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REVISIT OF ESTIMATE SEQUENCE FOR ACCELERATED GRADIENT METHODS

Bingcong Li* Mario Coutiño† Georgios B. Giannakis*

* University of Minnesota - Twin Cities, Minneapolis, MN, USA
† Delft University of Technology, Delft, The Netherlands

ABSTRACT
In this paper, we revisit the problem of minimizing a convex func-
tion f(x) with Lipschitz continuous gradient via accelerated gradi-
ent methods (AGM). To do so, we consider the so-called estimate
sequence (ES), a useful analysis tool for establishing the conver-
gence of AGM. We develop a generalized ES to support Lipschitz
continuous gradient on any norm, given the importance of consid-
ering non-Euclidian norms in optimization. Traditionally, ES con-
sists of a sequence of quadratic functions that serves as surrogate
functions of f(x). However, such quadratic functions preclude the
possibility of supporting Lipschitz continuous gradient defined w.r.t.
non-Euclidian norms. Hence, an extension of such a powerful tool to
the non-Euclidian norm setting is so much needed. Such extension
is accomplished through a simple yet nontrivial modification of the
standard ES. Further, our analysis provides insights of how acceler-
ation is achieved and interpretability of the involved parameters in
ES. Finally, numerical tests demonstrate the convergence benefits of
taking non-Euclidean norms into account.

Index Terms— Nesterov’s accelerated gradient method, esti-
mate sequences, gradient descent, optimization

1. INTRODUCTION

In this work we focus on solving the following problem

min
x∈Rd

f(x) (1)

where f is a convex function with Lipschitz continuous gradient; d
is the dimension of the variable x. Throughout this paper x∗ denotes
the optimal solution of (1), and it is assumed that f(x∗) > −∞.

One of the standard methods to solve (1) is the gradient descent
(GD), which iteratively updates via

xk+1 = xk − ηk∇f(xk)

where k is the iteration index and ηk is the step size. It is well known
that GD guarantees a convergence rate f(xk) − f(x∗) = O(1/k).
As the lower bound of first order methods for convex problems is
f(xk) − f(x∗) = O(1/k2), clearly GD is not optimal in terms of
convergence rate [1].

To accelerate GD, Nesterov proposed an accelerated gradient
method (AGM), which iteratively updates via

xk+1 = yk − αk∇f(yk) (2a)
yk+1 = (1− ηk)xk+1 + ηkxk (2b)
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financed by the Netherlands Organization for Scientific Research (NWO).
Mario Coutino is partially supported by CONACYT. Emails:{lixx5599, geor-
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where αk and ηk are carefully designed step sizes; see [1, 2]. It is
established that the convergence rate of AGM matches to the lower
bound of first order methods; that is, f(xk) − f(x∗) = O(1/k2).
Thanks to the fast convergence, AGM and its variants, e.g., FISTA
[3], variance reduced AGM for finite sum problems [4, 5, 6] etc.,
are useful for several applications within signal processing; see e.g.,
[7, 8, 9].

Despite that the fastest convergence rate is guaranteed, under-
standing the machinery behind AGM turns out to be difficult or ob-
scure since most existing analyses do not provide intuitions as clear
as those of analyses for GD. In this work we reexamine the analyz-
ing tool, estimate sequence (ES), that was first proposed in [1], with
the goal of unveiling the mysteries behind it.

An ES “estimates” f using a sequence of surrogate functions.
This notion is formalized in the following definition.

Definition 1. (Estimate sequence.) A tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
is called an estimate sequence of function f(x) if limk→∞ λk = 0
and for any x ∈ Rd we have

Φk(x) ≤ (1− λk)f(x) + λkΦ0(x).

As the choice of {Φk(x)} and {λk} will become clear later,
AGM iterations (2) can be derived from ES [1]. Though the intu-
ition behind ES is still unclear, ES is a powerful tool that has been
adopted for analyzing different algorithms [4, 5, 6, 10]. In this work,
we will argue that ES “estimates” f in a two-way manner: i) how
much progress is made per iteration using (2); and ii) how far away
f(xk+1) is from f(x∗). In addition, although the importance of
smoothness defined on non-Euclidian norm is widely recognized
[1, 2, 11, 12], existing analyses with ES only deal with Lipschitz
continuous gradient defined on `2-norm. We thus generalize ES to
support smoothness on any norm.

Our detailed contributions are summarized below.

c1) ES is generalized to support Lipschitz continuous gradient
defined on any norm.

c2) In-depth explanation of acceleration is provided. And its re-
flection on ES is also discussed.

c3) As an example of our theoretical findings, we show empiri-
cally that considering ‖ · ‖Q with a simple but carefully de-
signed Q can significantly improve the convergence com-
pared with standard AGM.

2. PRELIMINARIES

Basic definitions and assumptions are introduced in this section.
Also, the importance of non-Euclidian norms in optimization is also
explained. Throughout this work, for a given norm ‖ · ‖, we denote
its dual norm by ‖ · ‖∗.
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Assumption 1. (Convexity.) Function f : Rd → R is convex; that
is, f(y)− f(x) ≥ 〈∇f(x),y − x〉, ∀x,y ∈ Rd.

Assumption 2. (Gradient Lipschitz.) Function f : Rd → R has
L-Lipchitz gradient w.r.t. some norm ‖ · ‖; that is, ‖∇f(x)−
∇f(y)‖∗ ≤ L‖x− y‖, ∀x,y ∈ Rd.

It is supposed that Assumptions 1 and 2 hold true throughout
this work. And for convenience, Lipschitz continuous gradient and
smoothness will be used interchangeably despite their slight differ-
ence. Note that when considering the `2-norm, Assumption 2 re-
duces to the standard one ‖∇f(x)−∇f(y)‖2 ≤ L‖x − y‖2. The
consequence of Assumption 2 is the so-termed descent lemma [11,
Appendix B.1], i.e.,

f(y)− f(x) ≤ 〈∇f(x),y − x〉+
L

2
‖x− y‖2. (3)

A simple example using (3) illustrates the importance of non-
Euclidian norms. Suppose that f has L1 and L2 Lipchitz continuous
gradient w.r.t. `1 and `2-norms, respectively. Plugging L1 and L2 in
(3), and using the fact ‖x‖1 ≤

√
d‖x‖2, one can obtain L2 ≈ dL1.

Since L1 and L2 influence the convergence rate of first order meth-
ods, this suggests supporting smoothness w.r.t. `1- norm is helpful
for a faster converge.

To handle non-Euclidian norms, one would rely on the Bregman
divergence [2, 11, 12].

Definition 2. (Bregman divergence.) Suppose that a function R(·)
is 1-strongly convex w.r.t. some norm ‖ · ‖, that is R(y) ≥ R(x) +
〈∇R(x),y−x〉+ 1

2
‖x−y‖2, ∀x,y ∈ Rd. The Bregman divergence

w.r.t. R is given by

DR(y,x) = R(y)−R(x)− 〈∇R(x),y − x〉.

Function R(·) is sometimes termed distance generating func-
tion (DGF). A few examples follow for a better illustration of the
Bregman divergence. Consider R(x) = 1

2
‖x‖22, which is 1-strongly

convex w.r.t. `2-norm. The Bregman divergence in this case is
DR(x,y) = 1

2
‖x − y‖22. Another example is taking negative en-

tropy as a DGF, i.e., R(x) =
∑d
i=1 xi lnxi. Such R(x) is known

to be 1-strongly convex w.r.t. `1-norm. The Bregman divergence is
thus DR(x,y) =

∑d
i=1 xi ln xi

yi
−
∑d
i=1(xi − yi), also known as

generalized KL divergence.

3. GENERALIZED ESTIMATE SEQUENCE

In this section, we design the generic framework of AGM with sup-
port of non-Euclidian norms by broadening the scope of ES. Specif-
ically, consider µ0 > 0, {yk}, {δk ∈ (0, 1)}, and Φ∗0 (which will be
specified later), we construct a sequence of surrogate functions of f
as

Φ0(x) = Φ∗0 + µ0DR(x,x0) (4a)
Φk+1(x) = (1− δk)Φk(x) (4b)

+ δk
[
f(yk) +

〈
∇f(yk),x− yk

〉]
, ∀ k ≥ 0,

In our first result, we show that (4) with proper {λk} is indeed
an ES for f .

Lemma 1. Let λ0 = 1 and λk = λk−1(1 − δk−1), then the tuple(
{Φk(x)}∞k=0, {λk}∞k=0

)
is an estimate sequence of f(x).

Proof. We show this by induction. As λ0 = 1, it holds that Φ0(x) =
(1−λ0)f(x)+λ0Φ0(x). Suppose that Φk(x) ≤ (1−λk)f(xk)+
λkΦ0(x) is true for some k. We have

Φk+1(x) = (1− δk)Φk(x) + δk
[
f(yk) +

〈
∇f(yk),x−yk

〉]
(a)

≤ (1− δk)Φk(x) + δkf(x)

≤ (1− δk)
[
(1− λk)f(x) + λkΦ0(x)

]
+ δkf(x)

= (1− λk+1)f(x) + λk+1Φ0(x)

where (a) is because the convexity of f ; and the last equation is by
definition of λk+1. Together with the fact that limk→∞ λk = 0, the
tuple

(
{Φk(x)}∞k=0, {λk}∞k=0

)
satisfies the definition of an estimate

sequence.

We term {Φk(x)} in (4) and the corresponding {λk} as gener-
alized ES. Note that if R(x) = 1

2
‖x‖22, the surrogate functions in

(4) boils down to the standard one in [1]. The key difference of (4)
relative to the standard one will be discussed later. Let us first fo-
cus on why ES is useful for analyzing AGM. This fact is highlighted
through the following result.

Proposition 1. For a sequence {xk}, if f(xk) ≤ minx Φk(x), then
we have

f(xk)− f(x∗) ≤ λk
(
Φ0(x∗)− f(x∗)

)
, ∀ k.

Proof. If f(xk) ≤ minx Φk(x) holds, then we have

f(xk) ≤ min
x

Φk(x) ≤ Φk(x∗) ≤ (1− λk)f(x∗) + λkΦ0(x∗)

where in the last inequality we use Definition 1. Subtracting f(x∗)
on both sides, we arrive at

f(xk)− f(x∗) ≤ λk
(
Φ0(x∗)− f(x∗)

)
which completes the proof.

Proposition 1 illustrates that the generalized ES is helpful to
find a sequence {xk} that is converging to x∗. One can see that
λk =

∏k−1
τ=0(1 − δτ ) in Proposition 1 characterizes the conver-

gence rate of {xk}. On the other hand, the surrogate functions
{Φk(x)} although do not appear in Proposition 1 directly, they pose
requirements on {xk}; that is {xk} should be chosen to satisfy
f(xk) ≤ minx Φk(x).

The general goal in the rest of this section is to construct the
sequences {xk} and {yk} such that f(xk) ≤ minx Φk(x) is guar-
anteed for all k. To this end, we need to take a close look at the
surrogate functions {Φk(x)} in (4).

Lemma 2. The functions Φk(x) in (4) can be rewritten as Φk(x) =
Φ∗k + µkDR(x,vk), where Φ∗k = minx Φk(x), and Φk(vk) = Φ∗k.
Furthermore, we have

µk+1 = (1− δk)µk (5a)

vk+1 = arg min
v

〈 δk
µk+1

∇f(yk),v − vk
〉

+DR(v,vk) (5b)

Φ∗k+1 = (1− δk)Φ∗k + δkf(yk) + µk+1DR(vk+1,vk)

− δk
〈
∇f(yk),yk − vk+1

〉
. (5c)

Proof. See supplemental material online at [13].
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Algorithm 1 AGM
1: Initialize: x0, {δk}, and {µk}
2: v0 = x0

3: for k = 0, 1, . . . ,K − 1 do
4: yk = δkvk + (1− δk)xk
5: xk+1 = arg minx

〈
∇f(yk),x− yk

〉
+ L

2
‖x− yk‖2

6: vk+1 = arg minv

〈
δk
µk+1
∇f(yk),v−vk

〉
+DR(v,vk)

7: end for
8: Return: xK

Lemma 2 rewrites Φk(x) and establishes the relations between
vk+1 and vk (Φ∗k+1 and Φ∗k). In addition, Lemma 2 shows the
key difference of our generalized ES with the standard one in [1].
As R(x) = 1

2
‖x‖22 in standard ES, simple calculation shows that

Φk(x) is exactly µk-strongly convex w.r.t. `2-norm (in fact Φk is
a quadratic function). However, when considering a general R(x),
we have DR(x,y) ≥ 1

2
‖x− y‖2. This means that though Φk(x) is

strongly convex w.r.t. ‖ · ‖, the parameter µk is always an underesti-
mate of its strongly convexity parameter.

Based on Lemma 2, the following lemma entails the choice of
yk and xk to ensure f(xk) ≤ Φ∗k, which is the requirement in
Proposition 1 for establishing the convergence of xk.

Lemma 3. Choose Φ∗0 = f(x0), yk = δkvk + (1 − δk)xk, and
xk+1 = arg minx

〈
∇f(yk),x−yk

〉
+L

2
‖x−yk‖2. IfLδ2k ≤ µk+1

is satisfied, it is guaranteed to have f(xk) ≤ Φ∗k, ∀ k ≥ 0.

Proof. See supplemental material online at [13].

With the choices of {xk}, {yk}, and {vk} in Lemmas 2 and
3, we summarize the AGM with support to non-Euclidian norms in
Alg. 1. For non-Euclidean norms induced by a positive definite
matrix, the closed-form updates for xk+1 and vk+1 will be discussed
in Section 4.2.

The convergence rate of Alg. 1 is established in the following
theorem.

Theorem 1. Choosing µ0 = 2L, δk = 2
k+3

, Alg.1 guarantees

f(xk)− f(x∗) = O
(f(x0)− f(x∗) + LDR(x∗,x0)

k2

)
, ∀ k.

Proof. By the choice of parameters, one can verify thatLδ2k ≤ µk+1

holds. And the choices of {xk}, {yk}, and {vk} guarantee f(xk) ≤
Φ∗k as shown in Lemma 3. Therefore, one can directly apply Propo-
sition 1 to have

f(xk)− f(x∗) ≤ λk
(
Φ0(x∗)− f(x∗)

)
=

2
[
f(x0)− f(x∗) + 2LDR(x∗,x0)

]
(k + 1)(k + 2)

which completes the proof.

Theorem 1 suggests that AGM has a lower bound matching con-
vergence rate O(1/k2). Note that Alg. 1 recovers the so-termed
“linear coupling” [11], which is believed to be very different from
AGM. However, our generalized ES suggests that linear coupling
is a natural consequence of Nesterov’s acceleration technique. The
only minor difference is that the analysis in [11] supports to choose
δk = 2

k+2
while ours choose δk = 2

k+3
.1 Although different, both

choices exhibit a O(1/k) behavior.

1Note that δk = 2
k+3

also works for linear coupling theoretically.
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f(xk)
f(yk) + f(yk), vk + 1 yk
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k
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0.48

0.42

0.36
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f(xk)
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(a) dataset w1a (b) dataset a3a

Fig. 1. Validation of the intuitive explanation of acceleration.

4. DISCUSSIONS

In this section we will examine Alg. 1 from a “linear coupling”
[11] point of view to understand the generalized ES better. In ad-
dition, a case study follows to illustrate the merits of considering
non-Euclidian norms together with numerical tests.

4.1. Reexamining ES via the “linear coupling” lens

In “linear coupling” [11], the gradient descent and mirror descent
are coupled together to achieve acceleration. We first rewrite the
updates of AGM using the same notation as in [11]. The variable
xk+1 is obtained via a generalized GD, that is

xk+1 = Grad(yk)

:= arg min
x

〈
∇f(yk),x− yk

〉
+
L

2
‖x− yk‖2 (6)

while vk+1 is obtained by mirror descent (MD)

vk+1 = Mirr
(
vk,

δk
µk+1

∇f(yk)
)

(7)

:= arg min
v

〈 δk
µk+1

∇f(yk),v − vk
〉

+DR(v,vk)

= arg min
v

〈
∇f(yk),v − vk

〉
+
µk+1

δk
DR(v,vk).

The consequence of finding xk+1 using (6) is f(xk+1) −
f(yk) ≤ − 1

2L
‖∇f(yk)‖2∗ as shown in the proof of Lemma 3.

This inequality reveals how much progress is made per iteration by
moving from yk to xk+1.

On the other hand, the mirror descent step is used to estimate the
optimality gap of current iterates. To see this, by convexity we have
that for any u ∈ Rd the following inequality holds

f(u) ≥ f(yk) + 〈∇f(yk),u− yk〉 (8)
= f(yk) + 〈∇f(yk),u− vk〉+ 〈∇f(yk),vk − yk〉.

Since f(u) ≥ f(x∗),∀u, it is natural to use (8) to obtain an esti-
mate of f(x∗). Noticing that the RHS of (8) is linear in u, therefore
one would instead minimizing the regularized version of the RHS of
(8) as in (7) to yield a worst case estimate of f(x∗). Hence, obtain-
ing vk+1 amounts to finding an approximation of the optimality gap
via (8). The role of {vk} in the generalized ES is thus unveiled: it
helps to construct the optimality gap. The intuitive explanation is
validated by numerical experiments in Fig. 1, where the RHS of (8)
is always less than f(xk) as an estimate of f(x∗).

In a nutshell, acceleration is achieved by relying on both GD
and MD: using GD for descent; while consulting MD for estimating
optimality gap.
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Fig. 2. Tests AGM with ‖ · ‖Q on different datasets.

4.2. Case study: quadratic norm

In this subsection, we consider smoothness w.r.t. the quadratic norm,
‖ · ‖Q, where Q ∈ Sd++ is a positive definite matrix. In this case, it
is natural to chooseR(x) = 1

2
‖x‖2Q withDR(x,y) = 1

2
‖x−y‖2Q.

The updates on xk+1 and vk+1 (Lines 5 and 6 in Alg. 1) can thus
be rewritten in closed-form as

xk+1 = yk −
1

L
Q−1∇f(yk) (9a)

vk+1 = vk −
δk
µk+1

Q−1∇f(yk). (9b)

Despite the closed-form update, the main message here is that a
properly designed Q can be helpful for achieving faster convergence.
Intuitively, choosing Q as an approximation of Hessian can be help-
ful. However, since AGM is a first order method, one wants to find
Q using first order information only.

Inspired by the well-known AdaGrad [14, 15], which has similar
updates as (9a), we propose to obtain Q using a few gradients as
AdaGrad does. Specifically, setting z0 = x0, and performing t steps
of gradient descent on zk, i.e., zk+1 = zk − 1

L2
∇f(zk), where L2

is the smoothness parameter w.r.t. `2-norm, we can then choose Q
as

Q = c · diag
(√√√√1

t

t−1∑
k=0

(
∇f(zk)

)2
+ ε1

)
(10)

where (·)2 and
√
· are element-wise square and square-root, respec-

tively; diag(θ) denotes a diagonal matrix whose diagonal entries
are given by the vector θ; ε > 0 is a small offset to guarantee the
positive definiteness of Q; and c > 0 is a tunable scaler. One can
view Q as an estimated Hessian using first-order information. As
for the choice of t, in practice we have found in our experiments that
a small number (t ≈ 3) performs well. Hence, using (10) to find Q
do not bring much computational overhead.

5. NUMERICAL TESTS

In this section, we illustrate our theoretical findings through the clas-
sical problem of binary classification using logistic regression and
the proposed construction for the matrix Q [cf. (10)].

In this setting, the loss function is defined as

f(x) =
1

n

n∑
i=1

ln
(

1 + exp
(
− bi〈ai,x〉

))

Table 1. Details of datasets used in numerical tests, where d is the
dimensionality of the feature, n is the number of data, and “den-
sity” refers to the percentage of non-zero elements among all feature
vectors.

dataset d n density
w1a 300 2477 3.82%
w7a 300 24, 692 3.89%
a9a 122 32, 561 11.37%

where ai and bi are the feature and label of datum i, respectively;
and n is the total number of data. We choose standard GD and stan-
dard Nesterov’s acceleration approach (i.e., AGM with l2-norm) as
benchmarks. For the implementation of AGM with ‖ · ‖Q, we con-
sider Q specified by (10) (ε = 10−4, c = 10).

Datasets w1a, w7a, and a9a2 are adopted for tests, whose de-
tailed descriptions are shown in Tab. 1. The numerical performances
of the considered algorithms are plotted in Fig. 2. The proposed
AGM with ‖ ·‖Q significantly improves over the original AGM with
‖·‖2. For example, on dataset w1a, the proposed method uses around
10 iterations to achieve f(xk) = 0.2, while standard AGM requires
30 iterations.

Notice that the convergence improvement achieved by using
quadratic norm in AGM over the standard AGM is larger when
sparse data is considered (see Fig. 2 (b) and (c)). As the Q is ob-
tained in the spirit of AdaGrad, such “sparsity preference” behavior
is consistent with the observation made in [15] where it is noticed
that AdaGrad performs better on sparse data.

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, the analysis tool, estimate sequence (ES), was extended
to support smoothness defined on any norm. In-depth explanation
of how acceleration is achieved, and the meaning of {vk} in ES
were provided. Our theoretical findings led to an efficient method,
where ‖·‖Q is taken advantage of to improve the performance of the
standard AGM. Numerical tests corroborated the proposed scheme
significantly improves over standard AGM.

Investigating generalized ES on strongly convex problems is an
interesting future topic. The challenge comes from the fact that µk is
an underestimate of the strongly convexity of the surrogate Φk(x).

2Online available at https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/binary.html
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