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Chapter 1
Introduction

This dissertation is about the algebraic understanding of correspondence and canonici-
ty theory, as well as its applications in proof theory. The main focus of this thesis is on
the methodology, which is based on algebraic and order-theoretic notions and insights.
In this chapter, we will review the extant literature on correspondence and canonicity
theory, give an overview of its development, and sketch the contributions of each chap-
ter. We assume that the readers are familiar with modal logic and its relational and
algebraic semantics.

1.1 The development of correspondence theory

1.1.1 Correspondence and canonicity theory

Originally, correspondence theory arises as an area of the model theory of modal logic
which concerns the relation between modal formulas and first-order formulas interpret-
ed over Kripke frames. We say that a modal formula ϕ and the first-order formula α
correspond to each other if they are valid on the same class of Kripke frames. Canon-
icity theory is also originated from modal logic. A modal formula ϕ is canonical if it
is valid on its canonical frame. This can be reformulated as the validity preservation
from a modal algebra to its canonical extension, or from a descriptive general frame to
its underlying Kripke frame. Canonicity is closely related to completeness. If a modal
formula ϕ is canonical, then the normal modal logic axiomatized by ϕ is complete with
respect to the class of Kripke frames defined by ϕ.

Early results concerning correspondence theory are Sahlqvist’s [159] and van Ben-
them’s [180], who gave a syntactic characterization of certain modal formulas (later
called Sahlqvist formulas) which have first-order correspondents and they are canoni-
cal. The Sahlqvist-van Benthem algorithm [159, 180] was given to transform a Sahlqvist
formula into its first-order correspondent. Later on, this theory has been extended and
generalized in various ways:

1



2 Chapter 1. Introduction

• Extending correspondence results to larger fragments of formulas, e.g. inductive
formulas [104] and complex formulas [190].

• Extending Sahlqvist-type correspondence and canonicity results to different sig-
natures and languages as well as different logics: polyadic modal logics [102],
arbitrary similarity types [67], modal logic with difference modality [65], grad-
ed modal logics [143, 188], extended modal logics [66, 100], hybrid logics [103,
116, 173, 175], modal fixed-point logics [16, 17, 19, 181, 182, 183, 184, 186],
coalgebraic modal logics [63], modal predicate logic [185], generalized quan-
tifiers related logics [2, 4, 3], Boolean logic with a binary relation [11], mono-
tone modal logics [112], intuitionistic logic [158], intuitionistic modal logics
[129], distributive modal logics [88, 189], positive modal logics [27], many val-
ued modal logics [113, 130, 174], relevant modal logics [162, 163], substructural
logics [70, 135, 165, 166, 167, 169, 170], modal monoidal t-norm logics [149],
precontact logics [10], poset expansion based logics [168], possibility semantic-
s based modal logics [118, 187, 196], (modal) compact Hausdorff space based
modal logics [14, 19, 161], etc.

• Different technical aspects of correspondence theory are studied, e.g. alternative
canonicity proofs [91, 123, 160], undecidability results of correspondence prob-
lems [12, 30, 31, 32, 33, 34], subframe preservation [143], pseudo-correspondence
[192], reverse correspondence theory [125, 126, 127, 132, 133], the relation be-
tween elementarity and canonicity [75, 96, 97, 98, 99], algebraic canonicity-type
preservation results [17, 72, 93, 149, 176], etc.

For comprehensive studies in correspondence theory, we refer the readers to [178,
179]. For a comprehensive survey of correspondence theory, we refer the readers to
[50].

1.1.2 Algorithmic correspondence theory

In later development of correspondence theory, the algorithmic approach received
increasing attention. In this approach, different algorithms are designed to trans-
form modal formulas into their equivalent corresponding first-order formulas. Ex-
amples of these algorithms include SCAN [84, 101], DLS [39, 172] and SQEMA
[40, 41, 49, 51, 52, 53, 54, 90, 191]. In particular, the SQEMA algorithm operates
on modal formulas and is based on the Ackermann lemmas [1]. It rewrites the input
modal formula into a pure modal formula in an expanded language, and translate the
pure modal formula into the first-order language. It is shown in [51] that SQEMA suc-
ceeds on the class of inductive formulas, which is a strictly larger class than Sahlqvist
formulas, and all formulas on which SQEMA succeeds are canonical. In this line of
research, the focus is on classical normal modal logic and its variations.
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1.1.3 Unified correspondence theory
Unified correspondence theory [48] is based on early developments of the algorithm
SQEMA. In this stage, the scattered correspondence and canonicity results for dif-
ferent logics and the algorithmic method are unified. Based on duality-theoretic and
order-algebraic insights, a very general syntactic definition of Sahlqvist and induc-
tive formulas is given, which applies uniformly to each logical signature and is giv-
en purely in terms of the order-theoretic properties of the algebraic interpretations of
the logical connectives. In addition, the Ackermann lemma based algorithm ALBA,
which is a generalization of SQEMA based on order-theoretic and algebraic insights,
is given in [55], which effectively computes first-order correspondents of input formu-
las/inequalities, and is guaranteed to succeed on the Sahlqvist and inductive classes of
formulas/inequalities.

Thanks to these order-theoretic insights [58, 164], a uniform treatment of Sahlqvist-
type correspondence and canonicity theory is available for a wide range of logic-
s, including: intuitionistic and distributive lattice-based (normal modal) logics [55],
non-normal (regular) modal logics [153], substructural logics [57], hybrid logics [61],
many-valued modal logics [24], and mu-calculus [42, 44, 43]. This work has stimu-
lated many applications. Some are closely related to the core concerns of the theory
itself, such as the understanding of different methodologies for obtaining canonicity
results [152, 56, 59]. Other applications include the dual characterizations of classes
of finite lattices [83], computing the first-order correspondence of rules for one-step
frames [15, 92, 140], the epistemic logical theory of categorization [45, 46]. In par-
ticular, unified correspondence theory makes it possible to identify the syntactic shape
of axioms which can be translated into analytic structural rules1 of a proper display
calculus [109]. This line of research has made it possible the development of system-
atic design principles for proof calculi with excellent properties [81] for logics which
were challenging from a proof-theoretic perspective, such as dynamic epistemic logic
[79, 80, 106], propositional dynamic logic [78], first-order logic [13], inquisitive logic
[82], linear logic [111], lattice logic [110], bilattice logic [108], semi-de Morgan logic
[107], the logic of resources and capabilities [20], etc.

1.2 The contributions of this dissertation
The contributions of the dissertation are listed below.

• Chapter 3 applies the unified correspondence methodology to possibility seman-
tics, and gives alternative proofs of Sahlqvist-type correspondence results to the
ones of [196], and extends these results from Sahlqvist formulas to the strictly
larger class of inductive formulas, and from the full possibility frames to filter-
descriptive possibility frames.

1 Informally, analytic rules are those which can be added to a display calculus with cut elimination
obtaining again a display calculus with cut elimination.



4 Chapter 1. Introduction

• Chapter 4 applies the unified correspondence methodology to modal compact
Hausdorff spaces, and gives alternative proofs of canonicity-type preservation
results to the ones in [14].

• Chapter 5 examines the power and limits of the translation method in obtain-
ing correspondence and canonicity results. The correspondence via translation
results generalize [88] and the canonicity via translation results are new.

• Chapter 6 is about an application of unified correspondence theory to the proof
theory of strict implication logics, showing the usefulness of unified correspon-
dence theory in the design of analytic Gentzen sequent calculi, especially when
it comes to computing the corresponding analytic rules of a given sequent.

1.3 Outline of each chapter
The present dissertation belongs to the unified correspondence line of research. The
outline of each chapter is given as follows:

In Chapter 2, we give the preliminaries on unified correspondence theory.
In Chapter 3, we develop a unified correspondence treatment of the Sahlqvist theory

for possibility semantics, extending the results in [196] from Sahlqvist formulas to the
strictly larger class of inductive formulas, and from the full possibility frames to filter-
descriptive possibility frames. Specifically, we define the possibility semantics version
of the algorithm ALBA, and an adapted interpretation of the expanded modal language
used in the algorithm. We prove the soundness of the algorithm with respect to both
(the dual algebras of) full possibility frames and (the dual algebras of) filter-descriptive
possibility frames. We make some comparisons among different semantic settings in
the design of the algorithms, and fit possibility semantics into this broader picture.

In Chapter 4, we use the algorithm ALBA to reformulate the proof in [14] and
[19] that over modal compact Hausdorff spaces, the validity of Sahlqvist sequents are
preserved from open assignments to arbitrary assignments. In particular, we prove an
adapted version of the topological Ackermann lemma based on the Esakia-type lemmas
proved in [14] and [19].

In Chapter 5, we examine whether the alternative route ‘via translation’ could be
effective for obtaining Sahlqvist-type results of comparable strength for nonclassical
logics. This route consists in suitably embedding nonclassical logics into classical
polyadic modal logics via some Gödel-type translations, and then obtaining Sahlqvist
theory for nonclassical logics as a consequence of Sahlqvist theory of classical polyadic
modal logic. We analyze the power and limits of this alternative route for logics alge-
braically captured by normal distributive lattice expansions, and various sub-varieties
thereof. Specifically, we provide a new proof, ‘via translation’ of the correspondence
theorem for inductive inequalities of arbitrary signatures of normal distributive lattice
expansions. We also show that canonicity-via-translation can be obtained in a similar-
ly straightforward manner, but only for normal modal expansions of bi-intuitionistic
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logic. We also provide a detailed explanation of the difficulties involved in obtaining
canonicity-via-translation outside this setting.

In Chapter 6, we specialize unified correspondence theory to strict implication log-
ics and apply it to the proof theory of these logics. We conservatively extend a wide
range of strict implication logics to Lambek Calculi over the bounded distributive ful-
l non-associative Lambek calculus (BDFNL) as a consequence of a general semantic
consevativity result. By a suitably modified version of the Ackermann lemma based
algorithm ALBA, we transform many strict implication sequents into analytic rules em-
ploying one of the main tools of unified correspondence theory, and develop Gentzen-
style cut-free sequent calculi for BDFNL and its extensions with analytic rules which
are transformed from strict implication sequents.





Chapter 2
Preliminaries on unified correspondence

theory

In the present chapter, which is based on the preliminaries of [145] and [198, Section 6
and 8], we collect the preliminaries on unified correspondence theory, in the language
of distributive lattice expansions (DLEs). We report on the two basic ingredients of
unified correspondence theory, namely the order-algebraic oriented syntactic definition
of inductive DLE-inequalities, and the algorithm ALBA (Ackermann Lemma Based
Algorithm) (cf. [55, 48]) for DLE-languages.

2.1 Syntax and semantics for DLE-logics
Throughout this chapter we will use a fixed unspecified language LDLE, the interpreta-
tions of which are distributive lattice expansions.

We will make use of the following definitions: an order-type over n ∈ N (or an n-
order-type) is an n-tuple ε ∈ {1, ∂}n, which is typically associated with variable tuples
~p := (p1, . . . , pn). We say that pi has order-type 1 (resp. ∂) if εi = 1 (resp. εi = ∂), and
denote ε(pi) = 1 or ε(i) = 1 (resp. ε(pi) = ∂ or ε(i) = ∂). For each order-type ε, its
opposite order-type is denoted by ε∂, i.e., ε∂i = ∂ iff εi = 1 for every 1 ≤ i ≤ n. For
any lattice A, we let A1 := A and let A∂ be its dual lattice (the lattice with the reverse
partial order of A). For any order-type ε, we denote Aε := Πn

i=1A
εi .

The language LDLE(F ,G) (we omit (F ,G) when it is clear from the context) con-
sists of: 1) an enumerable set AtProp of propositional variables p, q, r, etc.; 2) two
disjoint sets of connectives F and G, each f ∈ F (resp. g ∈ G) has arity n f (resp. ng)
and order-type ε f over n f (resp. εg over ng).1.

2.1.1. Definition. The terms (formulas) of LDLE are recursively defined as follows:

ϕ ::= p | > | ⊥ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | g(ϕ) | f (ϕ)
1Unary f (resp. g) will be sometimes denoted as ^ (resp. �) if the order-type is 1, and C (resp. B) if

the order-type is ∂.
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8 Chapter 2. Preliminaries on unified correspondence theory

where p ∈ AtProp, g ∈ G and f ∈ F . Terms (formulas) in LDLE are denoted by
lowercase Greek letters e.g. ϕ, ψ, γ, or by lower case Latin letters e.g. s, t. An LDLE-
sequent is an expression of the form ϕ ` ψ.

2.1.2. Definition. For any tuple (F ,G) as defined above, a normal distributive lattice
expansion (DLE for short, or DLE-algebra, LDLE-algebra) is a tuple A = (L,F A,GA)
where L is a bounded distributive lattice, F A = { f A | f ∈ F }, GA = {gA | g ∈ G},
where each f A ∈ F A (resp. gA ∈ GA) is an n f -ary (resp. ng-ary) function on L, and
morover, each f A ∈ F A (resp. gA ∈ GA) preserves finite (therefore also empty) joins
(resp. meets) in each coordinate where ε f (i) = 1 (resp. εg(i) = 1) and reverses finite
(therefore also empty) meets (resp. joins) in each coordinate where ε f (i) = ∂ (resp.
εg(i) = ∂).

We will abuse notation and write e.g. f for f A when no confusion arises. For
every DLE A, each f A ∈ F A (resp. gA ∈ GA) is finitely join-preserving (resp. meet-
preserving) in each coordinate when regarded as a map f A : Aε f → A (resp. gA :
Aεg → A).

For each operator f ∈ F (respectively g ∈ G) and 1 ≤ i ≤ n f (respectively 1 ≤ j ≤
ng), we use the symbol fi[a] (resp. g j[a]) to represent compactly that a is in the i-th
argument of f ( j-th argument of g) and omit the other coordinates which are taken as
parameters. The class of all normal DLEs, denoted by DLE, is equationally definable
by identities of distributive lattices and the following for each f ∈ F (resp. g ∈ G) and
1 ≤ i ≤ n f (resp. 1 ≤ j ≤ ng):

(1) if ε f (i) = 1, then fi[a ∨ b] = fi[a] ∨ fi[b] and fi[⊥] = ⊥,

(2) if ε f (i) = ∂, then fi[a ∧ b] = fi[a] ∨ fi[b] and fi[>] = ⊥,

(3) if εg( j) = 1, then g j[a ∧ b] = g j[a] ∧ g j[b] and g j[>] = >,

(4) if εg( j) = ∂, then g j[a ∨ b] = g j[a] ∧ g j[b] and g j[⊥] = >.

Every language LDLE is interpreted in DLEs with the same similarity type.
The relational semantics of LDLE is given below:

2.1.3. Definition. An LDLE-frame is a tuple F = (X,RF ,RG) such that X = (W,≤) is a
(nonempty) poset, RF = {R f | f ∈ F }, and RG = {Rg | g ∈ G} such that for each f ∈ F ,
the symbol R f denotes an (n f + 1)-ary relation on W such that for all w, v ∈ Xη f ,

if R f (w) and w ≤η f v, then R f (v), (2.1)

where η f is the order-type on n f + 1 defined as follows: η f (1) = 1 and η f (i + 1) = ε∂f (i)
for each 1 ≤ i ≤ n f .

Likewise, for each g ∈ G, the symbol Rg denotes an (ng + 1)-ary relation on W such
that for all w, v ∈ Xηg ,

if Rg(w) and w ≥ηg v, then Rg(v), (2.2)
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where ηg is the order-type on ng + 1 defined as follows: ηg(1) = 1 and ηg(i + 1) = ε∂g(i)
for each 1 ≤ i ≤ ng.

An LDLE-model is a tuple M = (F,V) such that F is an LDLE-frame, and V :
AtProp→ P↑(W) is a persistent valuation.

The defining clauses for the interpretation of each f ∈ F and g ∈ G on LDLE-
models are given as follows:

M,w 
 f (ϕ) iff there exists some v ∈ Wn f s.t. R f (w, v) and
M, vi 


ε f (i) ϕi for each 1 ≤ i ≤ n f ,
M,w 
 g(ϕ) iff for any v ∈ Wng , if Rg(w, v) then

M, vi 

εg(i) ϕi for some 1 ≤ i ≤ ng,

where 
1 is 
 and 
∂ is 1.

2.1.4. Definition. For any language LDLE(F ,G), the minimal DLE-logic is the set of
LDLE-sequents ϕ ` ψ containing the following sequents:

(1) Lattice axioms:

p ` p, ⊥ ` p, p ` >, p ∧ (q ∨ r) ` (p ∧ q) ∨ (p ∧ r),
p ` p ∨ q, q ` p ∨ q, p ∧ q ` p, p ∧ q ` q,

(2) F and G-axioms:

ε f (i) = 1 ε f (i) = ∂

fi[⊥] ` ⊥ fi[>] ` ⊥
fi[p ∨ q] ` fi[p] ∨ fi[q] fi[p ∧ q] ` fi[p] ∨ fi[q]

εg( j) = 1 εg( j) = ∂

> ` g j[>] > ` g j[⊥]
g j[p] ∧ g j[q] ` g j[p ∧ q] g j[p] ∧ g j[q] ` g j[p ∨ q]

and is closed under the following inference rules:

ϕ ` χ χ ` ψ

ϕ ` ψ

ϕ ` ψ

ϕ[χ/p] ` ψ[χ/p]
χ ` ϕ χ ` ψ

χ ` ϕ ∧ ψ

ϕ ` χ ψ ` χ

ϕ ∨ ψ ` χ

ϕ ` ψ

fi[ϕ] ` fi[ψ]
(ε f (i) = 1)

ϕ ` ψ

fi[ψ] ` fi[ϕ]
(ε f (i) = ∂)

ϕ ` ψ

g j[ϕ] ` g j[ψ]
(εg( j) = 1)

ϕ ` ψ

g j[ψ] ` g j[ϕ]
(εg( j) = ∂).

The formula ϕ[χ/p] is obtained from ϕ by substituting χ for p uniformly. The minimal
DLE-logic is denoted by LDLE. For any DLE-language LDLE, by a DLE-logic we
understand any axiomatic extension of LDLE.

In DLE-algebras, the turnstile ` is interpreted as their order ≤. ϕ ` ψ is valid in A
if µ(ϕ) ≤ µ(ψ) for every assignment µ over PROP to A. The notation DLE |= ϕ ` ψ
denotes that ϕ ` ψ is valid in all DLEs. Then by standard algebraic completeness,
ϕ ` ψ is provable in LDLE iff DLE |= ϕ ` ψ.
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2.2 The expanded language L∗DLE

For any LDLE = LDLE(F ,G), it can be extended to the “tense” language L∗DLE =

LDLE(F ∗,G∗), where F ∗ ⊇ F and G∗ ⊇ G are obtained by adding the following con-
nectives into LDLE:

(1) the Heyting implications ←H and →H∈ G
∗, to be respectively interpreted as

the right residuals of ∧ in the 1st and 2nd coordinate, and the Heyting co-
implications >− and −<∈ F ∗, to be respectively interpreted as the left residuals
of ∨ in the 1st and 2nd coordinate;

(2) for f ∈ F and 1 ≤ i ≤ n f , the connective f ]i of arity n f , to be interpreted as
the right residual of f in its i-th coordinate and f ]i ∈ G

∗ if ε f (i) = 1 (resp. the
Galois-adjoint of f in its i-th coordinate and f ]i ∈ F

∗ if ε f (i) = ∂);

(3) for g ∈ G and 1 ≤ i ≤ ng, the connective g[i of arity ng, to be interpreted as
the left residual of g in its i-th coordinate and g[i ∈ F

∗ if εg(i) = 1 (resp. the
Galois-adjoint of g in its i-th coordinate and g[i ∈ G

∗ if εg(i) = ∂);

The order-type of the new connectives are specified as follows:

(1) ε←H (1) = 1, ε←H (2) = ∂, ε→H (1) = ∂, ε→H (2) = 1;

(2) ε>−(1) = 1, ε>−(2) = ∂, ε−<(1) = ∂, ε−<(2) = 1;

(3) for f ]i , if ε f (i) = 1, then ε f ]i
(i) = ε f (i) and ε f ]i

( j) = (ε f ( j))∂ for all j , i; if
ε f (i) = ∂, then ε f ]i

= ε f ;

(4) for g[i , if εg(i) = 1, then εg[i
(i) = εg(i) and εg[i

( j) = (εg( j))∂ for all j , i; if
εg(i) = ∂, then εg[i

= εg.

2.2.1. Definition. Given the DLE-languageLDLE(F ,G), the minimalL∗DLE-logic is de-
fined by specializing Definition 2.1.4 to the expanded language L∗DLE = LDLE(F ∗,G∗)
and adding the following rules to the logic:

(1) Heyting and co-Heyting residuation rules:

ϕ ∧ ψ ` χ

ψ ` ϕ→H χ

ϕ ∧ ψ ` χ

ϕ ` χ←H ψ

ϕ ` ψ ∨ χ

ψ−< ϕ ` χ

ϕ ` ψ ∨ χ

ϕ >−χ ` ψ

(2) f - and g-residuation rules2:

fi[ϕ] ` ψ
(ε f (i) = 1),

ϕ ` f ]i [ψ]

ϕ ` g j[ψ]
(εg( j) = 1),

g[j[ϕ] ` ψ

2In principle, we should use the notation (g[j) j[a] for g[j with a as its j-th argument, but in the case of
the adjoints in the rules here, we will avoid the double subscript since they coincide.
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fi[ϕ] ` ψ
(ε f (i) = ∂),

f ]i [ψ] ` ϕ

ϕ ` g j[ψ]
(εg( j) = ∂).

ψ ` g[j[ϕ]

The double line means that the rule are invertible. Let L∗DLE be the minimalL∗DLE-logic.

The algebraic semantics of L∗DLE is given by the class of all L∗DLE-algebras, defined
as (H,F ∗,G∗) where H is a bi-Heyting algebra (because there are right adjoints or
residuals of ∧ and ∨ in the algebra) and moreover,

(1) for every f ∈ F , all ai, b ∈ H with 1 ≤ i ≤ n f ,

– if ε f (i) = 1, then fi[ai] ≤ b iff ai ≤ f ]i [b];

– if ε f (i) = ∂, then fi[ai] ≤ b iff ai ≤
∂ f ]i [b].

(2) for every g ∈ G, any a j, b ∈ H with 1 ≤ j ≤ ng,

– if εg( j) = 1, then b ≤ g j[a j] iff g[j[b] ≤ a j.

– if εg( j) = ∂, then b ≤ g j[a j] iff g[i [b] ≤∂ a j.

The soundness and completeness of L∗DLE w.r.t. the class of all L∗DLE-algebras can
be proved by the standard Lindenbaum-Tarski construction.

2.2.2. Theorem. (cf. [109, Theorem 12]) For everyLDLE-sequent ϕ ` ψ, ϕ ` ψ is deriv-
able in L∗DLE iff ϕ ` ψ is derivable in LDLE. Therefore, the logic L∗DLE is a conservative
extension of LDLE.

2.3 Canonical extensions
First of all, let us recall some concepts from [87]. For any bounded lattice L, a com-
pletion of L is a complete lattice C such that L is a sublattice of C. An element x ∈ C
is closed if x =

∧
C F for some subset F ⊆ L, and open if x =

∨
C I for some subset

I ⊆ L. We denote K(C) (resp. O(C)) as the set of all closed (resp. open) elements in C.
The completion C of L is

– dense if each element of C is both a join of meets and a meet of joins of elements
from L;

– compact if for any S ⊆ K(C) and T ⊆ O(C), if
∧

S ≤
∨

T , then there are finite
subsets S ′ ⊆ S and T ′ ⊆ T such that

∧
S ′ ≤

∨
T ′.

A canonical extension of a lattice L is a completion of L which is both dense and
compact. Every lattice has unique (up to isomorphism) canonical extension Lδ [87].

A distributive lattice L is perfect if it is complete, completely distributive and ev-
ery element is a join of its completely join-irreducible elements (the set of which is
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denoted by J∞(L)), and every element is a meet of its completely meet-irreducible
elements (the set of which is denoted by M∞(L))3. A normal DLE is perfect if its
underlying distributive lattice is perfect, and each f -operation (resp. g-operation) is
completely join-preserving (resp. meet-preserving) or completely meet-reversing (re-
sp. join-reversing) in each coordinate. It is well-known that the canonical extension of
a bounded distributive lattice is perfect (cf. e.g. [88, Definition 2.14]).

Let h : L → M be any map from a lattice L to M. Following [87, Definition 4.1],
one can define two maps hσ, hπ : Lδ → Mδ by setting:

hσ(u) =
∨
{
∧
{h(a) : a ∈ L & x ≤ a ≤ y} : K(Lδ) 3 x ≤ u ≤ y ∈ O(Lδ)}.

hπ(u) =
∧
{
∨
{h(a) : a ∈ L & x ≤ a ≤ y} : K(Lδ) 3 x ≤ u ≤ y ∈ O(Lδ)}.

Both hσ and hπ extend h, and hσ ≤ hπ pointwise. In general, if h is order-preserving,
then hσ and hπ are also order-preserving ([87]). The canonical extension of an LDLE-
algebra A = (A,F A,GA) is the perfect LDLE-algebra Aδ = (Aδ,F Aδ ,GA

δ
) such that f A

δ

and gA
δ

are defined as the σ-extension of f A and as the π-extension of gA respectively,
for all f ∈ F and g ∈ G.

2.4 An informal introduction of the algorithm ALBA

In the present section, we give an illustration on the algorithm ALBA with an example
to show how it works. The presentation is based on a revised version of [109, Section
3.3], following the discussion in [55, 48]. Our semantic setting is Kripke frames and
their dual complex algebras–Boolean algebras with operators (BAOs).

We consider a well-known example in modal logic, namely the 4-axiom �p →
��p, which corresponds to the transitivity condition: for any Kripke frame F = (W,R),

F 
 �p→ ��p iff F |= ∀xyz (Rxy ∧ Ryz→ Rxz).

Our argument goes in a purely algebraic way, namely in the dual complex algebras
of Kripke frames–complete atomic Boolean algebras with complete operators, which
are also known as perfect BAOs [22, Definition 40, Chapter 6].

In the complex algebra A = F+ of F, the semantic condition F 
 �p → ��p is
reformulated as [[�p]] ⊆ [[��p]] for every assignment of p into A. In purely algebraic
terms, this is equivalent to

A |= ∀p[�p ≤ ��p], (2.3)

where ≤ is interpreted as set-theoretic inclusion ⊆. As is well-known, in perfec-
t BAOs, every element can be represented both as the join of the completely join-
prime elements below it and the meet of the completely meet-prime elements above

3An element a ∈ A is completely join-irreducible (resp. completely meet-irreducible) if for any
S ⊆ A, a =

∨
S (resp. a =

∧
S ) implies a ∈ S .
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it4. Therefore, condition (2.3) can be equivalently reformulated as follows:

A |= ∀p[
∨
{i | i ∈ J∞(A) and i ≤ �p} ≤

∧
{m | m ∈ M∞(A) and ��p ≤ m}].

which can be further reformulated as:

A |= ∀p∀i∀m[(i ≤ �p & ��p ≤ m)⇒ i ≤ m], (2.4)

where the nominal variable i ranges over J∞(A) and the co-nominal variable m ranges
over M∞(A).

Since in complete atomic Boolean algebras with complete operators, � preserves
arbitrary meets, this is equivalent to that � is a right adjoint (cf. [64, Proposition 7.34]),
therefore it has a left adjoint _. As a result, the equation (2.4) above can be reformu-
lated as follows:

A |= ∀p∀i∀m[(_i ≤ p & ��p ≤ m)⇒ i ≤ m]. (2.5)

Now we are ready to eliminate the variable p and get the following condition:

A |= ∀i∀m[(��_i ≤ m)⇒ i ≤ m]. (2.6)

To justify the equivalence, it suffices to justify the following equivalence:

A |= ∀i∀m[∃p(_i ≤ p & ��p ≤ m)⇔ ��_i ≤ m], (2.7)

Let us fix the assignment of i and m. From left to right, if there exists p such that
_i ≤ p and ��p ≤ m, then by monotonicity, ��_i ≤ ��p ≤ m. From right to
left, suppose ��_i ≤ m, then take p := _i, then there exists p such that _i ≤ p and
��p ≤ m.

Indeed, this is a special case of the following Ackermann lemma ([1, 51]):

2.4.1. Lemma. Let α, β(p), γ(p) be such that α does not contain p, β is positive in p
and γ is negative in p. Then for any assignment θ on A, the following are equivalent:

(1) there exists a p-variant θ′ of θ such that A, θ′ |= β(p) ≤ γ(p) and A, θ′ |= α ≤ p;

(2) A, θ |= β(α/p) ≤ γ(α/p).

Then by the property of complete meet-primes, condition (2.6) is equivalent to the
following:

A |= ∀i[{m | m ∈ M∞(A) and ��_i ≤ m} ⊆ {m | m ∈ M∞(A) and i ≤ m}], (2.8)
4We use J∞(A) and M∞(A) to denote the set of completely join-prime elements and the set of com-

pletely meet-prime elements respectively. In perfect BAOs, the completely join-prime elements are the
same as the completely join-irreducible elements or the atoms, and the completely meet-prime elements
are the same as the completely meet-irreducible elements or the co-atoms.
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A |= ∀i[
∧
{m | m ∈ M∞(A) and i ≤ m} ≤

∧
{m | m ∈ M∞(A) and ��_i ≤ m}], (2.9)

A |= ∀i[i ≤ ��_i]. (2.10)

Since � is the right adjoint of _, the condition above is equivalent to the following:

A |= ∀i[__i ≤ _i]. (2.11)

Now we have eliminated all propositional variables which correspond to second-order
variables, and all the remaining variables are interpreted as completely join-prime el-
ements or completely meet-prime elements of the perfect BAO A. By discrete Stone
duality, they correspond to singletons and complements of singletons of F. On the
frame side, the connective _ is interpreted as R[ ], where R is the binary relation used
in the interpretation of �. Therefore, condition (2.11) is transformed into a first-order
condition on the frame F side:

F |= ∀w(R[R[w]] ⊆ R[w]). (2.12)

Which is the same as

F |= ∀w∀x∀y(Rwx ∧ Rxy→ Rxy). (2.13)

2.5 Inductive inequalities
In this section, we will recall from [109] the definition of inductive [104] and Sahlqvist
[159] LDLE-inequalities on which the algorithm ALBA is guaranteed to succeed. This
definition is based on the order-theoretic properties of the interpretations of the con-
nectives in each algebra of the class of DLEs associated with the given signature.

2.5.1. Definition. [Signed generation tree] The positive (resp. negative) generation
tree of any LDLE-formula ϕ is defined as follows: First of all, the root node of the
generation tree of ϕ is labelled with sign + (resp. −). After this, the children nodes are
labelled as follows:

• For any node ∨ or ∧, label the same sign to the children nodes.

• For any node h ∈ F ∪G of arity nh ≥ 1 and any 1 ≤ i ≤ nh, label the same (resp.
the opposite) sign to the i-th child node if εh(i) = 1 (resp. if εh(i) = ∂).

Nodes in the signed generation trees are positive (resp. negative) if signed with + (resp.
−).

We will use signed generation trees mainly in the context of inequalities ϕ ≤ ψ, where
we will typically consider the positive generation tree +ϕ and the negative signed gen-
eration tree −ψ. We say that ϕ ≤ ψ is uniform in p if all occurrences of p have the
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same sign in both +ϕ and −ψ, and that ϕ ≤ ψ is ε-uniform in ~p if ϕ ≤ ψ is uniform in
p, occurring with the sign indicated by ε, for each p in ~p.

For any formula ϕ(p1, . . . pn), any order-type ε ∈ {1, ∂}n and any 1 ≤ i ≤ n, an
ε-critical node in the signed generation tree +ϕ or −ϕ is a leaf node +pi if εi = 1 or
−pi if εi = ∂. An ε-critical branch in +ϕ or −ϕ is a branch ending with an ε-critical
node. We say that +ϕ (resp. −ϕ) agrees with ε, and denote ε(+s) (resp. ε(−s)), if every
branch in +ϕ (resp. −ϕ) is ε-critical. We also use +ψ ≺ ∗ϕ (resp. −ψ ≺ ∗ϕ) to denote
that the signed generation tree +ψ (resp. −ϕ) is a subtree of ∗ϕ, where ∗ ∈ {+,−}. We
use ε(γ) ≺ ∗ϕ (resp. ε∂(γ) ≺ ∗ϕ) to indicate that the signed generation subtree γ of ∗ϕ,
agrees with ε (resp. with ε∂). A propositional variable p is positive (resp. negative) in
ϕ if +p ≺ +ϕ (resp. −p ≺ +ϕ).

2.5.2. Definition. In any signed generation tree, nodes will be respectively called syn-
tactically right adjoint (SRA), syntactically left residual (SLR), syntactically right resid-
ual (SRR) and ∆-adjoints, according to Table 2.1. In the signed generation tree ∗s
where ∗ ∈ {+,−}, a branch is good if it is composed of two sub-branches P1 and P2,
one of which may be empty, where P2 is a path from the root consisting of Skeleton-
nodes and P1 is a path from the leaf consisting of PIA-nodes.5 A good branch is
excellent if P1 consists only of SRA nodes.

Table 2.1: Skeleton nodes and PIA nodes for DLE.

Skeleton PIA
∆-adjoints SRA

+ ∨ ∧

− ∧ ∨

+ ∧ g with ng = 1
− ∨ f with n f = 1

SLR SRR
+ ∧ f with n f ≥ 1
− ∨ g with ng ≥ 1

+ ∨ g with ng ≥ 2
− ∧ f with n f ≥ 2

2.5.3. Definition. [Inductive and Sahlqvist inequalities] For any transitive and irreflex-
ive relation <Ω on variables p1, . . . pn (referred to as the dependency order) and any
order-type ε ∈ {1, ∂}n, the signed generation tree ∗ϕ(p1, . . . pn) (where ∗ ∈ {−,+}) is
(Ω, ε)-inductive if

(1) each ε-critical branch ending with leaf node pi is good for each 1 ≤ i ≤ n;

(2) in each ε-critical branch ending with leaf node pi, every m-ary SRR-node occur-
ring is of the form h(γ1, . . . , γ j−1, β, γ j+1 . . . , γm), where h ∈ F ∪ G and for any
l ∈ {1, . . . ,m} \ j:

5This organization is motivated and discussed in [44] and [48] to establish a connection with analo-
gous terminology in [186].
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(a) ε∂(γl) ≺ ∗ϕ, and

(b) pk <Ω pi for every pk occurring in γl and for every 1 ≤ k ≤ n.

Given any order-type ε, ∗ϕ(p1, . . . pn) is ε-Sahlqvist if every ε-critical branch is excel-
lent (cf. Definition 2.5.2).

The inequality ϕ ≤ ψ is called (Ω, ε)-inductive (resp. ε-Sahlqvist) if +ϕ and −ψ
are both (Ω, ε)-inductive (resp. ε-Sahlqvist). The inequality ϕ ≤ ψ is called induc-
tive (Sahlqvist) if it is (Ω, ε)-inductive (ε-Sahlqvist) for some dependency order Ω and
order-type ε (resp. order-type ε).

2.5.4. Remark. As we can see from the definitions above, the shape of Sahlqvist and
inductive formulas is based on certain syntactic concatenation requirements. These
requirements make it possible to transform a given formula into a condition where it
is possible to eliminate propositional variables by the Ackermann rules introduced in
Section 2.6. The soundness of such transformation rules is guaranteed by the algebra-
ic and order-theoretic properties of the interpretations of the connectives, which are
indicated by the names of their classifications. For example, in Section 2.4, the syn-
tactically right adjoint connective � is interpreted as the semantic right adjoint of the
interpretation of _, which guarantees the transformation from (2.4) to (2.5) possible.

2.5.1 Examples
Here we give some examples of Sahlqvist and inductive inequalities. These examples
are taken from [60].

2.5.5. Example. [Bi-intuitionistic language] Consider the bi-intuitionistic languageLB =

(F ,G) where F = {> }, G = {→}, and ε> (1) = 1, ε> (2) = ∂, ε→(1) = ∂,
ε→(2) = 1.

In [155, Section 4], Rauszer axiomatizes bi-intuitionistic logic considering the fol-
lowing axioms among others, which we present in the form of inequalities:

r> (q> p) ≤ (p ∨ q)> p (q> p)→ ⊥ ≤ p→ q.

The first inequality is not (Ω, ε)-inductive for any Ω and ε; indeed, in the negative gen-
eration tree of (p∨q)> p, the variable p occurs in both subtrees rooted at the children
of the root, which is a binary SRR node, making it impossible to satisfy condition 2(b)
of Definition 2.5.3 for any order-type ε and strict ordering Ω.

The second inequality is ε-Sahlqvist for ε(p) = 1 and ε(q) = ∂, and is also (Ω, ε)-
inductive but not Sahlqvist for q <Ω p and ε(p) = ε(q) = ∂. It is also (Ω, ε)-inductive
but not Sahlqvist for p <Ω q and ε(p) = ε(q) = 1.

2.5.6. Example. [Intuitionistic bi-modal language] Consider the intuitionistic bi-modal
language LIBM = (F ,G) where F = {^}, G = {�,→} and ε^ = ε� = 1, ε→(1) = ∂,
ε→(2) = 1.
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The following Fischer Servi inequalities (cf. [76])

^(q→ p) ≤ �q→ ^p ^q→ �p ≤ �(q→ p),

are both ε-Sahlqvist for ε(p) = ∂ and ε(q) = 1, and are also both (Ω, ε)-inductive but
not Sahlqvist for p <Ω q and ε(p) = ∂ and ε(q) = ∂.

2.5.7. Example. [Distributive modal language] Consider the distributive modal lan-
guage LD = (F ,G) where F = {^}, G = {�}, and ε^ = ε� = 1.

The following inequalities are key to Dunn’s positive modal logic [69], the lan-
guage of which is the {C,B}-free fragment of the language of distributive modal logic
[88]:

�q ∧ ^p ≤ ^(q ∧ p) �(q ∨ p) ≤ ^q ∨ �p.

The inequality on the left (resp. right) is ε-Sahlqvist for ε(p) = ε(q) = 1 (resp. ε(p) =

ε(q) = ∂), and is (Ω, ε)-inductive but not Sahlqvist for p <Ω q and ε(p) = 1 and
ε(q) = ∂ (resp. p <Ω q and ε(p) = ∂ and ε(q) = 1).

2.6 The algorithm ALBA for LDLE-inequalities
In what follows we will specify the algorithm ALBA for a fixed but arbitrary language
LDLE. The language of the algorithm L∗+DLE is defined as follows:

ϕ ::= p | > | ⊥ | i | m | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | g(ϕ) | f (ϕ)

where p ∈ AtProp, i ∈ NOM is called nominal, m ∈ CONOM is called conomimal, f ∈
F ∗, g ∈ G∗. This language is interpreted in perfect LDLE-algebras A, where nominals
(resp. conominals) are interpreted as completely join-irreducibles (resp. completely
meet-irreducibles) of A (cf. page 12).

An L∗+DLE-inequality is ϕ ≤ ψ such that ϕ and ψ are L∗+DLE-formulas. An L∗+DLE-quasi-
inequality is ϕ1 ≤ ψ1 & . . . & ϕn ≤ ψn ⇒ ϕ ≤ ψ where each ϕi ≤ ψi for 1 ≤ i ≤ n and
ϕ ≤ ψ are L∗+DLE-inequalities.

The algorithm ALBA in the language LDLE is defined in [55, 109]. The algorith-
m transforms the input LDLE-inequalities into equivalent L∗+DLE quasi-inequalities with
nominals and conominals only, where propositional variables are eliminated by the
Ackermann rules. The proof of the soundness of ALBA rules in the language LDLE is
similar to [55, 48] and hence omitted. ALBA receives the input inequality ϕ ≤ ψ and
runs in three stages:

First stage: preprocessing and first approximation stage. ALBA preprocesses
ϕ ≤ ψ by applying the following rules exhaustively in +ϕ and −ψ:

(1) (a) Push down +∧ towards variables by distributing over children node labelled
with +∨ which are Skeleton nodes;
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(b) Push down −∨ towards variables by distributing over children node labelled
with −∧ which are Skeleton nodes;

(c) For any f ∈ F , push down + f towards variables by distributing over its
i-th child node labelled with +∨ (resp. −∧) which are Skeleton nodes if
ε f (i) = 1 (resp. ε f (i) = ∂);

(d) For any g ∈ G, push down −g towards variables by distributing over its
i-th child node labelled with −∧ (resp. +∨) which are Skeleton nodes if
εg(i) = 1 (resp. εg(i) = ∂).

(2) Splitting rules:
α ≤ β ∧ γ

α ≤ β α ≤ γ

α ∨ β ≤ γ

α ≤ γ β ≤ γ

(3) Monotone and antitone variable-elimination rules:

α(p) ≤ β(p)
α(⊥) ≤ β(⊥)

β(p) ≤ α(p)
β(>) ≤ α(>)

where β(p) is positive in p and α(p) is negative in p.

Let Preprocess(ϕ ≤ ψ) := {ϕi ≤ ψi | 1 ≤ i ≤ n} be the set of inequalities obtained
by applying the above rules exhaustively. Then the following rule (which is called the
first approximation rule) is applied to each ϕi ≤ ψi in Preprocess(ϕ ≤ ψ):

ϕ ≤ ψ

i0 ≤ ϕ ψ ≤ m0

where i0 is a nominal and m0 is a conominal. After the first approximation rule, for
each inequality ϕi ≤ ψi ∈ Preprocess(ϕ ≤ ψ), the algorithm produces a system of
inequalities {i0 ≤ ϕi, ψi ≤ m0}.

Second stage: reduction and elimination stage. The present stage aims at elimi-
nating all propositional variables from each system obtained in the previous stage. The
variables are eliminated by the so called Ackermann rules, and the other rules in this
stage are applied in order to reach the shape to apply the Ackermann rule.

Splitting rules.

α ≤ β ∧ γ

α ≤ β α ≤ γ

α ∨ β ≤ γ

α ≤ γ β ≤ γ

Residuation rules. For every f ∈ F and g ∈ G, every 1 ≤ j ≤ n f and every
1 ≤ k ≤ ng, we have the following residuation rules:

f j[ψ j] ≤ χ (ε f ( j) = 1),
ψ j ≤ f ]j [χ]

f j[ψ j] ≤ χ (ε f ( j) = ∂),
f ]j [χ] ≤ ψ j

χ ≤ gk[ψk] (εg(k) = ∂),
ψk ≤ g[k[χ]

χ ≤ gk[ψk] (εg(k) = 1).
g[k[χ] ≤ ψk
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Approximation rules. For every f ∈ F and g ∈ G, every 1 ≤ j ≤ n f and every
1 ≤ k ≤ ng, we have the following residuation rules:

i ≤ f j[ψ j] (ε f ( j) = 1),
i ≤ f j[j] j ≤ ψ j

gk[ψk] ≤ m
(εg(k) = 1),

gk[n] ≤ m ψk ≤ n
i ≤ f j[ψ j] (ε f ( j) = ∂),

i ≤ f j[n] ψk ≤ n
gk[ψk] ≤ m

(εg(k) = ∂),
gk[j] ≤ m j ≤ ψh

where the variables i, j (resp. m,n) are nominals (resp. conominals). The nominal
j and conominal n must be fresh, i.e. not occur in the system before applying the
approximation rule.

Ackermann rules. These two rules aim at eliminating propositional variables and
operate on the whole system rather than on a single inequality.

&{β j(p) ≤ γ j(p) | 1 ≤ j ≤ m}& &{αi ≤ p | 1 ≤ i ≤ n} ⇒ i0 ≤ m0 (RAR)
&{β j(

∨n
i=1 αi) ≤ γ j(

∨n
i=1 αi) | 1 ≤ j ≤ m} ⇒ i0 ≤ m0

where γ1(p), . . . , γm(p) are negative in p, β1(p), . . . , βm(p) are positive in p and p does
not occur in α1, . . . , αn.

&{β j(p) ≤ γ j(p) | 1 ≤ j ≤ m}& &{p ≤ αi | 1 ≤ i ≤ n} ⇒ i0 ≤ m0 (LAR)
&{β j(

∧n
i=1 αi) ≤ γ j(

∧n
i=1 αi) | 1 ≤ j ≤ m} ⇒ i0 ≤ m0

where γ1(p), . . . , γm(p) are positive in p, β1(p), . . . , βm(p) are negative in p, and p does
not occur in α1, . . . , αn.

Third stage: output stage. If for some systems, some variables cannot be elimi-
nated, then ALBA halts and reports failure. Otherwise, every system {i0 ≤ ϕi, ψi ≤ m0}

has been reduced to a system Reduce(ϕi ≤ ψi) with no propositional variables. Let
ALBA(ϕ ≤ ψ) := {&[Reduce(ϕi ≤ ψi)] ⇒ i0 ≤ m0 | ϕi ≤ ψi ∈ Preprocess(ϕ ≤ ψ)},
which contains no propositional variables. ALBA outputs ALBA(ϕ ≤ ψ) and termi-
nates.

2.7 Soundness, success and canonicity
In the present section, which is based on a revised version of [198, Section 6 and 8], we
recall the sketch of the proof of the soundness of the algorithm ALBA, the statement
that ALBA succeeds on all inductive LDLE-inequalities, and sketch of the proof that all
inequalities that ALBA succeeds are canonical. The proofs are similar to [55].

2.7.1 Soundness and success
2.7.1. Theorem (Soundness). If ALBA runs successfully on ϕ ≤ ψ and outputs ALBA(ϕ ≤
ψ), then for any perfect LDLE-algebra A,

A 
 ϕ ≤ ψ iff A |= ALBA(ϕ ≤ ψ).
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Proof:
(Sketch.) The proof goes similarly to [55, Theorem 8.1]. Let Preprocess(ϕ ≤ ψ) :=
{ϕi ≤ ψi | 1 ≤ i ≤ n} denote the set of inequalities produced by preprocessing ϕ ≤
ψ after Stage 1, Reduce(ϕi ≤ ψi) denote the set of inequalities after processing the
inequality ϕi ≤ ψi in Stage 2. It suffices to show the equivalence from (2.14) to (2.18)
given below:

A |= ϕ ≤ ψ(2.14)
A |= Preprocess(ϕ ≤ ψ)(2.15)
A |= (j0 ≤ ϕi & ψi ≤ m0) ⇒ j0 ≤ m0 for all 1 ≤ i ≤ n(2.16)
A |= Reduce(ϕi ≤ ψi) ⇒ j0 ≤ m0 for all 1 ≤ i ≤ n(2.17)
A |= ALBA(ϕ ≤ ψ)(2.18)

• the equivalence of (2.14) and (2.15) follows from the soundness of the prepro-
cessing rules in Stage 1, which follows from Lemma 2.7.2;

• the equivalence between (2.15) and (2.16) follows from that in perfect LDLE-
algebras, every element can be represented both as the join of the completely
join-prime elements below it and the meet of the completely meet-prime ele-
ments above it;

• the equivalence between (2.16) and (2.17) follows from the soundness of the
reduction rules in Stage 2, which follows from Lemma 2.7.3;

• the equivalence between (2.17) and (2.18) is immediate.

�

2.7.2. Lemma. (cf. [55, Lemma 8.3]) Suppose that the set S of inequalities is obtained
from S by applying preprocessing rules in Stage 1. Then A |= S ′ iff A |= S .

2.7.3. Lemma. (cf. [55, Lemma 8.4]) Suppose that the system S ′ of inequalities is ob-
tained from S by applying reduction rules in Stage 2. Then for any assignment θ on
A,

(1) if A, θ |= S , then A, θ′ |= S ′ for some θ′ such that θ′(i0) = θ(i0) and θ′(m0) =

θ(m0);

(2) if A, θ |= S ′, then A, θ′ |= S for some θ′ such that θ′(i0) = θ(i0) and θ′(m0) =

θ(m0).

In the proof of Lemma 2.7.3, for the case of the Ackermann rules, it is justified by the
following Ackermann lemmas. We use the notation ~q (resp.~j, ~m) to denote an array of
propositional variables (resp. nominals, co-nominals) and the notation ~a (resp. ~x, ~y) to
denote an array of elements in A (resp. J∞(A), M∞(A)).
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2.7.4. Lemma (Right-handed Ackermann lemma). (cf. [55, Lemma 4.2]) Let α be a for-
mula which does not contain p, let βi(p) (resp. γi(p)) be positive (resp. negative) in p
for 1 ≤ i ≤ n, and let ~q (resp.~j, ~m) be all the propositional variables (resp. nominals,
co-nominals) occurring in β1(p), . . . , βn(p), γ1(p), . . . , γn(p), α other than p. Then for
all ~a ∈ A, ~x ∈ J∞(A), ~y ∈ M∞(A) (cf. page 12), the following are equivalent:

(1) βAi (~a, ~x, ~y, αA(~a, ~x, ~y)) ≤ γAi (~a, ~x, ~y, αA(~a, ~x, ~y)) for 1 ≤ i ≤ n;

(2) There exists a0 ∈ A such that αA(~a, ~x, ~y) ≤ a0 and βAi (~a, ~x, ~y, a0) ≤ γAi (~a, ~x, ~y, a0)
for 1 ≤ i ≤ n.

2.7.5. Lemma (Left-handed Ackermann lemma). (cf. [55, Lemma 4.3]) Let α be a for-
mula which does not contain p, let βi(p) (resp. γi(p)) be negative (resp. positive) in p
for 1 ≤ i ≤ n, and let ~q (resp.~j, ~m) be all the propositional variables (resp. nominals,
co-nominals) occurring in β1(p), . . . , βn(p), γ1(p), . . . , γn(p), α other than p. Then for
all ~a ∈ A, ~x ∈ J∞(A), ~y ∈ M∞(A), the following are equivalent:

(1) βAi (~a, ~x, ~y, αA(~a, ~x, ~y)) ≤ γAi (~a, ~x, ~y, αA(~a, ~x, ~y)) for 1 ≤ i ≤ n;

(2) There exists a0 ∈ A such that a0 ≤ α
A(~a, ~x, ~y) and βAi (~a, ~x, ~y, a0) ≤ γAi (~a, ~x, ~y, a0)

for 1 ≤ i ≤ n.

The following theorem is a generalization of [55, Theorem 10.11], and its proof is
omitted here.

2.7.6. Theorem. (cf. [55, Theorem 10.11]) ALBA succeeds on all inductiveLDLE-inequalities.

2.7.2 Canonicity
As we recall from [55, Section 9], in the proof of the canonicity of inequalities on
which ALBA succeeds, we typically use the following “U-shaped” argument6:

A |= ϕ ≤ ψ Aδ |= ϕ ≤ ψ
m

Aδ |=A ϕ ≤ ψ m

m

Aδ |=A ALBA(ϕ ≤ ψ) ⇔ Aδ |= ALBA(ϕ ≤ ψ)

Assume that the inequality ϕ ≤ ψ is valid on the LDLE-algebra A. This is equiva-
lent to the validity of ϕ ≤ ψ on the canonical extension Aδ over assignments sending
propositional variables into A rather than Aδ. Then the algorithm ALBA can equiva-
lently transform the input inequality into the output ALBA(ϕ ≤ ψ) which contain no

6We use the notation Aδ |=A ϕ ≤ ψ to indicate that ϕ ≤ ψ is valid in Aδ with respect to all assign-
ments sending propositional variables into A rather than Aδ (such assignments are called admissible
assignments).
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propositional variables, therefore their validity is invariant under replacing assignments
into A by assignments into Aδ. Then by the soundness of ALBA on perfect DLEs, the
validity of ALBA(ϕ ≤ ψ) is equivalent to the validity of ϕ ≤ ψ.

In the argument above, the right arm of equivalence is justified by Theorem 2.7.1,
and the bottom equivalence is immediate. For the left arm of equivalence, the proof is
similar to the right arm. Indeed, except for the soundness of the Ackermann rules, the
rest of the proof goes the same (cf. [55, Section 9]).

When it comes to the Ackermann rules, as is similar to what is discussed in the
existing literature (e.g. [55, Section 9]), the soundness proof of the Ackermann rules,
namely the Ackermann lemmas, cannot be straightforwardly adapted to the setting of
admissible assignments, since formulas in the L∗DLE might be interpreted as elements
in Aδ \ A even if all the propositional variables are interpreted in A, thus we cannot
just take a0 = αA(~a, ~x, ~y) to be the element in A in the setting of admissible assign-
ments. Therefore, some adaptations are necessary based on the syntactic shape of the
formulas, the definitions of which are analogous to [152, Definition B.3]:

2.7.7. Definition. [Syntactically closed and open formulas]

(1) A formula in L∗DLE is syntactically closed if all occurrences of nominals, >−, −<,
f ]i (when ε f (i) = ∂), g[i (when εg(i) = 1) are positive, and all occurrences of
co-nominals,←H,→H , f ]i (when ε f (i) = 1), g[i (when εg(i) = ∂) are negative;

(2) A formula in L∗DLE is syntactically open if all occurrences of nominals, >−, −<,
f ]i (when ε f (i) = ∂), g[i (when εg(i) = 1) are negative, and all occurrences of
co-nominals,←H,→H , f ]i (when ε f (i) = 1), g[i (when εg(i) = ∂) are positive.

As is discussed in [55, Section 9], the underlying idea of the definitions above is
that given an admissible assignment, the value of a syntactically closed (resp. open)
formula is always an closed (resp. open) element in Aδ (cf. page 11), i.e., in K(Aδ)
(resp. O(Aδ)), therefore by compactness, we can get an admissible a0 as required by
the topological Ackermann lemmas stated below, which are analogous to [152, Lemma
B.4, B.5]:

2.7.8. Lemma (Right-handed topological Ackermann lemma). Let α be a syntactical-
ly closed formula which does not contain p, let βi(p) (resp. γi(p)) be syntactically
closed (resp. open) and positive (resp. negative) in p for 1 ≤ i ≤ n, and let ~q (re-
sp.~j, ~m) be all the propositional variables (resp. nominals, co-nominals) occurring in
β1(p), . . . , βn(p), γ1(p), . . . , γn(p), α other than p. Then for all ~a ∈ A, ~x ∈ J∞(Aδ), ~y ∈
M∞(Aδ), the following are equivalent:

(1) βA
δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) ≤ γA

δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) for 1 ≤ i ≤ n;

(2) There exists a0 ∈ A such that αA
δ
(~a, ~x, ~y) ≤ a0 and βA

δ

i (~a, ~x, ~y, a0) ≤ γA
δ

i (~a, ~x, ~y, a0)
for 1 ≤ i ≤ n.
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2.7.9. Lemma (Left-handed topological Ackermann lemma). Let α be a syntactically
open formula which does not contain p, let βi(p) (resp. γi(p)) be syntactically closed
(resp. open) and negative (resp. positive) in p for 1 ≤ i ≤ n, and let ~q (resp.~j, ~m) be all
the propositional variables (resp. nominals, co-nominals) occurring in β1(p), . . . , βn(p),
γ1(p), . . . , γn(p), α other than p. Then for all ~a ∈ A, ~x ∈ J∞(Aδ), ~y ∈ M∞(Aδ), the fol-
lowing are equivalent:

(1) βA
δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) ≤ γA

δ

i (~a, ~x, ~y, αA
δ
(~a, ~x, ~y)) for 1 ≤ i ≤ n;

(2) There exists a0 ∈ A such that a0 ≤ α
Aδ(~a, ~x, ~y) and βA

δ

i (~a, ~x, ~y, a0) ≤ γA
δ

i (~a, ~x, ~y, a0)
for 1 ≤ i ≤ n.

The main theorem is summarized as follows:

2.7.10. Theorem. For any language LDLE, any inequality on which ALBA succeeds is
canonical.





Chapter 3
Algorithmic correspondence and canonicity

for possibility semantics

In the present chapter, which is a revised version of the paper [198], we apply unified
correspondence theory to possibility semantics, extending the Sahlqvist-type results in
[196].

3.1 Introduction
Possibility semantics was proposed by Humberstone [119] as an alternative semantics
for modal logic, which is based on possibilities rather than possible worlds in Kripke
semantics, where every possibility does not provide truth values of all propositions, but
only some of them. Different possibilities are ordered by a refinement relation where
some possibilities provide more information about the truth value of propositions than
others.

In recent years, possibility semantics has been intensely investigated: [117] gives a
construction of canonical possibility models with a finitary flavor, [18] studies the in-
tuitionistic generalization of possibility models, [114] investigates the first-order coun-
terpart of possibility semantics, [115] focuses on the relation between Kripke models
and possibility models, [187] provides a bimodal perspective on possibility semantics.
A comprehensive study of possibility semantics can be found in [118]. In [196], Ya-
mamoto investigates the correspondence theory for possibility semantics and proves
a correspondence theorem for Sahlqvist formulas over full possibility frames—which
are the counterparts of (full) Kripke frames in the possibility semantics setting—using
insights from algebraic correspondence theory developed in [58]. In [118, Theorem
7.20], Holliday shows that all inductive formulas are filter-canonical (i.e. their validity
is preserved from the canonical possibility models to their underlying canonical full
possibility frames), hence every normal modal logic axiomatized by inductive formu-
las is sound and complete with respect to its canonical full possibility frame. Inductive
formulas [104] form a syntactically defined class of formulas which is strictly larger

25
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than the class of Sahlqvist formulas, while they still have first-order correspondence
and are canonical [51]. Holliday’s result provides the canonicity half of the Sahlqvist-
type result for inductive formulas relative to possibility semantics. The present chap-
ter provides the remaining half. Namely, we show that inductive formulas have first-
order correspondents in full possibility frames as well as in filter-descriptive possibility
frames1.

We analyze the correspondence phenomenon in possibility semantics using the d-
ual algebraic structures of (full) possibility frames, namely complete (not necessar-
ily atomic) Boolean algebras with complete operator, where atoms are not always
available. For correspondence over full possibility frames, we identify two different
Boolean algebras with operator as the dual algebraic structures of a given full possi-
bility frame by viewing the full possibility frame in two different ways, namely the
Boolean algebra of regular open subsets BRO (when viewing the possibility frame as a
possibility frame itself) and the Boolean algebra of arbitrary subsets BK (when viewing
the possibility frame as a bimodal Kripke frame, see [187]), where a canonical order-
embedding map e : BRO → BK can be defined. The embedding e preserves arbitrary
meets, therefore a left adjoint c : BK → BRO of e can be defined, which sends a subset X
of the domain W of possibilities to the smallest regular open subset containing X. This
left adjoint c plays an important role in the dual characterization of the interpretations
of nominals and the black connectives (which are going to be interpreted as the adjoints
of the interpretations of the box and diamond), which form the ground of the regular
open translation of the expanded modal language. In particular, we give an algebraic
counterpart of Lemma 3.7 in [196] that every regular open element can be represented
as the join of regular open closures of singletons below it, therefore the regular open
closures of singletons form the join-generators. When it comes to canonicity, we prove
a topological Ackermann lemma similar to [55, Lemma 9.3 and 9.4], which forms the
basis of the correspondence result with respect to filter-descriptive frames as well as
the canonicity result.

The chapter is structured as follows. Section 3.2 presents preliminaries on possibil-
ity semantics, both frame-theoretically and algebraically, as well as the duality theory
background of possibility semantics. Section 3.3 gives an algebraic analysis of the
semantic environment of possibility semantics for the interpretation of the expanded
modal language, the details of which will be given in Section 3.4 together with the reg-
ular open translation and the syntactic definition of Sahlqvist and inductive formulas.
The Ackermann Lemma Based Algorithm (ALBA) for possibility semantics is given
in Section 3.5 as well as some examples, with its soundness proof with respect to full
possibility frames in Section 3.6. The soundness proof with respect to filter-descriptive
possibility frames and the canonicity-via-correspondence proof are given in Section
3.7. Section 3.8 provides some discussions, and gives some further directions.

1As remarked in [118, page 103], correspondence results might be lost when moving from full
possibility frames to filter-descriptive possibility frames.
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3.2 Preliminaries on possibility semantics
In the present section we collect the preliminaries on possibility semantics. For more
details, see e.g. [118, Section 1 and 2] and [196].

3.2.1 Language
Given a set Prop of propositional variables, the basic modal language L is defined as
follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �ϕ,

where p ∈ Prop. We define ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ, ⊥ := p ∧
¬p, > := ¬⊥ and ^ϕ := ¬�¬ϕ, respectively. We also use Prop(α) to denote the
propositional variables occuring in α. In the present chapter we will consider only the
modal language with only one unary modality.

We will find it convenient to work on inequalities (cf. [55]), i.e. expressions of the
form ϕ ≤ ψ, the interpretation of which is equivalent to the implicative formula ϕ→ ψ
being true at any point in a model. Throughout the chapter, we will also make substan-
tial use of quasi-inequalities, i.e. expressions of the form ϕ1 ≤ ψ1 & . . . & ϕn ≤ ψn ⇒

ϕ ≤ ψ, where & is the meta-level conjunction and⇒ is the meta-level implication.

3.2.2 Downset topology
In order to define possibility frames and possibility models, we will make use of the
following auxiliary notions (see e.g. [118, 196]). For every partial order (W,v), a
subset Y ⊆ W is downward closed (or a down-set) if for all x, y ∈ W, if x ∈ Y and
y v x, then y ∈ Y . For every X ⊆ W, the set ⇓X := {x ∈ W | (∃y w x)(y ∈ X)} is the
smallest down-set containing X. The set of all down-sets of (W,v) forms a topology
on W, denoted by τv, which we call the downset topology.

For any X ⊆ W, we let cl(X) := {x ∈ W | (∃y v x)(y ∈ X)} (resp. int(X) := {x ∈ W |
(∀y v x)(y ∈ X)}) denote the closure (resp. interior) of X. We also let

RO(W, τv) := {X ⊆ W | int(cl(X)) = X}

denote the collection of regular open subsets of W. We say a set Y ⊆ W the regular
open closure of X if Y is the least regular open subset of W containing X, and denote
Y = ro(X).

We collect some useful facts about the downset topology:

3.2.1. Proposition. (cf. [118, page 16-18]) For every partial order (W,v),

(1) every regular open subset of (W, τv) is a down-set, and hence a τv-open subset.

(2) ro(X) = int(cl(⇓ X)) for any subset X ⊆ W.
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(3) ro(X) = int(cl(X)) for any X ∈ τv.

(4) ∅,W ∈ RO(W, τv).

(5) X ∩ Y ∈ RO(W, τv) if X,Y ∈ RO(W, τv).

(6) int(cl(X ∪ Y)) ∈ RO(W, τv) if X,Y ∈ RO(W, τv).

(7) int(W \ X) ∈ RO(W, τv) if X ∈ RO(W, τv).

(8) RO(W, τv) is closed under arbitrary intersection (cf. [118, footnote 13 on page
17]).

(9) (RO(W, τv),∅,W,∧,∨,−) is a Boolean algebra such that for all X,Y ∈ RO(W, τv),

X ∧ Y = X ∩ Y X ∨ Y = int(cl(X ∪ Y)) − X = int(W \ X).

(10) for all X,Y ∈ RO(W, τv),

X ⊃ Y := −X ∨ Y = int((W \ X) ∪ Y)

3.2.3 Relational semantics
In the present subsection, we will collect basic definitions about possibility frames and
models, as well as the relational semantics. For more details, we refer the readers to
e.g. [55, 118, 196].

For every binary relation R on a set W, we denote R[X] = {w ∈ W | (∃x ∈ X)Rxw}
and R−1[X] = {w ∈ W | (∃x ∈ X)Rwx}, and denote R[w] := R[{w}] and R−1[w] :=
R−1[{w}], respectively. Below we give a slightly different but equivalent definition of
possibility frames than the one given in [118, Definition 2.21].

3.2.2. Definition. [Possibility frames and models]
A possibility frame is a tuple F = (W,v,R,P), where W , ∅ is the domain of

F, the refinement relation2 v is a partial order on W, the accessibility relation R is a
binary relation3 on W, and the collection P ⊆ RO(W, τv) of admissible subsets forms a
sub-Boolean algebra of RO(W, τv) such that �P(X) = {w ∈ W | R[w] ⊆ X} ∈ P for any
X ∈ P. A pointed possibility frame is a pair (F,w) where w ∈ W. A possibility model
is a pair M = (F,V) where V : Prop → P is a valuation on F. A possibility frame is
full if P = RO(W, τv).

2We adopt the order of the refinement relation as in [118, 196], which is used in the theory of weak
forcing [151], while in the literature of intuitionistic logic, the order is typically the reverse order.

3In the literature, some interaction conditions are imposed between the accessibility relation and
the refinement relation (cf. [187]). Since these conditions are not needed for our treatment, we do not
impose them and we do not discuss them any further in the present chapter.
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It follows straightforwardly from the conditions above that P is endowed with the
algebraic structure of a BAO. In general, for any possibility frame F = (W,v,R,P), the
underlying full possibility frame F] = (W,v,R,RO(W, τv)) might not be well-defined,
since RO(W, τv) might not be closed under the box operation arising from the relation
R. However, in certain situations which we will discuss in Remark 3.7.3, the underlying
full possibility frame is well-defined.

Given any possibility model M = (W,v,R,P,V) and any w ∈ W, the satisfaction
relation is defined as follows (see e.g. [118, Definition 2.3]):

M,w 
 p iff w ∈ V(p)
M,w 
 ϕ ∧ ψ iff M,w 
 ϕ and M,w 
 ψ
M,w 
 ¬ϕ iff (∀v v w)(M, v 2 ϕ)
M,w 
 �ϕ iff ∀v(Rwv ⇒ M, v 
 ϕ).

For any formula ϕ, we let ~ϕ�M = {w ∈ W | M,w 
 ϕ} denote the truth set of ϕ
in M. The formula ϕ is globally true on a possibility model M (notation: M 
 ϕ) if
M,w 
 ϕ for every w ∈ W. Moreover, ϕ is valid on a pointed possibility frame (F,w)
(notation: F,w 
 ϕ) if F,V,w 
 ϕ for every valuation V . We say that ϕ is valid on
a possibility frame F (notation: F 
 ϕ) if ϕ is valid on (F,w) for every w ∈ W. The
definition of global truth for inequalities and quasi-inequalities is given as follows (see
e.g. [55, page 344]):

M 
 ϕ ≤ ψ iff for all w ∈ W, if M,w 
 ϕ then M,w 
 ψ
M 
&n

i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ iff if M 
 ϕi ≤ ψi for all i then M 
 ϕ ≤ ψ.

An inequality (resp. quasi-inequality) is valid on F if it is globally true on (F,V) for
every valuation V .

It is easy to check that the following truth conditions hold for defined connectives
(see e.g. [118, 196]):

3.2.3. Proposition. The following equivalences hold for any possibility model M =

(W,v,R,P,V) and any w ∈ W:

M,w 
 > : always
M,w 
 ⊥ : never
M,w 
 ϕ ∨ ψ iff (∀v v w)(∃u v v)(M, u 
 ϕ or M, u 
 ψ)
M,w 
 ϕ→ ψ iff (∀v v w)(M, v 
 ϕ ⇒ M, v 
 ψ)
M,w 
 ^ϕ iff (∀v v w)∃u(Rvu ∧ (∃t v u)(M, t 
 ϕ)).

The following proposition can be understood as stating that inequalities are equivalent
to implicative formulas at the level of global truth and validity:

3.2.4. Proposition. The following equivalences hold for any possibility model M =

(W,v,R,P,V) and any w ∈ W:

M 
 ϕ→ ψ iff ~ϕ�M ⊆ ~ψ�M iff M 
 ϕ ≤ ψ
F 
 ϕ→ ψ iff F 
 ϕ ≤ ψ.
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The following proposition can be understood as stating that the interpretation of
modal formulas on possibility frames and models can be obtained from the standard
algebraic semantics for modal logic via the duality established in [118]. Indeed, since
P is a sub-Boolean algebra of RO, all Boolean operations in P are defined in the same
way as in RO.

3.2.5. Proposition. (cf. [118, Fact 2.5]) For any possibility model M = (W,v,R,P,V)
and any w ∈ W,

~>�M = W
~⊥�M = ∅

~ϕ ∧ ψ�M = ~ϕ�M ∧ ~ψ�M

~ϕ ∨ ψ�M = ~ϕ�M ∨ ~ψ�M = ro(~ϕ�M ∪ ~ψ�M)
~¬ϕ�M = −~ϕ�M

~ϕ→ ψ�M = ~ϕ�M ⊃ ~ψ�M

~�ϕ�M = �P(~ϕ�M)
~^ϕ�M = int(R−1[cl(~ϕ�M)]).

3.2.4 Algebraic semantics
Thanks to the duality in [118], we will be able to work throughout the chapter in the en-
vironment of the dual algebras of the possibility frames, namely the Boolean algebras
with operators. In the present subsection, we collect basic definitions on the algebraic
semantics dual to possibility semantics. For more details, see e.g. [21, Chapter 5], [22,
Chapter 6], [88] and [118].

3.2.6. Definition. [Boolean algebra with operator](cf. e.g. [21, Definition 5.19]) A
Boolean algebra with operator (BAO) is a tupleB = (B,⊥,>,∧,∨,−,�), where (B,⊥,>,∧,∨,−)
is a Boolean algebra and moreover, �> = > and �(a ∧ b) = �a ∧ �b for any a, b ∈ B.
The order on B is defined as a ≤ b iff a∧ b = a. We will sometimes abuse notation and
use B to denote B.

For any BAO B, let B∂ denote its order-dual BAO, and let B1 = B. An order-type ε
over n ∈ N (or an n-order-type) is an element of {1, ∂}n, and we use εi to denote its i-th
coordinate. We omit n if no confusion arises. The dual order-type of ε is denoted by
ε∂, where ε∂i = 1 (resp. ∂) iff εi = ∂ (resp. 1). For any n-order-type ε, we let Bε be the
product algebra Bε1 × . . . × Bεn .

An assignment on B is a map θ : Prop→ B, which can be extended to all formulas
as usual. We use ϕ(B,θ) or θ(ϕ) to denote the value of ϕ in B under θ. We say that
a formula ϕ (resp. an inequality ϕ ≤ ψ) is true on B under θ (notation: (B, θ) |= ϕ,
(B, θ) |= ϕ ≤ ψ) if ϕ(B,θ) = > (resp. ϕ(B,θ) ≤ ψ(B,θ)), and ϕ (resp. ϕ ≤ ψ) is valid on B
(notation: B |= ϕ, B |= ϕ ≤ ψ) if (B, θ) |= ϕ (resp. (B, θ) |= ϕ ≤ ψ) for every θ.

A quasi-inequality &n
i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ is true on B under θ (notation: (B, θ) |=

&n
i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ) if ϕ(B,θ) ≤ ψ(B,θ) holds whenever ϕ(B,θ)

i ≤ ψ(B,θ)
i holds for every
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1 ≤ i ≤ n, and &n
i=1(ϕi ≤ ψi) ⇒ ϕ ≤ ψ is valid on B (notation: B |= &n

i=1(ϕi ≤ ψi) ⇒
ϕ ≤ ψ) if (B, θ) |= &n

i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ for every θ.
Another useful way to look at a formula ϕ(p1, . . . , pn) is to interpret it as an n-ary

function ϕB : Bn → B such that ϕB(a1, . . . , an) = θ(ϕ) where θ : Prop → B satisfies
θ(pi) = ai, i = 1, . . . , n.

Recall that an element b ∈ B is an atom if b , ⊥ and for any c ∈ B s.t. c ≤ b, either
c = ⊥ or c = b. Moreover, a modal operator � on B is completely multiplicative if∧
{�a | a ∈ A} exists for any A ⊆ B such that

∧
A exists, and

∧
{�a | a ∈ A} = �(

∧
A).

A BAO is (see e.g. [118, Definition 5.1]):

(C) complete if the greatest lower bound
∧

A and least upper bound
∨

A exist for
any A ⊆ B;

(A) atomic if for any a , ⊥ there exists some atom b ∈ B such that ⊥ , b ≤ a;

(V) completely multiplicative4 if � is completely multiplicative.

A BAO is a CV-BAO if it is complete and completely multiplicative, and is a CAV-
BAO if it is complete, atomic and completely multiplicative, and other abbreviations
are given in a similar way. Notice that the definitions of completeness and atomicity
also apply to Boolean algebras.

As to the correspondence between BAOs and possibility frames, the following def-
inition provides the frame-to-algebra direction:

3.2.7. Definition. (cf. [118, Definition 5.4]) For any possibility frame F = (W,v,R,P),
let the BAO P of Definition 3.2.2 be the BAO dual to F, denoted by BP. If F is a full
possibility frame, then P = RO(W, τv) and we refer to BP as BRO (the regular open
dual BAO of F).

3.2.8. Proposition. (cf. [118, Theorem 5.6(2)]) For any full possibility frame F, BRO is
a CV-BAO.

The existence of the frame-to-algebra direction of the duality defined above induces
a bijection between valuations on F and interpretations of propositional variables into
BP.

3.2.9. Definition. For any possibility frame F = (W,v,R,P), any valuation V on F can
be associated with the assignment θV : Prop→ BP defined by θV(p) := V(p) for every
p ∈ Prop. Conversely, any assignment θ : Prop → BP can be associated with the
valuation Vθ : Prop→ P defined by Vθ(p) = θ(p) for every p ∈ Prop.

It is easy to check the following equivalences hold:

4In [118], algebras satisfying condition (V) are called completely additive.
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3.2.10. Proposition. (Folklore.) For any possibility frame F = (W,v,R,P), for any
valuation V : Prop → P on F, any assignment θ : Prop → P on BP, any w ∈ W, any
formula ϕ, any inequality ϕ ≤ ψ, any quasi-inequality &

n
i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ,

(1) F,V,w 
 ϕ iff w ∈ θV(ϕ);

(2) F,Vθ,w 
 ϕ iff w ∈ θ(ϕ);

(3) F 
 ϕ iff BP |= ϕ;

(4) F 
 ϕ ≤ ψ iff BP |= ϕ ≤ ψ;

(5) F 
&
n
i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ iff BP |= &

n
i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ.

The duality theoretic facts outlined above make it possible to transfer the development
of correspondence theory from frames to algebras, similarly to the way in which al-
gebraic correspondence is developed for Kripke frames. In particular, BRO will be the
algebra where correspondence theory over full possibility frames is developed. How-
ever, the essential difference between the correspondence for Kripke semantics and
the present setting is that the algebra BRO is not atomic in general (see [118, Example
2.40]). This implies that some of the rules of the original ALBA-type algorithm (cf.
[51, 55]) for complex algebras of Kripke frames (namely, the so-called approximation
rules which relied on atomicity) are not going to be sound in this setting. The analy-
sis of the semantic environment of the regular open dual BAOs, developed in the next
section, will give insights on how to design the algorithm in this semantic setting.

3.3 Semantic environment for the language of ALBA

In the present section, we will provide the algebraic semantic environment for the cor-
respondence algorithm ALBA in the setting of possibility semantics. We will show the
semantic properties which will be used for the interpretation of the expanded modal
language of the algorithm ALBA in Section 3.4.1. The first notable feature of this
language is that it includes special variables (besides the propositional variables), the
so-called nominals, which in the original setting are interpreted as the atoms of the
complex algebras of Kripke frames. This interpretation of nominals pivots on the fact
that the complex algebras of Kripke frames are atomic, that is, are completely join-
generated by their atoms. Likewise, in order to define a suitable interpretation for
the nominals in the possibility setting, we need to find a class of elements which join-
generate the complex algebra of any full possibility frame. Towards this goal, our strat-
egy will consist in defining a BAO BK in which the BAO BRO can be order-embedded.
This algebra will be used as an auxiliary tool to show that every element in BRO can be
represented as the join of regular open closures of atoms in BK. Hence, this will show
that the regular open closures of atoms in BK are a suitable class of interpretants for
nominal variables.
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The second notable feature of the expanded language of ALBA is that it includes
additional modal operators interpreted as the adjoints of the modal operators of the
original language. In what follows, we will show that also these connectives have a
natural interpretation in BRO.

3.3.1 The auxiliary BAO BK

Clearly, any full possibility frame FRO = (W,v,R,RO(W, τv)) can be associated with
the bimodal frame FK = (W,v,R), the complex algebra of which is the bimodal BAO
BK (cf. [187]).

Diagrammatically, the CAV-BAO BK dually corresponds to the Kripke frame FK,
and the CV-BAO BRO to the full possibility frame FRO, e is the order-embedding which
sends a regular open subset in BRO to itself in BK, and U sends a full possibility frame
to its underlying bimodal Kripke frame “forgetting” the algebra RO(W, τv) (and hence
the restriction on the admissible valuations).

BRO

BK

FRO

FK

e U

�∂

�∂

The formal definition of the BAO BK is reported below:

3.3.1. Definition. [Full dual Boolean algebra with operators] For any full possibility
frame F = (W,v,R,RO(W, τv)), the full dual Boolean algebra with operators (full
dual BAO) BK

5 is defined as BK = (P(W),∅,W,∩,∪,−,�K,�v), where ∩,∪,− are set-
theoretic intersection, union and complementation respectively, �K(a) = {w ∈ W |

R[w] ⊆ a}, and �v(a) = {w ∈ W | (∀v v w)(v ∈ a)}.

It is easy to see that BK is a complete atomic Boolean algebra with complete oper-
ators. It is also clear that the carrier set of the regular open dual BAO is a subset of the
full dual BAO, hence the natural embedding e : BRO ↪→ BK is well defined and is an
order-embedding. Notice that by Proposition 3.2.1, arbitrary intersections of regular
open sets in a downset topology are again regular open, therefore e is completely meet-
preserving. Notice also that �RO is the restriction of �K to BRO. All these observations
can be summarized as follows:

5Notice that here the “full” means that the carrier set is the powerset of W, rather than the “full” in
“full possibility frame”.
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3.3.2. Lemma. e : BRO ↪→ BK is a completely meet-preserving order-embedding such
that e ◦ �RO = �K ◦ e.

However, it is important to stress that, since BRO and BK have different definitions
of join and complementation, BRO is not a subalgebra of BK.

The next corollary follows immediately from the previous lemma (see e.g. [64,
Proposition 7.34]):

3.3.3. Corollary. e : BRO ↪→ BK has a left adjoint c : BK → BRO defined, for every
a ∈ BK,

c(a) =
∧

RO{b ∈ BRO | a ≤ e(b)}.

Clearly, c(X) = ro(X) for any X ⊆ W, Indeed, by definition c(X) =
∧

RO{Y ∈
RO(W, τv) | X ≤ e(Y)} =

⋂
{Y ∈ RO(W, τv) | X ⊆ Y}, which is the least regular open

set containing X. The closure operator c will be referred to as the regular open closure
map and c(a) as the regular open closure of a. We let PsAt(BRO) := {c(x) | x ∈ At(BK)}
(here PsAt stands for pseudo-atom, and At(B) denotes the set of atoms in the BAO
B) be the set of regular open closures of atoms in BK, which will be shown to be the
join-generators of BRO.

A class of interpretants for nominals

As mentioned ealy on, the key requirement for a suitable class of interpretants for
nominals is that it is join-dense in BRO. In what follows, we give a proof of this
property for PsAt(BRO). This result has already been proved in [196, Lemma 3.7]; we
give an alternative proof in the dual algebraic setting. Let us preliminarily recall that,
by general facts of the theory of closure operators on posets, c ◦ e = IdBRO (cf. [64,
Exercise 7.13]).

3.3.4. Proposition. For any a ∈ BRO,

a =
∨
RO

{c(x) | x ∈ At(BK) and x ≤ e(a)} =
∨
RO

{y ∈ PsAt(BRO) | y ≤ a}.

Proof:
The first equality follows from the fact that c ◦ e = IdBRO and that left adjoint preserve
arbitrary existing joins; the second equality, from the definition of PsAt(BRO) and ad-
junction between c and e. �
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3.3.2 Interpreting the additional connectives of the expanded lan-
guage of ALBA

As mentioned early on, BRO and BK are both complete, and �RO : BRO → BRO and
�K : BK → BK are both completely meet-preserving. Thus both of them have left
adjoints, which are denoted by _RO and _K, respectively. They will be used as the
semantic interpretation of the additional connective in the expanded modal language
in the next section. In what follows we will explicitly compute the definitions of the
adjoints. The computation of _RO in Lemma 3.3.6 and Corollary 3.3.7 is essentially
the algebraic counterpart of [196, Lemma 3.8].

3.3.5. Lemma. (Folklore.) _K(X) = R[X] for any X ⊆ W.

Proof:
By definition of adjunction, for any Y ∈ P(W), w ∈ W,

_K({w}) ⊆ Y iff {w} ⊆ �K(Y)
iff {w} ⊆ {v ∈ W | R[v] ⊆ Y}
iff R[w] ⊆ Y ,

Therefore _K({w}) = R[w]. Since left adjoints preserve existing joins,

_K(X) = _K(
⋃
{{w} | w ∈ X})

=
⋃
{_K({w}) | w ∈ X}

=
⋃
{R[w] | w ∈ X}

= R[X].

�

3.3.6. Lemma. _RO(a) = (c ◦ _K ◦ e)(a).

Proof:
We have the following chain of equalities:

_RO(a) =
∧

RO{b ∈ BRO | a ≤ �RO(b)} (adjunction property)
=
∧

RO{b ∈ BRO | e(a) ≤ (�K ◦ e)(b)} (Lemma 3.3.2)
=
∧

RO{b ∈ BRO | (_K ◦ e)(a) ≤ e(b)} (definition of adjunction)
=
∧

RO{b ∈ BRO | (c ◦ _K ◦ e)(a) ≤ b} (definition of adjunction)
= (c ◦ _K ◦ e)(a).

�

3.3.7. Corollary. _RO(X) = ro(R[X]) for any X ∈ RO(W, τv).
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Proof:
We have the following chain of equalities:

_RO(X) = (c ◦ _K ◦ e)(X) (Lemma 3.3.6)
= (c ◦ _K)(X)
= c(R[X]) (Lemma 3.3.5)
= ro(R[X]). (Corollary 3.3.3)

�

3.4 Preliminaries on algorithmic correspondence
In the present section, we will collect preliminaries on algorithmic correspondence for
possibility semantics. The theory of unified correspondence is based on duality and
order-theoretic insights [48, 58], and distills the order-theoretic properties from con-
crete semantic settings. We will specialize it to the possibility semantics setting and
explain how it works for correspondence over full possibility frames, and this method-
ology works in a similar way in the setting of filter-descriptive possibility frames.

BRO |= ϕ(~p) ⇔ FRO 
 ϕ(~p)

m

BRO |=Pure(ϕ(~p)) ⇔ FRO |=FO(Pure(ϕ(~p)))

The argument works in three steps: the first step is to move from the relational seman-
tics side to the dual algebraic side, i.e. understand the validity of ϕ(~p) from the validity
in the full possibility frame FRO to the validity in the regular open dual BAO BRO. The
second step is to use an algorithm to transform the formula ϕ(~p) into an equivalent set
of pure quasi-inequalities Pure(ϕ(~p)) which does not contain propositional variables,
but only nominals6, which will be shown to be sound with respect to the algebraic
semantics. The last step translates the pure quasi-inequalities into a first-order formu-
la FO(Pure(ϕ(~p))), which is the first-order correspondent of ϕ(~p) over full possibility
frames.

Therefore, the ingredients for the algorithmic correspondence proof to go through
can be listed as follows:

• An expanded modal language as the syntax of the algorithm, as well as their
interpretations in BRO;

6In lattice-based logic settings, there is another kind of variables called conominals (see e.g. [55]),
which are interpreted as co-atoms or complete meet-irreducibles. Since in the Boolean setting, conomi-
nals can be interpreted as the negation of nominals, they are not really necessary here. In the remainder
of the chapter, we will not use conominals.
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• An algorithm which transforms a given modal formula ϕ(~p) into equivalent pure
quasi-inequalities Pure(ϕ(~p));

• A soundness proof of the algorithm with respect to BRO;

• A syntactically identified class of formulas on which the algorithm is successful;

• A first-order correspondence language and first-order translation which trans-
forms pure quasi-inequalities into their equivalent first-order correspondents.

In the remainder of the chapter, we will define an expanded modal language which
the algorithm will manipulate (Section 3.4.1), define the first-order correspondence
language of possibility frames (Section 3.4.1) and the counterpart of the standard trans-
lation into this language, which we refer to as regular open translation (Section 3.4.1).
We report on the definition of Sahlqvist and inductive formulas (Section 3.4.2), and
define a modified version of the algorithm ALBA suitable for the possibility seman-
tic environment (Section 3.5), show its soundness over regular open dual BAOs and
state its success on Sahlqvist and inductive formulas (Section 3.6). In Section 3.7 we
show the soundness of the algorithm over the dual BAOs of filter-descriptive possibility
frames.

3.4.1 The expanded modal language and the regular open transla-
tion

In the present section, we will define the expanded modal language for the algorithm,
the first-order and second-order correspondence language, as well as the regular open
translation of the expanded modal language into the correspondence language. We
will also show that the translation preserves truth conditions. Our treatment is similar
to [55].

The expanded modal language L+

The expanded modal language L+ is a proper expansion of the modal language. Apart
from the propositional variables and connectives in the modal language, there are also
a set Nom of nominals, a special kind of variables to be interpreted as elements in
PsAt(BRO), and the black connectives _,�, i.e. the unary connectives to be interpreted
as the adjoints of � and ^ respectively. The formal definition of the formulas in the
expanded modal language L+ is given as follows:

ϕ ::= p | i | ¬ϕ | ϕ ∧ ϕ | �ϕ | _ϕ,

where p ∈ Prop and i ∈ Nom. We also define �ϕ := ¬_¬ϕ, and the other abbrevia-
tions are defined similar to the basic modal language. It will be convenient to use the
abbreviations as primitive symbols in the definition of the rules in the algorithm.
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In order to interpret the expanded modal language on possibility frames and the
dual BAOs, we need to extend the valuation V and assignment θ also to nominals. As
we have already seen in Section 3.3, every element inBRO can be represented as the join
of elements in PsAt(BRO) ⊆ BRO = RO(W, τv). Therefore, we are going to interpret
the nominals as elements in PsAt(BRO), i.e. V(i), θ(i) ∈ PsAt(BRO) ⊆ RO(W, τv).

The satisfaction relation for the additional symbols is given as follows:

3.4.1. Definition. In any possibility model M = (W,v,R,P,V),

M,w 
 i iff w ∈ V(i);
M,w 
 _ϕ iff (∀v v w)(∃u v v)(∃t w u)∃s(Rst and M, s 
 ϕ).

Notice that V(i) is not necessarily in P, but it is always in RO(W, τv). Similarly,
P is not necessarily closed under _RO, but RO(W, τv) is. Therefore, when interpret-
ing formulas in the expanded modal language, we only restrict the interpretations of
propositional variables to P (therefore also all formulas in the basic modal language),
and allow formulas in the expanded modal language to be interpreted in RO(W, τv).
Truth set and validity are defined similarly to the basic modal language.

It is easy to check that the following facts hold for the expanded modal language:

3.4.2. Proposition. In any possibility model M = (W,v,R,P,V),

• M,w 
 _ϕ iff w ∈ ro(R[~ϕ�M]);

• M,w 
 �ϕ iff (∀v v w)(∀u w v)∀t(Rtu⇒ (∃s v t)(M, s 
 ϕ));

• ~_ϕ�M = _RO~ϕ�
M;

• ~�ϕ�M = (−RO ◦ _RO ◦ −RO)(~ϕ�M).

The next proposition shows that � is interpreted as the right adjoint of ^:

3.4.3. Proposition. For any X,Y ∈ RO(W, τv),

(−RO ◦ �RO ◦ −RO)(X) ⊆ Y iff X ⊆ (−RO ◦ _RO ◦ −RO)(Y).

For the algebraic semantics of the expanded modal language, we use a kind of
hybrid algebraic structures obtained from arbitrary possibility frames: consider a pos-
sibility frame F = (W,v,R,P) (whose underlying full possibility frame is well-defined)
and its underlying full possibility frame F] = (W,v,R,RO(W, τv)), we dualize the latter
to obtain the regular open dual BAO BRO = (RO(W, τv),∅,W,∧RO,∨RO,−RO,�RO), and
put an admissible set P on top of it and get a hybrid dual BAO (BRO,P), which restricts
the assignment of propositional variables to P, but still allows formulas in the expanded
modal language to range over RO(W, τv). For the interpretation of the expanded modal
language, we require that θ(i) ∈ PsAt(BRO) and _ is interpreted as _RO : BRO → BRO.
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For the definition of validity, we use the notation BRO |=P ϕ to indicate that the as-
signments of propositional variables range over P (while the assignments of nominals
range over PsAt(BRO)).

It is easy to check that Proposition 3.2.10 generalizes to the expanded modal lan-
guage in the case of full possibility frames. For the case of arbitrary possibility frames,
we use the hybrid dual BAO (BRO,P) and the adapted version of validity BRO |=P ϕ.
The discussion above can be summarized as follows:

3.4.4. Proposition. For any formula ϕ in the expanded modal language,

• For any full possibility frame FRO and its dual BAO BRO,

– FRO 
 ϕ iff BRO |= ϕ;

– FRO 
 ϕ ≤ ψ iff BRO |= ϕ ≤ ψ;

– FRO 
&
n
i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ iff BRO |= &

n
i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ.

• For any possibility frame FP and its hybrid dual BAO (BRO,P),

– FP 
 ϕ iff BRO |=P ϕ;

– FP 
 ϕ ≤ ψ iff BRO |=P ϕ ≤ ψ;

– FP 
&
n
i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ iff BRO |=P &

n
i=1(ϕi ≤ ψi)⇒ ϕ ≤ ψ.

The correspondence languages

In order to express the first-order correspondents of modal formulas, we need to define
the first-order and second-order correspondence language L1 and L2 (see e.g. [196]).
The first-order correspondence language L1 consists of a set of unary predicate sym-
bols Pn, each of which corresponds to a propositional variable pn, two binary relation
symbols v and R corresponding to the refinement relation and the accessibility relation
respectively, a set of individual symbols in, each of which corresponds to a nominal
in, and the quantifiers ∀x,∃x are first-order, i.e. ranging over individual variables. The
second-order correspondence language L2 contains all the symbols from L1 as well as
second-order quantifiers ∀PP,∃PP over unary predicate variables. In addition, unary
predicate symbols are interpreted as admissible subsets, and the second-order quanti-
fiers range over admissible subsets.

The semantic structures to interpret the first-order and second-order formulas are
the possibility modelsM = (W,v,R,P,V), where an individual symbol in is interpreted
as a state in ∈ W such that ro({in}) = V(in), a unary predicate symbols Pn is interpreted
as V(pn) ∈ P, and the binary relation symbols v and R are interpreted as the refinement
relation and the accessibility relation denoted by the same symbol, respectively. At the
level of possibility frames, we will abuse notation to take the unary predicate symbols
Pn and the individual symbols in as variables and use quantifiers over them, and second-
order quantifiers range over P. We use ~α(~x)�M to denote the n-tuples ~w ∈ Wn that
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make α(~x) true in the model M, i.e. ~α(~x)�M := {~w ∈ Wn | M |= α[~w]}, which is called
the truth set of α(~x) in M.

In the definition of correspondence between a modal formula and a first-order for-
mula, we will require the first-order formula to contain only binary relation symbols,
and not contain any unary predicate symbol. Now the definition can be given as follows
in the setting of full possibility frames:

3.4.5. Definition. (cf. [196, Definition 2.7]) We say that a modal formula ϕ in the basic
modal language L locally corresponds to a first-order formula α(x) in the first-order
correspondence language with no occurence of unary predicate symbols if for any full
possibility frame F = (W,v,R,RO(W, τv)), any w ∈ W, F,w 
 ϕ iff F |= α[w]. We
say that ϕ globally corresponds to a first-order sentence α with no occurence of unary
predicate symbols if for any full possibility frame F, F 
 ϕ iff F |= α. For inequalities
and quasi-inequalities, the definition is similar.

The definition above can be easily adapted to the setting of filter-descriptive possi-
bility frames and so on.

The regular open translation

In the present section, we will give the first-order translation of the expanded modal
language into the first-order correspondence language, in the spirit of the standard
translation in [21, Section 2.4]. Since the translation is based on the semantic interpre-
tation of modal formulas on the relational structures, and in possibility semantics, the
conditions about regular open sets play an important role, we will call our translation
regular open translation.

For the sake of convenience, we give the following definition:

3.4.6. Definition. [Syntactic regular open closure](cf. [196, page 8]) Given a first-
order formula α(x) with at most x free, the syntactic regular open closure ROx(α(x))
is defined as (∀y v x)(∃z v y)(∃z′ w z)α(z′).

It is easy to see that the syntactic regular open closure of a formula is interpreted as the
semantic regular open closure of its corresponding truth set:

3.4.7. Proposition. (cf. [196, Lemma 3.8]) ~ROx(α(x))�M = ro(~α(x)�M).

Since nominals are interpreted as elements in PsAt(BRO), i.e. regular open closures
of singletons, we will translate nominals to the syntactic regular open closure of the
identity i = x, where i is the individual symbol interpreted as a state in ∈ W such that
ro({in}) = V(in). The connectives are interpreted according to the definition of their
satisfaction relations.

Now we are ready to give the regular open translation as follows:
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3.4.8. Definition. [Regular open translation](cf. [196, Definition 2.6]) The regular open
translation of a formula in the expanded modal language L+ into the first-order corre-
spondence language L1 is given as follows:

S Tx(i) := ROx(i = x);
S Tx(pi) := Pix;

S Tx(¬ϕ) := ∀y(y v x→ ¬S Ty(ϕ));
S Tx(ϕ1 ∧ ϕ2) := S Tx(ϕ1) ∧ S Tx(ϕ2);

S Tx(�ϕ) := ∀y(Rxy→ S Ty(ϕ));
S Tx(_ϕ) := ROx(∃y(Ryx ∧ S Ty(ϕ))).

By Proposition 3.2.3 and 3.4.2, we can also take >,⊥,∨,→,^,� as primitive con-
nectives and define the following translation:

3.4.9. Definition. [Regular open translation continued]

S Tx(>) := >;
S Tx(⊥) := ⊥;

S Tx(ϕ1 ∨ ϕ2) := (∀y v x)(∃z v y)(S Tz(ϕ1) ∨ S Tz(ϕ2));
S Tx(ϕ1 → ϕ2) := (∀y v x)(S Ty(ϕ1)→ S Ty(ϕ2));

S Tx(^ϕ) := (∀y v x)∃z(Ryz ∧ (∃w v z)(S Tw(ϕ));
S Tx(�ϕ) := (∀y v x)(∀z w y)∀w(Rwz⇒ (∃v v w)(S Tv(ϕ)).

The following proposition justifies the translation defined above:

3.4.10. Proposition. (cf. [196, Lemma 2.8]) For any possibility frame F = (W,v,R,P),
any valuation V on F, any w ∈ W and any formula ϕ(~p) in L+,

• F,V,w 
 ϕ(~p) iff F,V |= S Tx(ϕ(~p))[w];

• F,V 
 ϕ(~p) iff F,V |= ∀xS Tx(ϕ(~p));

• F,w 
 ϕ(~p) iff F |= ∀P~P∀~iS Tx(ϕ(~p))[w];

• F 
 ϕ(~p) iff F |= ∀P~P∀~i∀xS Tx(ϕ(~p));

• F,V 
 ϕ(~p) ≤ ψ(~p) iff F,V |= ∀x(S Tx(ϕ(~p))→ S Tx(ψ(~p)));

• F 
 ϕ(~p) ≤ ψ(~p) iff F |= ∀P~P∀~i∀x(S Tx(ϕ(~p))→ S Tx(ψ(~p)));

• F,V 
 &
n
j=1(ϕ j(~p) ≤ ψ j(~p)) ⇒ ϕ(~p) ≤ ψ(~p) iff F,V |=

∧n
j=1 ∀x(S Tx(ϕ j(~p)) →

S Tx(ψ j(~p)))→ ∀x(S Tx(ϕ(~p))→ S Tx(ψ(~p)));

• F 
&
n
j=1(ϕ j(~p) ≤ ψ j(~p))⇒ ϕ(~p) ≤ ψ(~p) iff F,V |= ∀P~P∀~i(

∧n
j=1 ∀x(S Tx(ϕ j(~p))→

S Tx(ψ j(~p)))→ ∀x(S Tx(ϕ(~p))→ S Tx(ψ(~p)))).

where ~P are the unary predicate symbols corresponding to ~p.
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Proof:
By induction on the structure of ϕ and the satisfaction relation for each connective and
variable, as well as the semantics of the first-order correspondence language. �

3.4.11. Remark. In fact, since unary predicate symbols are interpreted only as admis-
sible subsets (therefore regular open subsets), and the truth set of every formula ϕ is
a regular open subset, there are some first-order formulas valid on all full possibility
frames which are not first-order theorems (e.g. S Tx(ϕ) ↔ (∀y v x)(∃z v y)(∃w w
z)S Tw(ϕ)). As a result, we have different ways to obtain translations. For example, if
we obtain the translation of ϕ→ ψ directly from the syntactic definition of→, then we
would have something different:

S Tx(ϕ1 → ϕ2) := (∀y v x)(∃z v y)(((∀w v z)¬S Tw(ϕ1)) ∨ S Tz(ϕ2))

In fact, the translation given above is equivalent to the one in Definition 3.4.9:

~(∀y v x)(∃z v y)(((∀w v z)¬S Tw(ϕ1)) ∨ S Tz(ϕ2))�M = ~¬ϕ1 ∨ ϕ2�
M,

and
~(∀y v x)(S Ty(ϕ1)→ S Ty(ϕ2))�M = ~ϕ1 → ϕ2�

M,

which are the same.

3.4.2 Sahlqvist and inductive formulas
In the present section, we will collect the preliminaries on Sahlqvist and inductive in-
equalities for classical modal formulas, which instantiate the general definitions given
in Definition 2.5.3.

3.4.12. Definition. [Signed generation tree](cf. [60, Definition 4] and Definition 2.5.1)
The positive (resp. negative) generation tree of any given formula ϕ is defined as fol-
lows: First of all, the root node of the generation tree of ϕ is labelled with sign + (resp.
−). After this, the children nodes are labelled as follows:

• For �,^,∨,∧, label the same sign to the child(ren) node(s);

• For ¬, label the opposite sign to the child node;

• For →, label the opposite sign to the first child node and the same sign to the
second child node.

3.4.13. Definition. (cf. [60, Definition 5] and Definition 2.5.2) In any signed genera-
tion tree, nodes will be respectively called syntactically right adjoint (SRA), syntacti-
cally left residual (SLR), syntactically right residual (SRR) and ∆-adjoints7, according
to Table 3.1.

7For explanations of the terminologies here, we refer to [153, Remark 3.24].
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Skeleton PIA
∆-adjoints SRA

+ ∨ ∧

− ∧ ∨

+ ∧ � ¬

− ∨ ^ ¬

SLR SRR
+ ∧ ^ ¬

− ∨ � ¬ →

+ ∨ →

− ∧

Table 3.1: Skeleton nodes and PIA nodes.

3.4.14. Definition. [Sahlqvist and inductive inequalities](cf. [60, Definition 6] and
Definition 2.5.3) For any dependency order <Ω on variables p1, . . . pn and any order-
type ε ∈ {1, ∂}n (cf. Definition 2.5.3), the signed generation tree ∗ϕ(p1, . . . pn) (where
∗ ∈ {−,+}) is (Ω, ε)-inductive if

(1) each ε-critical branch (cf. page 15) with leaf pi is good (cf. Definition 2.5.2) for
all 1 ≤ i ≤ n;

(2) every SRR-node in the ε-critical branch with leaf pi is eitherF(γ, β) orF(β, γ),
where the ε-critical branch is in β, and

(a) ε∂(γ) ≺ ∗ϕ, and

(b) pk <Ω pi for every pk that occurs in γ.

Given any order-type ε, ∗ϕ(p1, . . . pn) is ε-Sahlqvist if every ε-critical branch is excel-
lent (cf. Definition 2.5.2).

An inequality ϕ ≤ ψ is (Ω, ε)-inductive (resp. ε-Sahlqvist) if the signed genera-
tion trees +ϕ and −ψ are (Ω, ε)-inductive (resp. ε-Sahlqvist). An inequality ϕ ≤ ψ is
inductive (resp. Sahlqvist) if it is (Ω, ε)-inductive (ε-Sahlqvist) for some (Ω, ε).

3.5 The algorithm ALBA for possibility semantics
In the present section, we will give the algorithm ALBA for possibility semantics. This
version of algorithm is a bit different from the version in Section 2.6, but similar to
the version in [56, 57], especially when it comes to the approximation rules. This is
because in the possibility semantics setting, nominals are interpreted as regular open
closures of atoms in BK, which are not necessarily complete join-primes in BRO.

The input of the algorithm ALBA is an inequality ϕ ≤ ψ. After receiving the input,
ALBA executes in three stages:

The first stage preprocesses the input inequality. It eliminates all propositional
variables with uniform occurence polarity, and apply the distribution and splitting rules
exhaustively. After applying these rules, the input inequality is transformed into a finite
set of inequalities {ϕ′i ≤ ψ

′
i , 1 ≤ i ≤ n}. Then each inequality is rewritten as an initial
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quasi-inequality & S i ⇒ Ineqi, abbreviated as (S i, Ineqi) called systems, where S i = ∅
and Ineqi is ϕ′i ≤ ψ

′
i .

The second stage aims at transforming each (S i, Ineqi) into a pure system with no
occurence of propositional variables, but only nominals. The rules which eliminate the
propositional variables are called the Ackermann rules, and the other rules are auxiliary
rules to make the Ackermann rules applicable.

The third stage outputs the result of the algorithm. If some of the systems cannot be
transformed into pure systems, then the algorithm halts and reports failure. Otherwise,
the algorithm outputs the conjunction of the pure quasi-inequalities & S i ⇒ Ineqi as
well as its regular open translation, which we denote by ALBA(ϕ ≤ ψ) and FO(ϕ ≤ ψ),
respectively.

The details of the algorithm are given as follows:

Stage 1: Preprocessing In the first stage, the algorithm applies the following rules
exhaustively to the input inequality ϕ ≤ ψ with signed generation trees +ϕ and −ψ:

(1) Distribution rules:

(a) Push down +^,+∧, −¬ and − → by distributing them over +∨ which are
Skeleton nodes, and

(b) Push down −�,−∨, +¬ and − → by distributing them over −∧ which are
Skeleton nodes.

(2) Monotone and antitone variable-elimination rules:

α(p) ≤ β(p)
α(⊥) ≤ β(⊥)

β(p) ≤ α(p)
β(>) ≤ α(>)

where β(p) (resp. α(p)) is positive (resp. negative) in p.

(3) Splitting rules:
α ≤ β ∧ γ

α ≤ β α ≤ γ

α ∨ β ≤ γ

α ≤ γ β ≤ γ

After exhaustively applying the rules above, the input inequality ϕ ≤ ψ is transformed
into a set of inequalities {ϕ′i ≤ ψ

′
i | 1 ≤ i ≤ n}. Then each inequality is rewritten as an

initial quasi-inequality & S i ⇒ Ineqi, abbreviated as (S i, Ineqi) called systems, where
S i = ∅ and Ineqi is ϕ′i ≤ ψ

′
i . Each system is processed in Stage 2.

Stage 2: Reduction and elimination This stage aims at eliminating all proposition-
al variables from a system (S , Ineq) by the following reduction rules: approximation
rules, residuation rules, splitting rules, and Ackermann-rules. The formulas and in-
equalities in this stage are from the expanded modal language with nominals and black
connectives.
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Approximation rules. There are four approximation rules. Each of these rules sim-
plifies Ineq and adds an inequality to S . The notation ϕ(!x) indicates that x occurs only
once in ϕ, and the branch of ϕ(!x) starting at x means the path from x to the root.

Left-positive approximation rule.

(S , ϕ′(γ/!x) ≤ ψ′)
(L+A)

(S ∪{i ≤ γ}, ϕ′(i/!x) ≤ ψ′)

where +x ≺ +ϕ′(!x), the branch of +ϕ′(!x) starting at +x consists of SLR nodes,
γ belongs to the basic modal language and i is a nominal variable not occurring
in ϕ′(γ/!x) ≤ ψ′ or S .

Left-negative approximation rule.

(S , ϕ′(γ/!x) ≤ ψ′)
(L−A)

(S ∪{γ ≤ ¬i}, ϕ′(¬i/!x) ≤ ψ′)

where −x ≺ +ϕ′(!x), the branch of +ϕ′(!x) starting at −x consists of SLR nodes,
γ belongs to the basic modal language and i is a nominal variable not occurring
in ϕ′(γ/!x) ≤ ψ′ or S .

Right-positive approximation rule.

(S , ϕ′ ≤ ψ′(γ/!x))
(R+A)

(S ∪{i ≤ γ}, ϕ′ ≤ ψ′(i/!x))

where +x ≺ −ψ′(!x), the branch of −ψ′(!x) starting at +x consists of SLR nodes,
γ belongs to the basic modal language and i is a nominal variable not occurring
in ϕ′ ≤ ψ′(γ/!x) or S .

Right-negative approximation rule.

(S , ϕ′ ≤ ψ′(γ/!x))
(R−A)

(S ∪{γ ≤ ¬i}, ϕ′ ≤ ψ′(¬i/!x))

where −x ≺ −ψ′(!x), the branch of −ψ′(!x) starting at −x consists of SLR nodes,
γ belongs to the basic modal language and i is a nominal variable not occurring
in ϕ′ ≤ ψ′(γ/!x)) or S .

For the approximation rules, we will typically apply them pivotally to nodes !x
such that the branch starting at x is a maximal SLR branch, i.e. branch that cannot be
extended further. If an execution of ALBA is such that the approximation rules are
applied only pivotally, then it is called pivotal.
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Residuation rules. Each residuation rule rewrite one inequality in S into another
inequality:

^γ ≤ δ
(^-Res)

γ ≤ �δ
¬γ ≤ δ

(¬-Res-Left)
¬δ ≤ γ

γ ≤ �δ
(�-Res)

_γ ≤ δ

γ ≤ ¬δ
(¬-Res-Right)

δ ≤ ¬γ

γ ∧ δ ≤ β
(∧-Res-1)

γ ≤ δ→ β

γ ≤ δ ∨ β
(∨-Res-1)

γ ∧ ¬δ ≤ β

γ ∧ δ ≤ β
(∧-Res-2)

δ ≤ γ → β

γ ≤ δ ∨ β
(∨-Res-2)

γ ∧ ¬β ≤ δ

γ ≤ δ→ β
(→-Res-1)

γ ∧ δ ≤ β

γ ≤ δ→ β
(→-Res-2)

δ ≤ γ → β

Right Ackermann-rule.

({β j(p) ≤ γ j(p) | 1 ≤ j ≤ n} ∪ {αi ≤ p | 1 ≤ i ≤ m}, Ineq)
(RAR)

({β j(
∨m

i=1 αi) ≤ γ j(
∨m

i=1 αi) | 1 ≤ j ≤ n}, Ineq)

where:

• β j(p) (resp. γ j(p)) are positive (resp. negative) in p for 1 ≤ j ≤ n,

• p does not occur in Ineq or αi for 1 ≤ i ≤ m.

Left Ackermann-rule.

({β j(p) ≤ γ j(p) | 1 ≤ j ≤ n} ∪ {p ≤ αi | 1 ≤ i ≤ m}, Ineq)
(LAR)

({β j(
∧m

i=1 αi) ≤ γ j(
∧m

i=1 αi) | 1 ≤ j ≤ n}, Ineq)

where:

• β j(p) (resp. γ j(p)) are negative (resp. positive) in p for 1 ≤ j ≤ n,

• p does not occur in Ineq or αi for 1 ≤ i ≤ m.



3.5. The algorithm ALBA for possibility semantics 47

Stage 3: Success, failure and output If in every system, all propositional variables
are eliminated, then for each i, the system becomes (S i, Ineqi), where S i = {ϕik(~ji) ≤
ψik(~ji)}k, Ineqi is ϕi(~ji) ≤ ψi(~ji). The algorithm outputs the conjunction of their corre-
sponding pure quasi-inequalities and its regular open translation∧

i

∀~ji(
∧

k

(∀x(S Tx(ϕik(~ji))→ S Tx(ψik(~ji))))→ ∀x(S Tx(ϕi(~ji))→ S Tx(ψi(~ji)))),

denoted by ALBA(ϕ ≤ ψ) and FO(ϕ ≤ ψ), respectively. Otherwise, the algorithm halts
and reports failure.

3.5.1. Example. Let us consider the following inequality �p ≤ p.
In the first stage, no rules are applied, so the initial system is

(∅,�p ≤ p).

In the second stage, by applying the left-positive approximation rule, we get

({i ≤ �p}, i ≤ p);

then by the right-negative approximation rule, we get

({i ≤ �p, p ≤ ¬j}, i ≤ ¬j);

then by the residuation rule, we get

({_i ≤ p, p ≤ ¬j}, i ≤ ¬j);

then by the right Ackermann rule, we get

({_i ≤ ¬j}, i ≤ ¬j);

this system is equivalent to the following pure-inequality:

i ≤ _i.

In the third stage, the first-order correspondent is given as follows:

∀i∀x(S Tx(i)→ S Tx(_i))
∀i∀x(ROx(x = i)→ S Tx(_i))

∀i∀x(ROx(x = i)→ ROx(∃y(Ryx ∧ ROy(y = i)))).

As we can see from this example, the first-order correspondent of modal formulas
will become much more complicated even for very simple input.
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3.6 Soundness and Success
In the present section, we will prove the soundness of the algorithm with respect to
regular open dual BAOs of full possibility frames, and state the success of ALBA on
inductive inequalities. The basic proof structure is similar to Section 2.7, but for the
soundness proof of the rules, it is similar to other existing settings [56, 57], and for
most of the rules, the proofs are the same, and hence omitted. We will focus on the
approximation rules, which are the only rules dealing with the variant interpretations
of nominals.

3.6.1. Theorem (Soundness). If ALBA runs successfully on ϕ ≤ ψ and outputs FO(ϕ ≤
ψ), then for any full possibility frame FRO,

FRO 
 ϕ ≤ ψ iff FRO |= FO(ϕ ≤ ψ).

Proof:
The proof goes similarly to [56, Theorem 5.1]. Let ϕi ≤ ψi, 1 ≤ i ≤ n denote the
inequalities produced by preprocessing ϕ ≤ ψ after Stage 1, and (S i, Ineqi), 1 ≤ i ≤ n
denote the corresponding quasi-inequalities produced by ALBA after Stage 2. It suffices
to show the equivalence from (3.1) to (3.7) given below:

FRO 
 ϕ ≤ ψ(3.1)
BRO |= ϕ ≤ ψ(3.2)
BRO |= ϕi ≤ ψi, for all 1 ≤ i ≤ n(3.3)
BRO |= &∅⇒ ϕi ≤ ψi, for all 1 ≤ i ≤ n(3.4)
BRO |= & S i ⇒ Ineqi, for all 1 ≤ i ≤ n(3.5)
BRO |= ALBA(ϕ ≤ ψ)(3.6)
FRO |= FO(ϕ ≤ ψ)(3.7)

• The equivalence between (3.1) and (3.2) follows from Proposition 3.4.4;

• to show the equivalence of (3.2) and (3.3), it suffices to show the soundness of
the rules in Stage 1, which can be proved in the same way as in [56, Theorem
5.1];

• the equivalence between (3.3) and (3.4) is immediate;

• the equivalence between (3.4) and (3.5) follows from Propositions 3.6.3, 3.6.4,
3.6.5 and 3.6.6 below;

• the equivalence between (3.5) and (3.6) is again immediate;

• the equivalence between (3.6) and (3.7) follows from Propositions 3.4.4 and
3.4.10.
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�

Therefore, it remains to show the soundness of Stage 2, for which it suffices to
show the soundness of the approximation rules, the residuation rules, the Ackermann
rules and the splitting rules. For the residuation rules, the only property needed is the
adjunction property, and the proofs are similar to existing settings (see e.g. [55, Lemma
8.4]), and hence are omitted. For the splitting rules, their soundness are immediate. For
the Ackermann rules, since the nominals and propositional variables are interpreted as
elements in BRO, and the basic and black connectives are all interpreted as operations
from (products of) BRO to BRO, the “minimal valuation” formula is always interpreted
as an element in BRO, therefore the soundness proof of the Ackermann lemmas are the
same as [57, Lemma 6.3, 6.4]. The only rules which need special attention are the
approximation rules. Since they are order-dual to each other, it suffices to focus on one
of these rules.

Let us consider the left-positive approximation rule. Consider a system (S , ϕ(α, γ1, . . . , γn) ≤
ψ) where α is the formula to be approximated, and the regular open dual BAO BRO and
assignment θ where the system is interpreted. By Proposition 3.3.4, α(BRO,θ) =

∨
RO{x ∈

PsAt(BRO) | x ≤ α(BRO,θ)}.
The soundness of the left-positive approximation rule is justified by the following

proposition, which is similar to [57, Lemma 6.2]:

3.6.2. Proposition. Given a regular open dual BAO BRO and an assignment θ on BRO,

(BRO, θ) |= & S ⇒ ϕ(α, γ1, . . . , γn) ≤ ψ

iff for any x ∈ PsAt(BRO),

(BRO, θ
′
x) |= j ≤ α & & S ⇒ ϕ(j, γ1, . . . , γn) ≤ ψ,

where θ′x is the j-variant of θ such that θ′x(j) = x and θ′x agrees with θ on other variables.

Proof:

First of all, by the requirement of the approximation rule, we have that ϕ( , γ1, . . . , γn)
is completely join-preserving in the empty coordinate. By Proposition 3.3.4, α(BRO,θ) =∨

RO{x ∈ PsAt(BRO) | x ≤ α(BRO,θ)}. By complete distributivity, we have8:

8For simplicity of notation, we omit the superscript (BRO, θ) of formulas and inequalities except for
the last but one line; indeed, in the last two lines, the interpretation is in (BRO, θ

′
x), and in other lines, the

interpretation is in (BRO, θ).
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(BRO, θ) |= (& S ) ⇒ ϕ(α, γ1, . . . , γn) ≤ ψ
iff (& S )⇒ ϕ(

∨
RO{x ∈ PsAt(BRO) | x ≤ α}, γ1, . . . , γn) ≤ ψ

iff (& S )⇒
∨

RO{ϕ(x, γ1, . . . , γn) | x ∈ PsAt(BRO) and x ≤ α} ≤ ψ
iff (& S )⇒ (∀x ∈ PsAt(BRO) s.t. x ≤ α)(ϕ(x, γ1, . . . , γn) ≤ ψ)
iff (∀x ∈ PsAt(BRO) s.t. x ≤ α)(& S ⇒ ϕ(x, γ1, . . . , γn) ≤ ψ)
iff (∀x ∈ PsAt(BRO))(x ≤ α& & S ⇒ ϕ(x, γ1, . . . , γn) ≤ ψ)
iff (∀x ∈ PsAt(BRO))(x ≤ α(BRO,θ

′
x)&(& S )(BRO,θ

′
x) ⇒ ϕ(BRO,θ

′
x)(x, γ(BRO,θ

′
x)

1 , . . . , γ
(BRO,θ

′
x)

n ) ≤ ψ(BRO,θ
′
x))

iff (∀x ∈ PsAt(BRO))((BRO, θ
′
x) |= (j ≤ α& & S ⇒ ϕ(j, γ1, . . . , γn) ≤ ψ)).

Notice that j does not occur in S , α, ϕ, ψ, γ1, . . . , γn. �
Notice again that here we interpret the nominals as regular opens closures of atoms in
the full dual BAO rather than atoms or complete join-irreducibles since they might not
be available in BRO.

By the proposition above, we have the soundness of the left-positive approximation
rule as an easy corollary:

3.6.3. Proposition. The left-positive approximation rule is sound.

By order-dual arguments, the other three approximation rules are sound:

3.6.4. Proposition. The left-negative approximation rule, the right-positive approxi-
mation rule and the right-negative approximation rule are sound.

Following from standard soundness proof of ALBA [55, Lemma 8.3, 8.4], we have the
following:

3.6.5. Proposition. The distribution rules, the splitting rules, the monotone and anti-
tone rules and the residuation rules are sound.

For the Ackermann rules, the proof is similar to [55, Lemma 4.2-4.3]. It is worth
mentioning that all the formulas in the expanded modal language are interpreted in
BRO. Moreover, we are working at the discrete duality level, therefore the topological
Ackermann lemmas (cf. [55, Lemma 9.3, 9.4]) are not needed in the soundness proof
here.

3.6.6. Proposition. The Ackermann rules are sound.

The proof that ALBA succeeds on inductive inequalities goes similarly to [57],
therefore in what follows we will only state the main result without giving details,
and refer the reader to [57] for an exhaustive treatment.

3.6.7. Theorem. ALBA succeeds on all inductive inequalities.

3.6.8. Corollary. Every inductive inequality ϕ ≤ ψ has a first-order correspondent
FO(ϕ ≤ ψ).
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3.7 Canonicity
In the present section, we prove that inductive inequalities are filter-canonical. Our
proof is alternative to the one given by Holliday [118, Theorem 7.20]. Indeed, Holl-
iday’s proof follows from the constructive canonicity of inductive inequalities proved
in [56], observing that the filter completions of BAOs coincide with their construc-
tive canonical extensions (cf. [118, Theorem 5.46]). In this section, we make use of
the possibility semantics counterpart of the canonicity-via-correspondence argumen-
t, which is a variation of the standard U-shaped argument (cf. [55] and Section 2.7)
represented in the diagram below. For this U-shaped argument to be supported, we
need to prove that ALBA is sound also with respect to the filter-descriptive possibility
frames (see Definition 3.7.2), i.e. the dual relational structure of Boolean algebras with
operators in the framework of possibility semantics. Hence, in what follows, we will
mainly focus on this aspect.

FFD 
 ϕ(~p) ≤ ψ(~p) FRO 
 ϕ(~p) ≤ ψ(~p)
m m

BRO |=FD ϕ(~p) ≤ ψ(~p) BRO |= ϕ(~p) ≤ ψ(~p)
m m

BRO |=FD (∀~p ∈ BFD)(ϕ(~p) ≤ ψ(~p)) BRO |= (∀~p ∈ BRO)(ϕ(~p) ≤ ψ(~p))
m m

BRO |=FD (∀~i ∈ PsAt(BRO))Pure(ϕ(~p) ≤ ψ(~p)) BRO |= (∀~i ∈ PsAt(BRO))Pure(ϕ(~p) ≤ ψ(~p))
m m

FFD |=FO(Pure(ϕ(~p) ≤ ψ(~p))) ⇔ FRO |=FO(Pure(ϕ(~p) ≤ ψ(~p)))

Here BFD denote the dual BAO of the filter-descriptive possibility frame FFD, FRO

is the underlying full possibility frame of FFD, and BRO is the dual BAO of FRO.
We will first provide the semantic environment of the present section, i.e. filter-

descriptive possibility frames and canonical extensions in Section 3.7.1. Section 3.7.2
gives the soundness proof of the algorithm with respect to (the dual BAOs of) filter-
descriptive possibility frames, where the topological Ackermann lemmas are given.
The correspondence and canonicity results are collected in Section 3.7.3.

3.7.1 Filter-descriptive possibility frames and canonical extensions
In the present section, we will collect basic definitions of filter-descriptive possibility
frames as well as canonical extensions. For more details, the reader is referred to [118]
and [22].

Filter-descriptive possibility frames

In [118], Holliday introduced filter-descriptive possibility frames, i.e. the possibili-
ty semantics counterpart of descriptive general (Kripke) frames [21, Section 5.5], in



52 Chapter 3. Algorithmic correspondence and canonicity for possibility semantics

which restrictions on the admissible set are imposed. The following definition is one
of these restrictions.

3.7.1. Definition. [Tightness](cf. [118, Definition 4.31]) A possibility frame F = (W,v
,R,P) is said to be

• R-tight if (∀w, v ∈ W)(∀X ∈ P(w ∈ �P(X)⇒ v ∈ X)⇒ wRv);

• v-tight if (∀w, v ∈ W)(∀X ∈ P(w ∈ X ⇒ v ∈ X)⇒ v v w);

• tight if it is both R-tight and v-tight.

The filter-descriptive possibility frames are introduced as below:

3.7.2. Definition. [Filter-descriptive possibility frames] (cf. [118, Definition 5.39]) A
possibility frame F = (W,v,R,P) is said to be filter-descriptive if the following condi-
tions hold:

• it is tight;

• for every proper filter9 F in BP, there exists an element w ∈ W such that F =

P(w) = {X ∈ P | w ∈ X}.

3.7.3. Remark. As we mentioned on page 29, for any possibility frame F = (W,v
,R,P), RO(W, τv) might not be closed under the conditions in Definition 3.2.2. How-
ever, if F is a filter-descriptive possibility frame, RO(W, τv) is always closed under the
conditions, i.e. given any filter-descriptive possibility frame FFD = (W,v,R,P), its un-
derlying full possibility frame FRO = (W,v,R,RO(W, τv)) is well-defined (see [118,
Theorem 5.32.1, Proposition 5.40]).

In this section, we will mainly work on the dual algebraic side, i.e. the dual BAOs of
filter-descriptive possibility frames and the dual BAOs of their underlying full possi-
bility frames. Indeed, the latter are the constructive canonical extensions of the former,
which we will discuss below.

9A proper filter in a BAO B is a non-empty subset F ⊆ B such that

– for any a, b ∈ F, a ∧ b ∈ F;

– for any a, b ∈ B, if a ≤ b and a ∈ B, then b ∈ B;

– ⊥ < F.
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Canonical extensions

As is known in the setting of Kripke semantics and its algebraic counterpart, given a
descriptive general frame G and its underlying Kripke frame F, the dual BAO of F is
the canonical extension of the dual BAO of G. It is natural to ask what is the relation
between the dual BAO of a filter-descriptive possibility frame FFD and the dual BAO
of its underlying full possibility frame FRO. Indeed, by [118, Theorem 5.46], given any
filter-descriptive possibility frame FFD = (W,v,R,P) and its underlying full possibility
frame FRO = (W,v,R,RO(W, τv)), the dual BAO of FRO is the constructive canonical
extension of FFD. In what follows, we will collect the basic definitions about canonical
extensions. We will refer the reader to [22, Chapter 6] and Section 2.7 for more details.

3.7.4. Definition. [Canonical extensions of Boolean algebras] (cf. [22, Chapter 6, Def-
inition 104], page 11) The canonical extension of a Boolean algebra B is a complete
Boolean algebra Bδ containing B as a sub-Boolean algerba, and such that the following
two conditions hold:

(denseness) each element of Bδ can be represented both as a join of meets and as
a meet of joins of elements from B;

(compactness) for all X,Y ⊆ B with
∧

X ≤
∨

Y in Bδ, there are finite subsets
X0 ⊆ X and Y0 ⊆ Y such that

∧
X0 ≤

∨
Y0.

10

An element x ∈ Bδ is open (resp. closed)11 if it is the join (resp. meet) of some
X ⊆ B. We use O(Bδ) (resp. K(Bδ)) to denote the set of open (resp. closed) elements of
Bδ. It is easy to see that elements in B are exactly the ones which are both closed and
open (i.e. clopen).

It is well-known that for any givenB, its canonical extension is unique up to isomor-
phism, and that assuming the axiom of choice, the canonical extension of a Boolean
algebra is a perfect Boolean algebra, i.e. a complete and atomic Boolean algebra (cf.
e.g. [118, page 90-91]). Let A,B be Boolean algebras. There are two canonical ways
to extend an order-preserving map f : A→ B to a map Aδ → Bδ:

3.7.5. Definition. [σ- and π-extension]([22, page 375] and page 12) For any order-
preserving map f : A→ B and any u ∈ Aδ, we define

f σ(u) =
∨
{
∧
{ f (a) : x ≤ a ∈ A} : u ≥ x ∈ K(Aδ)}

f π(u) =
∧
{
∨
{ f (a) : y ≥ a ∈ A} : u ≤ y ∈ O(Aδ)}.

10In fact, this is an equivalent formulation of the definition in [22].
11Notice that here the definition of closedness and openness is different from the ones in the order

topology introduced by the refinement order. In the remainder of the present section, closedness and
openness refer to this definition.
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Since in a BAO, � is meet-preserving, it is smooth, i.e. �σ = �π (cf. [22, Proposition
111(3)]). Therefore, the canonical extension of a BAO can be defined as follows:

3.7.6. Definition. [Canonical extensions of BAOs](cf. e.g. [123, page 474]) The canon-
ical extension of any BAO (B,�) is (Bδ,�σ) = (Bδ,�π).

3.7.7. Definition. [Perfect Boolean algebra](cf. [22, Chapter 6, Definition 40]) A BAO
B = (B,⊥,>,∧,∨,−,�) is said to be perfect if B is complete, atomic and completely
multiplicative.

As is argued in [118, page 90-91], with the axiom of choice, it can be shown that if
B is a BAO, then Bδ is a perfect BAO. When the axiom of choice is not available, the
canonical extension of a BAO cannot be shown to be perfect in general. What can be
shown is that the canonical extension of a BAO is the constructive canonical extension
defined in e.g. [87], which is complete and completely multiplicative.

As is shown in [118, Theorem 5.46], BRO is in fact the constructive canonical ex-
tension of BFD. Therefore, the following diagram describes the relation between filter-
descriptive possibility frames and their underlying full possibility frames, as well as
their duals:

BFD

BRO

FFD

FRO

(·)δ U

�∂

�∂

Here �∂ means dual equivalence, U is the forgetful functor dropping the admissible
condition and replacing the admissible set to the set of regular opens in the downset
topology, (·)δ is taking the constructive canonical extension.

Using the definitions and constructions given above, it is possible to define the
notion of filter-canonicity:

3.7.8. Definition. [Filter-canonicity](see [118, Definition 7.15]) We say that an in-
equality ϕ ≤ ψ is filter-canonical if whenever it is valid on a filter-descriptive pos-
sibility frame, it is also valid on its underlying full possibility frame.12

By the duality theory of possibility semantics (see [118, Section 5]), filter-canonicity
above is equivalent to the preservation under taking constructive canonical extensions.

Now we can come back to the U-shaped argument given on page 51. This argu-
ment starts from the top-left corner with the validity of the input inequality ϕ ≤ ψ

12Notice that here our definition is different from [118, Definition 7.15], which is based on the notion
of canonical possibility models and frames.
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on FFD, then reformulate it as the validity of the inequality in BRO with propositional
variables interpreted as elements in BFD, and use the algorithm ALBA to transform the
inequality into an equivalent (set of) quasi-inequality(-ies) Pure(ϕ ≤ ψ) as well as its
first-order translation, and then go back to the dual filter-descriptive possibility frame.
Since the validity of the first-order formulas does not depend on the admissible set, the
bottom equivalence is obvious. The right half of the argument goes on the side of full
possibility frames and their duals, the soundness of which is already shown in Section
3.6.

Indeed, the U-shaped argument on page 51 gives the following results:

• Correspondence results with respect to filter-descriptive frames, which only uses
the left arm of the U-shaped argument;

• Canonicity results, which uses the whole U-shaped argument13;

Since the equivalences of the right arm of the U-shaped argument is already shown
in Section 3.6, and the bottom equivalence is obvious, we will focus on the equiva-
lences of the left-arm, i.e. the soundness of the algorithm with respect to filter-descriptive
possibility frames and their duals.

3.7.2 Soundness over filter-descriptive possibility frames
In the present section we will prove the soundness of the algorithm ALBA with re-
spect to the dual BAOs of filter-descriptive possibility frames. Indeed, similar to other
semantic settings (see e.g. [55] and Section 2.7.2), the soundness proof of the filter-
descriptive possibility frame side goes similar to that of the full possibility frame side
(i.e. Theorem 3.6.1), and for every rule except for the Ackermann rules, the proof goes
without modification, thus we will only focus on the Ackermann rules here, which is
justified by the topological Ackermann lemmas given below. The proof is similar to
e.g. [55], therefore we will only expand on the parts which are different.

Topological Ackermann lemmas

In the present section we prove the topological Ackermann lemmas, which is the
technical core of the soundness proof of the Ackermann rules with respect to filter-
descriptive possibility frames. The proof is analogous to the topological Ackermann
lemmas in the existing literature (e.g. [152]), and we only expand on the parts of the
proof which are different.

For the Ackermann rules, the soundness proof with respect to full possibility frames
is justified by the following Ackermann lemmas (cf. e.g. [55, Lemma 4.2-4.3]):

13In fact, as is mentioned in [118, Section 7], using techniques from [56], the canonicity results can
also be obtained via another U-shaped argument where nominals are interpreted as closed elements.
Therefore, our proof here can be regarded as an alternative proof which has its relational counterpart.
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3.7.9. Lemma (Right-handed Ackermann lemma). Let α be a formula which does not
contain p, let βi(p) (resp. γi(p)) be positive (resp. negative) in p for 1 ≤ i ≤ n,
and let ~q (resp. ~j) be all the propositional variables (resp. nominals) occurring in
β1(p), . . . , βn(p), γ1(p), . . . , γn(p), α other than p. Then for all ~a ∈ BRO, ~x ∈ PsAt(BRO),
the following are equivalent:

(1) βBRO
i (~a, ~x, αBRO(~a, ~x)) ≤ γBRO

i (~a, ~x, αBRO(~a, ~x)) for 1 ≤ i ≤ n;

(2) There exists a0 ∈ BRO such that αBRO(~a, ~x) ≤ a0 and βBRO
i (~a, ~x, a0) ≤ γBRO

i (~a, ~x, a0)
for 1 ≤ i ≤ n.

3.7.10. Lemma (Left-handed Ackermann lemma). Let α be a formula which does not
contain p, let βi(p) (resp. γi(p)) be negative (resp. positive) in p for 1 ≤ i ≤ n,
and let ~q (resp. ~j) be all the propositional variables (resp. nominals) occurring in
β1(p), . . . , βn(p), γ1(p), . . . , γn(p), α other than p. Then for all ~a ∈ BRO, ~x ∈ PsAt(BRO),
the following are equivalent:

(1) βBRO
i (~a, ~x, αBRO(~a, ~x)) ≤ γBRO

i (~a, ~x, αBRO(~a, ~x)) for 1 ≤ i ≤ n;

(2) There exists a0 ∈ BRO such that a0 ≤ α
BRO(~a, ~x) and βBRO

i (~a, ~x, a0) ≤ γBRO
i (~a, ~x, a0)

for 1 ≤ i ≤ n.

As is similar to what is discussed in the existing literature (e.g. [55, Section 9]) and
in Section 2.7.2, the soundness proof of the Ackermann rules, namely the Ackermann
lemmas, cannot be straightforwardly adapted to the setting of admissible assignments,
since formulas in the expanded modal language L+ might be interpreted as elements
in BRO \ BFD even if all the propositional variables are interpreted in BFD, thus we
cannot just take a0 = αBRO(~a, ~x) to be the element in BRO in the setting of admissible
assignments. Therefore, some adaptations are necessary based on the syntactic shape
of the formulas, the definitions of which are analogous to [152, Definition B.3]:

3.7.11. Definition. [Syntactically closed and open formulas]

(1) A formula in L+ is syntactically closed if all occurrences of nominals and _ are
positive, and all occurrences of � are negative;

(2) A formula in L+ is syntactically open if all occurrences of nominals and _ are
negative, and all occurrences of � are positive.

As is discussed in [55, Section 9], the underlying idea of the definitions above
is that given an admissible assignment, the value of a syntactically closed (resp. open)
formula is always an closed (resp. open) element in BRO, i.e., in K(BRO) (resp. O(BRO)),
therefore by compactness, we can get an admissible a0 as required by the topological
Ackermann lemmas stated below, which are analogous to [152, Lemma B.4, B.5]:
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3.7.12. Lemma (Right-handed topological Ackermann lemma). Let α be a syntactical-
ly closed formula which does not contain p, let βi(p) (resp. γi(p)) be syntactically
closed (resp. open) and positive (resp. negative) in p for 1 ≤ i ≤ n, and let ~q (re-
sp.~j) be all the propositional variables (resp. nominals) occurring in β1(p), . . . , βn(p),
γ1(p), . . . , γn(p), α other than p. Then for all ~a ∈ BFD, ~x ∈ PsAt(BRO), the following
are equivalent:

(1) βBRO
i (~a, ~x, αBRO(~a, ~x)) ≤ γBRO

i (~a, ~x, αBRO(~a, ~x)) for 1 ≤ i ≤ n;

(2) There exists a0 ∈ BFD such that αBRO(~a, ~x) ≤ a0 and βBRO
i (~a, ~x, a0) ≤ γBRO

i (~a, ~x, a0)
for 1 ≤ i ≤ n.

3.7.13. Lemma (Left-handed topological Ackermann lemma). Let α be a syntactical-
ly open formula which does not contain p, let βi(p) (resp. γi(p)) be syntactically
closed (resp. open) and negative (resp. positive) in p for 1 ≤ i ≤ n, and let ~q (re-
sp.~j) be all the propositional variables (resp. nominals) occurring in β1(p), . . . , βn(p),
γ1(p), . . . , γn(p), α other than p. Then for all ~a ∈ BFD, ~x ∈ PsAt(BRO), the following
are equivalent:

(1) βBRO
i (~a, ~x, αBRO(~a, ~x)) ≤ γBRO

i (~a, ~x, αBRO(~a, ~x)) for 1 ≤ i ≤ n;

(2) There exists a0 ∈ BFD such that a0 ≤ α
BRO(~a, ~x) and βBRO

i (~a, ~x, a0) ≤ γBRO
i (~a, ~x, a0)

for 1 ≤ i ≤ n.

Indeed, the proof of the topological Ackermann lemmas is similar to [152, Section B],
and most of the lemmas and steps are similar, and hence are omitted. We only state
and prove one lemma which is different. The reason that the lemma needs a different
treatment is that elements in PsAt(BRO) are not necessarily complete join-irreducible
elements.

3.7.14. Lemma. PsAt(BRO) ⊆ K(BRO).

Proof:
It suffices to show that for any element w ∈ W, ro({w}) =

∧
{a ∈ BFD | w ∈ a}. It is

easy to see that ro({w}) ≤
∧
{a ∈ BFD | w ∈ a}. Suppose that the inequality is strict,

then there exists a v ∈ W such that v < ro({w}) and v ∈
∧
{a ∈ BFD | w ∈ a}. By

Definition 3.7.2, every filter-descriptive possibility frame is v-tight, therefore v v w.
Since ro({w}) is downward closed, we have v ∈ ro({w}), a contradiction. �

The next lemma shows that the syntactic requirement by the topological Acker-
mann lemmas on the formulas is always satisfied when ALBA is executed pivotally,
and together with the two topological Ackermann lemmas above, the soundness of the
Ackermann rules in pivotal executions of ALBA with respect to filter-descriptive possi-
bility frames are obtained (the argument is essentially the same as in the proof of [57,
Proposition 7.6]). The proof of this lemma is similar to [57, Lemma 7.5], and is hence
omitted.
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3.7.15. Lemma. If ALBA is executed pivotally (see page 45) on an input inequality
ϕ ≤ ψ, then for any system (S , Ineq) obtained during the execution, for any non-pure
inequality in S and for Ineq, the left-hand side (resp. right-hand side) is syntactically
closed (resp. open).

3.7.3 Results
Using the soundness of the algorithm ALBA with respect to filter-descriptive possibility
frames, we have the following results:

3.7.16. Theorem. For any inequality ϕ ≤ ψ in the basic modal language L on which
ALBA succeeds and outputs FO(ϕ ≤ ψ), ϕ ≤ ψ corresponds to FO(ϕ ≤ ψ) in the
sense that for any filter-descriptive possibility frame F, F 
 ϕ ≤ ψ if and only if
F |= FO(ϕ ≤ ψ).

Proof:
By the left-arm of the U-shaped argument given on page 51. �

3.7.17. Theorem. Any inequality ϕ ≤ ψ in the basic modal languageL on which ALBA
succeeds is preserved under taking constructive canonical extensions, and hence filter-
canonical.

Proof:
By the whole U-shaped argument given on page 51. �

3.8 Conclusions and future directions
In the present section, we will discuss some aspects of correspondence and canonicity
in possibility semantics, and give some future directions.

3.8.1 The variation of interpretations: nominals and approxima-
tion rules in different ALBAs

The SQEMA14-ALBA line of algorithmic correspondence research starts from Boolean
algebra based modal logics [51], and later on the underlying semantic environment
generalizes to distributive lattices [55], general lattices [57], constructive extensions
of lattices [56] and possibility semantics. Along the line of generalizations, properties
specific to certain settings are separated from the more general properties. Here we are
going to discuss the rules of nominals, i.e. the approximation rules in detail.

14SQEMA stands for Second-order Quantifier Elimination for Modal formulae using Ackermann’s
lemma (see [51]).
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Boolean algebras with operators. In the setting of Boolean algebras with oper-
ators, every CAV-BAO has atoms, which are complete join-irreducibles, complete
join-primes and join-generators. Therefore, the following kind of approximation rule
is available (see [51]):

i ≤ ^γ
(Left-^-Appr)i ≤ ^j j ≤ γ

where the nominals are interpreted as atoms. To guarantee the soundness of the rule
above, the following properties are used (in the remainder of this subsection, we will
abuse notation and identify formulas with their interpretations on algebras):

• First of all, ^γ is represented as ^
∨
{j ∈ At(B) | j ≤ γ}, which uses the fact that

the atoms in the CAV-BAOs are join-generators;

• secondly, since ^ is completely join-preserving, it can be equivalently represent-
ed as

∨
{^j | j ∈ At(B) and j ≤ γ};

• finally, i ≤
∨
{^j | j ∈ At(B) and j ≤ γ} iff there exists a j ∈ At(B) such that j ≤ γ

and i ≤ ^j, which uses the fact that the atoms are completely join-prime.

Therefore, the semantic properties used in the soundness proof of (Left-^-Appr) are
the following:

• Atoms are join-generators;

• ^ is completely join-preserving;

• Atoms are completely join-prime.

Therefore, the atomicity of CAV-BAOs are not essentially used in the soundness
proof of the rule above.

Distributive lattice expansions. Going from Boolean algebras with operators to dis-
tributive lattice expansions, the atomicity is not available anymore. However, in perfect
distributive lattices, there are complete join-irreducibles which are also complete join-
primes and join-generators, although not necessarily atomic. Therefore, as we ana-
lyzed in the Boolean setting, if we interpret the nominals as complete join-irreducibles
(i.e. complete join-primes), these properties are enough to guarantee the rule (Left-^-
Appr) to be sound on perfect distributive lattice expansions.
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General lattice expansions. In the further general setting of perfect general lattice
expansions without assuming distributivity, complete join-irreducibles are not the same
as complete join-primes anymore. The remaining property in general lattice expan-
sions is that the complete join-irreducibles (here we denote the set of complete join-
irreducibles of the lattice L as J(L)) are still join-generators. Consider the following
rule:

(S , ϕ(γ/!x) ≤ ψ)
(L+A)

(S ∪{i ≤ γ}, ϕ(i/!x) ≤ ψ)

with +x ≺ +ϕ(!x), the branch of +ϕ(!x) starting at +x being SLR, γ belonging to the
original modal language and i being the first nominal variable not occurring in S or
ϕ(γ/!x) ≤ ψ.

To guarantee the soundness of the rule above, the following properties are used:

• First of all, ϕ(γ) is represented as ϕ(
∨
{j ∈ J(L) | j ≤ γ}), which uses the fact that

the complete join-irreducibles in prefect general lattices are join-generators;

• secondly, since ϕ(!x) is completely join-preserving, it can be equivalently repre-
sented as

∨
{ϕ(j) | j ∈ J(L) and j ≤ γ};

• finally,
∨
{ϕ(j) | j ∈ J(L) and j ≤ γ} ≤ ψ iff for all j ∈ J(L) s.t. j ≤ γ, it holds

that ϕ(j) ≤ ψ, which does not use special properties of perfect general lattice
expansions.

Therefore, in an approximation rule like (L+A), the semantic property essential-
ly used is that the complete join-irreducibles are join-generators. As a result, any
complete lattice-like structures which have join-generators can have an approximation
rule in the style of (L+A) to be sound, once the nominals are interpreted as the join-
generators.

For example, in the constructive canonical extensions of general lattice expansions,
they are not necessarily perfect, so there are not “enough” complete join-irreducibles.
However, in canonical extensions, every element can be represented as the join of
closed elements, therefore if we interpret the nominals as closed elements, the approx-
imation rule above is sound.

In possibility semantics, the regular open dual BAOs of full possibility frames are
CV-BAOs, thus do not have “enough” atoms. However, in this setting, the regular
open closures of singletons can serve as the join-generators, which gives the semantic
environment for the rule (L+A) to be sound.

To sum up, the following table shows the semantic properties available in each
setting, which justifies the use of different approximation rules in each setting:
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Propositional base Nominals/join-generators
perfect Boolean algebras atoms

perfect distributive lattices complete join-primes
perfect general lattices complete join-irreducibles

constructive canonical extensions closed elements
possibility semantics regular open closures of singletons

3.8.2 The essence of minimal valuation
As we can see from the previous subsection, nominals are not necessarily interpreted as
atoms (singletons) or complete join-irreducibles, anything that can be taken as the join-
generators can serve as the interpretation. Therefore, the execution of the algorithm
ALBA provides quasi-inequalities equivalent to the input formula (or inequality), which
are in the language with nominals and the connectives in the expanded modal language.
Therefore, a successful ALBA reduction of a modal formula to the pure language means
that the input modal formula can be expressed by the join-generators. In the setting of
constructive canonical extensions of general lattices, there is not (yet) an obvious way
of expressing closed elements in the first-order correspondence language. However,
in other settings, we can express the atoms, complete join-irreducibles or regular open
closures of singletons in the first-order correspondence language. Since we also have
the first-order translation of the connectives both in the basic modal language and in
the expanded modal language, we can thus translate the pure quasi-inequalities into
first-order formulas.

3.8.3 Translation method and its limitations
Since possibility frames have two binary relations, it is natural to view them as bimodal
Kripke frames with additional restrictions on the valuations of propositional variables
(see [187] for a detailed discussion of this bimodal perspective). Therefore, a natu-
ral question is whether we can use this view to reduce correspondence problems in
possibility semantics to correspondence problems in the bimodal language, like using
the Gödel translation from intuitionistic logic to S4 modal logic (see [60] for a detailed
discussion of the power and limits of translation method in correspondence theory). As
we can see in e.g. [187], when we try to reduce correspondence problems in possibility
semantics to correspondence problems in the bimodal language, a problem arises due
to the complication of the formula structure of the bimodal formulas after the transla-
tion. However, since there are additional properties satisfied in the bimodal language
(e.g. the interaction axioms between the accessibility relation and the refinement re-
lation), there are additional order-theoretic properties satisfied, which can make more
connective combinations having the nice order-theoretic properties. One example is
�v^v, which is meet-preserving. If we make the analysis from the prespective of the
order-theoretic properties of the individual connectives only, then �v^v is of the shape
of the antecedent of the McKinsey formula, which has a very bad combination pattern.
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Therefore, a natural question is: can we use the order-theoretic properties of the
combinations of connectives in correspondence theory for superintuitionistic logics, in
addition to the properties of the individual connectives, to obtain results like in [158]?

3.8.4 Constructive canonical extensions
As we can see in [118, Theorem 5.46] and the canonicity proof in the present chapter,
the persistence notion corresponding to the validity preservation from filter-descriptive
possibility frames to their underlying full possibility frames is exactly the same as
the validity preservation under taking constructive canonical extensions. Therefore,
possibility semantics provides a relational semantic environment to give canonicity
proofs without appealing to the axiom of choice and its equivalent forms. In addition,
possibility frames could be recognized as the dual relational semantic environment
to study constructive canonical extensions [87, 91]. In this sense, we can say that
possibility semantics is the constructive counterpart of Kripke semantics.

A future question related to the constructive feature is about the frame-theoretic
counterpart of constructive canonical extensions in lattice-based settings, i.e. non-
classical versions of possibility semantics as the duals of distributive lattices and their
canonical extensions, which is expected to “relationalize” the constructive canonical
extensions in a “pointed” way, where “points” refer to filters rather than prime filters
or ultrafilters. For the intuitionistic generalization of possibility semantics, it is already
studied in [18] as Dragalin semantics.



Chapter 4
Algorithmic Sahlqvist preservation for modal

compact Hausdorff spaces

In the present chapter, which is a revised version of the paper [199], we apply uni-
fied correspondence theory to modal compact Hausdorff spaces, providing alternative
canonicity-type preservation results in [14] and [19].

4.1 Introduction
Canonicity, i.e. the preservation of validity of formulas from descriptive general frames
to their underlying Kripke frames, is an important notion in modal logic, since it pro-
vides a uniform strategy for proving the strong completeness of axiomatic extensions
of a basic (normal modal) logic. Thanks to its importance, the notion of canonicity has
been explored also for other non-classical logics. In [123], Jónsson gave a purely al-
gebraic reformulation of the frame-theoretic notion of canonicity, which he defined as
the preservation of validity under taking canonical extensions, and proved the canon-
icity of Sahlqvist identities in a purely algebraic way. The construction of canonical
extension was introduced by Jónsson and Tarski [124] as a purely algebraic encoding
of the Stone spaces dual to Boolean algebras. In particular, the denseness requirement
directly relates to the zero-dimensionality of Stone spaces. A natural question is then
for which classes of formulas do canonicity-type preservation results hold in topologi-
cal settings in which compactness is maintained and zero-dimensionality is generalized
to the Hausdorff separation condition. This question has been addressed in [14, 19].
Specifically, in [14], Bezhanishvili, Bezhanishvili and Harding gave a canonicity-type
preservation result for Sahlqvist formulas from modal compact Hausdorff spaces to
their underlying Kripke frames, and in [19], Bezhanishvili and Sourabh generalized
this result to modal fixed point formulas.

In the present chapter, some preliminary results are collected which reformulate in
an algebraic and algorithmic way the canonicity-type preservation results in [14, 19].
We define the algorithm ALBA for modal compact Hausdorff spaces, show the sound-
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ness of the algorithm with respect to the interpretation over modal compact Haus-
dorff spaces. In particular, an adapted version of the topological Ackermann lemma
is proved using the Esakia-type lemma for the modal language over modal compact
Hausdorff spaces. The results of the present chapter pave the way to extending the
tools of unified correspondence to canonicity-type preservation results based on differ-
ent dualities than Stone duality.

This chapter is organized as follows: Section 4.2 collects preliminaries on modal
compact Hausdorff spaces and the semantic interpretation for the modal language. Sec-
tion 4.3 discusses the main ideas for the preservation results. Section 4.4 provides the
expanded modal language of the algorithm as well as its interpretations, together with
the syntactic definition of Sahlqvist sequents. The Ackermann Lemma Based Algorith-
m (ALBA) for modal compact Hausdorff space is given in Section 4.5. Section 4.6 and
4.7 respectively shows the soundness of the algorithm with respect to modal compact
Hausdorff spaces and the success of the algorithm on Sahlqvist sequents.

4.2 Preliminaries

4.2.1 Modal compact Hausdorff spaces

In the present subsection, we collect the preliminaries for modal compact Hausdorff
spaces. For more details, the readers are referred to [14, 19, 122].

We will use the following notations: given a binary relation R on W, we denote
R[X] = {w ∈ W | (∃x ∈ X)Rxw} and R−1[X] = {w ∈ W | (∃x ∈ X)Rwx}, R[w] := R[{w}]
and R−1[w] := R−1[{w}], respectively.

A topological space T = (W, τ) is

(1) compact if for any collection {Xi}i∈I of open sets, if W =
⋃

i∈I Xi, then there is a
finite subset I0 ⊆ I such that W =

⋃
i∈I0

Xi;

(2) Hausdorff if for any two distinct points x, y ∈ W, there exist X,Y ∈ τ such that
x ∈ X, y ∈ Y and X ∩ Y = ∅.

It is well-known that singletons are closed in Hausdorff spaces.

4.2.1. Definition. (cf. e.g. [14, Definition 2.14]) A modal compact Hausdorff space is
a tripleT = (W,R, τ) such that (W, τ) is a compact Hausdorff space and R is continuous,
i.e.

(1) R[w] is closed for any w ∈ W;

(2) R−1[X] is closed for any closed set X;

(3) R−1[X] is open for any open set X.
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We let FT = (W,R) denote the underlying Kripke frame1 of T .

As is well known, open sets of topological spaces are captured algebraically by
the notion of frame. A frame L is a complete lattice validating the following identity:
a ∧
∨

X =
∨
{a ∧ x | x ∈ X} for any X ⊆ L. A frame is compact if for any X ⊆ L such

that
∨

X = >, there is a finite subset Y ⊆ X such that
∨

Y = >. For any frame L and
any a ∈ L, the pseudocomplement of a is ¬a :=

∨
{b | b ∧ a = ⊥}. For a, b ∈ L, a is

well inside b (notation: a ≺ b) if ¬a ∨ b = >. A frame L is regular if a =
∨
{b | b ≺ a}

for all a ∈ L. For any topological space T = (W, τ), its associated frame is defined as
LT := (τ,∩,

⋃
). If T is compact Hausdorff, then LT is compact regular.

4.2.2. Definition. (cf. e.g. [14, Definition 3.5]) A modal compact regular frame is a
triple L = (L,�,^) where L is a compact regular frame, and �,^ are unary operations
on L such that:2

(1) �> = > and �(a ∧ b) = �a ∧ �b;

(2) ^⊥ = ⊥ and ^(a ∨ b) = ^a ∨ ^b;

(3) �(a ∨ b) ≤ �a ∨ ^b and �a ∧ ^b ≤ ^(a ∧ b);

(4) ^
∨

X =
∨
{^x | x ∈ X} and �

∨
X =

∨
{�x | x ∈ X} for any upward directed

X ⊆ L.

One can readily show (cf. [14, Proposition 3.10]) that if T = (W,R, τ) is a modal
compact Hausdorff space, then LT := (τ,�T ,^T ) is a modal compact regular frame
where �TX = (R−1[Xc])c and ^TX = R−1[X].

4.2.2 Language and interpretation

Given a set Prop of propositional variables, the positive modal language L is recur-
sively defined as follows:

ϕ ::= p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ^ϕ,

where p ∈ Prop. We let Prop(α) denote the set of propositional variables occuring in
α.

In [69], the positive fragment of basic normal modal logic is completely axioma-
tized as follows.

1Notice that the name “frame” occurs in two different ways in the present chapter, one is in point-free
topology, the other is in modal logic. Here we use the name “Kripke frame” to refer to the notion in
modal logic and “frame” to refer to the notion in point-free topology.

2The condition 3 is well-known in [69].
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ϕ ` ϕ ϕ ` ϕ ∨ ψ ψ ` ϕ ∨ ψ ϕ ∧ ψ ` ϕ ϕ ∧ ψ ` ψ

ϕ ∧ (ψ ∨ χ) ` (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

^(ϕ ∨ ψ) a` ^ϕ ∨ ^ψ �(ϕ ∧ ψ) a` �ϕ ∧ �ψ

^ϕ ∧ �ψ ` ^(ϕ ∧ ψ) �(ϕ ∨ ψ) ` �ϕ ∨ ^ψ
ϕ ` ψ ψ ` χ

ϕ ` χ
ϕ ` χ ψ ` χ
ϕ ∨ ψ ` χ

χ ` ϕ χ ` ψ
χ ` ϕ ∧ ψ

ϕ ` ψ
^ϕ ` ^ψ

ϕ ` ψ
�ϕ ` �ψ

In the following sections we will typically work with inequalities ϕ ≤ ψ, and quasi-
inequalities ϕ1 ≤ ψ1 & . . . & ϕn ≤ ψn ⇒ ϕ ≤ ψ (cf. [55]), where & is the meta-
conjunction and⇒ is the meta-implication.

Interpretation on modal compact Hausdorff spaces.

Modal compact Hausdorff spaces play the role played by descriptive general frames in
the Stone-based setting. Accordingly, the counterparts of admissible valuations are the
open valuations defined below.

A modal compact Hausdorff model is a pair M = (T ,V) where T = (W,R, τ) is
a modal compact Hausdorff space, and V : Prop → τ is an open valuation on T .
The satisfaction relation on modal compact Hausdorff models is defined as standard in
modal logic. We let ~ϕ�M = {w ∈ W | M,w 
 ϕ} denote the truth set of ϕ in M.

An inequality ϕ ≤ ψ is valid on a modal compact Hausdorff space T if ~ϕ�M ⊆
~ψ�M for every model M based on T (i.e. for every open valuation into τ). A quasi-
inequality ϕ1 ≤ ψ1 & . . . & ϕn ≤ ψn ⇒ ϕ ≤ ψ is valid on T if, for every model M
based on T , if ~ϕi�

M ⊆ ~ψi�
M for all i then ~ϕ�M ⊆ ~ψ�M.

Interpretation on algebras.

In what follows, we let B denote a Boolean algebra with operator (BAO). We let θ :
Prop → B denote an assignment on B, and let ϕ(B,θ) or θ(ϕ) denote the value of ϕ in
B under θ. We write (B, θ) |= ϕ ≤ ψ to indicate that ϕ ≤ ψ is true on B under θ, and
B |= ϕ ≤ ψ to indicate that ϕ ≤ ψ is valid on B. Notations for truth and validity for
quasi-inequalities are similar.

Another useful way to look at a formula ϕ(p1, . . . , pn) is to interpret it as an n-ary
function ϕB : Bn → B such that ϕB(a1, . . . , an) = θ(ϕ) where θ : Prop → B satisfies
θ(pi) = ai, i = 1, . . . , n.

For any Kripke frame F = (W,R), we let BF = (P(W),∅,W,∩, ∪, (·)c,�BF) denote
the dual BAO of F (i.e. the complex algebra of F), where �BFX = (R−1[Xc])c for any
X ∈ P(W). A Kripke frame F and its dual BAO validate the same (quasi-)inequalities.
In what follows, we let At(BF) = {{w} | w ∈ W} and CoAt(BF) = {W − {w} | w ∈ W}
denote the set of atoms and coatoms of BF respectively.

Analogous notions and notations also apply to modal compact regular frames (cf.
Definition 4.2.2). In particular, the dual algebra of the modal compact Hausdorff space
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T = (W,R, τ) is the modal compact regular frame LT = (τ,�T ,^T ), which provides a
natural interpretation for the positive modal language. In addition, LT can be naturally
embedded as a modal subframe3 into the complex algebraBFT of the underlying Kripke
frame FT of T . Hence, all connectives in the positive modal language are interpreted in
the same way when restricting the valuation of propositional variables to open subsets.
Therefore, validity in LT (denoted LT |= ϕ ≤ ψ) coincides with validity in BFT relative
to open assignments (i.e. assignments into open subsets), denoted BFT |=LT ϕ ≤ ψ.

4.3 Main ideas

4.3.1 From Stone to modal compact Hausdorff

As is well-known [95, 124], every Boolean algebra B is dually equivalent to a descrip-
tive general frame G, and the underlying Kripke frame FG of G is dually equivalent to
the canonical extension Bδ of B, as illustrated in the left diagram below. The canon-
icity of an inequality (i.e., the preservation of its validity from any G to its FG) can be
equivalently rephrased as the preservation of its validity from any B to Bδ. This picture
can be analogously generalized to the setting of modal compact Hausdorff spaces. In
the right diagram, in the bottom line, every modal compact Hausdorff space T is dually
equivalent to its dual modal compact regular frame LT (cf. [14, Theorem 3.14]), and
the forgetful functor U maps any T to its underlying Kripke frame FT . On the dual al-
gebraic side, LT is embedded into the dual BAO BFT of FT . The canonical embedding
B ↪→ Bδ encodes the Stone-type duality between BAOs and descriptive general frames
in a purely algebraic way. Likewise, the Isbell duality can be encoded in the purely
algebraic properties of the embedding e : L ↪→ B of a compact regular frame L into
a complete atomic Boolean algebra B, namely, that e be a frame homomorphism such
that the following conditions hold (where we suppress the embedding):

(compactness) For any S ⊆ L, if
∨

S = >, then
∨

S ′ = > for some finite S ′ ⊆ S ;

(Hausdorff) For any x, y ∈ At(B), if x , y, then x ≤ a, y ≤ b for some a, b ∈ L
such that a ∧ b = ⊥.

In particular, LT can be identified with the collection O(BFT ) of open subsets in
BFT . The collection K(BFT ) of closed subsets in BFT can be then identified as the
relative complements of elements in LT . We omit the subscripts when they are clear
from the context.

3That is, not only finite meets and complete joins are preserved, but also the modal operators, i.e.
�BFX = �TX and (�BFXc)c = ^TX for all X ∈ τ.
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B

Bδ

G

FG

e U

�∂

�∂

LT

BFT

T

FT

e U

�∂

�∂

4.3.2 Basic proof strategy for preservation

In the present section, we explain the basic proof structure we will implement in Sec-
tion 4.5. We will treat the preservation results as a generalized canonicity result which,
using the algorithmic canonicity strategy, are typically proved by a “U-shaped” argu-
ment (cf. page 21) described in the figure below (see [48] for a more detailed discus-
sion): In the present setting, the U-shaped argument can be sketched as follows:

LT 
 ϕ ≤ ψ BFT |= ϕ ≤ ψ
m

BFT |=LT ϕ ≤ ψ m

m

BFT |=LTPure(ϕ ≤ ψ) ⇔ BFT |=Pure(ϕ ≤ ψ)

Assume that the inequality ϕ ≤ ψ is valid on the modal compact regular frame LT .
This is equivalent to the validity on the BAO BFT over all open assignments. Then
the algorithm ALBA can equivalently transform the input inequality into a set of pure
quasi-inequalities Pure(ϕ ≤ ψ) which contain no propositional variables, therefore their
validity is invariant under replacing open assignments by arbitrary assignments. Then
by the soundness of ALBA on perfect BAOs, the validity of Pure(ϕ ≤ ψ) is equivalent
to the validity of ϕ ≤ ψ.

4.4 Language and interpretation for ALBA

4.4.1 The expanded language for the algorithm

In the present subsection, we will define the expanded modal language for the algo-
rithm. Our treatment is similar to [55] and Section 2.2.

The expanded positive modal language L+ contains, in addition to the symbols
in the positive modal language, two sets of special variables Nom of nominals and
CoNom of conominals, and connectives _ and �. The nominals and conominals are
interpreted as atoms and coatoms in BFT respectively, and _ (resp. �) is interpreted as
the left (resp. right) adjoint of the operations interpreting � (resp. ^).
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The formulas in the expanded modal language L+ is given as follows:

ϕ ::= p | i | m | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ^ϕ | _ϕ | �ϕ,

where p ∈ Prop, i ∈ Nom and m ∈ CoNom.
For the expanded positive modal language L+, the valuation V and assignment θ

extend to the nominals and conominals, such that V(i), θ(i) ∈ At(B) and V(m), θ(m) ∈
CoAt(B). The satisfaction relation for the additional symbols is given as follows:

4.4.1. Definition. In any Kripke model M = (W,R,V) or any modal compact Haus-
dorff models M = (W,R, τ,V),

M,w 
 i iff w ∈ V(i) iff V(i) = {w};
M,w 
 m iff w ∈ V(m) iff V(m) , W − {w};
M,w 
 _ϕ iff ∃v(Rvw and M, v 
 ϕ);
M,w 
 �ϕ iff ∀v(Rvw ⇒ M, v 
 ϕ).

Algebraically, _BX = R[X] and �BX = (R[Xc])c.

4.4.2 1-Sahlqvist inequalities
In the present section, we define the class of inequalities for which we prove the p-
reservation result in Section 4.6.

4.4.2. Definition. [1-Sahlqvist inequalities] The L-inequality ϕ ≤ ψ is 1-Sahlqvist if
ϕ = ϕ′(χ1/z1, . . . χn/zn) such that

(1) ϕ′(z1, . . . , zn) is built out of ∧,∨,^;

(2) every χ is of the form �n p, �n>, �n⊥ for n ≥ 0.

4.4.3. Remark. As its name suggests, the definition above is the restriction of the gen-
eral definition of ε-Sahlqvist inequalities of Section 2.5.3 to the order type ε which
assigns every variable to 1. In the general notation of unified correspondence, the for-
mula ϕ′ corresponds to the Skeleton of ϕ, and the χ-formulas correspond to its PIA
parts. This definition is slightly more general than [14, Definition 7.12] since ∨ is al-
lowed to occur in ϕ′. The inequalities captured by [14, Definition 7.12] correspond to
those referred to as definite 1-Sahlqvist inequalities in [55].

4.5 The algorithm ALBA

In the present section, we will give the algorithm ALBA for modal compact Hausdorff
spaces, which is similar to the version in [55] and Section 2.6.

ALBA receives an inequality ϕ ≤ ψ as input. Then the algorithm proceeds in three
stages:
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The first stage is the preprocessing stage, which eliminates all uniformly occurring
propositional variables, and exhaustively apply the distribution and splitting rules. This
stage produces a finite number of inequalities, ϕi ≤ ψi, 1 ≤ i ≤ n. Then for each
inequality, the first approximation rule is applied, which produces a set of inequalities
{i0 ≤ ϕi, ψi ≤ m0}.

The second stage is the reduction and elimination stage, which aims at rewrite the
set {i0 ≤ ϕi, ψi ≤ m0} into a set of inequalities which has no occurence of propositional
variables. In particular, the step which eliminates all propositional variables is called
the Ackermann rule. After this stage, the algorithm produces a set S i of inequalities.

The third stage is the output stage. If for some set {i0 ≤ ϕi, ψi ≤ m0}, the proposi-
tional variables cannot be eliminated, then the algorithm stops and output failure. Oth-
erwise, the algorithm outputs the conjunction of the pure quasi-inequalities ∀~i∀~m(& S i ⇒

i0 ≤ m0).

(1) Preprocessing and first approximation:

In the generation tree of ϕ,

(a) Apply the distribution rules: Push down ^ and ∧, by distributing them over
nodes labelled with ∨;

(b) Apply the splitting rule 1:

α ∨ β ≤ γ

α ≤ γ β ≤ γ

(c) Apply the variable-elimination rules:

α ≤ β(p)
α ≤ β(⊥)

β(p) ≤ α
β(>) ≤ α

for β(p) containing p and α not containing p.

We denote by Preprocess(ϕ ≤ ψ) the finite set {ϕi ≤ ψi}i∈I of inequalities obtained
after the exhaustive application of the previous rules. Then we apply the first
approximation rule to each inequality in Preprocess(ϕ ≤ ψ) :

ϕi ≤ ψi

i0 ≤ ϕi ψi ≤ m0

Here, i0 and m0 are special nominals and co-nominals. Now we get a set of
inequalities {i0 ≤ ϕi, ψi ≤ m0}i∈I .

(2) Reduction and elimination:

In this stage, for each {i0 ≤ ϕi, ψi ≤ m0}, we apply the following rules in the
previous stage to eliminate all the proposition variables in {i0 ≤ ϕi, ψi ≤ m0}:
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Residuation rule Approximation rule Splitting rule 2
α ≤ �β
_α ≤ β

i ≤ ^α
j ≤ α i ≤ ^j

α ≤ β ∧ γ

α ≤ β α ≤ γ

The nominals introduced by the approximation rule must not occur in the system
before applying the rule.

The right-handed Ackermann rule. This is the core rule of ALBA, which elimi-
nates propositional variables. This rule operates on all inequalities in the system,
instead of on a single inequality.

S 1 ∪ . . . ∪ S k ∪ P ∪ {ψi(p1, . . . , pk) ≤ m0}

P ∪ {ψi(α(1,1) ∨ . . . ∨ α(1,n1), . . . , α(k,1) ∨ . . . ∨ α(k,nk)) ≤ m0}

where S l = {α(l, j) ≤ pl | 1 ≤ j ≤ nl}, P = {βl ≤ γl | 1 ≤ l ≤ m}, and
α(1,1), . . . , α(k,nk), β1, . . . , βm, γ1, . . . , γm do not contain propositional variables.

(3) Output: If in the previous stage, some proposition variables cannot be eliminat-
ed by the application of the reduction rules, then the algorithm halts and outputs
“failure”. Otherwise, each initial tuple {i0 ≤ ϕi, ψi ≤ m0} of inequalities after the
first approximation has been reduced to a set Reduce(ϕi ≤ ψi) of pure inequali-
ties, and then the output is a set of quasi-inequalities {&Reduce(ϕi ≤ ψi)⇒ i0 ≤

m0 : ϕi ≤ ψi ∈ Preprocess(ϕ ≤ ψ)}, which we denote as Pure(ϕ ≤ ψ).

4.6 Main result
In the present section, we prove the preservation of the validity of 1-Sahlqvist inequal-
ities we are after. This result follows from the soundness and success of ALBA. Specif-
ically, we prove the soundness of ALBA with respect to the dual BAOs of the Kripke
frames, both for open assignments and for arbitrary assignments. For the soundness
with respect to arbitrary assignments and most of the rules with respect to open as-
signments, the argument is similar to existing settings (cf. [55] and Section 2.7.1), and
hence omitted. We will focus on the right-handed Ackermann rule with respect to open
assignments.

4.6.1. Theorem (Soundness with respect to arbitrary assignments). If ALBA succeed-
s on an input inequality ϕ ≤ ψ and outputs Pure(ϕ ≤ ψ), then for any modal compact
Hausdorff space T ,

BFT |= ϕ ≤ ψ iff BFT |= Pure(ϕ ≤ ψ).

Proof:
The proof goes similarly to [55, Theorem 8.1]. Let ϕi ≤ ψi, 1 ≤ i ≤ n denote the
inequalities produced by preprocessing ϕ ≤ ψ after Stage 1, and (S i, Ineqi), 1 ≤ i ≤ n
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denote the corresponding quasi-inequalities produced by ALBA after Stage 2. It suffices
to show the equivalence from (4.1) to (4.4) given below:

BFT |= ϕ ≤ ψ(4.1)
BFT |= ϕi ≤ ψi, for all 1 ≤ i ≤ n(4.2)
BFT |= i0 ≤ ϕi & ψi ≤ m0 ⇒ i0 ≤ m0, for all 1 ≤ i ≤ n(4.3)

BFT |= & Reduce(ϕi ≤ ψi)⇒ i0 ≤ m0, for all 1 ≤ i ≤ n(4.4)

• for the equivalence of (4.1) and (4.2), it suffices to show the soundness of the
rules in Stage 1, which can be proved in the same way as in [55, Lemma 8.3];

• the equivalence between (4.2) and (4.3) follows from the soundness of the first-
approximation rule, which is similar to [55, Theorem 8.1];

• the equivalence between (4.3) and (4.4) follows from the soundness of rules
in Stage 2, i.e. the soundness of the approximation rule, the residuation rule,
the right-handed Ackermann rule and the splitting rule, which is similar to [55,
Lemma 8.4].

�

Similar to Section 2.7.2, for the soundness with respect to open assignments, most
of the arguments are the same as the case for arbitrary assignments except for the
right-handed Ackermann rule. The soundness of the right-handed Ackermann rule
with respect to arbitrary assignments is justified by the following lemma:

4.6.2. Lemma (Right-handed Ackermann lemma). Let ϕ1, . . . , ϕn be pure formulas, ψ(p1, . . . , pn)
be an L-formula, a ∈ B. Then for any arbitrary assignment θ, the following are equiv-
alent:

(1) ψB(αB,h1 , . . . , αB,hn ) ≤ a;

(2) There exist b1, . . . , bn ∈ B s.t. αB,hi ≤ bi for 1 ≤ i ≤ n and ψB(b1, . . . , bn) ≤ a.

As is discussed in e.g. [55, Section 9], the lemma above cannot be applied im-
mediately to the setting of open assignments, since formulas in the expanded modal
language L+ might be interpreted as non-open elements, thus the elements b1, . . . , bn

might not be in O(B). We are going to apply similar adaptation strategies as in [55] in
the current setting, namely adapt the Ackermann lemma based on syntactic restrictions
of the formulas.

4.6.3. Definition. [Syntactically closed and open formulas](cf. Definition 2.7.7)

(1) A formula in L+ is syntactically closed if it does not contain occurences of
conominals;
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(2) A formula in L+ is syntactically open if it does not contain occurences of nomi-
nals or _.

4.6.4. Lemma. (cf. e.g. [14, Lemma 7.10]) For any modal compact Hausdorff space
T = (W,R, τ), if X is closed, then R[X] is also closed.

4.6.5. Lemma. If ϕ(~i, ~p) and ψ(~m, ~p) are syntactically closed and open respectively,
then

(1) ϕB(~i, ~c) ∈ K(B) for any~i ∈ At(B), ~c ∈ K(B).

(2) ψB(~m, ~o) ∈ O(B) for any ~m ∈ CoAt(B), ~o ∈ O(B).

Proof:
By induction on the structure of the formulas. The basic case follows from the fact that
singletons are closed in Hausdorff spaces, and their complements are open. The cases
of ∧ and ∨ are easy. The cases of ^ and � follow from Definition 4.2.1. The case of _
follows from Lemma 4.6.4. �

4.6.6. Lemma. (cf. e.g. [14, Lemma 7.8]) For any modal compact Hausdorff space T =

(W,R, τ), any L-formula ϕ(p1, . . . , pn), any c1, . . . , cn ∈ K(B),

(1) ϕ(c1, . . . , cn) =
∧
{ϕ(o1, . . . , on) | ci ≤ oi for 1 ≤ i ≤ n and oi ∈ O(B)};

(2) ϕ(c1, . . . , cn) =
∧
{ϕ(cl(o1), . . . , cl(on)) | ci ≤ oi for 1 ≤ i ≤ n and oi ∈ O(B)},

where cl(a) denotes the least closed element ≥ a.

The lemma below justifies the soundness of right-handed Ackermann rule with
respect to open assignments:

4.6.7. Lemma (Right-handed topological Ackermann lemma). Let ϕ1, . . . , ϕn be pure
and syntactically closed formulas, ψ(p1, . . . , pn) be an L-formula, o ∈ O(B). Then
for any open assignment θ, the following are equivalent:

(1) ψB(αB,θ1 , . . . , αB,θn ) ≤ o;

(2) There exist b1, . . . , bn ∈ O(B) such that αB,θi ≤ bi for 1 ≤ i ≤ n and ψB(b1, . . . , bn) ≤
o.

Proof:
1⇐ 2 : By the monotonicity of ψB(p1, . . . , pn) together with αB,θi ≤ bi for 1 ≤ i ≤ n, we
have that ψB(αB,θ1 , . . . , αB,θn ) ≤ ψB(b1, . . . , bn) ≤ mB.

2 ⇒ 1 : Suppose that ψB(αB,θ1 , . . . , αB,θn ) ≤ o. By Lemma 4.6.5, αB,θ1 , . . . , αB,θn ∈

K(B). By Lemma 4.6.6, o ≥ ψB(αB,θ1 , . . . , αB,θn ) =
∧
{ψB(cl(o1), . . . , cl(on)) | αB,θi ≤

oi and oi ∈ O(B) for 1 ≤ i ≤ n}. Since cl(o1), . . . , cl(on) ∈ K(B), by Lemma 4.6.5,
ψB(cl(o1), . . . , cl(on)) ∈ K(B). By compactness, there exist o1, j . . . , on, j, 1 ≤ j ≤ m such
that o ≥

∧
j{ψ

B(cl(o1, j), . . . , cl(on, j)) | αB,θi ≤ oi, j and oi, j ∈ O(B) for 1 ≤ i ≤ n}. Then
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o ≥
∧

j ψ
B(cl(o1, j), . . . , cl(on, j))

≥ ψB(
∧

j cl(o1, j), . . . ,
∧

j cl(on, j)) (Monotonicity of ψB)
≥ ψB(

∧
j o1, j, . . . ,

∧
j on, j), (Monotonicity of ψB and cl)

Take bi :=
∧

j oi, j, then bi is a finite meet of open elements, therefore bi ∈ O(B).
Since αB,θi ≤ oi, j for 1 ≤ i ≤ n and 1 ≤ j ≤ m, it follows that αB,θi ≤ bi. �

The lemma above is formulated independently of the specific language. As to the
language treated by this chapter, in any concrete application of the Ackermann rule
(see descriptions in Lemma 4.7.3), the inequalities α ≤ p have the shape _nj ≤ p, with
_nj syntactically closed by definition.

Main result

As is shown in Section 4.7, we have:

4.6.8. Theorem. (Success) ALBA succeeds on 1-Sahlqvist inequalities.

As discussed in Section 4.3.2, the preservation result follows from Theorem 4.6.8
above and the soundness of ALBA with respect to both open assignments and arbitrary
assignments:

4.6.9. Theorem. For any 1-Sahlqvist inequality ϕ ≤ ψ, if LT |= ϕ ≤ ψ, then BFT |= ϕ ≤
ψ.

4.7 ALBA succeeds on 1-Sahlqvist inequalities
In the present section, we sketch the proof of Theorem 4.6.8. In the following lemmas,
we will track the shape of term inequalities in each stage of execution of ALBA. The
proofs of the lemmas are similar to those given in [55, Section 10], therefore we only
report on the main line of argument and omit proofs.

4.7.1. Lemma. Let ϕ ≤ ψ be a 1-Sahlqvist inequality. After stage 1, it becomes sets of
inequalities {{i0 ≤ ϕi, ψi ≤ m0} | i ∈ I} where ψi is a formula in the positive language
L, and every ϕi is built from �n p, �n>, �n⊥ by applying ∧ and ^.

Proof:
For an input 1-Sahlqvist inequality ϕ ≤ ψ, by applying the distribution rules, ∨ is
pushed towards the root of ϕ, and therefore ϕ is transformed into a disjunction of for-
mulas built from �n p, �n>, �n⊥ by applying ∧ and ^. By applying the splitting rule,
the formula ϕ on the left-hand side of the inequality become splitted, and the inequality
ϕ ≤ ψ is transformed into a set of inequalities {ϕi ≤ ψi}i∈I where each ϕi satisfies the
conditions stated in the lemma. By applying the first approximation rule, we get the
sets of inequalities required. �
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4.7.2. Lemma. Let {i0 ≤ ϕi, ψi ≤ m0} be as described in Lemma 4.7.1. By applying the
approximation rule and the splitting rule 2 exhaustively, the system is transformed into
one which contains the following types of inequalities:

• ψi ≤ m0,

• j ≤ ^k where j,k are nominals,

• j ≤ �n p,

• j ≤ β where β is pure, i.e. β contains no propositional variables.

Proof:
Given the set of inequalities {i0 ≤ ϕi, ψi ≤ m0} described in the lemma, by applying
the approximation rule and the splitting rule 2, the inequality ψi ≤ m0 is not rewritten,
and for each inequality j ≤ ϕ in the set, if ϕ = γ∧ θ, then this inequality is transformed
into j ≤ γ and j ≤ θ; if ϕ = ^γ, then this inequality is transformed into j ≤ ^k and
k ≤ γ. By applying the approximation rule and the splitting rule 2 exhaustively, the
∧,^s are eliminated from ϕi, and i0 ≤ ϕi becomes j ≤ �n p, j ≤ �n> or j ≤ �n⊥, with
side conditions of the form j ≤ ^k. Therefore, after applying the rules mentioned, the
system is as described in the lemma. �

4.7.3. Lemma. Given a system as described in Lemma 4.7.2, by applying the residua-
tion rule exhaustively, the system is transformed into one which contains the following
types of inequalities:

• ψi ≤ m0,

• j ≤ ^k where j,k are nominals,

• _nj ≤ p,

• β ≤ γ where β, γ are pure.

Proof:
Given a system as described in Lemma 4.7.2, the only inequalities that the residuation
rule operates on are of the form j ≤ �n p or j ≤ β where β contains no propositional
variables. By applying the residuation rule exhaustively, j ≤ �n p becomes _nj ≤ p,
and j ≤ β becomes an inequality which is again pure. �

The system described in Lemma 4.7.3 is in a shape in which the right-handed Ack-
ermann rule can be applied and all propositional variables can be eliminated. Therefore
the algorithm succeeds and we have proven Theorem 4.6.8.
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4.8 Conclusion
In this chapter, we give an algorithmic account of the preservation results proved in
[14]. The preservation result in the present chapter concerns a slight generalization
(cf. Remark 4.4.3) of the class of inequalities treated in [14] over the same language of
positive modal logic. The algorithmic approach adopted here emphasizes the algebraic
side of this preservation result and makes it more similar to the way in which Sahlqvist
canonicity has been presented in an algebraic way in [123]. In particular, just in the
same way in which the embedding map of algebras into their canonical extensions en-
codes Stone-type dualities, the canonical embedding of modal compact regular frames
into the complex algebras of the underlying Kripke frames of their dual spaces encodes
Isbell-type dualities. How to optimally characterize this embedding in a way which is
aligned with the definition of Jónsson and Tarski [124] is ongoing work. Building on
this algebraic perspective, the ALBA approach has unified many different strategies
for canonicity, e.g. those of Jónsson [123], Sambin–Vaccaro [160], Ghilardi–Meloni
[91], and Venema’s pseudo-correspondence [192]. Having extended the algorithmic
approach to the Isbell-type dualities paves the way to several different generalizations
and extensions: to richer languages such as arbitrary distributive lattice expansions,
fixed point expansions of positive modal logics [19], but also to a non-distributive set-
ting, to a constructive meta-theory, to more general syntactic shapes than 1-Sahlqvist,
and so on.



Chapter 5
Sahlqvist via translation

In the present chapter, which is based on an older version of the paper [60]1, we in-
vestigate to what extent Sahlqvist-type correspondence and canonicity results for non-
classical logics can be obtained via translation into classical modal logics.

5.1 Introduction
Notwithstanding the new insights and connections with various areas of logic brought
about by the developments of unified correspondence theory, when limiting attention
just to the Salhqvist results for non-classical logics, a natural question to ask is whether
these results could have been obtained by embedding into classical logic. Indeed, it is
well known that intuitionistic logic can be interpreted into the classical modal logic S4
via the famous Gödel-McKinsey-Tarski translation [94, 147], henceforth simply the
Gödel-Tarski or Gödel translation. There exist various extensions of the Gödel transla-
tion, like the one used by Wolter and Zakharyaschev [194, 195] to translate intuition-
istic modal logic with one � connective into suitable polymodal logics on a classical
propositional base. Since validity is preserved and reflected under this translation, it
is possible to use it to transfer many results from classical to intuitionistic modal log-
ic. This translation has linear complexity, and would make available (an adaptation
of) the SQEMA technology for Boolean polymodal logic [51] also for intuitionistic
modal logic. The idea of developing Sahlqvist theory via translation has been around
for a long time (besides [194, 195], see also [187, 88] and more recently, for corre-
spondence only, [187]). In the present chapter we investigate to what extent this is
realizable, given the current state-of-the-art.

A hurdle that immediately presents itself is the fact that, in general, translations of
the Gödel-type can run into difficulties when trying to derive correspondence results
for intuitionistic modal logics, particularly if both � and ^ occur as primitive con-
nectives. For instance, even a minimal extension of the Gödel translation to such an

1My specific contribution to this research has been to refine the canonicity methodology and write a
preliminary version of the paper.

77
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intuitionistc modal setting would transform the Sahlqvist inequality �^p ≤ ^p into
�^�G p ≤ ^�G p, which is not Sahlqvist, and in fact does not even have a first-order
correspondent [177]. Any translation which ‘boxes’ propositional variables would suf-
fer from this problem (for further discussion see [48, Section 36.9]). There are more
subtle translations which avoid this problem and may therefore be used as a way to fall
back on the classical Sahlqvist theorem. This is done, for example, by Gehrke, Naga-
hashi and Venema in [88] to obtain the correspondence part of their Sahlqvist theorem
for distributive modal logic.

In the present chapter, the question of determining the extent to which Sahlqvist
correspondence and canonicity for non-classical logics can be obtained via translation
is systematically investigated in various settings, the most general of which is given
by logics algebraically captured by normal distributive lattice expansions (DLEs). The
starting point of our analysis is an order-theoretic reformulation of the main semantic
property of the Gödel-Tarski translation. Our main conclusions are twofold. Firstly,
that the correspondence-via-translation methodology in [88] straightforwardly gener-
alizes to arbitrary signatures of normal distributive lattice expansions. Secondly, that
the proof of canonicity-via-translation can be obtained in a similarly straightforward
manner, but only in the special setting of normal bi-Heyting algebra expansions. As
discussed in Section 5.5, proving canonicity via translation in the general normal DLE
setting, if possible at all, would require techniques that are not currently available.
Therefore the existing unified correspondence techniques remain the most economical
route to these results.

Overall, the translation method seems inadequate to provide autonomous founda-
tions for a general Sahlqvist theory. Besides the technical difficulties in implement-
ing canonicity-via-translation, proceeding via translation suffers from certain inherent
methodological drawbacks. In particular, any general development of Sahlqvist theory
requires a uniform way to recognize Sahlqvist-type classes across logical signatures.
For a treatment via translation to be significant, the specification of these syntactic
classes cannot be derived from the translation itself, but should be independent from it.
The definitions of Sahlqvist and inductive inequalities provided by unified correspon-
dence are based on the order-theoretic analysis of the connectives of the logic under
consideration, and are able to provide the required independent background. Thus, the
Sahlqvist via translation methodology as developed in the present chapter is, in fact,
yet another application of unified correspondence.

The chapter is structured as follows. In Section 5.2 we provide an order-theoretic
analysis of the semantic underpinnings of the Gödel-Tarski translation. Then, in Sec-
tion 5.3, we extend the insights gained in the previous section to a class of Gödel type
translations parameterized with order-types. This sets the stage for Sections 5.4 and
5.5 where we collect our results on correspondence- and canonicity-via-translation.
In particular, in Section 5.5.2 we discuss the difficulties in extending canonicity-via-
translation beyond the bi-intuitionistic setting. We conclude in Section 5.6.

For the language, axiomatization, algebraic semantics and relational semantics of
basic DLE-logics, inductive LDLE-inequalities and auxiliary notations, we refer the
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readers to Chapter 2. In the present chapter we also find it convenient to talk of (nor-
mal) Boolean algebra expansions (BAEs) (respectively, Heyting algebra expansions
(HAEs), bi-Heyting algebra expansions (bHAEs)) which are structures defined as in
Definition 2.1.2, but replacing the distributive lattice L with a Boolean algebra (re-
spectively, Heyting algebra, bi-Heyting algebra).

5.2 The semantic environment of the Gödel-Tarski trans-
lation

In the present section, we give a semantic analysis of the Gödel-Tarski translation in an
algebraic way. In what follows, for any partial order (W,≤), we let w↑ := {v ∈ W | w ≤
v}, w↓ := {v ∈ W | w ≥ v} for every w ∈ W, and for every X ⊆ W, we let X↑ :=

⋃
x∈X x↑

and X↓ :=
⋃

x∈X x↓. Up-sets (resp. down-sets) of (W,≤) are subsets X ⊆ W such that
X = X↑ (resp. X = X↓). We denote by P(W) the Boolean algebra of subsets of W,
and by P↑(W) (resp. P↓(W)) the (bi-)Heyting algebra of up-sets (resp. down-sets) of
(W,≤). Finally we let Xc denote the relative complement W \X of every subset X ⊆ W.

5.2.1 Semantic analysis of the Gödel-Tarski translation
Fix a denumerable set Atprop of propositional variables. The language of intuitionistic
logic over Atprop is given by

LI 3 ϕ ::= p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ.

The language of the normal modal logic S4 over Atprop is given by

LS 4� 3 α ::= p | ⊥ | α ∨ α | α ∧ α | ¬α | �≤α.

The Gödel-Tarski translation is the map τ : LI → LS 4� defined by the following
recursion:

τ(p) = �≤p
τ(⊥) = ⊥

τ(>) = >

τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ)
τ(ϕ ∨ ψ) = τ(ϕ) ∨ τ(ψ)
τ(ϕ→ ψ) = �≤(¬τ(ϕ) ∨ τ(ψ)).

The present subsection is aimed at analyzing the semantic underpinning of the
Gödel-Tarski translation. This analysis will provide the insights motivating the uni-
form extension of the Gödel-Tarski translation to arbitrary normal DLEs.

Both intuitionistic and S4-formulas can be interpreted on partial orders F = (W,≤),
as follows: an S4-model is a tuple (F,U) where U : AtProp → P(W) is a valuation.
The interpretation 
∗ of S4-formulas on S4-models is defined recursively as follows:
for an w ∈ W,
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F,w,U 
∗ p iff p ∈ U(p)
F,w,U 
∗ ⊥ never
F,w,U 
∗ > always
F,w,U 
∗ α ∧ β iff F,w,U 
∗ α and F,w,U 
∗ β
F,w,U 
∗ α ∨ β iff F,w,U 
∗ α or F,w,U 
∗ β
F,w,U 
∗ ¬α iff F,w,U 1∗ α
F,w,U 
∗ �≤α iff F, v,U 
∗ α for any v ∈ w↑.

For any S4-formula α we let ([α])U := {w | F,w,U 
∗ α}. It is not difficult to verify that
for every α ∈ LS 4 and any valuation U,

([�≤α])U = ([α])c
U↓

c. (5.1)

An intuitionistic model is a tuple (F,V) where V : AtProp→ P↑(W) is a persistent
valuation. The interpretation 
∗ of S4-formulas on S4-models is defined recursively as
follows: for an w ∈ W,

F,w,V 
 p iff p ∈ V(p)
F,w,V 
 ⊥ never
F,w,V 
 > always
F,w,V 
 ϕ ∧ ψ iff F,w,V 
 ϕ and F,w,V 
 ψ
F,w,V 
 ϕ ∨ ψ iff F,w,V 
 ϕ or F,w,V 
 ψ
F,w,V 
 ϕ→ ψ iff either F, v,V 1 ϕ or F, v,V 
 ψ for any v ∈ w↑.

For any intuitionistic formula ϕ we let [[ϕ]]V := {w | F,w,V 
 ϕ}. It is not difficult to
verify that for all ϕ, ψ ∈ LI and any persistent valuation V ,

[[ϕ→ ψ]]V = ([[ϕ]]c
V ∪ [[ψ]]V)c↓

c. (5.2)

Clearly, every persistent valuation V on F is also a valuation on F. Moreover, for every
valuation U on F , the assignment mapping every p ∈ AtProp to U(p)c↓

c defines a per-
sistent valuation U↑ on F. The main semantic property of the Gödel-Tarski translation
is given by the following

5.2.1. Proposition. For every intuitionistic formula ϕ and every partial order F =

(W,≤),
F 
 ϕ iff F 
∗ τ(ϕ).

Proof:
If F 1 ϕ, then F,w,V 1 ϕ for some persistent valuation V and w ∈ W. That is,
w < [[ϕ]]V = ([τ(ϕ)])V , the last identity holding by item 1 of Lemma 5.2.2. Hence,
F,w,V 1∗ τ(ϕ), i.e. F 1∗ τ(p). Conversely, if F 1∗ τ(ϕ), then F,w,U 1 τ(ϕ) for some
valuation U and w ∈ W. That is, w < ([τ(ϕ)])U = [[ϕ]]U↑ , the last identity holding by
item 2 of Lemma 5.2.2. Hence, F,w,U↑ 1 ϕ, yielding F 1 ϕ. �
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5.2.2. Lemma. For every intuitionistic formula ϕ and every partial order F = (W,≤),

(1) [[ϕ]]V = ([τ(ϕ)])V for every persistent valuation V on F;

(2) ([τ(ϕ)])U = [[ϕ]]U↑ for every valuation U on F.

Proof:
1. By induction on ϕ. As for the base case, let ϕ := p ∈ AtProp. Then, for any
persistent valuation V ,

[[p]]V = V(p) (def. of [[·]]V)
= V(p)c↓

c (V persistent)
= ([�≤p])V (equation (5.1))
= ([τ(p)])V , (def. of τ)

as required. As for the inductive step, let ϕ := ψ → χ. Then, for any persistent
valuation V ,

[[ψ→ χ]]V = ([[ψ]]c
V ∪ [[χ]]V)c↓

c (equation (5.1))
= (([τ(ψ)])c

V ∪ ([τ(χ)])V)c↓
c (induction hypothesis)

= ([�≤(¬τ(ψ) ∨ τ(χ))])V (equation (5.1), def. of ([·])V)
= ([τ(ψ→ χ)])V , (def. of τ)

as required. The remaining cases are omitted.
2. By induction on ϕ. As for the base case, let ϕ := p ∈ AtProp. Then, for any

valuation U,

([τ(p)])U = ([�≤p])U (def. of τ)
= ([p])c

U↓
c (equation (5.1))

= U(p)c↓
c (def. of ([·])U)

= [[p]]U↑ , (def. of U↑)

as required. As for the inductive step, let ϕ := ψ→ χ. Then, for any valuation U,

([τ(ψ→ χ)])U = ([�≤(¬τ(ψ) ∨ τ(χ))])U (def. of τ)
= ([¬τ(ψ) ∨ τ(χ)])c

U↓
c (equation (5.1))

= (([τ(ψ)])c
U ∪ ([τ(χ)])U)c↓

c (def. of ([·])U)
= ([[ψ]]c

U↑ ∪ [[χ]]U↑)c↓
c (induction hypothesis)

= [[ψ→ χ]]U↑ , (equation (5.2), U↑ persistent)

as required. The remaining cases are omitted. �

We saw that the key to the main semantic property of Gödel-Tarski translation,
stated in Proposition 5.2.1, is the interplay between persistent and nonpersistent valu-
ations, as captured in the above lemma. This interplay is in fact a byproduct of a more
basic relationship, which we are going to analyze more in general and abstractly in the
framework of interior operators.
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5.2.2 An algebraic template for preservation and reflection of va-
lidity under translation

In the present subsection, we are going to generalize the key mechanism captured in
the previous subsection, guaranteeing the preservation and reflection of validity under
the Gödel-Tarski translation. Being able to identify this pattern in generality will make
it possible to extend this mechanism to other Gödel-Tarski type translations.

Let L1 and L2 be propositional languages over a given set X, and let A and B be
orderedL1- andL2-algebras respectively, such that an order-embedding e : A ↪→ B ex-
ists. For each V ∈ AX and U ∈ BX, let [[·]]V and ([·])U denote their unique homomorphic
extensions to L1 and L2 respectively. Clearly, e : A ↪→ B lifts to a map e : AX → BX

by the assignment V 7→ e ◦ V .

5.2.3. Proposition. Let τ : L1 → L2 and r : BX → AX be such that the following
conditions hold for every ϕ ∈ L1:

(a) e([[ϕ]]V) = ([τ(ϕ)])e(V) for every V ∈ AX;

(b) ([τ(ϕ)])U = e([[ϕ]]r(U)) for every U ∈ BX.

Then, for all ϕ, ψ ∈ L1,

A |= ϕ ≤ ψ iff B |= τ(ϕ) ≤ τ(ψ).

Proof:
From left to right, suppose contrapositively that (B,U) 6|= τ(ϕ) ≤ τ(ψ) for some U ∈
BX, that is, ([τ(ϕ)])U � ([τ(ψ)])U . By item (b) above, this non-inequality is equivalent
to e([[ϕ]]r(U)) � e([[ψ]]r(U)), which, by the monotonicity of e, implies that [[ϕ]]r(U) �
[[ψ]]r(U), that is, (A, r(U)) 6|= ϕ ≤ ψ, as required. Conversely, if (A,V) 6|= ϕ ≤ ψ for some
V ∈ AX, then [[ϕ]]V � [[ψ]]V , and hence, since e is an order-embedding and by item (a)
above, ([τ(ϕ)])e(V) = e([[ϕ]]V) � e([[ψ]]V) = ([τ(ψ)])e(V), that is (B, e(V)) 6|= τ(ϕ) ≤ τ(ψ),
as required. �
Notice that in the proof above we have only made use of the assumption that e is an
order-embedding, but have not needed to assume any property of r. Notice also that
the proposition above is independent of the logical/algebraic signature of choice, and
holds for arbitrary algebras. This latter point will be key to the treatment of Sahlqvist
canonicity via translation.

5.2.3 Interior operator analysis of the Gödel-Tarski translation
As observed above, Proposition 5.2.3 generalizes Proposition 5.2.1 in more than one
way. In the present subsection, we show that the Gödel-Tarski translation fits the
strengthening given by Proposition 5.2.3. Towards this goal, we let X := AtProp,
L1 := LI , and L2 := LS 4. Moreover, we let A be a Heyting algebra, and B a Boolean



5.2. The semantic environment of the Gödel-Tarski translation 83

algebra such that an order-embedding e : A ↪→ B exists, which is also a homomorphis-
m of the lattice reducts of A and B, and has a right adjoint2 ι : B → A such that for all
a, b ∈ A,

a→A b = ι(¬Be(a) ∨B e(b)). (5.3)

Then B can be endowed with a natural structure of Boolean algebra expansion (BAE)
by defining �B : B → B by the assignment b 7→ (e ◦ ι)(b). The following is a well
known fact in algebraic modal logic:

5.2.4. Proposition. The BAE (B,�B), with �B defined above, is normal and is also an
S4-modal algebra.

Proof:
The fact that �B preserves finite (hence empty) meets readily follows from the fact that
ι is a right adjoint, and hence preserves existing (thus all finite) meets of B, and e is a
lattice homomorphism. For every b ∈ B, ι(b) ≤ ι(b) implies that �Bb = e(ι(b)) ≤ b,
which proves (T). For every b ∈ B, e(ι(b)) ≤ e(ι(b)) implies that ι(b) ≤ ι(e(ι(b))) and
hence �Bb = e(ι(b)) ≤ e(ι(e(ι(b)))) = (e ◦ ι)((e ◦ ι)(b)) = �B�Bb, which proves K4. �
Finally, we let r : BX → AX be defined by the assignment U 7→ (ι ◦ U).

5.2.5. Proposition. Let A, B, e : A ↪→ B and r : BX → AX be as above.3 Then the
Gödel-Tarski translation τ satisfies conditions (a) and (b) of Proposition 5.2.3 for any
formula ϕ ∈ LI .

Proof:
By induction on ϕ. As for the base case, let ϕ := p ∈ AtProp. Then, for any U ∈ BX

and V ∈ AX,

2That is, e(a) ≤ b iff a ≤ ι(b) for every a ∈ A and b ∈ B. By well known order-theoretic facts (cf.
[64]), e ◦ ι is an interior operator, that is, for every b, b′ ∈ B,

i1. (e ◦ ι)(b) ≤ b;

i2. if b ≤ b′ then (e ◦ ι)(b) ≤ (e ◦ ι)(b′);

i3. (e ◦ ι)(b) ≤ (e ◦ ι)((e ◦ ι)(b)).

Moreover, e ◦ ι ◦ e = e and ι = ι ◦ e ◦ ι (cf. [64, Lemma 7.26]).
3The assumption that e is a homomorphism of the lattice reducts of A and B is needed for the

inductive steps relative to ⊥,>,∧,∨ in the proof this proposition, while condition (5.3) is needed for the
step relative to→.
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e([[p]]r(U)) = e((ι ◦ U)(p))
= (e ◦ ι)(([p])U) assoc. of ◦
= �B([p])U

= ([�≤p])U

= ([τ(p)])U ,

([τ(p)])e(V) = ([�≤p])e(V)
= �B([p])e(V)
= �B((e ◦ V)(p))
= (e ◦ ι)((e ◦ V)(p))
= e((ι ◦ e)(V(p))) assoc. of ◦
= e(V(p)) e ◦ (ι ◦ e) = e
= e([[p]]V),

which proves the base cases of (b) and (a) respectively. As for the inductive step, let
ϕ := ψ→ χ. Then, for any U ∈ BX and V ∈ AX,

e([[ψ→ χ]]r(U)) = e([[ψ]]r(U) →
A [[χ]]r(U))

= e(ι(¬Be([[ψ]]r(U)) ∨B e([[χ]]r(U)))) assumption (5.3)
= e(ι(¬B([τ(ψ)])U ∨

B ([τ(χ)])U)) (induction hypothesis)
= (e ◦ ι)(¬B([τ(ψ)])U ∨

B ([τ(χ)])U)
= �B(¬B([τ(ψ)])U ∨

B ([τ(χ)])U)
= ([�≤(¬τ(ψ) ∨ τ(χ))])U

= ([τ(ψ→ χ)])U .

e([[ψ→ χ]]V) = e([[ψ]]V →
A [[χ]]V)

= e(ι(¬Be([[ψ]]V) ∨B e([[χ]]V))) assumption (5.3)
= e(ι(¬B([τ(ψ)])e(V) ∨

B ([τ(χ)])e(V))) (induction hypothesis)
= (e ◦ ι)(¬B([τ(ψ)])e(V) ∨

B ([τ(χ)])e(V))
= �B(¬B([τ(ψ)])e(V) ∨

B ([τ(χ)])e(V))
= ([�≤(τ(ψ) ∨ τ(χ))])e(V)
= ([τ(ψ→ χ)])e(V).

The remaining cases are straightforward, and are left to the reader. �

The following strengthening of Proposition 5.2.1 immediately follows from Propo-
sitions 5.2.3 and 5.2.5:

5.2.6. Corollary. Let A be a Heyting algebra and B a Boolean algebra such that
e : A ↪→ B and ι : B→ A exist as above. Then for all intuitionistic formulas ϕ and ψ,

A |= ϕ ≤ ψ iff B |= τ(ϕ) ≤ τ(ψ),

where τ is the Gödel-Tarski translation.
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We finish this subsection by showing that every Heyting algebra A embeds into a
Boolean algebra B in the way described at the beginning of the present subsection:

5.2.7. Proposition. For every Heyting algebra A, there exists a Boolean algebra B
such that A embeds into B via some order-embedding e : A ↪→ B which is also a
homomorphism of the lattice reducts of A and B and has a right adjoint ι : B → A
verifying condition (5.3). Finally, these facts lift to the canonical extensions of A and
B as in the following diagram:

A

Aδ

B

Bδ

e

eδ
`

iπ

`

i

Proof:
Via Esakia duality [73], the Heyting algebra A can be identified with the algebra of
clopen up-sets of its associated Esakia space XA, which is a Priestley space, hence a
Stone space. Let B be the Boolean algebra of the clopen subsets of XA. Since any
clopen up-set is in particular a clopen subset, a natural order embedding e : A ↪→ B
exists, which is also a lattice homomorphism between A and B. This shows the first
part of the claim.

As to the second part, notice that Esakia spaces are Priestley spaces in which the
downward-closure of a clopen set is a clopen set.

Therefore, we can define the map ι : B → A by the assignment b 7→ ¬((¬b)↓)
where b is identified with its corresponding clopen set in XA, ¬b is identified with the
relative complement of the clopen set b, and (¬b)↓ is defined using the order in XA. It
can be readily verified that ι is the right adjoint of e and that moreover condition (5.3)
holds.

Finally, e : A → B being also a homomorphism between the lattice reducts of A
and B implies that e is smooth and its canonical extension eδ : Aδ → Bδ, besides being
an order-embedding, is a complete homomorphism between the lattice reducts of Aδ

and Bδ (cf. [87, Corollary 4.8]), and hence is endowed with both a left and a right ad-
joint. Furthermore, the right adjoint of eδ coincides with ιπ (cf. [89, Proposition 4.2]).
Hence, Bδ can be endowed with a natural structure of S4 bi-modal algebra by defining
�B

δ

≤ : Bδ → Bδ by the assignment u 7→ (eδ◦ιπ)(u), and^Bδ

≥ : Bδ → Bδ by the assignment
u 7→ (eδ ◦ c)(u). �
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5.3 Gödel-Tarski type translations
As discussed in the introduction, only the fragment of the ε-Sahlqvist and inductive in-
equalities of intuitionistic logic for ε constantly equal to 1 are translated into Sahlqvist
and inductive S4-formulas via Gödel-Tarski translation. Thus, the Gödel-Tarski trans-
lation alone is not enough to account for the full Sahlqvist and inductive correspon-
dence theory. In the present section, we look into a family of Gödel-Tarski type trans-
lations, defined for different languages, to which we apply the template of Section
5.2.2. The first of them naturally arises by dualizing the setting of Section 5.2.1

5.3.1 The co-Gödel-Tarski translation
Fix a denumerable set Atprop of propositional variables. The language of co-intuitionistic
logic over Atprop is given by

LC 3 ϕ ::= p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ> ϕ.

The target language for translating co-intuitionistic logic is that of the normal modal
logic S4^ over Atprop, given by

LS 4^ 3 α ::= p | ⊥ | α ∨ α | α ∧ α | ¬α | ^≥α.

Just like intuitionistic logic, formulas of co-intuitionistic logic can be interpreted on
partial orders F = (W,≤) with persistent valuations. Here we only report on the inter-
pretation of ^≥-formulas in LS 4^ and > -formulas in LC:

F,w,U 
∗ ^≥ϕ iff F, v,U 
∗ ϕ for some v ∈ w↓.
F,w,V 
 ϕ> ψ iff F, v,V 1 ϕ and F, v,V 
 ψ for some v ∈ w↓.

The language LC is naturally interpreted in co-Heyting algebras. The connective >
is interpreted as the left residual of ∨. The co-Gödel-Tarski translation is the map
σ : LC → LS 4^ defined by the following recursion:

σ(p) = ^≥p
σ(⊥) = ⊥

σ(>) = >

σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ)
σ(ϕ ∨ ψ) = σ(ϕ) ∨ σ(ψ)
σ(ϕ> ψ) = ^≥(¬σ(ϕ) ∧ σ(ψ))

Next, we show that Proposition 5.2.3 applies to the co-Gödel-Tarski translation.
We let X := AtProp, L1 := LC, and L2 := LS 4^. Moreover, we let A be a co-Heyting
algebra, and B a Boolean algebra such that an order-embedding e : A ↪→ B exists,
which is also a homomorphism of the lattice reducts of A and B, and has a left adjoint4

4That is, c(b) ≤ a iff b ≤ e(a) for every a ∈ A and b ∈ B. By well known order-theoretic facts (cf.
[64]), e ◦ c is an interior operator, that is, for every b, b′ ∈ B,
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c : B→ A such that for all a, b ∈ A,

a> Ab = c(¬Be(a) ∧B e(b)). (5.4)

Then B can be endowed with a natural structure of Boolean algebra expansion (BAE)
by defining ^B : B→ B by the assignment b 7→ (e ◦ c)(b). The following is the dual of
Proposition 5.2.4 and its proof is omitted.

5.3.1. Proposition. The BAE (B,^B), with ^B defined above, is normal and is also an
S 4^-modal algebra.

Finally, we let r : BX → AX be defined by the assignment U 7→ (c ◦ U). The proof of
the following proposition is similar to that of Proposition 5.2.5, and its proof is omitted.

5.3.2. Proposition. Let A, B, e : A ↪→ B and r : BX → AX be as above.5 Then the
co-Gödel-Tarski translation σ satisfies conditions (a) and (b) of Proposition 5.2.3 for
any formula ϕ ∈ LC.

The following corollary immediately follows from Propositions 5.2.3 and 5.3.2:

5.3.3. Corollary. Let A be a co-Heyting algebra and B a Boolean algebra such that
an order-embedding e : A ↪→ B exists, which is a homomorphism of the lattice reducts
of A and B, and has a left adjoint c : B → A such that condition (5.4) holds for all
a, b ∈ A. Then for all ϕ, ψ ∈ LC,

A |= ϕ ≤ ψ iff B |= σ(ϕ) ≤ σ(ψ),

where σ is the co-Gödel-Tarski translation.

We finish this subsection by showing that every co-Heyting algebraA embeds into a
a Boolean algebraB in the way described in Corollary 5.3.3. The proof of the following
proposition is similar to the proof of Proposition 5.2.7. We include it nonetheless for
the reader’s convenience.

5.3.4. Proposition. For every co-Heyting algebra A, there exists a Boolean algebra B
such that A embeds into B via some order-embedding e : A ↪→ B which is a homo-
morphism of the lattice reducts of A and B, and has a left adjoint c : B → A verifying
condition (5.4). Finally, these facts lift to the canonical extensions of A and B as in the
following diagram:

c1. b ≤ (e ◦ c)(b);

c2. if b ≤ b′ then (e ◦ c)(b) ≤ (e ◦ c)(b′);

c3. (e ◦ c)((e ◦ c)(b)) ≤ (e ◦ c)(b).

Moreover, e ◦ c ◦ e = e and c = c ◦ e ◦ c (cf. [64, Lemma 7.26]).
5The assumption that e is a homomorphism of the lattice reducts of A and B is needed for the

inductive steps relative to ⊥,>,∧,∨ in the proof this proposition, while condition (5.4) is needed for the
step relative to > .
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A

Aδ

B

Bδ

e

eδ

`

cσ

`

c

Proof:
Similar to Proposition 5.2.7. �

5.3.2 Extending the Gödel and co-Gödel translations to bi-intuitionistic
logic

The language of bi-intuitionistic logic is given by

LB 3 ϕ ::= p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ> ϕ

The language of the normal bi-modal logic S4 is given by

LS 4B 3 α ::= p | ⊥ | α ∨ α | ¬α | �≤α | ^≥α

The Gödel-Tarski and the co-Gödel-Tarski translations τ and σ can be extended to
the bi-intuitionistic language as the maps τ′, σ′ : LB → LS 4B defined by the following
recursions:

τ′(p) = �≤p σ′(p) = ^≥p
τ′(⊥) = ⊥ σ′(⊥) = ⊥

τ′(>) = > σ′(>) = >

τ′(ϕ ∧ ψ) = τ′(ϕ) ∧ τ′(ψ) σ(ϕ ∧ ψ) = σ′(ϕ) ∧ σ′(ψ)
τ′(ϕ ∨ ψ) = τ′(ϕ) ∨ τ′(ψ) σ′(ϕ ∨ ψ) = σ′(ϕ) ∨ σ′(ψ)
τ′(ϕ→ ψ) = �≤(¬τ′(ϕ) ∨ τ′(ψ)) σ′(ϕ→ ψ) = �≤(¬σ′(ϕ) ∨ σ′(ψ)).
τ′(ϕ> ψ) = ^≥(¬τ′(ϕ) ∧ τ′(ψ)) σ′(ϕ> ψ) = ^≥(¬σ′(ϕ) ∧ σ′(ψ)).

Notice that τ′ and σ′ agree on each defining clause but those relative to the proposition
variables. Let A be a bi-Heyting algebra and B a Boolean algebra such that e : A ↪→ B
is an order-embedding and a homomorphism of the lattice reducts ofA and B. Suppose
that e has both a left adjoint c : B→ A and a right adjoint ι : B→ A such that identities
(5.3) and (5.4) hold for every a, b ∈ A. Then B can be endowed with a natural structure
of bi-modal S4-algebra by defining �B : B → B by the assignment b 7→ (e ◦ ι)(b) and
^B : B→ B by the assignment b 7→ (e ◦ c)(b).
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5.3.5. Proposition. The BAE (B,�B,^B), with �B,^B defined as above, is normal and
an S4-bimodal algebra.

The proof of the following proposition is similar to those of Propositions 5.2.5 and
5.3.2, and is omitted.

5.3.6. Proposition. The translation τ′ (resp. σ′) defined above satisfies conditions (a)
and (b) of Proposition 5.2.3 relative to r : BX → AX defined by U 7→ (ι ◦ U) (resp.
defined by U 7→ (c ◦ U)).

Thanks to the proposition above, Proposition 5.2.3 applies to both τ′ and σ′, which
provides us with two equally well behaved ways of defining Gödel-Tarski-type trans-
lations for the bi-intuitionistic language in a way which retains the main property of
the original Gödel-Tarski translation, namely the preservation and reflection of validity
over S4-frames. In the light of this result, a natural question is whether τ′ and σ′ are
the only two translations with this property. In the following subsection we will answer
this question in the negative.

5.3.3 Parametric Gödel-Tarski-type translations for bi-intuitionistic
logic

Let X := AtProp. For any order-type ε on X, define the translation τε : LB → LS 4B by
the following recursion:

τε(p) =

�≤p if ε(p) = 1
^≥p if ε(p) = ∂

.

A similar definition appears in [88]. The remaining defining clauses for τε are analo-
gous to those for τ′ (see above).6 Clearly, τ′ = τε for ε constantly 1, and σ′ = τε for ε
constantly ∂.

Let A be a bi-Heyting algebra and B be a Boolean algebra such that an order-
embedding e : A ↪→ B exists, which is a homomorphism of the lattice-reducts of A
and B, is endowed with both right and left adjoints, and satisfies (5.3) and (5.4) for
every a, b ∈ A as described in the previous subsection. For every order-type ε on X,
consider the map rε : BX → AX defined, for any U ∈ BX and p ∈ X, by:

rε(U)(p) =

(ι ◦ U)(p) if ε(p) = 1
(c ◦ U)(p) if ε(p) = ∂

5.3.7. Proposition. For every order-type ε on X, the translation τε defined above sat-
isfies conditions (a) and (b) of Proposition 5.2.3 relative to rε.

6Dually, we could also define the parametric generalization σε of σ. Since σε = τε∂ , this definition
would be redundant.
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Proof:
By induction on ϕ. As for the base case, let ϕ := p ∈ AtProp. If ε(p) = ∂, then for any
U ∈ BX and V ∈ AX,

e([[p]]rε(U)) = e((c ◦ U)(p)) (def. of rε)
= (e ◦ c)([p])U (assoc. of ◦)
= ^B([p])U (def. of ^B)
= ([^≥p])U (def. of ([·])U)
= ([τε(p)])U , (def. of τε)

([τε(p)])e(V) = ([^≥p])e(V) (def. of τε)
= ^B([p])e(V) (def. of ([·])U)
= ^B((e ◦ V)(p)) (def. of e(V))
= (e ◦ c)((e ◦ V)(p)) (def. of ^B)
= e((c ◦ e)(V(p))) (assoc. of ◦)
= e(V(p)) (e ◦ (c ◦ e) = e)
= e([[p]]V). (def. of [[·]]V)

If ε(p) = 1, then for any U ∈ BX and V ∈ AX,

e([[p]]rε(U)) = e((ι ◦ U)(p)) (def. of rε)
= (e ◦ ι)([p])U (assoc. of ◦)
= �B([p])U (def. of �B)
= ([�≤p])U (def. of ([·])U)
= ([τε(p)])U , (def. of τε)

([τε(p)])e(V) = ([�≤p])e(V) (def. of τε)
= �B([p])e(V) (def. of ([·])U)
= �B((e ◦ V)(p)) (def. of e(V))
= (e ◦ ι)((e ◦ V)(p)) (def. of �B)
= e((ι ◦ e)(V(p))) (assoc. of ◦)
= e(V(p)) (e ◦ (ι ◦ e) = e)
= e([[p]]V). (def. of [[·]]V)

The remainder of the proof is similar to that of Proposition 5.3.6 for τ′, and is omitted.
�
As a consequence of the proposition above, Proposition 5.2.3 applies to τε for any
order-type ε on X. Hence:

5.3.8. Corollary. Let A be a bi-Heyting algebra. If an embedding e : A → B exists
into a Boolean algebra B which is a homomorphism of the lattice reducts and e has
both a right adjoint ι : B → A and a left adjoint c : B → A satisfying (5.3) and (5.4)
for every a, b ∈ A, then for any bi-intuitionistic inequality ϕ ≤ ψ,

A |= ϕ ≤ ψ iff B |= τε(ϕ) ≤ τε(ψ).
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We finish this subsection by showing that every bi-Heyting algebra A embeds into
a a Boolean algebra B in the way described in Corollary 5.3.8. The proof of the fol-
lowing proposition is similar to the proofs of Proposition 5.2.7 and 5.3.4. We include
it nonetheless for the reader’s convenience.

5.3.9. Proposition. For every bi-Heyting algebra A, there exists a Boolean algebra B
such that A embeds into B via some order-embedding e : A ↪→ B which is also a
homomorphism of the lattice reducts of A and B and has both a left adjoint c : B→ A
and a right adjoint ι : B → A verifying conditions (5.3) and (5.4). Finally, all these
facts lift to the canonical extensions of A and B as in the following diagram:

A

Aδ

B

Bδ

e

eδ

`
iπ

`

i

`

cσ

`

c

Proof:
Similar to Proposition 5.2.7. �

5.3.4 Parametric Gödel-Tarski-type translations for normal DLEs

Throughout the present section, let us fix a normal DLE-signatureLDLE = LDLE(F ,G).
The present section is aimed at extending the definition of parametric Gödel-Tarski-
type translations from the bi-intuitionistic setting to the general DLE-setting. Towards
this aim, we need to define the target language for these translations. This is given
in two steps: firstly, we define the normal BAE signature LBAE = LBAE(F ,G), where
F := { f | f ∈ F }, and G := {g | g ∈ G}, and for every f ∈ F (resp. g ∈ G), the
connective f (resp. g) is such that n f = n f (resp. ng = ng) and ε f (i) = 1 for each
1 ≤ i ≤ n f (resp. εg(i) = ∂ for each 1 ≤ i ≤ ng).

Secondly, we assume that an order embedding e : A ↪→ B exists, which is a homo-
morphism of the lattice reducts of A and B, is such that both the left and right adjoint
c : B → A and ι : B → A exist and moreover the following diagrams commute for



92 Chapter 5. Sahlqvist via translation

every f ∈ F and g ∈ G:7

Aε f
eε f

−−−−−→ Bε fy fA
y f

B

A
c

←−−−−− B

Aεg
eεg

−−−−−→ BεgygA
ygB

A
ι

←−−−−− B

(5.5)

Then, as discussed early on, the Boolean reduct of B can be endowed with a natural
structure of bi-modal S4-algebra by defining �B : B → B by the assignment b 7→
(e ◦ ι)(b) and ^B : B→ B by the assignment b 7→ (e ◦ c)(b).

The target language for the parametrized Gödel-Tarski type translations over Atprop
is given by

L∗BAE 3 α ::= p | ⊥ | α ∨ α | α ∧ α | ¬α | f (α) | g(α) | ^≥α | �≤α.

Let X := AtProp. For any order-type ε on X, define the translation τε : LDLE →

L∗BAE by the following recursion:

τε(p) =

�≤p if ε(p) = 1
^≥p if ε(p) = ∂,

τε(⊥) = ⊥

τε(>) = >

τε(ϕ ∧ ψ) = τε(ϕ) ∧ τε(ψ)
τε(ϕ ∨ ψ) = τε(ϕ) ∨ τε(ψ)
τε( f (ϕ)) = f (τε(ϕ)

ε f )
τε(g(ϕ)) = g(τε(ϕ)

εg)

where for each order-type η on n and any n-tuple ψ of LBAE-formulas, ψ
η

denotes the
n-tuple (ψ′i)

n
i=1, where ψ′i = ψi if η(i) = 1 and ψ′i = ¬ψi if η(i) = ∂.

Let A be a LDLE-algebra and B be a L∗BAE-algebra such that an order-embedding
e : A ↪→ B exists, which is a homomorphism of the lattice-reducts of A and B, is
endowed with both right and left adjoints, and satisfies the commutativity of the dia-
grams (5.5) for every f ∈ F and g ∈ G. For every order-type ε on X, consider the map
rε : BX → AX defined, for any U ∈ BX and p ∈ X, by:

rε(U)(p) =

(ι ◦ U)(p) if ε(p) = 1
(c ◦ U)(p) if ε(p) = ∂

5.3.10. Proposition. For every order-type ε on X, the translation τε defined above sat-
isfies conditions (a) and (b) of Proposition 5.2.3 relative to rε.

Proof:
By induction on ϕ. The base cases are analogous to those in the proof of Proposition
5.3.7. Let ϕ := f (ϕ). Then for any U ∈ BX and V ∈ AX,

7Notice that equations (5.3) and (5.4) encode the special cases of the commutativity of the diagrams
(5.5) for f (ϕ, ψ) := ϕ> ψ (in which case, f (α, β) := ¬α ∧ β) and g(ϕ, ψ) := ϕ → ψ (in which case,
g(α, β) := ¬α ∨ β).
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e([[ f (ϕ)]]rε(U)) = e( f ([[ϕ]]rε(U))) (def. of [[·]]rε(U))
= f (e([[ϕ]]rε(U))) (assump. (5.5))
= f (([τε(ϕ)])U) (IH)
= ([ f (τε(ϕ))])U (def. of ([·])U)
= ([τε( f (ϕ))])U , (def. of τε)

([τε( f (ϕ))])e(V) = ([ f (τε(ϕ))])e(V) (def. of τε)
= f (([τε(ϕ)])e(V)) (def. of ([·])e(V))
= f (e([[ϕ]]V)) (IH)
= e( f ([[ϕ]]V)) (assump. (5.5))
= e([[ f (ϕ)]]V). (def. of [[·]]V)

For the sake of readability, the polarity bookkeeping ψ
η

(cf. page 92) has been sup-
pressed in the computation above. The remaining cases are analogous and are omitted.
�
As a consequence of the proposition above, Proposition 5.2.3 applies to τε for any
order-type ε on X. Hence:

5.3.11. Corollary. Let A be a LDLE-algebra. If an embedding e : A ↪→ B exists into a
L∗BAE-algebra B which is a homomorphism of the lattice reducts of A and B, and e has
both a right adjoint ι : B→ A and a left adjoint c : B→ A satisfying the commutativity
of the diagrams (5.5) for every f ∈ F and g ∈ G, then for any LDLE-inequality ϕ ≤ ψ,

A |= ϕ ≤ ψ iff B |= τε(ϕ) ≤ τε(ψ).

We finish this subsection by showing that every perfect LDLE-algebra A embeds
into a perfect Boolean algebra B in the way described in Corollary 5.3.11:

5.3.12. Proposition. For every perfect LDLE-algebra A, there exists a perfect L∗BAE-
algebra B such that A embeds into B via some order-embedding e : A ↪→ B which
is also a homomorphism of the lattice reducts of A and B and has both a left adjoint
c : B → A and a right adjoint ι : B → A satisfying the commutativity of the diagrams
(5.5).

Proof:
Via Birkhoff duality, the perfect LDLE-algebra A can be identified with the algebra of
up-sets of its associated prime element structure XA, which is based on a poset. Let
B be the powerset algebra of the universe of XA. Since any up-set is in particular a
subset, a natural order embedding e : A ↪→ B exists, which is also a complete lattice
homomorphism between A and B. This shows the first part of the claim.

As to the second part, notice that the algebras of upsets of a given poset are natu-
rally endowed with a structure of bi-Heyting algebras. Hence we can define the maps
c : B → A and ι : B → A by the assignments b 7→ b↑ and b 7→ ¬((¬b)↓) respectively,
where b is identified with its corresponding subset in XA, ¬b is defined as the relative
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complement of b in XA, and b↑ and (¬b)↓ are defined using the order in XA. It can be
readily verified that c and ι are the left and right adjoints of e respectively.

Finally, notice that any DLE-frame F is also an L
∗

BAE-frame by interpreting the f -
type connective ^≥ by means of the binary relation ≥, the g-type connective �≤ by
means of the binary relation ≤, each f ∈ F by means of R f and each g ∈ G by means
of Rg. Moreover, the additional properties (2.1) and (2.2) of the relations R f and Rg

guarantee that the diagrams (5.5) commute. �

Notice that Proposition 5.3.12 has a more restricted scope than analogous propositions
such as Propositions 5.3.9 or 5.2.7. Indeed, any DLEA is isomorphic via Priestley-type
duality to the algebra of clopen up-sets of its dual Priestley space XA, which is a Stone
space in particular, and this yields a natural embedding of A into the Boolean algebra
of the clopen subsets of XA. However, this embedding has in general neither a right
nor a left adjoint. In the next section, we will see that Proposition 5.3.12 is enough
to obtain the Sahlqvist-type correspondence theory for inductive LDLE-inequalities via
translation from Sahlqvist-type correspondence theory for inductiveLBAE-inequalities.
However, we will see in Section 5.5 that canonicity cannot be straightforwardly ob-
tained in the same way, precisely due to the restriction on Proposition 5.3.12.

5.4 Correspondence via translation

The theory developed so far is ready to be applied to the correspondence of inductive
DLE-inequalities (hence also intuitionistic, co-intuitionistic and bi-intuitionistic induc-
tive inequalities). In what follows, we letL denote any language in {LI ,LC,LB,LDLE},
and L∗ its associated target language in {LS 4,LS 4^,LS 4B,L

∗
BAE}. The general defini-

tion of inductive inequalities (cf. Definition 2.5.3) applies to each of these languages.
In particular, the Boolean negation in any L∗ enjoys both the order-theoretic proper-
ties of a unary f -type connective and of a unary g-type connective. Hence, Boolean
negation occurs unrestricted in inductive L∗-inequalities. Moreover, the algebraic in-
terpretations of the S4-connectives �≤ and ^≥ enjoy the order-theoretic properties of
normal unary f -type and g-type connectives respectively. Hence, the occurrence of �≤
and ^≥ in inductive L∗-inequalities is subject to the same restrictions applied to any
connective pertaining to the same class to which they belong.

The following correspondence theorem is a straightforward extension to the L∗-
setting of the correspondence result for classical normal modal logic in [51]:

5.4.1. Proposition. Every inductiveL∗-inequality has a first-order correspondent over
its class of L∗-frames.

In what follows, we aim at obtaining the correspondence theorem for inductive L-
inequalities from the correspondence theorem for inductive L∗-inequalities as stated in
the proposition above. Towards this goal, we need the following



5.4. Correspondence via translation 95

5.4.2. Proposition. The following are equivalent for any order-type ε on X, and any
L-inequality ϕ ≤ ψ:

(1) ϕ ≤ ψ is an (Ω, ε)-inductive L-inequality;

(2) τε(ϕ) ≤ τε(ψ) is an (Ω, ε)-inductive L∗-inequality.

Proof:
By induction on the shape of ϕ ≤ ψ. In a nutshell: the definitions involved guarantee
that: (1) PIA nodes are introduced immediately above ε-critical occurrences of propo-
sition variables; (2) Skeleton nodes are translated as (one or more) Skeleton nodes;
(3) PIA nodes are translated as (one or more) PIA nodes. Moreover, this translation
does not disturb the dependency order Ω. Hence, from item 1 to item 2, the translation
does not introduce any violation on ε-critical branches, and, from item 2 to item 1, the
translation does not amend any violation. �

5.4.3. Theorem (Correspondence via translation). Every inductive L-inequality has
a first-order correspondent on L-frames.

Proof:
Let ϕ ≤ ψ be an (Ω, ε)-inductive L-inequality, and F be an L-frame such that F 

ϕ ≤ ψ. By the discrete duality between L-algebras and L-frames, this assumption is
equivalent to A |= ϕ ≤ ψ, where A denotes the complex L-algebra of F. Since A is a
perfect L-algebra, it is naturally endowed with the structure of a bi-Heyting algebra.
By Propositions 5.2.7, 5.3.4, 5.3.9, 5.3.12, a perfect L∗-algebra B exists with a natural
embedding e : A→ B which is a homomorphism of the lattice reducts of A and B and
has both a right adjoint ι : B → A and a left adjoint c : B → A such that conditions
(5.3) and (5.4) hold, and diagrams (5.5) commute. By Corollaries 5.3.8 and 5.3.11,
A |= ϕ ≤ ψ iff B |= τε(ϕ) ≤ τε(ψ), which, by the discrete duality between perfect
L∗-algebras and L∗-frames, is equivalent to F 
∗ τε(ϕ) ≤ τε(ψ).

By Proposition 5.4.2, τε(ϕ) ≤ τε(ψ) is an (Ω, ε)-inductiveL∗-inequality, and hence,
by Proposition 5.4.1, τε(ϕ) ≤ τε(ψ) has a first-order correspondent FO(ϕ) on L∗-
frames. Since the first-order theory of F as an L-frame coincides with the first-order
theory of F as an L∗-frame, FO(ϕ) is also the first-order correspondent of ϕ ≤ ψ. The
steps of this argument are summarized in the following chain of equivalences:

F 
 ϕ ≤ ψ
iff A |= ϕ ≤ ψ (discrete duality for L-frames)
iff B |= τε(ϕ) ≤ τε(ψ) (Corollaries 5.3.8 and 5.3.11)
iff F 
∗ τε(ϕ) ≤ τε(ψ) (discrete duality for L∗-frames)
iff F |= FO(ϕ) (Proposition 5.4.1)

�
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5.4.4. Remark. Theorem 5.4.3 provides a very concise and uniform route to corre-
spondence for the class of inductive inequalities in any LDLE-signature. This route
bypasses one of the two main tools of algorithmic correspondence theory for logics
on a weaker than classical propositional base (the algorithm ALBA [55]). Elsewhere
[59, 56, 109, 152], evidence was provided to the effect that the scope of applicability
of the algorithm ALBA is in fact wider than just the computation of first-order corre-
spondents. Theorem 5.4.3 shows that in fact, as far as the computation of first-order
correspondents in concerned, the algorithm SQEMA, or a suitable generalization of it,
is already enough, and ALBA can be actually bypassed when we are only interested in
correspondence.

On the other hand, to be able to implement the correspondence-via-translation strat-
egy in a way which is both conceptually significant, and as uniform as in the statement
and proof of Theorem 5.4.3, it is key to employ a definition of Sahlqvist-type formulas
or inequalities holding uniformly across signatures, and formulated independently of
the translations. Such a uniform definition (cf. Definition 2.5.3) is the second main
tool of unified correspondence theory. Summing up, the translation route to corre-
spondence does not give rise to an alternative ‘unified correspondence theory’ built on
independent bases, but is rather facilitated by the notions and insights pertaining to
unified correspondence theory.

5.5 Canonicity via translation
Recall that L denotes any language in {LI ,LC,LB,LDLE}, and L∗ its associated target
language in {LS 4,LS 4^,LS 4B,L

∗
BAE}.

The following canonicity theorem is a straightforward reformulation and extension
to each L∗-setting of the canonicity result for classical normal modal logic in [51]:

5.5.1. Proposition. For every inductive L∗-inequality α ≤ β and every L∗-algebra B,

if B |= α ≤ β then Bδ |= α ≤ β.

In what follows, we aim at obtaining the canonicity theorem for inductive L-
inequalities from the canonicity theorem for inductive L∗-inequalities as stated in the
proposition above. While the correspondence-via-translation strategy works uniformly
on each L-setting, the same is not true for canonicity. In the next subsection we start
with the most amenable setting.

5.5.1 Canonicity of inductive inequalities in the bi-intuitionistic set-
ting

In what follows, we aim at obtaining the canonicity theorem for inductiveLB-inequalities
from the canonicity theorem for inductive LS 4B-inequalities as stated in Proposition
5.5.1.
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5.5.2. Theorem (Canonicity via translation). For every inductive LB-inequality ϕ ≤
ψ and every bi-Heyting algebra A,

if A |= ϕ ≤ ψ then Aδ |= ϕ ≤ ψ.

Proof:
By Proposition 5.3.9, an LS 4B-algebra B exists with a natural embedding e : A ↪→ B
which is a homomorphism of the lattice reducts of A and B and has both a right adjoint
ι : B → A and a left adjoint c : B → A such that conditions (5.3) and (5.4) hold. By
Corollary 5.3.8, A |= ϕ ≤ ψ iff B |= τε(ϕ) ≤ τε(ψ).

By Proposition 5.4.2, τε(ϕ) ≤ τε(ψ) is an (Ω, ε)-inductive LS 4B-inequality, and
hence, by Proposition 5.5.1, Bδ |= τε(ϕ) ≤ τε(ψ). By the last part of the statement of
Proposition 5.3.9, Corollary 5.3.8 applies also to Aδ and Bδ, and thus Aδ |= ϕ ≤ ψ,
as required. The steps of this argument are summarized in the following U-shaped
diagram:

A |= ϕ ≤ ψ Aδ |= ϕ ≤ ψ
m (Cor 5.3.8) m (Cor 5.3.8)

B |= τε(ϕ) ≤ τε(ψ) ⇔ Bδ |= τε(ϕ) ≤ τε(ψ)

�

The argument above can be generalized so as to obtain canonicity of inductive
inequalities for logics algebraically captured by classes of normal bi-Heyting algebra
expansions.

5.5.2 Generalizing the canonicity-via-translation argument
In the present subsection, we discuss the extent to which the proof pattern described in
the previous subsection can be applied to the settings of Heyting and co-Heyting alge-
bras, and to normal DLEs. In the case of bi-Heyting algebras, the order embedding e,
the existence of which is shown in Proposition 5.3.9, has both a left and a right adjoint.
This is a major difference with the cases of Heyting and co-Heyting algebras and nor-
mal DLEs, in which at most one of the two adjoints exists in general (cf. Propositions
5.2.7 and 5.3.4), and both adjoints exist if the algebra is perfect.

This implies that the the U-shaped argument discussed in the proof of Theorem
5.5.2, which employed Corollary 5.3.8 on both legs as shown in the diagram below,
is not available for Heyting/co-Heyting algebras or DLEs. Indeed, in each of these
settings, it can still be applied on the side of the perfect algebras, since any such perfect
algebra is also a bi-Heyting algebra, but not on general algebras (left-hand side of the
diagram).

A |= ϕ ≤ ψ Aδ |= ϕ ≤ ψ
m ? m (Cor 5.3.8)

B |= τε(ϕ) ≤ τε(ψ) ⇔ Bδ |= τε(ϕ) ≤ τε(ψ)
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In what follows, we aim at giving a refinement of Corollary 5.3.8 which can replace
the question mark in the U-shaped diagram above. We work in the setting of Heyting
algebras (similar statements can be obtained straightforwardly for the other settings as
well). Recall that the canonical extension eδ : Aδ → Bδ of the embedding e : A ↪→ B
is a complete homomorphism, and hence both its left and right adjoints exist. Let
c : Bδ → Aδ denote the left adjoint of eδ : Aδ → Bδ. Then c(b) ∈ K(Aδ) for every
b ∈ B.8

Hence, it is immediate to verify that, if rε : (Bδ)X → (Aδ)X is the map defined for
any U ∈ (Bδ)X and p ∈ X by:

rε(U)(p) =

(ιπ ◦ U)(p) if ε(p) = 1
(c ◦ U)(p) if ε(p) = ∂

then, (rε(U))(p) ∈ K(Aδ) for any ‘admissible valuation’ U ∈ BX and p ∈ X. Moreover,
since the connective > is not part of the intuitionistic language considered here, and
since, as discussed in the proof of Proposition 5.2.7, condition (5.3) lifts from e and ι
to eδ and ιπ, this is enough to show, by induction on the complexity of LI-formulas,
that conditions (a) and (b) of Proposition 5.2.3 hold relative to τε and rε defined above.

The following proposition is the required refinement of Corollary 5.3.8 which can
replace the question mark in the U-shaped diagram above.

5.5.3. Proposition. Let A be a Heyting algebra, and e : A ↪→ B be an embedding of A
into a Boolean algebra B which is a homomorphism of the lattice reducts of A and B,
endowed with its right adjoint ι : B→ A so that condition (5.3) holds. Then, for every
(Ω, ε)-inductive LI-inequality ϕ ≤ ψ,

Aδ |=A ϕ ≤ ψ iff Bδ |=B τε(ϕ) ≤ τε(ψ).

Proof:
[Sketch of proof] From right to left, if (Aδ,V) 6|= ϕ ≤ ψ for some V ∈ AX, then [[ϕ]]V �
[[ψ]]V . Since e : A ↪→ B is an order-embedding, and as discussed above, conditions (a)
and (b) of Proposition 5.2.3 hold relative to τε and rε : (Bδ)X → (Aδ)X, this implies that
([τε(ϕ)])e(V) = e([[ϕ]]V) � e([[ψ]]V) = ([τε(ψ)])e(V), that is (Bδ, e(V)) 6|= τε(ϕ) ≤ τε(ψ), as
required.

Conversely, assume contrapositively that (Bδ,U) 6|= τε(ϕ) ≤ τε(ψ) for some U ∈ BX,
that is, ([τε(ϕ)])U � ([τε(ψ)])U . By applying condition (b) of Proposition 5.2.3, this is
equivalent to e([[ϕ]]rε(U)) � e([[ψ]]rε(U)), which, by the monotonicity of e, implies that
[[ϕ]]rε(U) � [[ψ]]rε(U), that is, (A, rε(U)) 6|= ϕ ≤ ψ. This is not enough to finish the
proof, since rε(U) is not guaranteed to belong in AX; however, as observed above,
rε(U)(p) ∈ K(Aδ) for each proposition variable p. To finish the proof, we need to show

8Indeed, eδ, being a complete homomorphism, is in particular a box-type map, of which its left
adjoint c is then the ‘black-diamond’ (in the notation of [57]), and it is well-known from the theory
of canonical extensions of box-type operators that their left adjoints send closed elements to closed
elements.
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that an admissible valuation V ′ ∈ AX can be manufactured from rε(U) and ϕ ≤ ψ in
such a way that (Aδ,V ′) 6|= ϕ ≤ ψ. In what follows, we provide a sketch of the proof
of the existence of the required V ′. Clearly, if ε(p) = 1 for every proposition variable
p occurring in ϕ ≤ ψ, then rε(U)(p) = ιπ(([p])U) = ι(([p])U) ∈ A, and then any V ′ ∈ AX

which agrees with rε(U) on all variables occurring in ϕ ≤ ψ would be enough to finish
the proof. Assume that ε(q) = ∂ for some proposition variable q occurring in ϕ ≤ ψ.
Then we define V ′(q) ∈ A as follows. We run ALBA on ϕ ≤ ψ according to the solving
order Ω, up to the point when we solve for the negative occurrences of q, which by
assumption are ε-critical. Notice that ALBA preserves truth under assignments.9 Then
the inequality providing the minimal valuation of q is of the form q ≤ α, where α is
pure (i.e. no proposition variables occur in α). By Lemma 9.5 in [55], every inequality
in the antecedent of the quasi-inequality obtained by applying first approximation to an
inductive inequality is of the form γ ≤ δ with γ syntactically closed and δ syntactically
open. Hence, α is pure and syntactically open, which means that the interpretation of
α is an element in O(Aδ). Therefore, by compactness, there exists some a ∈ A such
that rε(U)(q) ≤ a ≤ α. Then we define V ′(q) = a. Finally, it remains to be shown that
(Aδ,V ′) 6|= ϕ ≤ ψ. This immediately follows from the fact that ALBA steps preserves
truth under assignments, and that all the inequalities in the system are preserved in the
change from rε(U) to V ′. �

However, having replaced Corollary 5.3.8 with Proposition 5.5.3 is still not enough
for the U-shaped argument above to go through. Indeed, notice that, if ϕ ≤ ψ contains
some q with ε(q) = ∂, then τε(ϕ) ≤ τε(ψ) contains occurrences of the connective ^≥,
the algebraic interpretation of which in Bδ is based on the left adjoint c of eδ, which,
as discussed above, maps elements in B to elements in K(Bδ). Hence, the canonicity
of τε(ϕ) ≤ τε(ψ), understood as the preservation of its validity from B to Bδ, cannot
be argued by appealing to Proposition 5.5.1: indeed, Proposition 5.5.1 holds under the
assumption that B is an L∗-subalgebra of Bδ, while, as discussed above, B is not in
general closed under ^≥.

In order to be able to adapt the canonicity-via-translation argument to the case
of Heyting algebras (or co-Heyting algebras, or normal DLEs), we would need to
strengthen Proposition 5.5.1 so as to obtain the following equivalence for any inductive
L∗-inequality α ≤ β:

Bδ |=B α ≤ β iff Bδ |= α ≤ β (5.6)

in a setting in which the subalgebra B is not required to be an L∗-subalgebra of Bδ,
and f (b) ∈ K(Bδ) for every f -type connective in L∗ and b ∈ Bn f , and g(b) ∈ O(Bδ) for
every g-type connective in L∗ and b ∈ Bng .

9In [55] it is proved that ALBA steps preserve validity of quasi-inequalities. In fact, it ensures some-
thing stronger, namely that truth under assignments is preserved, modulo the values of introduced and
eliminated variables. This notion of equivalence is studied in e.g. [49]. We are therefore justified in our
assumption that the value of q is held constant as are the values of all variables occurring in ϕ ≤ ψ which
have not yet been eliminated up to the point where q is solved for.
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Such a strengthening cannot be straightforwardly obtained with the tools provided
by the present state-of-the-art in canonicity theory. To see where the problem lies, let
us try and apply ALBA/SQEMA in an attempt to prove the left-to-right direction of
(5.6) for the ‘Sahlqvist’ inequality �≤p ≤ ^≥�≤p, assuming that ^≥ is left adjoint to
�≤, and ([�≤p])U ∈ O(Bδ) and ([^≥p])U ∈ K(Bδ) for any admissible valuation U ∈ BX:

Bδ |=B ∀p[�≤p ≤ ^≥�≤p]
iff Bδ |=B ∀p∀i∀m[(i ≤ �≤p & ^≥�≤p ≤ m)⇒ i ≤ m]
iff Bδ |=B ∀p∀i∀m[(^≥i ≤ p & ^≥�≤p ≤ m)⇒ i ≤ m]

The minimal valuation term ^≥j, computed by ALBA/SQEMA when solving for the
negative occurrence of p, is closed. However, substituting this minimal valuation into
^≥�≤p ≤ m would get us ^≥�≤^≥j ≤ m with ^≥�≤^≥j neither closed nor open.
Hence, we cannot anymore appeal to the Esakia lemma in order to prove the following
equivalence:10

Bδ |=B ∀p∀i∀m[(^≥i ≤ p & ^≥�≤p ≤ m)⇒ i ≤ m]
iff Bδ |=B ∀i∀m[^≥�≤^≥i ≤ m⇒ i ≤ m]

An analogous situation arises when solving for the positive occurrence of p. Other
techniques for proving canonicity, such as Jónsson-style canonicity [123, 152], display
the same problem, since they also rely on an Esakia lemma which is not available if B
is not closed under �≤ and ^≥.

5.6 Conclusions
From the results of this chapter, bi-intuitionistic logic stands out as a particularly well
behaved setting, and its performance compares favourably to that of the better known
intuitionistic logic. Another advantage of bi-intuitionistic logic over intuitionistic logic
is that for each additional �-type connective it possible to define a dual normal dia-
mond along the usual Boolean pattern as ^ϕ := >> �(ϕ→ ⊥), and likewise for each
additional ^-type connective a dual normal box as �ϕ := ^(>> ϕ) → ⊥. Following
this pattern in the intuitionistic case, using only the intuitionistic negation, gives rise
to connectives which are monotone but neither regular nor normal. Together with the
fact that bi-intuitionistic logic is sound and complete w.r.t. partial orders, this makes
bi-intuitionistic logic a particularly attractive basic framework.

We saw that, where applicable, the translation method has an extraordinary syn-
thesizing power. However, as already mentioned at various points early on, we do
not believe that the translation approach can provide autonomous foundations to corre-
spondence theory for non-classical logics, and this for two reasons. First, in Section 5.5

10In other words, if B is not closed under^≥ or �≤, the soundness of the application of the Ackermann
rule under admissible assignments cannot be argued anymore by appealing to the Esakia lemma, and
hence, to the topological Ackermann lemma.
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we saw that, outside of the bi-intuitionistic setting, it is not clear how the canonicity-
via-translation argument could be made to work. To make it work, one would likely
need techniques which import novel order-theoretic and topological insights which go
well beyond the scope of the translation method itself. The existing canonicity tech-
niques therefore remain the most straightforward route toward the result. Second, as
argued in Remark 5.4.4, unified correspondence is also needed to provide the right
background framework in which correspondence-via-translation can be meaningfully
investigated.

The progress we made over [88] (namely the canonicity-via-translation for the bi-
intuitionistic setting) comes from embracing the full extent of the algebraic analysis.
Specifically, canonicity-via-translation hinges upon the fact that the interplay of per-
sistent and non-persistent valuations on frames can be understood and reformulated
in terms of an adjunction situation between two complex algebras of the same frame.
In its turn, this adjunction situation generalizes to arbitrary algebras. The same modus
operandi, which achieves generalization through algebras via duality, has been fruitful-
ly employed by some of the authors also for very different purposes, such as the defini-
tion of the non-classical counterpart of a given logical framework (cf. [136, 144, 47]).





Chapter 6
Unified correspondence and proof theory for

strict implication

In the present chapter, which is a revised version of the paper [145]1, we specialize
unified correspondence theory to strict implication logics, show that strict implication
logics can be conservatively extended to suitable axiomatic extensions of the bound-
ed distributive lattice full non-associative Lambek calculus (BDFNL), transform many
strict implication sequents into analytic rules, and develop Gentzen-style cut-free se-
quent calculi for BDFNL and its analytic rule extensions.

6.1 Introduction

Strict implication is an intensional implication which is semantically interpreted on
Kripke binary relational models in the same fashion as intuitionistic implication. Krip-
ke frames for intuitionistic logic are partially ordered sets, and valuations are required
to be persistent, i.e., to map propositional variables to upsets. The intuitionistic impli-
cation is already an example of strict implication. Subintuitionistic logics, which are
prime examples of strict implication logics (cf. [62, 193, 9, 28, 23, 156, 77, 74, 7, 128]),
arise semantically by dropping some conditions from the intuitionistic models outlined
above, such as the requirement that the accessibility relation to be reflexive or transi-
tive, and the persistency of valuations. For example, Visser’s basic propositional logic
BPL [193] is a subintuitionistic logic characterized by the class of all transitive frames
under the semantics by dropping only the reflexivity condition on frames from the
intuitionistic case, and it is embedded into the normal modal logic K4 via the Gödel-
McKinsey-Tarski translation. Another example is the least subintuitionistic logic F
introduced by Corsi [62] which is characterized by the class of all Kripke frames under

1My specific contribution to this research has been the development of the underlying algebraic
results, the connection with unified correspondence and the write-up of a preliminary version of the
paper.
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the semantics by dropping all conditions on frames or models. Naturally, F is embed-
dable into the least normal modal logic K.

The present chapter proposes a uniform approach to the proof theory of the family
of strict implication logics. Cut-free sequent calculi exist in the literature for some
members of this family [120], for instance, for Visser’s propositional logics [121].
These calculi lack a left- and a right-introduction rule for→. Instead, there is only one
rule in which 2n premisses are needed when the conclusion has n implication formu-
las as the antecedent of the sequent. In contrast with this, in the present chapter, we
provide modular cut-free calculi for a wide class of strict implication logics, each of
which has the standard left- and right-introduction rules. Our methodology uses unified
correspondence theory. It takes the move from some general semantic conservativity
results which naturally arise from the semantic environment of unified correspondence.
Specifically, we use the fact that certain strict implication logics can be conservatively
extended to suitable axiomatic extensions of the bounded distributive lattice full non-
associative Lambek calculus (BDFNL)2 , and develop Gentzen-style cut-free sequent
calculi for these axiomatic extensions, using the tools of unified correspondence.

From the point of view of unified correspondence, the family of strict implication
logics is a very interesting subclass of normal DLE-logics (i.e., logics algebraically i-
dentified by varieties of bounded distributive lattice expansions), not only because they
are very well-known and very intensely investigated, but also because they are enjoy-
ing two different and equally natural relational semantics, namely, the one described
above, interpreting the binary implication by means of a binary relation [28], and an-
other, arising from the standard treatment of binary modal operators, interpreting the
binary implication by means of a ternary relation [135]. The existence of these two
different semantics makes unified correspondence a very appropriate tool to study the
Sahlqvist-type theory of these logics, because of one of the features specific to unified
correspondence theory, namely the possibility of developing Sahlqvist-type theory for
the logics of strict implication in a modular and simultaneous way for their two types
of relational semantics.

In the present chapter we specialize the tools of unified correspondence theory from
the general setting of normal DLE-logics to the setting of strict implication logics. The
semantic environment of unified correspondence theory allows for a general semantic
conservativity result for normal DLE-logics, which has been briefly outlined in [109]
and is further clarified in the present chapter (cf. Theorem 6.2.11), and specialized to
the setting of strict implication logics.

A second reason for exploring strict implication logics with the tools of unified
correspondence is given by the recent developments mentioned above, establishing
systematic connections between correspondence results for normal DLE-logics and
the characterization of the axiomatic extensions of basic normal DLE-logics which
admit display calculi with cut elimination. In particular, in [109], the tool (a) of uni-

2 Non-associative Lambek calculus was first developed by Lambek [138, 139]. For details about
Lambek calculi and substructural logics, we refer to [85, 25, 26, 148].
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fied correspondence theory has been used to provide the syntactic characterization of
those axioms which correspond to analytic rules, and tool (b) has been used to pro-
vide an effective computation of the rules corresponding to each analytic axiom. This
work provides an exhaustive answer, relative to the setting of display calculi, to a key
question in structural proof theory which has been intensely investigated in various
proof-theoretic settings (cf. [150, 35, 37, 105, 36, 142, 137, 146, 141, 134]).

In fact, a major conceptual motivation of the present chapter is provided by the
insight that the unified correspondence methodology can be applied to the analyticity
issue also in proof-theoretic settings different from display calculi. Following this in-
sight, in the present chapter, we use the tools of unified correspondence in two different
ways. Firstly, we present a modified version of the algorithm ALBA which is specific
to the task of the direct computation of analytic rules of a Gentzen-style calculus for
certain logics of strict implication. Secondly, we use this algorithm as a calculus not
only to compute analytic rules, but also to establish semantic (algebraic), hence logical
equivalences between axioms of different but related logical signatures. This latter one
is a novel application of unified correspondence.

The structure of the chapter is organized as follows. In Section 6.2, we will summa-
rize unified correspondence theory for strict implication logics. Specifically, a general
theorem on semantic conservativity will be given, and an ALBA algorithm and a first-
order correspondence result will be specialized. In Section 6.3, we will introduce the
Ackermann lemma based calculus ALC for calculating correspondence on over alge-
bras between the strict implication language LSI and the language L•. More conserva-
tivity results will be obtained by using ALC. In Section 6.4, we will develop cut-free
Gentzen-style sequent calculus for BDFNL, and then extend it with analytic rules to
obtain cut-free sequent calculi.

6.2 Preliminaries
In this section, we will summarize the unified correspondence theory for strict impli-
cation logics. For most of the auxiliary definitions, see Chapter 2.

6.2.1 Syntax and semantics for strict implication logics
We will now specialize normal DLE-logics (cf. Chapter 2) to strict implication logics.
The strict implication language LSI is identified with the DLE-language LDLE(F ,G)
where F = ∅ and G = {→}. The order-type of→ is (∂, 1).

6.2.1. Definition. The terms (formulas) of LSI are recursively defined as follows:

ϕ ::= p | > | ⊥ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ→ ϕ)

where p ∈ AtProp. Terms (formulas) in LSI are denoted by lowercase Greek letters
e.g. ϕ, ψ, γ, or by lower case Latin letters e.g. s, t. An LSI-sequent is an expression of
the form ϕ ` ψ.
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The definition of normal DLE-algebra (cf. Definition 2.1.2) is specialized into the fol-
lowing definition on which the language LSI is interpreted.

6.2.2. Definition. An algebra A = (A,∧,∨,⊥,>,→) is called a bounded distributive
lattice with strict implication (BDI) if its (∧,∨,⊥,>)-reduct is a bounded distributive
lattice and → is a binary operation on A satisfying the following conditions for all
a, b, c ∈ A:

(C1) (a→ b) ∧ (a→ c) = a→ (b ∧ c),

(C2) (a→ c) ∧ (b→ c) = (a ∨ b)→ c,

(C3) a→ > = > = ⊥ → a.

Let BDI3 be the class of all BDIs. Henceforth, we also write a BDI as (A,→) where A
is supposed to be a bounded distributive lattice.

In BDIs, the turnstile ` is interpreted as their order ≤. ϕ ` ψ is valid in A if
µ(ϕ) ≤ µ(ψ) for every assignment µ over PROP to A. The notation BDI |= ϕ ` ψ
denotes that ϕ ` ψ is valid in all BDIs.

6.2.3. Definition. The algebraic sequent system SBDI consists of the following axioms
and rules:

• Axioms:

(Id) ϕ ` ϕ, (D) ϕ ∧ (ψ ∨ γ) ` (ϕ ∧ ψ) ∨ (ϕ ∧ γ),
(>) ϕ ` >, (⊥) ⊥ ` ϕ, (N>) > ` ϕ→ >, (N⊥) > ` ⊥ → ϕ,

(M1) (ϕ→ ψ) ∧ (ϕ→ γ) ` ϕ→ (ψ ∧ γ),
(M2) (ϕ→ γ) ∧ (ψ→ γ) ` (ϕ ∨ ψ)→ γ,

• Rules:
(M3)

ϕ ` ψ

χ→ ϕ ` χ→ ψ
, (M4)

ϕ ` ψ

ψ→ χ ` ϕ→ χ
,

(∧L)
ϕi ` ψ

ϕ1 ∧ ϕ2 ` ψ
(i = 1, 2), (∧R)

γ ` ϕ γ ` ψ

γ ` ϕ ∧ ψ
,

(∨L)
ϕ ` χ ψ ` χ

ϕ ∨ ψ ` γ
, (∨R)

ψ ` ϕi

ψ ` ϕ1 ∨ ϕ2
(i = 1, 2),

(cut)
ϕ ` ψ ψ ` γ

ϕ ` γ
,

3Here we abuse notation to use mathbb font to denote both a single algebra/frame/model and a class
of algebras, which is clear from context.
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It is easy to see that SBDI is a specialization of LDLE (cf. Definition 2.1.4), and that
by standard algebraic completeness, ϕ ` ψ is provable in SBDI iff BDI |= ϕ ` ψ. Some
extensions of SBDI, strict implication logics extending it, can be obtained by adding
‘characteristic’ sequents. Table 6.1 list some characteristic sequents that are considered
in literature.4 For any sequent system S and a set of sequents Σ, the notation S + Σ

Table 6.1: Some Characteristic Sequents
Name Sequent Literature
(I) q ` p→ p [28]
(Tr) (p→ q) ∧ (q→ r) ` p→ r [28][157, p.44]
(MP) p ∧ (p→ q) ` q [28, 120]
(W) p ` q→ p [28][157, p.34]
(RT) p→ q ` r → (p→ q) [28, 120]
(B) p→ q ` (r → p)→ (r → q) [157, p.32]
(B′) p→ q ` (q→ r)→ (p→ r) [157, p.32]
(C) p→ (q→ r) ` q→ (p→ r) [157, p.32]
(Fr) p→ (q→ p) ` (p→ q)→ (p→ r) [157, p.44]
(W′) p→ (p→ q) ` p→ q [157, p.44]
(Sym) p ` ((p→ q)→ r) ∨ q [120]
(Euc) > ` ((p→ q)→ r) ∨ (p→ q) [120]
(D) > → ⊥ ` ⊥ [120]

stands for the system obtained from S by adding all instances of sequents in Σ as new
axioms. Strict implication logics in Table 6.2 can be obtained using these characteristic
sequents. Some of them are considered in literature.5

Each sequent ϕ ` ψ defines a class of BDIs. Each strict implication logic SBDI +

Σ defines a class of BDIs denoted by Alg(Σ). For example, some subvarieties are
considered in [29]. A BDI (A,→) is called a weak Heyting algebra (WH-algebra) if
the following conditions are satisfied for all a, b, c ∈ A:

(C4) b ≤ a→ a.

(C5) (a→ b) ∧ (b→ c) ≤ (a→ c).

Let WH be the class of all WH-algebras. A wKTσ-algebra is a WH-algebra (A,→)
satisfying the condition a ∧ (a → b) ≤ b for all a, b ∈ A. A basic algebra is a WH-
algebra (A,→) satisfying the condition a ≤ b → a for all a, b ∈ A. Let T and BCA

4These characteristic sequents may have different names or forms in literature. For example, (MP)
is written as p, p→ q ` q where the comma means conjunction. The sequent (Fr) is named by the Frege
axiom (p→ (q→ r))→ ((p→ q)→ (p→ r)).

5These logics are presented in various ways in literature as Hilbert-style systems, natural deduction
systems or sequent systems. The name GKI [120] stands for the Gentzen-style sequent calculus for
the minimal strict implication logic under binary relational semantics which can be embedded into the
minimal normal modal logic K.
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Table 6.2: Some Strict Implication Logics
Name System Literature
SWH, GKI SBDI + (I) + (Tr) [28, 120, 62, 68, 197]
ST SBDI + (MP)
SW SBDI + (W)
SRT SBDI + (RT)
SB SBDI + (B)
SB′ SBDI + (B′)
SC SBDI + (C)
SFR SBDI + (Fr)
SW′ SBDI + (W′)
SSYM SBDI + (Sym)
SEUC SBDI + (Euc)
SBCA ST + (W) [171, 28, 120, 193, 8, 9, 121]
GKTI GKI + (MP) [62, 120]
GK4I GKI + (RT) [62, 120]
GS4I GKTI + (RT) [62, 120]
GKBI GKI + (Sym) [62, 120]
GK5I GKI + (Euc) [120]
GK45I GK5I + (RT) [120]
GKS5I GK45I + (W) [120]
GK4I+ GKI + (W) [120]
GKDI GKI + (D) [62, 120]
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be the classes of all wKTσ-algebras and basic algebras respectively. The variety of
Heyting algebras is a subvariety of BCA, i.e., it is the class of all basic algebras (A,→)
satisfying the condition > → a ≤ a for all a ∈ A (cf. e.g. [9, 6]).

As a corollary of the soundness and completeness of DLE-logics with respect to
their LDLE-algebras, one gets the following theorem immediately:

6.2.4. Theorem. For any strict implication logic SBDI + Σ, an LSI-sequent ϕ ` ψ is
derivable in SBDI + Σ if and only if Alg(Σ) |= ϕ ` ψ.

6.2.2 The expanded language for strict implication logics
There two ways to specialize the language L∗DLE (cf. Section 2.2) and hence the logic
LDLE to the strict implication language: a full and a partial specialization. The full
specialization results a language of bi-intuitionsitic Lambek calculus L∗SI which will
not be explored in this chapter. The partial specialization is to add the connectives
{•,→,←} to LSI and get the language of full Lambek calculus, as we mentioned in the
introduction, denoted by LLC, where the order-types of •,→,← are (1, 1), (∂, 1), (1, ∂)
respectively. Clearly LSI ( LLC ( L

∗
SI. The partial specialization of L∗DLE-algebras to

the language LLC is given in the following definition:

6.2.5. Definition. An algebra A = (A,∧,∨,>,⊥,→, •,←) is called a bounded dis-
tributive lattice-ordered residuated groupoid (BDRG), if (A,∧,∨,>,⊥) is a bounded
distributive lattice, and •,→,← are binary operations on A satisfying the following
residuation law for all a, b, c ∈ A:

(RES) a • b ≤ c iff b ≤ a→ c iff a ≤ c← b.

Let BDRG be the class of all BDRGs.

6.2.6. Definition. The algebraic sequent calculus BDFNL consists of the following ax-
ioms and rules:

• Axioms:
(Id) ϕ ` ϕ, (>) ϕ ` >, (⊥) ⊥ ` ϕ,

(D) ϕ ∧ (ψ ∨ γ) ` (ϕ ∧ ψ) ∨ (ϕ ∧ γ),

• Rules:
(∧L)

ϕi ` ψ

ϕ1 ∧ ϕ2 ` ψ
(i = 1, 2), (∧R)

γ ` ϕ γ ` ψ

γ ` ϕ ∧ ψ
,

(∨L)
ϕ ` γ ψ ` γ

ϕ ∨ ψ ` γ
, (∨R)

ψ ` ϕi

ψ ` ϕ1 ∨ ϕ2
(i = 1, 2),

(Res1)
ϕ • ψ ` γ

ψ ` ϕ→ γ
, (Res2)

ψ ` ϕ→ γ

ϕ • ψ ` γ
,
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(Res3)
ϕ • ψ ` γ

ϕ ` γ ← ψ
, (Res4)

ϕ ` γ ← ψ

ϕ • ψ ` γ
,

(cut)
ϕ ` ψ ψ ` γ

ϕ ` γ
.

6.2.7. Fact. The following monotonicity rules are derivable in BDFNL:

(1)
ϕ ` ψ

ϕ • χ ` ψ • χ
, (2)

ϕ ` ψ

χ • ϕ ` χ • ψ
,

(3)
ϕ ` ψ

χ→ ϕ ` χ→ ψ
, (4)

ϕ ` ψ

ψ→ χ ` ϕ→ χ
.

Proof:
Here we derive only (1) and (3). The remaining rules are derived similarly.

ϕ ` ψ

ψ • χ ` ψ • χ
(Res3)

ψ ` (ψ • χ)← χ
(cut)

ϕ ` (ψ • χ)← χ
(Res4)

ϕ • χ ` ψ • χ

χ→ ϕ ` χ→ ϕ
(Res2)

χ • (χ→ ϕ) ` ϕ ϕ ` ψ
(cut)

χ • (χ→ ϕ) ` ψ
(Res1)

χ→ ϕ ` χ→ ψ

This completes the proof.
�

The interpretation of LLC-sequents in BDRGs is standard, i.e., ` is interpreted as
the lattice order ≤. By BDRG |= ϕ ` ψ we mean that ϕ ` ψ is valid in all BDRGs. An
LLC-supersequent is an expression of the form Φ ⇒ χ ` δ where Φ is a set of LLC-
sequents. We say that Φ ⇒ χ ` δ is derivable in BDFNL if there exists a derivation
of χ ` δ from assumptions in Φ. We say that Φ ⇒ χ ` δ is valid in a BDRG A if
A |= Φ implies A |= χ ` ψ. We use BDRG |= Φ ⇒ χ ` δ to denote that χ ` δ is valid
in all BDRGs. By the Lindenbaum-Tarski construction, one gets the following result
(cf. [25]):

6.2.8. Theorem (strong completeness). For every LLC-supersequent Φ⇒ χ ` δ, Φ⇒

χ ` δ is derivable in BDFNL if and only if BDRG |= Φ⇒ χ ` δ.

6.2.3 Semantic conservativity via canonical extension
In this subsection, we will present general results on the semantic conservativity of
L∗DLE-logics over LDLE-logics. The proofs of the conservativity is by canonical exten-
sions of DLEs, which has been briefly outlined in [109]. As a special case, the Lambek
calculus BDFNL is a conservative extension of the strict implication logic SBDI. In this
subsection we will make use of definitions from Chapter 2.

6.2.9. Lemma. For every L∗DLE-algebra (H,∧,∨,F ∗,G∗), its (∧,∨,>,⊥,F ,G)-reduct
is a normal DLE.
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Proof:
Straightforward consequence of the fact that left adjoints (resp. right adjoints) preserve
existing joins (resp. meets). See [64, Proposition 7.31]. �

How can an LDLE-algebra be extended to an L∗DLE-algebra? This can be done in
the canonical extension Aδ = (Aδ,F Aδ ,GA

δ
) of A. The canonical extension Aδ of the

bounded distributive lattice A is a perfect lattice which allows for defining adjoints.
For each f ∈ FA and 1 ≤ i ≤ n f , define

f ]i [ui] =


∨
{w ∈ Aδ | fi[w] ≤ ui}, if ε f (i) = 1.∧
{w ∈ Aδ | fi[w] ≤ ui}, if ε f (i) = ∂.

For each g ∈ GA and 1 ≤ g ≤ ng, define

g[j[u j] =


∧
{w ∈ Aδ | u j ≤ g j[w]}, if εg( j) = 1.∨
{w ∈ Aδ | u j ≤ g j[w]}, if εg( j) = ∂.

Let F Aδ∗ and GA
δ∗

be extensions of F Aδ and GA
δ

by adding all operators defined in the
above way.

6.2.10. Lemma. The algebra AδE
= (Aδ,F Aδ∗,GA

δ∗
) is a perfect L∗DLE-algebra.

Proof:
It suffices to show the residuation laws. We prove only the case for f ∈ F and ε f (i) = 1.
The remaining cases are similar. By definition, our goal is to show

fi[ui] ≤ w iff ui ≤
∨
{v ∈ Aδ | fi[v] ≤ w}.

The ‘only if’ part is obvious. For the ‘if’ part, assume ui ≤
∨
{v ∈ Aδ | fi[v] ≤ w}.

Then fi[ui] ≤ fi[
∨
{v ∈ Aδ | fi[v] ≤ w}]. By distributivity, one gets fi[ui] ≤

∨
{ fi[v] |

fi[v] ≤ w} ≤ w. �

6.2.11. Theorem. The logic L∗DLE is a conservative extension of LDLE, i.e., for every
LDLE-sequent ϕ ` ψ, ϕ ` ψ is derivable in LDLE if and only if ϕ ` ψ is derivable in
L∗DLE.

Proof:
Assume that ϕ ` ψ is derivable in LDLE. By the completeness of LDLE, ϕ ` ψ is
valid in all DLEs. By Lemma 6.2.9, ϕ ` ψ is also valid in all L∗DLE-algebras. Hence
by the completeness of L∗DLE, ϕ ` ψ is derivable in it. Conversely, assume that the
LDLE-sequent ϕ ` ψ is not derivable in LDLE. Then by the completeness of LDLE with
respect to. the class of DLEs, there exists a DLE A and a variable assignment under
which ϕA � ψA, where ϕA and ψA are values of ϕ and ψ in A under that assignment
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respectively. Consider the canonical extension Aδ of A. Since A is a subalgebra of Aδ,
the sequent ϕ ` ψ is not satisfied in Aδ under the variable assignment ι ◦ v (ι denoting
the canonical embedding A ↪→ Aδ). By Lemma 6.2.10, one gets an L∗DLE-algebra AδE

which refutes ϕ ` ψ. By the completeness of L∗DLE, ϕ ` ψ is not derivable in L∗DLE. �

The minimal logics L∗DLE is in the full language L∗DLE with all adjoints. If the
language LDLE is expanded partially, i.e., with a portion of adjoint pairs, one can also
obtain more general semantic conservativity results the proofs of which are the same
as the proof of Theorem 6.2.11. Consider the language LDLE(F ,G). Let X ⊆ F and
Y ⊆ G. Define X] as the extension of X with right adjoints, and Y[ as the extension of
Y with left adjoints.

6.2.12. Theorem. Let LDLE(F ,G) be a DLE-language, X ⊆ F and Y ⊆ G. The mini-
mal logic L∗DLE(F ∗,G∗) is a conservative extension of the minimal logic LDLE(F ,G,X],Y[)
which is also a conservative extension of the logic LDLE(F ,G).

Let us consider the specialization of Theorem 6.2.12 to the strict implication log-
ic SBDI and the Lambek calculus BDFNL. First, as a corollary of Lemma 6.2.9, the
(∧,∨,⊥,>,→)-reduct of a BDRG is a BDI. Second, the canonical extension of a BDI
(A,→) is the π-extension (Aδ,→π) which is also a BDI (cf. [87, 86]), and we can define
binary operators • and ← on Aδ by setting u • v =

∧
{w ∈ Aδ | v ≤ u →π w} and

u ← v =
∨
{w ∈ Aδ | w • v ≤ u}. As a corollary of Lemma 6.2.10, one gets the

residuation law: for all u, v,w ∈ Aδ, u • v ≤ w iff v ≤ u →π w. Then one can apply
Theorem 6.2.12 immediately to get the following corollary:

6.2.13. Corollary. BDFNL is a conservative extension of SBDI.

6.2.4 Inductive inequalities of strict implication logics
In this subsection, we will specialize the definition of inductive LDLE-inequalities (cf.
[109] and Section 2.5) to the language of strict implication logic. Some terminologies
in this subsection are defined in Section 2.5.

6.2.14. Definition. (cf. Definition 2.5.2) In any signed generation tree, nodes will be
respectively called syntactically right adjoint (SRA), syntactically left residual (SLR),
syntactically right residual (SRR) and ∆-adjoints, according to Table 6.3.

6.2.15. Definition. [Inductive inequalities] (cf. Definition 2.5.3) For any dependency
order <Ω (cf. Definition 2.5.3) on variables p1, . . . pn and any order-type ε ∈ {1, ∂}n (cf.
page 7), the signed generation tree ∗ϕ(p1, . . . pn) (where ∗ ∈ {−,+}) is (Ω, ε)-inductive
if

(1) each ε-critical branch (cf. page 15) ending with leaf node pi is good (cf. Defini-
tion 2.5.2) for each 1 ≤ i ≤ n;
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(2) in each ε-critical branch ending with leaf node pi, every binary SRR-node oc-
curring is of the form h(γ, β) or h(β, γ), where h ∈ {∧,∨,→}, and:

(a) ε∂(γ) ≺ ∗ϕ, and

(b) pk <Ω pi for every pk occurring in γ and for every 1 ≤ k ≤ n.

The inequality ϕ ≤ ψ is called (Ω, ε)-inductive if +ϕ and −ψ are both (Ω, ε)-inductive.
The inequality ϕ ≤ ψ is called inductive if it is (Ω, ε)-inductive for some dependency
order Ω and order-type ε.

Table 6.3: Skeleton nodes and PIA nodes for LSI.

Skeleton PIA
∆-adjoints SRA

+ ∨ ∧

− ∧ ∨

+ ∧

− ∨

SLR SRR
+ ∧

− ∨ →

+ ∨ →

− ∧

6.2.16. Example. Every sequent ϕ ` ψ can be presented as an inequality when ` is
replaced with ≤ due to the algebraic interpretation of `. The inequalities obtained
from Table 6.1 are inductive. For instance, (Fr) is inductive for εp = εp = εr = 1
and p <Ω q <Ω r. Henceforth we do not distinguish “sequent” and “inequality” if no
confusion will arise.

6.2.5 The algorithm ALBA for strict implication logics
In what follows we will specify the algorithm ALBA introduced in Section 2.6 to the
language LSI of strict implication logics. The language L+

LC of the algorithm is defined
as follows:

ϕ ::= p | > | ⊥ | i | m | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ • ϕ) | (ϕ→ ϕ) | (ϕ← ϕ)

where p ∈ AtProp, i ∈ NOM is called nominal, m ∈ CONOM is called conomimal.
This language is interpreted in perfect BDRGs A, where nominals (resp. conominals)
are interpreted as completely join-irreducibles (resp. completely meet-irreducibles) of
A.

An L+
LC-inequality is ϕ ≤ ψ such that ϕ and ψ are L+

LC-formulas. An L+
LC-quasi-

inequality is ϕ1 ≤ ψ1 & . . . & ϕn ≤ ψn ⇒ ϕ ≤ ψ where each ϕi ≤ ψi for 1 ≤ i ≤ n and
ϕ ≤ ψ are L+

LC-inequalities.
The algorithm ALBA is specialized to the language LSI from the general version

in [55, 109]. The algorithm transforms the input LSI-inequalities into equivalent L+
LC
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quasi-inequalities with nominals and conominals only, where propositional variables
are eliminated by the Ackermann rules. The proof of the soundness of ALBA rules in
the language LSI is similar to [55, 48] and hence omitted. ALBA receives the input
inequality ϕ ≤ ψ and runs in three stages:

First stage: preprocessing and first approximation stage. ALBA preprocesses
ϕ ≤ ψ by applying the following rules exhaustively in +ϕ and −ψ:

(1) (a) Push down +∧ towards variables by distributing over children node labelled
with +∨ which are Skeleton nodes;

(b) Push down −∨ towards variables by distributing over children node labelled
with −∧ which are Skeleton nodes;

(c) Push down − → towards variables by distributing over its second (resp.
first) child node labelled with −∧ (resp. +∨) which are Skeleton nodes.

(2) Splitting rules:
α ≤ β ∧ γ

α ≤ β α ≤ γ

α ∨ β ≤ γ

α ≤ γ β ≤ γ

(3) Monotone and antitone variable-elimination rules:

α(p) ≤ β(p)
α(⊥) ≤ β(⊥)

β(p) ≤ α(p)
β(>) ≤ α(>)

where β(p) is positive in p and α(p) is negative in p.

Let Preprocess(ϕ ≤ ψ) := {ϕi ≤ ψi | 1 ≤ i ≤ n} be the set of inequalities obtained
by applying the above rules exhaustively. Then the following rule (which is called the
first approximation rule) is applied to each ϕi ≤ ψi in Preprocess(ϕ ≤ ψ):

ϕ ≤ ψ

i0 ≤ ϕ ψ ≤ m0

where i0 is a nominal and m0 is a conominal. After the first approximation rule, for
each inequality ϕi ≤ ψi ∈ Preprocess(ϕ ≤ ψ), the algorithm produces a system of
inequalities {i0 ≤ ϕi, ψi ≤ m0}.

Second stage: reduction and elimination stage. The present stage aims at elimi-
nating all propositional variables from each system obtained in the previous stage. The
variables are eliminated by the so called Ackermann rules, and the other rules in this
stage are applied in order to reach the shape to apply the Ackermann rule.

Splitting rules.
α ≤ β ∧ γ

α ≤ β α ≤ γ

α ∨ β ≤ γ

α ≤ γ β ≤ γ

Residuation rule.
ψ ≤ ϕ→ γ
ϕ • ψ ≤ γ
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Approximation rules.

ϕ→ ψ ≤ m
i ≤ ϕ i→ ψ ≤ m

ϕ→ ψ ≤ m
ψ ≤ n ϕ→ n ≤ m

i ≤ ϕ • ψ
j ≤ ϕ i ≤ j • ψ

i ≤ ϕ • ψ
j ≤ ψ i ≤ ϕ • j

where the variables i, j (resp. m,n) are nominals (resp. conominals). The nominal
j and conominal n must be fresh (cf. page 19).

Ackermann rules. These two rules aims at eliminating propositional variables,
which operates on the whole system rather than a single inequality.

&{β j(p) ≤ γ j(p) | 1 ≤ j ≤ m}& &{αi ≤ p | 1 ≤ i ≤ n} ⇒ i0 ≤ m0 (RAR)
&{β j(

∨n
i=1 αi) ≤ γ j(

∨n
i=1 αi) | 1 ≤ j ≤ m} ⇒ i0 ≤ m0

where γ1(p), . . . , γm(p) are negative in p, β1(p), . . . , βm(p) are positive in p and p does
not occur in α1, . . . , αn.

&{β j(p) ≤ γ j(p) | 1 ≤ j ≤ m}& &{p ≤ αi | 1 ≤ i ≤ n} ⇒ i0 ≤ m0 (LAR)
&{β j(

∧n
i=1 αi) ≤ γ j(

∧n
i=1 αi) | 1 ≤ j ≤ m} ⇒ i0 ≤ m0

where γ1(p), . . . , γm(p) are positive in p, β1(p), . . . , βm(p) are negative in p, and p does
not occur in α1, . . . , αn.

Third stage: output stage. If for some systems, some variables cannot be elimi-
nated, then ALBA halts and reports failure. Otherwise, every system {i0 ≤ ϕi, ψi ≤ m0}

has been reduced to a system Reduce(ϕi ≤ ψi) with no propositional variables. Let
ALBA(ϕ ≤ ψ) := {&[Reduce(ϕi ≤ ψi)] ⇒ i0 ≤ m0 | ϕi ≤ ψi ∈ Preprocess(ϕ ≤ ψ)},
which contains no propositional variables. ALBA outputs ALBA(ϕ ≤ ψ) and termi-
nates. The following theorem is a generalization of [55, Theorem 10.11], and hence
the proof of it is omitted.

6.2.17. Theorem. For the language LSI, its corresponding version of ALBA succeeds
on all inductive LSI-inequalities, which are hence canonical, and their correspond-
ing logics are complete with respect to the elementary classes of relational structures
defined by their first-order correspondents.

6.2.18. Example. The running of ALBA on the inductive LSI-sequents (inequalities) in
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Table 6.1 will produce pure inequalities as below:

Sequent Output
(I) ∀ij(j • i ≤ j)
(Tr) ∀ij(j • i ≤ (j • i) • i)
(MP) ∀i(i ≤ i • i)
(W) ∀ij(i • j ≤ j)
(RT) ∀ijk(i • (j • k) ≤ i • k)
(B) ∀ijk(i • (j • k) ≤ (i • j) • k)
(B′) ∀ijk(i • (j • k) ≤ (i • k) • j)
(C) ∀ijk(i • (j • k) ≤ j • (i • k))
(Fr) ∀ijk(i • (j • k) ≤ (i • j) • (i • k))
(W′) ∀ij(j • i ≤ j • (j • i))
(Sym) ∀ij∀mn(j • i ≤ m & i→ n ≤ m⇒ j ≤ m)
(Euc) ∀ij∀mn0n1(j • i ≤ n0 & i→ n1 ≤ m & j→ n0 ≤ m⇒ > ≤ m)
(D) > → ⊥ ≤ ⊥

Here we show only the running of ALBA on (p → q) ∧ (q → r) ≤ p → r which
proceeds as below:

(p→ q) ∧ (q→ r) ≤ p→ r (First Approximation)
⇔ ∀i∀m(i ≤ (p→ q) ∧ (q→ r) & p→ r ≤ m⇒ i ≤ m) (Spliting)
⇔ ∀i∀m(i ≤ p→ q & i ≤ q→ r & p→ r ≤ m⇒ i ≤ m) (Residuation)
⇔ ∀i∀m(p • i ≤ q & q • i ≤ r & p→ r ≤ m⇒ i ≤ m) (Approximation)
⇔ ∀ij∀m(p • i ≤ q & q • i ≤ r & j ≤ p & j→ r ≤ m⇒ i ≤ m) (RAR)
⇔ ∀ij∀m(j • i ≤ q & q • i ≤ r & j→ r ≤ m⇒ i ≤ m) (RAR)
⇔ ∀ij∀m((j • i) • i ≤ r & j→ r ≤ m⇒ i ≤ m) (RAR)
⇔ ∀ij∀m(j→ ((j • i) • i) ≤ m⇒ i ≤ m)

The output pure quasi-inequality is equivalent to ∀ij(j • i ≤ (j • i) • i).

The algorithm ALBA does not only work for the distributive setting but also in
general work for non-distributive lattice setting [57]. Hence the algorithm ALBA can
be specialized to the full Lambek calculus. For the {•,←,→}-fragment of full Lam-
bek calculus, Kurtonina [135] presented a set of Sahlqvist formulas from which the
first-order correspondents can be calculated by the Sahlqvist-van Benthem quantifier
elimination procedure. Kurtonina’s definition of Sahlqvist formulas is narrower than
inductive inequalities provided by ALBA. For example, The (Fr) inequality is inductive
but not Sahlqvist. This remark is also discussed in [57, Example 3.8].

6.2.6 First-order correspondents
Given an inductive LSI-inequality ϕ ≤ ψ, the running of ALBA on it will output a pure
quasi-inequality, namely, a quasi-inequality in which no propositional variable occurs.
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Then the first-order correspondent of ϕ ≤ ψ is obtained when the Kripke semantics
for L+

LC is given such that L+
LC-terms are translated into a first-order language. For

calculating the first-order correspondents of inductive LSI-inequalities, there are two
kinds of Kripke semantics for the languageL+

LC (i.e., the extension ofLLC with normals
and conominals): binary and ternary relational semantics.

Binary relational semantics. The binary relational semantics for LLC is given in
ordinary Kripke structures. A binary frame is a pair F = (W,R) where W is a non-
empty set and R is a binary relation on W. A binary model is a triple M = (W,R,V)
where (W,R) is a binary frame and V : Prop∪NOM∪CONOM→ P(W) is a valuation
such that (i) for each i ∈ NOM, V(i) = {w} for some w ∈ W; and (ii) for each m ∈
CONOM, V(m) = W − {u} for some u ∈ W. Note that here there are no additional
conditions assumed for the binary relation or the valuation. For any LSI-formula ϕ,
the satisfiability relation M,w |= ϕ under the binary relational semantics is defined
inductively as follows:

(1) M,w |= p iff w ∈ V(p).

(2) M,w |= i iff V(i) = {w}.

(3) M,w |= m iff V(m) = W − {w}.

(4) M,w 6|= ⊥.

(5) M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ.

(6) M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ.

(7) M,w |= ϕ→ ψ iff ∀u ∈ W(wRu & M, u |= ϕ⇒ M, u |= ψ).

(8) M,w |= ϕ← ψ iff ∀u ∈ W(uRw & M, u |= ψ⇒ M,w |= ϕ).

(9) M,w |= ϕ • ψ iff ∃u ∈ W(uRw & M,w |= ϕ & M, u |= ψ).

Without the semantic clauses for nominals, conominals, ← and •, we get the binary
relation semantics for strict implication language [28].6 The algorithm ALBA provides
a general correspondence theory for the issue of the frame definability by sequents
raised in [28].

For a binary frame F = (W,R), the dual algebra of F is defined as F+ = (P(W),∪,∩,∅,W,→2
R

, •2
R,←

2
R) where→2

R,←2
R and •2

R are binary operations defined on P(W) by setting

(1) X →2
R Y = {w ∈ W | R(w) ∩ X ⊆ Y};

(2) X ←2
R Y = {w ∈ W | ∀u(uRw & u ∈ Y ⇒ w ∈ X)};

6 In [28], the least weak strict implication logic wKσ is introduced using sequents and shown to be
strongly complete with respect to the class of all frames under the binary relational semantics. It is not
hard to check that the algebraic sequent system SWH is equivalent to wKσ.
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(3) X •2
R Y = {w ∈ W | ∃u(Ruw & w ∈ X & u ∈ Y)};

It is easy to prove that the algebra F+ is a BDRG. As [55, Theorem 8.1], ALBA is also
correct on binary relational frames. Then we can calculate the first-order correspon-
dents of inductive LSI-sequents under the binary relational semantics.

6.2.19. Example. The outputs of ALBA running on the inductive inequalities in Ex-
ample 6.2.18 can be transformed into first-order correspondents of the corresponding
inductive sequents under the binary relational semantics as below:

Sequent Binary Relational Correspondent
(I) ∀xy(Ryx ⊃ x = x)
(Tr) ∀xy(Ryx ⊃ Ryx)
(MP) ∀xRxx
(W) ∀xy(Ryx ⊃ x = y)
(RT) ∀xyz(Rxy ∧ Ryz ⊃ Rxz)
(B) ∀xyz(Ryx ∧ Rzy ⊃ Rzx ∧ Ryx)
(B′) ∀xyz(Ryx ∧ Rzy ⊃ Ryx ∧ Rzx)
(C) ∀xyz(Ryx ∧ Rzy ⊃ Rxx ∧ x = y ∧ Rzx)
(Fr) ∀xyz(Ryx ∧ Rzy ⊃ Rxx ∧ Ryx ∧ Rzx)
(W′) ∀xy(Ryx ⊃ Rxx)
(Sym) ∀xy(Rxy ⊃ Ryx)
(Euc) ∀xyz(Rxy ∧ Rxz ⊃ Ryz)
(D) ∀x∃yRxy

Here we calculate only the first-order binary relational correspondents of (Tr) and
(Sym).

(1) The output of running ALBA on (Tr) is the pure inequality ∀ij(j • i ≤ (j • i) • i).
Note that z ∈ {x} •2 {y} if and only if Ryz and z = x.

∀ij(j • i ≤ (j • i) • i)⇔ ∀xy({x} •2 {y} ⊆ ({x} •2 {y}) •2 {y})

⇔ ∀xyz(z ∈ {x} •2 {y} ⊃ z ∈ ({x} •2 {y}) •2 {y})

⇔ ∀xyz(Ryz ∧ z = x ⊃ ∃u(Ruz ∧ z ∈ {x} •2 {y} ∧ u = y))
⇔ ∀xyz(Ryz ∧ z = x ⊃ Ryz ∧ Ryz ∧ z = x)
⇔ ∀xyz(Ryz ∧ z = x ⊃ Ryz ∧ z = x)

which is a tautology. (Tr) is in fact derivable in SWH, and the system SWH is strongly
complete with respect to the class of all binary frames ([28]).

(2) The output of running ALBA on (Sym) is the pure quasi-inequality ∀ij∀mn(j •
i ≤ m & i → n ≤ m ⇒ j ≤ m). Let j, i,m,n be interpreted as {x}, {y}, {u}c, {v}c
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respectively where (.)c is the complement operation. The calculation is as below:

j • i ≤ m⇔ {x} •2 {y} ⊆ {u}c

⇔ ∀z(Ryz ∧ z = x ⊃ z , u)
⇔ Ryx ⊃ x , u

i→ n ≤ m⇔ ∀w(w ∈ {y} → {v}c ⊃ w , u)
⇔ ∀w(∀w0(Rww0 ∧ w0 = y ⊃ w0 , v) ⊃ w , u)
⇔ ∀w((Rwy ⊃ y , v) ⊃ w , u)
⇔ ∀w(w = u ⊃ Rwy ∧ y = v)
⇔ Ruy ∧ y = v

∀ij∀mn(j • i ≤ m & i→ n ≤ m⇒ j ≤ m)
⇔ ∀xyuv((Ryx ⊃ x , u) ∧ Ruy ∧ y = v ⊃ x , u)
⇔ ∀xyu((Ryx ⊃ x , u) ∧ Ruy ⊃ x , u)
⇔ ∀xyu(x = u ⊃ (Ruy ⊃ Ryx ∧ x = u))
⇔ ∀xy(Rxy ⊃ Ryx)

The sequent (Sym) defines the symmetry condition on binary frames.

Ternary relational semantics. The strict implication can be viewed as a binary
modal operator added to distributive lattices, and hence there is a ternary relational se-
mantics for it (cf. [21, 70]). A ternary frame is a frame F = (W, S ) where S is a ternary
relation on W. A ternary model is a ternary frame with a valuation. The satisfiability
relation M,w 
 ϕ for the language LLC under the ternary relational semantics is de-
fined as usual. In particular, the semantic clauses for implications and the product are
the following (cf. [135]):

(1) M,w 
 ϕ→ ψ iff ∀u, v(S vuw &M, u 
 ϕ ⇒ M, v 
 ψ).

(2) M,w 
 ϕ← ψ iff ∀u, v(S vwu &M, u 
 ψ ⇒ M, v 
 ϕ).

(3) M,w 
 ϕ • ψ iff ∃u, v(S wuv &M, u 
 ϕ &M, v 
 ψ).

Given a ternary frameF = (W, S ), the dual ofF is defined asF∗ = (P(W),∪,∩,∅,W,→3
S

, •3
S ,←

3
S ) where→3

S ,←3
S and •3

S are binary operations defined on P(W) by

(1) X →3
S Y = {w ∈ W | ∀uv(S vuw & u ∈ X ⇒ v ∈ Y)};

(2) X ←3
S Y = {w ∈ W | ∀uv(S vwu & u ∈ Y ⇒ v ∈ X};

(3) X •3
S Y = {w ∈ W | ∃uv(S wuv & u ∈ X & v ∈ Y)}.

It is easy to check that F∗ is a BDRG. Then under the ternary relational semantics one
can calculate the first-order correspondents of inductive sequents.
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6.2.20. Example. As Example 6.2.19, we present the first-order correspondents of these
inductive sequents under the ternary relational semantics as below:

Sequent Ternary Relational Correspondent
(I) ∀xyz(S zxy ⊃ z = x)
(Tr) ∀xyz(S zxy ⊃ ∃u(S zuy ∧ S uxy))
(MP) ∀xS xxx
(W) ∀xyz(S zyx ⊃ z = y)
(RT) ∀xyzuv(S uxv ∧ S vyz ⊃ S uxz)
(B) ∀xyzuw(S uxw ∧ S wyz ⊃ ∃v(S uvz ∧ S vxy))
(B′) ∀xyzuw(S uxw ∧ S wyz ⊃ ∃v(S uvy ∧ S vxz))
(C) ∀xyzuw(S uxw ∧ S wyz ⊃ ∃v(S uyv ∧ S vxz))
(Fr) ∀xyzuw(S uxw ∧ S wyz ⊃ ∃v0v1(S uv0v1 ∧ S v0xy ∧ S v1xz))
(W′) ∀xyz(S uxy ⊃ ∃u(S zxu ∧ S uxy))
(Sym) ∀xyv(S vyx ⊃ S xxy)
(Euc) ∀xyzuv(S uxz ∧ S uyz ⊃ S vxz)
(D) ∀x∃yzS zyx

Here we calculate only the first-order ternary relational correspondents of (Tr) and
(Sym). Note that z ∈ {x} •3 {y} if and only if S zxy.

∀ij(j • i ≤ (j • i) • i) ⇔ ∀xy({x} •3 {y} ⊆ ({x} •3 {y}) •3 {y})

⇔ ∀xyz(z ∈ {x} •3 {y} ⊃ z ∈ ({x} •3 {y}) •3 {y})

⇔ ∀xyz(S zxy ⊃ ∃uv(S zuv ∧ u ∈ ({x} •3 {y}) ∧ v ∈ {y}))
⇔ ∀xyz(S zxy ⊃ ∃uv(S zuv ∧ S uxy ∧ v ∈ {y}))
⇔ ∀xyz(S zxy ⊃ ∃u(S zuy ∧ S uxy)).

The result is not a tautology. The sequent (Tr) defines a special class of ternary rela-
tional frames.

(2) For (Sym), let j, i,m,n be interpreted as {x}, {y}, {u}c, {v}c respectively where (.)c
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is the complement operation. The calculation is as below:

j • i ≤ m⇔ {x} •3 {y} ⊆ {u}c

⇔ ∀z(S zxy ⊃ z , u)
⇔ ∀z(z = u ⊃ ∼ S zxy)
⇔ ∼ S uxy

i→ n ≤ m⇔ ∀w(w ∈ {y} → {v}c ⊃ w , u)
⇔ ∀w(∀w0w1(S w1w0w ∧ w0 = y ⊃ w1 , v) ⊃ w , u)
⇔ ∀w(∀w1(S w1yw ⊃ w1 , v) ⊃ w , u)
⇔ ∀w(∀w1(w1 = v ⊃ ∼ S w1yw) ⊃ w , u)
⇔ ∀w( ∼ S vyw ⊃ w , u)
⇔ ∀w(w = u ⊃ S vyw)
⇔ S vyu

∀ij∀mn(j • i ≤ m & i→ n ≤ m⇒ j ≤ m)
⇔ ∀xyuv(∼ S uxy ∧ S vyu ⊃ x , u)
⇔ ∀xyuv(x = u ⊃ (S uxy∨ ∼ S vyu))
⇔ ∀xyv(S vyx ⊃ S xxy)

The sequent (Sym) defines ternary frames satisfying ∀xyv(S vyx ⊃ S xxy).

6.3 Algebraic correspondence: an application of ALBA

The algorithm ALBA [48, 55] is essentially a calculus for correspondence between
non-classical logic and first-order logic. It is used for obtaining analytic rules in dis-
play calculi for DLE-logics [109]. For the main purpose of the present chapter, we
will use ALBA in a modified form, i.e., the Ackermann based calculus ALC based on
BDFNL, as a tool for obtaining analytic rules from certain axioms in the strict impli-
cation logic such that Gentzen-style cut-free sequent calculi will be constructed in the
next section. The calculus ALC is also a calculus designed for correspondence, not
correspondence between DLE-language and first-order language over Kripke frames,
but correspondence over BDRGs between the language LSI and the language L• built
from propositional variables and constants >,⊥ using only the operator • of produc-
t. The language L• is quite natural because many properties of the product, e.g. the
associativity, commutativity, contraction and weakening, can be defined in terms of
L•-sequents.

Let us start from a motivating example. The logic SWH for weak Heyting algebras
is obtained from SBDI by adding the inductive sequents (Tr) (p→ q)∧ (q→ r) ` p→ r
and (I) q ` p → p. Obviously, the logic SWH can be conservatively extended to the
extension of BDFNL with all instances of (Tr) and (I). From proof-theoretic point of
view, we need to know which structural rules the additional axioms can be equivalently
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transformed into if there exists.7 In fact, in BDFNL, one can prove that (I) is equivalent
to (wl) p • q ` p, and that (Tr) is equivalent to (tr) p • s ` (p • s) • s. Then it is
easy to transform the sequents (wl) and (tr) into analytic rules as we will show in the
next section. Here we are in fact saying that two sequents define the same class of
BDRGS. Formally, we say that a sequent ϕ ` ψ algebraically corresponds to ϕ′ ` ψ′

over BDRGs when they define the same class of BDRGs.

6.3.1. Example. The fact that the sequent (I) algebraically corresponds to (wl) is fol-
lows immediately from the residuation law. Now we prove that the sequent (Tr) alge-
braically corresponds to (tr). Let A = (A,→, •,←) be any BDRG. We need to show
∀abd ∈ A[(a→ b)∧ (b→ d) ≤ a→ d] iff ∀ac ∈ A[a • c ≤ (a • c) • c]. One proof is as
follows:

∀abd[(a→ b) ∧ (b→ d) ≤ a→ d]
(I) ⇔ ∀abcd[c ≤ a→ b & c ≤ b→ d ⇒ c ≤ a→ d]

(II) ⇔ ∀abcd[a • c ≤ b & b • c ≤ d ⇒ a • c ≤ d]
(III) ⇔ ∀acb[a • c ≤ b⇒ a • c ≤ b • c]
(IV) ⇔ ∀ac[a • c ≤ (a • c) • c].

The steps (I) and (III) are obvious. The step (II) is by residuation in BDRGs. For the
‘if’ part of step (IV), assume that ∀ac[a• c ≤ (a• c)• c]. Let b ∈ A and a• c ≤ b. Then
one gets (a • c) • c ≤ b • c. By the assumption, one gets a • c ≤ b • c. The ‘only if’ part
is the instantiation of the universal quantifier.

For the algebraic correspondence, we will not take first-order language but L• as
the corresponding language of LSI. Nominals and conominals will not be needed.
Instead, we introduce a calculus ALC in which propositional variables will play the
role of nominals or comonimals in ALBA. The calculus ALC will be defined using
supersequent rules of the form

Φ⇒ ϕ ` ψ

Φ′ ⇒ ϕ′ ` ψ′
(r).

We say that (r) is valid in BDRG if Φ′ ⇒ ϕ′ ` ψ′ is valid in all BDRGs validating
Φ⇒ ϕ ` ψ.

6.3.2. Definition. The Ackermann lemma based calculus ALC based on BDFNL con-
sists of the following rules:

(1) Splitting rules:

γ ` ϕ ∧ ψ,Φ⇒ χ ` δ
(∧S)

γ ` ϕ, γ ` ψ,Φ⇒ χ ` δ

ϕ ∨ ψ ` γ,Φ⇒ χ ` δ
(∨S)

ϕ ` γ, ψ ` γ,Φ⇒ χ ` δ

7 In [157, Section 2.5], some contraction rules are shown to guarantee certain axioms. For exam-
ple, (I) follows from the weakening rule X · Y ⇒ X, and (Tr) follows from Restall’s contraction rule
(CSyll) X; Y ⇒ (X; Y); Y .
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(2) Residuation rules:

ψ ` ϕ→ γ,Φ⇒ χ ` δ
(RL1)

ϕ • ψ ` γ,Φ⇒ χ ` δ

ϕ ` γ ← ψ,Φ⇒ χ ` δ
(RL2)

ϕ • ψ ` γ,Φ⇒ χ ` δ

Φ⇒ ψ ` ϕ→ γ
(RR1)

Φ⇒ ϕ • ψ ` γ

Φ⇒ ϕ ` γ ← ψ
(RR2)

Φ⇒ ϕ • ψ ` γ

(3) Approximation rules:

Φ⇒ ϕ ` ψ
(Ap1)

p ` ϕ,Φ⇒ p ` ψ
Φ⇒ ϕ ` ψ

(Ap2)
ψ ` p,Φ⇒ ϕ ` p

ϕ→ ψ ` γ,Φ⇒ χ ` δ
(→Ap1)

p ` ϕ, p→ ψ ` γ,Φ⇒ χ ` δ

ϕ→ ψ ` γ,Φ⇒ χ ` δ
(→Ap2)

ψ ` p, ϕ→ p ` γ,Φ⇒ χ ` δ

γ ` ϕ→ ψ,Φ⇒ χ ` δ
(→Ap3)

ϕ ` p, γ ` p→ ψ,Φ⇒ χ ` δ

γ ` ϕ→ ψ,Φ⇒ χ ` δ
(→Ap4)

p ` ψ, γ ` ϕ→ p,Φ⇒ χ ` δ

ϕ ` ψ • γ,Φ⇒ χ ` δ
(•Ap1)

p ` ψ, ϕ ` p • γ,Φ⇒ χ ` δ

ϕ ` ψ • γ,Φ⇒ χ ` δ
(•Ap2)

p ` γ, ϕ ` ψ • p,Φ⇒ χ ` δ

ϕ • ψ ` γ,Φ⇒ χ ` δ
(•Ap3)

ϕ ` p, p • ψ ` γ,Φ⇒ χ ` δ

ϕ • ψ ` γ,Φ⇒ χ ` δ
(•Ap4)

ψ ` p, ϕ • p ` γ,Φ⇒ χ ` δ

ϕ ∧ ψ ` γ,Φ⇒ χ ` δ
(∧Ap5)

ϕ ` p, p ∧ ψ ` γ,Φ⇒ χ ` δ

ϕ ∧ ψ ` γ,Φ⇒ χ ` δ
(∧Ap6)

ψ ` p, ϕ ∧ p ` γ,Φ⇒ χ ` δ

ϕ ` ψ ∨ γ,Φ⇒ χ ` δ
(∨Ap1)

p ` ψ, ϕ ` p ∨ γ,Φ⇒ χ ` δ

ϕ ` ψ ∨ γ,Φ⇒ χ ` δ
(∨Ap2)

p ` γ, ϕ ` ψ ∨ p,Φ⇒ χ ` δ

where p is a fresh variable, i.e., a variable which does not occur in previous
derivation.

(4) Ackermann rules:

ϕ1 ` p, . . . , ϕn ` p,Φ,Φ′ ⇒ χ ` δ
(RAck)

Φ[
∨n

i=1 ϕi/p],Φ′ ⇒ (χ ` δ)∗

where (i) p does not occur in Φ′ or ϕi for 1 ≤ i ≤ n; (ii) Φ = {ψ j ` γ j |

ψ j(+p), γ j(−p), 1 ≤ j ≤ m} and Φ[
∨n

i=1 ϕi/p] = {ψ j[
∨n

i=1 ϕi/p] ` γ j[
∨n

i=1 ϕi/p] |
ψ j ` γ j ∈ Φ}; and (iii) either p does not occur in χ ` δ and (χ ` δ)∗ = χ ` δ, or
χ ` δ is positive in p and (χ ` δ)∗ = χ[

∨n
i=1 ϕi/p] ` δ[

∨n
i=1 ϕi/p].

p ` ϕ1, . . . , p ` ϕn,Φ,Φ
′ ⇒ χ ` δ

(LAck)
Φ[
∧n

i=1 ϕi/p],Φ′ ⇒ (χ ` δ)∗

where (i) p does not occur in Φ′ or ϕi for 1 ≤ i ≤ n; (ii) Φ = {ψ j ` γ j |

ψ j(−p), γ j(+p), 1 ≤ j ≤ m} and Φ[
∧n

i=1 ϕi/p] = {ψ j[
∧n

i=1 ϕi/p] ` γ j[
∧n

i=1 ϕi/p] |
ψ j ` γ j ∈ Φ}; and (iii) either p does not occur in χ ` δ and (χ ` δ)∗ = x ` δ, or
χ ` δ is negative in p and (χ ` δ)∗ = χ[

∧n
i=1 ϕi/p] ` δ[

∧n
i=1 ϕi/p].
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The double line in above rules means that the above and the below supersequents
can be derived from each other. A supersequent rule (r) is said to be derivable in ALC
if there is a derivation of the conclusion from the premiss of (r) using only rules in
ALC.

6.3.3. Theorem (Correctness). All rules in ALC are valid in BDRG.

Proof:
The proof is routine. For details, see e.g. [55].

�

Given a set of LSI-sequents Φ, let Alg(Φ) and Alg+(Φ) be the class of all BDIs and
the class of all BDRGs validating all sequents in Φ respectively. Similarly, given a set
of L•-sequents Ψ, let Alg+(Ψ) be the class of all BDRGs validating all sequents in Ψ.
Obviously, an LSI-sequent ϕ ` ψ corresponds to an L•-sequent ϕ′ ` ψ′ over BDRGs if
and only if Alg+(ϕ ` ψ) = Alg+(ϕ′ ` ψ′).

6.3.4. Proposition. Given an LSI-sequent ϕ ` ψ and an L•-sequent χ ` δ, if the rule

⇒ ϕ ` ψ

⇒ χ ` δ
(r)

is derivable in ALC, then ϕ ` ψ algebraically corresponds to χ ` δ over BDRGs.

Proof:
Assume that the rule (r) is derivable in ALC. By the correctness of ALC, the premiss
ϕ ` ψ and the conclusion χ ` δ defines the same BDRGs, i.e., Alg+(ϕ ` ψ) = Alg+(ϕ′ `
ψ′).

�

By Proposition 6.3.4, one obtains a proof-theoretic tool for algebraic correspon-
dence over BDRGs between the languages LSI and L•.

6.3.5. Example. Some LSI-sequents (inequalities) in Table 6.1 and their algebraic cor-
respondents in L• are listed in Table 6.4.

(Tr) One proof is as follows:

⇒ (p→ q) ∧ (q→ r) ` (p→ r)
(AAp1)

s ` (p→ q) ∧ (q→ r)⇒ s ` p→ r
(∧S)s ` p→ q, s ` q→ r ⇒ s ` p→ r

(RL1, RR1)p • s ` q, q • s ` r ⇒ p • s ` r
(RAck)p • s ` q⇒ p • s ` q • s

(RAck)
⇒ p • s ` (p • s) • s

Other pairs of corresponding sequents can be proved similarly. See Appendix 6.6.
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Table 6.4: Some Algebraic Correspondents

LSI-sequent L•-sequent
(I) q ` p→ p (wl) p • q ` p
(Tr) (p→ q) ∧ (q→ r) ` p→ r (tr) p • s ` (p • s) • s
(MP) p ∧ (p→ q) ` q (ct) p ` p • p
(W) p ` q→ p (wr) q • p ` p
(RT) p→ q ` r → (p→ q) (rt) p • (r • s) ` p • s
(B) p→ q ` (r → p)→ (r → q) (b) r • (s • t) ` (r • t) • s
(B′) p→ q ` (q→ r)→ (p→ r) (b′) p • (t • s) ` (p • s) • t
(C) p→ (q→ r) ` q→ (p→ r) (c) p • (q • s) ` q • (p • s)
(Fr) p→ (q→ r) ` (p→ q)→ (p→ r) ( f r) p • (u • s) ` (p • u) • (p • s)
(W′) p→ (p→ q) ` p→ q (w′) p • r ` p • (p • r)

6.3.6. Remark. Some inductive LSI-sequents have algebraic correspondents in L• us-
ing ALC. But it is not clear whether all inductive sequents in LSI have algebraic cor-
respondents in L•. Consider the sequents (Sym), (Euc) and (D). Our conjecture is that
these sequents never correspond to any L•-sequents. Conversely, we conjecture that
not all L•-sequents have their algebraic correspondents in LSI. Consider the inverse of
(tr) in Table 6.4. We start from (p • s) • s ` p • s and apply ALC. The first step is to
use approximation rule, and we get

p • s ` q⇒ (p • s) • s ` q

Using residuation rules, we get

s ` p→ q⇒ s ` (p • s)→ q

The next step is to consider using the left Ackermann rule because the term p • s on
the right hand side takes a negative position. Then we have

t ≤ p • s, s ` p→ q⇒ s ` t → q

Then there is no way to continue ALC. It is rather likely that the sequent (p•s)•s ` p•s
has no algebraic correspondent in LSI. The general question on the expressive power
of ALC will be explored in future work.

Let Φ be a set of LSI-sequents and Ψ a set of L•-sequents. We use the notation
Φ ≡ALC Ψ to denote that Ψ consists of L•-sequents obtained from sequents in Φ using
ALC. Let SBDI(Φ) be the algebraic sequent system obtained from SBDI by adding all
instances of sequents in Φ as axioms. Similarly, let BDFNL(Ψ) be the algebraic sequent
system obtained from BDFNL by adding all instances of sequents in Ψ as axioms.
Clearly SBDI(Φ) is sound and complete with respect to Alg(Φ), and BDFNL(Ψ) is sound
and complete with respect to Alg+(Ψ).
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6.3.7. Lemma. Let Φ be a set of inductive LSI-sequents and Ψ a set of L•-sequents.
Assume Φ ≡ALC Ψ. For every algebra A in Alg+(Ψ), its (∧,∨,⊥,>,→)-reduct is an
algebra in Alg(Φ).

Proof:
Let A ∈ Alg+(Ψ). Then A |= Ψ. By Φ ≡ALC Ψ, one gets A |= Φ. Hence the
(∧,∨,⊥,>,→)-reduct of A is an algebra in Alg(Φ).

�

6.3.8. Lemma. Let Φ be a set of inductive LSI-sequents and Ψ a set of L•-sequents.
Assume Φ ≡ALC Ψ. For every algebra A = (A,→) in Alg(Φ), its canonical extension
Aδ = (Aδ,→π, •,←) is in Alg+(Ψ).

Proof:
Obviously, Aδ is a BDRG. Moreover, (Aδ,→π) ∈ Alg(Φ) because every inductive se-
quent in Φ is canonical. By Φ ≡ALC Ψ, one gets Aδ |= Ψ.

�

By Lemma 6.3.7 and Lemma 6.3.8, one gets the following theorem immediately:

6.3.9. Theorem. Let Φ be a set of inductive sequents in L and Ψ a set of L•-sequents.
Assume Φ ≡ALC Ψ. The algebraic sequent BDFNL(Ψ) is a conservative extension of
SBDI(Φ).

6.3.10. Example. Notice that (I) q ` p→ p corresponds to (wl) p•q ` p, and (Tr) (p→
q)∧(q→ r) ` p→ r corresponds to (tr) p•s ` (p•s)•s. Both (I) and (Tr) are inductive
sequents. The algebras defined by (wl) and (tr) are BDRGs satisfying the conditions:
(wl) a•b ≤ a and (tr) a•b ≤ (a•b)•b. We call such algebras residuated weak Heyting
algebras, and the class of such algebras is denoted by RWH. By Theorem 6.3.9, the
algebraic sequent system SRWH is a conservative extension of SWH. For sequents in
Example 6.3.5, one can get similar conservativity results.

6.4 Gentzen-style sequent calculi
In this section, we will first introduce a Gentzen-style cut-free sequent calculus GBDFNL

for BDFNL8, which will be presented by introducing structure operators separately for
connectives ∧ and •. By the conservativity of BDFNL over SBDI, and the subformula
property of GBDFNL, one gets a cut-free sequent calculus for SBDI. Let SBDI(Φ) be
an extension of SBDI with inductive sequents in Φ as axioms which have algebraic

8 The sequent system for BDFNL defined in e.g. [25, 26] does not admit cut elimination. When the
distributivity is added as an axiom, the sequent ϕ ∧ (ψ ∨ (χ ∨ δ)) ` (ϕ ∧ ψ) ∨ ((ϕ ∨ χ) ∨ (ϕ ∧ δ)) cannot
be proved without cut.
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correspondents in L•. One can transform these axioms into analytic rules, and if these
rules which are added to GBDFNL does not effect the subformula property, one gets a
cut-free sequent system for SBDI(Φ) by omitting additional rules for the two additional
operators • and←. Our presentation follows [131].

6.4.1 The sequent calculus GBDFNL

6.4.1. Definition. Let � and ? be structural operators for the product • and ∧ respec-
tively. The set of all structures is defined inductively as follows:

Γ ::= ϕ | (Γ � Γ) | (Γ ? Γ),

where ϕ ∈ LLC. We use Γ,∆,Σ etc. with indexes to denote structures. Each structure Γ

is associated with a term τ(Γ) ∈ LLC defined inductively by

• τ(ϕ) = ϕ, for every ϕ ∈ LLC;

• τ(Γ � ∆) = τ(Γ) • τ(∆);

• τ(Γ ? ∆) = τ(Γ) ∧ τ(∆).

A consecution (sequent) is Γ ` ϕ where Γ is a structure and ϕ is an LLC-formula.

Given a BDRG A and an assingnment µ in A, for any structure Γ, define µ(Γ) =

µ(τ(Γ)). We say that Γ ` ϕ is valid in A if µ(Γ) ≤ µ(ϕ) for every assignment in A.
We use the notation BDRG |= Γ ` ϕ to denote that Γ ` ϕ is valid in every BDRG.
Obviously BDRG |= Γ ` ϕ iff BDRG |= τ(Γ) ` ϕ.

A context is a structure Γ[−] with a single hole − for a structure. Formally, contexts
are defined inductively by the following rule:

Γ[−] ::= [−] | Γ[−] � ∆ | ∆ � Γ[−] | Γ[−] ? ∆ | ∆ ? Γ[−],

where ∆ is a structure. For any context Γ[−] and structure ∆, let Γ[∆] be the structure
obtained from Γ[−] by substituting ∆ for the hole −. For a context Γ[−], let τ(Γ[−]) be
the formula which contains a hole. In particular, let τ([−]) = −.

6.4.2. Definition. The sequent calculus GBDFNL consists of the following axioms and
rules:

• Axioms:
(Id) ϕ ` ϕ, (>) Γ ` >, (⊥) Γ[⊥] ` ϕ,

• Logical rules:

∆ ` ϕ Γ[ψ] ` γ
Γ[∆ � (ϕ→ ψ)] ` γ

(→ `),
ϕ � Γ ` ψ

Γ ` ϕ→ ψ
(` →),
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Γ[ϕ] ` γ ∆ ` ψ

Γ[(ϕ← ψ) � ∆] ` γ
(← `),

Γ � ψ ` ϕ

Γ ` ϕ← ψ
(` ←),

Γ[ϕ � ψ] ` γ
Γ[ϕ • ψ] ` γ

(• `),
Γ ` ϕ ∆ ` ψ

Γ � ∆ ` ϕ • ψ
(` •),

Γ[ϕ? ψ] ` γ
Γ[ϕ ∧ ψ] ` γ

(∧ `),
Γ ` ϕ ∆ ` ψ

Γ ? ∆ ` ϕ ∧ ψ
(` ∧),

Γ[ϕ] ` γ Γ[ψ] ` γ
Γ[ϕ ∨ ψ] ` γ

(∨ `),
Γ ` ϕi

Γ ` ϕ1 ∨ ϕ2
(` ∨)(i = 1, 2),

• Structural rules:

Γ[∆ ? ∆] ` ϕ
Γ[∆] ` ϕ

(?C),
Γ[∆] ` ϕ

Γ[Σ ? ∆] ` ϕ
(?W),

Γ[∆ ? Λ] ` ϕ
Γ[Λ ? ∆] ` ϕ

(?E),
Γ[(∆1 ? ∆2) ? ∆3] ` ϕ
Γ[∆1 ? (∆2 ? ∆3)] ` ϕ

(?As).

A derivation in GBDFNL is an instance of an axiom or a tree of applications of logical
or structural rules. The height of a derivation if the greatest number of successive
applications of rules in it, where an axiom has height 0. A formula with the connective
in a logical rule is called the principal formula of that rule. A sequent Γ ` ϕ is derivable
in GBDFNL if there is a derivation ending with Γ ` ϕ in GBDFNL. A rule of sequents is
derivable in GBDFNL if the conclusion is derivable whenever the premisses are derivable
in GBDFNL.

6.4.3. Fact. The following structural rules are derivable in GBDFNL:

(?W′)
Γ[∆] ` ϕ

Γ[∆ ? Σ] ` ϕ
, (?As′)

Γ[∆1 ? (∆2 ? ∆3)] ` ϕ
Γ[(∆1 ? ∆2) ? ∆3] ` ϕ

.

We will now prove the admissibility of cut rule in GBDFNL. The standard cut rule
for a ‘deep inference’ system using contexts with a hole is the following:

∆ ` ϕ Γ[ϕ] ` ψ
(cut)

Γ[∆] ` ψ

Consider the cut in which the right premiss is obtained by (?C) and the left premiss is
an axiom (>):

∆ ` >

Γ[>? >] ` ψ
(?C)

Γ[>] ` ψ
(cut)

Γ[∆] ` ψ
To eliminate the cut here, one need to cut simultaneously the two occurrences of > in
the premiss of (?C). Then we will consider Gentzen’s multi-cut or mix rule of which
the cut rule is a special case. We use multiple-hole contexts of the form Γ[−] . . . [−] to
formulate the mix rule.
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6.4.4. Theorem. The mix rule

∆ ` ϕ Γ[ϕ] . . . [ϕ] ` ψ
Γ[∆] . . . [∆] ` ψ

(mix)

is admissible in GBDFNL.

Proof:
We prove (mix) by simultaneous induction on (i) the complexity of the mixed formula
ϕ; (ii) the height of the derivation of ∆ ` ϕ; (iii) the height of the derivation of Γ[ϕ] ` ψ.
Assume that ∆ ` ϕ is obtained by R1, and Γ[ϕ] ` ψ by R2. We have four cases:

(I) At least one of R1 and R2 is an axiom. We have two cases:
Case 1. Both R1 and R2 are axioms. We have the following subcases:
(1.1) R1 = (⊥) or R2 = (>). The conclusion of (mix) is an instance of (⊥) or (>).
(1.2) R1 = (Id). Then ∆ = ϕ. The conclusion of (mix) is obtained by R2.
(1.3) R1 = (>), R2 = (Id). Then ϕ = > = ψ. The conclusion of (mix) is obtained

by (>).
(1.4) R1 = (>), R2 = (⊥). Then ϕ = >, and ⊥ occurs in Γ[>] . . . [>]. The conclu-

sion of (mix) is obtained by (⊥).
Case 2. Exactly one of R1 and R2 is an axiom. We have the following subcases:
(2.1) R1 = (Id). Then the conclusion is the same as the right premiss of (mix).
(2.2) R1 = (⊥). Then the conclusion of (mix) is an axiom.
(2.3) R1 = (>). Then ϕ = >. We have subcases according to R2. If R2 is a right rule

of a logical connective. We first apply (mix) to ∆ ` > and the premiss(es) of R2, and
then apply the rule R2. If R2 is a left rule of a logical connective, the proof is similar to
Case 6. If R2 is a structural rule, the proof is similar to Case 4.

(2.4) R2 = (Id). The conclusion of (mix) is the same as the left premiss of (mix).
(2.5) R2 = (>). The conclusion of (mix) is an axiom.
(2.6) R2 = (⊥). If ϕ , ⊥, then the conclusion of (mix) is an instance of (⊥).

Suppose ϕ = ⊥. We have subcases according to R1. Clearly R1 cannot be a right rule
of a logical connective. If R1 is a left rule of a logical cognitive, the proof is similar to
Case 5. If R1 is a structural rule, the proof is similar to Case 3.

(II) At least one of R1 and R2 is a structural rule. We have two cases:
Case 3. R1 is a structural rule. By induction (ii), the (mix) can be push up to the

premiss of R1 and then apply R1. For example, let R1 = (?C). The derivation

∆′[Σ ? Σ] ` ϕ
(?C)

∆′[Σ] ` ϕ Γ[ϕ] . . . [ϕ] ` ψ
(mix)

Γ[∆′[Σ]] . . . Γ[∆′[Σ]] ` ψ

is transformed into

∆′[Σ ? Σ] ` ϕ Γ[ϕ] . . . [ϕ] ` ψ
(mix)

Γ[∆′[Σ ? Σ]] . . . [∆′[Σ ? Σ]] ` ψ
(?C∗)

Γ[∆′[Σ]] . . . Γ[∆′[Σ]] ` ψ
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where (?C∗) stands for the application of (?C) multiple times.
Case 4. R2 is a structural rule. Suppose that ϕ is obtained by (?W) in R2. The

derivation

∆ ` ϕ

Γ[ϕ] . . . [∆′] . . . [ϕ] ` ψ
(?W)

Γ[ϕ] . . . [Σ[ϕ] ? ∆′] . . . [ϕ] ` ψ
(mix)

Γ[∆] . . . [Σ[∆] ? ∆′] . . . [∆] ` ψ
is transformed into

∆ ` ϕ Γ[ϕ] . . . [∆′] . . . [ϕ] ` ψ
(mix)

Γ[∆] . . . [∆′] . . . [∆] ` ψ
(?W)

Γ[∆] . . . [Σ[∆] ? ∆′] . . . [∆] ` ψ
For the remaining cases of R2, by induction (ii), the (mix) can be push up to the premiss
of R2 and then apply R2.

(III) At least one of R1 and R2 is a logical rule, but the mixed formula is not
principal. We have two cases:

Case 5. The mixed formula ϕ is not principal in the left premiss. Then we have
subcases according to R1. Clearly R1 cannot be a right rule of a logical connective.
Assume R1 = (→ `). The derivation ends with

∆′ ` χ ∆[δ] ` ϕ
(→ `)

∆[∆′ � (χ→ δ)] ` ϕ Γ[ϕ] . . . [ϕ] ` ψ
(mix)

Γ[∆[∆′ � (χ→ δ)]] . . . [∆[∆′ � (χ→ δ)]] ` ψ

Firstly we push up (mix) as below:

∆[δ] ` ϕ Γ[ϕ] . . . [ϕ] ` ψ
(mix)

Γ[∆[δ]] . . . [∆[δ]] ` ψ

Then we apply (→ `) to ∆′ ` χ and Γ[∆[δ]] . . . [∆[δ]] ` ψ multiple times, and we get
the conclusion.

Assume R1 = (∨ `). The derivation ends with

∆[χ] ` ϕ ∆[δ] ` ϕ
(∨ `)

∆[χ ∨ δ] ` ϕ Γ[ϕ] . . . [ϕ] ` ψ
(mix)

Γ[∆[χ ∨ δ]] . . . [∆[χ ∨ δ]] ` ψ

The rule (mix) is push up to sequents with less height of derivation in multiple steps.
For the first occurrence of ϕ in Γ[ϕ] . . . [ϕ] ` ψ, mix it with ∆[χ] ` ϕ and ∆[δ] ` ϕ
respectively, and by (∨ `) one gets Γ[∆[χ ∨ δ]][ϕ] . . . [ϕ] ` ψ. Repeat this process
multiple times and we achieve the conclusion Γ[∆[χ ∨ δ]] . . . [∆[χ ∨ δ]] ` ψ.

The remaining cases R1 = (← `), (• `) or (∧ `) are similar.
Case 6. The mixed formula ϕ is principal only in the left premiss. Then we have

subcases according to R2. Assume R2 = (→ `). If ϕ does not occur in Σ, then the
derivation

∆ ` ϕ

Σ ` χ Γ′[δ][ϕ] . . . [ϕ] ` ψ
(→ `)

Γ′[Σ � (χ→ δ)][ϕ] . . . [ϕ] ` ψ
(mix)

Γ′[Σ � (χ→ δ)][∆] . . . [∆] ` ψ
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is transformed into

Σ ` χ

∆ ` ϕ Γ′[δ][ϕ] . . . [ϕ] ` ψ
(mix)

Γ′[δ][∆] . . . [∆] ` ψ
(→ `)

Γ′[Σ � (χ→ δ)][∆] . . . [∆] ` ψ

Suppose that Σ = Σ′[ϕ]. The derivation

∆ ` ϕ

Σ′[ϕ] ` χ Γ′[δ][ϕ] . . . [ϕ] ` ψ
(→ `)

Γ′[Σ′[ϕ] � (χ→ δ)][ϕ] . . . [ϕ] ` ψ
(mix)

Γ′[Σ′[∆] � (χ→ δ)][∆] . . . [∆] ` ψ

is transformed into

∆ ` ϕ Σ′[ϕ] ` χ
(mix)

Σ′[∆] ` χ
∆ ` ϕ Γ′[δ][ϕ] . . . [ϕ] ` ψ

(mix)
Γ′[δ][∆] . . . [∆] ` ψ

(→ `)
Γ′[Σ′[∆] � (χ→ δ)][∆] . . . [∆] ` ψ

The remaining cases R2 = (← `), (• `), (∧ `), or (∨ `) are similar.
(IV) Both R1 and R2 are logical rules, and the mixed formula is principal. Then

we prove it by induction on the complexity of ϕ. Assume that ϕ = ϕ1 • ϕ2. The
derivation

∆1 ` ϕ1 ∆2 ` ϕ2 (` •)
∆1 � ∆2 ` ϕ

Γ[ϕ] . . . [ϕ1 � ϕ2] . . . [ϕ] ` ψ
(• `)

Γ[ϕ] . . . [ϕ1 • ϕ2] . . . [ϕ] ` ψ
(mix)

Γ[∆1 � ∆2] ` ψ

is transformed into

∆1 ` ϕ1

∆2 ` ϕ2

∆1 � ∆2 ` ϕ Γ[ϕ] . . . [ϕ1 � ϕ2] . . . [ϕ] ` ψ
(mix)

Γ[∆1 � ∆2] . . . [ϕ1 � ϕ2] . . . [∆1 � ∆2] ` ψ
(mix)

Γ[∆1 � ∆2] . . . [ϕ1 � ∆2] . . . [∆1 � ∆2] ` ψ
(mix)

Γ[∆1 � ∆2] . . . [∆1 � ∆2] . . . [∆1 � ∆2] ` ψ

Note that the (mix) rule is push up to sequents with lesser height in the derivation. The
remaining cases ϕ = ϕ1 → ϕ2, ϕ1 ← ϕ2, ϕ1 ∧ ϕ2, or ϕ1 ∨ ϕ2 are quite similar.

�

In all rules of GBDFNL, no formula disappears in from the premiss(es) to the conclu-
sion. Hence we get the subformula property of GBDFNL immediately:

6.4.5. Theorem. If a consecution Γ ` ϕ has a derivation in GBDFNL, then all formulas
in the derivation are subformulas of Γ, ϕ.

Now we will prove the completeness of GBDFNL with respect to BDRG. Firstly, we
have the following lemma on the invertibility of some rules in GBDFNL:
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6.4.6. Lemma. The following rules are admissible in GBDFNL:

Γ ` ϕ→ ψ

ϕ � Γ ` ψ
(`→ ↑),

Γ[ϕ • ψ] . . . [ϕ • ψ] ` γ
Γ[ϕ � ψ] . . . [ϕ � ψ] ` γ

(• ` ↑),

Γ ` ϕ← ψ

Γ � ψ ` ϕ
(`← ↑),

Γ[ϕ ∧ ψ] . . . [ϕ ∧ ψ] ` γ
Γ[ϕ? ψ] . . . [ϕ? ψ] ` γ

(? ` ↑).

Proof:
The proof is done by induction on the height of the derivation of the premiss. Here
we prove only the admissibility of (`→ ↑) and (• ` ↑). The remaining rules are shown
similarly. Assume that the premiss is obtained by R.

For (`→ ↑), if R is an axiom, one can get ϕ � Γ ` easily. If R is a left rule of a
connective, or a rule for ?, we push up (`→ ↑) to the premiss(es) of R and then apply
the rule R. If R is a right rule, it can only be (`→) and then one gets ϕ � Γ ` ψ.

For (• ` ↑), assume that Γ ` ϕ→ ψ is obtained by R. We have the following cases:
Case 1. R is an axiom. When R is (⊥) or (>), the conclusion is also (⊥) or (>).

Assume R = (Id). The conclusion ϕ � ψ ` ϕ • ψ can be derived by (` •) obviously.
Case 2. R is a logical rule. If R is a rule of →, ←, ∧, or R is (` •), one can push

up (`→ ↑) to the premiss of R and then apply the rule R. If R = (• `), one can push up
(• ` ↑) to the premiss of R and obtain the conclusion directly.

Case 3. R is a structural rule. Apply (• ` ↑) to the premiss of R and then apply R.
�

6.4.7. Lemma. If ϕ ` ψ is derivable in BDFNL, then ϕ ` ψ is derivable in GBDFNL.

Proof:
By induction on the derivation of ϕ ` ψ in BDFNL.

Case 1. ϕ ` ψ is an axiom. The cases of (Id), (>) and (⊥) are clear. For (D), one
derivation is

ϕ ` ϕ ψ ` ψ
(` ∧)

ϕ? ψ⇒ ϕ ∧ ψ
(` ∨)

ϕ? ψ⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ γ)

ϕ ` ϕ γ ` γ
(` ∧)

ϕ? γ ⇒ ϕ ∧ γ
(` ∨)

ϕ? γ ⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ γ)
(∨ `)

ϕ? (ψ ∨ γ)⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ γ)
(∧ `)

ϕ ∧ (ψ ∨ γ)⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ γ)

Case 2. ϕ ` ψ is obtained by a rule. Obviously, rules for ∧ and ∨ are derivable
in GBDFNL. The rule (cut) is a special case of (mix) in GBDFNL. For residuation rules,
(Res1) is shown by the rule (• ` ↑) in Lemma 6.4.6 and (• `). (Res2) is obtained by
the rule (`→ ↑) in Lemma 6.4.6 and (• `). The remaining residuation rules are shown
similarly.

�
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6.4.8. Lemma. If a consecution Γ ` ϕ is derivable in GBDFNL, then τ(Γ) ` ϕ is derivable
in BDFNL.

Proof:
By induction on the height of the derivation of Γ ` ϕ in GBDFNL.

Case 1. Γ ` ϕ is an axiom. The cases of (Id) and (>) are obvious. We prove
τ(Γ[⊥]) ` ϕ by induction on the construction of Γ. We have the following cases:

(1.1) Γ = ψ. Then Γ[⊥] = ⊥ = ψ. By (⊥), we have ⊥ ` ϕ.
(1.2) Γ = Γ′ �∆. Assume Γ′ = Γ′[⊥]. By induction hypothesis, we have τ(Γ′[⊥]) `

ϕ← τ(∆). Then by (Res4) in BDFNL, one gets τ(Γ′[⊥])•τ(∆) ` ϕ. Assume ∆ = ∆[⊥].
By induction hypothesis, τ(∆[⊥]) ` τ(Γ)→ ϕ. By (Res2), one gets τ(Γ) • τ(∆[⊥]) ` ϕ.

(1.3) Γ = Γ′ ? ∆. Then τ(Γ[⊥]) = τ(Γ′[⊥]) ∧ τ(∆) or τ(Γ[⊥]) = τ(Γ′) ∧ τ(∆[⊥]).
By induction hypothesis, one can easily obtain τ(Γ) ` ϕ.

Case 2. Γ ` ϕ is obtained by (→ `) or (← `). We prove the case of (→ `) and the
other one is similar. By inductive hypothesis, we have τ(∆) ` χ and τ(Σ[ξ]) ` ϕ. Our
goal is to prove τ(Σ[∆ � (χ → ξ)]) ` ϕ. Firstly, in BDFNL, from τ(∆) ` χ, one gets
χ→ ξ ` τ(∆)→ ξ. Then by (Res2), one gets τ(∆) • (χ→ ξ) ` ξ.

Claim. For any context Σ[−], we have τ(Σ[τ(∆) • (χ→ ξ)]) ` τ(Σ[ξ]).
Proof of Claim. By induction on the construction of Σ[−]. The case Σ[−] = [−] is

obvious. Assume Σ[−] = Σ′[−] � ∆′. Then τ(Σ[−]) = τ(Σ′[−]) • τ(∆′). By induction
hypothesis, one gets τ(Σ′[τ(∆) • (χ→ ξ)]) ` τ(Σ′[ξ]). Then one gets τ(Σ′[τ(∆) • (χ→
ξ)]) • τ(∆′) ` τ(Σ′[ξ]) • τ(∆′). The remaining cases are similar. This completes the
proof of the claim.

Now by applying (cut) to τ(Σ[τ(∆) • (χ → ξ)]) ` τ(Σ[ξ]) and τ(Σ[ξ]) ` ϕ, one gets
τ(Σ[∆ � (χ→ ξ)] ` ϕ).

Case 3. Γ ` ϕ is obtained by (` →) or (` ←). We prove the case of (` →) and the
other one is similar. Let ϕ = χ→ ξ. From the premiss χ� Γ ` ξ of (` →), by inductive
hypothesis, one gets χ • τ(Γ) ` ξ. By (Res1), one gets τ(Γ) ` χ→ ξ.

Case 4. Γ ` ϕ is obtained by (• `). By induction hypothesis, one gets τ(Γ[χ �
ξ]) ` ϕ is derivable in BDFNL. Clearly, it is rather easy to check by induction on the
construction of Γ that τ(Γ[χ � ξ]) = τ(Γ[χ • ξ]). Therefore τ(Γ[χ • ξ]) ` ϕ is derivable
in BDFNL.

Case 5. Γ ` ϕ is obtained by (` •). Let ϕ = χ• ξ. By induction hypothesis, one gets
τ(Γ) ` χ and τ(∆) ` ξ. By the monotonicity rules of •, one gets τ(Γ) • τ(∆) ` χ • ξ.

Case 6. Γ ` ϕ is obtained by (∧ `) or (` ∧). The proof is similar to Case 4 or Case
5.

Case 7. Γ ` ϕ is obtained by (∨ `). By induction hypothesis, one gets τ(Γ[χ]) ` ϕ
and τ(Γ[ξ]) ` ϕ. We prove τ(Γ[χ ∨ ξ]) ` ϕ by induction on the construction of Γ.

(7.1) Γ[−] = [−]. Then we have χ ` ϕ and ξ ` ϕ. By (∨L) in BDFNL, one gets
χ ∨ ξ ` ϕ.

(7.2) Γ[−] = Γ1[−] � Γ2 or Γ1 � Γ2[−]. The two cases are quite similar, and we
specify only the first case. Clearly we have τ(Γ1[χ])•τ(Γ2) ` ϕ and τ(Γ1[ξ])•τ(Γ2) ` ϕ.
By residuation rules, one gets τ(Γ1[χ]) ` ϕ ← τ(Γ2) and τ(Γ1[ξ]) ` ϕ ← τ(Γ2). By
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induction hypothesis on Γ1, one gets τ(Γ1[χ ∨ ξ]) ` ϕ ← τ(Γ2). By residuation, one
gets τ(Γ1[χ ∨ ξ]) • τ(Γ2) ` ϕ.

(7.3) Γ[−] = Γ1[−] ? Γ2 or Γ1 ? Γ2[−]. The proof is quite similar to (7.2).
Case 8. Γ ` ϕ is obtained by (` ∨). The proof is quite similar to Case 5.
Case 9. Γ ` ϕ is obtained by (?W). By induction hypothesis, one gets τ(Γ[∆]) ` ϕ.

Clearly one gets τ(Γ[τ(∆)] ` ϕ. We prove τ(Γ[τ(Σ) ∧ τ(∆)]) ` ϕ by induction on Γ.
(9.1) Γ[−] = [−]. Then we have τ(∆) ` ϕ. In BDFNL we have τ(Σ) ∧ τ(∆) ` ϕ.
(9.2) Γ[−] = Γ1[−] � Γ2 or Γ1 � Γ2[−]. The two cases are quite similar, and we

specify only the first case. Clearly τ(Γ1[τ(∆)]) • τ(Γ2) ` ϕ. By residuation, one gets
τ(Γ1[τ(∆)]) ` ϕ← τ(Γ2). By induction hypothesis on Γ1, one gets τ(Γ1[τ(Σ)∧ τ(∆)]) `
ϕ← τ(Γ2). By residuation, one gets τ(Γ1[τ(Σ) ∧ τ(∆)]) • τ(Γ2) ` ϕ.

(9.3) Γ[−] = Γ1[−] ? Γ2 or Γ1 ? Γ2[χ]. The proof is quite similar to (9.2).
Case 10. Γ ` ϕ is obtained by (?C), (?E) or (?As). The proof is done by lattice

rules in BDFNL. The proof is quite similar to Case 9.
�

6.4.9. Lemma. If τ(Γ) ` ϕ is derivable in GBDFNL, then Γ ` ϕ is derivable in GBDFNL.

Proof:
By induction on the construction of Γ. The case that Γ is a formula is obvious. Assume
Γ = Γ1 ?Γ2. Assume τ(Γ1)∧ τ(Γ2) ` ϕ. By induction on the construction of a structure
Σ one can easily show Σ ` τ(Σ). Then we have Γ1 ` τ(Γ1) and Γ2 ` τ(Γ2). By (` ∧),
one gets Γ1 ? Γ2 ` τ(Γ1)∧ τ(Γ2). By (mix), one gets Γ1 ? Γ2 ` ϕ. The case Γ = Γ1 � Γ2

is similar.
�

6.4.10. Theorem. A consecution Γ ` ϕ is derivable in GBDFNL if and only if BDRG |=
Γ ` ϕ.

Proof:
For the ‘if’ part, assume BDRG |= Γ ` ϕ. Then BDRG |= τ(Γ) ` ϕ. By the com-
pleteness of BDFNL, τ(Γ) ` ϕ is derivable in BDFNL. By Lemma 6.4.7, τ(Γ) ` ϕ
is derivable in GBDFNL. By Lemma 6.4.9, Γ ` ϕ is derivable in GBDFNL. For the ‘on-
ly if’ part, assume that Γ ` ϕ is derivable in GBDFNL. By Lemma 6.4.8, τ(Γ) ` ϕ is
derivable in BDFNL. By the completeness of BDFNL, BDRG |= τ(Γ) ` ϕ. Therefore
BDRG |= Γ ` ϕ.

�
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6.4.2 Extensions
We will now consider some extensions of SBDI and their conservative extensions over
BDFNL. Given an L•-sequent (σ) χ ` δ the propositional variables occurred in which
are among p1, . . . , pn, the structural rule corresponding to (σ) is defined as the follow-
ing rule (�σ):

δ[∆1/p1, . . . ,∆n/pn] ` ϕ
χ[∆1/p1, . . . ,∆n/pn] ` ϕ

(�σ)

where δ[∆1/p1, . . . ,∆n/pn] and χ[∆1/p1, . . . ,∆n/pn] are obtained from δ and χ by sub-
stituting ∆i for pi uniformly, and substituting � for •.

6.4.11. Example. For weak Heyting algebras, we have the following structural rules
for (tr) and (wl):

Γ[(Λ � ∆) � ∆] ` ϕ
Γ[Λ � ∆] ` ϕ

(�tr),
Γ[∆] ` ϕ

Γ[∆ � Σ] ` ϕ
(�wl).

Let GRWH be the Gentzen-style sequent system obtained from GRBDI by adding (�tr)
and (�wl). We can get similar sequent rules for sequents in Example 6.3.5 and Genzten-
style sequent systems.

For any set of L•-sequents Ψ, let �Ψ = {�σ | σ ∈ Ψ} and GBDFNL(�Ψ) be the
Gentzen-style sequent system obtained from GBDFNL by adding all rules in (�Ψ).

6.4.12. Theorem. For any set of L•-sequents Ψ, if for every sequent χ ` δ ∈ Ψ, each
propositional variable in χ occurs only once, then (mix) is admissible in GBDFNL(�Ψ).

Proof:
Based on the proof of Theorem 6.4.4, one needs to consider only the case that the right
premise of (mix) is obtained by (�σ). We first apply (mix) to the left premiss of (mix)
and the premiss of (�σ). Then by (�σ), we get the conclusion of (mix).

�

6.4.13. Remark. The condition that a propositional variable occurs at most once in χ
in Theorem 6.4.12 is significant. All sequents in Example 6.3.5 satisfy this condition.
When a propositional variable occurs more than once in χ, the proof strategy in Theo-
rem 6.4.12 may not work. For example, consider the the following inverse rule of (�tr)
which is obtained from (p • q) • q ` p • q:

Γ[Λ � ∆[ψ]] ` ϕ
Γ[(Λ � ∆[ψ]) � ∆[ψ]] ` ϕ

(�tr ↑)

and the derivation

Σ ` ψ

Γ[Λ � ∆[ψ]] ` ϕ
(�tr ↑)

Γ[(Λ � ∆[ψ]) � ∆[ψ]] ` ϕ
(mix)

Γ[(Λ � ∆[Σ]) � ∆[ψ]] ` ϕ
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in which only one occurrence of ψ is mixed. In such a case, we may not be able to
push up (mix) to the premiss of (�tr ↑).

AnL•-sequent χ ` δ is said to be good if each propositional variable occurs at most
once in χ. Then we have the following theorem about good sequents:

6.4.14. Theorem. For any set of good L•-sequents Ψ, the following hold:
(1) Γ ` ϕ is derivable in GBDFNL(�Ψ) iff Alg+(Ψ) |= Γ ` ϕ.
(2) if every propositional variable occurred in δ also occurs in χ for each sequent

χ ` δ in Ψ, then GBDFNL(�Ψ) has the subformula property.

Proof:
The proof of (1) is similar to Theorem 6.4.10. It suffices to show that the algebraic
sequent system BDFNL(Ψ) is equivalent to GBDFNL(�Ψ). For (2), if every propositional
variable occurred in δ also occurs in χ, then every subformula of δ is a subformula of
χ. Hence the structural rule (�σ) does not effect on the subformula property.

�

Let Φ be a set of inductive LSI-sequents. Assume that Ψ is set of L•-sequent
such that Φ ≡ALC Ψ. Then the algebraic sequent system BDFNL(Ψ) is a conservative
extension of SBDI(Φ). If Ψ is a set of good L•-sequent, one gets a Gentzen-style cut-
free sequent calculus GBDFNL(�Ψ). Furthermore, if GBDFNL(�Ψ) has the subformula
property, we obtain a Gentzen-style cut-free sequent calculus for SBDI(Φ) if we omit
rules for • and← from GBDFNL(�Ψ).

Table 6.5: Gentzen-style Sequent Calculi
Strict Implication Logic Conservative Extension

GWH GRWH = GBDFNL + (�wl) + (�tr)
GT GRT = GBDFNL + (�ct)
GW GRW = GBDFNL + (�wr)
GRT GRRT = GBDFNL + (�rt)
GB GRB = GBDFNL + (�b)
GB′ GRB′ = GBDFNL + (�b′)
GC GRC = GBDFNL + (�c)
GFR GRFR = GBDFNL + (� f r)
GW′ GRW′ = GBDFNL + (�w′)
GBCA GRBCA = GT + (�w)
GKT GRKT = GRWH + (�ct)
GK4 GRK4 = GRWH + (�rt)
GS4 GRS4 = GRKT + (�rt)
GKW GRKW = GWH + (�w)

For example, the algebraic correspondents in Table 6.4 are goodL•-sequents. Then
we get Gentzen-style sequent calculi in Table 6.5 for residuated BDIs defined by the



6.4. Gentzen-style sequent calculi 137

corresponding L•-sequents. These calculi admit (mix) and have the subformula prop-
erty.

6.4.3 Comparison with literature
Our framework in the present chapter is to apply unified correspondence theory to
proof theory of strict implication logics. The sequent calculi developed for conserva-
tive extensions are Gentzen-style. This framework is quite different from the approach-
es in literature. Here we compare some sequent calculi for strict implication logics in
literature with these calculi listed in Table 6.5.

Two types of calculi for non-classical logics in literature are distinguished by Al-
enda, Olivetti and Pozzato [5]:

“Similarly to modal logics and other extensions/alternative to classical log-
ics two types of calculi: external calculi which make use of labels and rela-
tions on them to import the semantics into the syntax, and internal calculi
which stay within the language, so that a configuration’ (sequent, tableaux
node ...) can be directly interpreted as a formula of the language.” [5, p.15]

Obviously the sequent calculi developed in the present chapter are internal because
every structure in an LLC-sequent is directly translated into an LLC-formula. Ishigaki
and Kashima [120] also developed internal sequent calculi for some strict implication
logics, but we have mentioned the advantages of our approach in Section 6.1.

External calculi for strict implication logics are also developed in literature. La-
belled sequent calculi for intermediate logics are developed by Dyckhoff and Negri
[71], and their connections with Hilbert axioms and hypersequents are investigated
by Ciabattoni et al [38]. In this approach, any intermediate logic characterized by a
class of relational frames that is definable by first-order geometric axioms9, can be
formalized in a cut-free and contraction-free labelled sequent calculus that extends the
labelled sequent calculus for intuitionistic logic with geometric rules transformed from
these geometric axioms. Using the same approach, Yamasaki and Sano [197] devel-
oped labelled sequent calculi for some subintuitionistic logics [62].

The development of an external calculus for a strict implication logic depends on
that the logic has geometric relational semantics, i.e., it is sound and complete with
respect to a class of relational frames which is definable by a set of geometric theories.
Our internal calculi for strict implication logics are developed for subvarieties of BDI
algebras and they do not necessarily have relational semantics. The strict implication
logic SBDI is indeed an example without binary relational semantics.

The algorithm ALBA, one of the main tools in unified correspondence theory, is
applied in the present chapter to the proof theory of strict implication logics. Firstly, it

9A geometric axiom is a first-order formula of the form ∀z(P1 ∧ . . . ∧ Pm ⊃ ∃x(M1 ∨ . . . ∨ Mn))
where each Pi is an atomic formula, and each M j is a conjunction of atomic formulas, and z and x are
sequences of bounded variables. Each geometric axiom can be transformed into a geometric rule [71].
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is used as a tool to calculate the first-order correspondents of inductive LSI-sequents.
If the correspondents of a set of inductive sequents are geometric axioms, they can be
transformed into geometric rules, and hence some labelled sequent calculi for strict
implication logics can be developed. It is unknown if ALBA can capture all geometric
axioms. A general converse correspondence theory is unknown yet. Secondly, our nov-
el application of ALBA is to calculate the algebraic correspondents of some inductive
LSI-sequents in the language L•. A proof-theoretic consequence of this application is
that one can obtain mix-free internal sequent calculi for the conservative extensions of
some strict implication logics. However, the systematic connections between algebraic
and first-order correspondents is unknown.

Our framework in the present chapter may not be able to cover all such logics which
have binary relational semantics. Consider strict implication logics containing (Sym)
or (Euc) based on SWH in Table 6.5. Since (Sym) and (Euc) may not have correspon-
dent in L•, these logics may not admit Gentzen-style sequent calculi that are obtained
from GWH by adding structural rules about �. Another example is Visser’s logic FPL
(formal provability logic) [193] which is a strict implication logic that extends basic
propositional logic with the Löb’s axiom (q → p) → p ` q → p. This axiom is not
inductive. A labelled sequent calculus may be developed for FPL because it has binary
relational semantics. But it is impossible to develop a Gentzen-style sequent calculus
for it in our framework.

6.5 Conclusion
The present work studies the proof theory for strict impaction logic using unified corre-
spondence theory as a proof-theoretic tool. First of all, we present general results about
the semantic conservativity on DLE-logics via canonical extension. A consequence is
that the strict implication logic SBDI is conservatively extended to the Lambek calculus
BDFNL. The algorithm ALBA as a calculus for correspondence between DLE-logic
and first-order logic and hence for canonicity, is specialized to the strict implication
logic and Lambek calculus. The main contribution of the present chapter is that we ob-
tain an Ackermann lemma based calculus ALC from the algorithm ALBA as a tool for
proving algebraic correspondence between a wide range of strict implication sequents
and sequents in the language L•. This tool gives not only more conservativity results,
but also analytic rules needed for introducing the Gentzen-style cut-free sequent cal-
culi. Another contribution is that we introduce a Gentzen-style sequent calculus for
BDFNL and some of its extensions with analytic rules.

The final remark is about good L•-sequents that are used for obtaining cut-free se-
quent calculus. It is very likely that a hiearchy of L•-sequents from which one obtains
analytic rules can be established. Other connectives ∧,∨ and → can be in principle
added into the language L• such that more analytic rules will be obtained. This is our
work in progress. Moreover, our approach to the proof theory of strict implication may
be generalized to arbitrary DLE-logics.
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6.6 Appendix: algebraic correspondence

(I)

⇒ q ` p→ p
RR1

⇒ p • q ` p

(MP)

⇒ p ∧ (p→ q) ` q
Ap1

r ` p ∧ (p→ q)⇒ r ` q
∧Sr ` p, r ` p→ q⇒ r ` q
RL1r ` p, p • r ` q⇒ r ` q

LAckp • p ` q⇒ p ` q
RAck⇒ p ` p • p

(W)

⇒ p ` q→ p
RR1

⇒ q • p ` p

(RT)

⇒ p→ q ` r → (p→ q)
Ap1

s ` p→ q⇒ s ` r → (p→ q)
RL1p • s ` q⇒ s ` r → (p→ q)

RR1p • s ` q⇒ r • s ` p→ q
RR1p • s ` q⇒ p • (r • s) ` q
RAck

⇒ p • (r • s) ` p • s

(B)

⇒ p→ q ` (r → p)→ (r → q)
Ap1

s ` p→ q⇒ s ` (r → p)→ (r → q)
RL1p • s ` q⇒ s ` (r → p)→ (r → q)

RR1p • s ` q⇒ (r → p) • s ` r → q
RR1p • s ` q⇒ r • ((r → p) • s) ` q
RAck

⇒ r • ((r → p) • s) ` p • s
RR1

⇒ (r → p) • s ` r → (p • s)
RR2

⇒ r → p ` (r → (p • s))← s
Ap1

t ` r → p⇒ t ` (r → (p • s))← s
RL1r • t ` p⇒ t ` (r → (p • s))← s

RR2r • t ` p⇒ s • t ` r → (p • s)
RR1r • t ` p⇒ r • (s • t) ` p • s

RAck
⇒ r • (s • t) ` (r • t) • s
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(B′)
⇒ p→ q ` (q→ r)→ (p→ r)

Ap1
s ` p→ q⇒ s ` (q→ r)→ (p→ rt)

RL1p • s ` q⇒ s ` (q→ r)→ (p→ r)
RR1p • s ` q⇒ (q→ r) • s ` p→ r

RR1p • s ` q⇒ p • ((q→ r) • s) ` r
RAck

⇒ p • ((p • s→ r) • s) ` r
RR1

⇒ (p • s→ r) • s ` p→ r
RR2

⇒ p • s→ r ` (p→ r)← s
Ap1

t ` p • s→ r ⇒ t ` (p→ r)← s
RL1(p • s) • t ` r ⇒ t ` (p→ r)← s
RR2(p • s) • t ` r ⇒ t • s ` p→ r

RR1(p • s) • t ` r ⇒ p • (t • s) ` r
RAck

⇒ p • (t • s) ` (p • s) • t
(C)

⇒ p→ (q→ r) ` q→ (p→ r)
Ap1

s ` p→ (q→ r)⇒ s ` q→ (p→ r)
RL1p • s ` q→ r ⇒ s ` q→ (p→ r)

RL1q • (p • s) ` r ⇒ s ` q→ (p→ r)
RR1q • (p • s) ` r ⇒ q • s ` p→ r

RR1q • (p • s) ` r ⇒ p • (q • s) ` r
RAck

⇒ p • (q • s) ` q • (p • s)
(Fr)

⇒ p→ (q→ r) ` (p→ q)→ (p→ r)
(Ap1, Ap2)

s ` p→ (q→ r), (p→ q)→ (p→ r) ` t ⇒ s ` t
(RL1)

q • (p • s) ` r, (p→ q)→ (p→ r) ` t ⇒ s ` t
(→Ap1,→Ap2)

q • (p • s) ` r, u ` p→ q, p→ r ` v, u→ v ` t ⇒ s ` t
(RL1)

q • (p • s) ` r, p • u ` q, p→ r ` v, u→ v ` t ⇒ s ` t
(AAP2)

q • (p • s) ` r, p • u ` q, p→ r ` v⇒ s ` u→ v
(RR1)

q • (p • s) ` r, p • u ` q, p→ r ` v⇒ u • s ` v
(AAp2)

q • (p • s) ` r, p • u ` q⇒ u • s ` p→ r
(RR1)

q • (p • s) ` r, p • u ` q⇒ p • (u • s) ` r
(AAp2)

p • u ` q⇒ p • (u • s) ` q • (p • s)
(RAck)

⇒ p • (u • s) ` (p • u) • (p • s)

(W′)
⇒ p→ (p→ q) ` p→ q

Ap1
r ` p→ (p→ q)⇒ r ` p→ q

RL1p • r ` p→ q⇒ r ` p→ q
RL1p • (p • r) ` q⇒ r ` p→ q
RR1p • (p • r) ` q⇒ p • r ` q

RAck
⇒ p • r ` p • (p • r)



Chapter 7
Conclusion

7.1 Summary of the thesis
The results of this dissertation pertain to a line of research dubbed ‘unified correspon-
dence theory’, which investigates the phenomenon of correspondence and canonicity
uniformly for a wide class of propositional logics using algebraic tools. The contribu-
tions of this dissertation are summarized below:

• In Chapter 3, we develop a unified correspondence treatment of the Sahlqvist
theory for possibility semantics, extending the results in [196] from Sahlqvist
formulas to the strictly larger class of inductive formulas, and from the full pos-
sibility frames to filter-descriptive possibility frames. Specifically, we define the
possibility semantics version of the algorithm ALBA, and an adapted interpre-
tation of the expanded modal language used in the algorithm. We prove the
soundness of the algorithm with respect to both (the dual algebras of) full possi-
bility frames and (the dual algebras of) filter-descriptive possibility frames. We
make some comparisons among different semantic settings in the design of the
algorithms, and fit possibility semantics into this broader picture.

• In Chapter 4, we use the algorithm ALBA to reformulate the proof in [14] and
[19] that over modal compact Hausdorff spaces, the validity of Sahlqvist se-
quents are preserved from open assignments to arbitrary assignments. In partic-
ular, we prove an adapted version of the topological Ackermann lemma based
on the Esakia-type lemmas proved in [14] and [19].

• In Chapter 5, we examine whether the alternative route ‘via translation’ could
be effective for obtaining Sahlqvist-type results of comparable strength for non-
classical logics. This route consists in suitably embedding nonclassical logics
into classical polyadic modal logics via some Gödel-type translations, and then
obtaining Sahlqvist theory for nonclassical logics as a consequence of Sahlqvist
theory of classical polyadic modal logic. We analyze the power and limits of this
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alternative route for logics algebraically captured by normal distributive lattice
expansions, and various sub-varieties thereof. Specifically, we provide a new
proof, ‘via translation’ of the correspondence theorem for inductive inequali-
ties of arbitrary signatures of normal distributive lattice expansions. We also
show that canonicity-via-translation can be obtained in a similarly straightfor-
ward manner, but only for normal modal expansions of bi-intuitionistic logic.
We also provide a detailed explanation of the difficulties involved in obtaining
canonicity-via-translation outside this setting.

• In Chapter 6, we specialize unified correspondence theory to strict implication
logics and apply it to the proof theory of these logics. We conservatively extend
a wide range of strict implication logics to Lambek Calculi over the bounded
distributive full non-associative Lambek calculus (BDFNL) as a consequence
of a general semantic consevativity result. By a suitably modified version of
the Ackermann lemma based algorithm ALBA, we transform many strict impli-
cation sequents into analytic rules employing one of the main tools of unified
correspondence theory, and develop Gentzen-style cut-free sequent calculi for
BDFNL and its extensions with analytic rules which are transformed from strict
implication sequents.

7.2 Methological reflections

Our methodology. The main focus of this thesis is on the methodology, which is
based on algebraic and order-theoretic notions and duality-theoretic insights. Mathe-
matical dualities link algebras with their dual topological spaces, and transform defi-
nitions and ideas from one side to another. By duality-theoretic methods, it is possible
to use the insights from the algebraic side to solve problems on the topological space
side. The beneficial point of using algebraic method is that it is easy to generalize re-
sults to broader settings in a modular way, and it also provides insight to proof-theoretic
problems and is useful in the formulation and proof of constructive results.

Algebraic correspondence theory and duality. Correspondence theory is the re-
flection into logic of mathematical dualities. The phenomenon of Sahlqvist correspon-
dence and canonicity is in its essence algebraic and order-theoretic, and the definitions
of Sahqvist formulas and inequalities can be captured uniformly in every logical sig-
nature and purely depend on the order-theoretic properties of the algebraic interpreta-
tions of the logical connectives, which thanks to the generality of algebraic method.
The algorithm ALBA, originally defined for the purpose of effectively computing the
first-order correspondents of input formulas and inequalities, has a much wider range
of applicability than its original purpose. Its applicability is independent from the ex-
istence of a relational semantics and from the choice of the relational semantics in case
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more than one exists for a given logic, and invests independently motivated issues such
as the design of sequent calculi in structural proof theory.

Duality and correspondence in other fields. The interplay between duality and cor-
respondence is not only useful to develop the logics themselves, but also provides a
new approach to problems in social choice theory and categorization theory. Thanks
to dualities, important research questions can be formalized and the theories can be
improved.

• Duality and Social Choice. Social choice theory is the study of collective deci-
sion making. The most famous problem is Arrow’s preference aggregation prob-
lem of how individual preferences can be aggregated into a group preference
in a rational way. In recent years, logic has shown its usefulness in generaliz-
ing Arrow-type impossibility results and providing new insights. The ultrafilter
argument makes it possible to generalize the Arrow-type impossibility result-
s, and duality theory is the natural mathematical tools behind it. The fact that
ultrafilters are the semantic counterpart of maximally consistent sets of proposi-
tions guarantees that ultrafilters have exactly the properties used in the study of
aggregation problems. This fact is the keypoint for the relationship among logi-
cal languages, algebraic semantics and model-theoretic semantics, which duality
theory studies.

• Correspondence theory and categorization theory. Categories are understood as
classes of objects sharing similar properties. In [154], a multimodal language
is defined and used to reason about perception, default, and belief. Concepts
in categorization theory like legitimation and identity, can then be studied as
consequences of the perceptions, defaults and beliefs of agents. In [154], a model
is built to represent processes of perception and belief, which are essentially
correspondence results. Therefore, by applying correspondence theory, we can
extend and sharpen the model building techniques.
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semantic analysis of dynamic epistemic logic. Journal of Logic and Computation,
26(6): 1961-2015, 2016.

[80] S. Frittella, G. Greco, A. Kurz, A. Palmigiano and V. Sikimić. Multi-type display
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Samenvatting

Correspondentietheorie is de studie van de relatie tussen formules uit de modale logica
en formules uit de eerste-orde logica geinterpreteerd over Kripke-frames. We zeggen
dat een modale formule en een eerste-orde formule met elkaar corresponderen indien
zij geldig zijn op dezelfde klasse van Kripke-frames. Canoniciteitstheorie is nauw
verbonden met correspondentietheorie. We noemen een formule uit de modale logica
canoniek indien die geldig is op haar canoniek frame of, in andere woorden, indien
haar geldigheid behouden blijft onder uitbreiding van een modale algebra naar haar
canonieke extensie, of van een descriptief algemeen frame (descriptive general frame)
naar het onderliggend Kripke-frame. Canoniciteit is sterk gerelateerd aan het concept
van volledigheid (completeness) uit de logica. Indien een modale formule canoniek
is, dan geldt dat de normale modale logica -die door deze formule geaxiomatiseerd
wordt -volledig is, met betrekking tot de klasse van Kripke-frames die erdoor wordt
gedefinieerd.

In de ontwikkeling van correspondentietheorie krijgen algoritmische aspecten meer
en meer aandacht. De Sahlqvist-van Benthem stelling voorziet in een algoritme om een
klasse van modale formules, die later Sahlqvist formules genoemd werden, in hun cor-
responderende eerste-orde formule te transformeren. Het algoritme genaamd SQEMA
geeft een procedure om een formule uit de modale logica eerst om te zetten in een zuiv-
ere modale formule behorende tot een taalextensie van de oorspronkelijke taal, om deze
laatste tenslotte in een eerste-orde expressie te transformeren. Het SQEMA-algoritme
werkt voor een strikt grotere klasse van modale formules, die inductief worden ge-
noemd.

Geünificeerde correspondentietheorie is recentelijk gebaseerd op dualiteitstheorie
en op orde-algebraische inzichten. Deze benaderingswijze staat ons toe een syntactische
definitie van Sahlqvist- en inductieve formules te geven die uniform toepasbaar is op
iedere logische signatuur, en die bovendien uitsluitend afhangt van de orde-theoretische
eigenschappen van de algebraische interpretaties der logische connectieven. Daar-
bovenop beschikken wij over het ALBA-algoritme, dat gebaseerd is op het lemma
van Ackermann en dat een generalisatie is van het SQEMA-algoritme op basis van
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orde-theoretische en algebraische inzichten. Dankzij dit algoritme kunnen eerste-orde
correspondenten worden berekend van input formules/ongelijkheden die gegarandeerd
succesvol zijn op Sahlquist- en inductieve klassen van formules/ongelijkheden.

Deze dissertatie behoort tot het onderzoeksgebied van de correspondentietheorie.
In Hoofdstuk 3 passen we de methodologie van correspondentietheorie toe op mogeli-
jkheidssemantiek (possibility semantics) en geven we alternatieve bewijzen voor de
correspondentieresultaten à la Sahlqvist zoals eerder uiteengezet in [196]. Bovendien
geven we een generalisatie van die resultaten, van Salhqvistformules naar de strikt
grotere klasse van inductieve formules, en van de volledige-mogelijkheidsframes (full
possibility frames) tot de filterdescriptieve mogelijkheidsframes (filter-descriptive pos-
sibility frames). Hoofdstuk 4 past correspondentietheorie toe op modale compacte
Hausdorff-ruimtes en geeft alternatieve bewijzen voor het type van canoniciteitspreservatie-
resultaten zoals gegeven in [14]. In Hoofdstuk 5 gaan we de toepassingskracht- en
beperkingen na van deze vertaalmethode bij het verkrijgen van correspondentie- en
canoniciteitsresultaten. Hoofdstuk 6 gaat over een toepassing van geünificeerde corre-
spondentietheorie op de bewijstheorie van strikte-implicatielogicas (strict implication
logics). Dit toont aan hoe geünificeerde correspondentietheorie nuttig kan zijn in het
construeren van analytische Gentzencalculi, bij het bijzonder wanneer het gaat om het
berekenen van de corresponderende analytische bewijstheoretische regel (rule) van een
gegeven sequent.



Abstract

Correspondence theory originally arises as the study of the relation between modal
formulas and first-order formulas interpreted over Kripke frames. We say that a modal
formula and a first-order formula correspond to each other if they are valid on the
same class of Kripke frames. Canonicity theory is closely related to correspondence
theory. We say that a modal formula is canonical if it is valid on its canonical frame, or
equivalently,if its validity is preserved from a modal algebra to its canonical extension,
or from a descriptive general frame to its underlying Kripke frame. Canonicity is
closely related to completeness. If a modal formula is canonical, then the normal
modal logic axiomatized by this modal formula is complete with respect to the class of
Kripke frames defined by it.

In the development of correspondence theory, the algorithmic aspect receives in-
creasing attention. The Sahlqvist-van Benthem theorem provides an algorithm to
transform a class of modal formulas, which are later called Sahlqvist formulas, in-
to their corresponding first-order formulas. The algorithm SQEMA provides a modal
language-based algorithm to transform a modal formula into a pure modal formula in
an expanded language, and then translate the pure modal formula into the first-order
language. SQEMA succeeds on a strictly larger class of modal formulas, which are
called inductive formulas.

In recent years, unified correspondence theory is developed based on duality-theoretic
and order-algebraic insights. In this approach, a very general syntactic definition of
Sahlqvist and inductive formulas is given, which applies uniformly to each logical sig-
nature and is given purely in terms of the order-theoretic properties of the algebraic
interpretations of the logical connectives. In addition, the Ackermann lemma based
algorithm ALBA, which is a generalization of SQEMA based on order-theoretic and
algebraic insights, is given, which effectively computes first-order correspondents of
input formulas/inequalities, and is guaranteed to succeed on the Sahlqvist and inductive
classes of formulas/inequalities.

This dissertation belong to the line of research of unified correspondence theory.
Chapter 3 applies the unified correspondence methodology to possibility semantics,
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and gives alternative proofs of Sahlqvist-type correspondence results to the ones in
[196], and extends these results from Sahlqvist formulas to the strictly larger class of
inductive formulas, and from the full possibility frames to filter-descriptive possibility
frames. Chapter 4 applies the unified correspondence methodology to modal compact
Hausdorff spaces, and gives alternative proofs of canonicity-type preservation results to
the ones in [14]. Chapter 5 examines the power and limits of the translation method in
obtaining correspondence and canonicity results. Chapter 6 is about an application of
unified correspondence theory to the proof theory of strict implication logics, showing
the usefulness of unified correspondence theory in the design of analytic Gentzen se-
quent calculi, especially when it comes to computing the corresponding analytic rules
of a given sequent.
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