
Vision-based Terrain Segmentation
and Roughness Estimation
Application on the CENTAURO Robot

Vivekanandan Suryamurthy

M
as

te
ro

fS
cie

nc
e

Th
es

is

VISION-BASED TERRAIN SEGMENTATION
AND ROUGHNESS ESTIMATION
APPLICATION ON THE CENTAURO ROBOT

MASTER OF SCIENCE THESIS

For the degree of Master of Science in Mechanical Engineering at
Delft University of Technology

Vivekanandan Suryamurthy

August 29, 2018.

This thesis is confidential and cannot be made public until December 31, 2018.

ACKNOWLEDGEMENT

It has been an amazing and fruitful experience working at the Department of Advanced Robotics, Istituto
Italiano Tecnologia (IIT). I am extremely grateful to Dr. Dimitrios Kanoulas for being the best supervisor one
could hope for. He has been an immense support right from day one and instrumental in the success of
the project which has been submitted to Humanoids 2018. I would like to thank Dr. Nikos Tsagarakis for
giving me the opportunity to work on CENTAURO EU project. My deepest appreciation to Vignesh Sushrutha
Raghavan for providing valuable guidance during the course of the thesis.

My sincerest appreciation to Prof. dr. ir. Martijn Wisse for providing valuable suggestions and devoting
his time to evaluate my work. I would like to extend my thanks to Dr. ir. Julian Kooij and Thomas Hehn for
being part of my thesis committee.

A huge thanks to my family members who have been my constant support system, encouraging and push-
ing me to achieve my dreams. Finally, a special thanks to my friends in Delft for cheering me on and always
being there for me.

iii

CONTENTS

1 Paper 1

A Introduction to Convolutional Neural Networks 11

B Architecture Design 15
B.1 Terrain Recognition . 15

B.1.1 Semantic segmentation over Classification . 15
B.1.2 Selection of Segmentation model . 15
B.1.3 Choice of hyper-parameters . 16

B.2 Terrain Roughness Estimation . 18
B.2.1 Unpooling over Fully Connected layer . 18
B.2.2 Up-projection block . 18
B.2.3 Hyper-parameters . 19

C Strategies used in our model 21
C.1 Transfer Learning . 21
C.2 Data Augmentation . 22
C.3 Median frequency balancing . 23

D Datasets and Evaluation metrics 25
D.1 Segmentation datasets . 25
D.2 Roughness from Depth Image. 25
D.3 Evaluation metrics . 27

D.3.1 Performance measure for Segmentation . 27
D.3.2 Error metrics for Roughness . 28

Bibliography 29

v

1
PAPER

1

Vision-based Terrain Segmentation and Roughness Estimation, with
Convolutional Neural Networks: Application on the CENTAURO Robot

Vivekanandan Suryamurthy1, Dimitrios Kanoulas2, Arturo Laurenzi2, and Nikos G. Tsagarakis2

Abstract— Intelligent terrain perception for search-and-
rescue robotic applications, requires a high-level understanding
of both the terrain type and its chief physical characteristics.
Roughness is one such important terrain property, since it could
play a key role in robot control/planning strategies, while navi-
gating in an unknown environment. In this paper, we present a
single deep neural network architecture that predicts the pixel-
wise terrain labels (i.e., sand, stone, wood, metal, road/sidewalk,
and grass) and regresses their roughness from an input RGB
image. Our approach, inspired by human analogy, leverages the
basic image feature space from a pre-trained network (SegNet)
to estimate the roughness. We experimentally validate our
approach in real-world images, using RGB cameras. Moreover,
we implement the algorithm on our four-legged centaur-like
robot CENTAURO and demonstrate the use of our method in
assuring the stability of the robot in real-world scenarios, where
the robot is traversing terrains of varying roughness.

I. INTRODUCTION

With the increasing frequency of natural or man-made
disasters, the need for mobile/legged robots to be able
to function in the absence of human supervision, is of
prime importance. A natural view suggests that the first
step in realizing this goal involves robust environmental
perception. Perceptual algorithms in indoor settings have
witnessed remarkable progress in terms of reliability [1].
However, perception in unstructured outdoor scenes is still
under development [2]. Outdoor environments, especially the
terrain, are characterized by uncertainities, such as weather or
disaster-induced changes, and variabilities that pose a major
challenge to the robot perception.

Everyday experience suggests that humans are capable
of reasoning about a scene using visual cues. Studies on
vision-based material perception attribute this innate nature
to the combined ability to recognize materials and estimate
their properties, such as roughness and glossiness [3], [4].
Material recognition, as such, does not offer much knowledge
by itself. However, each material encodes some implicit or a
priori information, such as the slipperiness of ice, that proves
to be important. The characteristics, on the other hand, assign
a quantitative value to the material, which provides a high-
level understanding of the environment. The complexity of
the environment dictates the degree to which each perception
element is required. For instance, in an urban setting, it is
sufficient to identify the sidewalk for the purpose of walking.
However, in a forested region, where there is no clear

1 Department of Cognitive Robotics, TU Delft.
V.Suryamurthy@student.tudelft.nl

2 Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT),
Via Morego 30, 16163, Genova, Italy. {Dimitrios.Kanoulas,
Arturo.Laurenzi, Nikos.Tsagarakis}@iit.it

walking path, terrain characteristics are needed. Following
this rationale, it is clear that robot perception should also
involve both recognition and characterization to function in
any environment. More practical examples, in support of
this statement, are discussed in planetary exploration [5] and
material perception [3] studies.

Robust state-of-the-art vision-based terrain recognition has
been previously demonstrated through deep learning meth-
ods, such as Convolutional Neural Networks (CNNs) [6].
However, it is hard to comprehend how properties are
inferred from vision. Fleming, in his study [4], suggests
that the true value of the property is unknown, but the
brain has a unique ability to capture the variation using
straightforward appearance-based attributes, such as lighting
and reflections. We use this rationale to estimate roughness
along with the terrain labels. Anticipation of roughness plays
an important role in path-planning, safety, and traversability
analysis, such as in deciding the speed [7] and restricting the
energy consumption of the robot. Although the roughness is
the estimated property here, we believe that this principle
can also be used for other visually noticeable properties.

Our work consists of two parts: 1) a primary CNN, which
is responsible for terrain recognition and 2) a module that
utilizes the low-level image features from the CNN, to
capture the variation in terrain roughness (Fig. 1). This model
accepts a single RGB image as an input. Generally, the three-
dimensional data produced by depth-based sensors, such as
RGB-D cameras (e.g., MS Kinect), laser scanners, and stereo
cameras, are used to determine the geometrical properties.
However, due to natural lighting conditions or material
variations in an outdoor setting, the data points from such
sensors may either be sparse or unreliable [8]. Moreover,
reliable RGB images can also be obtained from light-weight
cameras, with low energy consumption, which are the only
sensor present in miniature robots such as mini-quadcopters.
This makes the need for using RGB-only methods important.
Moreover, using a single architecture, facilitates the sharing
of parameters for two different tasks and at the same time,
reduces the overall computation. We employ two important
strategies, i.e., transfer learning and data augmentation, to
maximize the robot’s perception capability in the presence
of a limited training set.

Summarizing, our main contribution in this paper is the
development of a CNN-based perception system, that can
simultaneously infer the terrain labels and the perceived
roughness at the pixel-level from an input RGB image.
We show the practical applications of our approach through
experiments on the centaur-like robot CENTAURO [9]. We

provide the datasets, network, and code under our web-page:
https://sites.google.com/site/tsrenet

Next, we cover the related work on segmentation and
roughness estimation (Sec. II), followed by the methodology
description (Sec. III). Then, we present our experimental
validation of the method (Sec. IV), followed by the robotic
application on the CENTAURO robot (Sec. V). We finally
conclude and discuss future work (Sec. VI).

II. RELATED WORK

Early terrain segmentation methods have laid emphasis on
the selection of image representation, ranging from simple
colour [10] and texture [11] to Speeded Up Robust Features
(SURF) [12] and feature combinations [13]. Except for the
first work where each pixel is classified as vegetation or
not, the others rely on patch-based classification. End-to-
end learning, a key attribute of deep learning, eliminates the
need for hand-picking image representations and can provide
real-time segmentation. As a result, deep learning techniques,
such as CNNs, have become the mainstay for image-based
segmentation. CNNs use a single classifier to segment the
entire image, unlike traditional approaches which require
more than one detector for multi-class segmentation [14].
A brief introduction to CNNs can be found in Appendix
A. In literature, terrain and material perception are used
interchangeably and have the same underlying principle. Bell
et al. [15] proposed a segmentation architecture consisting
of a CNN, which predicts a material label for every patch
extracted through a sliding window on the image, and a Con-
ditional Random Field (CRF) that produces the segmented
output based on the individual predictions. The weights of a
similar patch-trained CNN, facilitated fine-tuning of a Fully
Convolutional Network (FCN) [16] in Wang et al. [17]. This
model operates on 4D light-field instead of images. Schwartz
et al. [18] showed an improvement in the material recognition
performance through the integration of global context. All the
previous approaches depend on image patches for training.
More closely related to our segmentation approach, Schilling
et al. [6] trained an FCN on the cityscapes dataset [19]. The
model is then adapted to the local terrain by fine-tuning the
pre-trained weights on hand-labeled images. In contrast, we
fine-tune our pre-trained model on a terrain specific dataset
detailed in Sec. IV-A.1.

Roughness assessment has been widely used in terrain
traversability analysis [20], [21]. A purely image-based
approach introduced by Howard et al. [22], detects the
concentration of the rock in the image and uses it as a
measure of roughness. More recently in Kim et al. [23], a
CNN-based architecture, taking an image and a roughness
measure, almost identical to ours, as input, segments the
terrain into rough, smooth and vegetated areas. Ram [24]
uses a SegNet [25], a CNN with low processing time, to
predict the terrain roughness whose values are discretized
into four classes. Contrary to both the work which catego-
rizes the roughness metric, our approach estimates rough-
ness through a regression framework. Studies similar to
our concept combine material or terrain recognition with

+UPSAMPLE RELU
CONV
 (5x5)
 BN
 RELU

CONV
 BN

CONV

ENCODER DECODER

 3x3 Conv/Batch Normalization(BN)
 /RELU

 Max Pooling

 Up-Projection

 Final Conv/RELU

 1x1 Conv/Batch Normalization(BN)
 /RELU

 UP-PROJECTION

ROUGHNESSMODULE

INPUT OUTPUT

OUTPUT

Fig. 1. The proposed architecture: the encoder-decoder system, based on
SegNet, predicts the pixel-wise labels, while the roughness module regresses
the perceived roughness.

friction [26] and slip estimation [27]. In the former work,
the friction distribution is obtained from experiments on
a humanoid robot for each terrain. The product of the
priorly determined friction distribution and the material class
distribution derived from a CNN, SegNet, gives the joint
distribution. In the latter work, two different representations,
appearance and geometry, are computed from stereo vision.
Appearance features facilitate terrain recognition, which is
used to learn a non-linear mapping between a geometrical
property (slope) and slip. Our model, based on deep neural
networks, differs from the previous work in that a single
architecture learns to predict the terrain classes and regresses
their roughness from an RGB image.

III. METHODOLOGY

In this section, we describe our introduced model that
predicts the label and estimates the roughness of the terrain
from an RGB image. The training is a two-step process: the
first step involves the adaptation of a pre-trained model to
terrain recognition through the process of fine-tuning and the
second step involves the training of the proposed roughness
module. An overview of the architecture is shown in Fig. 1.

A. Segmentation

We frame the terrain recognition problem as a semantic
segmentation task predicting per-pixel labels. For this pur-
pose, a SegNet is used. Its architecture involves an encoder
that abstracts features through a pooling operation, and a
decoder, which is the exact mirror image of the encoder,
responsible for upsampling. Computation time and memory
requirement are crucial factors that have to be considered

for real-time operation on a robot, such as CENTAURO. A
popularly used network, as mentioned in Sec. II, is FCN.
Compared to FCN, SegNet offers a better trade-off between
inference time and performance. SegNet stores the max-
pooling indices for upsampling as opposed to the encoder
feature maps in FCN, thereby occupying less memory. Merg-
ing the batch normalization layers after the completion of
training further reduces the inference time. More details on
the semantic segmentation model is provided in Appendix
B.1.

Training a network from scratch may need a lot of man-
hours and a large amount of training data, which as detailed
in Sec. IV-A.1, may not exist. As a result, our method relies
on transfer learning principles. We initialize the model with
pre-trained weights derived from training the SegNet on the
cityscapes dataset. Fine-tuning a pre-trained model has the
advantage of better generalization and faster convergence as
opposed to a freshly trained model [28]. The intuition behind
this approach is that cityscapes, being an outdoor-based
dataset, is closely related to the task of terrain segmentation
and hence, a relevant initializer for domain adaptation (see
Appendix C.1).

As ambiguity is a major problem in outdoor terrain,
it is vital for the model to generalize to unforeseeable
environments. We incorporate data augmentation techniques,
such as random flip, and contrast/brightness change, during
training, to improve the generalization of the model [29]. The
images are randomly flipped both horizontally and vertically
with a 0.25 probability. Moreover, with the same probability,
we randomly vary the brightness and contrast. We avoid
cropping, as a result of sparse annotations in the labels.

For fine-tuning, the RGB images are resized to 256× 512
and a mini-batch size of 10 is used. As a result of class
imbalance, the network minimizes a weighted cross-entropy
loss by gradient descent with a constant learning rate of
10−3, momentum of 0.9, and a weight decay of 0.0005.
The weights for the loss function are computed through me-
dian frequency balancing [30](see Appendix C.3). A simple
confidence measure of 0.4 thresholds the softmax output of
the model. This means that any prediction with a probability
less than 0.4 is set as “unlabelled”. We avoid post-processing
steps, such as CRF, for computational purposes.

B. Regression

A common knowledge in deep learning is that the speci-
ficity of the feature space increases with the depth of the
CNN. This leads us to our concept of using the trained
bottom layers of SegNet, which correspond to primitive
appearance features, to estimate the perceived roughness.
Given an input image I , the bottom layers of the SegNet
provides the probability distribution P (F |I) from initial fine-
tuning, where F = f1, f2,fn corresponds to the features
derived from the convolutional layer and n is the total
number of features, equal to the product of input dimension
and the number of feature maps. The roughness module
determines the probability distribution P (R|F), where R
is the roughness. Hence, at each pixel in the image, the

probability distribution is given by,

P (R|I) =
n∑

i=1

P (R|fi)P (fi|I).

The proposed roughness module is similar to the decoder,
in the sense that the Segnet layers provide sufficient feature
abstraction and further pooling operation is not required. We
use up-projection blocks, introduced in Fully Convolutional
Residual Networks (FCRNs) [31], to increase the spatial
resolution of the downsampled feature maps. This approach
eliminates the need for memory-intensive fully connected
layers, generally, used for deep regression and speeds up
the convergence process. The roughness modules consist of
three stages: a convolutional layer with 3 × 3 kernel, two
up-projection blocks separated by a 1 × 1 convolution, and
final convolutional layers with ReLU activation yielding the
per-pixel roughness values. The 1× 1 convolution performs
a feature pooling operation and adds non-linearities to the
model due to the presence of ReLU. Every convolution in
the primary branch of the up-projection block is followed by
batch-normalization. The roughness module and its setting
during training is detailed in Appendix B.2.

With regards to the training, the weights of the entire
segmentation model are frozen and a new branch embodying
the roughness module is added to the second pooling layer of
the model. Adding the module to a deeper layer than a second
pooling layer did not improve the regression performance.
The module is trained with the same setting as before, but at
a lower learning rate of 10−7 and an increased batch size of
25. Apart from the conventional Euclidean loss (L2 norm)
used in regression tasks, we also experiment with berHu loss
[32]. BerHu or reverse Huber loss switches between the L1

and L2 norm depending on a threshold c:

B(x) =

|x| |x| ≤ c
x2 + c2

2c
|x| > c

where x is the error between the prediction and the ground-

truth, and c =
1

5
maxk(|xk|) is computed for every step of

gradient descent for an output with k pixels. BerHu loss
produces a lower final error than Euclidean loss. The reason
is associated to the fact that berHu gives a higher weightage
to small errors which, in general, are not accounted for by
Euclidean.

IV. EXPERIMENTS

In this section, we first describe the terrain and roughness
datasets, followed by the visual-based results. Both datasets
are available under our web-page.

A. Datasets

1) Terrain Dataset: Image datasets with pixel-wise anno-
tations, such as ADE20K [33], have facilitated the growth
of segmentation approaches. These datasets, however, are
generalized to a wide variety of classes and not specific
to terrain. Datasets intended for material segmentation, such
as OpenSurfaces [34], are mostly indoor-based. Cityscapes,

0.54

0.64

0.27

0.43

CLASS AVERAGE ACCURACY MEAN IOU
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ENet SegNet

Fig. 2. Class average accuracy and mean IoU of SegNet and ENet,
evaluated on the validation set.

although outdoor-based, is primarily meant for autonomous
driving in urban settings and hence lacks the commonly
found terrain classes, such as rocks and sand. However,
the classes of interest are distributed among these datasets.
Our immediate thought is to extract relevant images and
annotations from various publicly available segmentation
datasets and combine them. Resorting to this approach,
allows us to harness the already existing datasets, thereby
eliminating the need for hand-labelled annotations, which is
a time-consuming process. A short discussion on the datasets
considered for segmentation is provided in Appendix D.1.

We construct a dataset with six most frequently occurring
terrain classes (sand, stone, wood, metal, road/sidewalk,
grass). The similarly appearing road and sidewalk are com-
bined into a single class for unambiguous prediction. The
dataset is built such that it shows maximum variability in the
scenes and minimal imbalance between the terrain classes. A
large imbalance causes conservative biases to the predictions,
even when using weighted loss function. As a consequence,
we first select a subset of images, both for training and
validation, from ADE20K as it is a huge dataset consisting
of images taken in various environments. However, ADE20K
has sparse annotations with regards to wood and metal
surfaces. Therefore, we use images from OpenSurfaces to
accommodate the sparsity. In all, the dataset contains 1380
images, of which 65% is allocated for training, while the
remaining 35% for validation. We test the model on images
collected from mobile RGB cameras and the Kinect v1 RGB-
D sensor, mounted on the CENTAURO robot.

2) Roughness Dataset: Roughness is a visually notice-
able, geometrical property that describes the irregularities in
the material surface. For training the CNN to regress rough-
ness, a dataset is required. Numerous methods [7], [8], [23],
[21] have been used to compute the roughness measures. We
use a simple approach suggested by Gennery [20], wherein
the geometric residual of the plane fit on 3D points of the
surface, using a least squares approach, provides the rough-
ness measure. The 3D depth data corresponding to terrain
patches is provided by GeoMat [35]. The dense depth data in
the dataset is computed using Structure from Motion (SfM),
followed by interpolation. The dataset contains patches of
four different sizes (100 × 100, 200 × 200, 400 × 400, and

Image Ground-Truth SegNet
sand wood stone metal grassroad/

sidewalk unlabelled

Fig. 3. Segmentation results from the validation set. Top row: an image
from the ADE20K dataset. Bottom row: an image from the OpenSurfaces.

800×800) cropped from a high resolution image and resized
to a 100× 100 patch. These high-resolution images provide
surface roughness at small local regions, which is of less
interest to the robot. We look for a more global roughness
in the scale of robot parts, such as the wheel/footpad surface
that is in contact with the terrain. Hence, the extracted dataset
involves the downsampled images (400×400 and 800×800)
only. The training and validation set has 1375 and 880
images, respectively.

The depth images are initially transformed into point
clouds, which are further converted to roughness values using
the Point Cloud Library (PCL) [36] (see Appendix D.2).
From every point in the point cloud, the nearest neighbours
are computed using K-Nearest Neighbours. We find the value
of K= 9 suitable for the 100 × 100 downsampled patches.
The plane parameters are estimated for the given nearest
neighbour patch. Given the best fit plane equation:

ax+ by + cz + d = 0

The roughness at each point (xi, yi, zi) is computed by,

ri =
| − d− axi − byi − czi|√

a2 + b2 + c2

where i is the index of the point.

B. Experimental Results

In this section, we discuss the results on the performance
of segmentation and roughness estimation. Our implementa-
tion is in Caffe [37]. The pre-trained weights for fine-tuning
are available in the caffe model zoo.

1) Segmentation: To evaluate the segmentation perfor-
mance, we use two metrics; class average accuracy and
mean Intersection over Union (IoU), introduced in the Pascal
VOC12 challenge [38]. As inference time is a key factor
for real-time operation on the robot, we consider ENet [39]
along with SegNet for our task. ENet is reported to have a
really low test time. Fig. 2 shows the evaluation of the two
architectures on the validation set, using the class average
accuracy and mean IoU.

It can be seen that SegNet has a higher accuracy than
ENet on our dataset. After merging the batch normalization

Fig. 4. Effect of data augmentation techniques. From left to right: an
image from an RGB camera, prediction without, and with brightness and
contrast adjustments.

and dropout (in ENet), the difference in testing time of
ENet when compared to SegNet for a 256 × 512 image
(10.25ms vs 18.54ms) is not significantly large. Hence,
we find the SegNet suitable for our purpose. Further, we
observe an additional improvement in the prediction when
the first convolutional layer of the model is frozen and the
training is restricted to 50 epochs. We attribute the reason
to the relatively small size of the dataset which can result in
overfitting. Examples of the segmentation results of SegNet
on the validation set is shown in Fig. 3.

The data augmentation techniques counter the biases and
ambiguous labelling in the dataset. For instance, the labels
corresponding to the class “path” in the ADE20K dataset
contain both sand and road. Minor adjustments in random
brightness and contrast mitigate this confusion resulting from
ambiguous labels, as seen in Fig 4, and therefore, increase
the generalizability and predictive power of the model.

2) Roughness: We evaluate the per-pixel regression of
roughness using the Root Mean Square Error (RMSE) and
Root Mean Square Log Error (RMSLE). Table I compares
the final error of our model to those reported in the only
related work [24] that has attempted to estimate roughness in
a regression framework. This approach uses image classifica-
tion CNNs (VGG16, Cifar10) and a custom designed model
(terrainNet) to regress a roughness measure, whose ground-
truth is based on acceleration data from IMU. However,
as a result of large mean squared errors, the problem is
converted to a segmentation problem by dividing the range
of roughness values into four classes.

TABLE I
COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART

APPROACH

Architecture Optimizer Loss rmse rmsle
TerrainNet RMSprop Euclidean 6.4219
cifar10 Adadelta Euclidean 5.9741
Ours SGD Euclidean 0.4350 0.1123

Berhu 0.4335 0.1119

Despite the small difference in loss, it is observed that
the overall estimation of roughness is significantly improved
when using the berHu loss function. Qualitatively, our
approach successfully captures the variation in roughness
in spite of the noise resulting from inaccuracies in SfM

Ground-TruthImage Our model

Fig. 5. Examples of roughness estimation on the transformed GeoMat
dataset. Both heatmaps (ground truth and our model’s) are scaled equally.

a) b) c)

Fig. 6. a) The original image, b) regressed output from the freshly trained
model, and c) regressed output derived using the appearance-based features.

computed ground-truth depth data. However, the magnitude
of roughness is downscaled in the estimated output (see
Fig. 5). The roughness range of 0 − 3.7 cm in the ground-
truth is reduced to 0.05− 1.4 cm in the regressed output.

The most probable explanation is that the downscaling
is caused by a bias in our dataset, where several instances
of the surfaces are flat or nearly flat. The gradient descent
driven training tends to conservatively estimate values of low
magnitude. This becomes apparent when the same model is
trained from scratch in the absence of image features. In fact,
using the appearance-based features lessen this bias, as seen
in Fig. 6.

V. ROBOTICS APPLICATION

In this section, we briefly discuss the need for segmenta-
tion and roughness on legged robots. Roughness is one of the
characteristics that directly provide information on the terrain
traversability. For legged locomotion, the terrain roughness
is all the more important as a number of parameters, such
as the Center-of-Mass (CoM) location and speed, have to be
optimized to ensure fail-safe operations. However, roughness
is not very much applicable to non-rigid terrain, for instance,
grass and sand, which are mostly deformable. This can also
be seen in [23] where the authors consider vegetation as
a separate class independent of rough and smooth areas.
In such situations, the implicit knowledge associated with
a terrain class enables better decision making in the robot.
These decisions can be in the form of risk measures when a
particular terrain class is identified. We run a series of tests
on the wheeled quadrupedal robot CENTAURO (Fig. 7) to
study the parameters that influence the traversability of the
terrain with varying roughness.

A. The CENTAURO Robot

CENTAURO is a centaur-like 42-DoF robot that weighs
around 90 kilograms. Its upper body is human-like, with two

Fig. 7. The wheeled quadrupedal centaur-like robot CENTAURO.

7-DoF arms and a head equipped with a spinning 3D LiDAR
scanner, an RGB-D Kinect v1 sensor, and three monocular
RGB cameras. Its lower body consists of four 6-DoF legs,
each of which has a wheel at the end.

CENTAURO is controlled through the real-time (RT)
robotic framework XBotCore [40]; on top of it, the Cartesian
control of CENTAURO is made possible by the CartesI/O
framework1, which provides a set of Robot Operating System
(ROS) topics, services, and actions that are used to send
Cartesian references; for our experiments, we employed a
custom module from CartesI/O, which is tailored to the
hybrid wheeled-legged locomotion of the CENTAURO robot.
Such a module allows for full 6D pose control of the
robot CoM through appropriate wheel steering and spinning.
Moreover, the support polygon shape can be dynamically
changed.

B. Online Segmentation and Roughness Estimation

First, we demonstrate the real-time terrain segmentation
and roughness estimation on CENTAURO. For the experi-
ment, the RGB image input from the Kinect v1 is constantly
fed into the model at 30 frames per second, while the rough-
ness of the surface is manually varied. Fig. 8 shows some
examples of the segmented output and estimated roughness
from the experiment. Despite implementing techniques to
improve the generalizability, we still notice some segmenta-
tion failures in the last two rows in the figure, where certain
areas in large stones are confused as road/sidewalk which
might be a result of similar appearances. Given an image
of 256 × 512 dimensions, the test time of the model is
30.59ms. This is presented for equal comparison with the
results shown in Sec. IV-B. However, it is sufficient for the
robot to comprehend the closest observable area of suitable
height and width whose value is slightly more than the
maximum wheel-to-wheel distance. As a result, the region
of interest is a 192×384 crop from the bottom portion of the
original image, which is taken as the input in this experiment.
The regressed roughness seems to generalize well to inputs
of different dimension. This underlies the flexibility of the
model with regards to the input image size.

It is observed that both segmentation and roughness out-
puts are affected by motion blur. Inference in the presence
of motion blur is an area of future research.

1github.com/ADVRHumanoids/CartesianInterface

Input from Kinect Segmentation Roughness

Fig. 8. Example results of segmentation and roughness estimation from the
experiment. The heatmap scale is reduced to half for better visualization.

C. Influence of CoM Height and Support Polygon

A rough terrain may decrease the stability of the robot.
When the perturbations from the surface are large in mag-
nitude, there are instances where the number of contact
points is less than three. This makes the robot unstable and
in extreme conditions, it may result in a fall. Enlarging
the support polygon or decreasing the height of CoM can
reduce any possibility of a fall in a four-legged robot. In the
case of CENTAURO, due to its kinematics, decreasing the
CoM height, automatically increases the support polygon.
We have experimentally validated the danger of rolling with
straight legs over some rough terrain, using CENTAURO in
the setting shown in Fig. 9, which resulted in very unstable
phases.

However, increasing the support polygon comes at an
expense of higher torques on the joint motors, and thus
higher energy consumption. The smallest support polygon is
achieved when the robot legs are straight with minimal joint
torque. Hence, an optimal height/support-polygon has to be
computed, depending on the roughness of the terrain. We
demonstrate a simple experiment in an artificially constructed
environment, wherein the robot alters the height of its CoM
based on a terrain roughness threshold, as shown in Fig. 9.
In this paper, with the Cartesian Interface (Sec. V-A), we
allow the robot to change its CoM height/support-polygon,
from fully stretched legs, where the robot’s CoM is at 0.95m
from the ground with a small support polygon of 0.36m2,
to bent legs, where the robot’s CoM is at 0.75m from the
ground with a larger support polygon of 0.63m2.

A roughness output of 0.3cm from the model is considered
as the threshold 2. This can be related to how human perceive

2Notice, that the output of the model is directly taken for the roughness
threshold. As our model captures the variation in roughness, a post-
processing step, such as upscaling to the original range, is possible.

a) b) c) d)

Fig. 9. Different stages of the experiment, along with the estimated roughness. a) Upright position (i.e., stretched) of CENTAURO on the flat surface, b)
rough terrain detection from our network in front of CENTAURO front wheels, c) CENTAURO lowers its CoM (i.e., bent), and d) traversing the rough
terrain.

0 5 10 15 20 25 30 35 40

time

-150

-100

-50

0

50

100

150

H
ip

 p
itc

h
to

rq
ue

Stretched

0 5 10 15 20 25 30 35 40

time

-150

-100

-50

0

50

100

150

H
ip

 p
itc

h
to

rq
ue

Bent

0 5 10 15 20 25 30 35 40

time

-150

-100

-50

0

50

100

150

H
ip

 p
itc

h
to

rq
ue

Stretched-Bent

A1 A2 A5 A6 A1 A3 A4 A5 A6 A3 A6A5A2A1 A4

Fig. 10. The torques produced at the hip pitch joints, during three experiments: 1) when CENTAURO traverses the terrain stretched up (i.e., stretched:
upright stretched configuration), 2) when CENTAURO traverses the terrain lowered down (i.e., bent: low CoM configuration), and 3) when CENTAURO
traverses the flat terrain stretched up (i.e., stretched) and lowers down its CoM (i.e., bent), after detecting a rough upcoming terrain. Each sub-figure
splits into the following areas: [A1] static upright configuration; [A2] acceleration with upright configuration; [A3] transition from upright to low; [A4]
acceleration with low configuration; [A5] traversing rough terrain in corresponding configurations; and [A6] deceleration to rest.

roughness. Although the exact magnitude is not known, the
variation or relative roughness is sufficient to interact with
the environment. When the majority of the pixels in front
of the robot front-wheels have a roughness value above this
threshold, the robot lowers its body by increasing the support
polygon. For a given speed, the robot is allowed to roll for
a certain duration after the transition from rough to flat is
detected. This ensures that the robot has cleared the rough
terrain. The plot corresponding to one of the four hip joints
is shown in Fig. 10.

For the given setting, three different experiments with
high CoM (stretched), low CoM (bent) and adaptable CoM
(stretched-bent) are shown in the above plot. We consider
hip joints alone because knee and ankle joints are nearly
in line with the reaction force from the wheels and hence
does not have a significant torque variation. Looking at the
first experiment, where the leg joints of the robot are almost

fully stretched, the magnitude of the torque is nearly zero.
However, the amplitude of torque fluctuations corresponding
to the vibrations on rough terrain is quite large, which
indicates that the robot is unstable (changes in the torque sign
between negative and positive values, indicate loss of contact
for the particular leg). In the second experiment, when the
CoM of the robot is low with a larger support polygon, the
energy consumption is more with the permanent increase in
the magnitude of torque (see [A6] for a clear picture), but the
fluctuations on the rough terrain are comparatively smaller
and loss of contact happens rarely. From these observations,
it is clear that the robot has to lower its CoM on rough terrain
and remain upright for flat or nearly flat surfaces. This is
required for minimum energy consumption and maximum
stability in CENTAURO, which is demonstrated through the
final experiment.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a method that predicts the
per-pixel terrain labels and regresses roughness with CNN.
Our approach involves training the SegNet on a custom-built
dataset suited for terrain segmentation, and a roughness mod-
ule that uses the basic image features from the initial layers
of SegNet. We have showed the real-time implementation
of our algorithm on the CENTAURO robot, along with a
simple experiment to demonstrate the use of roughness in
maintaining the stability of the robot.

In the future, we aim to test the roughness module with
more segmentation networks that have higher accuracy and
low computation requirements. Currently, the images of
varying dimensions, from the terrain segmentation dataset,
are reduced to a constant size. A scope for increase in
segmentation performance lies in adaptive resizing of images
such that the aspect ratio is conserved. Further, we plan
on improving the roughness dataset, such that it exhibits
more variability. For the robotic applications, a heuristic
approach was adopted to show the relationship between
the CoM location and roughness. We plan on developing a
mathematical formulation involving more parameters, such
as speed, in order to implement a path-planner for search-
and-rescue operations. Finally, we intend to combine our
introduced vision-based approach, with other approaches,
e.g. force/torque-based [41], to allow more autonomous
control and planning strategies during robot locomotion or
navigation.

ACKNOWLEDGMENT
This work is supported by the CENTAURO (grant agree-

ments no 644839) EU project. The Titan Xp used for this
research was donated by the NVIDIA Corporation.

The authors would like to thank Prof. Martijn Wisse for
his useful comments and recommendations, as well as Joseph
DeGol for his help on the GeoMat dataset.

REFERENCES

[1] P. Papadakis, “Terrain Traversability Analysis Methods for Unmanned
Ground Vehicles: A Survey,” Engineering Applications of Artificial
Intelligence, vol. 26, no. 4, pp. 1373–1385, 2013.

[2] A. Singhal, “Issues in Autonomous Mobile Robot Navigation,” Tech.
Rep., 1997.

[3] E. H. Adelson, “On Seeing Stuff: the Perception of Materials by
Humans and Machines,” vol. 4299, 2001, pp. 1–12.

[4] R. W. Fleming, “Visual Perception of Materials and their Properties,”
Vision Research, vol. 94, pp. 62–75, 2014.

[5] E. Tunstel and A. Howard, “Sensing and Perception Challenges of
Planetary Surface Robotics,” in IEEE Sensors, vol. 2, 2002, pp. 1696–
1701.

[6] F. Schilling, X. Chen, J. Folkesson, and P. Jensfelt, “Geometric and
Visual Terrain Classification for Autonomous Mobile Navigation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sept 2017, pp. 2678–2684.

[7] M. Castelnovi, R. Arkin, and T. R. Collins, “Reactive Speed Control
System Based on Terrain Roughness Detection,” in Proceedings of
the 2005 IEEE International Conference on Robotics and Automation,
April 2005, pp. 891–896.

[8] D. Stavens and S. Thrun, “A Self-supervised Terrain Roughness
Estimator for Off-road Autonomous Driving,” in Proceedings of the
Twenty-Second Conference on Uncertainty in Artificial Intelligence,
ser. UAI’06, 2006, pp. 469–476.

[9] L. Baccelliere, N. Kashiri, L. Muratore, A. Laurenzi, M. Kamedula,
A. Margan, S. Cordasco, J. Malzahn, and N. G. Tsagarakis, “Devel-
opment of a Human Size and Strength Compliant Bi-Manual Platform
for Realistic Heavy Manipulation Tasks,” in IEEE/RSJ Int. Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 5594–5601.

[10] I. L. Davis, A. Kelly, A. Stentz, and L. Matthies, “Terrain Typing for
Real Robots,” in Intelligent Vehicles Symposium., 1995, pp. 400–405.

[11] M. Marra, R. Dunlay, and D. Mathis, “Terrain Classification Using
Texture For The ALV,” Cambridge Symposium on Advances in Intel-
ligent Robotics Systems (SPIE), vol. 1007, pp. 1–8, 1989.

[12] P. Filitchkin and K. Byl, “Feature-based Terrain Classification for Lit-
tleDog,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2012, pp. 1387–1392.

[13] A. Angelova, L. Matthies, D. Helmick, and P. Perona, “Fast terrain
classification using variable-length representation for autonomous nav-
igation,” in 2007 IEEE Conference on Computer Vision and Pattern
Recognition, June 2007, pp. 1–8.

[14] E. Romera, L. M. Bergasa, and R. Arroyo, “Can we Unify Monocular
Detectors for Autonomous Driving by using the Pixel-Wise Semantic
Segmentation of CNNs?” CoRR, vol. abs/1607.00971, 2016.

[15] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “Material Recognition
in the Wild with the Materials in Context Database,” Computer Vision
and Pattern Recognition (CVPR), 2015.

[16] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks
for Semantic Segmentation,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3431–3440.

[17] T.-C. Wang, J.-Y. Zhu, H. Ebi, M. K. Chandraker, A. A. Efros, and
R. Ramamoorthi, “A 4D Light-Field Dataset and CNN Architectures
for Material Recognition,” in European Conference on Computer
Vision (ECCV), 2016.

[18] G. Schwartz and K. Nishino, “Material Recognition from Local
Appearance in Global Context,” CoRR, vol. abs/1611.09394, 2016.
[Online]. Available: http://arxiv.org/abs/1611.09394

[19] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset
for Semantic Urban Scene Understanding,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[20] D. B. Gennery, “Traversability Analysis and Path Planning for a
Planetary Rover,” Autonomous Robots, vol. 6, no. 2, pp. 131–146,
1999.

[21] S. B. Goldberg, M. W. Maimone, and L. Matthies, “Stereo Vision
and Rover Navigation Software for Planetary Exploration,” in IEEE
Aerospace Conference, vol. 5, 2002, pp. 2025–2036.

[22] A. Howard and H. Seraji, “Vision-based Terrain Characterization
and Traversability Assessment,” Journal of Robotic Systems, vol. 18,
no. 10, pp. 577–587, 2001.

[23] D.-K. Kim, D. Maturana, M. Uenoyama, and S. Scherer, “Season-
Invariant Semantic Segmentation with A Deep Multimodal Network,”
in Field and Service Robotics, September 2017.

[24] S. Ram, “Semantic segmentation for terrain roughness estimation
using data autolabeled with a custom roughness metric,” Master’s
thesis, Carnegie Mellon University, Pittsburgh, PA, July 2018.

[25] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Con-
volutional Encoder-Decoder Architecture for Image Segmentation,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017.

[26] M. Brandao, Y. M. Shiguematsu, K. Hashimoto, and A. Takanishi,
“Material Recognition CNNs and Hierarchical Planning for Biped
Robot Locomotion on Slippery Terrain,” in 16th IEEE-RAS Interna-
tional Conference on Humanoid Robots, Nov 2016, pp. 81–88.

[27] A. Anelia, M. Larry, H. Daniel, and P. Pietro, “Learning and Prediction
of Slip from Visual Information,” Journal of Field Robotics, vol. 24,
no. 3, pp. 205–231.

[28] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How Transferable
Are Features in Deep Neural Networks?” in 27th International Con-
ference on Neural Information Processing Systems - Volume 2, ser.
NIPS’14. MIT Press, 2014, pp. 3320–3328.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” in 25th International
Conference on Neural Information Processing Systems - Volume 1, ser.
NIPS’12. USA: Curran Associates Inc., 2012, pp. 1097–1105.

[30] D. Eigen and R. Fergus, “Predicting Depth, Surface Normals and
Semantic Labels with a Common Multi-scale Convolutional Architec-
ture,” in IEEE International Conference on Computer Vision (ICCV).
Washington, DC, USA: IEEE Computer Society, 2015, pp. 2650–2658.

[31] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper Depth Prediction with Fully Convolutional Residual Net-
works,” in 3D Vision (3DV), 2016 Fourth International Conference
on. IEEE, 2016, pp. 239–248.

[32] A. B. Owen, “A Robust Hybrid of Lasso and Ridge Regression,” Tech.
Rep., 2006.

[33] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba,
“Semantic Understanding of Scenes Through the ADE20K Dataset,”
arXiv preprint arXiv:1608.05442, 2016.

[34] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “OpenSurfaces: A
Richly Annotated Catalog of Surface Appearance,” ACM Trans. on
Graphics (SIGGRAPH), vol. 32, no. 4, 2013.

[35] J. DeGol, M. Golparvar-Fard, and D. Hoiem, “Geometry-Informed
Material Recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[36] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE Int. Conf. on Robotics and Automation (ICRA), 2011.

[37] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” arXiv preprint arXiv:1408.5093, 2014.

[38] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The Pascal Visual Object Classes (VOC) Challenge,”
Int. Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.

[39] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: A Deep
Neural Network Architecture for Real-Time Semantic Segmentation,”
CoRR, vol. abs/1606.02147, 2016.

[40] L. Muratore, A. Laurenzi, E. M. Hoffman, A. Rocchi, D. G. Caldwell,
and N. G. Tsagarakis, “Xbotcore: A Real-Time Cross-Robot Software
Platform,” in IEEE Int. Conference on Robotic Computing (IRC), 2017.

[41] K. Walas, D. Kanoulas, and P. Kryczka, “Terrain Classification
and Locomotion Parameters Adaptation for Humanoid Robots using
Force/Torque Sensing,” in IEEE-RAS 16th International Conference
on Humanoid Robots (Humanoids), 2016, pp. 133–140.

A
INTRODUCTION TO CONVOLUTIONAL

NEURAL NETWORKS

Among the various types of neural networks, Convolutional Neural Networks (CNNs) stand out for its appli-
cation to computer vision, especially with tasks involving images. The reason is two-fold:

1. High dimensional images are effectively handled through minimal number of parameters, thereby
making it feasible to train models on a graphics processing unit (GPU).

2. As opposed to the conventional neural networks, CNNs preserve the structure of the image in the sense
that the mathematical operations for feature extraction are two dimensional, and the learnable feature
maps are aggregated along the third dimension similar to that of R,G,B colour channels in an image
(see Fig. A.1).

Additionally, the availability of huge image datasets and the advantages of end-to-end learning have given
the data-driven CNNs an edge over the state-of-the-art methods.

Figure A.1: An example CNN architecture. It depicts the basic operations, such as convolutions and pooling
(subsampling), involved in every CNN. Note the accumulated feature maps along the layer’s depth. The fully
connected layer (full connection) is a special case of convolution wherein the two-dimensional feature map
is reduced to a single element. The architecture shown here is LeNet [1], the first proposed CNN architecture.

A CNN takes an image of dimensions w × h ×3 as input, extracts a set of representations, and produces the
necessary output using a classifier at the end according to the task at hand. The representation space is learnt
during the training of a series of layers that form the core of a CNN. Most of our architecture is composed of
four commonly found layers; Convolutional layer, Pooling layer, Rectified Linear Units (ReLU), and Batch
Normalization. These are discussed below,

• A unique feature of CNNs is the use of learnable convolution kernels (similar to that of convolutional
filters used in image processing) that serve as weights for the model. Each kernel performs filter op-
eration, mostly elementwise addition, on the image. These kernel operations are carried out by the

11

12 A. INTRODUCTION TO CONVOLUTIONAL NEURAL NETWORKS

Convolutional layer. The kernel size (known as receptive field) are, in general, small in size, usually
3×3 or 5×5. As the receptive field is much smaller than the image size, the parameter count is low. To
further reduce the number of parameters involved, a single kernel, corresponding to an output chan-
nel, is shared/slid across all the locations of the input. For N output feature maps, the convolutional
layer consists of N learnable kernels. There are special cases of receptive fields such as 1×1 and m×n,
where m is the width and n is the height of the image. The former provides an efficient way of increas-
ing or decreasing the depth (number of feature maps) of a convolutional layer. In our case, it is used
for feature abstraction. The latter, which is shown as full connection (fully connected layer) in Fig.
A.1, convolves with the entire image to produce a single value output. This is an important element for
image classification problems, where the final output is a 1×1×k and k refers to the number of classes.

• Pooling layer is responsible for reducing the spatial dimension of the input through the process of
downsampling. A commonly used pooling operation is max-pooling wherein a patch, say 2 × 2, in
the input is reduced to a single element corresponding to the maximum value of the patch (See Fig.
A.2). The primary role of pooling is to lessen the computational costs by reducing the number of
mathematical operations in the model. A similar but opposite function is carried out by the Unpool-
ing/Deconvolutional layer.

Figure A.2: Maxpooling [2]

-20 -10 0 10 20 30 40
0

5

10

15

20

25

30

35

40

Figure A.3: ReLU

• ReLU [3] is a popular activation function that has been proved to offer better performance than the
standard sigmoid or tanh functions. ReLU has a hard non-linearity at zero which promotes sparse and
robust representations in the model. Contradictory to sigmoid or tanh, ReLUs do not constrain the
output to a small range of values thereby reducing the possibility of vanishing gradients. Moreover, the
mathematical operation of ReLU, max(0, x) (see Fig. A.3), and its gradient are simple to compute.

Figure A.4: Batch Normalization algorithm

• Stochastic gradient descent (SGD), a popular optimizer for training CNNs, is the iterative approxima-
tion of the gradient descent algorithm based on the gradients computed over a small set of inputs (mini-
batch). As each mini-batch has a distribution of its own, the input distribution to every layer varies,

13

thereby destabilizing the training and slowing down the convergence. Batch Normalization [4] (BN)
alleviates this problem by normalizing the input distribution to zero mean and unit variance for a given
mini-batch. Normalization ensures distributions with limited inter-batch variations which speeds up
the convergence. However, the representations learnt by the layers are different from that of the un-
normalized input. So, BN incorporates two parameters (a scale and a shift) that learn, during training,
to restore the representations corresponding to the original activations. BN’s algorithm, as proposed in
the original paper [4], is shown in Fig. A.4.

As the values of these two parameters are constant during testing, the BN can be merged with the con-
volution layer by making a permanent scale and shift of the normalized activations. Merging the batch
normalization reduces the inference time due to the elimination of normalization and scale/shift op-
eration. Although the improvement is marginal, it makes a difference for practical applications. Table
A.1 shows the observed drop in inference time when BNs are merged in our approach.

SegNet Before merge After merge
time (ms) 23.4988 18.54

Table A.1: Inference time before and after merging BN

An in-depth discussion on CNNs can be found in [2].

B
ARCHITECTURE DESIGN

Our CNN- based model predicts the terrain class and its roughness for each pixel. Here, we discuss and reason
out the design elements of our model in two separate sections, one for each sub-task, i.e., terrain recognition
and roughness estimation.

B.1. TERRAIN RECOGNITION

B.1.1. SEMANTIC SEGMENTATION OVER CLASSIFICATION
Recognition can be considered either as a classification or a semantic segmentation task. The former predicts
a single label for the entire image while the latter determines the label for each and every pixel in the image.
For our problem, pixel-wise understanding is of importance as real-world scenes will most likely comprise a
mixture of terrains that can vary from one pixel to another. As a result, we frame the terrain recognition as a
semantic segmentation problem.

B.1.2. SELECTION OF SEGMENTATION MODEL
Segmentation demands the output to have the same dimensions as the input. Popular CNN architectures,
such as LeNet [1], VGG-16 [5], and ResNet [6], are meant for image classification and cannot be directly used.
An alternative that has been explored is patch-based classification, where the classification network takes in a
sliding patch as input. However, this approach requires further processing in order to combine the individual
patch outputs into a final segmentation map. Fully Convolutional Networks (FCN) [7], for the first time,
introduces an end-to-end trainable architecture that produces pixel-wise segmentation maps. FCN uses the
same architecture as VGG-16 and replaces the fully connected layers with convolutional layers. Observe the
difference between the two architectures from Figs. B.1 and B.2. Furthermore, bilinear upsampling with
deconvolutional layers and pooled feature maps are used to generate the segmented output with dimensions
equal to that of input.

Figure B.1: VGG-16 Figure B.2: FCN

Real-time inference is an important requirement for any perception system developed for robots. In our
case, the Kinect v1 RGB-D sensor mounted on CENTAURO runs at 30 frames per second (fps) which poses a

15

16 B. ARCHITECTURE DESIGN

constraint in choosing the segmentation model. In FCN, additional floating point operations for concatena-
tion at every upsampling stage and the large number of kernels in the replaced convolutional layers (2×4096),
makes FCN unsuitable for real-time inference.

A similar architecture, SegNet can be considered as a computationally efficient counterpart of FCN. Al-
though the encoder of SegNet is same as that of FCN, the decoder is different as it relies on pooling indices
for upsampling (see Fig. B.3). Pooling index refers to the location of the maximum element in case of a max-
pooling operation. As the common pooling is carried out on a 2×2 patch, the index can be stored in the form
of 2 bits for every patch. This index is merely used as a pointer to the unpooled patch during upsampling and
no computational costs are incurred in the process. The overall inference time and memory usage are low for
SegNet, making it appropriate for the robot.

Figure B.3: SegNet

Besides SegNet, another architecture that is interesting in a practical perspective is ENet [8]. This network
is specifically designed to have high computational efficiency. Various design choices, that improve the infer-
ence speed, are incorporated in the model based on the analysis of previous architectures. For example, early
downsampling, by a factor of 4, reduces the parameter count drastically and use of asymmetric kernels, such
as 5×5 convolution split into 1×5 and 5×1, retain the same accuracy as symmetric kernels but at a reduced
cost. Table B.1 shows the inference time and the fps at which the model can operate.

Model FCN-8 SegNet ENet
time (ms) 71.4011 18.54 10.25
fps 14 54.79 97.56

Table B.1: Inference time

With regards to the performance, the mean Intersection of Union (IoU), an accuracy measure for semantic
segmentation, benchmarked on well-known segmentation datasets is observed to be nearly the same for all
these architectures, as seen in Table B.2.

Model CamVid [9] SUN RGB-D [10] Cityscapes [11]

FCN-8 0.5080 0.2633 0.6530
SegNet 0.5718 0.2746 0.5610
ENet 0.5130 0.1970 0.5830

Table B.2: Mean IoU benchmarked on popular segmentation datasets

Given the accuracy and inference time, we consider SegNet and ENet for our problem. Both the models
along with the pre-trained weights are open-sourced in Caffe. More accurate models, summarized in [12], are
excluded from our analysis as it is not feasible to implement them on the robot.

B.1.3. CHOICE OF HYPER-PARAMETERS

The hyper-parameters are defined in a file called solver.prototxt in Caffe. The optimization for our approach
involves minimizing the categorical cross-entropy loss using SGD. The cross-entropy loss for a pixel is given

B.1. TERRAIN RECOGNITION 17

by,

L =−
k∑

i=1
y log(ŷ)

where y is the ground-truth label, ŷ is the predicted probability of the pixel belonging to a given class, and k
is the number of classes. For categorical cross entropy, as a result of one-hot encoding, the loss reduces to a
single element corresponding to the positive class label. For example, in a six-class problem, if a label has a
value of 5, the loss is equal to just the log likelihood of class 5 because the ground-truth label (y) for class 5 is
one and the others are zero as per one-hot encoding. We use a softmax classifier as the last layer, the output
of which is the probability for each class. This loss is summed up for every pixel in the image and averaged
over the mini-batch.

Determining the ideal learning rate for this minimization problem is a challenge. As recommended in
Caffe, the initial training is carried out with a learning rate of 0.01. The mean IoU has a low peak value at this
learning rate. This can be due to large weight updates that prevent convergence to a minimum. To ascertain
this hypothesis, we reduce the learning rate by a factor of 10 at which the loss decreases even more and
converges to a high value. As a further drop in learning rate results in slow convergence, we use the learning
rate of 0.001 for our approach. The mean IoU plot at two different learning rates is shown in Fig. B.4.

10 15 20 25 30 35 40 45 50 55 60

epochs

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
ea

n
Io

U

0.01
0.001

Figure B.4: Mean IoU at learning rate of 0.01 and 0.001

For the given learning rate, the standard setting, recommended in [13], with momentum of 0.9 and weight
decay of 0.005 is used. Momentum accelerates the gradient descent if it keeps moving in the right direction,
thereby improving the convergence rate. The formulation, as defined in Caffe, is

Vt+1 =µVt −α g r ad(L)

Wt+1 =Wt +Vt+1

where µ is the momentum, α is the learning rate, and g r ad(L) is the gradient of the loss.
Weight decay penalizes large weights and has an important role especially when using ReLU activations.

As the ReLUs do not have a saturation region, the magnitude of activations is kept low by the weight decay
hyper-parameter.

Training with these hyperparameters, SegNet shows a better performance than ENet on our validation
set, as seen from Fig. 2. and Table B.3.

Model Sand Wood Stone Metal Road Grass

SegNet 0.4203 0.6218 0.5146 0.4369 0.2165 0.5966
ENet 0.3627 0.5903 0.2528 0.2394 0.1969 0.5667

Table B.3: Per-class IoU of SegNet and ENet on our dataset

18 B. ARCHITECTURE DESIGN

B.2. TERRAIN ROUGHNESS ESTIMATION
Unlike semantic segmentation, the terrain roughness parameter belongs to the continuous space and a re-
gression framework is required to estimate those values. The introduced roughness module regresses at each
pixel in the image. We analyze the roughness module in the next section.

B.2.1. UNPOOLING OVER FULLY CONNECTED LAYER
A common approach to deep regression problems, such as pose estimation, is to have a fully connected layer
at the end to estimate the continuous values [14]. In such problems, the number of regressed values is mostly
a single digit number and hence feasible. However, this approach is not possible for high-dimensional images
since the number of parameters involved is very high. We try regressing a 100×100 image (weights = input
feature map dimension×10000) using a fully-connected layer but it fails as the size of the model exceeds the
12 GB memory capacity of the GPU. Successful per-pixel regression methods, especially the widely studied
depth estimation task [15, 16], employ some sort of upsampling to reduce the number of weights in the model.
As a result, our approach uses the deconvolutional layer of SegNet for upsampling.

Figure B.5: Skip connection

B.2.2. UP-PROJECTION BLOCK
As discussed in Sec. III-B, we use modified up-projection blocks [16] in our roughness module. Up-projection
blocks are the main constituent of the decoder in Fully Convolutional Residual Networks (FCRNs) which
achieved state-of-the-art results in depth estimation from a single image. The key attribute of this block is
the use of skip connection (see Fig. B.5), a simple and novel concept that put ResNet [6] at the forefront of
image classification. Skip connection contains a short-cut branch that splits from and remerges with the
main branch after skipping some layers. The short-cut branch can be with or without (identity) an additional
convolutional layer.

20 30 40 50 60 70 80 90 100

epochs

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

R
M

S
E

without skip connection
with skip connection

Figure B.6: Effect of skip connection. Faster reduction in the RMSE error can be observed with the skip
connection

In a deep network trained with SGD optimizer, the backpropagated error signal is obtained through re-
peated multiplication of gradient updates. In case a layer approaches convergence, its gradient is small
which, when multiplied, may cause the earlier layers to suffer from vanishing gradients. The short-cut branch

B.2. TERRAIN ROUGHNESS ESTIMATION 19

in the skip connection offers an unimpeded path for backpropagation, thereby facilitating quick conver-
gence [17]. Fig. B.6 shows a plot, which depicts the rate at which the error decreases, with and without
the skip connection for our model.

Up-projection block positions the skip connection right after upsampling. The unpooling operation used
in our method is different from that of FCRN. When an input element is expanded into a 2×2 patch, the ele-
ment’s location is always at the top left of the patch in FCRN while our method decides based on the pooling
indices. The main branch of the skip connection in the block contains two convolutional layers, each followed
by BN and ReLU, while the short-cut branch has a convolutional layer of its own. The first convolutional layer
in both the branches has a receptive field of 5×5 which is changed to 3×3 initially for computational reasons.
However, through experimentation, it is determined that a receptive field of 5×5 for the first convolutional
layer in the main branch is essential as it captures the variation in roughness better than a receptive field of
3× 3, as seen through b) and c) of Fig. B.7. We let the receptive field of the convolutional layer in the skip
branch be 3×3 as a similar improvement is not observed.

a) b)

c) d)
Figure B.7: a) input image, b) 5×5 kernel and learning rate of 10−7, c) 3×3 kernel and learning rate of 10−7,

d) b) 5×5 kernel and learning rate of 10−6

B.2.3. HYPER-PARAMETERS
The roughness module has to be trained from scratch for which a suitable learning rate is required. We exper-
iment with different learning rates, starting from 10−3 at which the module fails to train because of gradient
explosion caused by large errors. For every failed iteration, the learning rate is reduced by a factor of 10. At
a learning rate of 10−6, the module trains successfully for the first time. However, the estimated roughness
is not so good. Albeit higher RMSE error than 10−6, a learning rate of 10−7 produces superior prediction
(compare b) and d) in Fig. B.7).

Apart from the learning rate, the module is trained with different optimizers (summarized in Table B.4)
and SGD is found to give the best performance.

Optimizer Loss RMSE RMSLE

Adam [18] Berhu 0.5797 0.1559
Euclidean 0.6650 0.1742

RMSProp[19] Berhu 0.5579 0.1540
Euclidean 0.5675 0.1618

SGD Berhu 0.4335 0.1119
Euclidean 0.4350 0.1123

Table B.4: Summary of validation loss for different optimizers

C
STRATEGIES USED IN OUR MODEL

Certain strategies, such as transfer learning, data augmentation, and median frequency balancing, are em-
ployed to improve the overall predictive power of the model. A discussion on these strategies is provided
below,

C.1. TRANSFER LEARNING
Training the SegNet architecture from scratch is not feasible as the custom-built dataset is small in size. A
common practice for CNNs is to initialize the model with pre-trained weights and finetune on the target
dataset at a low learning rate. This principle, belonging to a broad subject called transfer learning or domain
adaptation, uses the accumulated information gained from a source task with large datasets to learn a new
task, in our case, terrain segmentation (See Fig. C.1). Greater the relationship between the source and target

Figure C.1: Principle of transfer learning [20]

domain, better the transferability of knowledge. To assess this hypothesis, we fine-tune SegNet on our dataset
with pre-trained weights from cityscapes [11] and SUN-RGBD [10] as initializers. It can be seen, from Fig. C.2,
that cityscapes provides a better performance than SUN-RGBD as the latter is indoor-based dataset and less
related to the terrain segmentation task.

One of the main challenges of transfer learning lies in deciding the number of convolutional layers that
are to be fine-tuned. This depends on the similarity between the tasks and dataset size. For instance, if the
dataset is quite small, only the last few layers are fine-tuned as the model’s representation space increases in
specificity with depth. The generic features will most likely remain the same for this small dataset. Moreover,
the low number of samples is not a sufficient representation of the entire sample space and fine-tuning an
entire network can lead to overfitting.

Given the size of our dataset, we fine-tune the entire SegNet initially. The trained model shows signs
of overfitting on the test images. As a next step, the model is fine-tuned again after freezing the first layer

21

22 C. STRATEGIES USED IN OUR MODEL

CLASS AVERAGE ACCURACY MEAN IOU
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SUN RGB CITYSCAPES

Figure C.2: Comparison between cityscapes and SUN-RGBD weights as initializer

stone sand grass

Figure C.3: Effect of fine-tuning. From left to right: a test image, fully fine-tuned, first layer in the model
frozen, freezing the first two layers in the model

and an improvement in the prediction is observed. However, freezing the second convolutional layer results
in an underfitted output. Fig. C.3 shows an example of a test image segmented with different fine-tuning
configurations.

C.2. DATA AUGMENTATION
Given the limited training samples and variability in the outdoor environment, there can be instances where
the robot observes a scene that is different from the samples in the training set. A way for the robot to handle
these unseen situations is to improve the generalizability of the model. Data augmentation is one such tech-
nique that relies on basic image transformations to expose the model to different settings thereby making it
more invariant to environmental changes. For example, rotation can alleviate biases related to the location
of a particular terrain such as in cityscapes where the road is mostly present in the lower half of the image.

Two different transformations are used in our approach: horizontal/vertical flip and brightness/contrast
adjustment. Both the implementations are on-the-fly and rely on inbuilt OpenCV functions. The flip function
mirrors the input image along both the rows and columns. Small adjustments in the brightness and contrast
are implemented through the following equation.

I =αI0 +β

where α is the contrast, β is the brightness, I0 is the input image. The possible set of transformations is
restricted to a range of values, 0.8,0.9, ...,1.2 for contrast and −6,−5, ...,6 for brightness. As mentioned in Sec.
III-A., cropping is not used as the labelled region occupies a small portion in majority of the images. Hence,
a random crop with most pixels unlabelled has an undesirable effect of vanishing gradients and increase in
convergence time.

C.3. MEDIAN FREQUENCY BALANCING 23

C.3. MEDIAN FREQUENCY BALANCING
Extracting a completely balanced dataset is difficult due to the complex mix of terrain classes in the training
set images. As a result, a small imbalance exists in the dataset which is accommodated through median fre-
quency balancing [21]. Through this balancing, the classes with frequency lesser than the median frequency
have significantly higher weights than the most occurring classes. The weights for each class is computed
using the following formulation,

wei g ht (i) = medi an(f r eq1, ... f r eqk)

f r eqi

where

f r eqi =

I∑
j=1

p j

k∑
i=1

I∑
j=1

pi j

For a given image j , p j refers to the number of pixels belonging to class i. f r eqi is the frequency of a particular
class i , which is equal to pixels belonging to class i in the entire dataset divided by the total number of pixels.

D
DATASETS AND EVALUATION METRICS

This appendix provides details on the construction of datasets and the evaluation metrics used for each sub-
task.

D.1. SEGMENTATION DATASETS
A dataset of terrain images and corresponding labels is required for training CNNs. We consider various open-
source segmentation datasets, two of which are used for building the terrain segmentation dataset. These are
elaborated below,

1. Cityscapes: Cityscapes [11] is a large dataset that focusses on the urban street scenes from various
cities. It provides pixel-wise annotations for 34 commonly found classes in street scenes, for example,
road, building, tree etc. The finely annotated dataset consists of 2975 training and 500 validation im-
ages. The images are basically frames extracted from videos recorded by a stereo camera on the car
while moving around the cities. For our objective, this is less interesting as the entire dataset has a
constant environmental setting.

2. PASCAL-Context: Pascal-Context [22] provides the pixel-wise annotations to the images in PASCAL
VOC 2010 challenge. The dataset includes a large number of classes from variety of scenes. However,
only 59 classes are significantly frequent while the rest are sparse. The training and validation set con-
tains 10103 images along with its annotations.

3. ADE-20K: ADE20K [23], a rich and ever-increasing dataset, consists of more diverse scenes and labels
than Pascal-Context. The dataset provides accurate and clear-cut annotations for 20210 training and
2000 validation images. Given the variability and large number of images, we use this dataset for our
purpose.

4. Opensurfaces: Opensurfaces [24] is a dataset with a focus on commonly found materials in indoor en-
vironment. It contains 25357 training images, taken from Flickr, and labels with annotations from 23
material categories. Despite being a huge dataset, it lacks predominant outdoor terrain classes such as
asphalt and sand. However, wood and metal, which are sparsely found in ADE20K, is abundantly avail-
able. This necessitates us to combine Opensurfaces and ADE20k to construct the terrain segmentation
dataset. The statistics of the training set is shown in Fig D.1.

The relevant labels from the respective dataset are replaced by a number in the range of 0− 6, with each
number representing a terrain class as shown in Table D.1. 6 refers to the unlabelled or irrelevant classes
which is ignored while calculating the training loss. A training iteration takes a mini-batch of images and
labels as input from the randomly shuffled dataset. Shuffling, which is implemented in real-time, is important
in eliminating biases or patterns in the dataset.

D.2. ROUGHNESS FROM DEPTH IMAGE
We use the depth images taken from GeoMat [25] as the basis for creating ground-truth roughness values.
The details of the GeoMat dataset is already provided in Sec. IV-A.2. The ground-truth roughness values, in

25

26 D. DATASETS AND EVALUATION METRICS

grass metal road/sidewalk sand stone wood
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
o

. o
f

p
ix

el
s

10 7

Figure D.1: Pixel count for each class in the training set

Sand Wood Stone Metal Road/Sidewalk Grass Irrelevant classes
0 1 2 3 4 5 6

Table D.1: Terrain classes and its label

our approach, are described through the point to plane distance, which depicts the deviations of the surface.
Given a point cloud, the underlying idea is to fit a plane on a set of points in the neighbourhood of a specific
point. The absolute distance between that particular point and the fitted plane gives the roughness value at
that point.

As a first step, we require point clouds, which are generated from the depth images. The zi (depth) coor-
dinate at each pixel in the depth image is transformed to xc ,yc ,zc coordinates of the point clouds using the
intrinsic matrix given in the dataset. Basically, the transformation is from the image to the camera frame. The
depth remains the same while x and y are given by,

xc = xi −x0

fx
zi

yc = yi − y0

fy
zi

zc = zi

where { fx , fy } is the focal lengths and {x0, y0} is the principal point of the camera. {xi , yi } are the pixel coordi-
nates of the depth image. An organized point cloud is obtained after transforming the entire depth image. As
mentioned in Sec. IV-A.2, the plane is fitted on nine nearest neighbouring points. Increasing the number of
neighbouring points exaggerates the roughness in the terrain patch.

A plane can be determined from a reference point and its normal. In the plane equation,

ax +by + cz +d = 0

d =−(axr +byr + czr)

where n = {a,b,c} is the normal and Pr = {xr , yr , zr } is the reference point. As the plane is fitted on the neigh-
bouring patch, the reference point is taken as the mean of the patch, given by,

Pr = 1

m

m∑
i=1

Pi

Here, m = 9. To compute the normal, PCL has an inbuilt function that minimizes the sum of squared dis-
tances (SSD) between each point and the plane.

min
m∑

i=1
[(Pi −Pr)T n]2

D.3. EVALUATION METRICS 27

Depth Image

Point Cloud

total points = 10000
i=1

i<total points

Nearest Neighbours
patch

Plane fitting
ax+by+cz+d=0

Roughness
|-d-axi-byi-czi|

i=i+1

Begin

True
End False

Figure D.2: Depth image to Roughness

This minimization problem reduces to minimizing the covariance matrix which is equivalent to finding the
eigen vector corresponding to the smallest eigen value. Expanding the above equation,

min
m∑

i=1
nT (Pi −Pr)(Pi −Pr)T n

where the covariance matrix,

C = 1

m

m∑
i=1

(Pi −Pr)(Pi −Pr)T

Solving for the eigen vectors, we determine the normals n. The plane parameters are calculated with the
reference point and normal. As we require per-pixel roughness, the absolute distance from each point to the
plane is computed. The algorithm is summarized in Fig. D.2.

D.3. EVALUATION METRICS

D.3.1. PERFORMANCE MEASURE FOR SEGMENTATION
To evaluate the semantic segmentation performance, we employ two commonly used metrics for evaluat-
ing semantic segmentation: class average accuracy and mean IoU. Class average accuracy, a measure that
accounts for the correctly classified pixels in each class, is given by,

1

k

k∑
i=1

T Pi

T Pi +F Ni

where k is the total number of classes, T Pi is the true positives and F Ni is the false negatives for a given class.
Mean IoU is the most used metric for semantic segmentation as it is simple, yet a more precise measure than
accuracy. Apart from true positives (TP) and false negatives (FP), this measure includes false positives (FP),
thereby providing a finer description of the performance. It is given by,

1

k

k∑
i=1

T Pi

T Pi +F Ni +F Pi

28 D. DATASETS AND EVALUATION METRICS

D.3.2. ERROR METRICS FOR ROUGHNESS
The regressed roughness is evaluated on the validation set using Root Mean Squared Error (RMSE) and Root
Mean Squared Log Error (RMSLE). RMSE is the one of the widely used metrics for regression methods. The
square in the expression, shown below, prevents the cancellation of positive and negative errors and gives
higher weightage to large errors.

RMSE =

√√√√√ N∑
i=1

(pr edi cti −actuali)2

N

where N is the total number of pixels in the image.
RMSLE is slightly different from RMSE in the sense that it computes the ratio of predicted to the ground-

truth due to the presence of log. It weighs the under-estimated predictions more than over-estimated predic-
tions. The formula for RMSLE is given below,

RMSLE =

√√√√√ N∑
i=1

(log(1+pr edi cti)− log(1+actuali))2

N

BIBLIOGRAPHY

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proceedings of the IEEE 86, 2278 (1998).

[2] CS231n: Convolutional Neural Networks for Visual Recognition, http://cs231n.github.io/
convolutional-networks/#layers.

[3] X. Glorot, A. Bordes, and Y. Bengio, Deep Sparse Rectifier Neural Networks, in Proc. of the Fourteenth
International Conference on Artificial Intelligence and Statistics, Vol. 15 (2011) pp. 315–323.

[4] S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift, in Proc. of the 32nd International Conf. on International Conference on Machine Learning
- Volume 37 (2015) pp. 448–456.

[5] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition,
CoRR abs/1409.1556 (2014).

[6] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, arXiv preprint
arXiv:1512.03385 (2015).

[7] J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2015) pp. 3431–3440.

[8] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, ENet: A Deep Neural Network Architecture for Real-
Time Semantic Segmentation, CoRR abs/1606.02147 (2016), arXiv:1606.02147 .

[9] G. J. Brostow, J. Fauqueur, and R. Cipolla, Semantic Object Classes in Video: A High-Definition Ground
Truth Database, Pattern Recognition Letters (2008).

[10] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, Learning Deep Features for Scene Recognition
using Places Database, in Advances in Neural Information Processing Systems 27 (2014) pp. 487–495.

[11] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele,
The Cityscapes Dataset for Semantic Urban Scene Understanding, in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2016).

[12] A. Garcia-Garcia, S. Orts, S. Oprea, V. Villena-Martinez, and J. G. Rodríguez, A Review on Deep Learning
Techniques Applied to Semantic Segmentation, CoRR abs/1704.06857 (2017).

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification with Deep Convolutional Neu-
ral Networks, in 25th International Conference on Neural Information Processing Systems - Volume 1,
NIPS’12 (Curran Associates Inc., USA, 2012) pp. 1097–1105.

[14] S. Lathuilière, P. Mesejo, X. Alameda-Pineda, and R. Horaud, A Comprehensive Analysis of Deep Regres-
sion, CoRR abs/1803.08450 (2018).

[15] F. Ma and S. Karaman, Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image,
ICRA, (2018).

[16] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, Deeper Depth Prediction with Fully
Convolutional Residual Networks, in Fourth International Conf. on 3D Vision (3DV) (2016) pp. 239–248.

[17] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. J. Pal, The Importance of Skip Connections
in Biomedical Image Segmentation, in LABELS/DLMIA@MICCAI (2016).

[18] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, CoRR abs/1412.6980 (2014).

29

http://dx.doi.org/10.1109/5.726791
http://cs231n.github.io/convolutional-networks/#layers
http://cs231n.github.io/convolutional-networks/#layers
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dx.doi.org/ 10.1109/CVPR.2015.7298965
http://dx.doi.org/ 10.1109/CVPR.2015.7298965
http://arxiv.org/abs/1606.02147

30 BIBLIOGRAPHY

[19] G. Hinton, N. Srivastava, and K. Swersky, Lecture 6a Overview of Mini–Batch Gradient Descent, Coursera
Lecture slides https://class.coursera. org/neuralnets-2012-001/lecture (2012).

[20] Transfer Learning - Machine Learning’s Next Frontier, http://ruder.io/transfer-learning/.

[21] D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-
scale Convolutional Architecture, in IEEE International Conference on Computer Vision (ICCV) (IEEE
Computer Society, Washington, DC, USA, 2015) pp. 2650–2658.

[22] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille, The role of context
for object detection and semantic segmentation in the wild, in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2014).

[23] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, Semantic Understanding of Scenes
Through the ADE20K Dataset, arXiv preprint arXiv:1608.05442 (2016).

[24] S. Bell, P. Upchurch, N. Snavely, and K. Bala, OpenSurfaces: A Richly Annotated Catalog of Surface Ap-
pearance, ACM Trans. on Graphics (SIGGRAPH) 32 (2013).

[25] J. DeGol, M. Golparvar-Fard, and D. Hoiem, Geometry-Informed Material Recognition, in IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2016).

http://ruder.io/transfer-learning/
http://dx.doi.org/10.1109/ICCV.2015.304

	Paper
	Introduction to Convolutional Neural Networks
	Architecture Design
	Terrain Recognition
	Semantic segmentation over Classification
	Selection of Segmentation model
	Choice of hyper-parameters

	Terrain Roughness Estimation
	Unpooling over Fully Connected layer
	Up-projection block
	Hyper-parameters

	Strategies used in our model
	Transfer Learning
	Data Augmentation
	Median frequency balancing

	Datasets and Evaluation metrics
	Segmentation datasets
	Roughness from Depth Image
	Evaluation metrics
	Performance measure for Segmentation
	Error metrics for Roughness

	Bibliography

