h(Z) = 1]− PZ∼pT (Z) [h(Z) = 1]
∣∣

= 2 sup
H

[
PZ∼pS(Z)[h(Z) = 0] + PZ∼pT (Z) [h(Z) = 1]− 1

]

= 2 sup
H

[f(h)− 1] , (14)

where H is the hypothesis class of functions h : Z → {0, 1}
and f(h)=PZ∼pS(Z)[h(Z)= 0]+PZ∼pT (Z)[h(Z) = 1]. Thus,
f(D) measures the discriminator’s effectiveness in identifying
the domain source of the latent representations.

We adopt cross-entropy loss as the objective function for
domain prediction of latent representation, which is defined as:

LD = − 1

n

n∑
i=1

[qi log(pi) + (1− qi) log (1− pi)] , (15)

where pi is calculated by (13) and qi is the domain label of the
i-th log sequence Xi, indicating whether it comes from Ds or
Dt (if Xi ∈ Ds, then qi = 0, if Xi ∈ Dt, then qi = 1). The dis-
criminator is trained to minimize 15, thereby maximizing f(D)
and enhancing the classification accuracy of the latent represen-
tation. GRL inverts these gradients for the encoder, compelling
it to reduce f(D) by learning representations that confuse the
discriminator, thus effectively reducing dH(pS(Z), pT (Z)).
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At this point, we define the mathematical concept of domain-
invariant latent representation as follows: A latent representation
Z ∈ Rdz is learned by the encoder (Encoder : Rw×de → Rdz ),
satisfying two properties:
� Task Relevance: Z preserves the structural and semantic

patterns of normal log sequences necessary for reconstruc-
tion and anomaly detection by minimizing the reconstruc-
tion error (LAE).

� Domain Invariance: The distributions of Z for the source
system Ds and target system Dt, denoted as pS(Z)
and pT (Z), respectively, are aligned such that the H-
divergence between them (dH(pS(Z), pT (Z))) is mini-
mized.

F. Overall Objective Function

During the training phase, we aim to minimize the objective
function LAE on the training set D, thereby optimizing the
encoder parameters θe and decoder parameters θd. This ensures
that the autoencoder can learn the latent representation and
reconstruction of normal log sequences in both Ds and Dt.

To obtain domain-invariant representations, we optimize the
domain discriminator parameters θD by minimizing the cross-
entropy loss (LD), which is equivalent to maximizing the neg-
ative cross-entropy loss (−LD). Similarly, we optimize the
encoder parameters θe by maximizing the same cross-entropy
loss as the discriminator, which is equivalent to minimizing
the negative cross-entropy loss. Therefore, the overall objective
function can be defined as follows:

L = min
θe,θd

max
θD

[LAE (θe, θd)− βLD (θe, θD)] , (16)

where θe, θd and θD are the parameters of the encoder, the
decoder and the domain discriminator, respectively. β is a hy-
perparameter that controls the weight of LD.

G. Anomaly Detection

Once the Transformer-based autoencoder is trained, it can
be used for anomaly detection. The basic assumption is that
normal log sequences can be effectively compressed into low-
dimensional latent representations and reconstructed with min-
imal error. In contrast, anomalous log sequences, which deviate
significantly from the learned normal patterns, result in larger re-
construction errors [31]. Therefore, we classify the log sequence
Xi as anomalous if its reconstruction error exceeds a certain
threshold δ; otherwise, we consider it normal. The formula is:

Pred(Xi) =

{
Normal, RE(Xi) ≤ δ;
Anomaly, RE(Xi) > δ.

(17)

where RE(Xi) is calculated by 9 and the threshold δ is obtained
by Algorithm 1 on an additional validation set to ensure the
optimal F1-score. When there are known abnormal samples in
the validation set, the threshold can be selected by maximizing
the F1-score.

Algorithm 1: Threshold Selection for Anomaly Detection.
Input: recon_losses: List of reconstruction losses for log
entries, labels: Ground truth labels (0 for normal, 1 for
anomaly), n: Number of threshold candidates to evaluate

Output: δ: Optimal threshold
1: Compute meanN ← Mean({loss | loss ∈

recon_losses ∧ label = 0})
2: Compute meanA ← Mean({loss | loss ∈

recon_losses ∧ label = 1})
3: Initialize step_size← (meanA −meanN )/n
4: Initialize max_f1← −1, δ ← meanN

5: for i← 0 to n− 1 do
6: current_threshold← meanN + i× step_size
7: predictions← {0 if loss ≤

current_threshold else 1 | loss ∈ recon_losses}
8: Compute f1← F1-score(predictions, labels)
9: if f1 > max_f1 then

10: max_f1← f1
11: δ ← current_threshold
12: end if
13: end for
14: return δ

TABLE II
STATISTICS OF THE DATASETS

V. EVALUATION

A. Experimental Setup

1) Datasets: We evaluate our approach on three public log
datasets, Thunderbird, Spirit and BGL. Table II shows the statis-
tics of the datasets.
� Thunderbird: This dataset is collected from the Thun-

derbird supercomputer system at Sandia National Labs
(SNL) [32]. Thunderbird is a large dataset containing over
200 million log entries and nearly 30 GB in size [10]. Con-
sistent with prior work [6], [9], we use the first 10,000,000
log entries from the original Thunderbird dataset to form
our dataset. Among these entries, 353,794 are labeled as
anomalies.

� Spirit: The Spirit dataset is also collected from a super-
computer at SNL and contains more than 272 million log
entries [33]. For Spirit, we use the 1 GB of logs from
the Spirit dataset same as prior work [6], which contains
7,983,345 log entries with 768,142 anomalies.

� BGL: It comprises 4,747,963 logs collected from the Blue-
Gene/L supercomputer system at Lawrence Livermore Na-
tional Labs (LLNL) [32], of which 348,460 log entries are
anomalous.

For the above datasets, we use a sliding window of size 20 to
slice the logs into log sequences (w = 20), following [9]. Then,
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TABLE III
DATA PARTITIONING DETAILS WHEN DATASET SERVES AS THE SOURCE

SYSTEM

TABLE IV
DATA PARTITIONING DETAILS WHEN DATASET SERVES AS THE TARGET SYSTEM

we split the obtained log sequences into three non-overlapping
parts: training set, validation set (used to determine the recon-
struction error threshold δ), and test set.

To emulate the real-world imbalance between source and
target system log samples, we ensure a larger number of normal
log sequences for training on the source system than on the target
system. Specifically, when using the aforementioned datasets
as source or target systems, we randomly select 100,000 or
10,000 normal log sequences respectively for the training set.
Table III and Table IV provide detailed partitioning information.
When evaluating cross-system anomaly detection performance,
we combine training samples from both the source and target
systems to form the final training set D, in alignment with the
methodology described in the baseline method LogTAD [9].
Additionally, we assess single-system anomaly detection per-
formance using only source system training samples, as shown
in Table III.

2) Baselines: We compare LogDLR with the following un-
supervised log anomaly detection methods:
� PCA [34]: PCA constructs feature vectors from the parsed

data, and then uses principal component analysis (PCA)
to mine the feature vectors and label them as normal or
abnormal.

� LogCluster [35]: LogCluster first converts log sequences
into weighted vectors, then clusters them by similarity and
selects a representative log sequence for each cluster, and
finally detects anomalies based on it.

� DeepLog [3]: DeepLog is a deep learning-based method
that uses LSTM to learn log patterns from normal system
executions and detect anomalies when deviations from the
patterns occur.

� LogTAD [9]: LogTAD is a state-of-the-art unsupervised
cross-system anomaly detection framework based on
domain-adversarial adaptation, which uses an LSTM-
based generator to make normal log data of different sys-
tems close to the center in a hypersphere and then uses the
distance from the center to detect anomalies.

Among the four baseline methods, only LogTAD is specifi-
cally designed for cross-system anomaly detection. PCA, Log-
Cluster, and DeepLog are non-cross-system methods and do
not incorporate cross-system adaptive mechanisms. To ensure
fair comparisons, the non-cross-system methods (PCA, Log-
Cluster, and DeepLog) are trained on a mixture of source
and target system data when evaluating anomaly detection
performance in cross-system scenarios, as described in Sec-
tion V-A1. When evaluating anomaly detection performance in
single-system scenarios, since only the source system dataset
is used, the cross-system methods (LogTAD and the proposed
LogDLR) need to remove the cross-system adaptive mechanism
(domain-adversarial training). Specifically, for LogTAD, only
the objective function Len[9] of the LSTM-based generator
is optimized. For LogDLR, only the objective function LAE

of the Transformer-based autoencoder is optimized. Notably,
the respective anomaly detection principles of LogTAD and
LogDLR remain unchanged after removing the cross-system
adaptive mechanism.

In terms of implementation, for PCA, LogCluster, and
DeepLog, we use the open-source code available on Github.3,4

For LogTAD, we use the code provided by the original paper
authors on GitHub.5 For all baseline methods, we report their
best results.

3) Metrics: We use the Precision, Recall, and F1-score met-
rics to evaluate the performance of LogDLR. These metrics can
be calculated as follows:

Precision =
TP

TP + FP
, (18)

Recall =
TP

TP + FN
, (19)

F1− score =
2× Precision×Recall

Precision+Recall
, (20)

where TP (True Positive) is the number of abnormal log se-
quences that the model correctly detects, FP (False Positive)
is the number of normal log sequences that are mistakenly
classified as anomalies and FN (False Negative) is the number
of abnormal log sequences that the model fails to identify.

4) Implementation Details: We implement our method using
Python 3.9 and Pytorch 1.12 on a Linux server with an NVIDIA
A100-PCIE-40 GB GPU. Our method’s Transformer-based au-
toencoder has l = 4 Transformer layers in both the encoder and
the decoder, and the number of attention heads h is 16. The di-
mensions of the semantic vector de and the latent representation
dz are 384 and 512, respectively. We set the hyperparameters α
and β in the objective function to 0.1 and 1.0, respectively.

To reduce the domain discriminator’s noise early in training
and improve the robustness of domain-adversarial training, we
adopt the warm-up strategy from [12], gradually increasing the
parameter λ from 0 to 1 instead of fixing it.

We use the Adam [36] optimizer and a cosine learning rate
scheduler with a warm-up period for training. The initial learning

3https://github.com/logpai/loglizer
4https://github.com/donglee-afar/logdeep
5https://github.com/hanxiao0607/LogTAD
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TABLE V
EVALUATION RESULTS OF THUNDERBIRD AS SOURCE SYSTEM

TABLE VI
EVALUATION RESULTS OF SPIRIT AS SOURCE SYSTEM

TABLE VII
EVALUATION RESULTS OF BGL AS SOURCE SYSTEM

rate is 0.0001, and the batch size is 32. These choices are based
on best practices in training Transformer-based models and have
been empirically validated to ensure stable convergence.

B. Performance Evaluation

The experiment utilizes the Thunderbird, Spirit, and BGL
datasets to evaluate the performance of LogDLR in both single-
system and cross-system anomaly detection. In single-system
scenarios, only a single source system dataset is used for training,
denoted as “Source Only” in the results. In cross-system scenar-
ios, one dataset is designated as the source system and another as
the target system, with both datasets mixed for training. Results
are reported using “→” to represent cross-system evaluation;
for example, “Thunderbird → Spirit” indicates the evaluation
results of using Thunderbird as the source system on the tar-
get system Spirit. The experiment includes three single-system
scenarios and six cross-system scenarios.

Table V, Table VI, and Table VII present the compari-
son results of LogDLR and baseline methods on the source
and target systems. In single-system scenarios, when Thun-
derbird, Spirit, and BGL are used as source systems, LogDLR
achieves the highest F1-score, with an average F1-score of 0.977,
which is 4.4% higher than LogTAD (0.933). Among the deep

learning-based baseline methods, LogTAD’s performance is
second only to LogDLR and superior to DeepLog. The
traditional machine learning-based methods, PCA and LogClus-
ter, perform worse than DeepLog and LogTAD. These results
demonstrate that LogDLR can achieve effective unsupervised
anomaly detection in single-system scenarios using only the
Transformer-based autoencoder.

In cross-system scenarios, LogDLR achieves the highest F1-
score on the target system, with an average F1-score of 0.930,
which is 5.1% higher than LogTAD (0.879). This indicates that
the Transformer-based autoencoder combined with adversarial
training effectively extracts domain-invariant latent representa-
tions, overcoming differences in log distribution between source
and target systems for cross-system anomaly detection. In con-
trast, the non-cross-system baseline methods, PCA, LogCluster,
and DeepLog, exhibit lower F1-scores on the target system com-
pared to the cross-system methods, LogTAD and LogDLR, due
to the absence of cross-system adaptation mechanisms, leading
to performance degradation when encountering data distribution
shifts across systems.

Fig. 5 presents the evaluation results for different window
sizes w in the Thunderbird→ BGL scenario, with all other pa-
rameters set to default. The window size refers to the number of
consecutive log entries used for feature extraction and anomaly
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Fig. 5. Results of different window sizes w in the Thunderbird → BGL
scenario. The x-axis is the window size w, and the y-axis is the precision, recall,
and F1-score.

Fig. 6. Results of different parameters α in the Thunderbird→BGL scenario.
The x-axis is the α and the y-axis is the precision, recall, and F1-score.

detection sequences. When w is between 10 and 30, all three
metrics maintain high values. However, if w is too small or too
large, the model’s precision decreases.

Fig. 6 demonstrates the effect of the parameter α on the
performance of LogDLR in the Thunderbird→ BGL scenario,
with all other parameters set to default. The parameterα controls
the weight of the L2 regularization term on the latent repre-
sentation, encouraging compact and well-regularized feature
representations. When α = 0, the F1-score is low, indicating
that the absence of regularization may lead to fitting noisy or
system-specific features, resulting in degraded performance. As
α increases, the F1-score remains high and relatively stable,
emphasizing the importance of regularization in controlling the
latent space and improving generalization. This demonstrates
that adding regularization to the autoencoder enhances the
model’s ability to generalize across systems.

Fig. 7 illustrates the effect of the parameter β on the per-
formance of LogDLR in the BGL → Spirit scenario, where β
controls the weight of the domain-adversarial loss, with all other
parameters set to default. When β = 0, no domain-adversarial
loss is applied, resulting in low precision and F1-score. When
β is between 0.6 and 1.2, the best balance between precision,

Fig. 7. Results of different parameters β in the BGL→ Spirit scenario. The
x-axis is the β, and the y-axis is the precision, recall, and F1-score.

TABLE VIII
PERFORMANCE OF DIFFERENT TRANSFORMER LAYERS l IN THE BGL→ SPIRIT

SCENARIO

recall, and F1-score is achieved, indicating that a moderate
domain-adversarial loss weight is well-suited for extracting
domain-invariant features while maintaining anomaly detection
performance.

Table VIII presents the evaluation results of autoencoder
performance with different Transformer layer numbers l in the
BGL→ Spirit scenario, including the average training time per
batch. The number of Transformer layers (l) is a crucial factor
affecting model performance, as it determines the model’s ability
to capture long-distance dependencies and complex patterns in
log sequences. However, an increase in the number of layers
also leads to a significant rise in computational overhead, neces-
sitating a balance between performance and computational cost.
When l = 1, the model’s feature extraction capability is limited
due to insufficient depth, resulting in the lowest F1-score among
all configurations. As the number of layers increases to 4, the
model shows significant improvements in all metrics, reaching
an F1-score of 0.941. This indicates that a moderate increase
in the number of layers enhances anomaly detection capabili-
ties. When l = 6, the model achieves peak performance with
an F1-score of 0.967, verifying that a deeper architecture can
effectively improve the ability to capture complex log patterns.
However, when l increases to 8, the F1-score decreases slightly,
possibly due to overfitting caused by too many layers. Addition-
ally, as the number of layers increases, the calculation time per
batch also rises significantly, from 11ms for l = 1 to 64ms for
l = 8. Overall, these results indicate that the Transformer-based
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Fig. 8. Impact of source system data on target system detection performance.

autoencoder achieves the best balance of performance and com-
putational cost with a moderate number of layers. This trade-off
is particularly important for practical applications, especially
in scenarios where large-scale log data needs to be processed,
and computing overhead must be reasonably controlled to meet
real-time and resource constraints.

C. Ablation Studies
� RQ1: How much does LogDLR improve the performance

of the target system?
We investigate the performance improvement of LogDLR

on the target system by removing the source system data and
evaluating LogDLR only on the target system data of Thun-
derbird, Spirit, and BGL, as shown in Table IV. We denote
these results as “*-T”. Fig. 8 compares LogDLR with “*-T”
on the target system. LogDLR achieves a higher F1-score than
“*-T” on all target systems. The biggest improvement is in
the Thunderbird → Spirit scenario, where LogDLR reaches
an F1-score of 0.969, 10.2% higher than “Spirit-T” (0.867).
This indicates that LogDLR’s Transformer-based autoencoder
effectively leverages the source system knowledge and enhances
the detection performance on the target system by extracting
domain-invariant latent representations of log sequences.

Furthermore, we observe that LogDLR has different impacts
on the same target system depending on the source system. For
example, the F1-score in the Thunderbird → BGL scenario is
higher than that in the Spirit → BGL scenario. This may be
due to the variability of log semantics across different systems,
where systems with more semantic similarity can share more
knowledge and achieve better transfer performance. This exper-
iment demonstrates the effectiveness of LogDLR in improving
the anomaly detection performance of the target system.
� RQ2: How effective is domain-adversarial training in

cross-system detection?
We compare the performance of LogDLR with and without

domain-adversarial training, by removing its domain discrimi-
nator and the GRL attached to the autoencoder. Fig. 9 shows
the comparison results. LogDLR without domain-adversarial
training has a lower F1-score on the target system than
the original LogDLR. This suggests that domain-adversarial

training helps LogDLR’s Transformer-based autoencoder to
learn domain-invariant latent representations more effectively,
which enhances knowledge transfer between the source and
target systems. This experiment demonstrates the effective-
ness of domain-adversarial training in cross-system anomaly
detection.

D. Visualization

In order to demonstrate the inner workings of LogDLR, we
visualize the latent representations and reconstruction errors of
log sequences in three different cross-system anomaly detection
scenarios (Thunderbird → Spirit, Spirit → BGL, and BGL →
Thunderbird). We randomly select 1,000 normal sequences each
from the training sets of the source and target systems, and map
their latent representations to a two-dimensional space using the
t-SNE [37] algorithm. Fig. 10 shows the visualization results
of the latent representations of logs before and after training
in the three scenarios by LogDLR. Before training, the latent
representations of the log sequences from the source and target
systems are scattered, but after training, they overlap more. This
shows that LogDLR extracts domain-invariant representations,
where the latent representations of log sequences from both the
source and target systems become more aligned and less affected
by system-specific characteristics. The domain-invariant repre-
sentation obtained by LogDLR is crucial for bridging the gap
between the source and target systems. By aligning the distri-
butions of latent representations, LogDLR enables meaningful
comparisons and knowledge transfer between the two systems,
despite their initial differences.

In addition, we randomly select 1,000 normal sequences
and 1,000 abnormal sequences each from the test sets of the
source and target systems, and visualize their reconstruction
errors and corresponding detection thresholds. As shown in
Fig. 11, the model generally has lower reconstruction errors
for normal sequences and higher reconstruction errors for ab-
normal sequences. This indicates that LogDLR can effectively
distinguish between normal and abnormal log sequences based
on their reconstruction errors. By setting appropriate detection
thresholds, LogDLR can perform unified anomaly detection on
the source and target systems efficiently.
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Fig. 9. Impact of domain-adversarial training on target system detection performance. “LogDLR w/o DA” refers to LogDLR without domain-adversarial training.

Fig. 10. Visualization of latent representations of log sequences before and after training. (a)–(c) represent Thunderbird→ Spirit, Spirit→ BGL, and BGL→
Thunderbird scenarios before training, respectively. (d)–(f) represent the same scenarios after training.
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Fig. 11. Visualization of reconstruction errors of log sequences in different
scenarios. (a), (c), and (e) represent the results on the source system (Thunder-
bird, Spirit, and BGL) in the Thunderbird→ Spirit, Spirit→ BGL, and BGL→
Thunderbird scenarios, respectively. (b), (d), and (f) represent the results on the
target system (Spirit, BGL, and Thunderbird) in the same scenarios.

VI. THREATS TO VALIDITY

While this paper demonstrates the effectiveness of LogDLR
in cross-system log anomaly detection, we acknowledge several
threats that may affect the research results. First, the datasets
used (Thunderbird, Spirit, BGL) are derived from public log
datasets, which may not fully represent the log format and
structural heterogeneity of all real systems. Therefore, we plan
to further verify the generalization ability of LogDLR in various
real systems in the future.

Second, LogDLR uses normal log data for unsupervised
training; however, in practical applications, a small number of
unlabeled abnormal samples may be mixed into the training
dataset. This situation may affect the model’s learning effect,
particularly in extracting domain-invariant representations. Ab-
normal samples may be regarded as part of normal behavior by
the model, leading to deviations in domain-invariant represen-
tations and ultimately affecting anomaly detection accuracy.

Finally, although the threshold selection method proposed in
Algorithm 1 can ensure an optimal balance between precision
and recall, its potential limitation is the reliance on a small
number of labeled validation datasets. The performance of the
selected threshold is affected by the quality and representative-
ness of the labeled validation data. To mitigate these limitations,
future work will explore other threshold selection strategies,
such as statistical methods based on percentiles.

VII. RELATED WORK

Log anomaly detection methods can be categorized into tra-
ditional machine learning and deep learning approaches.

Early anomaly detection relied on models like Decision
Trees [38], SVMs [39], and PCA [34], which used log count
vectors as inputs. Unsupervised techniques like PCA [34] and
LogCluster [35] grouped similar log entries to identify outliers.
However, these methods often struggle with the complexity and
high dimensionality of log data.

Deep learning approaches offer greater flexibility in modeling
complex patterns. CNN-based models [40], [41] effectively
capture local dependencies, while LSTM-based methods such
as DeepLog [3], LogTransfer [2], LogTAD [9], Pylogsenti-
ment [42], DeepSyslog [7], and SwissLog [8] model sequential
patterns. Despite their success, LSTMs have limitations in cap-
turing long-range dependencies and global information of log
sequences.

Recent works demonstrate the superiority of Transformer-
based models [11]. For instance, HitAnomaly [43] and
HilBERT [44] utilize a hierarchical Transformer structure to
model log template sequences, while LogBERT [45] adopts
BERT to capture the patterns of normal log sequences
through self-supervised training tasks. NeuralLog [6] employs
a Transformer-based binary classification model to identify
anomalies effectively. However, NeuralLog relies on a super-
vised learning paradigm, requiring labeled data for training. In
contrast, LogDLR operates in an unsupervised manner, leverag-
ing reconstruction errors and domain-invariant representations
for anomaly detection, making it more practical in scenarios
where labeled anomaly data is scarce or unavailable. Unlike
NeuralLog, which focuses on single-system anomaly detec-
tion, LogDLR integrates a Transformer-based autoencoder with
domain-adversarial training to achieve cross-system anomaly
detection.

A. Unsupervised Anomaly Detection

Unsupervised methods presume that system logs generated
during normal operation typically exhibit stable patterns [10].
When a failure or anomaly occurs, these patterns may be dis-
rupted by events such as error logs, out-of-order log sequences,
or premature termination of log sequences [46]. By learning the
patterns of normal operation, these methods can automatically
trigger an alarm when deviations from normal conditions are
detected.

Traditional machine learning-based methods identify anoma-
lies through unsupervised data mining techniques, such as
PCA [34] and LogCluster [35]. Another class of methods pre-
dicts the next log template based on prior log sequences, as
exemplified by DeepLog [3]. These methods predict the next log
template within the input window and compare it with the actual
template. If the actual template is not among the topk most likely
templates predicted by the model, it is classified as abnormal.
However, DeepLog heavily relies on the completeness of the
sequence, resulting in degraded performance when log data is
missing or nonlinear patterns are present [47].
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TABLE IX
COMPARISON OF CROSS-SYSTEM LOG ANOMALY DETECTION METHODS

A different category of methods is based on support vector
data description (SVDD) [48], such as LogTAD [9]. The fun-
damental idea is to construct a hypersphere with the smallest
possible radius to enclose most normal data points, with data
points outside the hypersphere classified as abnormal.

Another approach involves using autoencoders to learn rep-
resentations of normal log sequences, such as AutoLog [49].
A trained autoencoder accurately encodes normal log patterns,
while abnormal instances produce significantly higher recon-
struction errors [31], [50], [51]. These reconstruction errors
serve as a critical metric for identifying anomalies. However,
AutoLog [49] employs an MLP-based autoencoder, which is
limited in capturing temporal and semantic features, particularly
in heterogeneous log data. LogDLR overcomes these limitations
by utilizing a Transformer-based autoencoder.

B. Cross-System Anomaly Detection

Cross-system anomaly detection reduces the need to develop
separate models for different systems, significantly lowering
maintenance costs [2].

LogTransfer [2] is the first method to propose transfer learning
for transferring learned anomaly patterns from a source system
to a target system using a shared fully connected network.
However, it requires labeled data for both systems, limiting its
applicability in real-world scenarios. To tackle this, LogTAD [9]
introduces an unsupervised framework using an LSTM-based
generator to align the distributions of normal log data from
different systems via domain-adversarial adaptation. Anoma-
lies are identified as points deviating from a hypersphere’s
center.

However, both LogTransfer and LogTAD utilize GloVe [14]
and Word2Vec [15] for log semantics extraction, which are less
effective than pre-trained models and sentence embeddings [7],
[52], [53]. Both methods rely on LSTM-based anomaly detec-
tion models, but LSTM has been shown to be less effective
than Transformer in capturing long-distance dependencies and
complex log semantics. This limitation hinders their ability to
adapt to diverse log distributions [6]. Table IX provides a de-
tailed comparison of LogDLR with LogTransfer and LogTAD.
LogDLR employs a Transformer-based autoencoder combined
with domain-adversarial training to learn domain-invariant la-
tent representations of normal log patterns, facilitating unsuper-
vised cross-system anomaly detection. Additionally, LogDLR
leverages pre-trained sentence embeddings (SBERT) to seman-
tically represent heterogeneous log data more effectively than
traditional word embedding methods used by LogTransfer and
LogTAD. These features enable LogDLR to achieve a higher
F1-score compared to LogTAD in unsupervised cross-system
anomaly detection scenarios.

VIII. CONCLUSION

In this work, we propose a novel unsupervised cross-system
log anomaly detection approach, which we call LogDLR.
LogDLR aims to extract domain-invariant latent representations
from log sequences of different systems, which capture the
essential features of the log sequences while ignoring the format
and syntax differences. We treat logs as natural language text and
use a universal sentence embedding model to extract semantic
vectors from log entries, enabling LogDLR to handle heteroge-
neous logs effectively. To obtain the domain-invariant latent rep-
resentations of log sequences, we combine a Transformer-based
autoencoder with domain-adversarial training. After learning
domain-invariant representations of normal log sequences, we
can perform unified anomaly detection on both source and
target systems. Comprehensive evaluations on three public log
datasets from different systems show that LogDLR outperforms
the state-of-the-art method for unsupervised cross-system log
anomaly detection.
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