
 
 

Delft University of Technology

Energy management for hybrid and fully electric vessels via a multi-objective Equivalent
Consumption Minimization Strategy

Löffler, Charlotte; Geertsma, Rinze; Polinder, Henk; Coraddu, Andrea

DOI
10.1016/j.enconman.2025.120150
Publication date
2025
Document Version
Final published version
Published in
Energy Conversion and Management

Citation (APA)
Löffler, C., Geertsma, R., Polinder, H., & Coraddu, A. (2025). Energy management for hybrid and fully
electric vessels via a multi-objective Equivalent Consumption Minimization Strategy. Energy Conversion and
Management, 343, Article 120150. https://doi.org/10.1016/j.enconman.2025.120150

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.enconman.2025.120150
https://doi.org/10.1016/j.enconman.2025.120150


Energy Conversion and Management 343 (2025) 120150 

A
0

 

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman  

Research paper

Energy management for hybrid and fully electric vessels via a multi-objective 

Equivalent Consumption Minimization Strategy
Charlotte Löffler a ,∗, Rinze Geertsma b,a, Henk Polinder a , Andrea Coraddu a

a Delft University of Technology, Delft, Netherlands
b Netherlands Defense Academy, Den Helder, Netherlands

A R T I C L E  I N F O

Keywords:
Energy management
Full-electric vessel
Multi-objective control
Optimization
ECMS
NOx emission
Hydrogen

 A B S T R A C T

A key factor towards zero-emission shipping is the adoption of electric propulsion with hybrid power sources. 
The heterogeneous power sources of modern electric vessels require optimal energy management systems, 
as conventional rule-based control in hybrid energy systems may result in suboptimal solutions with limited 
flexibility. Advanced optimal control strategies offer a promising avenue to address this issue. This paper 
presents a novel control strategy based on the Equivalent Consumption Minimization Strategy for a dual-fuel 
full-electric vessel operating with diesel engines and hydrogen fuel cells taking into account both fuel cost and 
NOx emissions. The effectiveness of the developed controllers is evaluated against a benchmark derived from 
state-of-the-art strategies in a simulation study using real-world data. The results highlight the controller’s 
performance, as well as the operator’s choice by selection of weights for the objectives. The proposed control 
strategy achieves nearly 2% fuel savings compared to a single-objective rule-based controller. It also exploits 
the potential for up to 45% reductions in NOx emissions. When both objectives are combined, the controller 
still delivers over 0.5% fuel savings while reducing NOx emissions by nearly 15%. If a financial cost is assigned 
to emissions, the total operational cost savings increase to more than 4%.
1. Introduction

Facing the dangers of climate change, a reduction in the green 
house gas emissions of the shipping sector is required to meet the 
goals of the Paris Agreement [1,2]. Despite efforts of the International 
Maritime Organization (IMO), annual CO2 emissions from shipping 
are close to 3% of total greenhouse gas emissions, and expected to 
grow further [3–5]. Moreover, shipping contributes significantly to 
acidification of the ocean and coastal regions, global sulfur loading, 
and increased ozone perturbation in summer months with its hazardous 
emissions [6–8]. While some of the relevant emissions, such as CO2
and sulfur, are related to fuel consumption and the fuel itself [5], 
other emissions, prominently Nitrogen Oxide (NOx), Particulate Matter 
(PM) and methane, depends more on the power source, which cur-
rently typically consists of Internal Combustion Engines (ICE), and its 
operational point. A transition to alternative fuels, such as hydrogen, 
alternative power sources, such as fuel cells, and energy storage (ES) 
technologies, such as batteries to change the power source operating 
point, can reduce these emissions [9].

This transition towards a sustainable maritime industry first re-
quires electric propulsion to enable easier integration of alternative 
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power sources and ES on ships [10]. Replacement of a separate me-
chanical propulsion and electrical power system with an integrated 
electrical power system on board the ship for propulsion and electrical 
power supply allows the integration of a wide variety of power sources 
and ES components [11]. This results in increased operational flexi-
bility and enables the potential for energy and emission savings [9,
12]. Batteries offer a zero-emission solution for battery-electric ship 
propulsion [13]. However, their application is currently limited to short 
travel distances due to the relatively low energy density of battery sys-
tems [14]. While extending voyage range using batteries alone remains 
challenging, they have been shown to significantly reduce emissions 
during port operations and at berth [15].

To enable those longer travel distances, alternative fuels should be 
considered [13]. A number of studies have investigated the applica-
tion of alternative fuels both in the general energy sector [16] and 
specifically in the maritime sector [17–21]. Initial design feasibility 
studies further suggest that LNG is a promising candidate for real-world 
vessel applications [22]. As hydrogen is specifically suitable for high-
temperature industrial processes, its availability for fuel application 
might be limited in the short term, according to the complete energy
https://doi.org/10.1016/j.enconman.2025.120150
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Nomenclature

𝐴 Tafel slope
𝐶 cost function objective
𝐸 Battery no-load voltage
𝐸0 generator no-load voltage
𝐹 Faraday constant
𝐼𝑎 line current
𝐼𝑓 field current
𝐼𝑎1 armature current phasor
𝐼𝑎𝑑 armature current phasor
𝐽 optimization problem solution
𝐾 battery polarization voltage
𝑁 number of fuel cells in series
𝑃1 generator active power
𝑃𝐽 Joule losses
𝑃𝐿 generator load power
𝑃Aux auxiliary power load
𝑃Bat battery power
𝑃Eng engine power
𝑃FC fuel cell power
𝑃F&W friction and windage losses
𝑃Hotel hotel power load
𝑃Load total power load
𝑃Prop propulsion power load
𝑃core core losses
𝑃no−load generator no-load power
𝑃shaf t shaft power
𝑃𝑟 power loss in rotor resistance
𝑄 battery capacity
𝑄1 generator reactive power
𝑄𝐿 reactive power consumed by load
𝑄nom battery nominal capacity
𝑅 resistance
𝑅Bat,int battery internal resistance
𝑅FC,int battery internal resistance
𝑅𝑎 stator winding resistance
𝑇shaf t shaft torque
𝑇𝑒𝑚 electromagnetic torque
𝑉1 line phase voltage
𝑉Bat battery voltage
𝑉DC DC bus voltage
𝑉FC fuel cell voltage
𝑋𝑠 synchronous reactance
𝑋𝑠𝑑 d-axis synchronous reactance
𝑋𝑠𝑞 q-axis synchronous reactance
𝛥𝑡 sampling rate
𝛩 formation rate
𝛩NOx ,Eng engine NOx formation rate
𝛩SFC,Eng engine fuel consumption rate
𝛿 torque angle
𝜂𝐴𝐶−𝐷𝐶 AC-DC conversion efficiency
𝜂𝐷𝐶−𝐴𝐶 DC-AC conversion efficiency
𝜂𝐷𝐶−𝐷𝐶 DC-DC conversion efficiency
𝜂𝑔𝑏 gearbox loss
2 
𝜂𝑚 motor efficiency
𝜂𝑠𝑔 generator efficiency
𝜆 objective weight
𝜔 synchronous speed
𝜙𝑎 power angle
𝜌 density
𝜁 battery equivalence factor
𝑖Bat battery current
𝑖Eng current produced by engine
𝑖FC current produced by fuel cell
𝑖Hotel hotel load current
𝑖Load total load current
𝑖Prop propulsion load current
𝑘 time step of the control problem
𝑚D mass of diesel fuel consumed
𝑚NOx

mass of NOx emission produced
𝑛Eng engine speed
𝑛𝑝 battery cells in parallel
𝑛𝑠 battery cells in series
𝑝𝐷 price diesel
𝑝Bat battery price
𝑝𝐻2 price hydrogen
𝑟𝐶𝑂2 release rate CO2
𝑢 control variable
𝑥 state variable
𝑧 number of moving electrons
AC Alternating Current
AS Active Set
DC Direct Current
ECMS Equivalent Consumption Minimization 

Strategy
ES Energy Storage
FC Fuel Cell
GA Genetic Algorithm
ICE Internal Combustion Engine
IMO International Maritime Organization
IP Interior Point
MI Mixed Integer
MPC Model Predictive Control
NL Non Linear
NOx Nitrogen Oxide
PEMFC Proton Exchange Membrane Fuel Cell
PM Particulate Matter
PS Pattern Search
RBC Rule Based Control
SFC Specific Fuel Consumption
SOC State of Charge
SQP Sequential Quadratic Programming

sector review in [16]. For the maritime sector, [23] identifies the 
factors that need to be resolved to apply alternative fuels in shipping, 
ranging from technology readiness to fuel availability. Subsequently, 
Deniz et al. [18,19] conclude that economically liquefied natural gas 
is the most suitable fuel to reduce hazardous emissions in the short 
term, but hydrogen can be the future fuel of choice for ships to reduce 
greenhouse gas emissions and achieve zero-emission propulsion and 
power supply.

On the other hand, hydrogen and FCs are costly and availability 
of hydrogen is limited, restricting their application potential [16]. 
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Combining hydrogen FCs with diesel ICEs presents a first step towards 
emission and noise reduction during operations at low power, while 
still being able to economically deal with high propulsion loads. More-
over, ICE emissions can be reduced by choosing the operating point, 
especially when applied with electric propulsion and DC hybrid power 
supply [11]. In the engine envelope, the specific fuel consumption 
(SFC) and emissions change based on the delivered torque and engine 
speed. The CO2 emissions are directly related to the SFC with a carbon 
factor that depends on the fuel, while NOx emissions depend on the 
local temperature of combustion in the cylinder, which is driven by the 
charge air pressure, engine speed and amount of injected fuel [24,25]. 
Therefore, actively determining an optimal setpoint for engine speed 
and power allows a more conscious choice regarding fuel consumption 
and emissions.

A DC power system provides the control freedom to choose engine 
speed to achieve the best fuel consumption or emissions for the required 
power [11]. Thus, the control mechanism must navigate a delicate 
balance when incorporating a dual-fuel system. The choice between 
using diesel, a cost-effective fuel with associated CO2 and NOx emis-
sions, and hydrogen, a cleaner but more expensive option, presents a 
significant trade-off. Coupling these power sources with an ES system 
like batteries offers benefits such as buffering against load variations, 
achieving peak shaving, and allowing the ICE and fuel cells to run 
at an operating point with higher efficiency and less emissions [26]. 
However, these possibilities allow for the introduction of additional 
objectives into the operation of the energy system. Commonly, the 
main objective of the operation is an economic one, relating to the 
respective reduction of fuel consumption and therefore operational 
costs. With the efforts to reduce the carbon footprint of the maritime 
sector, the reduction of emissions is gaining interest as an objective. In 
addition, with the introduction of new components, such as batteries or 
FC, the objective to reduce component degradation is becoming more 
and more important. All those objectives have different optimal points 
for operating the components of the energy system, resulting in an 
operator’s choice problem to determine the compromise between them. 
As a result, the energy system operation evolves into a multi-objective 
optimization problem that demands a real-time solution when trying to 
achieve optimality.

This multi-objective optimization is a challenge for the commonly 
used rule-based control (RBC), as it often leads to suboptimal solu-
tions [27]. RBC approaches have been shown to achieve good per-
formance in their design conditions, but can significantly drop in 
performance when dealing with a different operating profile or uncer-
tainties such as changing weather conditions [28]. A solution to address 
this increased complexity of the control problem is an advanced control 
approach [29]. Advanced control strategies have undergone previous 
investigation in marine energy management in recent years.

A notable approach to improve energy efficiency in diverse applica-
tion domains with predictable operating profiles is Model Predictive 
Control (MPC) [30–35]. In automotive, MPC approaches have been 
used to determine the sub-optimal power-split between a single battery 
system and the ICE of a vehicle, mostly for energy efficiency [31–33,
36], but also for multiple objectives [34] or to introduce alternative 
fuel systems [37]. Johannesson et al. [31] propose a predictive control 
scheme for energy management with a convex optimization approach 
to establish the sub-optimal control for the management of electric and 
kinetic energy for autonomous long-haul trucks. They demonstrate fuel 
savings due to autonomous speed control on trajectories with small 
to medium differences in altitude. The future propulsion load can be 
established, because the autonomous vehicle can plan its future speed 
and load profile based on geographic and route planning informa-
tion. Unger et al. [32] demonstrate that short-term prediction based 
on Bayesian inference can be used to improve energy efficiency and 
reduce engine dynamics, when the driver determines the speed profile. 
Kermani et al. [33] have developed an approach that does not require 
control freedom of the future vehicle speed. They propose a strategy 
3 
that uses prediction of the distribution of future driving conditions and 
an underlying Equivalent Consumption Minimization Strategy (ECMS) 
to establish a real-time control strategy with an embedded off-line 
optimization that takes driving conditions in the nearby future into 
account. They show that a compromise between fuel consumption and 
battery use can be achieved in a use case on a trajectory without 
altitude differences. Finally, Pozzato et al. [34] propose an economic 
MPC approach to optimize over multiple objectives, such as fuel con-
sumption, battery aging and noise emissions. This approach achieves 
convergence to the optimum for a convex problem formulation and 
can be used to solve energy management computationally efficiently for 
on-board energy management and sizing problems. However, real-time 
approaches require a definition of convex optimization problems.

In shipping, MPC exhibits versatility in energy management with 
various objectives [38]. A first study from Jiang et al. [39] shows the 
potential of MPC for real-time control of alternatively fueled vessels. 
The authors show the fuel saving and degradation reduction enabled 
by the combination of load forecasting and economic MPC for a small 
boat using PEMFC. The authors require a large amount of knowledge 
and data to be able to determine the load forecast, which remains 
unfeasible for many vessels currently. However, a significant challenge 
associated with MPC is the required knowledge about future operation 
of the system to accurately predict system behavior, which is time- and 
cost-intense [40]. While in the automotive sector, typical load profiles 
— such as acceleration, cruising, and braking — can be predicted 
with reasonable accuracy based on standardized drive cycles and road 
conditions, maritime operations present a far greater challenge. At sea, 
load demand is influenced by a highly variable and often unpredictable 
environment, including wind, waves, currents, and vessel maneuvering 
dynamics. These external factors introduce significant fluctuations in 
propulsion and auxiliary power requirements, making it difficult to 
accurately forecast the system load over time. This uncertainty compli-
cates the implementation of energy management strategies and optimal 
control schemes in marine applications.

This challenge becomes particularly pronounced for vessels char-
acterized by high uncertainty in their load profiles, making the ap-
plication of MPC even more complex. Therefore, advanced control 
approaches, which require less extensive knowledge about system be-
havior and load profile, are more suitable for uncertain operations in 
the maritime, such as the ECMS.

ECMS is an instantaneous optimization strategy commonly em-
ployed to successfully operate heterogeneous energy systems across 
differently-natured energy sources such as ICEs, FCs, and batteries [41]. 
Inherently, ECMS establishes correlations among objectives through an 
equivalent factor for battery use within its objective function. This 
correlation empowers the control mechanism to achieve an optimal 
balance among energy sources of a diverse nature. Because it only 
optimizes one-time step ahead, which offers computational savings 
compared to MPC, the application is easier to control in real-time.

ECMS is already widely explored in other areas of transport re-
search [42–49], most prominently the automotive. Already in 2011, 
Torreglosa et al. [42] show the successful power splitting of ECMS for 
fuel consumption reduction in the application of a FC-battery-electric 
tramway. Similarly, Zhang et al. [43] develop an ECMS control for 
a PEMFC tramway incorporating also batteries and supercapacitors. 
The control manages to successfully minimize the fuel consumption 
while operating with and without grid connection. In the automotive, 
Li et al. [46] present a SQP-based ECMS strategy for the fuel con-
sumption reduction of a FC-electric vehicle. The authors show that 
it is possible to reduce the hydrogen consumption in comparison to 
a rule-based benchmark and to stabilize the FC current to contribute 
to a healthy operational approach. Nuesch et al. [50] use ECMS to 
reduce the real driving NOx emissions of a diesel-electric vehicle. By 
determining the optimal power split the battery is used to reduce the 
emission production of the engine. The authors show the effectiveness 
of their approach to reduce fuel consumption and NO  emissions using 
x
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Hardware-in-the-Loop experiments. In 2020, Li et al. [51] explore the 
selection of the optimal equivalent factor further. The authors present 
an analytical expression of the boundary for the optimal choice based 
on the Hamilton equation of PMP.

While this research confirms the promising potential ECMS for 
optimal power distribution among heterogeneous energy sources, sev-
eral critical challenges arise when transitioning from automotive to 
maritime applications. Maritime power systems are orders of magni-
tude larger, as they incorporate diverse power sources and are often 
more complex than those in automotive settings, primarily due to the 
substantial and fluctuating power demands required for propulsion 
and auxiliary operations across various vessel types. This drastically 
increases the dimensionality and computational burden of the opti-
mization problem. Unlike automotive systems, where ECMS typically 
manages the power split between a single primary energy source and 
a storage unit [47], maritime applications must coordinate multiple 
energy sources and storage systems simultaneously, often with differing 
dynamic and efficiency characteristics [27]. Furthermore, the conven-
tional use of constant equivalent factors in ECMS becomes inadequate 
in maritime contexts, where operating conditions and component per-
formance can vary widely. Although adaptive equivalent factors can 
address this issue by dynamically adjusting to system changes, they also 
introduce additional computational complexity and tuning challenges. 
These expanded and highly nonlinear optimization problems demand 
more advanced solution methods and significantly longer computa-
tion times. Successfully implementing ECMS in the maritime domain, 
therefore, requires rethinking its control architecture, with particular 
attention to scalability, adaptability, and robustness under real-world 
marine operating conditions.

In a pioneering maritime application, Kalikatzarakis et al. [28] 
highlighted the fuel-saving capabilities of ECMS for vessels in a single-
objective optimization. For this, the authors use a convex model, which 
allows for a fast problem solution. However, integrating differently-
natured objectives, such as emissions different from CO2 or component 
aging, warrants further exploration as these other emissions typically 
do not allow for a convex problem definition. In 2023, Löffler et al. 
investigated ECMS for a multi-objective problem in a full-electric ves-
sel in two small studies [52,53]. However, those studies took into 
account only a concise operational time frame to provide a proof of 
concept, which is insufficient to fully establish the benefits of the 
ECMS approach. Expanding this study and taking into account a longer 
operational profile, a system model with higher accuracy, and a further 
developed optimization problem will provide more insights into the 
efficiency of this method compared to commonly used strategies in the 
field, such as RBC. As discussed in the previous, most ECMS approaches 
use a constant equivalent factor to compare between the different forms 
of energy [28,33]. Transitioning towards adaptive factors in maritime 
ECMS is an open gap to incorporate the complexity of the energy system 
and enable the control to flexibly adapt to the changing conditions of 
an operation.

This paper presents a novel multi-objective ECMS approach for 
the energy management of a dual-fuel full-electric vessel, taking into 
account both the fuel consumption of two intrinsically different fuels 
and of NOx emissions. Based on this, the novelty of this work can be 
defined as follows:

• The paper proposes a real-time multi-objective ECMS method 
to deal with the energy management problem of a dual-fuel 
fully electric vessel with hybrid power supply integrating ICE, FC 
and batteries, which translates into a mixed-integer non-convex 
problem.

• The proposed ECMS with an adaptive equivalent factor for battery 
usage can optimize the power split between the components un-
der changing operational conditions and for multiple objectives, 
allowing a trade-off between fuel cost, CO2 emissions, and NOx
emissions.
4 
Table 1
Case study vessel specification.
 Specification Parameter 
 Length 87m  
 Beam 13.5m  
 Draught 3.9m  
 Displacement 2470 t  
 GT volume 3000 t  
 Max. Speed 18 kn  
 Range 5000 nm  
 Max propulsion power 4000 kW  
 Max auxiliary power 1000 kW  
 Mean auxiliary load 280 kW  

Table 2
Case study vessel user profile.
 Mode Frequency [%] 
 Sailing 10  
 At anchor 33  
 In harbour 57  

• The potential for emission saving by introducing zero-emission 
fuel against a common industry benchmark using both rule-based 
and advanced control is quantified.

The paper is structured as follows: In Section 2, the chosen use case for 
this study is outlined by introducing the vessel and the virtual retrofit. 
Section 3, the methodology section, explains both the simulation model 
and the optimization problem. Section 4 introduces the simulation 
study, as well as the benchmark RBC. In Section 5, the results are 
analyzed and discussed for the chosen objectives. Last, the findings are 
summarized in Section 6.

2. Use case

The use case for this study is a yacht with electric propulsion and 
hybrid power supply, with a combination of a diesel engine, hydrogen 
fuel cells and a battery ES. This power source configuration allows 
for a trade-off between low emissions and noise, specifically at low 
power transit or anchored operations, and cost, specifically for high-
speed operation. The specifications of the case study vessel are reported 
in Table  1. The original layout of four diesel generators and an AC 
shipboard power grid is a typical full-electric vessel layout, which will 
be considered as industry benchmark in the study. The load profile of a 
yacht usually contains both hotel and propulsion loads, while fulfilling 
the hotel loads is a key aspect of the operation. An overview of the 
typical user profile over time is described in Table  2.

10 000 h of real-world operational data from a typical yacht with 
electric propulsion and diesel engine power system are obtained. The 
operational data are shown in Fig.  1. The auxiliary load is shown in 
red, while the propulsion load is shown in blue. The first plot of the 
figure shows the complete 10 000 h of the operational data, while the 
third plot shows the histogram of relative frequencies (excluding zeros). 
This data illustrates that the most common and frequent loads are the 
auxiliary systems with limited variation in the requested electric load. 
In contrast, the propulsion load occurs at much lower frequencies, and 
the spread of the requested load is larger. Generally, when propulsion 
load occurs, the yacht is sailing or manoeuvring.

However, the data show that the nature of these sailing trips is very 
diverse. This is illustrated in the second plot of Fig.  1. The second 
plot is split into three different cut-outs from the first plot, all three 
illustrating different trips. The first trip shows a consecutive use of 5 
days. Alternatively, the second plot shows 6 weeks of use, with a short 
period without propulsion load in the middle. Finally, the third plot 
illustrates shorter periods of use, mainly about a day long. A vessel 
of this type can be expected to perform longer sailing trips in the 
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Fig. 1. Operational data from the case study vessel covering 10 000 h and histogram of relative frequencies for the electric load.
summer season and in regions with high temperatures, while often in 
the harbour or at anchor from autumn to spring. In addition, there will 
be shorter cruises or transfers when the vessel needs to be relocated. 
As visible from the operational data, day tours can also occur, for ex-
ample in weekends. Furthermore, the amount of propulsion load varies 
between trips. Concluding, this operational data clearly illustrates that 
the energy management of such a vessel needs to be able to deal with a 
high amount of variation in the load demand for propulsion load while 
reliably providing the constant demand of auxiliary loads. From this 
operational data, an exemplary trip to showcase the effectiveness of 
the proposed controller in a simulation study can be selected.

For this use case, the vessel is retrofitted to accommodate a dual-
fuel system, introducing hydrogen as a zero-emission fuel into the 
power train. For this, the retrofitted version replaces two of the original 
engines in the vessel energy system with hydrogen Proton Exchange 
Membrane Fuel Cells (PEMFC). These are accompanied by two diesel 
ICE and two battery packs. This dual-fuel layout enables the reduction 
of fossil fuel consumption by replacing some power sources with zero-
emission fuel-cells. Other options for a retrofit, such as battery-electric 
or battery-FC-only combinations, are less feasible for the required load 
profile due to weight limits, tank size and space requirements. For the 
retrofit, the analysis of the load profile in Fig.  1 is taken into account. 
It is observable that the most frequent loads requested are hotel loads 
in a range between 200 kW and 400 kW. The efficiency of the PEMFC in 
this retrofit is best at low loads, which makes it desirable to use them 
to supply a steady base load. Furthermore, FCs are heavily affected by 
degradation under fast load changes, so the dynamics of the load profile 
are buffered by the batteries and engines. Therefore, each FC is sized 
to a power rating of 215 kWe, which allows all four FCs to constantly 
provide sufficient power for the hotel loads while staying in a good 
efficiency range. This is combined with the ICEs, which have a power 
rating of 1430 kWe to be able to provide the required propulsion loads. 
The addition of two battery packs with a nominal capacity of 2250 kWh
allows for buffering of small load changes and can maintain the FCs 
5 
Fig. 2. Retrofitted layout of the yacht.

at continuous load levels, which is beneficial for both efficiency and 
component degradation [54]. The shipboard power system operates on 
DC with the battery connected directly to the DC bus. While the four 
fuel cells are connected using DC/DC converters, the ICE is combined 
with generators and an AC/DC conversion. This configuration allows 
for the use of engines at variable speed, allowing additional freedom 
in the control. The power system layout of the vessel is shown in Fig. 
2 and the case study parameters are shown in Table  3.

3. Methodology

This section discusses the development of the simulation model for 
control testing and the development of the ECMS control approach. 
Subsequently, the complexity of the optimization problem is discussed 
and an adequate approach for solving the problem real-time is de-
termined. Finally, the hierarchical control layout is presented. The 
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Table 3
Power system design of the case study.
 Parameter Description Value  
 𝑉DC DC-bus voltage 800−-1000V 
 𝑃𝐸𝑛𝑔 Engine power rating (x2) 1430KWe  
 𝑃𝐹𝐶 FC power rating (x4) 215KWe  
 𝑄𝑛𝑜𝑚 Battery nominal capacity (x2) 2250KWh  
 𝜂𝐴𝐶−𝐷𝐶 Conversion efficiency 0.98  
 𝜂𝐷𝐶−𝐴𝐶 Conversion efficiency 0.98  
 𝜂𝐷𝐶−𝐷𝐶 Conversion efficiency 0.98  
 𝜂𝑚 Motor efficiency 0.97  
 𝜂𝑔𝑏 Gearbox loss 0.97  

Fig. 3. Graphical abstract of the methodology.

overview of this methodology is presented as a graphical abstract in 
Fig.  3.

3.1. Model development

The simulation model of the physical system is developed using 
a single differential equation for battery state of charge (SOC) and 
mathematical relations of steady-state behavior, as research confirmed 
that steady state models are sufficiently accurate to establish fuel 
consumption over true operating profiles [55,56]. These models are 
calibrated with real-world measurements to accurately represent fuel 
consumption and emissions. The charging and discharging of the bat-
tery system and the state of charge (SOC) of the battery is the single 
state in the proposed modeling approach, as the SOC and the discharge 
current drive the losses in the battery [57] The causal relations for the 
model are illustrated in Fig.  4. Major parts of the energy system model 
of the vessel consist of available models from the literature, which 
have already been validated. The model is implemented in a Simulink 
environment based on Matlab R2022b.

3.1.1. DC bus
The central element of the simulation model is the representation 

of the DC bus represented by Kirchhoff’s current law, assuming the 
network capacitance does not influence system energy efficiency over 
a longer period of time, as follows: 
∑

𝑖(𝑡) =
2
∑

𝑘=1
𝑖Eng,k (𝑡) +

4
∑

𝑗=1
𝑖FC,j(𝑡) − 𝑖Load(𝑡) − 𝑖Bat (𝑡) = 0, (1)

with the time-dependent currents 𝑖Eng,i(𝑡) for the ICEs, 𝑖FC,i(𝑡) for the 
FCs, 𝑖 (𝑡) for the requested load, and 𝑖 (𝑡) for the battery. The DC 
Load Bat

6 
Fig. 4. Causal diagram of the simulation model and the ECMS controller.

voltage of the system 𝑉DC is determined by the battery voltage 𝑉Bat at 
all times, as the batteries are directly connected to the bus: 
𝑉DC(𝑡) = 𝑉Bat (𝑡), (2)

The currents of the requested load and the power generation com-
ponents are derived from the respective power set points and the 
requested power demand as follows:

𝑖Eng(𝑡) =
𝑃Eng(𝑡)
𝑉DC(𝑡)

⋅
𝜂gen

𝜂AC−DC
(3)

𝑖FC(𝑡) =
𝑃FC(𝑡)
𝑉DC(𝑡)

⋅ 𝜂DC−DC (4)

𝑖Prop(𝑡) =
𝑃Prop(𝑡)
𝑉DC(𝑡)

⋅
1

𝜂gb ⋅ 𝜂m ⋅ 𝜂DC−AC
(5)

𝑖Hotel(𝑡) = 𝑃Hotel(𝑡) ⋅
1

𝜂DC−AC
(6)

𝑖Load(𝑡) = 𝑖Prop(𝑡) + 𝑖Hotel(𝑡) (7)

𝑖Bat (𝑡) = 𝑖Eng(𝑡) + 𝑖FC(𝑡) − 𝑖Load(𝑡) (8)

where 𝑖Eng(𝑡) and 𝑖FC(𝑡) describe the diesel generator and FC current, 
𝑖Prop(𝑡) and 𝑖Hotel(𝑡) are the currents of the hotel and propulsion load, 
which are later combined to an overall load current 𝑖Load(𝑡). The result-
ing battery current 𝑖Bat (𝑡) is the difference between the generated and 
the consumed load, as follows: 
𝑖Bat (𝑡) = 𝑖Eng(𝑡) + 𝑖FC(𝑡) − 𝑖Load(𝑡) (9)

3.1.2. Battery
In this model, a simplistic battery model as proposed by Tremblay 

et al. [57] is adapted to the specific usecase. The main underlying 
model is the Shepherd model for constant-current discharge [58] with 
some modifications to consider the polarization voltage, known as 
modified Shepherd model [59]. Although more complex battery mod-
els, such as equivalent circuit models of first- and second order, can 
represent more accurate diffusion phenomena and voltage dynamics, 
the effect of these models does not affect the control approach proposed 
in this work [60]. The battery is modeled as a series controlled voltage 
source with constant resistance, as shown in Fig.  5. The model describes 
both charge and discharge behavior with similar characteristics.

The no-load voltage 𝐸Bat (𝑡) of the controlled voltage source can be 
described with the following relation:

𝐸Bat (𝑡) = 𝐸0,Bat −𝐾 ⋅
𝑄nom

𝑄nom − ∫ 𝑖Bat (𝑡) ⋅ 𝑑𝑡

+ 𝐴exp ⋅ exp(−𝐵exp 𝑖Bat (𝑡) ⋅ 𝑑𝑡), (10)
∫
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Fig. 5. Shepherd battery model [57].

Fig. 6. Nominal current discharge characteristic for fitting of the battery model [57].

where 𝐸0 is the battery nominal voltage, 𝐾 is the polarization voltage, 
𝑄nom is the battery capacity, 𝐴exp is the exponential zone amplitude, 
𝐵exp is the exponential zone time constant inverse, and 𝑖Bat (𝑡) is the 
battery current over time. With this, the battery voltage 𝑉Bat is defined 
as: 
𝑉Bat (𝑡) = 𝐸Bat (𝑡) − 𝑅Bat,int ⋅ 𝑖(𝑡), (11)

with the internal resistance 𝑅Bat,int .
Following the Shepherd relation, the SOC of the battery can be 

considered inversely proportional to the polarization ohmic voltage 
and, therefore, be derived from this voltage-current approach [61]. As 
the SOC is a representation of how much capacity is left in the battery 
𝑄 in comparison to the nominal capacity 𝑄nom

SOC(𝑡) =
𝑄(𝑡)
𝑄nom

⋅ 100,

the model can be used to represent the SOC by estimating the battery 
voltage. This set of equations can be fitted for the parameters to fit the 
discharge curve of a battery. The resulting typical discharge curve is 
shown in Fig.  6.

A large benefit of this model is the capability to find the model 
parameters without experimental tests as they can be calculated using 
any typical discharge curve provided from a manufacturer sheet. Trem-
blay et al. [57] validate the approach for different battery chemistry 
discharge curves and derive the parameter sets for those respective 
batteries. Therefore, as reported in their work, the parameter set for 
a lithium-ion battery shown in Table  4 is used.

The model is based on the assumptions detailed in Tremblay et al.
[57] and has two main limitations. The first is that the minimum no-
load battery voltage is 0V, while the maximum battery voltage is not 
limited. Second, the minimum capacity is limited to 0A h, while the 
maximum capacity is not limited. From this, it follows that the SOC 
of the battery model can be greater than 100% when overcharged. 
However, the control strategy limits the SOC of the battery to 80%
7 
Table 4
Lithium-Ion battery parameters for a cell based on [57] and 
scaled model cells in parallel and series.
 Parameter Value Unit  
 𝑄cell 1 Ah  
 𝑉cell 3.6 V  
 𝐸0 3.7348 V  
 𝑅Bat,int 0.09 Ω  
 𝐾 0.00876 V  
 𝐴exp 0.468 V  
 𝐵exp 3.5294 Ah−1 
 𝑛𝑝 2250 –  
 𝑛𝑠 233 –  

Fig. 7. Simplified fuel cell stack model [67].

on the upper limit, which makes this limitation irrelevant for this 
application.

This battery model is scaled to fit the power system design shown 
in Table  2 and included in the virtual vessel simulation model. With 
the parameters for cell voltage 𝑉cell and nominal cell capacity 𝑄cell the 
model is scaled by adjusting the number of cells in parallel and series 
to match the required nominal battery capacity 𝑄Bat and to match the 
DC system voltage. This leads to the numbers for cells in parallel 𝑛𝑝
and cells in series 𝑛𝑠 as shown in Table  4. In this, the battery model 
takes the battery current, determined by the power balance at the DC 
bus, and the initial value of the SOC for each time step as input. This 
battery current can be defined as follows for each of the two battery 
packs:

𝐼̇Bat,i(𝑡) =
1
2
⋅ 𝐼̇Bat (𝑡).

Following the internal model, it provides the battery voltage 𝑉Bat and 
an updated SOC as output, which are reported back to the energy 
system model.

3.1.3. Fuel cell
For the modeling of PEMFC, a variety of different modeling ap-

proaches are available in literature [62], such as different dynamic 
models [63–66] that can accommodate temperature or pressure
changes. However, to integrate the model into a large marine energy 
system model, some simplifications can be made to speed up the 
simulation. In this application, the FC stack is simulated at nominal 
temperature and pressure conditions at all times, allowing for a sim-
plified version of a stack model. In this work, the PEMFC is modeled 
according to Souleman et al. [67]. The authors propose a generic model 
that combines features from electrical and chemical models, which 
can be fitted by manufacturer data sheets. The simplified stack model 
consists of a series controlled voltage source with constant resistance, 
as shown in Fig.  7.

Similarly to the approach of the battery model, the controlled volt-
age source model aims to evaluate the FC voltage by determining the 
voltage of the controlled voltage source. The underlying base concept is 
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Fig. 8. Validation of the fuel cell stack model against a data sheet [67].

the Nernst equation [68], which is connected to both electrochemical 
and thermodynamic principles. The controlled voltage source can be 
described using the frequency domain as follows: 

𝐸FC(𝑡) = 𝐸0,FC −𝑁 ⋅ 𝐴 ⋅ ln
𝑖(𝑡)
𝑖0

⋅
1

𝑠 ⋅ 𝑇𝑑∕3 + 1
, (12)

where 𝐸0,FC is the open circuit voltage, 𝑁 represents the number of 
cells in the stack, 𝐴 is the Tafel slope, 𝑖0 is the exchange current and 
𝑇𝑑 represents the response time. The current flowing in the fuel cell 
is represented by 𝑖(𝑡). This formulation considers only the activation 
losses, which occur due to the slowness of chemical reactions at the 
electrode’s surface. Using this, the voltage of the fuel cell 𝑉FC(𝑡) can be 
determined, as follows 
𝑉FC(𝑡) = 𝐸FC(𝑡) − 𝑅FC,int ⋅ 𝑖(𝑡), (13)

in which 𝑅FC,int is the FC stack’s internal resistance to include the ohmic 
losses.

The PEMFC model is controlled using a power reference 𝑃FC,ref , 
which is translated into a required current by 

𝑖(𝑡) =
𝑃FC,ref (𝑡)
𝑉FC(𝑡)

. (14)

With this, the hydrogen consumption of the FC is 

𝑚FC(𝑡) =
𝑖(𝑡) ⋅𝑁
𝑧 ⋅ 𝐹

⋅ 𝑧 =
𝑖(𝑡) ⋅𝑁

𝐹
, (15)

where 𝑧 is the number of moving electrons and 𝐹  is the Farady 
constant [69].

The PEMFC selected for this study is the Nedstack FCS 13-XXL 
stack, with specifications derived from the manufacturer’s technical 
data sheet [70]. At beginning-of-life, the stack delivers a rated electrical 
output of 13.6 kWe at a nominal current of 230A. The system requires 
hydrogen fuel with a minimum purity of grade 2.5, compliant with ISO 
14687-2:2008 standards. Operational requirements include a relative 
humidity of at least 50% and a maximum hydrogen consumption of 
approximately 154Lmin−1 (normalized). The manufacturer provides 
characteristic performance curves of stack voltage and output power 
as functions of the stack current, which were used to calibrate and 
validate the steady-state behavior of the model in this study [70]. 
Further information, such as temperature, emission production or inlet 
pressure are reported as well. Furthermore, experiments have been 
carried out to evaluate the behavior on other points of operation. The 
model performance shows an accurate representation of the real system 
for nominal conditions, as shown in Fig.  8.

3.1.4. Internal combustion engine
Modeling of ICE is a complex process involving several differential-

equations, when trying to represent the dynamic thermodynamic be-
havior [71]. In recent years, a few approaches have been developed 
8 
Fig. 9. SFC and NOx production maps of the ICE.

for ICE modeling. Approaches can be split into hybrid quasi-static 
models, single-zone thermodynamical models, and computational fluid 
dynamics (CFD) models [72]. While the first category of models is very 
fast but lacks in accuracy, the second and third categories can provide 
the required insights into fuel consumption and emission formation 
for the trade-off towards longer computational times. However, for the 
application in an energy management control framework, only the first 
category is feasible due to the prolonged computational times of the 
other approaches.

Therefore, maps created from experimental measurement data are 
used in this model. With this, the ICE are modeled using a simple 
map used for a look-up table and interpolation and real-world data 
measurements for the SFC and NO𝑥 emission maps, shown in Fig. 
9. This approach provides the results very fast and reliably and is 
considered accurate enough to show the proposed control application.

The used ICE model takes two values as inputs, both the engines 
speed 𝑛Eng,i and the engines power 𝑃Eng,i. With this, the SFC, CO2 and 
NOx emissions are established. The data representing the SFC over 
the operational envelope is obtained from a map provided by the 
manufacturer for the Caterpillar C32, scaled to match the required 
operational power and speed of the engines used on the real vessel. 
The NOx emission data is based on Geertsma et al. [11] and fitted to 
match the operational envelope of the SFC map. This approach is used 
as it is not common for engine manufacturers to provide complete maps 
of NOx emissions. NOx emissions are mainly driven by operating con-
ditions and local combustion temperature, but limited data available. 
Therefore, obtaining NOx emissions specific for the Caterpillar C32 was 
impossible. The representation used in this study shall illustrate the 
difference in the map for the SFC and NOx emissions. However, as it 
aims to show the possibility of deciding between differently-natured 
objectives in this methodology, the map is suitable to demonstrate the 
approach.

3.1.5. Synchronous generator
This section presents the analytical approach to studying a syn-

chronous generator’s electrical behavior and main mechanical charac-
teristics. Assuming a salient-pole machine and mechanical and electri-
cal steady state, the machine’s behavior has been studied according 
to [73,74]. The procedure is based on the analysis of the machine 
behavior along two axes, namely the direct axis 𝑑 and the quadrature 
axis 𝑞, revolving with the rotor, according to the following relationship
𝐄0 = 𝐕1 + 𝑅𝑎𝐈𝑎 + 𝑗𝑋𝑠𝑑𝐈𝑎𝑑 + 𝑗𝑋𝑠𝑞𝐈𝑎𝑞 , (16)

where 𝑋𝑠𝑑 and 𝑋𝑠𝑞 are the 𝑑-axis and 𝑞-axis synchronous reactance, 
respectively, 𝐈𝑎𝑑 and 𝐈𝑎𝑞 are the components of the armature current 
phasor along 𝑑-axis and 𝑞-axis respectively, 𝐄0 is the no-load phase 
voltage, 𝐈𝑎 is the line current, 𝐕1 is the line phase voltage, 𝑋𝑠 is 
the synchronous reactance, and 𝑅𝑎 is the stator winding resistance 
(equivalent per phase).
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Fig. 10. Idealized salient-pole machine.

Eq. (16) can be easily translated into the phasor diagram reported 
in Fig.  10, where 𝛿 is the torque angle, representing the angle between 
the direct axis of the rotor and the direct axis of the stator, and 
𝜙𝑎 represents the power angle, which is the phase angle difference 
between the armature current and the terminal voltage.

Thus, in the absence of saturation effects, the machine’s behavior 
can be analyzed by solving Eq. (16), keeping in mind the linear relation-
ship between the no-load voltage 𝐸0 and the field current 𝐼𝑓 . However, 
the analysis becomes more complex when saturation effects are present, 
as is commonly the case. Consequently, various methodologies to ad-
dress this complexity have been developed and are well-documented in 
the literature [75]. In this application, the effects of saturation under 
load were considered using a saturation factor determined from the 
open-circuit characteristic.

To calculate the efficiency of a synchronous generator, the power 
components and system losses must be considered. The following equa-
tions express the relationships between the generated power compo-
nents and the load requirements
𝑃1 = 3𝑉1𝑎𝐼𝑎 cos𝜙𝑎 = 𝑃𝐿 + 𝑃𝑟 (17)

𝑄1 = 3𝑉1𝑎𝐼𝑎 sin𝜙𝑎 = 𝑄𝐿, (18)

where 𝑃1 is the active power produced by the synchronous generator, 
𝑄1 is the reactive power produced by the synchronous generator, 𝑉1𝑎 is 
the phase voltage of the generator, 𝐼𝑎 is the armature current, 𝜙𝑎 is the 
power factor angle, 𝑃𝐿 is the load power, 𝑃𝑟 is the power loss in the 
rotor resistance, and 𝑄𝐿 is the reactive power consumed by the load.

The electromagnetic torque 𝑇𝑒𝑚 is directly associated with the active 
power provided by the machine at the stator terminals. The relationship 
can be expressed as 

𝑇𝑒𝑚 =
𝑃1
𝜔𝑐1

=
3𝑉1𝑎𝐼𝑎 cos𝜙𝑎

𝜔𝑒
=

𝑃𝐿 + 𝑃𝑟
𝜔𝑒

, (19)

where 𝜔𝑐1 is the synchronous speed in mechanical radians per second 
and 𝜔𝑒 is the synchronous speed in electrical radians per second.

By expressing the power losses as frequency functions, the genera-
tor’s efficiency can be derived as a function of frequency. 𝑃𝑟 depends 
on the rotor resistance and the frequency, the friction and windage 
losses (𝑃F&W) can be considered approximately constant, the core losses 
(𝑃core) typically increase with frequency due to hysteresis and eddy 
current losses, and joule losses (𝑃𝐽𝑠 ) are dependent on the square of the 
current, which in turn is affected by frequency and load conditions. A 
loss analysis with a detailed examination and calculation of each loss 
component has been carried out to accurately estimate the efficiency 
of a synchronous generator.

When the generator operates under no-load conditions at syn-
chronous speed, the mechanical power required represents the no-load 
rotational losses 
𝑃no-load = 𝑃F&W + 𝑃core, (20)

where 𝑃no-load is the no-load power, 𝑃F&W is the friction and windage 
loss, and 𝑃core is the core loss. In the case of a short-circuit at syn-
chronous speed, the losses due to armature current, 𝑃 , known as 
𝐽𝑠
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short-circuit load loss, are given by: 

𝑃short-circuit = 𝑃F&W + 𝑃𝐽𝑠 , (21)

where 𝑃short-circuit is the short-circuit power and 𝑃𝐽𝑠  is the joule loss 
in the stator winding under short-circuit conditions. Since the DC 
resistance of the armature winding is known, the joule losses can be 
computed 

𝑃𝐽𝑠 = 3𝑅𝑎𝐼
2
𝑎 , (22)

Therefore, the overall shaft torque 𝑇𝑠ℎ𝑎𝑓𝑡 and efficiency can then be 
calculated from the total mechanical power, factoring in all types of 
losses 

𝑇𝑠ℎ𝑎𝑓𝑡 =
𝑃𝑠ℎ𝑎𝑓𝑡

𝜔𝑐1
=

𝑃𝐿 + 𝑃𝑟 + 𝑃F&W + 𝑃core + 𝑃𝐽𝑠
𝜔𝑐1

, (23)

where 𝑃𝑠ℎ𝑎𝑓𝑡 is the total shaft power including all operational losses.
To calculate the efficiency of the synchronous generator 𝜂𝑠𝑔 as a 

function of frequency, the following equation is used 

𝜂𝑠𝑔 =
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

=
𝑃𝐿

𝑃𝐿 + 𝑃𝑟 + 𝑃F&W + 𝑃core + 𝑃𝐽𝑠
, (24)

where 𝑃𝑜𝑢𝑡 is the useful power delivered to the load and 𝑃𝑖𝑛 is the total 
input power including all losses. Using this model, an efficiency field 
for the generator can be created to showcase the different conversion 
efficiencies over the engine’s operational envelope.

3.1.6. Energy conversion
The model contains several energy conversion components to in-

tegrate AC and DC into the system. Further, the mechanical losses at 
the gearbox are included similarly, as well as the losses of the electric 
motor. Those are modeled using linear efficiency factors as shown in 
Fig.  4.

3.1.7. Control inputs
The simulation model is controlled with eight reference set points. 

Four of them represent the ICE speeds and reference powers, while the 
other four are the FC power references. An interface is provided to 
either determine those set point values using a rule based controller 
or the ECMS controller, which is further outlined in the following.

3.2. Control development

The control development is split into a detailed description of 
the optimization problem and an analysis of its respective properties. 
Based on those, potential solution approaches and problems arising are 
discussed. Lastly, a hierarchical multi-level optimization is presented.

3.2.1. Optimization problem
States and controls can be defined to describe the system’s math-

ematical behavior for the control problem. An overview of the state 
variables 𝑥𝑖, control variables 𝑢𝑖, inputs and parameters are presented 
in Tables  5 and 6. The five states are four time-dependent currents 
processed in the DC bus, namely the currents produced by the power 
sources, the battery current, the requested load current, and the SOC 
of the batteries. It is sufficient to consider one battery’s SOC, as they 
are assumed to behave identically due to their direct connection to the 
bus. Those five states describe the actual system behavior depending 
on the choice of control variables 𝑢𝑖 in the next time step. As control 
variables, the power and speed references for both ICE and the power 
set points for the FC are used.

As the system is continuous over time, all variables can be consid-
ered as time dependent functions. This leads to the following equation 
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Table 5
Control variables.
 Name Description Role  
 𝑖Eng Engine Current State (alg.) 𝑥1  
 𝑖Load Requested Load Current State (alg.) 𝑥2  
 𝑖FC Fuel Cell Current State (alg.) 𝑥3  
 𝑖Bat Battery Current State (alg.) 𝑥4  
 SOCBat Battery State of Charge State (dif.) 𝑥5  
 𝑃Eng,i 𝑖th ICE Power Reference Control 𝑢1−2 
 𝑛Eng,i 𝑖th ICE Speed Reference Control 𝑢3−4 
 𝑃FC,j 𝑗th FC Power Reference Control 𝑢5−8 
 𝑃Prop Propulsion Load Input  
 𝑃Aux Auxiliary Load Input  
 𝑉DC DC Voltage Input  
 𝑉FC,i Fuel Cell Voltage Input  

Table 6
Control parameters.
 Parameter Description  
 𝑁 Fuel Cell Cells in series  
 𝐹 Faraday constant  
 𝑝D Price of diesel  
 𝑝H2 Price of hydrogen  
 𝜁Bat Equivalent factor battery  
 𝑝Bat Equivalent price battery  
 𝑛p Battery modules in parallel 
 𝑄nom Battery nominal power  
 𝜂𝑔𝑏 Gearbox loss  
 𝜂𝑚 Electric motor loss  
 𝜂AC−DC AC-DC conversion loss  
 𝜂DC−AC DC-AC conversion loss  
 𝜂DC−DC DC-DC conversion loss  

system for the system behavior represented by the state variables: 

𝑥1(𝑡) =
𝑢1(𝑡) ⋅ 𝜂𝐺𝑒𝑛,1(𝑡) + 𝑢2(𝑡) ⋅ 𝜂𝐺𝑒𝑛,2(𝑡)

𝑉DC(𝑡)
⋅ 𝜂AC−DC

𝑥2(𝑡) =
𝑃Prop(𝑡) ⋅ 1∕𝜂𝑔𝑏 ⋅ 1∕𝜂𝑚 + 𝑃Aux(𝑡)

𝑉DC(𝑡) ⋅ 𝜂DC−AC

𝑥3(𝑡) =
(𝑢5(𝑡) + 𝑢6(𝑡) + 𝑢7(𝑡) + 𝑢8(𝑡))

𝑉DC(𝑡)
⋅ 𝜂DC−DC

𝑥4(𝑡) = 𝑥1(𝑡) + 𝑥3(𝑡) − 𝑥2(𝑡)

𝑥5(𝑡) = 𝑥5(0) +
1
2 ∫

𝑡

0

𝑥4(𝑡)
𝑄nom ⋅ 𝑛𝑝

𝑑𝑡

(25)

However, solving a continuous time control problem can be challenging 
computationally. Discretizing the system with an appropriate sampling 
rate solves this problem while still providing an accurate representation 
of the system behavior, wherefore the behavior in between the sample 
points can be neglected [76]. This leads to the discretized variable 
system of a time step 𝑛 reported in Eq. (26). In this, 𝛥𝑡 is the sampling 
rate between the time steps 𝑘. 

𝑥1 =
𝑢1 ⋅ 𝜂𝐺𝑒𝑛,1 + 𝑢2 ⋅ 𝜂𝐺𝑒𝑛,2

𝑉DC
⋅ 𝜂AC−DC

𝑥2 =
𝑃Prop ⋅ 1∕𝜂𝑔𝑏 ⋅ 1∕𝜂𝑚 + 𝑃Aux

𝑉DC ⋅ 𝜂DC−AC

𝑥3 =
(𝑢5 + 𝑢6 + 𝑢7 + 𝑢8)

𝑉DC
⋅ 𝜂DC−DC

𝑥4 = 𝑥1 + 𝑥3 − 𝑥2

𝑥5 = 𝑥5𝑘−1 +
1
2

𝛥𝑡 ⋅ 𝑥4
𝑄nom ⋅ 𝑛𝑝

(26)

While most efficiencies in Eq. (26) are constant quantities and handled 
as parameters of the problem, the transformation of the mechanical 
power of the engines into electric current is handled differently. Syn-
chronous generators are used for the transformation of mechanical into 
electrical energy. As the conversion efficiency is not constant, a field 
is used to account for the variable speed operation and the switching 
10 
efficiencies. In the controller, this variable efficiency is also represented 
by a function 𝑓1 in the form of 

𝜂Gen = 𝑓1(𝑢𝑖, 𝑢𝑖+2), (27)

which is also depending on the speed and power produced by the 
engines 𝑖 ∈ {1, 2}.

Fuel consumption and emission production. To further quantify the sys-
tem behavior by adding objectives, an additional set of functions can 
be defined to describe the fuel consumption and emission production 
under operation. For this, first, the combination of power and speed 
control values of the ICE to the SFC and NOx emissions are related. 
Mathematically, the fuel consumption and the NOx emissions are rep-
resented as rates 𝛩 to evaluate the production over time. The rates 
𝛩SFC,Eng and 𝛩NO𝑥 ,Eng can be defined using the fuel maps of the ICE, 
shown in Fig.  9. Mathematically, two additional functions 𝑓2 and 𝑓3
for the ICE indexed with 𝑖 ∈ {1, 2} are defined in the following form:

𝛩SFC,Eng,i = 𝑓2(𝑢𝑖, 𝑢𝑖+2) (28)

𝛩NO𝑥 ,Eng,i = 𝑓3(𝑢𝑖, 𝑢𝑖+2), (29)

in which the functions represent the SFC and NOx production rates. Us-
ing those, the consumed mass of diesel fuel 𝑚D and the NOx emissions 
produced 𝑚NOx

 can be determined as follows:

𝑚D = 𝛩SFC,Eng,1 ⋅ 𝑢1 + 𝛩SFC,Eng,2 ⋅ 𝑢2 (30)

𝑚NOx = 𝛩NO𝑥 ,Eng,1 ⋅ 𝑢1 + 𝛩NO𝑥 ,Eng,2 ⋅ 𝑢2 (31)

In addition, the consumed mass of hydrogen fuel (𝑚H2) from the FCs 
can be established using the following relation: 

𝑚H2 =

( 4
∑

𝑖=1

𝑢4+𝑖
𝑉FC,𝑖

)

⋅
𝑁
𝐹

, (32)

where 𝑁 represents the number of cells in series within the fuel cell 
stack, 𝑉FC,i denotes the voltage of the 𝑖th fuel cell, and 𝐹  is the Faraday 
constant. With this, the fuel mass consumed and emission produced for 
both hydrogen and diesel can be estimated in relation to the control 
power set points.

Battery equivalent factor. The key element of ECMS is the use of equiv-
alence factors to allow for the comparison of differently natured energy 
sources. In this case, a battery equivalent factor 𝜁 is introduced to 
compare the electric energy to the chemical energy in the two fuels 
diesel and hydrogen. This battery factor is designed to determine the 
optimal power split for an optimal operation of all three power sources 
sidealong. While previous work often uses a constant value for the 
equivalence factor [28,46], this study proposes an adaptive factor to 
improve the holistic optimization of the power split.

First, the battery power is computed based on the battery current 
𝑥4 to compare the battery with the other power sources, which are 
controlled by power set points, in the following way 

𝑃Bat = |𝑥4| ⋅ 𝑉DC. (33)

Now, the battery power 𝑃Bat is relatable to the powers of the other 
energy sources. As the dynamics of the ICEs and batteries are faster than 
the FCs, those two components are intended to deal with the variations 
of the load profile, while the FCs are best operated on constant load 
without fast changes. As the SFC of the engine is highly nonlinear over 
the operational envelope, compare Fig.  9, the battery can be used to 
optimize the point of engine operation. For this, the battery power is 
transformed into virtual diesel fuel mass using the adaptive equivalent 
factor.

Therefore, three cases of operation are defined, for which each an 
equivalent factor is designed: (1) battery + FC only operation, (2) 
battery + FC + 1 ICE operation, and, (3) battery + FC + 2 ICE operation. 
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The most simple is case (1), in which a constant factor 𝜁1 is chosen, as 
no engine is running: 
𝜁1 = min(𝛩SFC,Eng), (34)

which is the point of minimal engine fuel consumption. For case (2) 
and case (3), the equivalent factors 𝜁2 and 𝜁3 are online adaptive to the 
actual SFC of the ICE. This is done as follows for case (2): 
𝜁2 = 𝛩SFC,Eng,1, (35)

and case (3): 

𝜁3 =
𝛩SFC,Eng,1 + 𝛩SFC,Eng,2

2
. (36)

With this factor 𝜁𝑖 with 𝑖 ∈ {1, 2, 3}, the equivalent virtual fuel mass 
consumed by the battery 𝑚Bat can be described using the power 𝑃Bat
following 
𝑚Bat = 𝜁𝑖 ⋅ 𝑃Bat , (37)

depending on the case of operation.
Objective function. Next, the objective function of the optimization 
problem can be set up. The objective function defines a direction 
toward the optimal solution of the control problem by defining targets 
to minimize over the course of the operation. The objectives considered 
in this study are the minimization of both fuels consumed, as well as 
NOx emissions. The two fuels, hydrogen and diesel, are each related to a 
financial cost 𝑝D and 𝑝H2 to quantify the cost of consumption. With the 
virtual battery fuel mass 𝑚Bat calculated in Eq. (37) the battery power 
is transformed to diesel equivalent by using the equivalent factor 𝜁 and 
can be examined with the price for diesel as well.

Two objectives 𝐶𝑖 with 𝑖 ∈ {1, 2} are defined in the form of
𝐶1 = 𝑚D ⋅ 𝑝D + 𝑚H2 ⋅ 𝑝H2 + 𝑚Bat ⋅ 𝑝D (38)

𝐶2 = 𝑚NOx, (39)

where 𝐶1 represents the financial cost and 𝐶2 the produced emissions. 
Both aspects are normalized to allow for a comparison of the differently 
natured objectives. In addition, a weight 𝜆 is introduced to allow the op-
erator to prioritize between the objective of financial cost minimization 
and emission production. This leads to the following objective function 
formulation 
𝐽 (𝐱,𝐮) = 𝜆 ⋅ 𝐶1 + (1 − 𝜆) ⋅ 𝐶2 (40)

Constraint definition. A set of equality and inequality constraints fur-
ther defines the system’s behavior. The most important equality con-
straint used is the power balance. This constraint ensures that the 
amount of generated power matches the required power and is critical 
to ensure the stability of the electric system. The power balance is 
reported in Eq. (41). 
0 = 𝑥1 + 𝑥3 − 𝑥2 − 𝑥4 (41)

For each component, a set of inequality constraints describes the op-
erational envelope introducing a lower and upper limit. For a generic 
component , those constraints can be represented in the form of 
lower ≤  ≤ upper. (42)

However, the engines cannot be described in this form, as they need to 
be represented by an operational envelope diagram, as shown in Fig. 
9. Two functions dependent on the engine power and engine speed are 
introduced to define the upper and lower limits of the characteristics 
map. This leads to the functions reported in Eq. (43) for engines 𝑖 ∈
{1, 2}. 
𝑓lower,i(𝑢i,lower , 𝑢i+2,lower ) ≤ Eng,i ≤ 𝑓upper,i(𝑢i,upper , 𝑢i+2,upper ) (43)

Those functions alone are not enough to fully describe the operation 
of the ICEs. A relevant aspect of the engine operation is the possibility 
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of it not operating, introducing a mixed-integer aspect to the problem. 
The engine speed can be defined in the following interval 𝑛𝜖𝑁 =
{0, 𝑢i+2,lower ≤ 𝑢i+2 ≤ 𝑢i+2,upper}. Using this, the power of the engines 
𝑖 ∈ {1, 2} is constrained as follows:

𝑢i ≤ 𝛿𝑢i+2 ⋅ 𝑓upper,i(𝑢i, 𝑢i+2) (44)

𝑢i ≥ 𝛿𝑢i+2 ⋅ 𝑓lower,i(𝑢i, 𝑢i+2) (45)

using the Kronecker delta 𝛿𝑢i+2  defined as follows: 

𝛿𝑢i+2 =

{

1, if 𝑢i+2,lower ≤ 𝑢i+2 ≤ 𝑢i+2,upper ,
0, else.

(46)

Similarly, the battery is also defined by additional constraints. As 
mentioned above, the batteries have two characteristic variables, the 
current coming from or going towards the batteries and the SOC. 
Since the batteries are doubled and directly connected to the bus, each 
battery pack is considered to be receiving/providing half of the current 
in the current time step (See Eq. (47)). 

𝐼Bat,1 =
1
2
⋅ 𝑥4 = 𝐼Bat,2 (47)

This leads to both batteries always having the same SOC, which is a 
simplification of reality, but for this purpose, it is accurate enough. 
An additional inequality constraint limits the absolute change in SOC, 
which is represented as change 𝛥𝑥5 over the course of one time step 𝑘, 
as follows 

0 ≤ |𝛥𝑥5| = |𝑥5,𝑘+1 − 𝑥5,𝑘| ≤ 𝛥𝑥5max. (48)

While upper and lower limits are introduced for both the SOC, the 
change of the SOC over time and the battery current, as well as the 
choice of battery mode, require further consideration. A battery mode 
is used to actively manage the long-term trend of the batteries actively, 
even though the batteries are indirectly controlled using the power gen-
eration by the ICEs and FCs. Two modes are considered for the battery: 
charging and discharging, meaning that over the operational time the 
aim is to either charge or discharge the batteries. This adds another 
mixed-integer aspect to the complexity of the problem. Coherent to the 
choice of battery mode, additional constraints can be defined for the 
battery operation. If the battery is in discharging mode, the following 
constraint applies 

𝛥𝑥5 − 𝛥𝑥5max ≤ 0, (49)

which ensures that the battery is discharged. On the contrary, in 
charging mode, the constraint is defined as follows 

𝛥𝑥5min − 𝛥𝑥5 ≤ 0, (50)

where 𝛥𝑥5min is the minimum change in SOC over the time step to en-
sure the battery is slowly charged. The battery mode should be switched 
when the SOC approaches the upper or lower limit, respectively.

Complete formulation. This mathematical construct allows to formulate 
the optimization problem as reported in Eq. (51)
Minimize: 𝐽 (𝐮(⋅|𝑘))

s.t.:
𝐱𝑘+1 = 𝑓 (𝐱𝑘,𝐮𝑘)
𝐮𝑘 = 𝐮𝑘−1 + 𝛥𝐮𝑘
𝑔in(𝐱𝑘,𝐮𝑘) ≤ 0

𝑔eq(𝐱𝑘,𝐮𝑘) = 0,

(51)

where 𝐱𝑘+1 represents the state at the next time-step as a function of the 
current state, 𝐱𝑘, and the current control, 𝐮𝑘, which is the evolution of 
the control input derived by adjusting the control from the preceding 
time-step, 𝐮 , by an increment, 𝛥𝐮 . 𝑔  and 𝑔  represent the set of 
𝑘−1 𝑘 in eq
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inequality and equality constraints of the problem. This results in the 
complete optimization problem, as follows: 
Minimize: 𝐽 (𝐱,𝐮) = 𝜆 ⋅ 𝐶1 + (1 − 𝜆) ⋅ 𝐶2

s.t.:

𝐱1,𝑘+1 =
𝐮1,𝑘 ⋅ 𝜂𝐺𝑒𝑛,1,𝑘 + 𝐮2,𝑘 ⋅ 𝜂𝐺𝑒𝑛,2,𝑘

𝑉DC
⋅ 𝜂AC−DC

𝐱2,𝑘+1 =
𝑃Prop ⋅ 1∕𝜂𝑔𝑏 ⋅ 1∕𝜂𝑚 + 𝑃Aux

𝑉DC ⋅ 𝜂DC−AC

𝐱3,𝑘+1 =
(𝐮5,𝑘 + 𝐮6,𝑘 + 𝐮7,𝑘 + 𝐮8,𝑘)

𝑉DC
⋅ 𝜂DC−DC

𝐱4,𝑘+1 = 𝐱1,𝑘+1 + 𝐱3,𝑘+1 − 𝐱2,𝑘+1

𝐱5,𝑘+1 = 𝐱5,𝑘 +
1
2
𝛥𝑡 ⋅ 𝐱4,𝑘+1
𝑄nom ⋅ 𝑛𝑝

𝐮1,𝑘 = 𝐮1,𝑘−1 + 𝛥𝐮1
𝐮2,𝑘 = 𝐮2,𝑘−1 + 𝛥𝐮2
𝐮3,𝑘 = 𝐮3,𝑘−1 + 𝛥𝐮3
𝐮4,𝑘 = 𝐮4,𝑘−1 + 𝛥𝐮4
𝐮5,𝑘 = 𝐮5,𝑘−1 + 𝛥𝐮5
𝐮6,𝑘 = 𝐮6,𝑘−1 + 𝛥𝐮6
𝐮7,𝑘 = 𝐮7,𝑘−1 + 𝛥𝐮7
𝐮8,𝑘 = 𝐮8,𝑘−1 + 𝛥𝐮8

𝑔in = lower − 

 − upper
𝑓lower,1(𝐮1,𝑘,𝐮3,𝑘) − Eng,1
𝑓lower,2(𝐮2,𝑘,𝐮4,𝑘) − Eng,2
Eng,1 − 𝑓upper,1(𝐮1,𝑘,𝐮3,𝑘)
Eng,2 − 𝑓upper,2(𝐮2,𝑘,𝐮4,𝑘)
− |𝛥𝐱5|
|𝛥𝐱5| − 𝛥𝐱5max

𝛥𝐱5 − 𝛥𝐱5max

𝛥𝐱5min − 𝛥𝐱5
𝐮1 − 𝛿𝑢3 ⋅ 𝑓upper,1(𝐮1,𝐮3)

𝐮3 − 𝛿𝑢4 ⋅ 𝑓upper,2(𝐮3,𝐮4)

𝛿𝑢1 ⋅ 𝑓lower,1(𝐮1,𝐮3) − 𝐮1
𝛿𝑢2 ⋅ 𝑓lower,2(𝐮2,𝐮4) − 𝐮2

𝑔eq = 𝐱1,𝑘+1 + 𝐱3,𝑘+1 − 𝐱2,𝑘+1 − 𝐱4,𝑘+1
𝜂Gen,1,k − 𝑓1(𝐮1,𝑘,𝐮3,𝑘)
𝜂Gen,2,k − 𝑓1(𝐮2,𝑘,𝐮4,𝑘)
𝛩SFC,Eng,1 − 𝑓2(𝐮1,𝑘,𝐮3,𝑘)
𝛩SFC,Eng,2 − 𝑓2(𝐮2,𝑘,𝐮4,𝑘)
𝛩NO𝑥 ,Eng,1 − 𝑓3(𝐮1,𝑘,𝐮3,𝑘)

𝛩NO𝑥 ,Eng,2 − 𝑓3(𝐮2,𝑘,𝐮4,𝑘),

(52)

where  represents the different components of the system besides the 
engines.

3.2.2. Problem analysis and solution approach
An analysis of the problem is required to determine an adequate 

solution approach. Two aspects require special focus in the set up 
of the optimization problem. First, the ICEs can be either on or off, 
leading to a mixed-integer (MI) decision. Second, the ICEs SFC and 
NOx functions have a non-linear (NL) nature. With this analysis, the 
optimization problem can be defined as a MINL programming prob-
lem [77]. Moreover, taking into account that not all functions of the 
problem are convex, the problem becomes non-convex as well [78,79], 
and therefore computationally difficult to solve [80].
12 
Fig. 11. Overview of the hierarchical control approach.

The problem can be split into different steps to address those 
difficulties and combine them in a hierarchical controller. Fig.  11 
shows the proposed hierarchical ECMS control structure. The problem 
is divided into the mixed-integer component scheduling and battery 
mode selection and the non-linear optimization of the component’s 
operating points. The battery mode is selected based on the momentary 
SOC and the mode the battery is in initially. This is done to ensure a 
continuous charging or discharging operation over time and to change 
the mode when the respective limit is reached. Based on the battery’s 
mode, the optimization problem considers different constraints. The 
optimization problem is solved for three cases: An operation just using 
FCs, using the FCs combined with one engine and using the FCs and 
two engines. This is also highlighted in the choice of battery equivalent 
factor in the optimization problem. The objective function values 𝐽𝑖
for the cases 𝑖 𝜖 {1, 2, 3} are handed over to the component scheduling 
layer, which selects the case with the minimum objective function 
value. The component scheduling layer then sets the optimized control 
values for the operating components while the rest is set to zero. The 
algorithm’s structure is also shown in Alg. 1. Furthermore, to avoid 
constant jumping of the control values between the time steps, a buffer 
is implemented. If the change in load request 𝛥𝑃Load is smaller than 
an assigned value for allowed fluctuation 𝛥𝑃Fluctuation and the battery 
mode requires no change, then the previous set points are kept for the 
upcoming time step as well. This way, even though the problem needs 
to be solved three times instead of just once, the solution time improves 
greatly in comparison to the MINLP solution time, as the complexity of 
the problem itself is reduced drastically.

This solves the problems caused by the mixed-integer nature. How-
ever, the optimization itself has to find a global minimum in a non-
convex problem, which requires global optimization approaches. Global
optimization approaches, such as genetic algorithms, are well-known 
to be very slow. As real-time optimization potential is also a relevant 
criterion for the application, local optimization algorithms are con-
sidered as well. While local optimization does not guarantee finding 
the global minimum of a problem, it can be combined with a multi-
start approach. This way, the optimization started multiple times from 
different starting points and the results are compared to single out the 
global minimum. If local optimizers manage to achieve a solution in a 
faster time than global optimization without too many iterations, it is a 
feasible solution to achieve real-time control. Therefore, three local op-
timizers (interior-point (IP) [81], active set (AS), sequential quadratic 
programming (SQP) [82]), as well as a gradient free method (Pat-
tern Search (PS)), all implemented using a multi-start approach are 
compared with a global optimization approaches (Genetic Algorithm 
(GA)).

4. Simulation study

For evaluation of the proposed ECMS control approach, an example 
load profile based on Fig.  1 is chosen and tested with the simulation 
model. For this study, a few parameters are used to evaluate the 
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Algorithm 1 Hierarchical ECMS Control Algorithm
Require: �PLoad,SOC,Mode

if SoC ≤ 0.2 then
Mode = 0 ⊳ Battery mode charge

else if SoC ≥ 0.8 then
Mode = 1 ⊳ Battery mode discharge

else if �PLoad ≤ �PFluctuation then
PSet = PSet,i−1 ⊳ Keep old setpoints

end if

⊳ Run optimization for all three configurations. ⊲

function runControllers(PLoad,SOC,Mode)

J1, PSet,1 ⊳ Optimize configuration 1
J2, PSet,2 ⊳ Optimize configuration 2
J3, PSet,3 ⊳ Optimize configuration 3

end function

⊳ Evaluate objective function value for all configurations and chose
new setpoints. ⊲

if min{J1, J2, J3} = J1 then
PSet = PSet,1

else if min{J1, J2, J3} = J2 then
PSet = PSet,2

else if min{J1, J2, J3} = J3 then
PSet = PSet,3

end if

Table 7
Parameters used for evaluation.
 Parameter Description Value  
 𝜌𝐷 Density diesel 0.838 kg∕l  
 𝑟𝐶𝑂2 CO2 release rate 2.7 t CO2∕l 
 𝑝𝐷 price diesel 0.7 e ∕l  
 𝑝𝐻2 price hydrogen 9.4 e ∕kg  
 𝑝𝑁𝑂𝑥 price NOx 2.26 e ∕kg  
 𝑝𝐶𝑂2 price CO2 0.09 e ∕kg  

performance of the control operation shown in Table  7. The economic 
costs are based on current market prices for hydrogen and diesel. To 
quantify the impact of NOx emissions and the CO2 release in terms 
of economic aspects, an estimate of how a potential price could be 
attributed to emissions in e /kg in the future is used. This is orientated 
on a report analyzing scenarios about NOx controls for shipping in EU 
seas [83] and a sensitivity analysis.

4.1. Load profile

For the study, an example load profile of 120 h is chosen, containing 
both propulsion and auxiliary demand. Fig.  12 shows the propulsion 
load in blue, the auxiliary load demand in red and the combined total 
load in black. The load profile chosen is exemplary for a variety of 
different tasks performed by the vessel. At the beginning and the end, 
the vessel only uses auxiliary load, so it is stationary in port or at 
anchor. At around 20 h, low propulsion power is occurring which can 
represent manoeuvring or low speed sailing operation, most probably 
inside a port or in an inland water way. Afterwards, high propulsion 
loads are requested, representing sailing at different speeds with a 
short interruption. This interruption can be related to either lower 
speed sailing while being in a restricted area or a dynamic positioning 
operation in front of the coast. Afterwards, sailing is resumed and 
the port is reached again, when the electric power request returns to 
auxiliary load only. This load profile is chosen to show the performance 
of the proposed controller in dealing with the various operations and 
the fast changes in between.
13 
Fig. 12. Load profile of 120 h used in the simulation study.

4.2. Benchmark

As benchmark for this study, two cases are considered and tested. 
The first is the common industry diesel-electric vessel layout featuring 
four diesel generators in an AC shipboard power grid. The engines are 
operated with a simple RBC to do efficient tracking of the requested 
power. This benchmark will be referred to as B1 (benchmark 1) in the 
discussion. The second reference benchmark will be the retrofitted ves-
sel operated with RBC and be referred to as B2 (benchmark 2). The RBC 
algorithm for the retrofitted vessel is already a more advanced version 
that accommodates the power split between FC, ICE and batteries to 
reduce the fuel consumption.
Rule-based control retrofit. The rule-based controller to operate the 
retrofitted vessel is developed to determine the powersplit between the 
three component types with a single-objective. This objective is reduc-
ing fuel consumption from an economic perspective, which relates the 
costs of diesel with the cost of hydrogen. Taking this into account, the 
control philosophy of the controller is to allow the power generation 
components in point of high efficiency and using the battery to buffer 
for the fluctuation of the power demand from the most optimal points. 
This means, it tries to operate the FC at low loads, where they are most 
efficient and the ICE in points of low SFC, referring to Fig.  9. Further 
a battery mode is integrated to maintain a steady charge or discharge 
trend, similar to the ECMS controller. A schematic of the rule-based 
(RB) controller is shown in Fig.  13. This is also depicted as an algorithm 
in Alg. 2.

The controller is developed to follow large changes in the load using 
the engines while maintaining the FCs at efficient low load setpoints. 
Moreover, the battery is used to buffer small changes in the load 
request. This means that if the change in requested load 𝑃Load−𝑃Load,n−1
is smaller than 150 kW and the battery is not below the lower or 
above the upper limit, previous setpoints are maintained. To maintain 
a steady charging or discharging operation, the exact setpoints for the 
engine are based on the battery mode. If the battery is in discharging 
mode, the setpoint will be chosen smaller than the actual load demand, 
while the set point is chosen to be higher than the load in charging 
mode.

The RBC controller is tested on the load profile to establish a 
benchmark. The discretization time step size is chosen to be similar to 
the step size of the ECMS controller to allow a fair comparison. The load 
balance, the corresponding battery SOC, and the DC system voltage are 
shown in Fig.  14. The RBC manages to maintain the power balance 
while slowly charging and discharging the battery over the course of 
the operation. It can be observed that the FCs are mainly maintained at 
a low load, which is beneficial for both the economical aspect as well 
as the degradation of the fuel cell by avoiding high loads.
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Fig. 13. Schematic of the rule-based controller of the retrofitted vessel used as 
benchmark.

Fig. 14. Power balance, battery SoC and DC system voltage operating the system with 
the rule-based controller.

4.3. Solution algorithm

Preliminary to the simulation study with the ECMS controller on 
the complete load profile, an investigation of solution approaches is 
carried out. A solution algorithm for the complete study based on the 

Algorithm 2 Rule-Based Control Algorithm
if SOC ≤ 0.2 then

ModeB = 0 ⊳ Battery mode charge
else if SOC ≥ 0.8 then

ModeB = 1 ⊳ Battery mode discharge
end if

Require: �PLoad = |PLoad,i − PLoad,i−1|

if �PLoad ≥ 150 then ⊳ Check load fluctuation
if ModeB = 0 then

PSet ≥ PLoad

else if ModeB = 1 then
PSet ≤ PLoad

end if
else

PSet = PSet,i−1 ⊳ Keep old setpoints
end if
14 
Table 8
Comparison of solution algorithms.

Criteria SQP IP AS PS GA
1 Engine and 4 Fuel Cells

Cost Function 0.3558 0.3560 0.3806 0.3894 0.3592
Solution Time 6.94 11.62 16.02 13.7 93.22
Iterations 19 17 2 3
Generations 7

Function Count 230 171 14 549 31432
Mesh-size 1e-07

2 Engine and 4 Fuel Cells
Cost Function 0.1545 0.1613 0.1582 0.1522 0.1592
Solution Time 6.33 8.53 12.68 58.14 124.32
Iterations 38 85 2 3
Generations 5

Function Count 399 1065 18 15673 33309
Mesh-size 1e-07

ctual performance and the time required to find a feasible solution 
an be selected. All algorithms are tested on the exact same point of 
he load profile starting from a similar state. The chosen point has a 
equired load demand of 𝑃Load = 1885𝑘𝑊  and is investigated with both 
ontrollers, one engine only and two engines. Further, the objective 
unction weights are also pre-defined to examine all solution algorithms 
n exactly the same problem. All algorithms are also tested with similar 
rror tolerance for the objective function and constraints. The criteria 
or a comparison are the value of the objective function 𝐽 , the iterations 
equired for a solution, the function count and the step-size for the 
ocal optimizers, as well as the mesh-size of the pattern search and 
he generations of the genetic algorithm. The GA is evaluated with a 
opulation size of 50. Furthermore, the time to find this solution is 
ompared as well. An overview of the comparison is shown in Table 
. The comparison shows that all algorithms minimize the function to 
 relatively similar value, with changes only on the second or third 
ecimal place. However, the solution times differ greatly. It can be 
istinguished that SQP offers a very good minimization compared to 
he others while also being faster in solution time. Therefore, the ECMS 
ontroller study is conducted using a SQP multi-start approach.

.4. ECMS control

The performance of the ECMS controller is tested in three different 
cenarios. First, the ECMS powersplit with a single focus on SFC con-
umption (SFC-Only) is tested, where the objective weights are fixed on 
1 0]. Subsequently, the performance of the multi-objective control ver-
ion is investigated, employing a Pareto frontier for the selection of the 
olution. As the computation of a full Pareto frontier is computationally 
xpensive, the scenario of using a full Pareto frontier (F-P) is compared 
o a reduced version, which accounts for a pre-selected bias based on a 
ode to investigate areas of the Pareto frontier (MB-P). This is done 
o investigate what influence the preliminary bias introduces and if 
he computational time can be reduced by the mode based operation 
ithout missing out on performance.
For the reduced Pareto frontier, a mode is introduced based on a 

imple principle. It separates between periods with mainly auxiliary 
oad and periods with propulsion loads due to the following: Zero or 
ow propulsion load in the load profile resembles a mode in which the 
acht is either on anchor or in the harbour, for which a low emission 
utput is considered as very beneficial. Therefore the Pareto frontier 
nvestigates 10%–40% focus on fuel consumption and the respective 
0%–90% focus on NOx emission. When the yacht is sailing, resembled 
y a high propulsion load, the opposite Pareto frontier is used, as 
eduction of fuel consumption is beneficial for the economic aspect 
s well as the autonomous travel distance, while potential rules for 
mission production, which may be in place at anchor or in a harbour, 
re not of high importance anymore. The performance of the controller 
nd the results achieved will be further discussed in Section 5.
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Fig. 15. Power balance, battery SOC and DC system voltage over 120 h of operation for SFC-Only ECMS (A), NOx-Only (B), full Pareto frontier ECMS (C) and mode-based Pareto 
frontier ECMS (D).
. 
5. Results

This section analyzes the results of all scenarios. First, the single-
objective optimization scenario is discussed, followed by the multi-
objective scenarios including the Pareto frontier. Afterwards, all sce-
narios are compared with the two benchmarks B1 and B2 to showcase 
the potential for savings.

5.1. Simulation results

Fig.  15 provides an overview of the simulation results for all three 
ECMS scenarios showing the power balance, battery SOC and DC 
system voltage over 120 h of operation. In addition, a fourth scenario 
demonstrates operation with a single NOx reduction objective. While 
the control maintains the power balance in all scenarios, the resulting 
approach differs. In the SFC-Only (A) scenario, the ICE perform the 
main part of power tracking of the load, while the FC’s are kept on 
a low operating point. This is mainly due to the respective high cost of 
hydrogen fuel compared to diesel. The ECMS formulation determines 
the power split between FCs, ICEs and batteries. Plot B shows the 
reference point of using a single NOx objective. The controller thus tries 
to minimize the use of diesel by using as much hydrogen as possible.

In plot C, the F-P scenario is shown, in which the multi-objective for-
mulation selects the power generation based on the possible minimum, 
taking both objectives into account. In comparison to plot A, the FCs are 
used more to provide power in addition to the engines, which allows 
for less power generation with the engines. However, the FC are used 
at lower power than in the reference scenario B. The fourth scenario 
MB-P in plot D shows high similarity to SFC-Only ECMS (A) with the 
FCs on a constant low load, while the power tracking is mainly done 
with the engines. Both multi-objective scenarios (C & D) show similar 
battery behavior.
Battery behavior. Further, the battery behavior is examined more closely
In Fig.  16, the battery SOC and the DC system voltage of the MB-P 
scenario are shown over the 120 hr operating cycle, with a focus on 
a period of 15 h in the subplot. This focus illustrates that the battery 
is discharged in a time frame of multiple hours without high power 
ramps, which is believed to be helpful for the lifetime of the storage 
system. The complete overview of the operation reveals that over the 
course of the operation, the battery system is slowly charged and 
15 
Fig. 16. Battery SOC and DC system voltage operating the system with the Mode-Based 
Pareto Scenario, including a 15 h zoom in of the battery operation (A: Full operation 
with a rectangular indicating the cut out, B: Zoom-in on the cut out).

discharged multiple times, making full use of the large storage. This 
allows for an optimization of the operating point of the ICE and the FC 
without stressing the battery system too much.
Pareto frontier. A central component of the weight determination pro-
cess in the multi-objective formulation is the construction of a Pareto 
frontier. This approach enables a posteriori selection of weighting 
factors, allowing decision-makers to evaluate trade-offs between con-
flicting objectives after the set of optimal solutions has been generated. 
Although this method introduces a significant increase in computa-
tional effort — since the optimization problem must be solved repeat-
edly across the entire Pareto set — it offers valuable flexibility. By 
deferring the weighting decision to the post-processing stage, operators 
retain the ability to prioritize objectives based on real-world opera-
tional needs or policy preferences. The implications of this increased 
computational cost, as well as its trade-offs in terms of solution quality 
and decision transparency, will be further analyzed in the subsequent 
scenario comparison section.

First, the Pareto-Frontiers of the two multi-objective simulation 
scenarios are discussed in detail. For the weights of the objective 
function, a factor 𝜆 𝜖 [0, 1] is introduced and the following relation 
𝑤1 = 𝜆 and 𝑤2 = 1 − 𝜆 is established to highlight the necessary 
trade-off between adversarial objectives. In the hierarchical framework, 
the different cases of operation (FC-only, 1 Engine, 2 Engine) are 
examined with the Pareto-Frontier for each load setpoint. To highlight 
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Fig. 17. Comparison of full Pareto frontier with 300 points with 𝑤1 = 𝜆 and 𝑤2 = 1−𝜆
(A: 1 Engine Scenario, B: 2 Engine Scenario).

Fig. 18. Pareto frontier with 90 points in a 3D plot.

this, Fig.  17 shows a scatter plot of the Pareto frontier points for one 
step of the load profile (A: 1 Engine, B: 2 Engines) evaluated on their 
minimal objective function value achieved. In this, the Pareto frontier 
is investigated over 300 points for a close-up analysis of the solution 
space. The minimal objective function value 𝐽 is shown on the 𝑦-axis 
and also indicated using a color scale, while the value of 𝜆 is shown on 
the 𝑥-axis. The first thing observable from this figure is that it highlights 
the difference in the minimal value achieved with choices of 𝜆, even 
between 𝜆-values with a high similarity. This illustrates the benefit 
achievable due to the introduction of the Pareto frontier. The second 
observation is that for the specific point of analysis, the operation of 
two engines side-by-side is more favorable than the use of just one 
engine. This is shown in the objective function values of subplot B, 
ranging from below 0.05 to a bit over 0.25, while the minimal value 
achieved in subplot A starts at 0.32. Therefore, the comparison of the 
two Pareto frontiers also helps to select the most suitable configuration 
in the hierarchical control framework.

To further highlight the variance in the solutions of the Pareto 
frontier, Fig.  18 shows a 3D-plot of the solution space of a 90 points 
investigation. This smaller solution space resembles more accurately a 
real-time application, where the computational time needs to be taken 
into account and Pareto frontiers with fewer points are more feasible. 
Also in this plot, it is observable that some weight combinations are 
greatly outperforming. However, the 3D representation shows that the 
optimal points are not necessarily to be found on the borders of the 
solution space. Further, it shows very clearly that, while many solutions 
are in the same range of minimal objective function value, significant 
outliers interrupt the space. Using those two figures, it demonstrates 
that employing the Pareto Frontier, a solution with a low overall 
objective function value and the case of operation at each time step 
can be picked.
16 
Fig. 19. Compromise between two factors in the parameters of diesel consumption, hy-
drogen consumption, CO2 production and NOx production, as well as the corresponding 
financial costs.

5.2. Scenario comparison

To estimate the performance of the proposed ECMS controller, 
all scenarios are compared to the two benchmarks presented in Sec-
tion 4.2. However, while all ECMS scenarios produce valid control 
operations for the load profile, based on the choice of objectives, the 
operation will vary. To highlight this variety in the choice of optimal 
control operation, the performance is analyzed in more detail in the 
following. The performance of those scenarios can be evaluated based 
on the objectives of the optimization problem. In addition, the CO2
emissions are established. Focusing on these aspects, the scenarios of 
Fig.  15 can be translated into the representation in Fig.  19. Each sce-
nario is represented with a colored marker on a meter for the respective 
objective. It is directly observable that the value of the objective can 
vary drastically between the scenarios, however there is no scenario 
outperforming on all objectives which highlights the adversarial nature 
of the problem.

To examine the performance even further, the emissions are related 
to a financial factor to allow for a direct comparison of the total 
operational cost and compare them to the benchmark. The reference 
case for NOx-Only is disregarded in this, as it was mainly used to show 
the maximum possible hydrogen consumption and is not optimized to 
the same extent as the ECMS-scenarios. A full overview of the results 
is shown in Table  9. In this, the three ECMS scenarios (SFC-Only, F-P 
and MB-P) are shown alongside the benchmarks (B1, B2). Comparing 
the benchmarks B1 and B2, it shows that the retrofit to operate with 
hydrogen increases the cost of the operation drastically, while reducing 
emissions by more then 10%. Moreover, emission reduction can be 
further increased by over 30% for CO2 and over 40% for NOx with 
advanced control.

Two scenarios (SFC, MB-P) achieve overall financial savings com-
pared to the rule-based control of the retrofit B2. Those are achieved 
mainly by reducing hydrogen fuel consumption by a slight increase in 
diesel consumption. The other third scenario (F-P) shows an increase in 
the financial cost due to the increase in hydrogen consumption. How-
ever, the diesel consumption is even further reduced in this scenario. 
Analyzing NOx emissions, the two scenarios (F-P, MB-P) employing 
multi-objective control manage to achieve drastic reductions (15% - 
45%) in NOx emissions. Furthermore, the F-P scenario also decreases 
CO2 emissions by over 30%, while both other scenarios increase the 
diesel consumption CO2 emissions by a tiny margin. An interesting 
insight is also gained by comparing the two multi-objective scenarios. 
Employing the full Pareto frontier F-P results in a larger emission 
saving than the mode-based Pareto approach. This goes simultaneously 
with an increase in fuel cost, due to the high price of hydrogen. 
Employing an MB-P frontier approach provides results similar to the 
SFC-Only scenario. However, the scenario still saves nearly 15% in NOx 
emissions. This demonstrates the savings potential from the choice of 
operational setpoint in the engine envelope. Further, the MB-P scenario 
resembles reality reasonably well, as operating at low load in port or 
at anchor often is correlated with high restrictions on emissions, while 
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Table 9
Scenario comparison.

B1 B2 SFC F-P MB-P

Diesel [t] 34.5 28.72 29.20 19.47 29.29
Hydrogen [t] - 1.16 1.04 2.19 1.09
CO2 [t] 104.71 92.52 94.07 62.73 94.37
NOx [t] 1.33 1.17 1.17 0.64 0.99

Fuel Cost [e] 27147 34888 34202 36850 34707
Change [%] -1.96 +5.62 -0.51
CO2 Cost [e] 9424 8327 8466 5646 8493
Change [%] +1.68 -32.2 +2
NOx Cost [e] 3000 2637 2655 1436 2260
Change [%] +0.63 -45.58 -14.36

Total [e] 39571 45852 45323  43932 45460
Change [%] -1.15 -4.18 -0.85

Table 10
Computational time for different Pareto frontier size.
 Points SFC MB-P F-P F-P  
 1 10 30 90  
 1 Engine and 4 Fuel Cells
 𝐽min 0.3893 0.3754 0.3657 0.3680 
 𝜆 1 0.6333 0.2655 0.3696 
 1 − 𝜆 0 0.3667 0.7345 0.6303 
 Time [s] 8.03 49.42 112.57 320.19 
 2 Engines and 4 Fuel Cells
 𝐽min 0.1573 0.1516 0.0817 0.0778 
 𝜆 1 0.6667 0.1 0.118  
 1 − 𝜆 0 0.3333 0.9 0.882  
 Time [s] 5.55 63.43 141.72 405.58 

sailing is often in open waters, when SFC is of high importance, but 
emissions can be prioritized less.

Overall, all three scenarios decrease the price of operation in com-
parison to rule-based control. While the dual-fuel vessel operation is 
still more costly than the common industry-used diesel-electric ap-
proach, advanced control helps significantly in reducing cost. Especially 
the potential introduction of rates for carbon and other emissions in fu-
ture, is likely to improve the financial feasibility of zero-emission fuels. 
Comparing the cheapest overall scenario to the B1 scenario highlights 
that over 30% CO2 and 45% NOx emissions can be saved at a limited 
cost increase. Furthermore, with increasing prices on conventional fuel 
and decreasing hydrogen prices in the future, this balance might shift 
further towards dual-fuel application.

Finally, the solution time of different versions of the Pareto frontier 
are investigated. In Table  10, an overview of four different scenarios is 
presented. All evaluate the same point using the same starting condi-
tions. The SFC-Only scenario, which has pre-fixed weights, is compared 
with the solution of the MB-P scenario and a Pareto frontier approach 
with 30 and 90 points (F-P). A decrease in the minimized objective 
function value 𝐽min can be observed with an increasing amount of 
points in the Pareto frontier. However, the computational time in-
creases drastically as well. Therefore, it is possible to conclude that 
the choice of Pareto frontier size and design depends on the problem 
scenario, the required time frame and the available hardware.

Combining the results of those two tables, improvements can be 
seen compared to the RBC. The SFC-Only scenario with between 5 s
and 10 s solution time per step, which solved the problem using a 
single-objective function, was able to reduce the economic cost of 
fuel consumption by 1.96%, while only marginally increasing NOx 
emissions. As expected, using a Pareto frontier approach for the multi-
objective objective function resulted in greater reduction of emissions 
at the cost of increased computational time. The large F-P (90 points) 
managed to achieve the highest savings in terms of NOx reduction 
(over 45%), mainly by increasing hydrogen consumption. However, 
the computational time of this size Pareto frontier would require a 
more potent machine to reduce the computational speed to feasible 
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times. With the MB-P frontier of the size of 10 points, which had a 
pre-determined bias on the weights, it showed that it was possible to 
improve the performance in comparison to the SFC-Only scenario even 
further by saving nearly 15% more NOx while maintaining a reduction 
of fuel consumption ( 0.5%). This scenario also showed drastically 
reduced computational time compared to the larger Pareto frontier 
tests, which showed an overall good performance.

6. Conclusion

In this paper, a novel Multi-Objective Equivalent Consumption Min-
imization Strategy control for vessels with electric propulsion and 
hybrid power supply using hydrogen fuel cells, diesel generators and 
battery energy storage was presented. The controller was developed to 
establish load sharing between these power sources for a mega-yacht, 
which was virtually retrofitted to accommodate two diesel generators, 
four hydrogen PEM fuel cells, and two battery packs. The system used 
a DC electrical distribution system, enabling variable speed operation 
of the diesel generators. To accurately represent the hybrid power 
system, measurements from laboratory engines and factory tests were 
used to create maps of the engines’ specific fuel consumption and NOx
emissions, and the generator efficiency over the operational envelope. 
With the dual fuel set-up, the control challenge not only included the 
successful operation of multiple, heterogeneous components in parallel, 
but also presented the problem of the choice of operating fuel and its 
respective properties. For the multi-objective approach, it is focused on 
two non-correlated aspects: the economic cost of the fuel consumed and 
the NOx emissions during operation. This provided a trade-off between 
emission-free hydrogen and cost, as hydrogen is significantly more 
expensive than diesel fuel. Overall, the resulting problem presented a 
non-convex, non-linear mixed-integer control challenge.

Based on this problem definition, the optimization problem is for-
mulated as a hierarchical ECMS controller using a multi-start local 
optimization to allow for real-time optimization. The operation of the 
control algorithm was successfully demonstrated over 120 h of real-
life operational data, chosen to represent multiple tasks of the vessel’s 
operations. Two benchmark cases were considered to evaluate the 
performance of the proposed control strategy. The first represents an 
industry-standard reference, simulating a conventional diesel-electric 
vessel configuration equipped with four diesel generators managed by a 
power-tracking rule-based controller. The second benchmark involves 
the retrofitted version of the vessel using a rule-based controller tai-
lored specifically to minimize specific fuel consumption. Unlike the 
proposed optimization-based approach, this single-objective controller 
operates with a fixed logic aimed solely at improving fuel efficiency 
without accounting for emissions or system-wide trade-offs. The ECMS 
controller was evaluated across three distinct scenarios to illustrate how 
different weight selections influence operational outcomes, reflecting 
potential preferences of the vessel operator. The first scenario imple-
mented a single-objective ECMS focused exclusively on minimizing 
fuel consumption to demonstrate the optimal powersplitting. In the 
other scenarios, the full multi-objective capabilities of the ECMS were 
explored. These scenarios incorporated a Pareto frontier approach, 
enabling an a-posteriori selection of the objective function weights, 
thereby offering flexibility to prioritize either fuel cost or emissions 
depending on operational priorities. Moreover, the second scenario 
utilized a comprehensive Pareto frontier covering the entire trade-off 
space between economic cost and NOx emissions. In contrast, the third 
scenario employed a reduced Pareto frontier confined to a narrower 
region, pre-biased by a specific operating mode. This allowed for faster 
computation while still capturing relevant trade-offs reflective of the 
selected operational context.

To evaluate the performance of the proposed control strategies, all 
scenarios — including the benchmarks — were systematically assessed 
based on two key metrics: total fuel consumption and the amount of 
NO  emissions produced. The proposed multi-objective control strategy 
x
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demonstrated successful operation of the vessel across all scenarios, 
consistently outperforming the benchmark cases in terms of both fuel 
efficiency and emission reduction. Although integrating hydrogen into 
the energy mix leads to higher operational costs compared to a diesel-
only configuration, the resulting emission reductions are substantial 
and highlight the environmental advantages of this approach. More-
over, all tested scenarios outperformed the second benchmark, i.e., the 
rule-based control of the retrofitted vessel, by delivering measurable 
reductions in operational costs. The SFC-only scenario achieved a re-
duction of nearly 2% in fuel-related operational costs. Even greater 
benefits were observed in the multi-objective scenarios, demonstrating 
further improvements across economic and environmental performance 
indicators. Utilizing the full Pareto frontier enabled a reduction in NOx
emissions by more than 45%, with only a marginal increase in oper-
ational costs relative to the rule-based control. Notably, the reduced 
Pareto frontier scenario outperformed the RBC approach across all 
evaluated metrics. In this scenario, the controller was able to still save 
0.5% in operational cost in comparison to the RBC, while reducing NOx
emission by nearly 15%. This scenario was also computationally faster 
than using the full Pareto frontier approach due to a reduction in points 
investigated. The proposed multi-objective ECMS controller showed 
improvements in fuel economy and emission production aspects to 
current state-of-the-art approaches while not requiring any knowledge 
about the future due to instantaneous optimization.

The proposed multi-objective ECMS control strategy demonstrates 
promising performance for managing energy flows in dual-fuel fully 
electric vessels. Nonetheless, some limitations need to be addressed 
to enhance the realism, robustness, and industrial applicability of the 
approach. First, the present study is based on a quasi-steady-state sim-
ulation model that excludes transient behaviors of critical subsystems, 
including fuel cells, batteries, and power electronics. While suitable for 
long-term energy flow analysis and power-split optimization, this sim-
plification neglects dynamic constraints such as ramp rates, system in-
ertia, and control loop delays, which are vital for reliable real-time im-
plementation. Future work should incorporate higher-fidelity dynamic 
models to assess and ensure controller feasibility under realistic operat-
ing conditions. Second, although the Pareto-based control formulation 
allows flexible trade-off analysis between fuel consumption and emis-
sions, its real-time deployment poses computational challenges. The 
use of a reduced Pareto frontier mitigates this to some extent but still 
relies on pre-defined operational scenarios that may limit adaptability 
in unpredictable environments. Developing adaptive and disturbance-
aware control strategies that preserve multi-objective performance while 
reducing online computational demand is a critical next step. Addition-
ally, the current formulation optimizes instantaneous system states and 
does not consider voyage-level objectives. Integrating time-preservation 
constraints — e.g., arrival schedules or route completion times — would 
expand the controller’s utility in mission-critical maritime operations. 
Third, the impact of component aging, particularly for batteries and 
fuel cells, has not been explicitly addressed. In practice, operational 
strategies significantly influence degradation trajectories, with implica-
tions for both cost and emissions over a vessel’s lifetime. Future work 
should integrate lifetime-aware control objectives that co-optimize energy 
management and component health, potentially through data-driven or 
physics-informed degradation models.

Moreover, the current analysis is confined to a single vessel and 
operational profile. Broader validation across vessel classes, load sce-
narios, and environmental conditions is required to generalize the 
approach. Moreover, integrating this control framework into early-stage 
vessel design — for example, to support energy storage sizing or retrofit 
feasibility studies — would offer lifecycle-aware decision support for 
decarbonization. The estimated savings reported in this study under-
score the potential of optimization-based control to drive efficiency 
gains in real-world maritime operations. As hydrogen prices decline and 
emissions pricing mechanisms become more widespread, the relevance 
of advanced energy management strategies will increase. Scaling this 
work to full-voyage simulations and experimental testbeds will be 
essential for demonstrating operational readiness and supporting the 
transition to low-emission shipping.
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