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Chapter 9

Data validation and data quality
assessment
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7Graz University of Technology, Institut für Siedlungwasserwirtschaft und
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ABSTRACT
Once data have been recorded, data validation procedures have to be conducted to assess the quality of the
data, i.e. give a confidence grade. Furthermore, gaps may occur in time series and, depending on the
purposes, these can be given values by application of e.g. interpolation. Since both aspects are strongly
correlated, this chapter gives an overview on the main data validation and data curation/imputation
methods. Instead of offering exhaustive details on existing methods, this chapter aims at providing
concepts for most popular techniques, a discussion of their advantages and disadvantages in the light of
different cases of application, and some thoughts on potential impacts of the choices that must be made.
Despite involving mathematical methods, data validation remains a largely subjective process: every data
user must be aware of those subjectivities.

Keywords: Data curation/imputation, data quality assessment, data validation, interpolation.
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SYMBOLS
(Some symbols are used for different parameters; it should be clear from the context what is meant in a
specific case.)

a fitted parameter in the linear regression
A cross-sectional area (m2)
b fitted parameter in the linear regression
c constant in an ARMA (Auto Regressive Moving Average) model
d duration (month)
dRC maximum delay recommended between two verifications or calibrations (month)
dRM recommended duration between two maintenance procedures (month)
D sewer pipe diameter (m)
Dj Cook’s distance for point j
G test value for the Grubbs test
GQ,t+Δt gradient between two discharge values (m3/s/min)
Gv,t+Δt gradient between two velocity values (m/s/min)
GV1,t+Δt gradient between two values (V1) (various units)
GWL,t+Δt gradient between two water level values (m/min)
Gradientmin minimal gradient (various units)
Gradientmax maximal gradient (various units)
h water level (m)
hc hydraulic gradient (m/m)
i counter
I slope of a sewer pipe (m/m)
kst Manning-Strickler roughness coefficient (m1/3/s)
K quantity in the Mann-Whitney test
lu length of the wetted perimeter (m)
m number of elements in a time series
MSE mean squared error
n number of elements in a time series
N number of data points in a time series for the trend test
N(Δt,T) number of observations in T
NA number of data points available in a data set
ND number of data points labelled as ‘Doubtful’
ND-D number of data points labelled as ‘Doubtful’ after the final validation
ND-G number of data points labelled as ‘Good’ after the final validation
ND-U number of data points labelled as ‘Unsuitable’ after the final validation
Nequi(Δt,T) equivalent number of observations in T, eliminating redundant information
NE expected number of data points in a data set
NG number of data points labelled as ‘Good’
NM number of measured data points in a data set
NT number of tests applied to a data set
NU number of data points labelled as ‘Unsuitable’
p probability value (p-value) or ARMA model first parameter
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q ARMA model second parameter
Q discharge (m3/s)
Qt discharge value recorded at the date t (m3/s)
Qt+Δt discharge value recorded at the date t+ Δt (m3/s)
r residues in the linear regression
Rhyd hydraulic radius (m), defined as A/lu
R(y) rank of element y in a series (Mann-Whitney test)
s standard deviation of Vt during a time window w (various units)
t time (min, s) or Student t value
ti the number of subjects having the rank i (Mann-Whitney test)
T time series, i.e. pairs of (ti, xi) in a time window
Tr magnitude of the trend
u(V1) standard uncertainty of the value V1 (various units)
u(V2) standard uncertainty of the value V2 (various units)
u(V3) standard uncertainty of the value V3 (various units)
u(V1,t) standard uncertainty of the value V1 recorded at the date t (various units)
uMAX maximal acceptable standard uncertainty (various units)
vt velocity recorded at the date t (m/s)
vt+Δt velocity recorded at the date t+ Δt (m/s)
�V mean value of Vt during a time window w (various units)
V1 value 1 (various units)
V1,t value 1 recorded at the date t (various units)
V1,t+Δt value 1 recorded at the date t+ Δt (various units)
V2 value 2 (various units)
V3 value 3 (various units)
VI,i interpolated value at the step i (various units)
VLL,CR lower limit for the calibration range test (various units)
VLL,ER lower limit for the expertise range test (various units)
VLL,MR lower limit for the measuring range test (various units)
VLL,PR lower limit for the physical range test (various units)
Vmax maximum value of Vt in a time window w (various units)
Vmin minimum value of Vt in a time window w (various units)
Vt value recorded at the date t (various units)
Vt+Δt value recorded at the date t+ Δt (various units)
VUL,CR upper limit for the calibration range test (various units)
VUL,ER upper limit for the expertise range test (various units)
VUL,MR upper limit for the measuring range test (various units)
VUL,PR upper limit for the physical range test (various units)
w time window
WLt water level recorded at the date t (m)
WLt+Δt water level recorded at the date t+ Δt (m)
�x mean value of xi
xi observed values in the linear regression
Xk element number k in a time series X
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ŷi ith value of y for the fitted linear function
ŷi(j) ith value of y for the fitted linear function leaving out the jth observation in the

regression
z a time series or test value in the Mann-Whitney test
zq quantiles of the time series z
zmax maximum threshold value in the Mann-Whitney test
zmin minimum threshold value in the Mann-Whitney test
Z Z-value in the Z-test for outliers
Zmax threshold in the Z-test for outliers
α p-value for Type I error, level of confidence
β p-value for Type II error
γi polynomial coefficient in the AutoRegressive part of an ARMA model
γx weighing function for the autocorrelation function
Δt time step between two consecutive measurements (min)
ε(i) residuals at the step i (various units)
εi noise term at step i in an ARMA model
θi polynomial coefficient in the Moving Average part of an ARMA model
ρ autocorrelation function, Spearman’s test value, density (kg/m3)
ρp autocorrelation function for the process (for the window T )
σa standard deviation of a
σb standard deviation of b
σm standard deviation in the measuring data (various units)
σP standard deviation of the process (various units)
σr standard deviation of the residues (various units)
ξ(α/2) quantile for α/2
ψ(Δt, T, Tr) quantile value as defined by Equations (9.23) and (9.24)

Motivation anecdote ‘Disturbing lamppost’
After installing a Doppler flow meter, on some days a very clear signal was produced and on some
days very regular outliers occurred. After analysing a few weeks of data, it became apparent that
the outliers only occurred during working hours. This led to the discovery of some industrial
discharge of wastewater that interfered with the measuring equipment. Once this was
acknowledged the outliers could be safely imputed (in this case, by taking the average of the
two adjacent values).

An alternative measure could have been to install a measuring device that could handle the
specific type of wastewater without problems. The imputed data were given the tag ‘imputed’ in
the meta-data. A similar issue occurred with a water level sensor: twice a day an enormous
outlier occurred, this turned out to be caused by a defect in a lamppost located near to the
monitoring location.

Francois Clemens-Meyer
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9.1 INTRODUCTION
Data acquired from individual sensors and monitoring stations are prone to systematic and random
errors. There are many causes varying from instrumental/device errors, human failure, software bugs,
incorrect installations, discontinuities in data communication or power supply, electromagnetic
interferences, etc.

This implies that raw data obtained from any monitoring system are not 100% flawless, making a ‘blind’
use of them potentially risky. Avoiding misleading decisions based on faulty, non-verified data is perhaps
the most important reason why data should be carefully validated in any case (see the motivation anecdote).
Other reasons to conduct data validation are e.g. avoiding system/catchment misunderstanding, and
continuous maintenance and update of the monitoring system.

In addition, validating data on a regular and frequent basis, preferably in (almost) real-time modus, can
reveal underlying causes of incorrect or missing data, and hence allow an early-on action to prevent
undetected faulty recordings, and improve the maintenance protocols and tasks.

Furthermore, it can help to:

• Improve design and operation protocols.
• Detect failures of sensors and data communication.
• Identify errors which were man-made during installation and maintenance actions.
• In case of malfunctioning elements, preserve potential recourse claims involved.
• Detect and understand abnormal events that occurred at the monitoring location.

In the course of data validation, confidence grades are assigned to the subjected data, to ensure sufficient
data quality as required for their purpose. In other words, data validation is a goal-driven process:
required data quality changes according to the purpose of the subsequent data analysis. The level of
quality strived for is different for, e.g. calculation of annual fluxes to comply with regulation
obligations and real-time control of a complex system or process; data users may accept a lesser data
quality for the first goal. While continuing with those two goals, the delay between records and
validation is another key factor to take into account for the validation methods. If for annual fluxes data
can be validated on a weekly or monthly basis, real-time control requires online data validation. The
required methods depend on the purpose the data will be used for and the timeliness in which the
validation can be accomplished after the data had been recorded. Passively measuring and collecting data
without clear objectives and/or questions is not only inefficient but also makes the data validation
difficult (Lindenmayer & Likens, 2018).

Prior to stepping into data validation and quality assessment procedures, some general conventions are
introduced:

• First regarding data themselves:
○ A data point is a value recorded by a monitoring station from a given sensor.
○ This value can be raw (i.e. the raw data recorded by the system), ‘processed’ once the calibration
correction has been performed (see Chapter 7), or have ‘basic’ and ‘classical statistic’ validation
techniques applied once pre-validation and validation processes have been conducted.

• Then with respect to methods and procedures detailed in this chapter:
○ Data pre-validation is done by application of a sequence of basic procedures applied on corrected
data aiming at automatically pinpointing data points which can be erroneous.
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○ Data validation is done by application of a sequence of more or less advanced procedures (including
manual checks by experts) on pre-validated data.

○ Data quality assessment is the output of those two steps: a ‘validated’ data point is then
flagged with a colour (e.g. traffic light colour – green, orange or red) or a label (e.g. G for
good, D for doubtful or U for Unsuitable, i.e. poor data quality – not fitting for the given use or
purpose).

Data validation is about judging data quality in relation to the purpose the data are being meant to be used
for. The quality of data points can be judged by a number of criteria:

• Plausibility: data points seem consistent with the expected conditions.
• Consistency: there are no internal inconsistencies in the data, e.g. no data beyond the physical defined

interval of possible values.
• Accuracy: data points are too inaccurate and, therefore, meaningless.
• Auditability: this refers to the ability for users of the data set to obtain knowledge on the ‘history’ of

the data, i.e. information on e.g. correction, interpolations, etc. being done on the data and the
availability of meta-data on e.g. calibration and maintenance of sensors.

• Synchronicity: time stamps of measured data should be correct in relation to different global time
systems, e.g. UTC (Coordinated Universal Time) and, again depending on the purpose the data is
collected for, synchronized with associated sensor applications in the same network.

It is recommended to validate data as soon as possible after the measurements have been taken, for which an
interval of one week has proven itself in practice, since many available meta-data such as the prevailing
weather of the last seven days are mostly still mentally present.

In this sense, data validation is mostly done by computer software (see e.g. Mourad &
Bertrand-Krajewski, 2002) largely since the amount of data gathered is normally too huge for manual
validation. To date a 100% automatized data validation does not seem possible. What can be achieved,
however, is a subdivision in data quality: ‘fit for use’, ‘questionable quality’ or ‘unfit for use’, i.e. in
other words ‘Good’, ‘Doubtful’ and ‘Unsuitable’. Since standardized and general applicable automated
procedures are as yet unavailable, the assignment of those confidence levels to data points remains
highly subjective with respect to the different methods discussed in this chapter, machine learning
training data sets, annotating or labelling. The main challenge is to automate this subdivision in such a
manner that false negative and false positive outcomes are minimal, while at the same time keeping
the category ‘questionable quality’ as small as possible. The latter category represents data that may be
of use when looked into in more detail, combining domain and process knowledge with familiarity
with the system studied, the set-up applied and general engineering experience. Another very
important source of information in this respect are the meta-data, such as logbooks (see also Chapters
5, 6, 7 and 10) in which information can be found on maintenance activities and calibration
information for each measuring device. For this reason, it is of utmost importance during operation of
the measuring systems that this information is logged by the operator with the greatest care and
very promptly.

The main objective of this chapter is to make practitioners aware of the techniques that have been widely
demonstrated (Figure 9.1) to be useful and work in practice for sensor signal quality within the urban
hydrology context.
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This chapter reflects on data validation methods with a focus on urban drainage and stormwater
management (UDSM) applications. It is by no means intended to be exhaustive on the subject, as the
underlying methods find their roots in a vast and comprehensive research field in mathematics and are
widely applied while generic, exhaustive texts are readily available (e.g. ESS, 2018). After defining the
characteristics of ‘good data’, both basic and some ‘classical’ data validation routines with respect to
their purposes are presented.

After a brief review of the different approaches (Section 9.2), this chapter is devoted to the description of
the principles (Figure 9.1) of data validation of corrected data (i.e. after implementing calibration corrections
on the raw data):

• Pre-validation tests with basic (Section 9.3) and advanced (Section 9.4) data analytical techniques.
• Once each data point has been flagged for each test (according to the results of each test, Section

9.5.1), those flags or labels have to be concatenated (Section 9.5.2) in order to label the data point
(Section 9.5.4).

• The data quality representation (Section 9.6.1) and monitoring system analysis (Section 9.6.2) for
communication purposes.

• Section 9.7 aims at introducing some methods for data imputation, i.e. replace unsuitable data to
achieve some goals (e.g. calculated volumes or fluxes that require complete and equidistant time
series). This step, mandatory for some applications, is not really recommended when not needed to
avoid working with artificial (interpolated or imputed) data.

• Emerging techniques and methods are briefly introduced in Section 9.8.

This chapter does not aim at offering a complete guideline nor protocol for data validation: it is meant to be
an introduction to data validation in itself, a review of the main existing methods (including their advantages
and disadvantages) and a list of warnings regarding validation (a mandatory step in UDSMmonitoring, but
rather prone to bias).

Figure 9.1 Flow chart of the data validation and quality assessment procedures. Source: Mathieu Lepot
(TU Delft/Un poids une mesure).
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Key messages on data validation

• KM 9.1: Data validation is mandatory – never use the data without a careful check.
• KM 9.2: Data validation based on the separation of concerns: two steps – (i) pre-validation (unified

basic checks), (ii) goal-driven validation.
• KM 9.3: Purpose dependency: the results of the data validation depends on the anticipated use of

the data.
• KM 9.4: Subjectivity and reproducibility: despite there being numerous methods and protocols, data

validation remains a subjective process. Keep track of tasks performed.

9.2 CONCEPTS APPLIED IN DATA VALIDATION
9.2.1 What is data validation
Data validation is a process that determines if available data satisfy quality objectives (which have been a
priori agreed upon) and requirements defined by the anticipated use of the data, here in the context of urban
drainage and stormwater management. The process results in adding a quality indicator to each individual
data point based on objective criteria as far as possible.

This quality indicator ideally reflects both the correctness and the usefulness of the data point. Whereas
the correctness of a data point can be attributed to the physical meaning, the latter aspect indicates that there
is no ‘absolute’ metric for the quality of a data point. To a certain extent, the evaluation of whether a data
point is of high or poor quality depends on the purpose for which the data are to be used. Speaking in these
terms, the process of data validation combines (i) an objective, physically-based assessment and (ii) a
somewhat subjective perception of how confident the user can be that the measured data point reflects
‘reality’.

Example: In real-time control (RTC) applications, there is very little time between obtaining data and
using them, which implies that time for an extended validation of the data is limited at best. In such
cases, a minimal (if any) validation is performed, e.g.:

• Is the data point there?
• Is the data point within the expected range?

If both questions are answered positively, the data can be used for feeding the RTC algorithm; if one
question is negatively answered, the data point is omitted and a default action (in terms of RTC) is taken.
In such a situation, it is good practice to store data and the outcome of the two tests mentioned as it
allows for a posterior evaluation of the quality of the monitoring, and it may allow the future use of the
data for other applications.

Therefore, prior to setting up a protocol for data validation in a given case, case-specific quality levels
have to be agreed upon along with a method of organizing the meta-data (see Chapters 5 and 10 on this
subject along with Section 9.2.5) that are produced by the validation protocol. This furthermore implies
that, when starting a monitoring project, designing the data structure (see Chapter 5) essentially requires
considering the envisioned process for the data validation.
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9.2.2 How to quantify the quality of data
There are various ways of assigning confidence levels (i.e. quality flags) to individual data points as an
indicator for data quality. Practically, the quality assessment of a data point may range from a very basic
0/1 flagging or a more distinct traffic-light labelling ‘Good’, ‘Doubtful’, ‘Unsuitable’ (Table 9.1) to a
very refined system in which a wide range of specific qualifications can be added, e.g. attributed to a
specific anomaly type (see Table 9.2).

Do’s

• ‘Only recordings that have a value can be assessed regarding their quality. Keep a record of the fact
that there was amissed recording for as long as possible. Do not mix data quality assessment and data
curation.’

• ‘The interpretation of data regarding its quality can substantially be qualified through meta-data
information. Carefully document meta-data and associate them with data.’

• ‘Prior to assessing data quality, a thorough reflection ismandatory to ensure: (i) are the performed tests
useful to reflect likely dubious behaviour of data? and (ii) can all available data be used to conduct
individual tests?’

Differentiating data into just two states, good and poor quality (dichotomous flagging) may be
unambiguous and well-achievable for a machine, but insufficient for differentiation. For this reason,
often three levels of confidence, e.g. good-doubtful-unsuitable, are assigned, allowing for a more
distinguishing assessment. Still, the aspect when a data point is labelled doubtful can be somewhat
subjective. One labeller may consider an obvious outlier as doubtful whereas the other labeller clearly
labels it as unsuitable. Clear mind models or ‘gold standards’ need to be established to avoid subjectivity
and allow cross-comparison within one data set. The term ‘gold(en) standard’ stands for an external
criterion representing a kind of benchmark that is the best available under reasonable conditions.

Table 9.1 Example of a traffic-light-system for a gross quality assessment of a data point.

Primal label Shortened as Colour Description

‘Good’ ‘G’ Green Data point passed all validation tests

‘Doubtful’ ‘D’ Orange Data point is physically valid but somewhat
questionable when evaluated in a wider context

‘Unsuitable’ ‘U’ Red Data point is physically invalid or is definable
erroneous so that it cannot be used

‘Missing’ ‘M’ White or black Missing data point
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Defining a ‘gold(en) standard’ is a matter of consensus or opinion, not some kind of statistical property.
Whereas dichotomous flagging can be accomplished by a machine, tripartite scoring mostly involves
human assessment, i.e. expert knowledge. The general idea is to add relevant information to enhance the
probability of finding the cause of a poor data quality.

Automatized flagging of individual signals (no additional information) results in a 0/1 assessment.
Adding further information, i.e. extending it to a multi-signal analysis, allows tripartite scoring through
a machine.

One can argue about whether or not to include missing data points (‘M’) in the data quality assessment.
Strictly speaking, in a case where there is no measurement recorded, i.e. no data point available, the quality
cannot be evaluated. On the other hand, the indication and qualification of gaps in time series at which a data
point would have been expected, due to sensor failures, data communication outages, or erroneous data
formats allows for characterizing time series regarding their consistency and completeness. The
information on amount and distribution of periods at which no data is available may be decisive for the
subsequent use of the data, but also for the data validation itself (Section 9.3.6).

Data points labelled as ‘Unsuitable’ or ‘Doubtful’ can further be qualified according to the (likely) cause
of the less-than-ideal quality. A didactical example of such refined data quality labelling is given in
Table 9.2. Note that qualification of quality labels can be supported through operational information,
often referred to as meta-data. Meta-data, i.e. additional information on the sensor performance,
operation of periphery devices, maintenance actions, and changes to the monitoring environment, are
essential to interpret field data correctly (Section 9.2.5).

Authors suggest outputs of those tests: G, D or U. Those are only a suggestion and may or should change
according to the monitoring purposes, legal regulations and the expected data quality. However, those
suggestions are based on rather long experiences and we advise slight adaptations without completely
changing the tests and their outputs.

Table 9.2 Didactical example of advanced refinement of the
quality assessment of a data point. Further examples are given in
Leigh et al. (2019).

Minor
label

Meaning

A Sensor failure

C Trend

D Outlier

E Constant offset

F Time shift

G Value, lower bound of the valid range

H Value. upper bound of the valid range

I Low variability, persistently constant value,
freeze

J Imputed by application method x or y

K Wrong data format

M Missing time stamp; no data point available
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Data available?
• CL 9.1: Which? – Which meta-data are available? Catchment, sewer, sensor, maintenance data.
• CL 9.2: How? – How can we make use of this information? Run-off model to correlate catchment, rain

and discharge data.
• CL 9.3:Missing data? – Is there any data easily acquirable that could be used to conduct additional and

relevant tests?

Performed tests
• CL 9.4: Cover – Do the applied tests cover any likely behaviour of my data?
• CL 9.5: Complex situations – Is (are) there any situation(s) that could bias the output of a few applied

tests? Such as backflow effect, complex hydraulic geometry, etc.
• CL 9.6: Full use – Do the applied tests make full use of available data?

9.2.3 Subjectivity
The subjectivity in the process of data quality assessment is basically present in discriminating betweendata in
categories ‘Good’, ‘Doubtful’ and ‘Unsuitable’ as defined in Table 9.1. Without going into the discussion of
what ‘truth’ is and whether or not it can be known, ‘Good’ data is equivalent to ‘passed all validation tests’.

This implies that the range of tests a data point is subjected to has a stringency convincing the data user
that it is fit for its purpose in the case where the data point passes all these tests. But it does not automatically
imply that it therefore necessarily reflects the ‘truth’.

At the same time, one is striving for a data yield as high as possible, implying that the range of tests should
produce a small portion of false positives and false negatives. In other words, the number of data labelled as
‘Doubtful’ should be minimized, as this fraction of data points requires further attention to investigate the
cause of the imperfectness. This can be a very tedious job requiring domain knowledge, and in many cases
also knowledge and understanding of the actual situation in the system at hand (e.g. documented as
meta-data). Depending on the level of expertise and the solidity of the given information, different
answers can be expected when asking a group of experts about the quality of a data point. A certain
amount of subjectivity is introduced.

For instance, in the case where rehabilitation works are ongoing, this may result in abnormal sensor
readings that may be classified as being ‘Doubtful’, while recorded values actually represent the
(disturbed) process in reality. In the case where one is aware of such an event, the data may be useable
after all; otherwise, the data may remain classified ‘Doubtful’.

9.2.4 Automation of data validation
The example in the preceding paragraph nicely illustrates that it is likely that data validation cannot be 100%
left to computerized algorithms. One way or the other there seems always to be a need for an expert
judgement regarding the quality/useability of the data obtained. Having said that, it has to be added
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immediately that for practical purposes the application of software, i.e. some degree of automation of data
validation, is very favourable.

In principle, data validation can be done manually, which implies that trained individuals have to study
the raw data obtained and judge whether or not the data obtained are fit for purpose. Manual data validation,
however, has some serious drawbacks:

• It is very labour-intensive and therefore expensive.
• The criteria for accepting/rejecting data points are subjective and will result into a non-reproducible

assessment.
• For some purposes, e.g. RTC applications, the processing time is simply too long to be practically

applicable.

For these reasons, a certain degree of automated data validation is applied in practice. This may at least
relieve the workload, although applied schemes seem to show a variation of success. For example, the
validation scheme as proposed by Upton & Rahimi (2003) for validating data from tipping bucket rain
gauges proved to be very efficient: up to 90% of the anomalies proved to be correctly identified after
manually checking. However, when applying the same procedure to a grossly similar case, Schilperoort
(2011) found a percentage of only 60% of correctly identified anomalies. This reduced yield in the latter
case was caused by the huge amount of data missing due to data communication issues and the lack of
meta-data, the latter underlining the importance of keeping track of such additional information.

9.2.5 Meta-data
Meta-data is essential to interpret field data correctly. When trying to identify causes of data being classified
as ‘Doubtful’ or ‘Unsuitable’, the presence of additional information, i.e. meta-data, is vital. Ideally, this
information on sensor operation and maintenance actions is in standardized logbooks. Meta-data should
be collected systematically, i.e. formalized in individual categories, and continuously over time.

Meta-data information can comprise (non-exhaustive list):

• Sensor maintenance actions.
• Antecedent and last calibration results.
• Access to plans for and reports on construction works.
• Data from adjacent and/or related monitoring sites, e.g. rain gauges to discriminate between dry and

wet weather or the reading from a sensor showing overlap in its readings – see also Section 6.2 on
macro design.

• Weather reports, e.g. thunderstorms may cause loss of communication or damage caused by an
electromagnetic pulse (EMP).

• Development over time of the sensor performance; sometimes a problem may repeat, so using the
sensor history may hint at a (external) cause that induces the problem.

• Data on the performance of similar sensors (brand, production batch, etc.), this may reveal some
inherent issues with the device(s) used. This information may be used to upgrade the system when
replacing parts.

It is a managerial decision to what extent of detail one should go in gathering meta-data when operating a
long-term observation campaign, as these administrative tasks tend to expand (certainly in large bureaucratic
organizations). It is essential – not just against the background of an increasing degree of automation of data
handling – to foresee gathering information on the performance of the monitoring system as a whole and in a
systematic manner and for well-defined purposes only (Chapter 6). This implies man-hours spent on
maintenance, data analysis and validation are monitored as well. Such systems allow fine-tuning of the
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design and the operation of the monitoring system to ensure a certain level of data quality. The creation of
standard operational procedures (SOPs) for the documentation of all meta-data to be recorded is
recommended to ensure that the meta-data are documented as uniformly as possible and to reduce
subjective elements as much as possible.

9.3 BASIC CHECKS
There are numerous data validation methods, from very simple to very advanced ones. This section provides
an overview of the existing ones, their advantages, disadvantages, and limitations. The methods are divided
in two categories, the basic checks (Section 9.3) and the advanced validation ones (Section 9.4). The choice
of those tests is strongly dependent on what purpose(s) the data are collected for, the available skillset and
knowledge of persons in charge, and the delay between measurement and validation. All the methods
presented in this chapter are applied on data from calibrated sensors. Contrary to the methods discussed
in Section 9.4, the basic methods can easily be automated.

Thresholds

Most of the tests presented hereafter are based on thresholds. The output of each test is directly
dependent of the selected threshold(s). Careful attention must be paid to the threshold selection: the
output can be too pessimistic or too optimistic.

This warning is valid for everyone: from data provider, data curator to the data user. Always keep in
mind a famous quote from W.S. Churchill: ‘I only believe in statistics that I doctored myself’.

9.3.1 Test on plausibility
Plausibility tests using numerical criteria or based on common sense usually do not require significant
resources and are hence suitable for low-computation online validation.

9.3.1.1 Physical range
This is a first test, only based on physical boundaries of the measured phenomena: a water level at free
surface flow mode cannot be negative or higher than the diameter of a circular pipe, the temperature of
liquid water cannot be below 0 or above 100 degrees Celsius (at atmospheric pressure), rain intensity
cannot be negative, etc. If the data values are outside the physical range, they should be labelled as
‘Doubtful’ or ‘Unsuitable’ for this test. A value V1,t recorded at the date t successfully passes this test if
Equation (9.1) is verified.

VLL,PR ≤ V1,t ≤ VUL,PR (9.1)
where VLL,PR and VUL,PR are, respectively, the lower and upper limits of the physical range.

Example: In a circular pipe or 1000 mm of diameter, the water level values have the following threshold:
VLL,PR= 0 mm and VUL,PR= 1000 mm. If a recorded value (V1,t) is negative or higher than 1000 m,
Equation (9.1) is not verified and, therefore, this value is flagged as ‘Doubtful’ or ‘Unsuitable’ with
respect to this test on physical range (Figure 9.2).
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Limitations

The statement made in Section 9.3.1.1 for a single data point is certainly correct. However, if pressurized
flow may occur at the measurement location, piezometric water level sensors may give a water level
greater than the pipe diameter (i.e. the flow pressure at the measurement section). Even if this test is
rather easy to set up, it requires some expertise and knowledge about (un)likely conditions at the
measurement point.

9.3.1.2 Measuring range
This test is rather similar to the previous one, but based on the measuring range of each sensor. Sensors are
designed to measure and work over certain ranges of measurement or environmental conditions. If the
recorded value is outside the measuring range or has been recorded in unusual conditions, it should be
labelled as ‘Doubtful’ or ‘Unsuitable’ for this test (Equation (9.2)).

VLL,MR ≤ V1,t ≤ VUL,MR (9.2)

Figure 9.2 (a) water level data (blue) and physical range thresholds (red); (b) ‘Good’ (green) and ‘Unsuitable’
(red) data according to the physical range test. Source: Mathieu Lepot (TU Delft/Un poids une mesure).
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where VLL,MR and VUL,MR are, respectively, the lower and upper limits of the measuring range, i.e. they are
sensor dependent. To avoid ‘not good data’ for this test, the measuring ranges of the different devices have
to overlap.

Example: In the same pipe as in the previous example, the water level sensor has a measuring range between
50 mm and 500 mm (according to its specifications). The water level values recorded by this sensor have the
following threshold: VLL,MR= 50 mm and VUL,MR= 500 mm. If a recorded value (V1,t) is lower than 50 mm
(e.g. 30 mm) or higher than 500 m, Equation (9.2) is not verified and, therefore, this value is flagged as
‘Doubtful’ with respect to this test on measuring range (Figure 9.3).

9.3.1.3 Calibration range
This test is quite similar to the previous ones. A sensor is calibrated over a given range, from the minimum to
the maximum values of calibration standards. For this test also, if the value is outside the calibration range, it
should be labelled as ‘Doubtful’ or ‘Unsuitable’ for this test (Equation (9.3)).

VLL,CR ≤ V1,t ≤ VUL,CR (9.3)

Figure 9.3 (a) water level data (blue) and measuring range thresholds (red); (b) ‘Good’ (green) and ‘Doubtful’
(red) data according to the measuring range test. Source: Mathieu Lepot (TU Delft/Un poids une mesure).
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where VLL,CR and VUL,CR are, respectively, the lower and upper limits of the calibration range, i.e. calibration
standards dependent. To avoid ‘not good data’ for this test, the calibration standard values should cover the
full range of expected conditions.

Example: The water sensor used in the previous example has been calibrated from 100 (VLL,CR) to 400
(VUL,CR) mm. If a recorded value (V1,t) is outside those boundaries, it should be flagged as ‘Doubtful’
with respect to this test on calibration range (Figure 9.4).

9.3.1.4 Expertise range
This range test requires domain knowledge and knowledge of the system under study. Despite all the
previous checks, experts may judge that a value is doubtful if measured under certain conditions,
generally narrower than the ones given in the design specifications of a sensor (Equation (9.4)). As an
example, a Doppler probe can measure water levels in a range from 0 to 0.7 m, but experts may consider
that data cannot be fully trusted outside 0.1 to 0.4 m due to the intrinsic limitation of the probe and
acoustic attenuation of the signal.

VLL,ER ≤ V1,t ≤ VUL,ER (9.4)
where VLL,ER and VUL,ER are, respectively, the lower and upper limits of the expertise range.

Figure 9.4 (a) water level data (blue) and calibration range thresholds (red); (b) ‘Good’ (green) and ‘Doubtful’
(red) data according to the calibration range test. Source: Mathieu Lepot (TU Delft/Un poids une mesure).

Metrology in Urban Drainage and Stormwater Management: Plug and Pray342

Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/919175/9781789060119_0327.pdf
by TECHNISCHE UNIVERSITEIT DELFT user
on 01 September 2021



Example: Experience shows that the recorded values given by sensor are doubtful below 120 mm (VLL,ER)
and above 350 mm (VUL,ER). If a recorded value (V1,t) is outside those boundaries (e.g. 110 mm or 360 mm),
it should be flagged as ‘Doubtful’ with respect to this test on expertise range (Figure 9.5).

9.3.1.5 Gradient range
Time series give information on phenomenon dynamics. With some expertise, the usual dynamics of the
phenomena are known and can be used to validate or not the data. Time series showing no or too sudden
dynamics can be considered as doubtful. Given a value V1 recorded at two different dates (t and t+Dt),
the value V1,t+Dt could be considered as doubtful if one of the Equation (9.5) is verified.

GV1,t+Dt = V1,t+Dt − V1,t

Dt
. GradientMAX

V1,t+Dt = V1,t

GV1,t+Dt = V1,t+Dt − V1,t

Dt
, GradientMIN

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(9.5)

where GradientMAX and GradientMIN are, respectively, the maximum and minimum likely gradients for the
given phenomenon.

Figure 9.5 (a) water level data (blue) and expertise range thresholds (red); (b) ‘Good’ (green) and ‘Doubtful’
(red) data according to the expertise range test. Source: Mathieu Lepot (TU Delft/Un poids une mesure).
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Example: Experience shows that the hydraulic dynamics of the catchment barely ever exceed 10 mm/min
for the rising part of a storm event and are, in most cases, below 2 mm/min for the declining part
(Figure 9.6).

Assuming a Dt equal to 2 min, the difference (V1,t+Dt − V1,t) should not be higher than 20 mm when the
flow rises or be lower than 4 mm when the flow decreases. Otherwise, the value should be flagged as
‘Doubtful’. As an example, the following couples (V1,t+Dt,V1,t) will flag V1,t+Dt as ‘Doubtful’:
(160,190), (50,45) and respectively (70,70) – for these couples the gradients are, respectively, 15, −2.5
and 0 mm/min.

9.3.2 Test on consistency
Consistent data are logical and do not contradict themselves. Inconsistencies are usually caused by gross
errors (DWA, 2011).

9.3.2.1 Comparison between redundant recordings (signal redundancy)
If, as advised, a monitoring station has redundant sensors to measure the same type of information (e.g.,
water level, velocity, etc.), each value can be compared to the other ones in order to identify if one or a

Figure 9.6 (a) water level data (blue) and gradient range thresholds (red); (b) ‘Good’ (green) and ‘Doubtful’
(red) data according to the gradient range test. Source: Mathieu Lepot (TU Delft/Un poids une mesure).
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few of them are too different from the other ones. Given three measured values V1, V2 and V3 and their
associated standard uncertainties u(V1), u(V2) and u(V3), the value V1 can be considered as doubtful if it
is significantly different from the other ones, i.e. if V1 satisfies the subsequent three Equation (9.6).

|V1 − V2| , 2
�����������������
u2(V1) + u2(V2)

√
|V1 − V3| ≥ 2

�����������������
u2(V1) + u2(V3)

√
|V3 − V2| ≥ 2

�����������������
u2(V3) + u2(V2)

√

⎧⎪⎨
⎪⎩ (9.6)

This test requires at least three values. If there are only two, the test is just able to say that both values are
significantly different, without pinpointing which one might be wrong. This test is applicable on recorded
values or calculated values, such as water levels, velocities and discharges calculated from those two.

Example: At the samemonitoring location, and while using the uncertainty calculation methods presented in
Chapter 8, three water levels are recorded with known uncertainties: V1= 50 mm and u(V1)= 3 mm, V2=
48 mm and u(V2)= 2 mm and V3= 62 mm and u(V3)= 4 mm. The three Equation (9.6) are verified: V3 is
flagged as ‘Doubtful’ while V1 and V2 pass the consistency test, i.e. are flagged as ‘Good’ (Figure 9.7).

9.3.2.2 Dynamic consistency
As an example, the dynamic behaviour of water level, velocity and discharge should be consistent:
under standard condition, e.g. when no downstream effects occur, if the water level increases, the
velocity increases and the discharge too. Consistencies between gradients could be checked to
identify potentially doubtful data. While reusing the same notation as in Equation (9.5) for this example,
i.e. GWL,t+Dt, Gv,t+Dt and GQ,t+Dt being the gradients for water level, velocity and discharge, the velocity
can be considered as doubtful if Equation (9.7) are verified.

(GWL,t+Dt . 0 and GQ,t+Dt . 0) or (GWL,t+Dt , 0 and GQ,t+Dt , 0)
(GWL,t+Dt . 0 and Gv,t+Dt , 0) or (GWL,t+Dt , 0 and Gv,t+Dt . 0)
(Gv,t+Dt , 0 and GQ,t+Dt . 0) or (Gv,t+Dt . 0 and GQ,t+Dt , 0)

.

⎧⎨
⎩ (9.7)

The potential combinations of such tests are endless and too site specific to draft an exhaustive list here.

Figure 9.7 Comparison between absolute difference and their uncertainties (with 95.4% confidence level).
Source: Mathieu Lepot (TU Delft/Un poids une mesure).
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Example: Figure 9.8 presents an example of such a test. The gradients for water level, velocity and discharge
data are plotted at the top (Figure 9.8a). Based on sign analysis (Equation (9.7)), data are then labelled as
‘Good’ or ‘Doubtful’ according to this test (Figure 9.8b).

9.3.2.3 Time stamp consistency
Measurement data always have a time reference, as each individual measurement point has been observed
and recorded at a specific time. If measurement data are recorded at a regular time interval (e.g. eachminute),
the distance between two consecutive time stamps is equal. However, depending on the quality of hard- and
software installed, an expected equidistance might be interrupted, resulting in irregular time series causing
loss of information. Irregular time series show unexpected time gaps or even different measurement data
assigned to an identical time index.

Testing the time stamp consistency of measurement data requires knowledge of whether the signal is
expected to be equidistant or have an irregular interval, and this must be communicated before the
measurement is under operation. Estimating the correct periodicity after data has been collected would
otherwise require statistical tests to be applied.

Nowadays, monitoring stations tend to measure and record at fixed and regular time intervals. However,
irregularly-recording measurement stations are still maintained, e.g. to save battery life when remotely
installed. Regular time changes due to daylight saving taking place twice a year can be a further cause of
time stamp inconsistencies. If possible, these should be avoided by, for example, storing the measured
data uniformly with a global time system, e.g. UTC (Coordinated Universal Time).

9.3.3 Test on accuracy
If a value is too inaccurate, i.e. if its standard uncertainty is higher than a given threshold adapted to its future
use, it should be labelled as ‘Doubtful’ or ‘Unsuitable’ (Equation (9.8)).

u(V1,t) ≤ uMAX (9.8)
where u(V1,t) is the standard uncertainty in the value V1,t and uMAX is the threshold of the uncertainty. This
test can be extended to two thresholds, one for ‘Doubtful’ and another one for ‘Unsuitable’. This rather basic
test is sensitive to the selected threshold, which is sensor specific and could either be absolute or relative.

Given certain standards, by law or for the final use, a value can be labelled as D or B if there is no
uncertainty associated.

Example: At the same monitoring location, a value V1,t= 67 mm is recorded by a water level sensor. Once
the uncertainty calculations are done, u(V1,t) is equal to 3 mm (see Chapter 8). Given a uMAX of, e.g., 5 mm,
V1,t is flagged as ‘Good’ (Figure 9.9).

9.3.4 Test on auditability
Although the term auditability is mostly used in accountancy, the principle of trackability of what
‘happened’ to a measured parameter value can be transferred to monitoring projects. In the end, the
product that a monitoring project has to deliver is data of a known and well described quality. To be able
to implement the underlying principle of quality control – ‘collect data on the manner in which the
procedures and protocols in an organization are applied and learn from evaluating them’ – to monitoring
projects, the following aspects are to be considered:
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(a)

(b)

Figure 9.8 (a) gradient for water level, velocity and discharge time series; (b) output of the test based on
dynamic consistencies. Source: Mathieu Lepot (TU Delft/Un poids une mesure).
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• Formulate clear procedures and protocols with respect to data storage, postprocessing and
authorization levels of personnel working with or on the data.

• Make sure meta-data is kept accurate and up to date.
• Be sure to have back-ups of the ‘raw’ data at all times, this ensures being able to ‘redo’ postprocessing

when in the course of time protocols or procedures applied earlier turn out to have flaws (e.g. some
bug in a piece of computer code).

Testing on auditability may well be part of a regular/general quality systems check in an organization which
not only tests the applicability and application of all protocols and procedures but also the motivation and
awareness of people working with them.

9.3.4.1 Calibration
As introduced in Chapter 7 on calibration methods, sensors need to be calibrated regularly. If, for some
reason, the data have not been corrected for calibration (no calibration has been done, the data of the
calibration correction are not recorded or stored), i.e. the data are raw, those data points should be
considered as ‘Unsuitable’.

Example: If there is no calibration correction (Chapters 7 and 8), which can be identified by either the
absence of corrected data, of calibration correction parameter or (but not always) no difference between
the corrected and the raw values, this value has to be flagged as ‘Unsuitable’ according to the calibration test.

9.3.4.2 Latest calibration
The duration since last verification or calibration might be used for data validation. Given a sensor that
requires a monthly calibration, the data recorded between 1 and 2 months after the latest calibration
could be considered as ‘Doubtful’ for a longer delay. Given the maximum delay recommended between

Figure 9.9 Comparison between absolute difference and their uncertainties (with 95.4% confidence level).
Source: Mathieu Lepot (TU Delft/Un poids une mesure).
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two verifications or calibrations (dRC), the duration since the last maintenance (d) should respect one of
Equation (9.9):

d ≤ dRC

dRC , d ≤ 2× dRC
d . 2× dRC

(9.9)

The first test leads to data flagged as ‘Good’, the second one to ‘Doubtful’ and the third one to
‘Unsuitable’. This refers to the ability for users of the data set to obtain knowledge on the ‘history’ of the
data, i.e. information like corrections, interpolations, etc. being done on the data and the availability of
meta-data on calibration and maintenance of sensors.

Example: Manufacturer or user expertise on a water level sensor advises a verification (and a potential
re-calibration) every month. If the value has been recorded within a month since the last verification (or
re-calibration), it is flagged as ‘Good’. If this duration is longer than a month but shorter than 2 months,
the value is flagged as ‘Doubtful’. The flag is ‘Unsuitable’ if this duration d exceeds 3 months (Figure 9.10).

9.3.4.3 Maintenance
Sensors and data acquisition systems require maintenance. During maintenance or calibration, manually or
automatically recorded data points should be considered as ‘Unsuitable’. If there is no maintenance
operation log in the system (automatic or logbook), this test cannot take place.

Example: A water level sensor has been cleaned between 2:00 and 2:30 pm. All the data recorded between
those hours are flagged as ‘Unsuitable’ because the measurements have been disturbed by the cleaning
actions. Outside this time slot, the values are considered as ‘Good’ according to this test.

Figure 9.10 Test based on the duration since the last calibration. Source: Mathieu Lepot (TU Delft/Un poids
une mesure).
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9.3.4.4 Last maintenance
Maintenance has to be done on a periodic basis. According to manufacturer or expert recommendations, the
delay between two maintenance activities should not exceed a certain duration dRM for a given sensor.
Therefore, if the data point has been recorded within this delay, it could be considered as ‘Good’,
between this and twice this duration as ‘Doubtful’, and beyond twice this duration as ‘Unsuitable’
(Equation (9.10)).

d ≤ dRM
dRM , d ≤ 2× dRM
d . 2× dRM

(9.10)

Those durations and thresholds can be shortened based on expert judgements and site knowledge. It is not
recommended to extend both values (durations and thresholds).

Example: A velocity sensor has to be cleaned every two months according to the manufacturer
recommendations or your expertise. If the value has been recorded within 2 months since the last
cleaning operation it is flagged a ‘Good’. If this duration is longer than 2 months but shorter than 4
months, the value is flagged as ‘Doubtful’. The flag is ‘Unsuitable’ if this duration d exceeds 4 months.

9.3.5 Test on synchronicity
Depending on their quality, quartz timers of measuring systems tend to drift (e.g. Leutnant et al., 2015).
In order to guarantee the accuracy of time stamps, measurement devices should be regularly
synchronized, either automatically with an available time-server or manually in the case where an
automated synchronization is not possible. As in urban drainage normally dynamic processes are
studied involving an interest in the relation between e.g. rainfall and discharge, the mutual
synchronicity between time series obtained from a monitoring network is of key importance.
Depending on the goal of the analysis, a certain time shift between time series may be tolerable.
However, preferably all individual series will share the same time basis and have an equal time
interval between readings (temporal equidistance). The former is particularly important to avoid
complications when analysing interrelations between different time series. An important, yet trivial,
issue to address related to synchronicity is to make sure that, when daylight saving time is taken
into account, all sensors in the network switch at the same moment in time, which in practice is not
always easily achieved. Interpretation of time series can be significantly hampered by a disparate
adjustment of the time stamps.

Deficiency analysis can be accomplished by a fragment-wise application of cross-correlation and/or the
method of least squares. Sensor networks with wireless data transmission inherently ensure synchronicity
between sensors as they synchronize regularly with an external time reference, such as the clock of the
central computer used for data acquisition, a time-server via Network Time Protocol (NTP), through
GPS signalling, or via DCF77. With DCF77, the legal time is transmitted from Frankfurt, Germany,
across Europe according to the standards ISO 8601 or DIN EN 28601. DCF77 is registered on the
international frequency list of the ITU (International Telecommunication Union) as ‘Fixed Service’ with
the carrier frequency 77.5 kHz and the bandwidth 2.4 kHz.
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9.3.6 Test on completeness (degree of incompleteness)
To assess the usefulness of a set of measurements, it may be interesting to see how complete a time
series is in terms of missing recordings (Figure 9.11). Depending on the sensors, the data
communication and the operational environment at the monitoring location, the measuring system
may be subject to outages at which an instance is not measured, not recorded or not transmitted. A
missing recording, i.e. a gap in the time series, is the consequence. Considered over a longer period,
the number of missing records may accumulate to a considerable amount. However, quite a few
advanced data validation methods rely on gapless data series – they would not work with a single
inconsistency in the time vector.

But depending on the distribution of missing recordings, e.g. small but frequently occurring gaps or few
but large gaps, the missing data points may be curated or not (Section 9.7). Therefore, a posterior assessment
of a data series with regard to degree of completeness and distribution of missing records is relevant. Even
better, real-time data validation triggers an alarm in the case where recordings do not arrive at central servers,
allowing ad hocmaintenance to be carried out. Assessment can be accomplished by analysing the plot of the
gap distribution, i.e. number of days (% of total monitoring period) for which a certain accumulated gap
length per day/hour is exceeded. Log(x) may be more favourable for a visual inspection. This test
delivers two quality flags: ‘Good’ or ‘Missing’. Note that the degree of completeness of a data set can
change throughout the validation process, as some data that is identified as implausible may need to
be excluded.

9.3.7 Summary of main basic tests available for data pre-validation
Table 9.3 proposes a non-exhaustive list of basic tests. Those tests are threshold dependent: the test
outputs are sensitive to the chosen thresholds. The output can be ‘Good’, ‘Doubtful’, ‘Unsuitable’ or

Figure 9.11 Heatmap that illustrates the consistency (here: degree of completeness) of various urban
hydrology monitoring series. Source: Eawag. Web-based dashboard produced with the plotly app. Data:
www.uwo-opendata.eawag.ch; Dashboard: Christian Förster (Eawag).
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‘Missing’ depending on the purposes, i.e. the required selectivity. Those tests can be combined to create
new ones.

Selection of basic tests

• I 9.1: Coverage – Did the selected and applied tests cover all plausible ‘Doubtful’ behaviour of the
corrected data?

• I 9.2: Update – Update, add but never withdraw tests from the list. ‘Doubtful’ behaviour can occur for
numerous reasons. The list proposed (Table 9.3) is rather extended but is not exhaustive. Experiences
will lead to the creation of new site- and sensor-specific tests.

• I 9.3: Thresholds – With the given warning at the beginning of this section, the authors advise a
sensitivity analysis is conducted on the selected thresholds to ensure robustness in data
quality assessment.

• I 9.4: Redundancy – Be aware that a few tests can identify data as ‘Unsuitable’ (U) or ‘Doubtful’ (D)
several times but for the same reasons. Please check on this possibility and pay careful attention
during the concatenation (see Section 9.5).

9.4 APPLIED CLASSICAL METHODS
This section presents some more advanced methods than Section 9.3. Those methods still aim at flagging a
data point according to different tests. The main difference to the previous section comes from the
complexity of those methods, either to perform the test or to interpret the result that leads to a certain
flag. The methods presented hereafter remain strongly recommended, but they require some
mathematical skills and, more importantly, a close evaluation of the results of those tests. At the
same time, the examples given and the codes supplied are to be regarded as material to be used for
illustration, and/or educational purposes as ‘real world’ applications are far more complicated and
more advanced. As data validation is an activity in many fields of (scientific and industrial)
application, the development of mathematical methods and their implementation into software is a field
of science in itself. The interested reader is referred to the vast library of literature on the subject (e.g.
Hamilton, 1994).

As with most classical statistically based methods, time series analysis implicitly assumes certain
characteristics of the time series (stationarity, absence of autocorrelation and certain assumptions
regarding the distribution of the data). These requirements are normally not (all) met in time series
obtained in UDSM monitoring. In addition it is not always straightforward to manipulate the series in
such a manner that the methods become applicable in a strict mathematical sense. Nevertheless, when
taking into account these limitations, a naïve application of these methods can be effective when the
results are used as a pre-filter for reducing the workload that comes with visual inspection by an expert.
The latter aspect may be relaxed in the future by application of pattern recognition technology or other
implementations of machine learning (ML).

Hereafter the detection of outliers, step and linear trends is described in a simple manner, just to illustrate
the basics of these methods and their application. In practice much more complicated algorithms need to be
applied but discussing them in detail is outside of the scope of this section.
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A basic working sequence could be:

• Step 1: Perform basic validation methods.
• Step 2: Perform detection of outliers.
• Step 3: Detect step trends.
• Step 4: Detect linear trends.
• Step 5: Apply advanced methods.
• Step 6: Try to find the cause of data that do not pass the checks.
• Step 7: Decide what to do with discarded data points and how to proceed with data analysis.

Steps 2, 3 and 4 will be discussed in some detail while the more advanced methods are discussed in a more
superficial manner, with reference to the emerging literature on e.g. ML techniques.

Table 9.3 Possible basic tests for data validation. Output: G, Good, D, Doubtful, U, Unsuitable andM,Missing.

Category
(Section)

Name (Section) Output Advantages Disadvantages

Plausibility
(9.3.1)

Physical range (9.3.1.1) G Easy to set up Based
on common sense

Basic
U

Measuring range
(9.3.1.2)

G Easy to set up Limits
the sensor choice

Requires overlapping ranges
D

Calibration range
(9.3.1.3)

G Easy to set up Depends on calibration
standard rangesD

Expertise range
(9.3.1.4)

G Easy to set up Requires some expertise,
site and sensor specificD

Gradient range (9.3.1.5) G Easy to set up Sensitive to noisy data and
gapsD

Consistency
(9.3.2)

Redundancy (9.3.2.1) G Easy to set up Requires three
measurementsU

Dynamics (9.3.2.2) G Easy to set up Requires expertise, sensitive
to special conditionsU

Time step (9.3.2.3) G Easy to set up Requires time stamp
U

Accuracy
(9.3.3)

Accuracy (9.3.3) G Easy to set up once
uncertainty is known

Sensitive to the threshold
U

Auditability
(9.3.4)

Calibration (9.3.4.1) G Easy to set up Requires proper site book to
record maintenanceU

Last calibration (9.3.4.2) G Easy to set up Requires proper site book
and calibration dataD

U
Maintenance (9.3.4.3) G Powerful tool Not easy to set up

U

Synchronicity
(9.3.5)

Synchronicity (9.3.5) G Easy to set up Requires time stamp and a
referenceD

Completeness
(9.3.6)

Completeness (9.3.6) G Easy to set up ‘Good’ data just means data
point existsM
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9.4.1 Detection of outliers
Outliers are data points that deviate significantly from the data points in their close vicinity (in time or space,
the discussion here is limited to the time dimension). Outliers can occur due to e.g. (i) human error, (ii) some
unforeseen process, e.g. clogging of a sensor, maintenance activities interfering with a sensor functioning, or
(iii) erroneous sensor readings that are not filtered through on-board processing at the sensor and/or after
applying basic validation (Section 9.3). Therefore, it should be kept in mind that data points identified as
‘outliers’ are not necessarily incorrect (e.g. when situation ii has occurred).

Outlier detection has become almost a science in itself. Many methods have been developed and applied
in a wide range of application fields, and depending on system and signal characteristics, one or another
may be preferential. However, identical methods utilized in different application fields are likely to be
parameterized differently. Given our application field, UDSM, chosen methods and thresholds,
confidence levels, etc. may have to be made adaptable between, e.g., storm and dry weather conditions.

In UDSM the main cause of outliers is likely to be found in malfunctioning equipment, so methods
selected for outlier detection are logically chosen to ‘catch’ specific behaviour with this type of cause.

The interested reader is referred to literature, e.g. Barnett & Lewis (1996) provide a very comprehensive
book on outliers in data sets and methods for detecting them, and Iglewicz & Hoaglin (1993) provide an
exhaustive text on the fundamentals and application of a wide range of techniques for outlier detection.
Here the discussion is limited to only a few of them that are found to be useful for time series in the
UDSM context. As stated before, for most of these techniques some implicit assumptions are made:

• The data are equidistant in time (hence the importance of validating time stamps and synchronicity).
• There are no data gaps (no missing data).
• Time series are (piecewise) stationary.
• Uncertainties are assumed to be normally distributed.

A logical next step to take, once an outlier is detected, is to decide to either remove, correct or keep the data
point. Simply removing the data point may hamper the application of analysing tools, correcting implies the
need to ‘make up’ information while keeping it implies knowingly using wrong data. The following steps
are distinguished:

• Detection of outliers (discussed hereafter).
• Deciding what to do with them (Section 9.7).
• Data curation (Section 9.7).

9.4.1.1 Z-test for outliers
A first, very basic and simple to implement test for the presence of outliers is the so-called Z-test, in which
for each data point Vt a value is added according to Equation (9.11):

Zt = Vt − �V

s
(9.11)

where �V and s are, respectively, the mean value and the standard deviation of a shifting time window
w(Vt, . . . ,Vt+nDt).

This indicates the quotient between the absolute difference between the recorded value Vt and the
average value in a time window w covering a shifting subset of the time series (Vt, . . . ,Vt+nDt), and the
corresponding standard deviation. The window size to be applied depends on the system characteristics
and needs to be individually estimated. The test statistics of the Z-test are defined for the hypothesis H0
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(no outliers in the data set) against H1 (at least one outlier is present). A comprehensive text on hypothesis
testing is given in Wilcox (2016).

In the Z-test, a Gaussian probability distribution is implicitly assumed, which implies that when Zt . 2.5
there is a, 1% probability that the corresponding reading Vt is not an outlier. Choosing an adequate
threshold is a matter of preference. When setting the threshold very low (e.g. 0.5), this will result in
many ‘false alarms’ leading to an increased effort (‘manual labour’) to decide whether to keep the data
entry or not. On the other hand, when setting the threshold too high (e.g. .4), the risk of missing
outliers increases, increasing the risk of obtaining incorrect information.

Another practical issue is that when using small time series (or a small shifting window), the Z value
obtained can be misleading as the maximum value is limited to (n− 1)/n0.5, e.g. for n= 10 the
maximum value is 2.84. When a threshold of 3 is applied, no outlier will be detected. Therefore, one is
well-advised to carry out some test runs on available data sets and evaluate the effectiveness of a chosen
threshold. In this process, information is obtained on the amount of time and means needed to manually
process the indicated outliers against the improvement of the information which will be obtained.

9.4.1.2 Grubbs test
In the two-sided Grubbs test (Grubbs, 1969), the underlying hypothesis is the same as for the Z-test, the test
value G is defined by Equation (9.12):

G = max|Vt − �V |
s

(9.12)

Testing whether the minimum is an outlier is tested by Equation (9.13):

G =
�V − Vmin

s
(9.13)

And, correspondingly, for the maximum value (Equation (9.14)):

G = Vmax − �V

s
(9.14)

At a significance level α the test statistics (the hypothesis H0, i.e. no outlier) is rejected if:

G .
n− 1��

n
√

��������������������
t a
2n , n− 2

[ ]2

n− 2 t a
2n , n− 2

[ ]2

√√√√√√ (9.15)

in which tα/2n,n−2 is the critical value of the Student t distribution with n− 2 degrees of freedom. For the
one-sided test (for maximum and minimum values) the significance level is α/n – functions for Student t
values in Microsoft Excel® and Matlab® are given in Table 8.2).

9.4.1.3 Cook’s distance
Another, often applied, metric to decide whether or not a specific measuring result is an outlier is known as
the Cook’s distance. Basically, the Cook’s distance (Equation (9.16)) is a metric for the ‘influence’ an
individual data point has on the ‘fit’ of a regression model for the time series of (monitoring) data. The
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test is based on the linear regression (see also Section 9.4.2.1):

Dj =
∑i=n

i=1 (ŷi − ŷi( j))
2

MSE
(9.16)

The subscript i(j) implies that when i= j, the element is omitted. MSE is defined by Equation (9.17):

MSE =
∑i=n

i=1

(ŷi − yi)2/(n− 1) (9.17)

A generally accepted criterion for detecting outliers is that an individual observation has a Cook’s
distance Di . 3�D with �D the mean value for Dj (j= 1:n), with n the number of observations in the
time series.

9.4.1.4 Example of Cook’s distance, Z and Grubbs tests
An example of a hydrograph is shown in Figure 9.12, where 10 apparent outliers are introduced. To illustrate
the effect of choosing thresholds in the Z-test, the Grubbs test and the Cook’s distance, this hydrograph is
used as a test. Figure 9.13 shows the number of outliers detected using the Z-test as a function of the
Zmax value.

Figure 9.12 Example of a hydrograph with 10 artificial outliers. Source: Francois Clemens-Meyer
(Deltares/TU Delft/NTNU).
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As can be seen in Figure 9.13, the correct result (10 outliers) is only achieved for a limited number of
combinations of window size and Zmax, a window size of 50 minutes seems to be a robust choice, as the
outcome is constant for Zmax values .3.1. On the other hand, for window sizes .110 the number of
detected outliers seems to be too high regardless of the Zmax value chosen.

Figures 9.14, 9.15 and 9.16 show some detailed results from some combinations of window size
and Zmax.

It has to be emphasized that these graphs are only valid for the examples shown. The settings of the test
parameters depend on the signal used, the defined rigidness in terms of false positives and false negatives,

Figure 9.13 Number of outliers detected by the Z-test as a function of window size and Zmax. Source:
Francois Clemens-Meyer (Deltares/TU Delft/NTNU).

Figure 9.14 Detected outliers for window size= 70 and Zmax= 2.0. Source: Francois Clemens-Meyer
(Deltares/TU Delft/NTNU).
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and the subjective preferences of the user of the data. Nevertheless, as a rule of thumb, a Zmax value of 2.5
seems a good starting point, with respect to window size and the range of values between the relevant
characteristic timescales of the processes (Section 6.3).

Figure 9.16 shows the performance of the Grubbs test on the hydrograph shown in Figure 9.12. The
Grubbs test performs well for this example for a window size of 70 and for a range of significance levels
(α. 0.015). The test is sensitive to the window size, as for a window size of 90, the test overpredicts for
any confidence level. Figure 9.17 shows some detailed results for the Grubbs test.

Finally, the hydrograph shown in Figure 9.12 was subjected to the Cook’s distance test. Figure 9.18
shows the dependency of the result on the threshold. The Cook’s distance test proves to produce reliable
results for a wide range of threshold values. Threshold values between 2 to 7 times the mean values
result in the correct identification of all outliers. Figure 9.19 shows an example of the detailed results of
the Cook’s distance test.

Figure 9.15 Detected outliers for window size= 50 and Zmax= 3.2. Source: Francois Clemens-Meyer
(Deltares/TU Delft/NTNU).

Figure 9.16 Performance of the Grubbs test as a function of window size and significance. Source: Francois
Clemens-Meyer (Deltares/TU Delft/NTNU).
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9.4.2 Detecting trends and sensor drifts
A trend in a time series is basically a variation of the process mean values in time and/or space.

A linear trend in a time series may point to either, (i) a change in the process under study, or (ii) zero drift
of a sensor. Step trends (a sudden change in the mean value) may hint at (i) a change in reference level of a
sensor (e.g. due to a wrong reinstallation after maintenance), or (ii) a change in the system studied (e.g. a
sudden blockage of a conduit in a sewer system due to collapse or a closure during construction activities).

Methods to detect such trends are numerous (e.g. Gray, 2007). It is noted however that the detectability of
(linear) trends depends on the variability of the process monitored, the uncertainty in the measuring system
applied and the sampling frequency.

Figure 9.17 Example of the introduction of 3 local minima (very close together) falsely identified as outliers by
the Grubbs test. Source: Francois Clemens-Meyer (Deltares/TU Delft/NTNU).

Figure 9.18 Performance of Cook’s distance test. Source: Francois Clemens-Meyer (Deltares/TU
Delft/NTNU).
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Lettenmaier (1976) approaches trend detectability in terms of statistical tests, with a null hypothesis H0

stating ‘no trend is present’ against the hypothesis H1 ‘a trend did occur’. Based on the data, either one of
these hypotheses is rejected or accepted.

In statistical testing on accepting or rejecting a hypothesis, the relation between type I and type II errors
and confidence and power are shown in Table 9.4. Emmert-Streib & Dehmer (2019) provide a review on
hypothesis testing in general along with methods applied.

Obviously, the values for both α and β should be as small as feasible. As these values, apart from choices
made like measuring frequency and uncertainty in the measured values, depend largely on the process
studied, the settings chosen for acceptance limits of the test outcome (like a maximum value for α) can
therefore never be regarded as generic.

(a)

(b)

Figure 9.19 Results of Cook’s distance test for the example hydrograph in Figure 9.12. (a) hydrograph with
detected outliers; (b) values of Cook’s distance for each individual data point in the series. Source: Francois
Clemens-Meyer (Deltares/TU Delft/NTNU).
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The discussion here is limited to two types of trends that occur frequently in UDSM, namely:

• The step trend (typically occurring after e.g. misplacing a water level sensor after maintenance).
• A linear trend, often attributable to sensor drift.

Most algorithms for trend detection are sensitive to the presence of outliers, therefore one is well advised to
first analyse for outliers prior to analysing for the presence of trends.

9.4.2.1 Linear regression
A very simple method to detect a linear trend is by fitting a linear function through the measuring data using
the relation: y= ax+ b.

The values of a and b can be obtained using the method of maximum likelihood estimates, which, when
assuming a Gaussian distribution for the residues, boils down to the classical ordinary least squares method.

The least squares estimators for a and b are:

â =
∑i=n

i=1(xi − �x)(yi − �y)∑i=n
i=1 (xi − �x)2

b̂ = �y− â�x

⎫⎪⎬
⎪⎭ (9.18)

Giving the ‘fitted’ relation:

ŷ = âx+ b̂ (9.19)
the residuals (difference between measured values and fitted results) are defined as:

r = y− ŷ (9.20)
Assuming that the variance of the residuals is constant, their variance is estimated by:

s2
r =

∑i=n
i=1 r

2
i

n− 2
(9.21)

The standard deviations in the estimated parameter values follow from Equation (9.21) (neglecting
covariance terms for the sake of simplicity – see Section 7.6.4.2 for more detail):

sâ = sr

����������������
1∑i=n

i=1 (xi − �x)2
√

sb̂ = sr

��������������������
1
n
+ �x2∑i=n

i=1 (xi − �x)2
√

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9.22)

Table 9.4 Accepting or rejecting a hypothesis.

Test indication H0 Test indication H1

‘Real’ state H0 Confidence= (1−α) Type I error p= α

‘Real’ state H1 Type II error p= β Power= (1−β)
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When |â| . 0, this may indicate there is a linear trend in the time interval studied. Or, more formally, the
hypothesis tested is ‘H0: there is no linear trend present’ against ‘H1: there is a linear trend present’. This
essentially boils down to deciding whether or not the value of |â| deviates significantly from zero. For
this, the Spearman’s ρ test is used, as will be discussed later.

9.4.2.2 Relation between trend, window length, process characteristics,
confidence and power of trend detection tests
Conover (1999) identifies the Mann-Whitney test and the Spearman’s ρ test as best suited for the trends
mentioned. Lettenmaier (1976) has shown that the detectability of a trend depends on the following
parameters for:

• Detecting a step trend (Equation (9.23)):

c(Dt, T, Tr) = Tr
2sx

�������������
Nequi(Dt, T)

√
(9.23)

• Detecting a linear trend (Equation (9.24)):

c(Dt, T, Tr) = Tr
Nequi(Dt, T)

���
12

√
sx

������������������������������������
Nequi(Dt, T)[Nequi + 1][Nequi − 1]

√
(9.24)

The value Nequi is the equivalent number of samples in a series of N data points corrected for the mutual
correlation between these N points (implying these hold redundant information).

Nequi depends on the autocorrelation function of the time series under study, as defined by Equation
(9.25) (Bayley & Hammersley, 1946):

Nequi(Dt, T) = N(Dt, T)
1+ 2

∑i=N(Dt,T)
i=1 1− i

N(Dt, T)
( )

rx(iDt)
[ ] (9.25)

in which rx(iDt) is defined as:

rx(iDt) =
gx(iDt)
s2
p + s2

m

(9.26)

and gx(iDt) is defined by:

gx(iDt) =
s2
p + s2

m i = 1

s2
prp(iDt) i . 1

{
(9.27)

When a time series is absolutely uncorrelated (i.e. a random sequence), then Nequi(Δt, T ) is equal to N.
When all points are 100% correlated, then Nequi(Δt, T ) is equal to 1 (the first value in the series is the perfect
predictor for all the rest). The power and confidence of the tests are related as Equation (9.28):

1− b = f c(Dt, T, Tr)− j
a

2

( )[ ]
(9.28)
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This implies that, given a value for α (type I error, or significance), a time series and the measuring
uncertainty, the limits of detecting a step and/or linear trend are defined when choosing a certain
window size N(Δt, T ) in terms of confidence and power of the test.

Note that in the obtained values for power and confidence of the tests, the effects of (auto)
correlation and measuring uncertainty are accounted for. This allows for determining the
characteristics of trends that are detectable given the measuring frequency, measuring uncertainty
and window length.

Figure 9.20 shows some results of the application of the relations between the variables in Equations
(9.23–9.28) (Matlab instructions can be found in lin_step_power.m). When striving for equal
probability for type I and type II errors, one would like to have equal levels for confidence and power of
a test. As can be seen in Figure 9.20 for the linear trend in the example time series, this is not a feasible
option within the range of window sizes and Tr/σp values. For the step trend, however, it is feasible for
all window sizes provided Tr/σp. 2. The ‘optimum’ window size for both step and linear trend is
approx. 250 minutes, as it produces the highest values for the power over the whole range of Tr/σp. So,
in this case, one would start with analysing the series with a window size of 250 min. Further it has to be
emphasized that the detectability of trends is largely decided upon in the macro design of the monitoring
network (Section 6.2).

9.4.2.3 Mann-Whitney test for step trend detection
The Mann-Whitney U test (or Wilcoxon rank-sum test) basically tests whether there is a difference in level
(median) of two partitions y and z (y= (x1, x2,…, xm), z= (xm+1,…, xn)) of a vector (i.e. a time series) X=
(x1, x2,…, xn). The hypothesis H0 is that p(y , z) = 0.5 (no step trend) against H1 p(y , z) , 0.5 (a step
trend is present and y has a lower overall value than z) and H2 p(y , z) . 0.5 (a step trend is present

Figure 9.20 Results for the relation between confidence and power for the example hydrograph using
different sizes of shifting windows and trend ratios. Source: Francois Clemens-Meyer (Deltares/TU
Delft/NTNU).
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and y has a higher overall value than z). The test value is defined in Equation (9.29):

z =
∑i=n

i=1 R(yi) −
m(n+ 1)

2
+ K

sw
in which

K =

∑i=n

i=1
R(yi) − m(n+ 1)

2
. 0.5 : K = 0.5

∑i=n

i=1
R(yi) − m(n+ 1)

2
= 0.5 : K = 0

∑i=n

i=1
R(yi) − m(n+ 1)

2
, 0.5 : : K = −0.5

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.29)

where R(yi) is the rank of yi in the vector X, and sw is defined by Equation (9.30):

sw =
����������������������������������������������
m(n− m)(n+ 1)

12
− m(n− m)∑k

i=1(t3i − ti)
12n(n− 1)

√
(9.30)

where ti is the number of subjects having the rank i, and k is the number of (distinct) ranks in the data. H0 is
rejected in favour of H1 or H2 (step trend is present) when z . z1−a/2 or z , za/2, respectively, in which zq is
the quantile for α/2 (for α= 0.05, zα/2=−1.96 and z1−α/2= 1.96). Common statistical software suites
provide a standard function for this test. A simple implementation is provided in the Matlab® code
step_trend.m (available for download at https://doi.org/10.2166/9781789060102) by defining a
shifting window and applying it to the time series at a chosen value for α.

9.4.2.4 Spearman’s ρ test for linear trend detection
Spearman’s ρ test is used to decide whether or not a detected linear trend, as described in Section 9.4.1.1, is
to be regarded as significant or not. The test parameter is defined as:

r =
1
n

∑i=n

i=1
i− n+ 1

2

[ ]
[R(xi) − R(x)]

�������������������������������������������∑i=n
i=1 i− n+ 1

2

[ ]2∑i=n
i=1 [R(xi) − R(x)]2

√ (9.31)

If the value of ρ is negative, the trend is descending; if ρ is positive, the trend is ascending. At the
same time, the value of ρ is used as a statistical test variable, assuming a normal distribution. This
implies that when choosing a p-value for the test, α, the hypothesis that no linear trend is present is
rejected when either ρn0.5, zα/2 or ρn

0.5. z1−α/2 (p, α/2 or p. 1−α/2). A simple implementation in
Matlab® is [r,p]= corr(x,y, ‘Type’, ‘Spearman’) here ‘r’ is the value for ρ and p is the p-value (to
be related to α in the preceding text).

9.4.2.5 Examples of trend detection
Hereafter a rather naïve working sequence will be demonstrated which is not very sophisticated but will
show the limitations of the methods applied and the need for some human supervision (although
self-learning software may be expected to, at least partially, take over this task, see Section 9.8).
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An important fact to consider it that the shifting time window over which the trend analysis is applied is
crucial in recognizing any trend. A first logical step to take is to identify time intervals that behave in a more
or less similar manner, at times where changes occur. An approach in relation to the former is to find a
piecewise linear fit to the original signal. A simple implementation is shown in the Matlab® codes
piece_lin_fit.m, step_trend.m and linear_trend.m (available for download at https://doi.
org/10.2166/9781789060102).

When studying the lower graph in Figure 9.21, it can be seen that the critical z values are only surpassed
below the zmin value (with α= 0.05, this is −1.96). The Mann-Whiney test is applied in such a manner that
the z values for both hypotheses are tested (z1 tests hypothesis H1): this implies that when z1. 1.96, the
hypothesis that no trend is present is rejected in favour of a trend in which a sudden increase occurs.
Regarding z2, the situation is likewise: when z2,−1.96, the H0 hypothesis is rejected in favour of the
presence of a sudden decrease. In the graph, there are three time windows (indicated as ‘A’, ‘B’ and ‘D’)
and one cluster of short windows (indicated ‘C’) that, given the chosen α, are marked to reject the
hypothesis that no trend is present. As can be seen, the example used is composed of a range of (linear
and step) trends. As we are ‘hunting’ for step trends using the Mann-Whitney test, we focus on the time
windows indicated. In window A, it is clear from visual inspection that this would qualify a linear trend,
indeed the test outcomes are not very convincing, so possibly choosing a somewhat smaller value for α
would have eliminated this candidate. Window B shows that here the discrimination between step trend
and linear trend seems to function well, which cannot be said for window D. Indeed, from visual
inspection, it is clear that the signal is more or less constant, which is reflected in a somewhat ambiguous
test result. In Figure 9.13 the maximum relative trend size as a function of window size is shown. As can
be seen, the maximum relative trend that occurs in the example hydrograph is less than 2, and for most
window sizes approx. 1.6–1.7. From Figure 9.20, it is concluded that for this range of trends, the power
of the tests in not very high (not for step trends and certainly not for linear trends), which hints at
ambiguous test results (Figure 9.22).

With respect to the cluster of windows C (Figure 9.21) overall, apart from the sub window at the far right,
there is clear evidence that a sudden decrease in the water level occurs. Again, here a smaller value for α

Figure 9.21 A piecewise linear representation of the original signal. (a) outliers removed; (b) results of the
Mann-Whitney test. Source: Francois Clemens-Meyer (Deltares/TU Delft/NTNU).
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would have eliminated this candidate. After eliminating A, D and the far-right sub window C, a step trend in
the time window between t= 1226 and t= 1294 minutes is recognized. In this respect one has to realize that
when windows become small (i.e. ,20 observations), implicit assumptions (most important normality)
underlying many of the statistical methods applied are no longer valid. Filtering on window size prior to
conducting the analysis is thus strongly advised.

After identifying the step trend, linear trends can be detected using the Spearman’s ρ test applied on the
piecewise linearization. In Figure 9.23, the results of the Spearman’s ρ test are shown. It can be seen that at a
significance level of 0.05, six time windows (noted A-F) are identified to contain a significant linear trend,
the sign of the ρ values indeed corresponds with the visually observed trends (either ascending or
descending). With respect to window F, it contains less than 20 data points and is therefore to be treated
as an artefact of the test result. Notice that the time window B in Figure 9.23 corresponds with the time
window B in Figure 9.21, which implies that both the Mann-Whitney test and the Spearman’s ρ test
detect, respectively, a step and a linear trend that has statistical significance. After visual inspection, one
has to conclude that a linear trend is more obvious than a step trend in this case. In spite of the strictly
taken non-compliance of the underlying data with the pre-assumptions set for the statistical test
presented, these tests prove to be of value when validating time series, even though some manual
inspection is needed as demonstrated in the examples.

9.4.3 Detecting abnormal processes
9.4.3.1 Using spline function
Villez & Habermacher (2016) propose a method to detect anomalies in processes. The methodology is
based on shaped-constrained splines and is applicable for any univariate or multivariate time series.
Without entering into all the details of this method, which is rather more complex than the previous
ones, the overall idea is to identify abnormal trends or behaviours in time series, while fitting spline
functions into different parts of time series.

As a basic example, let us look into the evolution of water levels, velocities and discharges in a sewer pipe
once a rainfall peak is passed. Those three values are supposed to decrease while following a convex shape.

Figure 9.22 Maximum relative trend as a function of window size. Source: Francois Clemens-Meyer
(Deltares/TU Delft/NTNU).
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If, for a given period, one time series show a concave shape, the values obtained over this period should be
considered as ‘Doubtful’ or ‘Unsuitable’.

9.4.3.2 Detecting abnormal episodes based on conditional dependencies
Conditional dependencies identify if inconsistencies in data emerge as violations of these dependencies.
That is, for instance, including topological information on a flow path network in the form of rules and
using partially redundant information from up- or downstream located sensors. This allows detection of
abnormal measurements (Figure 9.24).

In Figure 9.25, sensors F03 and F06 are installed at the same location. Sensor F04 is located 1 km
downstream of F03 and F06. F04 should always show higher flows than F03 and F06. This can be
questionable to a certain extent for dry weather periods. The two labelled anomalies in F04 appear
questionable. A cross-comparison with correctly aligned adjacent measurements leads to the conclusion
that the early anomaly obviously occurs due to hydraulic disturbances, while the later anomaly is
obviously a non-natural artefact.

9.4.3.3 Detecting abnormal episodes based on the hydraulic gradient hc
The consistency of flow observations can be verified by means of the hydraulic gradient hc based on the
Manning-Strickler relation. This method can be applied for flow ranges in which no disturbance due to
minimal water levels and/or backwater effects is expected. The hydraulic gradient hc is calculated
according to Equations (9.32) and (9.33).

hc = kst∗
��
I

√
= Q

(A∗Rhyd
2/3)

(9.32)

Figure 9.23 Results for Spearman’s ρ test. Source: Francois Clemens-Meyer (Deltares/TU Delft/NTNU).
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with

Rhyd = A

lu
(9.33)

hc is calculated for each recording, i.e. each time step. Subsequently a monthly/weekly average is
determined. Inconsistencies can be detected by deviations from the mean value over the course of time.

Figure 9.24 Example of the cross-comparison of hydrographs from three different sensors in the same
drainage network. Source: Frank Blumensaat and Andy Disch (Eawag).

Figure 9.25 Example of multi-signal cross-comparison (here on a daily basis). Rules apply depending on the
topological relation on the flow path network. Source: Frank Blumensaat and Andy Disch (Eawag).
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Weeks/months for which hc values considerably deviate from the mean are to be questioned; periods
should be excluded from further usage, e.g. for calibration, or should be further analysed. The
application of the hydraulic gradient test is exemplified in Figure 9.26. Here, in February 2017, the
sensor was cleaned and re-configured without showing an impact on the resulting flow signal. The jump
in the hc value, however, reveals the hidden anomaly due to sensor maintenance (Figure 9.26).

9.4.3.4 Detecting abnormal flow conditions based on the Q(h) relation
Flow observations should be checked for plausibility by comparing measured data with the theoretical Q(h)
relationship, i.e. with the part-full circular pipe flow curve (Figure 9.27). For this purpose, the theoretical
Q(h) relationship according to Manning-Strickler (Equations (9.34) to (9.36)) is calculated for a given
pipe diameter D.

Q = kst × A× Rhyd

2
3 ×

��
I

√
(9.34)

Figure 9.26 Hydrograph obtained through a wedge sensor that measures flow velocity (US backscatter and
cross-correlation) and water level (pressure gauge). Source: Frank Blumensaat (Eawag).

(a) (b)

Figure 9.27 Q(h) relationships plotted against the theoretical Manning-Strickler relation (parable test).
Examples for a poor (a) diameter 700 mm and good (b) diameter 400 mm matches. Source: Frank
Blumensaat (Eawag).
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with

A = D2

4× arcsin

��
h

D

√( )
− sin 4× arcsin

��
h

D

√( )( )

8
(9.35)

lu = 2× D× arcsin

��
h

D

√( )
(9.36)

9.4.4 Validation between correlated monitoring points
(time series, ARMA models)
In many cases, time series obtained from two or more measuring devices in an urban drainage system show a
mutual correlation structure. For example, water level sensors in a wastewater system will reflect more or
less the same daily pattern in the recorded water levels, or rain measurements with discharge time series. In
many cases an auto regressive moving average (ARMA) model can be used to obtain a description of a time
series in the form of a polynomial function, which, to a certain extent, can provide a basic tool for forecasting
or (re)constructing a missing value in the time series (see also Section 9.7 on data curation). The theory of
ARMA models and applications is comprehensively discussed in e.g. Choi (1992).

The general equation for an ARMA(p,q) model is given in Equation (9.37):

Vt = c+ 1t +
∑i=p

i=1

giVt−i +
∑j=q

j=1

ui1t−j (9.37)

The first summation over p represents the auto regressive (AR) part while the second summation over q
represents the moving average (MA) part of the model. c is a constant, εi represents white noise in step i and
Vi is the dependent variable at step i, γi and θi are the polynomial coefficients for, respectively, the AR and
MA parts of the model. The coefficients of the model, for given values of p and q, can be found by e.g. using
the maximum likelihood estimate method. In most software packages like Matlab®, Python®, R®, etc. fast
routines for ARMA fitting are available as standard.

There is no general manner or protocol for determining the values for p and q. A first requisite is to
achieve (piecewise) stationarity of the time series. Using transformation techniques, stationarity of the
series can be achieved. Apart from removal of trends and/or periodic signals in the series, differentiating
is a popular and effective manner to achieve stationarity. Transforming the time series into a series of
incremental differences between successive parameter values often achieves the sought after stationarity.
The goodness of fit between the ARMA model and the original data can be expressed in a range of
metrics, of which the Akaike information criterium (AIC) is the most commonly applied in this context
as it not only takes into account the ‘goodness of fit’ of the model, but also penalizes for overfitting.

AIC is defined as:

AIC = ln(s2
r ) +

2( p+ q)
n

(9.38)

where n is number of elements in the time series and σr is the standard deviation of the residues.
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A simple stepwise approach is as follows:

(1) Plot the autocorrelation function (ACF), and the autocorrelation function of the differentiated series
(DACF) (Matlab® commands: autocorr(x1) and autocorr(diff(x1)) respectively, where
the differentiated time series of x1 is defined as xd,i,= xi+1 − xi).

(2) A first estimate for p is indicated by the DACF, where the DACF becomes (almost) zero, defines
this first estimate.

(3) A first estimate for q is obtained from the ACF where it starts to tail off to zero.
(4) Estimate the model parameters: in most standard available applications, this is normally done by the

application of e.g. the maximum likelihood estimates method.

In Figures 9.28 and 9.29 an example is shown. The Matlab® script arma_space.m can be downloaded here
https://doi.org/10.2166/9781789060102. Based on the DACF, the value for p is expected to be approx. 5
while the q value is less easy to deduce, as the ACF tails off to zero at moderate time lags. A value of q= 1
or 2 would be a first guess.

Using the AIC metric, an ARMA (p= 5, q= 2) model using the differentiated time series was found to
produce the best fit to the data over the first 60 minutes. An ARMA model on a differentiated time series is

Figure 9.28 Time series and the corresponding ACF and DACF. Source: Francois Clemens-Meyer
(Deltares/TU Delft/NTNU).
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also known as an ARIMA model (most software packages like Matlab®, R®, etc. contain standard
functions for this). This model was used to forecast 30 minutes of additional data. Actually these data
were measured as well, allowing for a comparison between forecasted and observed results. In
Figure 9.29 the upper graph shows the results of the ARMA model that showed the best fit to the
training data, which results in forecasted data with an RMSE (root mean squared error, chosen here since
it offers a more ‘intuitive’ understanding compared to a value for the AIC, the model selection, however,
has been done based on AIC) of 3× 10−3 m. The lower graph shows the results for a slightly different
ARMA model (p= 4, q= 2) that results in a significantly different forecast result (RMSE= 0.015 m),
although the quality of the model-fit to the data was only incrementally different from the ARMA (p=
5, q= 2) model. Of course, these forecasts can be refined with confidence intervals, but the message
from the example is clear: forecasting is a possibility but one is advised to apply it for short time
windows only and test a range of model configurations (i.e. p and q values), as a ‘good’ fit to the
training data does not guarantee the ‘best model forecast’. The latter statement holds for any other type
of model (be it process based, or a statistical model), the validity beyond the calibration domain cannot
be taken for granted.

An alternative application is to use similarity between time series. Figure 9.30 shows an example: two
hydrographs from locations 1 and 2 are shown together with their difference (top graph in Figure 9.30).
The middle and bottom graphs show, respectively, the autocorrelation function for the difference
between the time series (i.e. x3= x1− x2) and the differentiated difference (i.e. diff(x3)).

Figure 9.29 Example of the application of an ARMAmodel to forecast data. (ARIMA(p,d,q), in which d stands
for differentiating (in this case d= 1: differentiating once). Source: Francois Clemens-Meyer (Deltares/TU
Delft/NTNU).
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(a)

(b)

(c)

Figure 9.30 (a) two hydrographs and their difference; (b) ACF; (c) DACF. Source: Francois Clemens-Meyer
(Deltares/TU Delft/NTNU).

Figure 9.31 Results of forecasting of one signal based on an ARMA model for the signals differences
combined with one signal available. Source: Francois Clemens-Meyer (Deltares/TU Delft/NTNU).
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In this case a first estimate for p would be 2, while for the value of q the same reasoning is followed
as before, as the ACF start tailing off to zero in the first few lags. Thus a first estimate for q would be 1
or 2. Again the best model is decided upon based on the AIC values.

Notice that the p value is found to be 5, in contrast to the indication from the DACF (see Figure 9.30).
This illustrates that the indication obtained from the DACF does not necessarily correspond with the ‘best’
model using AIC as a metric. It is therefore, again, suggested to test a range of values for p and q.

Figure 9.31 shows some results: the upper graph for the best model configuration found, and the lower
graph for a slightly different model configuration. Again, it is seen that a slightly different model results in
significantly different results again. The advantage of the latter approach based on differences between two
observation locations is that only one model needs to be maintained enabling the possible curation of two
sensors’ outputs. A regular update of the model configuration is suggested, as the recorded processes may
change over time in terms of level of stationarity. In that respect, when it is found that the best fitting model
changes over time in terms of AIC result or even in variation for the order (p, q) of the model, it can be used
as an indication for changes in the system observed.

9.5 MAKING QUALITY FLAGS OPERATIONABLE
9.5.1 Concatenation of quality flags
Each individual recording can be checked and assessed through different tests. In the previous sections,
these tests have been described, producing a more or less differentiated output for each individual test
and for each recording. For each value Vt, i.e. each sensor and each time stamp, several outputs are
available to further specify data quality according to the NT tests presented above (see Table 9.5).

In order to assess a complete data set, the quality labels for individual recordings need to be concatenated:
manually validated by a trained staff member to split the values labelled with a D into the G or the
U categories.

There are several methods to achieve such concatenations, i.e. to perform a dichotomous flagging or label
data points as ‘Good’ or ‘Unsuitable’, while further differentiating the quality of recordings labelled
‘Doubtful’:

• Method 1 (worst case): assign the final quality as the common minimum, i.e. the lowest quality.
• Method 2 (arithmetic mean): calculate an average, while assigning a numerical value to qualitative

flags, e.g. 1 for ‘Good’, 0.5 for ‘Doubtful’ and 0 for ‘Unsuitable’ and assigning thresholds.
• Method 3 (median): based on the same principle as Method 2, but it calculates the median of the

cardinal qualities.

Each of those methods has pros and cons: the first one being rather pessimistic, the second one being
sensitive the grade attribution and potential weights in the average calculation, and the last one being

Table 9.5 Possible basic tests for data validation. Output: G, Good, D, Doubtful and U,
Unsuitable.

Value Test 1 Test 2 Test 3 Test 4 … Test NT

Vt G G D U … D
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sensitive to a series of failed tests. Based on the output in the didactical example given in Table 9.5, the
output of the concatenation will be:

• Method 1: ‘Unsuitable’, due to Test 4 or Test NT (5 in this case).
• Method 2: ‘Doubtful’ while assigning the same weight for each test (average score of 0.6 (1+ 1+

0.5+ 0+ 0.5)/5).
• Method 3: ‘Doubtful’, the median is equal to 0.5.

The advantage of the concatenation is its flexibility: the tests are taken into account, the weights assigned to
each output can be changed according to the different purposes the data have been recorded for.

The disadvantages may be that (i) one reduces the overall amount of useful data when applying a
stringent method (Method 1), or (ii) one introduces a bias when transforming an ordinal scale (G.D.
U) into a cardinal, i.e. ratio scale (Method 2).

Those concatenations can be done automatically but are prone to subjectivity regarding the selected tests,
thresholds, weights and the retained method to concatenate the outputs. However, this step is mandatory to
simplify a subsequent manual validation. At the end of the automatic concatenations, a value can have one or
several labels about its quality, one for each purpose.

A suggested concatenation method

• I 9.5: Test – Test the three proposedmethods and compare the result to select the most appropriate for
your needs and uses.

• I 9.6: Sensitivity – Try different values and weights if you use methods based on mean and median.
• I 9.7: Update – Update and design new concatenation methods if you are not satisfied with the

proposed methods.
• I 9.8: Report – Always report the methods used in the meta-data, the values and the weights used for

the concatenation.

9.5.2 Finding causes of unreliable data being rejected
Validating measurements generally aims to distinguish between dubious and plausible data. Unreliable
data may lead to wrong findings and consequently have to be excluded before further processing. This,
however, often requires manual intervention to explain why some data need to be labelled ‘Unsuitable’
or ‘Doubtful’.

Labelling data as discussed in Section 9.2 supports this process, but it needs to be backed with domain
knowledge of UDSM systems behaviour, monitoring techniques, signal processing and data transformation.
Losses in data quality may occur during the entire data collection process due to: (i) inappropriate selection
of sensor and/or location; (ii) inadequate sensor installation; (iii) sensor specific issues, e.g. failing
barometric compensation or electrolytes in the wastewater; (iv) data-logger related issues, e.g.
synchronicity, interval, smoothing algorithms, power supply, data transfer; (v) data storing techniques
(database management); and (vi) the validation process itself (software, data import routines). Persons in
charge of investigating doubtful data are required to be qualified accordingly or seek professional (and
mental) support.
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Depending on (i) the complexity of the monitoring set-up, (ii) the environmental conditions when the
value has been recorded and (iii) the existence of a site-book, investigations may require several experts:

• Persons in charge of the design, construction, maintenance of the monitoring set-up.
• Experts in metrology.
• Experts in IT, electronics and signal processing.
• Local experts with in-depth knowledge about system and locations, e.g. hydraulic conditions in a

specific pipe.
• Sensor manufacturers and data acquisition suppliers.

The process of manual validation can be done in several steps. The main way suggested for processing is
summarized as follows: Be very strict in assigning the labels ‘Good’ or ‘Unsuitable’ and any manual
modification (from ‘Doubtful’ to ‘Good’, ‘Unsuitable’ – and sometimes ‘Doubtful’, if the manual
validation did not result in assigning another label) must be commented and recorded in order to keep
track of the conducted investigations, e.g.:

• The values of water level and velocities, flagged as ‘Doubtful’ because of inconsistencies between
them, have been finally flagged as ’Good’. Reason: recession phase during a storm event, and
strong hysteresis (see Chapter 3 or the example in Section 9.4.3.4).

• Discharge values that are flagged as ‘Doubtful’ were linked to a change of position of the measuring
device and finally found to be ‘Unsuitable’. Reasons: error in the probe positioning, and the observed
bias was confirmed by tracer experiments, as outlined in Chapter 3.

The final flagging and the reasoning that may have led to manual modification should be recorded as
meta-data in the database (see Chapters 5 and 10).

Manual validation requires time, expertise and common sense for complicated cases: meta-data on
maintenance, sensors, storm events etc., collected in a site book, are essential to conduct such
investigations properly. There is no ‘silver bullet’ to investigate the reasons for ‘Doubtful’ flags.
However, a few basic questions could help to draft hypotheses regarding doubtful data points:

• Are data points flagged as ‘Doubtful’ assigned for a single or several time step(s)?
• Does this phenomenon occur for a single, several or every time series?
• If several time series are flagged as ‘Doubtful’, is there any correlation between them? Do they occur

through the same computer, the same data acquisition set-up, a specific software? Do data stem from
the same measurement location?

• Can a change in data quality be associated with a specific event, such as an intense storm, a
maintenance operation, the installation of a nearby sensor?

The list of possible causes can be long. Unfortunately, there is no known generic method or protocol that,
when applied, can ensure that in all cases the underlaying cause for poor data quality, or missing data, can be
determined. Common sense, domain expertise, site and maintenance logs, and a complete documentation of
the monitoring station are necessary to increase chances of problem identification.

9.6 COMMUNICATING DATA QUALITY
9.6.1 Presenting validated data
Once the data set has been validated, one of the key methods to get a user-friendly overview on its overall
quality consists of plotting the data quality. Such plots will help the data providers and data users to easily
assess the quality of the monitoring set-up, the recorded data set and implicitly all the procedures along the
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monitoring processes. Here it is of importance that the quality level of the data is indicated in a manner that is
unambiguous and fit for purpose. In this respect a difference has to be made between ‘managerial’
information and ‘operational’ information. For example, from a managerial point of view, indicators
related to the overall performance of the monitoring system as discussed in Section 9.6.2 are of interest
while for the operator of the same network detailed information on the level of individual sensors is
sought after. Especially in long term monitoring projects, graphs visualizing the data quality provide an
easy access to data quality on different levels.

9.6.1.1 Types of quality and availability plots
There are numerous ways to produce representations of data quality, mainly based on colour scale:

• ‘Shades of grey’ style (e.g. in Figure 9.32).
• Heatmap dashboard illustrating data consistency, i.e. availability, completeness and interpretability

(e.g. in Figure 9.33).

From Figures 9.32 and 9.33, the availability and quality of data are easily recognized. Using this kind of
charts allows for a quick identification of whether or not enough data are available for a given purpose. In
Figure 9.32, for each sensor (Lev1-Lev27 and R1, R2) for each day (24 h), different shades of grey indicate
the quality of the available data. The white columns in Figure 9.33 highlight likely failure of the whole
system, since no data have been recorded by any sensor.

Figure 9.32 Example of a chart granting a ‘quick’ impression of the quality of a data set, discriminating
between a range of labels indicating a range of possible ‘issues’ with data. Source: van Bijnen (2018).
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The choice of map style requires some reflection. On the one hand, if basic traffic light colours (or similar
plots – Figure 9.33) are relatively easy to interpret, they lack information on important data or facts. On the
other hand, adding too many layers on the colour map (e.g. in Figure 9.32) increases the information given
by the graphic while decreasing its readability. Both plots can be produced:

• A basic one to give an overview to the management team and draft the main outlines on the
data quality.

• A more complex one for technical meetings and discussions aiming at understanding and improving
the current performances of the monitoring system.

Once the type of plots and the legend have been selected, they should not change over time to allow a quick
assessment of the evolution of data quality, without having to learn a new way of reading for the updated
version of those graphics.

9.6.1.2 Data to plot
Plots as discussed in Section 9.6.1.1 can be created with several types of data (results of the tests, automatic
and final quality grades).

Creating those graphics with the results of individual tests (like consistency, gradient, etc.) can help to
identify tests that all fail or succeed and, later on, can help to adjust the tuning of those tests or identify
permanent errors between sensors.

Comparing graphics on global data quality grade, before and after manual validation, can help to
highlight changes in the manual validation, between different data validators or over time.

Figure 9.33 Example of a chart showing data quality in ‘traffic-light’ coding: green is.95% Good data, red is
,95% Good data, orange indicates that ,50% of data is available and needs a manual check prior to
application. A blank cell indicates no data are available at all. Each row represents one sensor, each
column represents a 24 h window. Source: van Bijnen (2018).
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The possibilities are endless and existing tools to generate plots do not really limit the number of graphics
that can be produced. However, multiplying the number of plots requires more time to perform such analysis
and may lead to unseen problems. The tendency to produce more and more graphics is not always suitable: it
might be useful at the beginning, but only the relevant plots should be drawn once the experience is
sufficient to identify the meaningless ones.

9.6.1.3 Use of those graphics
Graphs as shown in Figures 9.32 and 9.33 highlight ‘Good’ and ‘Unsuitable’ data: column(s) with ‘Missing’
or ‘Unsuitable’ data will most likely indicate an error in the data acquisition system and row(s) presenting
the same characteristics will indicate a problem with one or more sensors (with various plausible causes).
Adding on the timeline every single event that took place on site (storm event, maintenance, calibration,
probe change, etc.) will give key information to understand what might have been the cause leading to
either an ‘Unsuitable’ or a ‘Doubtful’ flag.

The main utilities of such plots are to:

• Understand what occurred on the system.
• Improve the quality of the data while proposing and testing solutions of the causes.
• Communicate the overall quality of the data to the final users (modellers, managers) or financers,

while, in most cases, regularly delivering some statistics on data quality.

9.6.2 Using statistics as indicator of the overall monitoring system quality
Even if graphics are rather user-friendly tools to communicate data quality, basic statistics offer some
additional highlights, especially for reporting and conducting good asset management of the
monitoring networks.

9.6.2.1 Additional information given by statistics
Statistics involved in this part are really basic: they mainly consist of calculating the percentage of each flag
(typically, ‘Good’, ’Doubtful’ or ‘Unsuitable’) for the recorded data set. Those percentages can be and
should be calculated for different subsets of the data sets: per sensor, per group of sensors (e.g. inside or
outside of the sewer, sensors connected to the same hardware, same type – such as rain gauges, water
level probes), per monitoring station, per catchment, etc.

Those statistics will help the data user to highlight and quantify the first impression derived from the
previous graphics. Weekly, monthly or yearly values will highlight the data quality trends over
longer durations.

9.6.2.2 Suggested indicators
Various indicators could be calculated with the validated data set:

• Percentage of available data (Equation (9.39a) or Equation (9.39b))

100× NG + ND + NU

NE
(9.39a)

100× NE − NM

NE
(9.39b)
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• Percentage of ‘Good’ data (Equation (9.40))

100× NG

NA
(9.40)

• Percentage of ‘Doubtful’ data (Equation (9.41))

100× ND

NA
(9.41)

• Percentage of ‘Unsuitable’ data (Equation (9.42))

100× NU

NA
(9.42)

• Percentage of ‘Doubtful’ data finally considered as ‘Good’ after the manual validation (Equation
(9.43))

100× ND�G

ND
(9.43)

• Percentage of ‘Doubtful’ data finally considered as ‘Unsuitable’ after the manual validation (Equation
(9.44))

100× ND�U

ND
(9.44)

• Percentage of data that remain ‘Doubtful’ after the manual validation (Equation (9.45))

100× ND�D

ND
(9.45)

Those indicators should be calculated for several subsets of the entire data set:

• For individual sensors.
• For groups of sensors, e.g. inside/outside pipe, water level/velocity/discharge probes, by

manufacturer/sensor connected to the same data acquisition hardware.
• For each monitoring station.
• For each catchment.

This type of indicator can be used when judging the performance of a monitoring network. Especially for
long-term monitoring activities, keeping track of the monitoring system performance can provide crucial
information for, amongst others, improving the data yield.

9.6.2.3 Indicators and asset management of the monitoring system
Data quality indicators and their evolution over time offer multiple opportunities to conduct asset
management of a monitoring system, especially while using the meta-data associated with the validated
data set. Any positive or negative change in the data quality indicators can lead to confirmation of good
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decisions/practices or to new decisions to improve the monitoring system. Since an exhaustive list of
cases/situations/conclusions is nearly impossible to draft, a few examples are listed below:

• The percentage of data labelled as ‘Doubtful’ increases a few weeks after a cleaning procedure
(meta-data) of a water sensor. This behaviour occurs several times. The delay between two
cleaning procedures should be shortened.

• The percentage of data labelled as ‘Good’ is higher for a pressure sensor than for a US water level
sensor at the same location. Pressure sensors seem to be more suitable at this location.

• The percentage of available data for a group of sensors (connected to the same hardware) dropped
after its replacement. The new hardware and its installation need to be checked.

• The percentage of data labelled as ‘Good’ increases after the refurbishment of a monitoring station.
The new design and set-up are better than the previous ones: the future replacement of existing
monitoring stations should be done the same way.

• The quality of data decreased after some changes in the maintenance/calibration protocols. Those
protocols and their realizations need to be carefully checked and compared with the previous ones
in order to identify potential issues in the new protocols.

The list of examples is virtually endless. The general rule consists of having a deep look into data quality
indicators, keeping track of any change and correlating those behaviours with other data and meta-data,
i.e. rain event, maintenance events, hardware or software upgrades, etc.

9.7 DATA CURATION
When deciding on the methods, protocols and their thresholds and further settings, a decision has to be
made on what to do with missing or discarded data (i.e. data in category ‘Doubtful’, ‘Unsuitable’
and ‘Missing’). In many cases missing a few data does not influence the decisions ultimately taken
based on them. For instance, when it comes to the evaluation of the environmental performance of a
combined sewer system, three or four missing data points over a period of a year is not an issue.
However, in the case where six months of data are missing in the same situation, this may make the data
set useless.

At the other end of the spectrum, when e.g. model calibration is the main objective of the monitoring
project, a time shift of just 1 minute can be enough to make data completely worthless. In the former
case no action is needed, other than reporting that out of the 20,000 recorded data points 4 were missing.
In the latter case a decision has to be made; either discard the data set altogether and wait for better
times, or ‘repair’ the data obtained and ‘make them useable’. From a strictly scientific perspective, the
latter is considered a death sin, as information is added that was not actually measured and as such
cannot be accepted as an objective basis to work upon.

However, when relaxing this point of view a little bit, it can be argued that when there is convincing
evidence that an observed time shift is due to a cause that has been identified, (e.g. a documented
application of an incorrect reference level), a correction of the data can be accepted and imposed under
the condition that this is clearly stated, hence the label ‘Doubtful’ for cured data.

In any case, it is strongly suggested to always keep and maintain two data sets: (i) the original time
series, with gaps and (ii) the ‘cured’ time series, with interpolated values. This solution offers some
advantages: (i) original data are not overwritten by interpolated data, (ii) the two data sets may serve
different purposes and needs, and (iii) alternative interpolation methods can be tested and performed
afterwards.
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Can we trust or rely on interpolated values? Some points have to be clearly stated: (i) an interpolated
value is, as repeatedly stated, a virtual value. Unusual, but real, phenomena may have occurred during
the gaps, (ii) interpolation methods are likely not to be able to reconstruct such a phenomenon.

How can the uncertainties of interpolated values be quantified? In line with one of the main messages of
this book, the standard uncertainty associated with each value should be estimated. The standard uncertainty
of an interpolated value has to take into account two sources: the uncertainty of the measurement (like this
value has been normally recorded) and an additional uncertainty due to the interpolation process itself.

Imputation of data in time series is a subject not restricted to the field of UDSM. The study of time series
and all their aspects are comprehensively discussed and explained in textbooks (e.g. Hamilton, 1994).
Wongoutong (2020) provides a state-of-the-art review on methods applied for imputation of missing
values in time series.

9.7.1 What to do with outliers, trends or data gaps in general?
Once gaps, outlier(s) or trends are detected in a data set, the question arises over what to do with them. A first
omni-important action to take is to try to find out what caused the outlier, trend or missing data. In many
cases malfunctioning, or wrongly installed equipment proves to be the cause. On the other hand, in many
cases the cause remains unknown, and could therefore represent a ‘real’ value and as such hold
information on the system studied that might be important. In such cases it is worth trying to find out
whether there is some temporal pattern in the occurrence of outliers at the given location for the specific
sensor. The example presented in the beginning of the chapter (disturbing lamppost) illustrates the
importance of meta-data. In this case the outliers were first marked as ‘outlier’, which is as such a
warning for the use for further analysis. After unambiguously determining the cause and interpolation,
the meta-data was changed into ‘imputed’. Of course, this type of protocol has to be designed and
applied to the specific demands of a given project.

Basically, applying the following sequence with respect to applying data imputation is suggested:

(1) Try to use the data in a piecewise manner, that is, use those time windows in which ‘Good’ data is
present without gaps.

(2) If 1/does not apply, look for the time windows with as much ‘Good’ data as possible.
(3) If 2/does not result in enough data for analysis, a first data imputation can be made.
(4) A first step is to impute data for single point outliers (see Section 9.7.2).
(5) If data gaps are present (more than a few time steps), data reconstruction may be considered, e.g.

from known correlations with other measuring locations or from a model running in parallel.

The latter situation is the most difficult one as it is not simple to set a limit on the allowable amount of
missing data. Essentially this boils down to carrying out a risk assessment in terms of making a wrong
decision. For pure scientific purposes, the situation is relatively simple: when no data are available, no
analysis can be made, so the challenge is to obtain more data and improve the quality until the data are
usable. For practical applications, it is more complicated: depending on the purpose for which the data
are being collected, more or less missing data can be acceptable, or imputation is seen as ‘normal and
accepted practice’. For example, if a system has been monitored on dry weather flow patterns for a few
years, missing a few days of data per year does not pose a serious impact on the uncertainty on e.g. the
total volume discharged per year (one could impute the expected behaviour from historical data). On the
other hand, when data gaps occur in a real time controlled system, this has a direct impact on the
effectivity of the system. Therefore, again, how to handle missing data is largely a matter of subjective
decision making. Regardless of the circumstances, however, the fact that a data value stems from
imputation has to be explicitly clear from the meta-data.
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9.7.2 Imputation of small data gaps
When ‘curing’ a single outlier, linear midpoint interpolation (Equation (9.46)) is the easiest and most
straightforward method (Figure 9.34):

Vt = 0.5(Vt−Dt + Vt+Dt) (9.46)
Figure 9.34 shows the results of the midpoint interpolation of artificially removed data points. The RMSE

of the residues is approx. 9 mm, which is in the same order of magnitude of the confidence range as normally
expected for water level sensors. This implies that the curation through interpolation in this case has no
noticeable effect on the confidence interval of the data point (see Lepot et al., 2017).

Al Janabi (2005) suggests the following interpolation values for up to two successive missing values,
based on the previous and following value:

One point missing (Equation (9.47)):

Vt =
���������������
Vt−Dt × Vt+Dt

√
(9.47)

For two successive points missing (Equation (9.48)):

Vt =
�����������������
V2
t−Dt × Vt+2×Dt

3

√
(9.48a)

Vt+Dt =
�����������������
Vt−Dt × V2

t+2×Dt
3

√
(9.48b)

When filling larger data gaps, a more advanced method is to use a (calibrated) model to fill in gaps, e.g.
either a deterministic model, or a conceptual model like an ARMA model, spline fitting method or
ML applications.

Gaps may, and will, occur in data sets. There are numerous methods to fill the gaps (if needed) and, in any
case, those interpolated values should be labelled as ‘D’ or ‘U’ (see Table 9.1), depending on the goals the
data have been recorded for. Gaps vary in: (i) size, a single value missing or more; (ii) continuity, a single

Figure 9.34 Example of interpolated data points. Source: Francois Clemens-Meyer (Deltares/TU
Delft/NTNU).
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gap or a series of several gaps; and (iii) the number of impacted time series, typically if a gap is due to a
sensor failure or if gaps are due to a data acquisition system failure (a few time series present gaps at the
same time). Lepot et al. (2017) wrapped up the state of the art regarding interpolation in time series. The
next section presents a brief summary of this review, while being restrained to the main method, adding
a few examples and advice for practitioners.

9.7.3 Imputation of larger data gaps
Applied methods for filling larger data gaps (i.e. .2 consecutive missing records) are divided into two
categories: the deterministic and the stochastic ones. This distinction, based on the existence or not of
residuals (differences between prediction at known location and observations) in the interpolation
function, deals also with uncertainty.

9.7.3.1 Deterministic methods
The easiest method, not highly recommended for large gaps in dynamic time series, is the nearest-neighbour
interpolation: the interpolated values are equal to the closest recorded ones. Other straight forward to
implement methods are LOCF (last observation carried forward) or NOCB (next observation carried
backward). Such methods are fast and simple, and find their main application in RTC systems.

Example: There is a gap in water level data with missing values between 10:51 am and 10:59 am. At 10:50
and 11:00, the recorded water levels are respectively 10 cm and 12 cm.With this method, interpolated water
levels are 10 cm until 10:55 and 12 cm afterwards (Figure 9.35).

In order to avoid this discontinuous behaviour, smoother functions can be used to interpolate data e.g.
with linear or polynomial interpolation methods.

Example: While re-using the same example with a linear interpolation, the interpolated values will slowly
vary from 10 to 12 cm, while reaching 11 cm at 10:55 am (Figure 9.35).

Phenomena in urban hydrology are rarely linear: polynomial interpolation or application of ARMA
models (see Section 9.4.4) will better mimic the expected shape of the time series. Methods based on

Figure 9.35 Existing and interpolated data. Source: Mathieu Lepot (TU Delft/Un poids une mesure).
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distance-weighting could be also used: an average, weighted by the distance between the interpolated and
recorded values.

Other functions can be used to achieve such interpolation, especially equations that reflect the
phenomenon: dispersion of pollutant, correlation between water level, velocity and discharge (like the
Manning-Strickler equation), run-off models, etc. Those methods are less based on mathematics and
more on the physical processes that occur at the measuring location. A few of those approaches are
nearly impossible to perform if the entire data acquisition system collapses.

9.7.3.2 Stochastic methods
Machine learning approaches such as neural networks, kernel methods and kriging are also available for data
interpolation. Methods based on data dynamics seem to be more appropriate in urban hydrology and deserve
more detail.

The k-Nearest Neighbours (k-NN) takes into account the cyclic variations of a time series (e.g. discharge
during a dry business day). Assuming or knowing the dynamics are similar from day to day, the gap can be
fulfilled with data from another day. There are several metrics to identify which part of the recorded values is
most suitable for the interpolation e.g. city block, Euclidean or Chebychev. Box-Jenkins models are suitable
for polycyclic data, including seasonality and daily or weekly patterns. Pratama et al. (2016) provide a
review on handling missing data in time series.

9.7.3.3 Uncertainty assessment
The uncertainty of interpolated data has two components: (i) the uncertainty of measurement if this value has
been normally recorded and (ii) the uncertainty from the interpolation process itself. If the first component
has been detailed in Chapter 8, the second one requires a few tips given in this section.

Given two known values (Vt and Vt+Δt), the standard uncertainty u(VI,i) of an interpolated value VI,i is
calculated according to Equation (9.49) (Lepot et al., 2017):

u(VI,i) =

������������������������������������������������������������������������
1
2
s2
M

3+ |r(Vt,Vt+Dt)| − 2|r(Vt,VI,i)| − 2|r(Vt+Dt,VI,i)|
−(r(Vt+Dt,VI,i)− r(Vt+Dt,VI,i))2

1− r(Vt,Vt+Dt)

⎛
⎝

⎞
⎠+ s2

P

√√√√√ (9.49)

where sP is the process variance, r is the autocorrelation function and sM is the measurement error.
Figure 9.36 shows several methods to assess uncertainties of interpolated data: the Law of Propagation of

Uncertainty (LPU, top left), Monte Carlo simulations (MC, top right), a method proposed by Schlegel et al.
(2012) (bottom left) and Equation (9.49) (bottom right). Only Equation (9.49) proposes uncertainties for
interpolated values, which present a correct trend: (i) being higher than the measurement ones, and (ii) a
continuity at the edge of the interpolation area.

9.8 DATA-DRIVEN METHODS
The discussion of methods related to machine learning (ML) – hereinafter referred to as data-driven
methods – has been intentionally discarded here for two main reasons. Firstly, those methods have only
very recently been applied, in various fields with differing success. Their application in the UDSM field
has not yet reached the level of maturity that would allow an objective judgement of their usefulness.
Secondly, data-driven methods are often based on a black-box approach: the method parameters often
lack physical interpretation, data may be rejected (e.g. as false positive) without explicitly providing a
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reason, i.e. the input to understand this rejection and better understand the monitored system. This approach
is contrary to the one we want to propose in this book. However, data-driven approaches are
rapidly developing.

It is acknowledged that the suite of data-driven concepts may gain further popularity once domain
knowledge has sufficiently been integrated into purely machine/data-driven approaches. In the following
section, a brief, but clearly limited review of why such concepts can be useful and what challenges are
associated with their application is presented.

9.8.1 Motivation
Existing guidelines (Bertrand-Krajewski & Muste, 2007; DWA, 2011) and automated data validation
pipelines (e.g. Alferes & Vanrolleghem, 2016; Branisavljević et al., 2010) specifically developed for
UDSM applications provide very useful solutions. Generally, these approaches suggest a consecutive
application of standard rule-based methods for basic data validation. Rule-based methods – some of
which are discussed in Sections 9.3 and 9.4 – imply the use of parameters defined based on expert
knowledge about sensors and system behaviour (min/max ranges, acceptable changes, pre-defined
correlations). Integrating this expert knowledge in the form of manual intervention and subjective
judgement is rather expensive, and it does not necessarily lead to reproducible results. Other limitations
become obvious in the case of real-time applications requiring minimum latency, e.g. if it is necessary to
simultaneously check several signals of different types in real time to trigger control, and/or if
computationally expensive analysis methods are used.

Conducting automated data validation for identifying abnormal behaviour of the deployed sensors is
therefore becoming increasingly critical. Data-driven methods promise easy help here. They suggest a
timely, coherent, complete and, with increasing data volume, more efficient assessment of data quality
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Figure 9.36 Uncertainties of interpolated values vs. uncertainties of existing data (black +) for a linear
interpolation. Source: adapted from Lepot et al. (2017).
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(Aggarwal, 2017). The algorithms ability to ‘learn’ suggests higher efficiency with minimal human
intervention while increasing flexibility.

While data-driven methods are experiencing a boom in the field of image processing, natural language
processing, speech recognition, stock portfolio management, and other fields, so far only very few
applications are known in the field of urban hydrology. Troutman et al. (2017) combine Gaussian
processes (dry-weather flows) and dynamical System Identification (wet weather discharge) aiming to
simulate rainfall-run-off dynamics in a combined sewer network purely based on sensor data. Although
the detection of novelty in monitored data had not been the primary objective, this approach could be
applied to do so. Russo et al. (2019) present an anomaly detection method based on a convolutional
neural network (CNN), i.e. a deep autoencoder, for validating urban drainage monitoring data. However,
the suggested methods come along with some deficiencies: immense data pre-processing is required, and
a high false positive rate is still present, although the latter aspect is partially justified with a somewhat
high complexity of the data, i.e. in-sewer flows, used in the study. Rodriguez-Perez et al. (2020) applied
a range of artificial neural networks on water-quality data (turbidity and conductivity) with high temporal
resolution to evaluate the ‘best’ performing model depending on the variable-, environment-, and
anomaly type. Common anomaly types present in online water quality data (with characteristics very
similar to variables monitored in urban drainage) were previously categorized by Leigh et al. (2019).
Rodriguez-Perez et al. (2020) in turn found that semi-supervised classification was better able to detect
instantaneous faults (e.g. spikes), whereas supervised classification had higher accuracy for predicting
long-term anomalies, such as drifts.

Despite the fact that results of these studies look rather promising, further systematic evaluation on
different real-life data sets applying different data-driven approaches is required to show the usefulness
and likewise the limitations of such approaches.

9.8.2 Challenges and constraints
Direct application of purely data-driven methods for the validation of urban hydrological data is challenging
for several reasons: (i) system-determining rainfall events with random occurrence do not result in easily
recognizable patterns; (ii) the range of values of measured state variables is sometimes limited on one
side (e.g. in the case of flow restrictions caused by a throttle) resulting in unilaterally constrained data;
(iii) processes are inherently non-linear – the boundary conditions are difficult to define; and (iv) the
complexity of some urban drainage signals, i.e. the decomposition of overlapping fluxes of different
dynamics, can be challenging.

Current research in the field of ML mostly focuses on new and signal-specific methods, or method
comparisons with limited representativeness. Comparisons and proofs of application are often carried
out with synthetic, i.e. modelled data sets or data from other fields. Description or necessary steps for
the preceding data preparation is often omitted, or their effect on the final result is often unclear.
Against this background, it is obvious that more studies are required, applying various methods to
different data sets (benchmarking of algorithms applied on open-access data). The repetition of
experiments, i.e. reproduction of results using new methods, would increase the trustworthiness of
data-driven methods.

Existing and future studies in the UDSM field should be carefully evaluated. The specific urban drainage
context (constrained/unconstrained, dry/wet weather) must be taken into account. If the community
manages to integrate sufficient domain knowledge into machine learning concepts (basically shifting
from black box to grey box models), data validation for urban drainage applications may experience a
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significant push. However, it has to be kept in mind that ML may be a convincing hammer, but not every
problem is a nail!

9.9 SUMMARYAND TRANSITION
Validation of field measurements is crucial to ensure data consistency and to allow for optimal interpretation
of the data. High-quality data increases the trustworthiness of the derived information enabling informed
decisions, but obtaining high-quality data is not an easy task.

This chapter attempts to remedy this situation. It discusses individual aspects of checking the plausibility
of data points, assessing their quality, and it strives for options to curate data as an inherent part of the
validation process, and/or as a subsequent step. A brief excurse on the use of machine learning
techniques is given due to its increasing popularity, also in the field of data validation.

The process of data validation should be understood as a stepwise approach, which can be split into a
basic check of consistency and plausibility, and a more subjective assessment. If applied, the latter
should clearly be dependent on the purpose the data is used for. Meta-data is considered decisive for
correct data interpretation. This additional, often non-numeric information should be collected
systematically and archived with a distinct relation to the corresponding data point(s).

Various tests for data quality assessment are introduced: from the simpler to the more complex ones.
Once the outputs of individual tests are calculated, results may be concatenated to obtain a single metric
per data point. Despite the fact that methods are mathematically founded, there can be substantial
subjectivity associated with their application. Some of the statistical techniques described require – in a
strict mathematical sense – data properties that are fulfilled. Still, these techniques are successfully
applied and widely accepted in practice. In such cases, this has been indicated, but scholastic correctness
has been considered as subordinate in favour of practicality. End users must be aware of such
subjectivities. In any case, pedantic documentation and transparent communication on parameters,
weights, and methods applied is highly recommended.

With the rise of new sensors and data communication technologies, and as we are adopting the Internet of
Things (IoT), collecting data has become less cumbersome, even in such challenging environments as
UDSM systems. This will inevitably lead to a substantially increased amount of data. But it is
anticipated that the quality of that data will not necessarily increase in the course of this trend. This, in
turn, raises the importance of a quantitative data quality assessment, as it is for the automation of
this process.

In a positive sense, this trend will stimulate the development of new methods, and their integration into
automatized data validation pipelines. But it will also come with new challenges: higher complexity, higher
diversity, an increased risk of confusion, and a lack of transparency in the process. The following strategies
will help to efficiently tackle present and future challenges:

• Introducing a basic level of harmonization, effectively resulting in somewhat standardized
approaches, including commonly agreed interfaces in the data assessment pipeline. What does it
bring? It allows the comparison of the quality of different data sets, for instance in the form of
benchmarking between different data providers and different systems. It enables performance
assessment of different evaluation approaches. Defined interfaces enable straightforward
integration of new methods.

• Development of data literacy across different qualification levels, that is from a technician that does
sewer maintenance to the CEO that manages a wastewater utility.
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• Establishing a culture of open-data, i.e. data sharing internally and between organizations. The
evaluation of anonymized data sets in the form of a benchmarking process leads to objective
performance assessment and continuous improvement.

• Increasing the degree of automation in the data validation process.

Along these lines, it can be expected that, in the (near) future, subjectivities in the data validation process can
be minimized, and the efficiency increased by using advanced data analysis tools. From the perspective of
scientific importance as well as for practical applications, all this would be beneficial to further facilitate the
use of validated data for evidence-based decision making in the field of urban drainage and
stormwater management.
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